
Text Representation using Convolutional Networks

by

Xiang Zhang

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January 2019

Professor Yann LeCun

c© Xiang Zhang

All Rights Reserved, 2019

Dedication

To my parents, with affection.

iv

Acknowledgements

All the research projects in this dissertation are not possible without the sup-

port from my advisor professor Yann LeCun, who offered the best advisement one

could ever hope for, even with the tremendous amount of work he needs to do for

other obligations due to the booming of deep learning. I also want to express my

gratitude for professor Sam Bowman and professor Kyunghyun Cho, whose sug-

gestions for my dissertation proposal helped me to understand better about the

position of these research projects in the natural language processing community.

The readers of this dissertation – Dr. Sumit Chopra and Dr. Arthur Szlam

– helped me in a great deal during the 2015 summer internship at Facebook,

especially with the understanding of challenges in machine reasoning for dialogue

systems. Dr. Antoine Bordes and Dr. Jason Weston from Facebook AI Research

(FAIR) also provided many inspiring discussions at that time that formed my view

on research in NLP.

I had close collaboration with Jake (Junbo) Zhao on the character-level convo-

lutional network project, who did all the logistic regression experiments in chap-

ter 2. Good discussions were made with Younduck Choi, Ross Goroshin, Mikael

Henaff, Yoon Kim, Ilya Kostrikov, Michael Mathieu, Aditya Ramesh, Sainbayar

Sukhbaatar, Will Whitney, Jiakai Zhang and many others throughout all of these

projects.

A great deal of computational resources were provided by FAIR during 2017

summer, and subsequently Element AI, to speed up the projects in this disserta-

tion. I want to gratefully acknowledge the support of NVIDIA Corporation with

the donation of 2 Tesla K40 GPUs used for training some of the models in this

dissertation. Amazon.com Inc also provided an AWS in Education Research grant,

v

which is used for crawling the datasets used in this dissertation.

Finally, I want to express love to my parents, who encouraged their only son

on a long but rewarding journey abroad.

vi

Abstract

This dissertation applies convolutional networks for learning representations of

text, and it consists of several parts. The first part offers an empirical exploration

on the use of character-level convolutional networks (ConvNets) for text classifi-

cation. We constructed several large-scale datasets to show that character-level

convolutional networks could achieve state-of-the-art or competitive results. Com-

parisons are offered against traditional models such as bag of words, n-grams and

their TFIDF variants, and deep learning models such as word-based ConvNets and

recurrent neural networks. These results indicate that using low-level inputs – in

this case characters – for convolutional networks could be feasible for text represen-

tation learning. The second part concerns which text encoding method might work

for convolutional networks. We include a comprehensive comparison of different

encoding methods for the task of text classification using 14 large-scale datasets in

4 languages including Chinese, English, Japanese and Korean. Different encoding

levels are studied, including UTF-8 bytes, characters, words, romanized characters

and romanized words. For all encoding levels, whenever applicable, we provide

comparisons with linear models, fastText and convolutional networks. For convo-

lutional networks, we compare between encoding mechanisms using character glyph

images, one-hot (or one-of-n) encoding, and embedding. From these 473 models,

one of the conclusions is that byte-level one-hot encoding works consistently best

for convolutional networks. Based on this, in the third part of the dissertation we

develop a convolutional network at the level of bytes for learning representations

through the task of auto-encoding. The proposed model is a multi-stage deep con-

volutional encoder-decoder framework using residual connections, containing up

to 160 parameterized layers. Each encoder or decoder contains a shared group of

vii

modules that consists of either pooling or up-sampling layers, making the network

recursive in terms of abstraction levels in representation. The decoding process is

non-sequential. Results for 6 large-scale paragraph datasets are reported, in 3 lan-

guages including Arabic, Chinese and English. Analyses are conducted to study

several properties of the proposed model. Experiments are presented to verify

that the auto-encoder can learn useful representations. In the fourth part of the

dissertation, we use the improved design from the previous auto-encoding model

to text classification, adding comparisons between residual and dense connections.

This further validates the choice of the architecture we made for the auto-encoding

model, and the effectiveness of the recursive architecture with residual or dense

connections.

viii

Contents

Dedication . iv

Acknowledgements . v

Abstract . vii

List of Figures . xiv

List of Tables . xvi

List of Appendices . xix

1 Introduction 1

1.1 Background Overview for Text Representation Learning 1

1.1.1 Simple Representation . 2

1.1.2 Distributed Representation 2

1.1.3 Recurrent Neural Networks 4

1.1.4 Convolutional Networks . 7

1.1.5 Learning from Character and Byte Levels 9

1.2 Motivation . 11

1.2.1 End-to-End Learning for Text 11

1.2.2 Motivation for Text Representation Learning 13

1.3 Dissertation Content . 14

2 Character-level Convolutional Networks for Text Classification 18

ix

2.1 Introduction . 18

2.2 Character-level Convolutional Networks 21

2.2.1 Key Modules . 21

2.2.2 Character quantization . 23

2.2.3 Model Design . 24

2.2.4 Data Augmentation using Thesaurus 25

2.3 Comparison Models . 27

2.3.1 Traditional Methods . 28

2.3.2 Deep Learning Methods . 30

2.3.3 Choice of Alphabet . 32

2.4 Large-scale Datasets and Results 32

2.5 Discussion . 34

2.6 Conclusion and Outlook . 37

3 Which Encoding is the Best for Text Classification in Chinese,

English, Japanese and Korean? 38

3.1 Introduction . 39

3.2 Encoding Mechanisms for Convolutional Networks 41

3.2.1 Character Glyph . 42

3.2.2 One-hot Encoding . 43

3.2.3 Embedding . 45

3.3 Linear Models and fastText . 47

3.3.1 Linear Models . 47

3.3.2 fastText . 49

3.4 Datasets and Preprocessing . 50

3.4.1 Datasets . 50

x

3.4.2 Word Segmentation and Romanization 56

3.5 Experiments . 58

3.5.1 Optimization . 58

3.5.2 Results . 60

3.6 Analysis . 60

3.6.1 Rank the Models . 62

3.6.2 Generalization . 64

3.6.3 Training Time . 64

3.6.4 Influence from Representation 66

3.6.5 Linguistic Properties . 67

3.7 Other Models . 68

3.8 Conclusion . 70

4 Byte-level Recursive Convolutional Auto-Encoder 74

4.1 Introduction . 75

4.2 Recursive Convolutional Auto-Encoder 78

4.3 Result for Multi-lingual Auto-Encoding 82

4.3.1 Dataset . 83

4.3.2 Result . 85

4.4 Analysis . 86

4.4.1 Comparison with Recurrent Networks 86

4.4.2 End of Sequence . 87

4.4.3 Random Permutation of Samples 88

4.4.4 Sample Length . 90

4.4.5 Pooling Layers . 90

4.4.6 Recursion . 91

xi

4.4.7 Model Depth . 92

4.5 Representation Learning for Text Classification 93

4.6 Conclusion . 96

5 Model Improvement for Text Classification 97

5.1 Introduction . 97

5.2 Recursive Convolutional Networks using Residual or Dense Connec-

tions . 98

5.2.1 Residual Connections . 99

5.2.2 Dense Connections . 100

5.2.3 Static (Non-Recursive) Variants 102

5.3 Datasets and Results . 103

5.3.1 Datasets . 103

5.3.2 Training Parameters and Results 103

5.4 Discussion . 105

5.4.1 State-of-the-Art Models . 105

5.4.2 Aggregated Comparison . 107

5.5 Conclusion . 108

6 Conclusion and Outlook 110

6.1 Conclusion . 110

6.2 Short-term Outlook . 111

6.2.1 Text Generation with Uncertainty 112

6.2.2 Controllable Machine Translation 114

6.2.3 From Representation to Reasoning 115

Appendices 117

xii

Bibliography 126

xiii

List of Figures

1.1 A framework for research in deep learning for NLP 12

2.1 Illustration of our model . 19

2.2 long-short term memory . 22

2.3 Relative errors with bag-of-means 26

2.4 Relative errors with n-grams TFIDF 27

2.5 Relative errors with LSTM . 28

2.6 Relative errors with word2vec ConvNet 29

2.7 Relative errors with lookup table ConvNet 30

2.8 Relative errors with full alphabet ConvNet 31

2.9 First layer weights. For each patch, height is the kernel size and

width the alphabet size . 34

3.1 GNU Unifont . 42

3.2 Rank box plot of development errors for different models 57

3.3 Generalization gap of Joint binary dataset 59

3.4 Rank box plot of generalization gap for different models 61

3.5 Time for different models to go over 1,000,000 samples. The time

axis is in logarithmic scale. 62

3.6 Error and loss values for training linear model on jdbinary dataset

using word-level 5-gram plain features 73

xiv

4.1 The autoencoder model . 75

4.2 The reshaping process. This demonstrates the reshaping process

for transforming a representation of feature size 4 and length 8 to

feature size 2 and length 16. Different colors represent different

source features, and the numbers are indices in length dimension. . 76

4.3 The histogram of length difference 80

4.4 Byte-level error by length . 81

4.5 Byte-level errors with respect to randomly mutated samples 82

4.6 Histogram of sample frequencies in different lengths 85

4.7 Errors during training for recursive and static models. 87

4.8 Training Error for NYTimes dataset 88

4.9 Development Error for NYTimes dataset 89

4.10 Validation Error for NYTimes dataset 91

4.11 Training Error for Chinanews dataset 92

4.12 Development Error for Chinanews dataset 93

4.13 Validation Error for Chinanews dataset 94

5.1 The dense block. The arrows represent concatenation operation. . . 99

5.2 The rank box plot on development errors 104

5.3 Time of going over 1,000,000 samples. Using the same data and

hardware from [Zhang and LeCun, 2017]. The time axis is in loga-

rithm scale . 106

5.4 Number of parameters in different models 109

xv

List of Tables

2.1 Convolutional layers used in our experiments. The convolutional

layers have stride 1 and pooling layers are all non-overlapping ones,

so we omit the description of their strides. 20

2.2 Fully-connected layers used in our experiments. The number of

output units for the last layer is determined by the problem. For

example, for a 10-class classification problem it will be 10. 21

2.3 Statistics of our large-scale datasets. Epoch size is the number of

minibatches in one epoch . 23

2.4 Testing errors of all the models. Numbers are in percentage. “Lg”

stands for “large” and “Sm” stands for “small”. “w2v” is an abbre-

viation for “word2vec”, and “Lk” for “lookup table”. “Th” stands

for thesaurus. ConvNets labeled “Full” are those that distinguish

between lower and upper letters . 25

3.1 The large classifier . 39

3.2 The small classifier . 40

3.3 Large GlyphNet encoder . 43

3.4 Datasets. The 3rd column is the number of classes. 44

3.5 Small GlyphNet encoder . 45

3.6 OnehotNet encoder . 46

xvi

3.7 GlyphNet results. The numbers are development errors in percentage. 47

3.8 OnehotNet results. The numbers are development errors in percent-

age. The best result for each dataset is marked blue and the worst

red. 48

3.9 EmbedNet results. The numbers are development errors in percent-

age. The best result for each dataset is marked blue and the worst

red. 52

3.10 Linear model results. The numbers are development errors in per-

centage. The best result for each dataset is marked blue and the

worst red. 54

3.11 fastText results. The numbers are development errors in percentage.

The best result for each dataset is marked blue and the worst red. . 55

3.12 Estimated training time for going over 1,000,000 samples using joint

binary dataset. The time estimation in the fourth column is in

seconds. Encoding levels that will give the identical models are

grouped together because the time estimation would be the same.

These estimations are only for reference and may vary depending

on actual computing environment. 72

4.1 Datasets. All the numbers are paragraphs. 77

4.2 Training, development and validation byte-level errors 78

4.3 Byte-level errors for long short-term memory (LSTM) recurrent net-

work . 79

4.4 Byte-level errors for different pooling layers 83

4.5 Byte-level errors for recursive and static models 84

4.6 Byte-level errors depending on model depth 86

xvii

4.7 Training, development and validation errors for NYTimes dataset. . 95

4.8 Training, development and validation errors for Chinanews dataset. 96

5.1 Datasets. The 3rd column is the number of classes. 100

5.2 Development errors . 101

5.3 Comparison with previous state-of-the-art models 102

5.4 Number of parameters in different models 107

A.1 GlyphNet and OnehotNet training errors 118

A.2 EmbedNet training errors . 118

A.3 Linear model training errors . 119

A.4 fastText training errors . 119

A.5 GlyphNet and OnehotNet validation errors 120

A.6 EmbedNet validation errors . 120

A.7 Linear model validation errors . 121

A.8 fastText validation errors . 121

B.1 fastText epoches . 123

C.1 Training errors . 124

C.2 Validation errors . 125

xviii

List of Appendices

A Training and Validation Errors for Text Classification 117

B Validated Epoches for fastText 122

C Training and Validation Errors for Improved Model 124

xix

Chapter 1

Introduction

To help the readers put this dissertation in perspective, the introduction chap-

ter first gives a brief overview on text representation learning and convolutional

networks, and then introduces the motivation for the particular methodology and

model design used in this dissertation.

1.1 Background Overview for Text Representa-

tion Learning

This section offers an overview of representation learning for text. Through-

out this dissertation, representation learning indicates a set of methods that learn

some feature to be used in a machine learning system. For text, it is the process of

transforming the raw and variable-length sequence of characters into vectors. Rep-

resentation learning for text is a non-trivial problem and it faces many challenges

even with the recent advancements in deep learning methods. We will discuss some

of these challenges throughout this dissertation.

1

1.1.1 Simple Representation

As one of the most traditional research fields in computer science, natural lan-

guage processing has evolved a long way in the representation for text. The tradi-

tional non-learning representation methods including the likes of one-hot vectors,

bag-of-words representation and its TFIDF [Jones, 1972] variants, and n-grams

representation which can take into consideration some of the information in word

order. These methods are still quite popular, mainly because more advanced meth-

ods such as neural networks have limited success in doing better than them in some

simple tasks such as text classification. That said, text classification could still be

useful as a benchmark for studying different aspects of applying neural networks

in NLP, because training and testing errors are relatively straightforward. This is

compared to some other measurements which are usually surrogates because many

NLP tasks have structured (e.g. sequential) outputs.

1.1.2 Distributed Representation

A slightly more advanced method for text representation is the idea of word

embedding or word vector – associating each word with a real-valued vector. Com-

pared to simple representation methods such as one-hot encoding and bag-of-

words, these can be thought as “distributed” representation because there is no

pre-defined meaning to each dimension of the real-valued vector. Depending on

training methodology, these are mostly divided between pre-trained word vectors

and word vectors jointly trained with the task at hand.

The earliest work on distributed representation for words can be traced back

to [Miikkulainen and Dyer, 1991]. [Bengio et al., 2003] posed it as a method to mit-

2

igate the curse-of-dimensionality problem facing simple representation methods for

sequential data such as causal language modeling. Later, [Collobert and Weston,

2008] and [Collobert et al., 2011b] proposed to learn a convolutional network with

randomly initialized word vectors in a multi-task setting, with competitive results

for part-of-speech (POS) tagging, chunking, named entity recognition (NER) and

semantic role labeling.

In the following years, [Mikolov et al., 2013a] proposed to learn word vectors in

an unsupervised fashion with the ideas of continuous bag-of-words (CBOW) and

skip-grams with training tricks such as hierarchical softmax and negative sampling.

It was followed by many papers showing its usefulness in various NLP tasks. The

idea of global vectors for word representation (GloVe) [Pennington et al., 2014]

was also proposed as an alternative, which is a form of matrix factorization on the

co-occurrence matrix of the vocabulary. [Levy et al., 2015] shows that skip-grams

with negative sampling can be thought of as a form of matrix factorization as well,

making it possible to understand all these unsupervised word embedding learning

methods in the same framework.

Beyond embedding vectors at word-level, it is also possible to embed text at

paragraph or even document level. [Le and Mikolov, 2014] proposed to learn doc-

ument vectors by associating a vector to each paragraph and document, and use

it as an additional vector in the word embedding algorithms. It was shown to be

useful for sentiment analysis and information retrieval tasks. Although relatively

simple to implement, this method has the drawback that the inference process

is an optimization algorithm that needs to be run at test time, which limits its

scalability.

One way to mitigate the inference problem during test time is to replace the

3

association between sentences and vectors by a deep learning model such as re-

current neural networks or convolutional networks, which is used by the idea of

skip-thought vectors [Kiros et al., 2015]. The core idea of skip-though vectors is

to use the neighbouring sentence positions as an objective for sentence represen-

tation learning. This method requires an encoder-decoder architecture, where the

encoder can be a convolutional or recurrent network. The original paper used a

recurrent encoder. The encoder produces a vector that represents a sentence, while

the decoder is used to predict the surrounding sentences. This simple approach

worked well for learning representations that are useful for tasks such as semantic

relatedness, paraphrase detection, image-sentence ranking, text classification and

story generation. The idea of predicting surrounding sentences is similar to the

idea of skip-gram, but the latter operates on words instead of sentences.

1.1.3 Recurrent Neural Networks

With the advancement of deep learning, neural network models have also be-

come popular for NLP because of their ability to learn multi-level representation

for text. Two major model variants are recurrent neural networks (RNN) and

convolutional networks (ConvNet or CNN). This section discusses RNNs.

The idea of applying recurrent neural networks to NLP is quite straightforward

because text is naturally sequential. In the previous sections we already introduced

the neural language modeling work by [Bengio et al., 2003]. Besides proposing the

idea of word embedding, it was also one of the first papers to propose using a

neural network to predict the next word in text – that is, modeling sequences in

a causal fashion. It could either be a time-delay neural network or a recurrent

neural network. Similar ideas were also proposed by [Sutskever et al., 2011] in

4

which the focus was to use recurrent networks as a sequence generation model,

and their experiments are conducted at a much larger scale. Since then, many

authors have used these ideas for many different tasks taking advantage of their rich

representational capacity, especially in a sequence-to-sequence (seq2seq) [Sutskever

et al., 2014] or encoder-decoder [Cho et al., 2014b] framework.

There are many variants in the realm of RNNs, and two of the major ones are

long short-term memory (LSTM) [Hochreiter and Schmidhuber, 1997] and gated

recurrent unit (GRU) [Cho et al., 2014b]. They are both proposed as alternatives to

simple multi-layer recurrent networks to address the gradient vanishing problem

[Bengio et al., 1994] [Hochreiter et al., 2001] faced by recurrent models during

training. This is done by allowing the network to decide how much information to

remember from the past state vector, and how much new information can be taken

in with the current new input from the sequence. The difference between LSTM

and GRU is that the former has 3 gates instead of 2 in GRU. The extra gate that

allows an LSTM unit to mix the outputs from its state and from the current input.

The work by [Chung et al., 2014] offers a focused study on the properties of GRU

and compares it against other RNN variants including LSTM.

