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Taxon

Taxon (Taxonomical Unit): is an entity whose similarity (or dissimilarity) can
be numerically measured. E.g., Species, Populations, Genera, Amino Acid
Sequences, Nucleotide Sequences, Languages.

Phylogeny is an organization of the taxa in a rooted tree, with distances
assigned to the edges in a such manner that the “tree-distance” between a
pair of taxa equals the numerical value measuring their dissimilarity.

The dissimilarity and the edge lengths of the phylogenic trees can be related to
the rate of evolution (perhaps determined by a molecular clock).

Comparing a Pair of Taxa

Discrete Characters: Each taxon possesses a collection of
characters and each character can be in one of finite number of
states. One can describe an n taxa withm characters by an nfm
matrix over the state space. Character State Matrix.
Comparative Numerical Data: A distance is assigned between
every pair of taxa. One can describe the distances between n taxa
by an nEn matrix over R, Distance Matrix.

Character States

Some Assumptions:
The characters are inherited independently from one another.
Observed states of a character have evolved from one “original state” of the
nearest common ancestor of a taxon.
Convergence or parallel evolution are rare. That is the same state of a
character rarely evolve in two independent manners.
Reversal of a character to an ancestral state is rare.

Classifying Characters

Characters:
Unordered / Qualitative Character: All state transitions are
possible.
Ordered / Cladistic Character: Specific rules regarding state
transition are assumed.

Linear Ordering
Partial Ordering (with a derivation tree).



Perfect Phylogeny

A phylogenic tree T (with edges labeled by state transitions) is called perfect, if it does not allow
reversal or convergence--that is, with respect to any character ¢, and any pair of states w and s at most
one edge is labeled
w!sors!w.
Example: Binary characters with two states {O=ancestral, and 1=dervied}: any character c; labels at most
one edge and implies a transition from
0!1 in the i position.

Perfect Phylogeny Problem:

Given: A set O with n taxa, a set C of m characters, each character having at most r states.

Decide: If O admits a perfect phylogeny.
A set of defining characters are compatible, if a set of objects defined by a character set matrix admits a perfect

phylogeny.

Compatibility Criteria
Allow reversal and convergence properties in the models of evolution.

Parsimony Criteria: Minimize the occurrences of reversal and convergence

events in the reconstructed phylogeny tree.
Dollo Parsimony Criterion: Minimize reversal while forbidding convergence.
Camin-Sokal Parsimony Criterion: Minimize convergence while forbidding reversal.

Compatibility Criteria: Exclude minimal number of characters under
consideration so that the reconstructed phylogeny tree is perfect and does not
admit any occurrence of reversal or convergence.

Computational Infeasibility
Perfect Phylogeny Problem for arbitrary (> 2) number of
unordered characters and arbitrary (> 2) number of states
Is NP-complete.
Optimal Phylogeny Problem under compatibility
criteria is NP-complete.
Optimal Phylogeny Problem either under Dollo or
Camin-Sokal parsimony criteria is NP-complete.

Binary Character Set

Each character has two states = {0, 1}
If a character is ordered then 0! 1 (O=ancestral and 1=derived), or
converse.
For binary characters (ordered or unordered), perfect phylogeny
problem can be solved efficiently

Poly time, for n taxa and m characters, Time = O(nm).
A two phase algorithm:

Perfect Phylogeny Decision Problem

Perfect Phylogeny Reconstruction Problem

Compatibility Condition



T = Perfect Phylogeny for M iff

( 8c= character)( Ol e= tree-edge) label(e) = {c;, 0! 1}
root(T) = (0, 0,0, ..., 0)
A path from root to a taxon tis labeled (ciy, Ci, ..., Cj)

) thas 1's in positions iy, iz, ..., ij.

Perfect Phylogeny Condition
M = n £ m Character State Matrix, j 2 {1..m}
O; = {i = taxon : M; = 1}
OjC: {i = taxon : M; = 0}

Key Lemma
Lemma: A binary matrix M admits a perfect phylogeny iff
(81i,j2{1, m})OiAOj:;OI’OiHOjOI’OiﬂOj

Proof: ()) T; = subtree containing O;, T; = subtree containing O;, r; = root(T;) and I} = root(Tj)
ri is neither an ancestor nor descendant of r; ) O AOJ: ;

riis a descendant of r; ) O; u O,

ri is an ancestor of r;) O; 1 O

(O By induction, Base case m=1 is trivial. Induction case, m=k+1:

T, = Tree for k characters. Oy, is contained in a subtree with minimal # taxa rooted at r.

r must be a leaf node. Either an edge needs to be labeled or the subtree rooted at r has to be

split. @

Simple Algorithm based on the Lemma
Compare every pair of columns for the intersection and
inclusion properties. Total of O(m?) pairs, each comparison
can be done in O(n) time.
Total Time Complexity = O(hm?)
Can be improved to O(nm) time.

