V22.0490.001
Special Topics: Programming Languages

B. Mishra
New York University.

Lecture # 17

Programming Languages e MISHRA 2008

LECTURE #17 @ 1

—Slide 1—

Runtime Representations

® Variable Names = Fnuvironment = L-values
e Scope, Extent & Binding Time
— Scope: Portion of the program text in which

the identifier has a specific meaning.

— Extent: Duration for which the identifier is
allocated the location during execution (runtime).

— Binding Time: 1Time at which the associa-
tion is made between an identifier and its allo-
cated location.

e Usually, Extent < Scope.

Programming Languages e MISHRA 2008

LECTURE #17 @ 2

——olide 2—
Dangling Reference Problem

e Recall storage insecurity, when

Extent > Scope.

e Eixample
type r = record ... end,;
t = "r;

procedure P;
var q: t;
procedure A;

var s: t;
begin
new(s); q:= s; dispose(s);
end;
begin
. A ...
q := ...; (xL-value whose lifetime has passedx*)

end.

Programming Languages e MISHRA 2008

LECTURE #17 @ 3

—lide 3—
Static Storage Management

e FORTRAN (as implemented commonly)

— The main program and each subroutine may de-
clare local data.

But all data are preserved across successive calls
on subroutines.

— A given subroutine cannot be called if there is an
as yet unfinished call of that same subroutine.

Forbids both direct and indirect (mutual) re-
CUTSLON.

e All storage for FORTRAN data can
be allocated statically before execu-
tion begins.

Programming Languages e MISHRA 2008

LECTURE #17 @ 4

—Slide 4—

Activation Record

e Activation Record:

Set of informations necessary for the exe-

cution of a subprogram.
e FORTRAN

When a subroutine executes, it always finds
its activation record in the same place.

o Runtime structure of FORTRAN:

Needs only to store the “return address” in

the activation record of the called subroutine.

Programming Languages e MISHRA 2008

LECTURE #17 @ 5

——olide 5—
Static Storage Management in FORTRAN

()

ARfor P codefor P

AR for R

AR for Q

codefor Q

. J

® Activation Records:

SUBROUTINE P(...) SUBROUTINE Q(...) SUBROUTINE R(...)
CALL QC(...) CALL R(...)
RETURN
RETURN RETURN END
END END

® [n FORTRAN, each of the following has an Activa-

tion Record

— Each subroutine
— The mainprogram
— Each COMMON block

Programming Languages e MISHRA 2008

LECTURE #17 @ 6

—Slide 6—

Stack Based Modern Languages
(ALGOL-like)

e Subprograms are allowed to be recursive.

— More than one activation of the same subprogram
can exist simultaneously.

— Each invocation of the subprogram may have
1) A different return point
2) Different values for local variables.
— Number of activations of a subprogram (that can

exist simultaneously) is unpredictable.

= The activation record for a subpro-
gram can only be created, when the sub-
program 1S actually called.

e Support for scope-entry declaration of lo-
cal variables.

Programming Languages e MISHRA 2008

LECTURE #17 @ 7

—Slide 7—

Implications of
Call-Time Allocation of AR’s

e Allocation lasts for precisely the duration of
a particular subprograms execution.
= Allocate AR, when the execution begins.

= Release that space, when execution finishes.

e [f a subprogram P calls a subprogram Q then
P cannot complete before Q.

Extent(Q’s AR) C Extent(P’s AR)

Q’s extent is wholly contained in P’s.

e Storage requirements of AR’s are Last-
In-First-Out.

e Stack-like data structure for AR’s suffices.

Programming Languages e MISHRA 2008

LECTURE #17 @ 8

—Slide 8 —
Procedure Call

P = Procedure
Call to P

e Push a new AR for P on stack
(containing “return address” as its return

field)

e [ixecute in the “new” environment

e Pop the current AR for P
(saving the “return address” in T')

e GotoT.

Programming Languages e MISHRA 2008

LECTURE #17 @ 9

—Slide 9—

Activation Records (AR)
Stack Based Storage Management

Algol and its relatives:

STACK cal 0
AR for P
r
AR for Q Cal P
codefor Q
AR for P return

& J

® Mutually Recursive Procedures:

procedure P(...)<-- procedure Q(...)
ce \ .
begin \ begin
\
A PC...)
ce -> ce
end ——---————————————- / end

® Fach Activation of a procedure has an AR (allocated

dynamically).