The research in RNNs have opened doors for handling text generation in a

sequential fashion. However, despite the ideas of LSTM and GRU, in practice

it is still difficult to generate long sequences accurately from only the recurrent

structure. As a result, many authors have also proposed the idea of attention

[Bahdanau et al., 2015] to help the generation process. The basic idea is to put a

weight on some input signal that the model attends to, and this weight changes

at each step of the generative process. This idea has been shown to work for

tasks such as machine translation [Bahdanau et al., 2015], image captioning [Xu

5

et al., 2015], reading comprehension [Hermann et al., 2015], and even for internal

distributed memory representations [Sukhbaatar et al., 2015]. In a nutshell, the

idea of attention models can be applied to perhaps anything that attempts to

generate some sequential data by observing some input signal, in which the focus

of the model can change from step-to-step. Requiring some signal to attend to is

both an advantage and a limitation of these attention models, since not all tasks

have reasonable a input signal that spans a natural dimension such as time or

space. One example is a free-style dialogue system in which reasoning from some

internal common sense memory is required, which may or may not have a natural

time or spacial dimension for applying the dynamic attention weights.

Another dimension of research for recurrent networks is to augment them by a

memory component. For example, the paper by [Sukhbaatar et al., 2015] proposed

a model named end-to-end memory networks that uses an attention mechanism

on a pre-defined set of embedding vectors as the memory, following the framework

proposed earlier by [Weston et al., 2014]. Meanwhile, [Graves et al., 2014] proposed

the neural Turing machine of which a controller network can be trained to utilize an

external memory matrix. Later, [Gulcehre et al., 2016] extended the neural Turing

machine to include a trainable addressing mechanism. Around the same time, the

paper by [Joulin and Mikolov, 2015] also proposes a stack-like memory mechanism

that can learn various simple algorithms such as counting, memorization and binary

addition. Text representation learning becomes a pre-requisite problem for these

models, since they concern more about reasoning rather than turning variable-

length text into vectors. The next section introduces the difference between text

representation and reasoning as defined in this dissertation..

These results being presented, a recent piece of work by [Vaswani et al., 2017]

6

shows that using only attention without the recurrent network component can

do as well for machine translation, with the text generation processing still being

sequential – that is, generating one word or symbol at a time in the reading order

of text. This puts the necessity of RNNs in question for sequential text generation

when there is some signal that the model can attend to at different generation

steps. Beyond sequential text generation, [Gu et al., 2018] also proposed a model

that can do non-autoregressive machine translation. All of these also opened a

door for another possible dimension for futher research – that is, whether doing

away with RNN or sequential process for text generation is possible.

1.1.4 Convolutional Networks

Originated from the field of computer vision, convolutional networks (Con-

vNets or CNN) [LeCun et al., 1989] [LeCun et al., 1990] [LeCun et al., 1998] have

become a standard toolkit for image recognition, localization and detection, espe-

cially since the ImageNet 2012 [Russakovsky et al., 2015] breakthrough achieved

by [Krizhevsky et al., 2012]. A ConvNet usually consists of a set of convolutional

layers in which the parameters are the filters, and perhaps some linear layers in

later stages, with non-linearities in between these parameterized layers. Pooling

layers can also be added to aggregate information from nearby values to build

representations at different levels of abstraction.

One motivation for ConvNets was the idea that when there is a natural dimen-

sion (such as width and height in image data, or the time dimension in sequential

data), local groups of these values are often highly correlated [LeCun et al., 2015].

Since such correlation are often repeated across these natural dimensions, convo-

lution is a natural process for detecting these local patterns. Using multi-stage

7

convolutional layers, non-linearity layers and pooling layers, ConvNets are capable

of learning hierarchical features at different levels of abstraction. For NLP, text

can be thought of as a sequence of symbols in which there is a natural dimension in

terms of the flow of reading, therefore the 1-D variant of ConvNets can be applied.

1-D ConvNets are dated as old as the 2-D version used for computer vision.

They appear as “time-delay neural networks” for speech recognition [Waibel et al.,

1989] and document reading [LeCun et al., 1998], in which the convolutional kernels

are usually constrained to be “causal filters”, a terminology used in the field of

signal processing.

Besides using the idea of word embedding, the work by [Collobert and Weston,

2008] and [Collobert et al., 2011b] was also the first to use convolutional networks

for NLP in general. The ConvNet architecture there starts with a look-up table

that turns indices of words into a sequence of vectors, and then a few convolu-

tional layers are appended to learn features. Max-over-time layers are appended

to aggregate abstract features, and then some optional fully-connected layers can

be appended to give the model more capacity for feature transformation. Finally,

a few soft-max layers are appended for classification at word-level. This generic

architecture can be applied to many different sequence labeling tasks in NLP, such

as part-of-speech (POS) tagging, chunking, named entity recognition (NER) and

semantic role labeling.

Since then, there have been a few papers attempting to use ConvNets for NLP.

The paper by [Kim, 2014] proposed to do text classification using a ConvNet,

and [Zhang et al., 2015] extended it to character level. Character-aware language

models were also proposed with ConvNets [Kim et al., 2016]. Meanwhile, the idea

of using ConvNets to generate texts has also been tried, such as the convolutional

8

seq2seq model proposed by [Gehring et al., 2017], which is shown to work as well

as the seq2seq or encoder-decoder structures using recurrent networks for machine

translation with attention.

Originally proposed for speech and audio synthesis, the idea of WaveNet [Oord

et al., 2016] is a way of using a 1-D ConvNets to do causal signal synthesis. One

important trick for training WaveNet is the re-use of past generated intermedi-

ate representations to be fed into the next layer. It is also able to construct

representations at different abstraction levels, with the use of dilated convolution

(convolution with holes) to mimic pooling layers for dense representation that are

equivariant to the input in size. Later, [Kalchbrenner et al., 2016] applied the

WaveNet architecture to character-level language modeling and machine transla-

tion, and achieved competitive results for machine translation. A later paper from

the same group [van den Oord et al., 2017] also shows that conditional audio and

speech synthesis without feeding the output signals back to the model is possible,

in which the generated signals have a causal dependence on the noise variables.

This can be thought of as an implicit form of sequential modeling.

1.1.5 Learning from Character and Byte Levels

Almost all of the representation learning techniques for text assume that the

basic constructs of languages are words. For many non-English languages this

could be undesirable, either because they have a rich morphology – such as Ger-

man and Hungarian, or because there is no unambiguous word boundary in the

flow of text – such as some texts in Chinese. Therefore, another dimension of

representation learning for text is the exploration of methods that are free from

the word assumption by going lower-level to characters or bytes. These models are

9

shown to be more applicable across languages while requiring less pre-processing.

One of the main approaches that has been explored so far is to augment word-

level models with lower-level information. The papers by [Luong et al., 2013] and

[Botha and Blunsom, 2014] propose to augment recurrent networks by morphemes

for better word representation, which produced better results for word similarity

and sequential language modeling tasks. Augmenting character-level information

for word-level models has been explored by [dos Santos and Zadrozny, 2014], [dos

Santos and Gatti, 2014], [dos Santos et al., 2015] and [Shen et al., 2014], which

was shown to be useful for part-of-speech (POS) tagging, sentiment classification,

named entity recognition (NER) and information retrieval, respectively.

The idea of pure character-level language modeling was explored by [Sutskever

et al., 2011] with recurrent networks. The idea of only using character-level infor-

mation for text classification using convolutional networks was proposed by [Zhang

et al., 2015]. At the same time, [Kim et al., 2016] proposed to do language model-

ing using only character-level inputs also with a convolutional network, but their

output is still at the level of words. A large-scale benchmark of language modeling

techniques done by [Józefowicz et al., 2016] shows that character-level convolu-

tional network achieved competitive perplexity, especially when scaling with data

and computation. Purely character-level machine translation has also been ex-

plored by [Lee et al., 2017].

For some languages, the number of characters in its alphabet could be huge,

such as the collection of Chinese, Japanese and Korean. In this case, simple one-

hot encoding has the same curse-of-dimensionality problem at word-level. Besides

the idea of using character-level embedding, another approach is to go even lower

for the input – to the level of bytes. This has been explored by [Gillick et al., 2016],

10

where they apply an LSTM-based [Hochreiter and Schmidhuber, 1997] sequence-to-

sequence [Cho et al., 2014b] [Sutskever et al., 2014] model at byte-level for a variety

of tasks including part-of-speech tagging and named entity recognition, for four

languages including English, German, Spanish and Dutch. The paper by [Zhang

and LeCun, 2017] also includes benchmarks comparing byte-level convolutional

networks against many other encoding mechanisms for text classification.

It is worth noting that besides character or byte level information, the pictorial

representation of text – the glyphs of characters – could also be useful, especially for

topologically rich languages such as Chinese, Japanese and Korean (CJK). Recent

research has shown that glyphs of CJK characters can help to improve the results

of various tasks including text classification [Shimada et al., 2016] [Liu et al., 2017]

and translation [Costa-jussà et al., 2017]. The paper by [Zhang and LeCun, 2017]

also includes a comparison of glyph encoding against other encoding mechanisms

for text classification.

1.2 Motivation

This section offers an overview of the author’s approach to research in applying

deep learning for natural language processing (NLP), and presents motivations for

the particular problems and model design choices made in this dissertation.

1.2.1 End-to-End Learning for Text

One of the promises of deep learning is that it can solve problems in an end-to-

end fashion without hand-crafted feature extractors. Note that all deep learning

models are neural networks, and neural networks are vector processors which take

11

Representation Reasoning Generation

Input Output

Figure 1.1: A framework for research in deep learning for NLP

vectors in and bring vectors out. Therefore, the gap between text and end-to-end

deep learning models is the variable-length nature of text and the fixed-length

nature of vectors. As a result, the trichotomy in figure 1.1 naturally follows.

• Representation: the study of models that can transform a piece of free text

into a numerical vector to be used for reasoning and generation.

• Reasoning: the study of methods that can infer from input representation

what kind of output is desired for the task at hand.

• Generation: the study of models that can transform a numerical vector ob-

tained from reasoning to free-text.

It is necessary to provide good modules for all the 3 parts in order to improve

the applicability and performance of deep learning models for NLP. That said, this

dissertation is focused on only the first module of the trichotomy – representation,

which turns out to be non-trivial for various reasons, such as the difficulty of learn-

ing long-term dependencies in neural networks and the inconsistent assumptions

of applying deep learning to different languages.

Note that this trichotomy is only one possible framework to put in perspective

the research in deep learning for NLP, and we put it here only to assist the under-

standing of the motivations of this dissertation. The next section takes a closer

12

look at the one component studied in this dissertation – representation learning

for text.

1.2.2 Motivation for Text Representation Learning

Using deep learning models effectively for the representation learning of text is

of great interests for the natural language processing (NLP) community. Among

the available models that are applicable to text, recurrent networks and convolu-

tional networks are 2 of the major choices. In this dissertation, we focus our effort

in convolutional networks, and show that it can learn useful representations for

text classification and auto-encoding.

The author’s goals of research in applying deep learning for natural language

processing consist of the following, and they are also the reasons for the model

design choices made in this dissertation:

• Generality across languages: given sufficient data, the model can be applied

to all different languages in the same fashion.

• Scalability: the performance of proposed model can scale with the improve-

ment of data size and computation.

Generality of model applicability across languages has become an interest of

natural language processing (NLP) community recently, partly represented by the

recent use of deep learning models in learning representation from inputs at a lower-

level than words such as characters. This expands the generality and applicability

of models across languages compared to word-level models, due to the fact that

not all languages have clear word boundaries, such as some texts in Chinese and

Japanese.

13

One of the issues in scalability is the difficulty of learning long-term depen-

dency in sequences because of gradient (or output) vanishing (or exploding) [Ben-

gio et al., 1994] [Hochreiter et al., 2001] in the current sequential models such as

recurrent neural networks. We refer to sequential models as those that read or

generate symbols or words according to the text reading order, and they do not

have to be recurrent networks. There are a few approaches to mitigate this, such

as the attention models used in machine translation and other tasks [Bahdanau

et al., 2015], and the development of hierarchical recurrent networks [Schmidhuber,

1992] [El Hihi and Bengio, 1996] [Koutnik et al., 2014] [Chung et al., 2016]. This

dissertation focuses on an alternative, which is to use convolutional networks in

a non-sequential fashion – that is, generating all output symbols at once. Being

recursive means that the a shared module is used to build up different levels of

abstraction repeatedly, each time reducing the length of representation by a multi-

plicative factor. Therefore, the depth of the network will be on a logarithm order of

the sequence length. It could potentially better mitigate the gradient (or output)

vanishing (or exploding) problem facing non-hierarchical recurrent networks, since

the latter has a depth on the linear order of the sequence length.

The next section details the content of this dissertation based on these 2 goals.

1.3 Dissertation Content

The first part of the dissertation is a study on using character-level convolu-

tional networks for text classification. We constructed several large-scale datasets

to show that character-level convolutional networks could achieve state-of-the-art

or competitive results. Comparisons are offered against traditional models such as

14

bag of words, n-grams and their TFIDF variants, and deep learning models such

as word-based ConvNets and recurrent neural networks. This shows the feasibility

of using low-level inputs – in this case characters – with convolutional networks

using text classification as the task.

To further the research on the generality across languages with convolutional

networks, we follow with a comprehensive comparison on different encoding levels

and mechanisms for text classification in Chinese, English, Japanese and Korean.

Different encoding levels are studied, including UTF-8 bytes, characters, words,

romanized characters and romanized words. For all encoding levels, whenever ap-

plicable, we provide comparisons with linear models, fastText and convolutional

networks. For convolutional networks, we compare between encoding mechanisms

using character glyph images, one-hot (or one-of-n) encoding, and embedding.

There are many conclusions and analysis from these 473 models, and one of them

is that byte-level one-hot encoding works consistently best for convolutional net-

works.

Based on these results, we use byte-level one-hot encoding for the next part of

the dissertation. Besides introducing the recursive convolutional network design,

we also use it as an auto-encoder for learning representations of text. The pro-

posed model is a multi-stage deep convolutional encoder-decoder framework using

residual connections, containing up to 160 parameterized layers. Each encoder

or decoder contains a shared group of modules that consists of either pooling or

up-sampling layers, making the network recursive in terms of abstraction levels in

representation. The decoding process is non-sequential. Results for 6 large-scale

paragraph datasets are reported, in 3 languages including Arabic, Chinese and En-

glish. Analyses are conducted to study several properties of the proposed model.

15

We present results on using the representation for both text classification in which

improvements were observed.

Finally, we explore the use of residual and dense connections for recursive con-

volutional network in text classification without pre-training, which shows that

byte-level recursive convolutional networks can obtain better results than previous

models. This further validates the model design, paving the way for future research

in other tasks using recursive convolutional networks for text representation, rea-

soning and generation.

The models in this dissertation were designed at different times throughout

the past 5 years, and they are heavily influenced by the progress of convolutional

network design in computer vision. The models in chapter 2 are designed with

reference to the OverFeat paper by [Sermanet et al., 2014], which won the lo-

calization task for ImageNet 2013 competition. The models in chapter 3 were

designed with similarity to the VGG network [Simonyan and Zisserman, 2014],

which the the first and second places of the localization and classification tasks

respectively, the ImageNet 2014. One of the key component in the auto-encoding

models in chapter 4 – residual connections – is inspired by the residual network

paper [He et al., 2016], which won the ImageNet 2015 classification task. In addi-

tion to residual connections, chapter 5 also includes models designed using dense

connections [Huang et al., 2016].

The basic conclusion from this dissertation is that representation learning using

byte-level recursive convolutional network can achieve both generality and scala-

bility when applied to different languages and datasets. That said, representation

consists of many other different tasks as well, and we have yet to show the ef-

fectiveness of byte-level recursive convolutional networks in text reasoning and

16

generation. These are both valid research problems to follow, and the final chapter

on conclusions and outlook will give some discussion.

17

Chapter 2

Character-level Convolutional

Networks for Text Classification

This chapter offers an empirical exploration on the use of character-level convo-

lutional networks (ConvNets) for text classification. We constructed several large-

scale datasets to show that character-level convolutional networks could achieve

state-of-the-art or competitive results. Comparisons are offered against traditional

models such as bag of words, n-grams and their TFIDF variants, and deep learning

models such as word-based ConvNets and recurrent neural networks.

2.1 Introduction

Text classification is a classic topic for natural language processing, in which

one needs to assign predefined categories to free-text documents. The range of

text classification research goes from designing the best features to choosing the

best possible machine learning classifiers. To date, almost all techniques of text

18

Some Text

Convolutions Max-pooling

Length

F
ea

tu
re

Q
ua

nt
iz

at
io

n

...

Conv. and Pool. layers Fully-connected

Figure 2.1: Illustration of our model

classification are based on words, in which simple statistics of some ordered word

combinations (such as n-grams) usually perform the best [Joachims, 1998].

On the other hand, many researchers have found convolutional networks (Con-

vNets) [LeCun et al., 1989] [LeCun et al., 1998] are useful in extracting information

from raw signals, ranging from computer vision applications to speech recognition

and others. In particular, time-delay networks used in the early days of deep learn-

ing research are essentially convolutional networks that model sequential data [Bot-

tou et al., 1989] [Waibel et al., 1989].

In this chapter we explore treating text as a kind of raw signal at character level,

and applying temporal (one-dimensional) ConvNets to it. For this chapter we only

used a classification task as a way to exemplify ConvNets’ ability to understand

texts. Historically we know that ConvNets usually require large-scale datasets to

work, therefore we also build several of them. An extensive set of comparisons is

offered with traditional models and other deep learning models.

Applying convolutional networks to text classification or natural language pro-

cessing at large was explored in literature. It has been shown that ConvNets can

be directly applied to distributed [dos Santos and Gatti, 2014] [Kim, 2014] or dis-

crete [Johnson and Zhang, 2014] embedding of words, without any knowledge on

19

Table 2.1: Convolutional layers used in our experiments. The convolutional layers
have stride 1 and pooling layers are all non-overlapping ones, so we omit the
description of their strides.

Layer Large Feature Small Feature Kernel Pool
1 1024 256 7 3
2 1024 256 7 3
3 1024 256 3 N/A
4 1024 256 3 N/A
5 1024 256 3 N/A
6 1024 256 3 3

the syntactic or semantic structures of a language. These approaches have been

proven to be competitive to traditional models.

There are also related works that use character-level features for language pro-

cessing. These include using character-level n-grams with linear classifiers [Kanaris

et al., 2007], and incorporating character-level features to ConvNets [dos Santos

and Zadrozny, 2014] [Shen et al., 2014]. In particular, these ConvNet approaches

use words as a basis, in which character-level features extracted at word [dos San-

tos and Zadrozny, 2014] or word n-gram [Shen et al., 2014] level form a distributed

representation. Improvements for part-of-speech tagging and information retrieval

were observed.

This chapter is the first to apply ConvNets only on characters. We show that

when trained on large-scale datasets, deep ConvNets do not require the knowledge

of words, in addition to the conclusion from previous research that ConvNets do

not require the knowledge about the syntactic or semantic structure of a language.

This simplification of engineering could be crucial for a single system that can

work for different languages, since characters always constitute a necessary con-

struct regardless of whether segmentation into words is possible. Working on only

20

Table 2.2: Fully-connected layers used in our experiments. The number of output
units for the last layer is determined by the problem. For example, for a 10-class
classification problem it will be 10.

Layer Output Units Large Output Units Small
7 2048 1024
8 2048 1024
9 Depends on the problem

characters also has the advantage that abnormal character combinations such as

misspellings and emoticons may be naturally learnt.

2.2 Character-level Convolutional Networks

In this section, we introduce the design of character-level ConvNets for text

classification. The design is modular, where the gradients are obtained by back-

propagation [Rumelhart et al., 1986] to perform optimization.