Improved Decision Algorithm

Algorithm

First radix sort columns of M based on the number of 1's in each column.
for each Ljdo L :=0;

fori:==1tondo

k:=-1;
forj:=1tomdo
if Mj =21then {Lj:=k; k:=j}

for each column of j of L do

if 91,1 Lj O Ly and both nonzero then
return False

return True. &

Example
Reconstruction Algorithm
Two Characters



An n £ 2 Character State Matrix with arbitrary number of states admits a
perfect phylogeny iff its corresponding state intersection graph (SIG) is acyclic.
State Intersection Graph: For each state s of character c; create a vertex v of
G. Let O, = {t; : M; = s}. <u,v> 2 Edges iff O, A O, [ ;.

The SIG, G = (V, E) has at most 2n vetices and O(n) edges. Acyclicity can be
tested in time O(|V|+|E|) = O(n) time.

For two character taxa with arbitrary number of states the perfect phylogeny
problem has an efficient solution.

Rate of Evolutionary Changes

Taxa of nucleotide or amino acid sequences.
Given two taxa s; and s;, measure their distance

Distance(s;, sj), dj = Edit distance based on pairwise sequence alignment.
Assumptions about the Molecular Clock (governing rate of

evolutionary change):
Only independent substitutions
No back or parallel mutations
Neglect selection pressure.

Amino Acid Sequences

[J = Amino Acid substitution rate per site per year.
[1 varies between organisms and protein classes

Example:
O for guinea pig insulin ¥4 5.3 £ 10°°
O for other organisms ¥4 0.33 £ 10°°
Other Examples of [I:
Fibrinopeptide ¥ 9 £ 10
Histone ¥ 1 £ 10™*

Estimating L[]
X & Y = homologous proteins of same length n
ng = Number of differences between homologous amino acid sites.
X and Y are isolated from two distantly related species that
diverged t time ago.
p ¥4 ng/n = Probability of an amino acid substitution occurring at a
given site of either X or Y.

Estimatingll (Contd.)
g=1-p=1-ny/n = Pr[# mutations at site X; = 0]
£ Pr[# mutations at site Y; =0]
Z = Random variable counting the number of mutations over time t
at a fixed site for an amino acid sequence with substitution rate [



per site per year » Poisson([] t)
Pr[Z =k] = exp{-O t} (O t)"/k!
— A20t
g=e
O =In (1/g)/2t.

Example: Histone H4

X & Y = Hisones from cow and pea.
n=105,n3=2,9g=1-ng/n=103/105
t = 10°%; Plants and animals diverged about a billion years
ago.
0 = (1/2t) (-In (1 — ng/n))
Ya (ng/n)/(2t)
14(2 £10%)(2 £ 10°) va10™M

Other Approaches
BLOSUM matrix
PAM (Accepted Point Mutation) matrix
WAC (Wei-Altman-Chang) matrix

Nucleotide Sequences

Synonymous or Neutral Substitutions:
= Nucleotide substitutions with no effect on expressed amino acid

sequences
Genetic code is redundant—Most substitutions to 3" positions are
synonymous.
Often a single non-synonymous nucleotide substitution is likely to change
one amino acid into a related amino acid (e.g., both hydrophobic).

Molecular clock is modeled based on non-synonymous substitution
rate.

Variability of Nucleotide Mutation Rate

Transitional Mutations:
purine-purine, i.e. A$ G
pyrimidine-pyrimidine, i.e. C$ T
Transversal Mutations:
purine-pyrimidine: A$T,A$C,G$C,G$T
Usually transitional mutations are more likely. Mutation into A is more likely.
Effect of DNA repair mechanism
O for higher primate ¥ 1.3 £ 10 /site/yr
[ for sea urchins & rodents ¥ 6.6 £ 10™%/site/yr

O for mammalian mtDNA ¥4 10°%/site/yr
O for plant cpDNA ¥4 1.1 £ 10/site/yr



Markov Process Model of Mutation

Evolution is modeled by a stochastic process, X(t) with real-valued time
parametert =0
A time-homogeneous Markov process

(Q. O, P(1)
Q={A, C, G, T} = States
0 = {0, O¢, Og, Ot } = Initial Distribution
P(t) =

Markov Process (Contd.)
Po, o) = Pri | O, f] = PrX(t) = O | X(0) = U]
= Probability that a nucleotide with a value [ at time 0
mutates to a [J by time t
P(t+s) = P(t)P(s)

(t) = PriX(t) = 1] = Uk2ac.em Uk Pri(t)
={0a, Oc, O, O7}is a statlonary distribution for P(t)
8t O P(t) =

Markov Process (Contd.)

P*(t) = P(t) limg o [P(O t) — PO)J[D ]
=P(t) O
Solution to the differential equation:
P(t) = exp(0 t) = On=o" O" t0!

Row-sum for [ is O:

Dj Di,j = |ith! 0 [D Pi,; —l]/[D t] =

Juke-Cantor Model

(Oa,01,0¢,06) = (Va, Ya, Ya, Ya)

[] =

[] =
Juke-Cantor Model (Contd.)
O=-40(-0)
P(t) — e—4|:| (I-0)t
= | [On=o" (-40 )"/n1] {0n=0" O" (40 1)"/n1}



= e-4[|t{ | + 0O (e4[|t_1)}

— e-4[|t | + 0O (1_e-4[| t)

pii(t) = Y4(1 + 3 g™ t)

pij) =¥ (1-4 e, i0j



