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Taxon 
• Taxon (Taxonomical Unit): is an entity whose similarity (or dissimilarity) can 

be numerically measured. E.g., Species, Populations, Genera, Amino Acid 
Sequences, Nucleotide Sequences, Languages. 

• Phylogeny is an organization of the taxa in a rooted tree, with distances 
assigned to the edges in a such manner that the “tree-distance” between a 
pair of taxa equals the numerical value measuring their dissimilarity. 

• The dissimilarity and the edge lengths of the phylogenic trees can be related to 
the rate of evolution (perhaps determined by a molecular clock). 

Comparing a Pair of Taxa 
• Discrete Characters: Each taxon possesses a collection of 

characters and each character can be in one of finite number of 
states. One can describe an n taxa withm characters by an n£m 
matrix over the state space. Character State Matrix. 

• Comparative Numerical Data: A distance is assigned between 
every pair of taxa. One can describe the distances between n taxa 
by an n£n matrix over R+. Distance Matrix. 

Character States 
• Some Assumptions: 

– The characters are inherited independently from one another. 
– Observed states of a character have evolved from one “original state” of the 

nearest common ancestor of a taxon. 
– Convergence or parallel evolution are rare. That is the same state of a 

character rarely evolve in two independent manners. 
– Reversal of a character to an ancestral state is rare.  

Classifying Characters 
• Characters: 

• Unordered / Qualitative Character: All state transitions are 
possible.  

• Ordered / Cladistic Character: Specific rules regarding state 
transition are assumed. 

 
– Linear Ordering 
– Partial Ordering (with a derivation tree). 



Perfect Phylogeny 
• A phylogenic tree T  (with edges labeled by state transitions) is called perfect, if it does not allow 

reversal or convergence--that is, with respect to any character c,  and any pair of states w and s at most 
one edge is labeled 

 w ! s or s ! w. 
• Example: Binary characters with two states {0=ancestral, and 1=dervied}: any character ci labels at most 

one edge and implies a transition from 
0 ! 1 in the ith position. 

• Perfect Phylogeny Problem: 
– Given: A set O with n taxa, a set C of m characters, each character having at most r states. 
– Decide: If O admits a perfect phylogeny. 

• A set of defining characters are compatible, if a set of objects defined by a character set matrix admits a perfect 
phylogeny. 

 

Compatibility Criteria 
• Allow reversal and convergence properties in the models of evolution. 
• Parsimony Criteria: Minimize the occurrences of reversal and convergence 

events in the reconstructed phylogeny tree. 
– Dollo Parsimony Criterion: Minimize reversal while forbidding convergence. 
– Camin-Sokal Parsimony Criterion: Minimize convergence while forbidding reversal. 

• Compatibility Criteria: Exclude minimal number of characters under 
consideration so that the reconstructed phylogeny tree is perfect and does not 
admit any occurrence of reversal or convergence. 

Computational Infeasibility 
• Perfect Phylogeny Problem for arbitrary (> 2) number of 

unordered characters and arbitrary (> 2) number of states 
is NP-complete. 

• Optimal Phylogeny Problem under compatibility 
criteria is NP-complete. 

•  Optimal Phylogeny Problem either under Dollo or 
Camin-Sokal parsimony criteria is NP-complete. 

Binary Character Set 
• Each character has two states = {0, 1} 
• If a character is ordered then 0 ! 1 (0=ancestral and 1=derived), or 

converse. 
• For binary characters (ordered or unordered), perfect phylogeny 

problem can be solved efficiently 
– Poly time, for n taxa and m characters, Time = O(nm). 