2.2.1 Key Modules

The main component is the temporal convolutional module, which simply com-

putes a 1-D convolution. Suppose we have a discrete input function g(x) ∈

[1, l] → R and a discrete kernel function f(x) ∈ [1, k] → R. The convolution

h(y) ∈ [1, b(l − k)/dc+ 1]→ R between f(x) and g(x) with stride d is defined as

h(y) =
k∑

x=1

f(x) · g(y · d− x+ c),

where c = k − d + 1 is an offset constant. Just as in traditional convolutional

networks in vision, the module is parameterized by a set of such kernel functions

21

LSTM LSTM LSTM...

Mean

Figure 2.2: long-short term memory

fij(x) (i = 1, 2, . . . ,m and j = 1, 2, . . . , n) which we call weights, on a set of inputs

gi(x) and outputs hj(y). We call each gi (or hj) input (or output) features, and m

(or n) input (or output) feature size. The outputs hj(y) is obtained by a sum over

i of the convolutions between gi(x) and fij(x).

One key module that helped us to train deeper models is temporal max-pooling.

It is the 1-D version of the max-pooling module used in computer vision [Boureau

et al., 2010a]. Given a discrete input function g(x) ∈ [1, l] → R, the max-pooling

function h(y) ∈ [1, b(l − k)/dc+ 1]→ R of g(x) is defined as

h(y) =
k

max
x=1

g(y · d− x+ c),

where c = k − d + 1 is an offset constant. This very pooling module enabled

us to train ConvNets deeper than 6 layers, where all others fail. The analysis

by [Boureau et al., 2010b] might shed some light on this.

The non-linearity used in our model is the rectifier or thresholding function

h(x) = max{0, x}, which makes our convolutional layers similar to rectified lin-

ear units (ReLUs) [Nair and Hinton, 2010]. The algorithm used is stochastic

gradient descent (SGD) with a minibatch of size 128, using momentum [Polyak,

1964] [Sutskever et al., 2013] 0.9 and initial step size 0.01 which is halved every 3

22

Table 2.3: Statistics of our large-scale datasets. Epoch size is the number of
minibatches in one epoch

Dataset Classes Train Samples Test Samples Epoch Size
AG’s News 4 120,000 7,600 5,000
Sogou News 5 450,000 60,000 5,000
DBPedia 14 560,000 70,000 5,000
Yelp Review Polarity 2 560,000 38,000 5,000
Yelp Review Full 5 650,000 50,000 5,000
Yahoo! Answers 10 1,400,000 60,000 10,000
Amazon Review Full 5 3,000,000 650,000 30,000
Amazon Review Polarity 2 3,600,000 400,000 30,000

epoches for 10 times. Each epoch takes a fixed number of random training sam-

ples uniformly sampled across classes. This number will later be detailed for each

dataset separately. The implementation is done using Torch 7 [Collobert et al.,

2011a].

2.2.2 Character quantization

Our models accept a sequence of encoded characters as input. The encoding

is done by prescribing an alphabet of size m for the input language, and then

quantize each character using 1-of-m encoding (or “one-hot” encoding). Then, the

sequence of characters is transformed to a sequence of such m sized vectors with

fixed length l0. Any character exceeding length l0 is ignored, and any characters

that are not in the alphabet including blank characters are quantized as all-zero

vectors. The character quantization order is backward so that the latest reading

on characters is always placed near the begin of the output, making it easy for

fully connected layers to associate weights with the latest reading.

The alphabet used in all of our models consists of 70 characters, including 26

23

English letters, 10 digits, 33 other characters and the new line character. The

non-space characters are:
abcdefghijklmnopqrstuvwxyz0123456789

-,;.!?:’’’/\|_@#$%^&*~‘+=<>()[]{}
Later we also compare with models that use a different alphabet in which we

distinguish between upper-case and lower-case letters.

2.2.3 Model Design

We designed 2 ConvNets – one large and one small. They are both 9 layers

deep with 6 convolutional layers and 3 fully-connected layers. Figure 2.1 gives an

illustration.

The input have number of features equal to 70 due to our character quantization

method, and the input feature length is 1014. It seems that 1014 characters could

already capture most of the texts of interest. We also insert 2 dropout [Hinton

et al., 2012] modules in between the 3 fully-connected layers to regularize. They

have dropout probability of 0.5. Table 2.1 lists the configurations for convolutional

layers, and table 2.2 lists the configurations for fully-connected (linear) layers.

We initialize the weights using a Gaussian distribution. The mean and standard

deviation used for initializing the large model is (0, 0.02) and small model (0, 0.05).

For different problems the input lengths may be different (for example in our

case l0 = 1014), and so are the frame lengths. From our model design, it is easy to

know that given input length l0, the output frame length after the last convolutional

layer (but before any of the fully-connected layers) is l6 = (l0 − 96)/27. This

number multiplied with the frame size at layer 6 will give the input dimension the

first fully-connected layer accepts.

24

Table 2.4: Testing errors of all the models. Numbers are in percentage. “Lg”
stands for “large” and “Sm” stands for “small”. “w2v” is an abbreviation for
“word2vec”, and “Lk” for “lookup table”. “Th” stands for thesaurus. ConvNets
labeled “Full” are those that distinguish between lower and upper letters

Model AG Sog. DBP. Y.P. Y.F. Yah. A.F. A.P.

BoW 11.19 7.15 3.39 7.76 42.01 31.11 45.36 9.60
BoW TFIDF 10.36 6.55 2.63 6.34 40.14 28.96 44.74 9.00
ngrams 7.96 2.92 1.37 4.36 43.74 31.53 45.73 7.98
ngrams TFIDF 7.64 2.81 1.31 4.56 45.20 31.49 47.56 8.46
Bag-of-means 16.91 10.79 9.55 12.67 47.46 39.45 55.87 18.39
LSTM 13.94 4.82 1.45 5.26 41.83 29.16 40.57 6.10
Lg w2v Conv 9.92 4.39 1.42 4.60 40.16 31.97 44.40 5.88
Sm w2v Conv 11.35 4.54 1.71 5.56 42.13 31.50 42.59 6.00
Lg w2v Conv Th 9.91 - 1.37 4.63 39.58 31.23 43.75 5.80
Sm w2v Conv Th 10.88 - 1.53 5.36 41.09 29.86 42.50 5.63
Lg Lk Conv 8.55 4.95 1.72 4.89 40.52 29.06 45.95 5.84
Sm Lk Conv 10.87 4.93 1.85 5.54 41.41 30.02 43.66 5.85
Lg Lk Conv Th 8.93 - 1.58 5.03 40.52 28.84 42.39 5.52
Sm Lk. Conv Th 9.12 - 1.77 5.37 41.17 28.92 43.19 5.51
Lg Full Conv 9.85 8.80 1.66 5.25 38.40 29.90 40.89 5.78
Sm Full Conv 11.59 8.95 1.89 5.67 38.82 30.01 40.88 5.78
Lg Full Conv Th 9.51 - 1.55 4.88 38.04 29.58 40.54 5.51
Sm Full Conv Th 10.89 - 1.69 5.42 37.95 29.90 40.53 5.66
Lg Conv 12.82 4.88 1.73 5.89 39.62 29.55 41.31 5.51
Sm Conv 15.65 8.65 1.98 6.53 40.84 29.84 40.53 5.50
Lg Conv Th 13.39 - 1.60 5.82 39.30 28.80 40.45 4.93
Sm Conv Th 14.80 - 1.85 6.49 40.16 29.84 40.43 5.67

2.2.4 Data Augmentation using Thesaurus

Many researchers have found that appropriate data augmentation techniques

are useful for controlling generalization error for deep learning models. These

techniques usually work well when we could find appropriate invariance properties

that the model should possess. In terms of texts, it is not reasonable to augment the

data using signal transformations as done in image or speech recognition, because

the exact order of characters may form rigorous syntactic and semantic meaning.

25

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

AG News DBPedia Yelp P. Yelp F. Yahoo A. Amazon F. Amazon P.

Figure 2.3: Relative errors with bag-of-means

Therefore, the best way to do data augmentation would have been using human

rephrases of sentences, but this is unrealistic and expensive due the large volume of

samples in our datasets. As a result, the most natural choice in data augmentation

for us is to replace words or phrases with their synonyms.

We experimented data augmentation by using an English thesaurus, which

is obtained from the mytheas component used in LibreOffice1 project. That the-

saurus in turn was obtained from WordNet [Fellbaum, 2005], where every synonym

to a word or phrase is ranked by the semantic closeness to the most frequently seen

meaning. To decide on how many words to replace, we extract all replaceable words

from the given text and randomly choose r of them to be replaced. The probability

of number r is determined by a geometric distribution with parameter p in which

P [r] ∼ pr. The index s of the synonym chosen given a word is also determined

1http://www.libreoffice.org/

26

http://www.libreoffice.org/

-100.00%

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

AG News DBPedia Yelp P. Yelp F. Yahoo A. Amazon F. Amazon P.

Figure 2.4: Relative errors with n-grams TFIDF

by a another geometric distribution in which P [s] ∼ qs. This way, the probability

of a synonym chosen becomes smaller when it moves distant from the most fre-

quently seen meaning. We will report the results using this new data augmentation

technique with p = 0.5 and q = 0.5.

2.3 Comparison Models

To offer fair comparisons to competitive models, we conducted a series of ex-

periments with both traditional and deep learning methods. We tried our best

to choose models that can provide comparable and competitive results, and the

results are reported faithfully without any model selection.

27

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

AG News DBPedia Yelp P. Yelp F. Yahoo A. Amazon F. Amazon P.

Figure 2.5: Relative errors with LSTM

2.3.1 Traditional Methods

We refer to traditional methods as those that using a hand-crafted feature ex-

tractor and a linear classifier. The classifier used is a multinomial logistic regression

in all these models.

Bag-of-words and its TFIDF. For each dataset, the bag-of-words model is

constructed by selecting 50,000 most frequent words from the training subset. For

the normal bag-of-words, we use the counts of each word as the features. For the

TFIDF (term-frequency inverse-document-frequency) [Jones, 1972] version, we use

the counts as the term-frequency. The inverse document frequency is the logarithm

of the division between total number of samples and number of samples with the

word in the training subset. The features are normalized by dividing the largest

feature value.

Bag-of-ngrams and its TFIDF. The bag-of-ngrams models are constructed

28

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

AG News DBPedia Yelp P. Yelp F. Yahoo A. Amazon F. Amazon P.

Figure 2.6: Relative errors with word2vec ConvNet

by selecting the 500,000 most frequent n-grams (up to 5-grams) from the training

subset for each dataset. The feature values are computed the same way as in the

bag-of-words model.

Bag-of-means on word embedding. We also have an experimental model

that uses k-means on word2vec [Mikolov et al., 2013b] learnt from the training

subset of each dataset, and then use these learnt means as representatives of the

clustered words. We take into consideration all the words that appeared more

than 5 times in the training subset. The dimension of the embedding is 300. The

bag-of-means features are computed the same way as in the bag-of-words model.

The number of means is 5000.

29

-60.00%

-50.00%

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

AG News DBPedia Yelp P. Yelp F. Yahoo A. Amazon F. Amazon P.

Figure 2.7: Relative errors with lookup table ConvNet

2.3.2 Deep Learning Methods

Recently deep learning methods have started to be applied to text classification.

We choose two simple and representative models for comparison, in which one is

word-based ConvNet and the other a simple long-short term memory (LSTM)

[Hochreiter and Schmidhuber, 1997] recurrent neural network model.

Word-based ConvNets. Among the large number of recent works on word-

based ConvNets for text classification, one of the differences is the choice of using

pretrained or end-to-end learned word representations. We offer comparisons with

both using the pre-trained word2vec [Mikolov et al., 2013b] embedding [Kim, 2014]

and using lookup tables [Collobert et al., 2011b]. The embedding size is 300 in

both cases, in the same way as our bag-of-means model. To ensure fair comparison,

the models for each case are of the same size as our character-level ConvNets, in

terms of both the number of layers and each layer’s output size. Experiments using

30

-50.00%

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

AG News DBPedia Yelp P. Yelp F. Yahoo A. Amazon F. Amazon P.

Figure 2.8: Relative errors with full alphabet ConvNet

a thesaurus for data augmentation are also conducted.

Long-short term memory. We also offer a comparison with a recurrent

neural network model, namely long-short term memory (LSTM) [Hochreiter and

Schmidhuber, 1997]. The LSTM model used in our case is word-based, using

pre-trained word2vec embedding of size 300 as in previous models. The model

is formed by taking mean of the outputs of all LSTM cells to form a feature

vector, and then using multinomial logistic regression on this feature vector. The

output dimension is 512. The variant of LSTM we used is the common “vanilla”

architecture [Graves and Schmidhuber, 2005] [Greff et al., 2015]. We also used

gradient clipping [Pascanu et al., 2013] in which the gradient norm is limited to 5.

Figure 2.2 gives an illustration.

31

2.3.3 Choice of Alphabet

For the alphabet of English, one apparent choice is whether to distinguish be-

tween upper-case and lower-case letters. We report experiments on this choice and

observed that it usually (but not always) gives worse results when such distinction

is made. One possible explanation might be that semantics do not change with

different letter cases, therefore there is a benefit of regularization.

2.4 Large-scale Datasets and Results

Previous research on ConvNets in different areas has shown that they usually

work well with large-scale datasets, especially when the model takes in low-level

raw features like characters in our case. However, most open datasets for text

classification are quite small, and large-scale datasets are split with a significantly

smaller training set than testing [Lewis et al., 2004]. Therefore, instead of confusing

our community more by using them, we built several large-scale datasets for our

experiments, ranging from hundreds of thousands to several millions of samples.

Table 2.3 is a summary.

AG’s news corpus. We obtained the AG’s corpus of news article on the web2.

It contains 496,835 categorized news articles from more than 2000 news sources.

We choose the 4 largest classes from this corpus to construct our dataset, using

only the title and description fields. The number of training samples for each class

is 30,000 and testing 1900.

Sogou news corpus. This dataset is a combination of the SogouCA and So-

gouCS news corpora [Wang et al., 2008], containing in total 2,909,551 news articles

2http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

32

http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

in various topic channels. We then labeled each piece of news using its URL, by

manually classifying the their domain names. This gives us a large corpus of news

articles labeled with their categories. There are a large number categories but most

of them contain only few articles. We choose 5 categories – “sports”, “finance”,

“entertainment”, “automobile” and “technology”. The number of training samples

selected for each class is 90,000 and testing 12,000. Although this is a dataset in

Chinese, we used pypinyin package combined with jieba Chinese segmentation

system to produce Pinyin – a phonetic romanization of Chinese. The models for

English can then be applied to this dataset without change. The fields used are

title and content.

DBPedia ontology dataset. DBpedia is a crowd-sourced community effort

to extract structured information from Wikipedia [Lehmann et al., 2014]. The

DBpedia ontology dataset is constructed by picking 14 non-overlapping classes

from DBpedia 2014. From each of these 14 ontology classes, we randomly choose

40,000 training samples and 5,000 testing samples. The fields we used for this

dataset contain title and abstract of each Wikipedia article.

Yelp reviews. The Yelp reviews dataset is obtained from the Yelp Dataset

Challenge in 2015. This dataset contains 1,569,264 samples that have review texts.

Two classification tasks are constructed from this dataset – one predicting full

number of stars the user has given, and the other predicting a polarity label by

considering stars 1 and 2 negative, and 3 and 4 positive. The full dataset has

130,000 training samples and 10,000 testing samples in each star, and the polarity

dataset has 280,000 training samples and 19,000 test samples in each polarity.

Yahoo! Answers dataset. We obtained Yahoo! Answers Comprehensive

Questions and Answers version 1.0 dataset through the Yahoo! Webscope program.

33

The corpus contains 4,483,032 questions and their answers. We constructed a topic

classification dataset from this corpus using 10 largest main categories. Each class

contains 140,000 training samples and 5,000 testing samples. The fields we used

include question title, question content and best answer.

Amazon reviews. We obtained an Amazon review dataset from the Stanford

Network Analysis Project (SNAP), which spans 18 years with 34,686,770 reviews

from 6,643,669 users on 2,441,053 products [McAuley and Leskovec, 2013]. Sim-

ilarly to the Yelp review dataset, we also constructed 2 datasets – one full score

prediction and another polarity prediction. The full dataset contains 600,000 train-

ing samples and 130,000 testing samples in each class, whereas the polarity dataset

contains 1,800,000 training samples and 200,000 testing samples in each polarity

sentiment. The fields used are review title and review content.

Table 2.4 lists all the testing errors we obtained from these datasets for all the

applicable models. Note that since we do not have a Chinese thesaurus, the Sogou

News dataset does not have any results using thesaurus augmentation. We labeled

the best result in blue and worse result in red.

2.5 Discussion

Figure 2.9: First layer weights. For each patch, height is the kernel size and width
the alphabet size

To understand the results in table 2.4 further, we offer some empirical analysis

34

in this section. To facilitate our analysis, we present the relative errors in figures

2.3 - 2.8 with respect to comparison models. Each of these plots is computed by

taking the difference between errors on comparison model and our character-level

ConvNet model, then divided by the comparison model error. All ConvNets in the

figure are the large models with thesaurus augmentation respectively.

Character-level ConvNet is an effective method. The most important

conclusion from our experiments is that character-level ConvNets could work for

text classification without the need for words. This is a strong indication that

language could also be thought of as a signal no different from any other kind.

Figure 2.9 shows 12 random first-layer patches learnt by one of our character-level

ConvNets for DBPedia dataset.

Dataset size forms a dichotomy between traditional and ConvNets

models. The most obvious trend coming from all the plots in figures 2.3 - 2.8

is that the larger datasets tend to perform better. Traditional methods like n-

grams TFIDF remain strong candidates for dataset of size up to several hundreds

of thousands, and only until the dataset goes to the scale of several millions do we

observe that character-level ConvNets start to do better.

ConvNets may work well for user-generated data. User-generated data

vary in the degree of how well the texts are curated. For example, in our million

scale datasets, Amazon reviews tend to be raw user-inputs, whereas users might

be extra careful in their writings on Yahoo! Answers. Plots comparing word-

based deep models (figures 2.5, 2.6 and 2.7) show that character-level ConvNets

work better for less curated user-generated texts. This property suggests that

ConvNets may have better applicability to real-world scenarios. However, further

analysis is needed to validate the hypothesis that ConvNets are truly good at

35

identifying exotic character combinations such as misspellings and emoticons, as

our experiments alone do not show any explicit evidence.

Choice of alphabet makes a difference. Figure 2.8 shows that changing

the alphabet by distinguishing between uppercase and lowercase letters could make

a difference. For million-scale datasets, it seems that not making such distinction

usually works better. One possible explanation is that there is a regularization

effect, but this is to be validated.

Semantics of tasks may not matter. Our datasets consist of two kinds of

tasks: sentiment analysis (Yelp and Amazon reviews) and topic classification (all

others). This dichotomy in task semantics does not seem to play a role in deciding

which method is better.

Bag-of-means is a misuse of word2vec [Lev et al., 2015]. One of the most

obvious facts one could observe from table 2.4 and figure 2.3 is that the bag-of-

means model performs worse in every case. Comparing with traditional models,

this suggests such a simple use of a distributed word representation may not give

us an advantage to text classification. However, our experiments does not speak

for any other language processing tasks or use of word2vec in any other way.