Programming Languages e MISHRA 2008

LECTURE #17 @ 10

—lide 10—
Up-Level Addressing and the Display

e In the absence of reference to “global variables”
(procedures reference only formal and locally de-
clared variables)

L-VALUE OF A VARIABLE
ADDRESS OF THE CURRENT AR

= +
“OFFSET” ADDRESS WITHIN THE AR

e Procedure Call:

— Allocate AR on top of the stack

— Save caller’s AR address in its own AR

e Return from Call:

— Restore the old AR address

— Branch to the return point

Programming Languages e MISHRA 2008

LECTURE #17 @ 11

—olide 11—
Reference to the Global Variable

e Reference to the (GGlobal Variables:
Simple Case Global variables are all declared in
the main program—QOUTER-MOST LEVEL.

e [ach variable reference is either:

— Relative to the current AR (for locals), or
— Relative to the stack base (for globals).

e What about the intermediate non-local vari-
ables?:
Up-Level Addressing Problem

Programming Languages e MISHRA 2008

LECTURE #17 @ 12

—>olide 12—

Up-level Addressing Problem
Intermediate Non-Local Variables

Algol, Pascal, Ada, — Scope Rules

procedure P;
begin
var x, y: T1;

procedure Q;
begin

var z: T2;

procedure R;

begin
var: a, b: T3;
<—-————————= z is accessible in Q & R
end;
{——=——————== X, y are accessible in P, Q & R
end;
end;

e Can R tell where x, y and z are located?

e Not easily
(specially, if R calls itself recursively.)

Programming Languages e MISHRA 2008

LECTURE #17 @ 13

—olide 13—
Displays

e Lexical Level of a Procedure:

An integer value one greater than the lex-
ical level of the procedure in which it is
declared.

e Lexical level of the main Program = 0.
LexLev(P)=n =

LexLev(Q)=n+1& LexLev(R) =n + 2.

e Up-level Addressing
Accessing an “intermediate non-local variable” at level
L, where 0 < L < Current-level.

e Note:
The number of AR’s accessible to procedure R =
Lexlev(R) 4+ 1. (Dictated by the static nature of
the lexical scope rule.)

Programming Languages e MISHRA 2008

LECTURE #17 @ 14

—olide 14—
Displays and Setting Them Up

e Solving the Up-level Addressing Problem:
Add LexLev(R) + 1 locations to the AR of R.
These locations are called a DISPLAY—Vector of

pointers to accessible AR’s

e Setting the displays:
Assumption: No procedure parameters (False in Ada)

e Procedure P calls procedure Q):
Assumption = LexLev(Q) < Lexlev(P)
1. LexLev(P) = n then Display(P) = Dp|0..n]

2. Two cases to consider:
1) Lexlev(Q) = n (P and @ are at the same
level) and
2) Lexlev(Q) =m < n (Q is up-level from P)

Programming Languages e MISHRA 2008

LECTURE #17 @ 15

—olide 15—
Setting the Displays

e Case l) Lexlev(Q) =n (P and @ are at the same level)
Display(Q) = Dgl0..n]
Dgl0.n—1] = D,[0..n —1]
First n displays are the same
Dg[n] = ARg
The nth display of
@ is the base of the current AR

e Case II) Lexlev(Q) = m < n (Q is up-level from P)
Display(Q)) = Dg|0..m]
Dgl0..m — 1] := D,[0..m — 1]
First m displays are the same
Dg[m] = ARg
The mth display of
Q) is the base of the current AR

e More Efficient Implementation

1) Maintain one vector common to all AR’s + 2) One ad-
ditional word for each AR.

Programming Languages e MISHRA 2008

LECTURE #17 @ 16

—>Slide 16—
Sample Display Configuration
STACK
DISPLAY ARR")
[AR(M) AR(P) ARQ) AR(R”ﬂ
DISPLAY AR(R)
[ARM) ARP) | ARQ) |ARR)J
DISPLAY AR(R)
[AR(M) AR(P) | ARQ) AR(R)]
DISPLAY ARQ
[AR(M) AR(P) AR(Q)}
DISPLAY AR(P)
EAR(M) AR(P) j
DISPLAY Main Program AR
[AR(M) j

[End of Lecture #17]

Programming Languages e MISHRA 2008