• A two phase algorithm: 
– Perfect Phylogeny Decision Problem 
– Perfect Phylogeny Reconstruction Problem 

Compatibility Condition 



• T = Perfect Phylogeny for M iff 
( 8 ci = character)( 9! e = tree-edge) label(e) = {ci, 0! 1} 

root(T) = (0, 0, 0, …, 0) 
• A path from root to a taxon t is labeled (ci1, ci2, …, cij)  
) t has 1’s in positions i1, i2, …, ij. 
• Perfect Phylogeny Condition 

– M = n £ m Character State Matrix, j 2 {1..m} 
– Oj = {i = taxon : Mij = 1} 
– Oj

c= {i = taxon : Mij = 0} 

 

 

Key Lemma 
• Lemma: A binary matrix M admits a perfect phylogeny iff 

( 8 i, j 2 {1, m}) Oi Å Oj = ; or Oi µ Oj or Oi ¶ Oj 

• Proof: ()) Ti = subtree containing Oi,  Tj = subtree containing Oj.  ri = root(Ti) and rj = root(Tj)  
ri is neither an ancestor nor descendant of rj ) Oi Å Oj= ; 
ri is a descendant of rj ) Oi µ Oj 

ri is an ancestor of rj ) Oi ¶ Oj 

• (() By induction, Base case m=1 is trivial. Induction case, m=k+1: 
Tk = Tree for k characters. Ok+1 is contained in a subtree with minimal # taxa rooted at r. 
r must be a leaf node. Either an edge needs to be labeled or the subtree rooted at r has to be 

split. ¤ 

Simple Algorithm based on the Lemma 
• Compare every pair of columns for the intersection and 

inclusion properties. Total of O(m2) pairs, each comparison 
can be done in O(n) time. 

• Total Time Complexity = O(nm2) 
• Can be improved to O(nm) time. 

Improved Decision Algorithm 
Algorithm 
First radix sort columns of M based on the number of 1’s in each column. 
for each Lij do Lij := 0; 
for i := 1 to n do 
 k := -1; 
 for j := 1 to m do 
  if Mij = 1 then {Lij := k; k := j} 
for each column of j of L do 
 if 9 i,l Lij �  Llj and both nonzero then 
  return False 
return True. ¤ 

Example 
Reconstruction Algorithm 

Two Characters 



• An n £ 2 Character State Matrix with arbitrary number of states admits a 
perfect phylogeny iff its corresponding state intersection graph (SIG) is acyclic. 

• State Intersection Graph: For each state s of character cj create a vertex v of 
G. Let Ov = {ti : Mij = s}. <u,v> 2 Edges iff Ou Å Ov �  ;. 

• The SIG, G = (V, E) has at most 2n vetices and O(n) edges. Acyclicity can be 
tested in time O(|V|+|E|) = O(n) time. 

• For two character taxa with arbitrary number of states the perfect phylogeny 
problem has an efficient solution. 

Rate of Evolutionary Changes 
• Taxa of nucleotide or amino acid sequences. 
• Given two taxa si and sj, measure their distance 

– Distance(si, sj), dij = Edit distance based on pairwise sequence alignment. 
• Assumptions about the Molecular Clock (governing rate of 

evolutionary change):  
– Only independent substitutions 
– No back or parallel mutations 
– Neglect selection pressure. 

Amino Acid Sequences 
•  �  = Amino Acid substitution rate per site per year. 
•  �  varies between organisms and protein classes 
• Example: 

–  �  for guinea pig insulin ¼ 5.3 £ 10-9 

–  �  for other organisms ¼ 0.33 £ 10-9 

• Other Examples of � : 
– Fibrinopeptide ¼ 9 £ 10-9 
– Histone ¼ 1 £ 10-11 

 

Estimating �  
• X & Y = homologous proteins of same length n 
• nd = Number of differences between homologous amino acid sites. 
• X and Y are isolated from two distantly related species that 

diverged t time ago. 
• p ¼ nd/n = Probability of an amino acid substitution occurring at a 

given site of either X or Y. 

Estimating ��� (Contd.) 
• q = 1 – p = 1 – nd/n = Pr[# mutations at site Xi = 0] 

£ Pr[# mutations at site Yi =0] 
• Z = Random variable counting the number of mutations over time t 

at a fixed site for an amino acid sequence with substitution rate �  



per site per year » Poisson(�  t) 
Pr[Z =k] = exp{-�  t} (�  t)k/k! 

q = e-2 �  t 
 �  = ln (1/q)/2t. 