There is no free lunch. Our experiments once again verifies that there is

not a single machine learning model that can work for all kinds of datasets. The

factors discussed in this section could all play a role in deciding which method is

the best for some specific application.

36

2.6 Conclusion and Outlook

This chapter offers an empirical study on character-level convolutional networks

for text classification. We compared with a large number of traditional and deep

learning models using several large-scale datasets. On one hand, analysis shows

that character-level ConvNet is an effective method. On the other hand, how well

our model performs in comparisons depends on many factors, such as dataset size,

whether the texts are curated and choice of alphabet.

In the future, we hope to apply character-level ConvNets for a broader range

of language processing tasks especially when structured outputs are needed.

37

Chapter 3

Which Encoding is the Best for

Text Classification in Chinese,

English, Japanese and Korean?

This chapter offers an empirical study on the different ways of encoding Chinese,

Japanese, Korean (CJK) and English languages for text classification. Different

encoding levels are studied, including UTF-8 bytes, characters, words, romanized

characters and romanized words. For all encoding levels, whenever applicable, we

provide comparisons with linear models, fastText [Joulin et al., 2016] and con-

volutional networks. For convolutional networks, we compare between encoding

mechanisms using character glyph images, one-hot (or one-of-n) encoding, and

embedding. In total there are 473 models, using 14 large-scale text classification

datasets in 4 languages including Chinese, English, Japanese and Korean. Some

conclusions from these results include that byte-level one-hot encoding based on

UTF-8 consistently produces competitive results for convolutional networks, that

38

word-level n-grams linear models are competitive even without perfect word seg-

mentation, and that fastText provides the best result using character-level n-gram

encoding but can overfit when the features are overly rich.

3.1 Introduction

Layers Description

1-2 Conv 256x3

3 Pool 2

4-5 Conv 256x3

6 Pool 2

7-8 Conv 256x3

9 Pool 2

10-11 Conv 256x3

12 Pool 2

13-14 Conv 256x3

15 Pool 2

16-17 Full 1024

Table 3.1: The large classifier

Processing different kinds of lan-

guages in a fashion that ensures model

generality acrosss languages is of great

interest to the natural language pro-

cessing (NLP) community, especially

with the recent advancements in deep

learning methods. Among these lan-

guages, Chinese, Japanese and Korean

(CJK) pose unique challenges due to

reasons in both linguistics and com-

putation. Unlike some alphabetic lan-

guages such as English, there is no clear

word boundary for some of the Chinese

and Japanese texts. This makes it diffi-

cult to apply many language processing

methods that assume word as the basic

construct.

Recently, many authors have proposed to use character-level encoding for lan-

guage processing with convolutional networks (ConvNets) [Kim et al., 2016] [Zhang

39

et al., 2015], casting away the word segmentation problem. Unfortunately, working

with characters for CJK languages is not direct, because the amount of characters

can be huge. For example, one-hot (or one-of-n) encoding used by [Zhang et al.,

2015] is not practical because each one-hot vector would be prohibitively large.

Layers Description

1-2 Conv 256x3

3 Pool 3

4-5 Conv 256x3

6 Pool 3

7-8 Conv 256x3

9 Pool 3

10-11 Full 1024

Table 3.2: The small classifier

This drives us to search for alterna-

tive ways of encoding CJK texts. The

encoding mechanisms considered in this

chapter include character glyph images,

one-hot encoding and embedding. For

one-hot encoding, we considered fea-

sible encoding levels including UTF-8

bytes and characters after romaniza-

tion. For embedding, we performed

experiments on encoding levels includ-

ing character, UTF-8 bytes, romanized

characters, segmented word with a pre-

built word segmenter, and romanized

word. A brief search in the literature seems to confirm that this chapter is the first

to study all of these encoding mechanisms in a systematic fashion.

Historically, linear models such as (multinomial) logistic regression [Cox, 1958]

and support vector machines [Cortes and Vapnik, 1995] have been the default

choice for text classification, with bag-of-words features and variants such as n-

grams and TF-IDF [Sparck Jones, 1972]. Therefore, in this chapter we provide ex-

tensive comparisons using multinomial logistic regression, with bag-of-characters,

bag-of-words and their n-gram and TF-IDF [Sparck Jones, 1972] variants. Fur-

40

thermore, experiments using the recently proposed fastText [Joulin et al., 2016]

are also presented with all these different feature variants.

Large-scale multi-lingual datasets are required to make sure that our compar-

isons are meaningful. Therefore, we set out to crawl the Internet for several large-

scale text classification datasets. Eventually, we were able to obtain 14 large-scale

datasets in 4 languages including Chinese, English, Japanese and Korean, for 2

different tasks including sentiment analysis and topic categorization. We released

all the code used in this chapter under an open source license, including crawling,

preprocessing, and training on all datasets 1.

The conclusions of this chapter include that the one-hot encoding model at

UTF-8 byte level consistently offers competitive results for convolutional networks,

that linear models remain strong for the text classification task, and that fastText

provides the best results with character n-grams but tends to overfit when the

features are overly rich. We hope that these results can offer useful guidance

for the community to select appropriate encoding mechanisms that can handle

different languages in a fashion that generalizes across languages.

3.2 Encoding Mechanisms for Convolutional Net-

works

For the purpose of fair comparisons, all of our convolutional networks share

the same design except for the first few layers. We call this common part the

classifier, and the different first several layers the encoder. In the benchmarks

we have 2 classifier designs - one large and the other small. The large classifier

1https://github.com/zhangxiangxiao/glyph

41

https://github.com/zhangxiangxiao/glyph

consists of 12 layers, and the small one 8. Table 3.1 and 3.2 details the designs.

All parameterized layers use ReLU [Nair and Hinton, 2010] as the non-linearity.

3.2.1 Character Glyph

Figure 3.1: GNU Unifont

Glyph is a typography term indicat-

ing a readable character for the pur-

poses of writing. CJK languages con-

sist of characters that are rich in their

topological forms, where strokes and

parts could represent semantic mean-

ing. This makes glyph a potentially fea-

sible encoding solution.

In the context of this chapter, we

refer to glyphs as images of characters

rendered by some font. In the experi-

ments we use the freely available GNU

Unifont 2 (version 8.0.01), where each

character is converted to a 16-by-16 pixel image. We consider all characters that

belong to the Unicode basic multi-lingual plane (BMP), which have code points

less than or equal to the hex value FFFF. Figure 3.1 shows some glyph examples

in this font.

For the large classifier, the glyph encoder contains 8 parameterized layers with

6 spatial convolutional layers and 2 linear layers. The small model consists of a

6-layer glyph encoder with 4 spatial convolutional layers and 2 linear layers. Table

2http://unifoundry.com/unifont.html

42

http://unifoundry.com/unifont.html

3.3 and 3.5 present the design choices.

Layers Description

1-2 Conv 64x3x3

3 Pool 2

4-5 Conv 128x3x3

6 Pool 2

7-8 Conv 256x3x3

9 Pool 2

10 Full 1024

11 Full 256

Table 3.3: Large GlyphNet encoder

In the benchmarks we will refer

to these 2 models as large GlyphNet

and small GlyphNet respectively. Dur-

ing training, each sample consists of

at most 512 characters for the large

GlyphNet and 486 for the small one.

Zero is padded if the length of the sam-

ple string is shorter, and characters be-

yond these limits are ignored. Note

that each character must pass through

the spatial glyph encoder and each sam-

ple could contain hundreds of charac-

ters. As a result, the training time of

GlyphNet is significantly longer than

any other model considered in this chapter.

It is worth noting that recent research has shown that CJK characters can help

to improve the results of various tasks including text classification [Shimada et al.,

2016] [Liu et al., 2017] and translation [Costa-jussà et al., 2017], further justifying

the potential of encoding CJK characters via glyphs.

3.2.2 One-hot Encoding

In the simplest version of one-hot (or one-of-n) encoding, each entity must

be converted into a vector whose size equals to the cardinality of the set of all

possible entities, and all values in this vector are zero except for the position

43

Dataset Language # Train Dev Val Batch

Dianping Chinese 2 2,000,000 250,000 250,000 100,000
JD full Chinese 5 3,000,000 125,000 125,000 100,000
JD binary Chinese 2 4,000,000 180,000 180,000 100,000
Rakuten full Japanese 5 4,000,000 250,000 250,000 100,000
Rakuten binary Japanese 2 3,400,000 200,000 200,000 100,000
11st full Korean 5 750,000 50,000 50,000 100,000
11st binary Korean 2 4,000,000 200,000 200,000 100,000
Amazon full English 5 3,000,000 325,000 325,000 100,000
Amazon binary English 2 3,600,000 200,000 200,000 100,000
Ifeng Chinese 5 800,000 25,000 25,000 100,000
Chinanews Chinese 7 1,400,000 56,000 56,000 100,000
NYTimes English 7 1,400,000 52,500 52,500 100,000
Joint full Multilingual 5 10,750,000 750,000 750,000 400,000
Joint binary Multilingual 2 15,000,000 780,000 780,000 400,000

Table 3.4: Datasets. The 3rd column is the number of classes.

that corresponds to the index of the entity in the set. For example, in the paper

by [Zhang et al., 2015], each entity is a character and the size of the vector equals

to the size of the alphabet containing all characters. Unfortunately, this naive

way of using one-hot encoding is only computationally feasible if the entity set

is relatively small. Texts in CJK languages can easily span tens of thousands of

characters.

In this chapter, we consider 2 simple solutions to this problem. The first one is

to treat the text (in UTF-8) as a sequence of bytes and encode at byte-level. The

second one, already presented in [Zhang et al., 2015], is to romanize the text so

that encoding using the English alphabet is feasible. Note that the second solution

is equivalent of encoding at byte-level with romanized text, because the English

alphabet is contained in UTF-8 and they will not go beyond the limit of one byte.

In the following we will call these 2 models byte-level OnehotNet and roman-

44

ization OnehotNet. Similar to GlyphNet, each OnehotNet also has a large variant

and a small variant depending on the classifier used. Both variants use the same

encoder design that consists of 4 convolutional layers, in which the large variant

admits input length 2048 and the small 1944. Table 3.6 provides the configuration.

Compared to GlyphNet, OnehotNet is significantly faster because the encoder han-

dles all symbols in the input at once.

Layers Description

1-2 Conv 64x3x3

3 Pool 3

4-5 Conv 128x3x3

6 Pool 3

7-8 Full 256

Table 3.5: Small GlyphNet encoder

The idea of language processing at

byte level has been explored by [Gillick

et al., 2016], where they apply an

LSTM-based [Hochreiter and Schmid-

huber, 1997] sequence-to-sequence [Cho

et al., 2014b] [Sutskever et al., 2014]

model at byte-level for a variety of

tasks including part-of-speech tagging

and named entity recognition, for 4

languages including English, German,

Spanish and Dutch. The advantage of

byte-level processing is that they can be immediately applied to any language re-

gardless of whether there are too many entities at character or word levels. The

same advantage applies to CJK, and perhaps any language that can be digitized

as well.

3.2.3 Embedding

We use the terminology “embedding” to refer to the idea of associating each

entity a fixed size vector, same as most papers in the machine learning literature.

45

These vectors are randomly initialized, and then learnt either with an unsupervised

criterion or jointly with the task at hand. The advantage of embedding models is

there there is no need to explicitly construct one-hot vectors, therefore the memory

footprint of embedding models is significantly smaller than that of OnehotNet. As

a result, embedding can be applied to almost any encoding level.

Layers Description

1-2 Conv 256x3

3 Pool 2

4-5 Conv 256x3

6 Pool 2

Table 3.6: OnehotNet encoder

In this chapter, we use embedding

at a variety of different levels, includ-

ing byte, character, word, romaniza-

tion character, and romanization word.

All of of our embedding vectors are of

size 256, and they are learnt jointly

with the text classification task at

hand. The size of vocabulary is 257

for byte-level and romanized-level en-

coding, 65537 for character-level encod-

ing, and 200,002 for word level and romanized word-level encoding.

The character-level encoding considers all code points in the basic multilingual

plane (BMP) of Unicode. The word and romanized-word vocabularies are built by

selecting the 200,000 most frequent entities appeared in the training data for each

dataset, plus one additional entry to represent an out-of-vocabulary symbol. One

additional entry is also added to each vocabulary to include a padding symbol

for shorter texts. There are 2 embedding models, since we have designed the

classifier with 2 different sizes. We will refer to them as large EmbedNet and small

EmbedNet respectively. The large Embednet admits input length of 512, and the

small one 486.

46

Dataset Large Small

Dianping 24.26 24.45

JD f. 48.94 49.25

JD b. 9.82 10.07

Rakuten f. 46.82 47.06

Rakuten b. 6.64 6.81

11st f. 32.70 32.98

11st b. 13.87 14.29

Amazon f. 46.63 47.95

Amazon b. 8.56 9.11

Ifeng 18.04 18.57

Chinanews 12.28 12.91

NYTimes 18.20 18.58

Joint f. 45.20 45.82

Joint b. 10.00 10.42

Table 3.7: GlyphNet results. The num-
bers are development errors in percent-
age.

When the input text is represented

by explicit one-hot vectors, embedding

is equivalent of using a linear first layer.

Therefore, the difference between One-

hotNet and EmbedNet in this chapter

is whether the first layer is linear or

convolutional.

The idea of embedding has been ap-

plied to ConvNet-based text process-

ing pretty early on, with representa-

tive work for tasks like named en-

tity recognition, part-of-speech tagging

[Collobert et al., 2011c], text classifica-

tion at word level [Kim, 2014] and lan-

guage modeling at character level [Kim

et al., 2016].

3.3 Linear Models and

fastText

Besides ConvNets, we also offer

benchmarks in linear models using

multinomial logistic regression, and the fastText program by [Joulin et al., 2016].

3.3.1 Linear Models

47

Dataset
Byte Romanized

large small large small

Dianping 23.08 23.21 23.46 23.46

JD f. 48.06 48.24 48.40 48.49

JD b. 9.32 9.29 9.47 9.49

Rakuten f. 45.13 45.39 45.15 45.41

Rakuten b. 5.92 6.09 6.01 6.06

11st f. 32.53 32.39 32.69 32.66

11st b. 13.29 13.31 13.40 13.43

Amazon f. 42.22 42.34 – –

Amazon b. 6.53 6.60 – –

Ifeng 16.72 16.50 18.94 18.93

Chinanews 10.64 10.75 11.74 11.79

NYTimes 14.28 14.24 – –

Joint f. 42.95 43.11 43.31 43.29

Joint b. 8.80 8.80 9.02 9.04

Table 3.8: OnehotNet results. The numbers are
development errors in percentage. The best result
for each dataset is marked blue and the worst red.

The linear multinomial lo-

gistic regression models are

all bag-of-entity models, where

the entity is character, word,

romanized word. The 1-gram

bag-of-entity model admits a

feature of size 200,000 by se-

lecting the most frequent ones

from the training dataset. The

5-gram model admits grams

of length up to 5, using the

1,000,000 most frequent fea-

tures in the training dataset.

Note that word segmen-

tation is not a simple prob-

lem for some of Chinese and

Japanese texts, because they

sometimes do not contain clear

word boundaries like the space

character in most alphabetic

languages. Section 3.4.2 intro-

duces how word segmentation is done for each language.

The idea of bag-of-character and its n-gram version has been explored by [Peng

et al., 2003] for text classification in Asian languages, where they observed com-

parable results with word-level models. This is probably because of the large

48

character vocabularies in these languages, in which each character has a similar

sparsity in representing meaning compared to each word in an alphabetic language.

3.3.2 fastText

fastText [Joulin et al., 2016] is a recent tool for fast text classification by in-

corporating several tricks such as hierarchical softmax [Goodman, 2001] [Mikolov

et al., 2013a] and feature hashing [Weinberger et al., 2009]. Combined with an

efficient implementation and a highly optimized learning rate schedule, fastText

is able to process input text at a speed of several orders of magnitude of that of

ConvNets. This gives it a particular advantage and we hope to include the its

results as a reference for our community.

The fastText model is essentially a 2-layer fully connected neural network with-

out non-linearity. The number of hidden units is 10 across all of our experiments.

During training, we use an initial learning rate of 0.1 and a hashing bucket size of

10,000,000. We used 10% of the training dataset as validation and remaining as

training to choose the best number of epoches, from the choices 2, 5 and 10. This

validation process necessary because fastText does not have weight decay [Joulin

et al., 2016] and it relies on early stopping to prevent overfitting. It is also the

only model fast enough for such hyper-parameter tuning in this chapter. For each

dataset, we explored features at character, word and romanized word levels, with

variants of 1-gram, 2-gram and 5-gram features.

49

3.4 Datasets and Preprocessing

To ensure that our results are significant enough to demonstrate the differences

between encoding methods, we need to acquire large-scale datasets. To do that, we

set out to crawl the Internet for text classification datasets in 4 language including

Chinese, English, Japanese and Korean. Eventually, we were able to obtain 14

datasets, most of which are at the scale of millions of samples. We performed

experiments using all aforementioned models on all of these datasets.

3.4.1 Datasets

In total, we have obtained 8 sentiment classification datasets from online shop-

ping reviews in Chinese, English, Japanese and Korean, 1 sentiment classification

dataset from online restaurant reviews in Chinese, and 3 news topic classification

dataset in English and Chinese. Additionally, we were able to combine the online

shopping review datasets in different languages to construct 2 joint datasets, which

can be used to test each model’s ability to handle different languages in a unified

fashion. Table 3.4 summarizes the statistics of all these datasets.

Dianping. The Dianping dataset consists of user reviews crawled from Chinese

online restaurant review website dianping.com. This dataset was developed and

used by Zhang et al. for research in collaborative filtering [Zhang et al., 2013a]

[Zhang et al., 2013b] and sentiment analysis [Zhang et al., 2014a] [Zhang et al.,

2014b]. After removing duplicated texts, we pre-processed the dataset such that

stars 1, 2 and 3 belong to the negative class, and stars 4 and 5 belong to the

positive class. Then we randomly selected 2,000,000 samples for training and

500,000 samples for testing with equal number of samples in each sentiment. The

50

dianping.com

testing dataset is then split into a development dataset and a validation dataset

in equal proportions.

JD. The JD dataset consists of user reviews crawled from the Chinese online

shopping website jd.com. After duplication removal, we were able to obtain 2

sentiment classification datasets in which one is to predict the full 5 stars and the

other is binary. The binary dataset was built such that stars 1 and 2 belong to the

negative sentiment, and stars 4 and 5 belong to the positive sentiment. Star 3 is

ignored in the JD binary dataset. There are 3,000,000 training samples and 250,000

testing samples in the JD full dataset, and 4,000,000 training samples and 360,000

testing samples in the JD binary dataset. In each case, the samples are evenly

distributed across classes. The testing dataset is then split into a development

dataset and a validation dataset in equal proportions.

Rakuten. The Rakuten dataset consists of user reviews crawled from the

Japanese online shopping website rakuten.co.jp. After duplication removal, we

were able to obtain 2 sentiment classification datasets in which one is to predict

the full 5 stars and the other is binary. The binary dataset was built such that

stars 1 and 2 belong to the negative sentiment, and stars 4 and 5 belong to the

positive sentiment. Star 3 is ignored in the Rakuten binary dataset. There are

4,000,000 training samples and 500,000 testing samples in the Rakuten full dataset,

and 3,400,000 training samples and 400,000 testing samples in the Rakuten binary

dataset. In each case, the samples are evenly distributed across classes. The testing

dataset is then split into a development dataset and a validation dataset in equal

proportions.

11st. The 11st dataset consists of user reviews crawled from the Korean online

shopping website 11st.co.kr. After duplication removal, we were able to obtain

51

jd.com
rakuten.co.jp
11st.co.kr

Dataset
Character Byte Romanized Word Rom. word

large small large small large small large small large small
Dianping 23.52 23.63 24.00 24.15 25.35 25.99 24.50 24.60 23.64 23.75
JD f. 48.24 48.40 48.54 48.61 48.73 49.26 50.01 50.11 49.12 49.21
JD b. 9.41 9.39 9.17 9.19 9.43 9.69 10.35 10.43 9.56 9.67
Rakuten f. 45.21 45.70 45.97 46.92 46.17 46.80 46.35 46.57 45.97 46.37
Rakuten b. 6.05 6.11 6.47 6.84 6.54 6.93 6.80 6.84 6.54 6.65
11st f. 32.26 32.31 34.80 34.99 35.38 35.67 42.86 42.76 42.57 42.50
11st b. 13.42 13.48 13.23 13.46 13.46 13.68 16.39 15.71 17.63 17.66
Amazon f. 43.72 44.23 – – – – 44.29 44.84 – –
Amazon b. 7.19 7.50 – – – – 7.93 8.04 – –
Ifeng 17.03 17.11 17.14 17.57 19.23 20.02 20.83 20.75 19.49 19.50
Chinanews 11.04 11.12 10.55 10.84 11.84 12.77 14.75 14.95 11.92 12.06
NYTimes 14.10 14.59 – – – – 17.62 17.77 – –
Joint f. 43.67 44.13 44.22 44.82 44.76 45.49 45.50 45.88 45.04 45.35
Joint b. 9.03 9.20 9.11 9.29 9.35 9.67 10.67 10.79 9.96 10.03

Table 3.9: EmbedNet results. The numbers are development errors in percentage.
The best result for each dataset is marked blue and the worst red.

2 sentiment classification datasets in which one is to predict the full 5 stars and

the other is binary. The binary dataset was built such that stars 1, 2 and 3 belong

to the negative sentiment, and stars 4 and 5 belong to the positive sentiment.

There are 750,000 training samples and 100,000 testing samples in the 11st full

dataset, and 4,000,000 training samples and 400,000 testing samples in the 11st

binary dataset. In each case, the samples are evenly distributed across classes. The

testing dataset is then split into a development dataset and a validation dataset

in equal proportions.

Amazon. The Amazon dataset consists of users reviews crawled from the En-

glish online shopping website amazon.com. We use the same datasets constructed

by [Zhang et al., 2015], which came from the Stanford Network Analysis Project

52

amazon.com

(SNAP) 3 and developed by [McAuley and Leskovec, 2013] for sentiment analysis.

There are 2 sentiment classification datasets in which one is to predict the full 5

stars and the other is binary. The binary dataset was built such that stars 1 and

2 belong to the negative sentiment, and stars 4 and 5 belong to the positive senti-

ment. Star 3 is ignored in the Amazon binary dataset. There are 3,000,000 train-

ing samples and 650,000 testing samples in the Amazon full dataset, and 3,600,000

training samples and 400,000 testing samples in the Amazon binary dataset. In

each case, the samples are evenly distributed across classes. The testing dataset is

then split into a development dataset and a validation dataset in equal proportions.

Ifeng. The Ifeng dataset consists of first paragraphs of news articles from the

Chinese news website ifeng.com. We crawled all news from the year 2006 to the

year 2016 and selected 5 different news channels as 5 topic classes. These classes are

mainland China politics, International news, Taiwan - Hong Kong- Macau politics,

military news, and society news. After duplication removal, the dataset consists

of 800,000 training samples and 50,000 testing samples. These samples are evenly

distributed across classes. The testing dataset is then split into a development

dataset and a validation dataset in equal proportions.

Chinanews. The Chinanews dataset consists of first paragraphs of news ar-

ticles from the Chinese news website chinanews.com. We crawled all news from

the year 2008 to the year 2016 and selected 7 different news channels as 7 topic

classes. These classes are mainland China politics, Hong Kong - Macau politics,

Taiwan politics, International news, financial news, culture, entertainment, sports,

and health. After duplication removal, the dataset consists of 1,400,000 train-

ing samples and 112,000 testing samples. These samples are evenly distributed

3http://snap.stanford.edu/

53

ifeng.com
chinanews.com
http://snap.stanford.edu/

Dataset
Character Word Romanized Word

1-gram 5-gram 1-gram 5-gram 1-gram 5-gram
plain tfidf plain tfidf plain tfidf plain tfidf plain tfidf plain tfidf

Dianping 25.99 26.78 24.20 23.53 23.96 24.17 23.51 22.99 27.26 27.93 24.48 23.28
JD f. 51.43 51.60 48.39 48.14 49.35 50.03 48.26 48.27 52.10 52.75 48.95 48.44
JD b. 11.79 12.11 9.09 8.89 9.83 9.96 9.05 8.81 13.10 13.51 9.10 8.97
Rakuten f. 52.18 52.84 47.63 46.50 47.60 47.75 45.82 45.29 47.93 48.34 46.98 45.68
Rakuten b. 12.50 12.98 8.13 7.28 8.36 8.39 7.33 6.62 8.80 8.94 7.45 6.70
11st f. 43.83 48.32 43.55 43.38 49.75 48.23 54.80 51.88 45.33 44.72 45.53 44.21
11st b. 17.65 18.00 14.44 14.33 15.33 15.57 18.92 17.24 14.94 15.15 14.61 14.41
Amazon f. 69.49 68.61 56.89 51.36 45.42 44.92 44.68 42.73 – – – –
Amazon b. 34.48 33.70 15.02 12.17 9.35 8.82 8.56 8.25 – – – –
Ifeng 22.13 22.45 21.55 22.00 19.14 18.32 20.20 19.75 26.61 27.34 23.13 22.39
Chinanews 15.38 15.09 14.95 13.39 11.66 10.78 13.44 12.94 20.07 20.50 15.59 14.00
NYTimes 57.54 53.85 40.89 26.39 18.22 15.29 20.04 18.28 – – – –
Joint f. 60.29 59.71 49.20 48.23 46.84 46.56 45.28 45.08 47.55 47.18 46.91 46.42
Joint b. 20.21 19.74 12.13 10.93 10.85 10.68 9.48 9.01 11.74 11.45 11.33 11.02

Table 3.10: Linear model results. The numbers are development errors in percent-
age. The best result for each dataset is marked blue and the worst red.

across classes. The testing dataset is then split into a development dataset and a

validation dataset in equal proportions.

NYTimes. The NYTimes dataset consists of first paragraphs of news articles

from the English news website nytimes.com. We crawled all news from the year

1981 to the year 2015 and combined several channels to construct 7 topic classes.

These classes are business news, New York regional news, sports, U.S. politics,

world news and opinions, arts and fashion, and entertainment and science. After

duplication removal, the dataset consists of 1,400,000 training samples and 105,000

testing samples. These samples are evenly distributed across classes. The testing

dataset is then split into a development dataset and a validation dataset in equal

proportions.

Joint. The four dataset sources JD, Rakuten, 11st and Amazon are all sen-

54

nytimes.com

Dataset
Character Word Romanized Word

1-gram 2-gram 5-gram 1-gram 2-gram 5-gram 1-gram 2-gram 5-gram
Dianping 25.78 22.80 22.28 23.64 22.55 22.57 26.89 22.86 22.37
JD f. 51.21 48.27 47.96 49.20 48.07 48.55 52.18 48.32 48.09
JD b. 11.79 8.89 8.70 9.82 9.08 9.91 13.03 9.04 8.70
Rakuten f. 52.01 44.90 43.30 46.58 43.83 46.33 47.08 43.82 43.30
Rakuten b. 12.22 6.91 5.43 8.01 5.89 5.43 8.45 5.93 5.43
11st f. 43.17 38.67 38.53 41.58 41.12 42.14 40.67 41.68 43.12
11st b. 17.64 13.63 13.09 14.51 14.25 14.87 14.85 14.49 14.96
Amazon f. 67.08 54.00 41.07 43.82 40.21 40.05 – – –
Amazon b. 32.81 18.59 6.30 8.38 5.60 5.42 – – –
Ifeng 21.62 16.60 16.34 17.85 16.67 16.97 26.06 18.22 17.88
Chinanews 13.94 9.33 9.13 9.88 9.28 9.25 18.71 9.69 9.40
NYTimes 51.39 24.65 12.69 13.59 11.81 13.21 – – –
Joint f. 59.50 49.38 44.05 46.07 43.56 43.66 46.74 43.15 43.28
Joint b. 19.86 12.37 9.02 10.06 9.05 9.28 11.40 8.82 8.85

Table 3.11: fastText results. The numbers are development errors in percentage.
The best result for each dataset is marked blue and the worst red.

timent classification tasks from online shopping websites, with both full 5 stars

prediction or binary prediction. Therefore, we could combine them in each case to

form two new joint datasets of 5 classes or 2 classes. This dataset is particularly

useful since it spans 4 languages and can be used to test a model’s ability to han-

dle different languages in a unified fashion. In total, there are 10,750,000 training

samples and 1,500,000 testing samples in the joint full dataset, and 15,000,000

training samples and 1,560,000 testing samples in the joint binary dataset. All

samples are evenly distributed across classes. The testing dataset is then split into

a development dataset and a validation dataset in equal proportions.

55

3.4.2 Word Segmentation and Romanization

Since there is no clear word boundary in some of the Chinese and Japanese

texts, word segmentation is necessary before applying any of the word-level models.

Romanization for some of the CJK texts also depends on word segmentation to

produce the correct transliteration in the English alphabet. In this section, we

present both word segmentation and romanization processes used for producing

the results, for each languages Chinese, Japanese and Korean. All the tools we

used are relatively popular and standard for CJK language processing.

Chinese. For Chinese, we use the freely available word segmentation package

called jieba 4 (version 0.38). The romanization standard we used is Pinyin, using

the pypinyin 5 (version 0.12) package which in turn calls jieba for disambiguate

between characters with multiple pronunciations.

Japanese. For Japanese, we use the freely available word segmentation and

tagging package MeCab 6 (version 0.996) with the default model for Japanese. The

romanization form used is Hepburn, which is done by converting the segmented

words using python-romkan 7 (version 0.2.1).

Korean. Word segmentation is done for Korean using the python package

hangul-utils 8, facilitated by a MeCab version in the Korean language 9. The

romanization standard used is the Revised Romanization of Korean (RR), which

is done in 2 steps. The first step is to convert any Hanja in the text to Hangul via

the python package hanja (version 0.11) 10, and the second step is to transliterate

4https://github.com/fxsjy/jieba
5https://github.com/mozillazg/python-pinyin
6http://taku910.github.io/mecab
7https://www.soimort.org/python-romkan
8https://github.com/kaniblu/hangul-utils
9https://bitbucket.org/eunjeon/mecab-ko-dic

10https://github.com/suminb/hanja

56

https://github.com/fxsjy/jieba
https://github.com/mozillazg/python-pinyin
http://taku910.github.io/mecab
https://www.soimort.org/python-romkan
https://github.com/kaniblu/hangul-utils
https://bitbucket.org/eunjeon/mecab-ko-dic
https://github.com/suminb/hanja

Glyp
hN

et
-C

ha
ra

ct
er

-L
ar

ge

Glyp
hN

et
-C

ha
ra

ct
er

-S
m

all

One
ho

tN
et

-B
yt

e-
La

rg
e

One
ho

tN
et

-B
yt

e-
Sm

al
l

One
ho

tN
et

-R
om

an
iz

ed
-L

ar
ge

One
ho

tN
et

-R
om

an
iz

ed
-S

m
all

Em
be

dN
et

-C
ha

ra
ct

er
-L

ar
ge

Em
be

dN
et

-C
ha

ra
ct

er
-S

m
all

Em
be

dN
et

-B
yt

e-
La

rg
e

Em
be

dN
et

-B
yt

e-
Sm

all

Em
be

dN
et

-R
om

an
ize

d-
La

rg
e

Em
be

dN
et

-R
om

an
ize

d-
Sm

al
l

Em
be

dN
et

-W
or

d-
La

rg
e

Em
be

dN
et

-W
or

d-
Sm

al
l

Em
be

dN
et

-R
om

an
ize

d
W

or
d-

La
rg

e

Em
be

dN
et

-R
om

an
ize

d
W

or
d-

Sm
all

Lin
ea

r-C
ha

ra
ct

er
-1

-g
ra

m
-P

lai
n

Lin
ea

r-C
ha

ra
ct

er
-1

-g
ra

m
-T

FID
F

Lin
ea

r-C
ha

ra
ct

er
-5

-g
ra

m
-P

lai
n

Lin
ea

r-C
ha

ra
ct

er
-5

-g
ra

m
-T

FI
DF

Lin
ea

r-W
or

d-
1-

gr
am

-P
lai

n

Lin
ea

r-W
or

d-
1-

gr
am

-T
FID

F

Lin
ea

r-W
or

d-
5-

gr
am

-P
lai

n

Lin
ea

r-W
or

d-
5-

gr
am

-T
FID

F

Lin
ea

r-R
om

an
ize

d
W

or
d-

1-
gr

am
-P

lai
n

Lin
ea

r-R
om

an
ize

d
W

or
d-

1-
gr

am
-T

FID
F

Lin
ea

r-R
om

an
ize

d
W

or
d-

5-
gr

am
-P

lai
n

Lin
ea

r-R
om

an
ize

d
W

or
d-

5-
gr

am
-T

FID
F

fa
st

Tex
t-C

ha
ra

ct
er

-1
-g

ra
m

fa
st

Tex
t-C

ha
ra

ct
er

-2
-g

ra
m

fa
st

Tex
t-C

ha
ra

ct
er

-5
-g

ra
m

fa
st

Tex
t-W

or
d-

1-
gr

am

fa
st

Tex
t-W

or
d-

2-
gr

am

fa
st

Tex
t-W

or
d-

5-
gr

am

fa
st

Tex
t-R

om
an

ize
d

W
or

d-
1-

gr
am

fa
st

Te
xt

-R
om

an
ize

d
W

or
d-

2-
gr

am

fa
st

Tex
t-R

om
an

ize
d

W
or

d-
5-

gr
am

0510152025303540

F
ig

u
re

3.
2:

R
an

k
b

ox
p
lo

t
of

d
ev

el
op

m
en

t
er

ro
rs

fo
r

d
iff

er
en

t
m

o
d
el

s

57

the generate Hangul using the python package hangul-romanize 11.

3.5 Experiments

After introducing the optimization parameters used for all of our models, this

section then presents the results for these models. Most of our experiments are

implemented using Torch 7 [Collobert et al., 2011a], with NVIDIA CUDNN 12 as

the GPU backend.

3.5.1 Optimization

The optimization process used for all convolutional network models is stochastic

gradient descent (SGD) with momentum [Polyak, 1964] [Sutskever et al., 2013].

The training process operates on random minimabatches of size 16, with different

numbers of minibatches per epoch. The sixth column in Table 3.4 shows the

number of minibatches for one epoch for each dataset. The model parameters are

initialized in the same way as in [He et al., 2015] – for each layer the bias is set to

0, and weights are randomly sampled from a Gaussian distribution of mean 0 and

standard deviation
√

2/n, where n is the number of output units each input unit

connects to. All the models have an initial learning rate of 0.00001, which is halved

every 8 epoches. The training stops at the 100th epoch. A small weight decay of

0.00001 is applied to the model to stabilize training. Each model is trained using

one NVIDIA Tesla K40 GPU.

The optimizaiton algorithm used for all linear models is parallelized SGD. Each

model is trained with a sparse representation via HOGWILD! [Niu et al., 2011]

11https://github.com/youknowone/hangul-romanize
12https://developer.nvidia.com/cudnn

58

https://github.com/youknowone/hangul-romanize
https://developer.nvidia.com/cudnn

GlyphNet-Character-Large
GlyphNet-Character-Small

OnehotNet-Byte-Large
OnehotNet-Byte-Small

OnehotNet-Romanized-Large
OnehotNet-Romanized-Small

EmbedNet-Character-Large
EmbedNet-Character-Small

EmbedNet-Byte-Large
EmbedNet-Byte-Small

EmbedNet-Romanized-Large
EmbedNet-Romanized-Small

EmbedNet-Word-Large
EmbedNet-Word-Small

EmbedNet-Romanized Word-Large
EmbedNet-Romanized Word-Small

Linear-Character-1-gram-Plain
Linear-Character-1-gram-TFIDF

Linear-Character-5-gram-Plain
Linear-Character-5-gram-TFIDF

Linear-Word-1-gram-Plain
Linear-Word-1-gram-TFIDF

Linear-Word-5-gram-Plain
Linear-Word-5-gram-TFIDF

Linear-Romanized Word-1-gram-Plain
Linear-Romanized Word-1-gram-TFIDF

Linear-Romanized Word-5-gram-Plain
Linear-Romanized Word-5-gram-TFIDF

fastText-Character-1-gram
fastText-Character-2-gram
fastText-Character-5-gram

fastText-Word-1-gram
fastText-Word-2-gram
fastText-Word-5-gram

fastText-Romanized Word-1-gram
fastText-Romanized Word-2-gram
fastText-Romanized Word-5-gram

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 3.50% 4.00% 4.50%

Figure 3.3: Generalization gap of Joint binary dataset

parallelization using 10 CPU cores. An extra core is used for continuously test-

ing on both training and development datasets. The learning rate used for the

algorithm is 0.001. A small weight decay of 0.00001 is applied to each model to

stabilize the training process. The training stops after 1000 continuous testing

steps are done. All of our models are run with a batch of INTEL XEON E5-2630

v2 CPUs.

The optimization parameters for fastText [Joulin et al., 2016] are controlled by

the original authors’ program 13. We set the embedding dimension to be 10 with

a bucket size of 10,000,000, and going through each dataset for 2, 5 or 10 epoches

depending on the validation result from 10% of the training dataset. The opti-

13https://github.com/facebookresearch/fastText

59

https://github.com/facebookresearch/fastText

mization algorithm is SGD with decaying learning rate, where the initial learning

rate is set to 0.1 and the decay change rate set to 100. The number of CPU cores

used is 10, with a batch of INTEL XEON E5-2630 v2 CPUs. All other parameters

used are the program’s defaults.

3.5.2 Results

The results for all the models are split into several tables. Table 3.7 lists the

results for GlyphNet, where the numbers are development errors in percentages.

Similarly, Tables 3.8, 3.9, 3.10 and 3.11 list the development errors for OnehotNet,

EmbedNet, linear models and fastText. As long as it is applicable in each table,

the best result for each dataset is marked blue and the worst red. The epoch

numbers for fastText models are presented in appendix B

For each Chinese, Japanese and Korean dataset, we have 37 models each, and

for English we have 22. In total, there are 473 models benchmarked in this chapter.

Due to space limitations, the training and validation errors are not present in the

main text of this chapter, but readers can refer to appendix A for them.

3.6 Analysis

In this section, we provide some analysis on the development results presented

in the previous section. These analyses include average ranks between models,

generalization ability of each model under different encoding mechanisms, and

estimations of training time.