Example: Histone H4 
• X & Y = Hisones from cow and pea. 
• n = 105, nd = 2, q = 1 – nd/n = 103/105 
• t = 109; Plants and animals diverged about a billion years 

ago. 
 �  = (1/2t) (-ln (1 – nd/n))  

¼ (nd/n)/(2t) 
 ¼ (2 £ 10-2)(2 £ 109) ¼ 10-11 

Other Approaches 
• BLOSUM matrix 
• PAM (Accepted Point Mutation) matrix 
• WAC (Wei-Altman-Chang) matrix 

Nucleotide Sequences 
• Synonymous or Neutral Substitutions: 
 = Nucleotide substitutions with no effect on expressed amino acid 

sequences 
– Genetic code is redundant—Most substitutions to 3rd positions are 

synonymous. 
– Often a single non-synonymous nucleotide substitution is likely to change 

one amino acid into a related amino acid (e.g., both hydrophobic). 
• Molecular clock is modeled based on non-synonymous substitution 

rate. 
Variability of Nucleotide Mutation Rate 

• Transitional Mutations:  
– purine-purine, i.e. A $ G 
– pyrimidine-pyrimidine, i.e. C $ T 

• Transversal Mutations: 
– purine-pyrimidine: A $ T, A $ C, G $ C, G $ T 

• Usually transitional mutations are more likely. Mutation into A is more likely. 
• Effect of DNA repair mechanism 

•  �  for higher primate ¼ 1.3 £ 10-9 /site/yr 
•  �  for sea urchins & rodents ¼ 6.6 £ 10-9/site/yr 
•  �  for mammalian mtDNA ¼ 10-8/site/yr 
•  �  for plant cpDNA ¼ 1.1 £ 10-9/site/yr 

 



Markov Process Model of Mutation 
• Evolution is modeled by a stochastic process, X(t) with real-valued time 

parameter t = 0 
• A time-homogeneous Markov process 
• (Q, � , P(t)) 
• Q = {A, C, G, T} = States 
•  �  = {� A, � C, � G, � T } = Initial Distribution 
 
• P(t) =  

Markov Process (Contd.) 
• p� , � (t) = Pr[�  | � , t] = Pr[X(t) = �  | X(0) = �  ] 
 = Probability that a nucleotide with a value �  at time 0 

mutates to a �  by time t 
• P(t+s) = P(t)P(s) 
• pi(t) = Pr[X(t) = i] = � k 2 {A,C,G,T} � k pk,i(t) 
•  � * = {� A

*, � C
*, � G

*, � T
*} is a stationary distribution for P(t) 

 8 t   � * P(t) = � * 

Markov Process (Contd.) 
• P’(t) = P(t) lim�  t ! 0 [P(�  t) – P(0)]/[�  t] 

= P(t) �  
• Solution to the differential equation: 

P(t) = exp(�  t) = � n=0
1 � n tn/n! 

• Row-sum for �  is 0: 
 � j � i,j = lim�  t ! 0 [�  pi,j –1]/[�  t] = 0. 

Juke-Cantor Model 
• (� A,� T,� C,� G) = (¼, ¼, ¼, ¼)  
 
•  �  = 
 
 
•  �  =  

Juke-Cantor Model (Contd.) 
•  �  = -4 �  (I - � ) 
• P(t) = e-4�  (I - � ) t 

= I [� n=0
1 (-4�  t)n/n!] {� n=0

1 � n (4�  t)n/n!} 



= I e-4 �  t { I + �  (e4�  t – 1)} 
= e-4 �  t I + �  (1-e-4�  t) 

• pi,i(t) = ¼(1 + 3 e-4�  t) 
• pi,j(t) = ¼ (1 – 4 e-4 �  t),  i �  j. 