60

0510152025303540

F
ig

u
re

3.
4:

R
an

k
b

ox
p
lo

t
of

ge
n
er

al
iz

at
io

n
ga

p
fo

r
d
iff

er
en

t
m

o
d
el

s

61

GlyphNet-Character-Large
GlyphNet-Character-Small

OnehotNet-Byte/Romanized-Large
OnehotNet-Byte/Romanized-Small

EmbedNet-Character-Large
EmbedNet-Character-Small

EmbedNet-Byte/Romanized-Large
EmbedNet-Byte/Romanized-Small

EmbedNet-Word/Romanized Word-Large
EmbedNet-Word/Romanized Word-Small

Linear-Character-1-gram
Linear-Character-5-gram

Linear-Word-1-gram
Linear-Word-5-gram

Linear-Romanized Word-1-gram
Linear-Romanized Word-5-gram

fastText-Character-1-gram
fastText-Character-2-gram
fastText-Character-5-gram

fastText-Word-1-gram
fastText-Word-2-gram
fastText-Word-5-gram

fastText-Romanized Word-1-gram
fastText-Romanized Word-2-gram
fastText-Romanized Word-5-gram

1 10 100 1000 10000 100000 1000000

Figure 3.5: Time for different models to go over 1,000,000 samples. The time axis
is in logarithmic scale.

3.6.1 Rank the Models

To compare between different encoding mechanisms, this section presents the

ranking of development errors of all models. For English datasets, there are some

missing values in various models in Tables 3.8, 3.9, 3.10 and 3.11. These values are

missing because the corresponding models operate on romanized texts, and there

is no romanization because the texts are already in the English alphabet. However,

in order to make the model rank between different datasets comparable, we need

to make sure that every dataset has the same number of models. To do this, we

simply fill the missing values in romanized models with their corresponding ones

for English. As a result, all datasets have 37 models to rank.

For each dataset, we rank all of the models in ascending order of their develop-

ment errors. The rank is the index of the model in this ordering. As a result, the

smaller the rank, the better the model performs. Then, we compute the minimum,

first quartile, median, third quartile, and maximum rank across different datasets

for each model and put these numbers as a box plot in Figure 3.2. The numbers

62

in Figure 3.2 indicate both how each models perform on average, and how stable

these models are across different datasets and languages.

From the results, the model achieved the best consistent performance is the

character-level 5-gram fastText [Joulin et al., 2016] model. The result is more

apparent in table 3.11, where for almost all Chinese, Japanese and Korean datasets

the best encoding is character-level 5-gram for fastText. For English, the best

encoding is often word n-grams, although character-level 5-gram models are quite

competitive as well. Character-level encoding with number of grams less than 5

are significantly worse, with the worst being bag-of-character linear model with

TFIDF features. Word-level n-grams feature for both linear models and fastText

are competitive, although our data processing pipeline did not guarantee perfect

word segmentation for CJK languages because of the segmenters used.

Convolutional networks consistently have the best stability across different

datasets and languages, with the best being byte-level large OnehotNet. This

suggests that handling different language at byte-level regardless of whether char-

acters could span multiple bytes is quite a feasible solution for handling different

languages in a unified fashion. What is better is that byte-level language processing

requires the least amount of pre-processing – just present UTF-8 encoded strings to

the model. Therefore, we believe byte-level model is a promising approach towards

applying deep learning to natural language processing.

Finally, many different models have hit rank 1 as their minimum, suggesting

that there is no single best models across different datasets and languages. How-

ever, this is limited to the model hyperparameters we chose. It is worth noting that

hyperparameters are more thoroughly explored for fastText than other models in

this chapter.

63

3.6.2 Generalization

In this section, we look at the generalization gap – the expected difference be-

tween training and testing errors – of different models. The generalization gap in

this chapter is approximated by the subtraction of the training error from the de-

velopment error. The approximation to the underlying sample distribution should

be pretty accurate because all our datasets are very large.

As an example, Figure 3.3 visualizes the generalization gap for the Joint binary

dataset. This figure exemplifies typical generalization properties of different models

for all of our datasets. Additionally, Figure 3.4 offers a box plot for the rankings

on generalization error, computed in the same way as Figure 3.2 for development

errors.

From these figures, one could easily observe that fastText [Joulin et al., 2016]

tends to overfit much more aggressively than either convolutional networks or our

own implementation of linear models, in spite of our effort in hyper-parameter tun-

ing. Also, it overfits more using richer features as the number of grams goes from

1 to 5. Given the theoretical fact that fastText could not have more representation

capacity than a linear model, this could be a result of the lack of regularization

and the aggressive optimization strategy in fastText.

3.6.3 Training Time

The training times of different models vary greatly in our experiments. Ta-

ble 3.12 offers an estimation of time it took for each model to go over 1,000,000

samples with the hardware mentioned in the previous section. In general, fast-

Text [Joulin et al., 2016] offers the best training time and only requires CPUs,

64

whereas convolutional networks take the longest time and require GPUs. Depend-

ing on the methods of encoding, the performance between convolutional networks

also differ drastically, with EmbedNet tens of times faster than GlyphNet. Figure

3.5 visualizes the estimations as a bar chart.

These results show that fastText [Joulin et al., 2016] offers the fastest training

and evaluation while achieving competitive results. On the other hand, models

using convolutional networks consume the most amount of computation time. As

a result, in this chapter we could afford to do hyper-parameter tuning for fastText

but not on convolutional networks.

The convolutional network models in this chapter are designed not for achieving

the best performance, but for the fairness of comparing between different encod-

ing mechanisms within the computational budget we possess. Given the fact that

different designs of convolutional networks could offer drastically different perfor-

mance, we believe there is a great deal of potential for improvement from different

design choices on convolutional networks.

It is also worth noting that the task in question – text classification – is quite

simple. Convolutional networks may not show an advantage in this specific task,

but may become more useful for more complicated reasoning tasks concerning

text inputs and outputs. The comparison between different encoding mechanisms

presented this chapter indicate that byte-level encoding is an advantageous choice

for convolutional networks due to its generality across languages, simplicity in

pre-processing and high performance in results.

65

3.6.4 Influence from Representation

The representation mechanisms in this chapter affect the results in significant

ways, although differently depending on how comparisons are made. Compar-

ing between different representation mechanisms for convolutional networks, one

conclusion from figure 3.2 is that GlyphNet – which uses images of characters –

gives moderate performance while require tremendous amount of computation. In

reality, such models might not be practical for use in real problems.

Comparing between OnehotNet and EmbedNet that use the same level of en-

coding (byte and romanized character levels), OnehotNet consistently produces

better results. The reason here is because the encoder used for OnehotNet is a 4-

layer convolutional network, while in EmbedNet it is simply a look-up table which

is equivalent of using one-hot encoding with a linear layer. As a result, OnehotNet

is able to start learning the contextual patterns and associations of byte or charac-

ter sequences from earlier stages, resulting in an advantage of its representational

capacity.

The advantage of fastText over our own implementation linear models is quite

intriguing, because in theory fastText models do not have more representational

capacity than its linear counterparts, despite the fact that it is a 2-layer model. To

exclude the possibility that optimization is an issue, figure 3.6 on the error and loss

values shows that our optimization process as detailed in previous sections achieved

acceptable optimality. This is by the fact that further reducing the learning rate

and training do not improve the loss values in any significant way in later stages of

optimization. As a result, the only possible reason is due to limiting the number

of entities (character, words, or n-grams) to a maximum of 1,000,000 in the linear

models. For fastText, the model can consider all of the possible entities, and they

66

are hashed into 10,000,000 bins. That essentially results in more representational

capacity than our linear models.

Finally, when comparing between plain and TFIDF features for linear models

in table 3.10, TFIDF features seem to always produce results that are a little bit

better than plain ones.

3.6.5 Linguistic Properties

Besides the machine learning and computational factors discussed in previous

analysis, influence from linguistic properties of these languages is also present in

the development error rank plot in figure 3.2. It is known that for some texts in

Chinese and Japanese, word segmentation is an inaccurate process because these

texts do not have clear word boundaries. In this case, segmenting the text into

words has ambiguity in both linguistic and modeling factors. One example of

linguistic factor is the granularity of segmented words, which is represented by

different people’s opinion on what is considered as a word in a word-segmentation

dataset. On the other hand, modeling ambiguity comes from the intrinsic assump-

tions of different word segmentation models, such as the probabilistic sequential

dependencies considered in Markov models or conditional random fields (CRFs) –

the most popular word or morpheme segmentation models used today for CJK.

As a result of these factors, word segmentation becomes a process that intro-

duces ambiguity. This could be the reason behind the difference in the results

for EmbedNet and fastTest models in table 3.9 and table 3.11 respectively. Note

however, for word-level EmbedNet this problem is also compounded by informa-

tion loss due to limiting the words to 200,000 most frequent ones. If we look at

the difference between low level (character or byte levels) and word-level mod-

67

els, when they are given enough representational capacity, low-level models tend

to work better because they do not lose information through word segmentation.

By “given enough representational capacity”, we refer to the fact that EmbedNet

models are large and deep, and that the fastText character-level models worked

well with enough length for the grams.

Besides the word-segmentation process, another source that introduces ambi-

guity and loses information is the romanization process. For example, in Chinese

many characters have multiple possible pronunciations, which is usually discerned

by the surrounding contexts via word segmentation. Furthermore, because the

decision between multiple pronunciations relies on word segmentation, the loss of

information is actually compounded by segmentation ambiguity. This is why com-

pared among the different results in one series of models, romanized ones usually

have the worst performance, in both low-level and word-level models. Readers

can refer to the results of byte-level and romanized character-level models in One-

hotNet and EmbedNet in table 3.8 and table 3.9 for these effects, and word-level

and romanized word-level models in EmbedNet and fastText in table 3.9 and table

3.11.

3.7 Other Models

In spite of the 473 models we have benchmarked, this chapter is in no way

a complete essay on every possible model for text classification. Some of the

interesting models we did not benchmark include recurrent networks, the use of

sparse convolutions for text, and different variations of convolutional architectures.

By focusing on different encoding mechanisms for deep learning models, this

68

chapter performs experiments only on one kind – convolutional networks. Another

often-used kind for processing texts is recurrent networks, constructed using dif-

ferent types of cells like long short-term memory (LSTM) [Hochreiter and Schmid-

huber, 1997] and gated recurrent units (GRU) [Cho et al., 2014a]. Some authors

have found that recurrent networks applied to different levels of encoding can offer

good results for text classification as well (for example, [Dai and Le, 2015] and [Liu

et al., 2016]). Combinations of convolutional networks and recurrent networks are

also explored for text classification (for example, [Xiao and Cho, 2016]).

This chapter explores one-hot encoding for convolutional networks using byte-

level encoding and romanization. Another alternative is to implement a convo-

lutional module that can take sequences of indices instead of explicit vectors to

represent one-hot encoding. This would avoid the memory overflow problem when

applying one-hot encoding to large vocabularies. However, so far there has been

no deep learning toolkit that has implementation of such a sparse convolutional

module. Furthermore, it may require special numerical optimization that would

merit its own essay. Therefore, it is not included for presentation in this chapter.

Finally, the results on convolutional networks in this chapter are limited to the

purpose of offering fair comparisons between different encoding mechanisms. An-

other dimension of exploration is the design variants of convolutional networks

for text processing, such as very deep networks [Conneau et al., 2017], resid-

ual [He et al., 2016] and dense [Huang et al., 2016] connections, and advanced

pooling schemes for handling the variable length problem [Kalchbrenner et al.,

2014] [Johnson and Zhang, 2017]. We are optimistic that exploration of all these

different architecture designs could improve the results further for convolutional

networks.

69

3.8 Conclusion

This chapter explores the use of different encoding mechanisms for both deep

learning and linear models for text classification in Chinese, English, Japanese and

Korean. These encoding mechanisms include one-hot encoding, embedding and

images of character glyphs. Different levels of encoding are applied to each mech-

anism whenever application, including UTF-8 encoded bytes, characters, words,

romanized characters and romanized words. There are in total 473 models bench-

marked in this chapter, including convolutional networks, linear models and fast-

Text [Joulin et al., 2016].

A total of 14 large-scale datasets were built in this chapter for benchmarking

these models in 4 languages including Chinese, English, Japanese and Korean.

Most of these datasets have millions of samples for training, and 2 of these datasets

contains samples mixed in all these 4 languages to testing different model’s ability

to handle different languages in a fashion that generalizes over languages.

Some conclusions from these results are:

1. fastText [Joulin et al., 2016] has the best result with character-level n-gram

encoding for Chinese, Japanese and Korean texts. For English, the best

encoding for fastText is word-level n-grams.

2. Word-level encoding for CJK languages are competitive even without perfect

segmentation, for both fastText and linear models.

3. The best encoding mechanism for convolutional networks is byte-level one-

hot encoding. This indicates that convolutional networks have the ability to

understand text from a low-level representation, and offers great simplicity

for handling multiple languages in a consistent and unified fashion.

70

4. fastText tends to overfit more than convolutional networks, in spite of the

fact that it does not have more representation capacity than a linear model.

In the future, we hope to extend the results to recurrent networks, and explore

how different designs of convolutional networks would affect the results. We plan

to release all the source code used for all the benchmarks, and hope that these

results are useful for the community to choose which encoding mechanism to use

when facing with multi-lingual text processing.

71

Model Levels Variant Time Day-hh:mm:ss

GlyphNet Character
Large 136,250 1-13:50:50
Small 63,125 17:32:05

OnehotNet
Byte
Romanized

Large 5,906 1:38:26
Small 5,331 1:28:51

EmbedNet

Character
Large 2,143 35:43
Small 1,599 26:39

Byte
Romanized

Large 1,829 30:29
Small 1,417 23:37

Word
Romanized Word

Large 1,844 30:44
Small 1,536 25:36

Linear

Character
1-gram 1,518 25:18
5-gram 7,647 2:07:27

Word
1-gram 1,417 23:37
5-gram 6,250 1:44:10

Romanized Word
1-gram 1,333 22:13
5-gram 6,253 1:44:13

fastText

Character
1-gram 7 7
2-gram 7 7
5-gram 10 10

Word
1-gram 2 2
2-gram 3 3
5-gram 5 5

Romanized Word
1-gram 3 3
2-gram 3 3
5-gram 5 5

Table 3.12: Estimated training time for going over 1,000,000 samples using joint
binary dataset. The time estimation in the fourth column is in seconds. Encoding
levels that will give the identical models are grouped together because the time
estimation would be the same. These estimations are only for reference and may
vary depending on actual computing environment.

72

2 48 94 140186232278324370416462508554600646692738784830876922968
0

0.05

0.1

0.15

0.2

0.25

0.3

Training and Testing Error

Training Error Testing Error

Continuous Testing Steps

2 48 94 140186232278324370416462508554600646692738784830876922968
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Training and Testing Loss

Training Loss Testing Loss

Continuous Testing Steps

Figure 3.6: Error and loss values for training linear model on jdbinary dataset
using word-level 5-gram plain features

73

Chapter 4

Byte-level Recursive

Convolutional Auto-Encoder

This chapter proposes a byte-level auto-encoder architecture for text using

convolutional networks with a recursive component. The proposed model is a

multi-stage deep convolutional encoder-decoder framework using residual connec-

tions [He et al., 2016], containing up to 160 parameterized layers. Each encoder

or decoder contains a shared group of modules that consists of either pooling or

up-sampling layers, making the network recursive in terms of abstraction levels

in representation. Results for 6 large-scale paragraph datasets are reported, in 3

languages including Arabic, Chinese and English. Analyses are conducted to study

several properties of the proposed model. Experiments are presented to verify that

the auto-encoder can learn useful representations.

74

n x Convolution

Pooling

n x Convolution

Text

n x Convolution

Pooling

n x Convolution

Pooling

n x Linear

...

(n-1) x Convolution

Expand Convolution

n x Convolution

(n-1) x Convolution

Expand Convolution

(n-1) x Convolution

Expand Convolution

n x Linear

...

Feature

Encoder Decoder

Prefix

Recursion
(shared)

Postfix

Recursion
(shared)

Prefix

Postfix

Figure 4.1: The autoencoder model

4.1 Introduction

Recently, generating text using convolutional networks (ConvNets) starts to

become an alternative to recurrent networks for sequence-to-sequence learning

[Gehring et al., 2017]. The dominant assumption for both these approaches is

that texts are generated one word at a time. Such sequential generation process

bears the risk of output or gradient vanishing or exploding problem [Bengio et al.,

1994] [Hochreiter et al., 2001], which limits the length of its generated results.

Such limitation in scalability prompts us to explore whether non-sequential text

generation is possible.

Meanwhile, text processing from lower levels than words – such as characters

[Zhang et al., 2015] [Kim et al., 2016] and bytes [Gillick et al., 2016] [Zhang and

75

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Figure 4.2: The reshaping process. This demonstrates the reshaping process for
transforming a representation of feature size 4 and length 8 to feature size 2 and
length 16. Different colors represent different source features, and the numbers are
indices in length dimension.

LeCun, 2017] – is also being explored due to its promise in handling distinct

languages in the same fashion. In particular, the work by Zhang and LeCun [Zhang

and LeCun, 2017] shows that simple one-hot encoding on bytes could give the best

results for text classification in a variety of languages, as far as convolutional

networks are concerned. This is because byte-level one-hot encoding achieved the

best balance between computation and classification accuracy.

Inspired by these results, this chapter explores auto-encoding of text using byte-

level convolutional networks that has a recursive structure. Our main contribution

is the network design, which paves the way towards low-level and non-sequential

text generation. Several properties of the model are also presented. Furthermore,

using the task of text classification, we show that the learnt representation from

76

Table 4.1: Datasets. All the numbers are paragraphs.

NAME TRAIN DEV VAL LANGUAGE

enwiki 41,256,261 2,291,946 2,291,947 English
hudong 53,675,117 2,999,960 2,999,960 Chinese
argiga 27,989,646 1,558,359 1,558,360 Arabic
engiga 116,456,520 6,484,485 6,484,485 English
zhgiga 38,094,390 2,118,821 2,118,822 Chinese
allgiga 182,540,556 10,161,766 10,161,766 Multi-lingual

auto-encoding is useful for improving supervised learning as well, especially when

using a small dataset with the models of this size from the level of bytes.

The properties studies in this chapter include the following: 1) comparison with

recurrent networks, 2) end-of-sequence symbol generation, 3) avoiding degenerating

into the identity function, 4) influence of sample lengths on errors, 5) pooling

layer variations, 6) the advantage of the recursive structure, and 7) model depth

variations.

For the task of text auto-encoding, we should avoid the use of common atten-

tion mechanisms like those used in machine translation [Bahdanau et al., 2015], be-

cause they always provide a direct information path that enables the auto-encoder

to directly copy from the input. This diminishes the purpose of studying the rep-

resentational ability of different models. Therefore, all models considered in this

chapter encode to and decode from a fixed-length vector representation.

The paper by Zhang et al. [Zhang et al., 2017b] was an anterior result on using

word-level convolutional networks for text auto-encoding. This chapter differs

in several ways of using convolutional networks, such as encoding level (bytes

instead of words) and the recursive structure, which by design could prevent trivial

77

Table 4.2: Training, development and validation byte-level errors

DATASET LANGUAGE TRAIN DEV VAL

enwiki English 3.34% 3.35% 3.34%
hudong Chinese 3.21% 3.15% 3.17%
argiga Arabic 3.08% 3.10% 3.08%
engiga English 2.09% 2.09% 2.08%
zhgiga Chinese 5.11% 5.24% 5.25%
allgiga Multi-lingual 2.48% 2.50% 2.50%

solutions such as the identity function. We also use one of the latest network design

heuristics – residual connections [He et al., 2016] – so that our network can scale

up to several hundred of layers deep.

Recently, the concept of “non-autoregressive” text generation has been pro-

posed for machine translation [Gu et al., 2018]. It is the same as the concept of

“non-sequential” text generation in this chapter, meaning to generate items – be

it bytes, characters or words – all at once, rather than one after another.

4.2 Recursive Convolutional Auto-Encoder

In this section, we introduce the design of the convolutional auto-encoder model

with a recursive structure. The model consists of 6 groups of modules, with 3 for

the encoder and 3 for the decoder. The model first encodes a variable-length input

into a fixed-length vector of size 1024, then decodes back to the same input length.

The decoder architecture is a reverse mirror of the encoder. All convolutional

layers in this chapter have zero-padding added to ensure that each convolutional

layer outputs the same length as the input. They also all have feature size 256 and

78

Table 4.3: Byte-level errors for long short-term memory (LSTM) recurrent network

DATASET LANGUAGE TRAIN DEV VAL

enwiki English 67.71% 67.78% 67.82%
hudong Chinese 64.47% 64.55% 67.58%
argiga Arabic 61.23% 61.30% 61.29%
engiga English 70.47% 70.45% 70.45%
zhgiga Chinese 75.91% 75.88% 75.94%
allgiga Multi-lingual 72.39% 72.44% 72.55%

kernel size 3. All parameterized layers in our model use ReLU [Nair and Hinton,

2010] as the non-linearity.

In the encoder, the first group of modules consist of n temporal (1-D) convolu-

tional layers. It accepts an one-hot encoded sequence of bytes as input, where each

byte is encoded as a 256-dimension vector. This first group of modules transforms

the input into an internal representation. We call this group of modules the prefix

group. The second group of modules consists of n temporal convolutional layers

plus one max-pooling layer of size 2. This group reduces the length of input by a

factor of 2, and it can be applied again and again to recursively reduce the repre-

sentation length. Therefore, we name this second group the recursion group. The

recursion group is applied until the size of representation becomes 1024, which

is actually a feature of dimension 256 and length 4. Then, following the final

recursion group is a postfix group of n linear layers for feature transformation.

The decoder is a symmetric reverse mirror of the encoder. The decoder prefix

group consists of n linear layers, followed by a decoder recursion group that expand

the length of representation by a factor of 2. This expansion is done at the first con-

volutional layer of this group, where it outputs 512 features that will be reshaped

79

-2
0
-1
8
-1
6
-1
3
-1
1 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15 17 19

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

train dev

Figure 4.3: The histogram of length difference

into 256 features. The reshaping process we use ensures that feature values corre-

spond to nearby field of view in the input, which is similar to the idea of sub-pixel

convolution (or pixel shuffling) [Shi et al., 2016]. Figure 4.2 depicts this reshaping

process for transforming representation of feature size 4 and length 8 to feature

size 2 and length 16. After applying this recursion group several times (same as

that of the encoder recursion group), a decoder postfix group of n convolutional

layers is applied to decode the recursive features into a byte sequence.

The final output of the decoder is interpreted as probabilities of bytes after

passing through a softmax function. Therefore, the loss we use is simply negative-

log likelihood on the individual softmax outputs. It is worth noting that this does

not imply that the output bytes are unconditionally independent of each other.

For our non-sequential text decoder, the independence between output bytes is

conditioned on the representation from the encoder, meaning that their mutual

dependence is modeled by the decoder itself.

Depending on the length of input and size of the encoded representation, our

model can be extremely deep. For example, with n = 8 and encoding dimension

80

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
0.00%
2.00%

4.00%
6.00%
8.00%

10.00%
12.00%

14.00%
16.00%

18.00%
20.00%

train error dev error

Figure 4.4: Byte-level error by length

1024 (reduced to a length 4 with 256 features), for a sample length of 1024 bytes,

the entire model has 160 parameterized layers. Training such a deep dynamic

model can be very challenging using stochastic gradient descent (SGD) due to the

gradient vanishing problem [Bengio et al., 1994] [Hochreiter et al., 2001]. Therefore,

we use the recently proposed idea of residual connections [He et al., 2016] to make

optimization easier. For every pair of adjacent parameterized layers, the input

feature representation is passed through to the output by addition. We were unable

to train a model designed in this fashion without such residual connections.

For all of our models, we use an encoded representation of dimension 1024

(recursed to length of 4 with 256 features). For an input sample of arbitrary

length l, we first append the end-of-sequence “null” byte to it, and then pad it

to length 2dlog2(l+1)e with all zero vectors. This makes the input length a base-2

exponential of some integer, since the recursion groups in both encoder and decoder

either reduce or expand the length of representation by a factor of 2. If l < 4, it is

padded to size of 4 and does not pass through the recursion groups. It is easy to

81

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Train error Dev error Reference

Corruption Probability

(a) Groundtruth

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Train error Dev error Reference

Corruption Probability

(b) Mutated

Figure 4.5: Byte-level errors with respect to randomly mutated samples

see that the depth of this dynamic network for a sample of length l is on the order

of log2 l, potentially making the hidden representations more efficient and easier

to learn than recurrent networks which has a linear order in depth.

4.3 Result for Multi-lingual Auto-Encoding

In this section, we show the datasets and the results.

82

Table 4.4: Byte-level errors for different pooling layers

POOL TRAIN DEV VAL

max 3.34% 3.35% 3.34%
average 7.91% 7.98% 7.97%
L2 6.85% 6.77% 6.76%

4.3.1 Dataset

All 6 of our large-scale datasets in 3 languages – Arabic, Chinese and English –

are at the level of paragraphs. No pre-processing other than raw text extraction is

applied to them since our model can be applied to all languages in the same fashion

– an advantage of byte-level text processing. We also constructed a dataset with

samples mixed in all three languages to test the model’s ability to handle multi-

lingual data. Table 4.1 is a summary of these datasets.

enwiki. This dataset contains paragraphs from the English Wikipedia 1, con-

structed from the dump on June 1st, 2016. We were able to obtain 8,484,895 arti-

cles, and then split our 7,634,438 for training and 850,457 for testing. The number

of paragraphs for training and testing are therefore 41,256,261 and 4,583,893 re-

spectively. The testing dataset is then split into 2 equal sized development and

validation datasets.

hudong. This dataset contains pragraphs from the Chinese encyclopedia web-

site baike.com 2. We crawled 1,799,095 article entries from it and used 1,618,817

for training and 180,278 for testing. The number of paragraphs for training and

testing are 53,675,117 and 5,999,920. The testing dataset is then split into 2 equal

1https://en.wikipedia.org
2http://www.baike.com/

83

https://en.wikipedia.org
http://www.baike.com/

Table 4.5: Byte-level errors for recursive and static models

MODEL TRAIN DEV VAL

recursive 3.34% 3.35% 3.34%
static 8.01% 8.05% 8.06%

sized development and validation datasets.

argiga. This dataset contains paragraphs from the Arabic Gigaword Fifth

Edition release [Parker et al., 2011a], which is a collection of Arabic newswire

articles. In total there are 3,346,167 articles, and we use 3,011,403 for training

and 334,764 for testing. As a result, we have 27,989,646 paragraphs for training

and 3,116,719 for testing. The testing dataset is then split into 2 equal sized

development and validation datasets.

engiga. This dataset contains paragraphs from the English Gigaword Fifth

Edition release [Parker et al., 2011c], which is a collection of English newswire

articles. In total there are 9,876,096 articles, and we use 8,887,583 for training

and 988,513 for testing. As a result, we have 116,456,520 paragraphs for training

and 12,969,170 for testing. The testing dataset is then split into 2 equal sized

development and validation datasets.

zhgiga. This dataset contains paragraphs from the Chinese Gigaword Fifth

Edition release [Parker et al., 2011b], which is a collection of Chinese newswire

articles. In total there are 5,664,377 articles, and we use 5,097,198 for training and

567,179 for testing. As a result, we have 38,094,390 paragraphs for training and

4,237,643 for testing.

allgiga. Since the three Gigaword datasets are very similar to each other, we

combined them to form a multi-lingual dataset of newswire article paragraphs. In

84

1-64 65-128 129-192 193-256 257-320 321-384 385-448 449-512 513-576 577-640 641-704 705-768 767-832 833-896 897-960 961-1024 1025-
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

enwiki hudong argiga engiga zhgiga allgiga

Figure 4.6: Histogram of sample frequencies in different lengths

this dataset, there are 18,886,640 articles with 16,996,184 for training and 1,890,456

for testing. The number of paragraphs for training and testing are 182,540,556

and 20,323,532 respectively. The testing dataset is then split into 2 equal sized

development and validation datasets.

4.3.2 Result

For our large-scale datasets, testing time could be prohibitively long. Therefore,

we report all the results based on 1,000,000 samples randomly sampled from either

training or development subsets depending on the scenario. Very little overfitting

was observed even for our largest model.

We set the initial learning rate to 0.001, half it every 10 epoches, and stop

training at the 100th epoch. Each training epoch contains 1,000,000 randomly se-

lected samples. A momentum of 0.9 is applied to speed up training. A small weight

decay of 0.00001 is used to stabilize training. We find that dividing the gradients

of the recursion groups by the number of times they were applied can speed up

training. Because engiga and allgiga datasets have more than 100,000,000 training

samples, when training stops the model has not seen the entirety of training data.

However, further training does not achieve any observable improvement.

Table 4.2 details the byte-level errors for our model on all of the aforemen-

85

Table 4.6: Byte-level errors depending on model depth

n DEPTH TRAIN DEV VAL

2 40 9.05% 9.07% 9.07%
4 80 5.07% 5.11% 5.11%
8 160 3.34% 3.35% 3.34%
16 320 2.91% 2.93% 2.92%

tioned datasets. These results indicate that our models can achieve good results

on different languages. The result for allgiga dataset also indicates that the model

has no trouble in learning from multi-lingual datasets.

4.4 Analysis

This section offers comparisons with recurrent networks, and studies different

properties of our proposed auto-encoding model. Most of these results are per-

formed using the enwiki dataset.

4.4.1 Comparison with Recurrent Networks

We constructed a simple baseline recurrent network using the “vanilla” long

short-term memory units [Hochreiter and Schmidhuber, 1997]. In this model,

both input and output bytes are embedded into vectors of dimension 1024. The

hidden representation is also of dimension 1024. The encoder reads the text in

reverse order, which is observed to improve quality of outputs [Sutskever et al.,

2014]. The 1024-dimension hidden output of the last cell is used as the input for

the decoder.

86

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

recursive train error recursive test error static train error static test error

Figure 4.7: Errors during training for recursive and static models.

During decoding, the most recently generated byte is fed to the next time step.

This was observed to improve generation compared to only relying on transforming

the hidden representation. The decoding process uses beam search of size 2.

Table 4.3 details the result for LSTM. The results of our models in table 4.2 are

better by at least one order of magnitude. The limitation of recurrent networks is

the gradient or output vanishing problem, as a result of which it can easily fail on

auto-encoding sequences beyond a few tens of items. The recursive non-sequential

decoding process in this chapter could be a better alternative.

4.4.2 End of Sequence

For sequential generative process such as recurrent decoders, we could stop the

generation when some end-of-sequence symbol is generated. However, our model

generates in a non-sequential fashion therefore this does not apply. One simple

solution is to regard the first encountered end-of-sequence symbol as the end, but

it will inevitably generate some extra symbols.

To show whether this naive approach is effective, we computed the difference of

end-of-sequence symbols between generated text and its groundtruth for 1,000,000

samples, for both the training and development subsets of the enwiki dataset. We

87

420000 840000 1260000
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

Training Error for NYTimes

no initialization lambda = 0 lambda = 1e-7 lambda = 1e-5

Training Data

T
ra

in
in

g
E

rr
or

Figure 4.8: Training Error for NYTimes dataset

discovered that the distribution concentrated at 0, at 99.63% for both training

and development datasets. Figure 4.3 shows the full histogram, in which length

differences other than 0 is barely visible. This suggests that our non-sequential

generation process can model the end-of-sequence symbol accurately.

4.4.3 Random Permutation of Samples

One problem specific to the task of auto-encoding is the risk of learning the

identity function as the degenerated solution. One way to test this is to mutate the

input bytes randomly and see whether the error rates match with the mutation

probability. We experimented with mutation probability from 0 to 1 with an

interval of 0.1, and for each case we tested the byte-level errors for 100,000 samples

in both training and development subsets of the enwiki dataset.

We can compute the byte-level errors in 2 ways – with respect to the groundtruth

88

420000 840000 1260000
0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

Development Error for NYTimes

no initialization lambda = 0 lambda = 1e-7 lambda = 1e-5

Training Data

V
al

id
at

io
n

E
rr

or

Figure 4.9: Development Error for NYTimes dataset

samples, or with respect to the mutated samples. Figure 4.5 shows the results. If

the solution is degenerated to the identity function, then the byte-level errors with

respect to the groundtruth should correlate with the probability of mutation, and

the byte-level errors with respect to the mutated samples should be near 0 regard-

less of the mutation probability. None of these happen in figure 4.5.

It is worth noting that the errors with respect to the groundtruth samples in

figure 4.5 also demonstrate that our model lacks the ability to denoise mutated

samples. This can be seen from the phenomenon that the errors for each mutation

probability is higher than the reference diagonal value, instead of lower. This is

due to the lack of a denoising criterion in our training process.

89

4.4.4 Sample Length

We also conducted experiments to show how the byte-level errors vary with

respect to the sample length. Figure 4.6 shows the histogram of sample lengths

for all datasets. It indicates that a majority of paragraph samples can be well

modeled under 1024 bytes. Figure 4.4 shows the byte-level error of our models

with respect to the length of samples. This figure is produced by testing 1,000,000

samples from each of training and development subsets of enwiki dataset. Each

bin in the histogram represent a range of 64 with the indicated upper limit.

In figure 4.4, the errors are highly correlated with the number of recursion

groups applied to the sample. In the plot, bins 64, 128, 192-256, 320-512, 576-1024

represent recursion levels of 4, 5, 6, 7, 8 respectively. The errors for the same

recursion level are almost the same to each other, despite huge length differences

when the recursion levels get deep. This result suggests it is advantageous to

reduce the functional order of network depth with respect to the sample length.

This shows an advantage of recursion – the depth is on a logarithmic order of

sample length.

4.4.5 Pooling Layers

This section details an experiment in studying how do the training and devel-

opment errors vary with the choice of pooling layers in the encoder network. The

experiments are conducted on the aforementioned model with n = 8, and replacing

the max-pooling layer in the encoder with average-pooling or L2-pooling layers.

Table 4.4 details the result. The numbers strongly indicate that max-pooling is

the best choice. Max-pooling selects the largest values in its field of view, helping

90

420000 840000 1260000
0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

Validation Error for NYTimes

no initialization lambda = 0 lambda = 1e-7 lambda = 1e-5

Training Data

T
es

tin
g

E
rr

or

Figure 4.10: Validation Error for NYTimes dataset

the network to achieve a better optimum [Boureau et al., 2010b].

4.4.6 Recursion

The use of recursion in the proposed model is from a linguistic intuition that

the structure may help the model to learn better representations. However, there is

no guarantee that such intuition could be helpful for the model, unless comparison

is done between a recursive model and a static model. Note that the recursive

model is essentially a dynamic differentiable program that scales with the length

of input.

Figure 4.7 shows the training and development errors when training a static

model with the same hyper-parameters. The static model takes 1024 bytes, and

zero vectors are padded if the sample length is smaller. The recursion group is

therefore applied for 8 times in both the encoder and decoder, albeit their weights

91

420000 840000 1260000
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

Training Error for Chinanews

no initialization lambda = 0 lambda = 1e-7 lambda = 1e-5

Training Data

T
ra

in
in

g
E

rr
or

Figure 4.11: Training Error for Chinanews dataset

are not shared. The result indicates that a recursive model not only learns faster,

but can also achieve better results. Table 4.5 lists the byte-level errors.

4.4.7 Model Depth

This section explores whether varying the model size can make a different on

the result. Table 4.6 lists the training and development errors of different model

depths with n ∈ {2, 4, 8, 16}. The result indicates that best error rates are achieved

with the largest model, with very little overfitting. This is partly due to the fact

that our datasets are quite large for the models in question.

92

420000 840000 1260000
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

Development Error for Chinanews

no initialization lambda = 0 lambda = 1e-7 lambda = 1e-5

Training Data

V
al

id
at

io
n

E
rr

or

Figure 4.12: Development Error for Chinanews dataset

4.5 Representation Learning for Text Classifica-

tion

Besides being able to satisfactorily auto-encode text, another potential of the

proposed model is the usefulness of its learnt features. To demonstrate this, we

present results on a supervised task – text classification. We compare between ran-

dom initialization and initialization from a pre-trained auto-encoder. Additionally,

we also show the effectiveness of regularizing towards a pre-trained auto-encoder.

2 text classification datasets were used – one is in English, and the other

Chinese. They are the NYTimes and Chinanews datasets from Zhang and Le-

Cun [Zhang and LeCun, 2017]. Both of these datasets have 1,400,000 training

samples equally distributed in 7 classes. We run experiments using 420,000, 840,000

and 1,260,000 training samples respectively, which shows how the model performs

93

420000 840000 1260000
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

Validation Error for Chinanews

no initialization lambda = 0 lambda = 1e-7 lambda = 1e-5

Training Data

T
es

tin
g

E
rr

or

Figure 4.13: Validation Error for Chinanews dataset

under smaller dataset size.

These datasets contain news articles, similar to our engiga and zhgiga datasets.

As a result, we choose to use the trained engiga and zhgiga auto-encoders as

reference models to initialize our models. The model used for this task is simply

the encoder of the auto-encoder plus a 1024-by-7 linear layer for classification.

This linear layer is always randomly initialized.

Besides initializing the classifier network with a learnt auto-encoder, we also

test whether regularizing towards the pre-trained encoder could help. The regu-

larization objective is

λ‖w − wc‖2, (4.1)

in which w represents the parameters of the classifier and wc represents the pa-

rameters of the pre-trained encoder. It has been shown theoretically that such

regularization can reduce the generalization gap in a probably approximately cor-

94

Train Data 420,000 840,000 1,260,000
Error Type Train Dev Val Train Dev Val Train Dev Val
No Init. 0.88% 20.44% 20.71% 7.06% 16.44% 16.46% 10.73% 14.24% 14.16%
λ = 0 0.78% 15.15% 15.09% 5.78% 13.65% 13.67% 8.98% 11.32% 11.39%
λ = 10−7 10.13% 14.86% 15.11% 7.17% 13.89% 14.07% 13.26% 14.30% 14.45%
λ = 10−5 0.01% 14.07% 14.31% 5.51% 12.36% 12.30% 12.27% 13.25% 13.39%

Table 4.7: Training, development and validation errors for NYTimes dataset.

rect (PAC) sense, if wc is close to the ideal model [Zhang, 2013]. We tested with

λ = 1e− 7 and λ = 1e− 5 respectively. The results are shown in figures 4.8 - 4.10

and 4.11 - 4.13. More detailed numbers are collected in a table in the supplemental

material.

From the comparison on whether the auto-encoder is used to initialize the

model – the blue line versus others in figure figures 4.8 - 4.10 and 4.11 - 4.13, a

significant improvement can be observed. The improvement is more obvious for

development and validation errors when there are less training data. Additionally,

a small central regularization with λ = 1e−7 or λ = 1e−5 can improve the results

even further for smaller training data size, but not so much for larger training data

size.

Moreover, for both NYTimes and Chinanews datasets we achieved new state-

of-the-art classification performance on the validation errors. The previous best

model – fastText [Joulin et al., 2016] – was reported to have a validation error

of 11.80% for NYTimes and 9.07% for Chinanews [Zhang and LeCun, 2017]. Our

model initialized from the parameters of a pre-trained auto-encoder without central

regularization (λ = 0) achieved 11.40% and 9.00% respectively, using the largest

training data size 1,260,000.

95

Train Data 420,000 840,000 1,260,000
Error Type Train Dev Val Train Dev Val Train Dev Val
No Init. 3.25% 14.45% 14.49% 9.74% 11.48% 11.76% 10.42% 11.18% 11.45%
λ = 0 1.30% 11.65% 11.65% 6.12% 9.59% 9.81% 7.14% 9.00% 8.99%
λ = 10−7 1.33% 11.69% 11.70% 5.86% 9.51% 9.52% 7.37% 8.98% 9.05%
λ = 10−5 1.40% 11.55% 11.51% 6.09% 9.48% 9.58% 7.25% 9.02% 9.07%

Table 4.8: Training, development and validation errors for Chinanews dataset.

4.6 Conclusion

In this chapter, we propose to auto-encode text using a recursive convolutional

network. The model contains 6 parts – 3 for the encoder and 3 for the decoder.

The encoder and decoder both contain a prefix module group and a postfix module

group for feature transformation. A recursion module group is included in between

the prefix and postfix for each of the encoder and decoder, which recursively shrink

or expand the length of representation. As a result, the decoder essentially generate

text in a non-sequential fashion.

Experiments using this model are done on 6 large scale datasets in Arabic,

Chinese and English. Comparison with recurrent networks is offered to show that

our model achieved great results in text auto-encoding. Properties of the proposed

model are studied, and experiments are conducted to show the usefulness of the

learnt representation.

In the future, we hope to use the network architecture designed in this chapter

for some actual tasks concerning text generation.

96

Chapter 5

Model Improvement for Text

Classification

This chapter shows that the recent design advancements for byte-level convo-

lutional networks can achieve new state-of-the-art results for text classification.

These improvements include residual [Huang et al., 2016] and dense [He et al.,

2016] connections, and the use of recursive structure [Zhang and LeCun, 2018b] to

build very deep networks. Experiments are conducted using 14 large-scale datasets

in Chinese, English, Japanese and Korean [Zhang and LeCun, 2017].

5.1 Introduction

Recently, many authors have proposed to process text from lower levels than

words – such as characters [Zhang et al., 2015] [Kim et al., 2016] and bytes [Gillick

et al., 2016] [Zhang and LeCun, 2017] [Zhang and LeCun, 2018b], due to its promise

in handling distinct languages in the same fashion. In particular, the work by

97

[Zhang and LeCun, 2017] shows that simple one-hot encoding on bytes could give

near state-of-the-art results for text classification in a variety of languages.

Meanwhile, the design of convolutional networks have kept evolving. On one

hand, the ideas of residual [He et al., 2016] and dense [Huang et al., 2016] have

been dominating the leaderboards for computer vision tasks such as the ImageNet

challenge [Russakovsky et al., 2015]. On the other hand, the recursive structure

proposed by [Zhang and LeCun, 2018b] has been proven useful for auto-encoding

text at byte-level. The model is essentially a dynamic differentiable program that

scales with the byte length of each sample.

Inspired by these results, this chapter explores whether these recent model

design improvements can help with text classification for byte-level convolutional

networks. We designed several deep convolutional networks by combining residual

or dense connections, and recursive structure via sub-module sharing. Results on

14 large-scale text classification datasets [Zhang and LeCun, 2017] show that they

achieve state-of-the-art classification errors, surpassing the previous best models

such as fastText [Joulin et al., 2016] for most of these datasets.

5.2 Recursive Convolutional Networks using Resid-

ual or Dense Connections

The convolutional networks used in this chapter are derived from the encoder

design in [Zhang and LeCun, 2018b], which achieved high accuracy for auto-

encoding text at byte-level.

98

C
on

v
25

6
-

32

C
on

v
28

8
-

32

C
on

v
32

0
-

32

C
on

v
35

2
-

32

C
on

v
38

4
-

32

C
on

v
41

6
-

32

C
on

v
44

8
-

32

C
on

v
48

0
-

32

C
on

v
51

2
-

25
6

Figure 5.1: The dense block. The arrows represent concatenation operation.

5.2.1 Residual Connections

The recursive convolutional network model is inspired by the encoder part of

the auto-encoder architecture in [Zhang and LeCun, 2018b]. The encoder model

consists of 3 parts – a prefix, a recursion group, and a postfix. The prefix consists of

8 convolutional layers with input and output feature size 256 and filter size 3. The

recursion group consists of 8 convolutional layers of the same configuration, plus a

pooling layer of size 2. The recursion group layer is applied again and again until

the feature size can be reduced to 1024 dimensions for each sample. This forms a

recursive hierarchy of abstraction levels in terms of internal representation. The

postfix consists of 8 linear layers with input and output feature size 1024 that

performs feature transformation as needed.

In all of the convolutional and linear layers, a threshold function is appended

to make them rectified linear units (ReLUs) [Nair and Hinton, 2010]. For every 2

convolutional or linear layers, a residual connection [He et al., 2016] is added to

help learning when the recursion levels get deep. In this chapter we also append a

99

Dataset Language # Train Dev Val Batch

Dianping Chinese 2 2,000,000 250,000 250,000 100,000
JD full Chinese 5 3,000,000 125,000 125,000 100,000
JD binary Chinese 2 4,000,000 180,000 180,000 100,000
Rakuten full Japanese 5 4,000,000 250,000 250,000 100,000
Rakuten binary Japanese 2 3,400,000 200,000 200,000 100,000
11st full Korean 5 750,000 50,000 50,000 100,000
11st binary Korean 2 4,000,000 200,000 200,000 100,000
Amazon full English 5 3,000,000 325,000 325,000 100,000
Amazon binary English 2 3,600,000 200,000 200,000 100,000
Ifeng Chinese 5 800,000 25,000 25,000 100,000
Chinanews Chinese 7 1,400,000 56,000 56,000 100,000
NYTimes English 7 1,400,000 52,500 52,500 100,000
Joint full Multilingual 5 10,750,000 750,000 750,000 400,000
Joint binary Multilingual 2 15,000,000 780,000 780,000 400,000

Table 5.1: Datasets. The 3rd column is the number of classes.

linear layer after the postfix to transform the final 1024-dimension representation

to the correct number of classes depending on the datasets. We call this final linear

layer the classification layer.

5.2.2 Dense Connections

Besides using residual connections, in this chapter we also modify the afore-

mentioned model to use dense connections [Huang et al., 2016]. This is done at the

level of layer groups, where each prefix, recursion group and postfix is constructed

as a dense block. All the convolutional layers in the dense blocks use kernel size 3,

and all parameterized layers use ReLU [Nair and Hinton, 2010] as the non-linearity.

For the prefix and the recursion group, it is done by replacing all the convolu-

tional layers with a 1-D (temporal) dense block with 8 convolutional layers. The

first convolutional layer has input feature size 256, and the later convolutional lay-

100

ers have their features grew 32 each time. Eventually, the final convolutional layer

output a feature of size 512. After the dense block, we also add another convolu-

tional layer to turn input feature size 512 to output feature size 256. Figure 5.1

is an illustration of the convolutional dense block in the prefix and the recursion

group.

Dataset
Residual Dense

Dynamic Static Dynamic Static
Dianping 22.26% 23.41% 22.17% 23.49%
JD f. 46.98% 47.50% 46.85% 46.77%
JD b. 8.32% 8.48% 8.33% 8.29%
Rakutenf f. 42.28% 42.80% 42.64% 41.92%
Rakuten b. 4.60% 4.84% 4.83% 4.75%
11st f. 36.65% 37.54% 32.73% 36.03%
11st b. 12.27% 12.48% 12.50% 12.47%
Amazon f. 38.35% 38.31% 38.91% 38.16%
Amazon b. 4.31% 4.41% 4.62% 4.47%
Ifeng 17.49% 17.32% 15.60% 16.01%
Chinanews 9.31% 10.34% 10.15% 9.32%
NYTimes 11.75% 13.10% 13.24% 11.38%
Joint f. 40.24% 40.32% 41.45% 40.25%
Joint b. 7.48% 7.49% 7.78% 7.49%

Table 5.2: Development errors

All of the layers in the postfix are linear layers, but similarly we can construct

a linear dense block like that for convolutional layers. The linear dense block

is constructed by growing the feature size by 128 for 8 times, beginning with a

feature size of 1024. Then, the 2048 feature is turned into a 1024 feature using an

additional linear layer.

101

Dataset
Our Best Previous Best

Change
Error Model Error Model

Dianping 22.17% Dense - Dynamic 22.34% fastText - Character -0.76%
JD f. 46.77% Dense - Static 47.99% fastText - Character -2.54%
JD b. 8.29% Dense - Static 8.72% fastText - Character -4.93%
Rakuten f. 41.93% Dense - Static 43.27% fastText - Character -3.10%
Rakuten b. 4.60% Residual - Dynamic 5.44% fastText - Roman. Word -15.44%
11st f. 32.73% Dense - Dynamic 32.29% EmbedNet - Character 1.36%
11st b. 12.27% Residual - Dynamic 13.11% fastText - Character -6.41%
Amazon f. 38.16% Dense - Static 37.00% Very Deep ConvNet 3.14%
Amazon b. 4.31% Residual - Dynamic 4.28% Very Deep ConvNet 0.70%
Ifeng 15.60% Dense - Static 16.31% fastText - Character -4.35%
Chinanews 9.31% Residual - Dynamic 9.10% fastText - Character 2.31%
NYTimes 11.38% Dense - Static 11.84% fastText - Word -3.89%
Joint f. 40.24% Residual - Dynamic 42.93% OnehotNet - Byte -6.27%
Joint b. 7.48% Residual - Dynamic 8.65% fastText - Word -13.53%

Table 5.3: Comparison with previous state-of-the-art models

5.2.3 Static (Non-Recursive) Variants

All the aforementioned models in this section build a recursive hierarchy of

representation by dynamically applying the recursion groups. This essentially con-

structs a dynamic differentiable program that scales with the byte length of each

sample.

Due to computation limitations, we limit the maximum length that the model

accepts to 1024 bytes, which means each recursion group is applied at most 8 times.

Note also that the model must accept samples with length equal to 2i, i ≥ 2. This

is done by padding zero vectors

For the comparison purposes, we also experimented on a static differentiable

program in which the recursion group is cloned 8 times and not shared, and the

input byte-length is fixed to be 1024. We present results for both the dynamic

(recursive) and static (non-recursive) models.

102

5.3 Datasets and Results

This section introduces the datasets we used to benchmark the models, and

presents the results.

5.3.1 Datasets

The datasets used in this chapter are the same as in [Zhang and LeCun, 2017].

In total, there are 14 large-scale datasets in 4 languages including Chinese, English,

Japanese and Korean. There are 2 kinds of tasks in these datasets, including

sentiment analysis and topic classification. Furthermore, 2 of the datasets are

constructed by combining samples in all 4 languages to test the model’s ability to

handle different languages in the same fashion. Table 5.1 is a summarization.

In table 5.1, the first 9 datasets are sentiment analysis datasets in either Chi-

nese, English, Japanese or Korean, from either restaurant review or online shopping

websites. The following 3 datasets are topic classification datasets in either Chi-

nese or English, from online news websites. The last two are multi-lingual datasets

by combining online shopping reviews from 4 languages.

5.3.2 Training Parameters and Results

The parameters of the model are initialized using a normal distribution using

mean 0 and standard deviation equal to 2/
√
n/1000, where n is the number of

output units each input unit connects to. This was inspired by [He et al., 2016],

but due to the use of residual and dense connections the standard deviation is

1000 times smaller to prevent output explosion. The last feature-transforming

convolutional layer in the dense block is still initialized with a standard deviation

103

Glyp
hN

et
-C

ha
ra

ct
er

-L
ar

ge

Glyp
hN

et
-C

ha
ra

ct
er

-S
m

all

One
ho

tN
et

-B
yt

e-
La

rg
e

One
ho

tN
et

-B
yt

e-
Sm

all

One
ho

tN
et

-R
om

an
ize

d-
La

rg
e

One
ho

tN
et

-R
om

an
ize

d-
Sm

all

Em
be

dN
et

-C
ha

ra
ct

er
-L

ar
ge

Em
be

dN
et

-C
ha

ra
ct

er
-S

m
all

Em
be

dN
et

-B
yt

e-
La

rg
e

Em
be

dN
et

-B
yt

e-
Sm

all

Em
be

dN
et

-R
om

an
ize

d-
La

rg
e

Em
be

dN
et

-R
om

an
ize

d-
Sm

all

Em
be

dN
et

-W
or

d-
La

rg
e

Em
be

dN
et

-W
or

d-
Sm

all

Em
be

dN
et

-R
om

an
ize

d
W

or
d-

La
rg

e

Em
be

dN
et

-R
om

an
ize

d
W

or
d-

Sm
all

Lin
ea

r-C
ha

ra
ct

er
-1

-g
ra

m
-P

lai
n

Lin
ea

r-C
ha

ra
ct

er
-1

-g
ra

m
-T

FID
F

Lin
ea

r-C
ha

ra
ct

er
-5

-g
ra

m
-P

lai
n

Lin
ea

r-C
ha

ra
ct

er
-5

-g
ra

m
-T

FID
F

Lin
ea

r-W
or

d-
1-

gr
am

-P
lai

n

Lin
ea

r-W
or

d-
1-

gr
am

-T
FID

F

Lin
ea

r-W
or

d-
5-

gr
am

-P
lai

n

Lin
ea

r-W
or

d-
5-

gr
am

-T
FID

F

Lin
ea

r-R
om

an
ize

d
W

or
d-

1-
gr

am
-P

lai
n

Lin
ea

r-R
om

an
ize

d
W

or
d-

1-
gr

am
-T

FID
F

Lin
ea

r-R
om

an
ize

d
W

or
d-

5-
gr

am
-P

lai
n

Lin
ea

r-R
om

an
ize

d
W

or
d-

5-
gr

am
-T

FID
F

fa
st

Tex
t-C

ha
ra

ct
er

-1
-g

ra
m

fa
st

Tex
t-C

ha
ra

ct
er

-2
-g

ra
m

fa
st

Tex
t-C

ha
ra

ct
er

-5
-g

ra
m

fa
st

Tex
t-W

or
d-

1-
gr

am

fa
st

Tex
t-W

or
d-

2-
gr

am

fa
st

Tex
t-W

or
d-

5-
gr

am

fa
st

Tex
t-R

om
an

ize
d

W
or

d-
1-

gr
am

fa
st

Tex
t-R

om
an

ize
d

W
or

d-
2-

gr
am

fa
st

Tex
t-R

om
an

ize
d

W
or

d-
5-

gr
am

Res
idu

al-
Sta

tic

Den
se

-S
ta

tic

Res
idu

al-
Dyn

am
ic

Den
se

-D
yn

am
ic

051015202530354045

F
ig

u
re

5.
2:

T
h
e

ra
n
k

b
ox

p
lo

t
on

d
ev

el
op

m
en

t
er

ro
rs

104

of 2/
√
n.

All of our models are trained using stochastic gradient descent (SGD) with

momentum [Polyak, 1964] [Sutskever et al., 2013]. The initial learning rate is

0.001, which is halves every 1,000,000 steps. Each step runs through an example

sampled with replacement from the training dataset. For most datasets except for

joint full and joint binary, the training stops at the 25,000,000-th step. For joint

full and joint binary, the training stops at the 100,000,000-th step because it has a

lot more training data than others. For dynamic (recursive) models, we find that

divide the gradients of the recursion groups by the number of times it was applied

to the sample can speed up training.

The development errors of all the model considered in this chapter is summa-

rized in table 5.2. The best results for each dataset are presented in bold font. We

also list the training errors in the supplemental material. Analysis in section 5.4

shows that these models achieved new state-of-the-art results.

5.4 Discussion

This section demonstrates that the residual and dense convolutional networks in

this chapter achieved state-of-the-art results, sometimes by a large margin. Com-

parisons are offered with previous convolutional networks, linear classifiers, and

fastText [Joulin et al., 2016] models.

5.4.1 State-of-the-Art Models

For most of the datasets, we query the best model from the paper by [Zhang

and LeCun, 2017]. Their work is an unbiased benchmark on the same 14 large-scale

105

GlyphNet-Character-Large
GlyphNet-Character-Small

OnehotNet-Byte/Romanized-Large
OnehotNet-Byte/Romanized-Small

EmbedNet-Character-Large
EmbedNet-Character-Small

EmbedNet-Byte/Romanized-Large
EmbedNet-Byte/Romanized-Small

EmbedNet-Word/Romanized Word-Large
EmbedNet-Word/Romanized Word-Small

Linear-Character-1-gram
Linear-Character-5-gram

Linear-Word-1-gram
Linear-Word-5-gram

Linear-Romanized Word-1-gram
Linear-Romanized Word-5-gram

fastText-Character-1-gram
fastText-Character-2-gram
fastText-Character-5-gram

fastText-Word-1-gram
fastText-Word-2-gram
fastText-Word-5-gram

fastText-Romanized Word-1-gram
fastText-Romanized Word-2-gram
fastText-Romanized Word-5-gram

Recursive-Static
Recursive-Dynamic

Dense-Static
Dense-Dynamic

1 10 100 1000 10000 100000 1000000

Figure 5.3: Time of going over 1,000,000 samples. Using the same data and hard-
ware from [Zhang and LeCun, 2017]. The time axis is in logarithm scale

text classification datasets used in this chapter, on many different models. The

first series of models are convolutional networks, operating on glyph, one-hot or

embedding encoding mechanisms. For each of these encoding mechanisms, results

were presented at byte, character, word or romanized word levels. Their work also

includes comparisons with linear classifier using logistic regression and fastText

[Joulin et al., 2016], using 1-gram, 2-gram and 5-gram variants, at character, word

or romanized word levels.

Additionally, for the Amazon full and binary datasets we queried the best

models from the paper by [Conneau et al., 2017], in which very deep convolutional

networks are tried with variants on depth and pooling layer choices. The fastText

paper [Joulin et al., 2016] also includes results on these 2 datasets, and the results

106

Model Convolution Linear Total
Residual-Static 14,179,333 8,396,800 22,576,133
Residual-Dynamic 3,154,949 8,396,800 11,551,749
Dense-Static 6,092,203 3,606,528 9,698,821
Dense-Dynamic 1,357,829 3,606,528 4,964,357

Table 5.4: Number of parameters in different models

were confirmed to be the same within statistical tolerance in [Zhang and LeCun,

2017], because the same hyper-parameters were used for 2-gram models.

Table 5.3 lists our best results and the previous state-of-the-art. The last

column also records the relative differences, in which negative values indicating

our models are better and positive values otherwise. Our models achieved new

state-of-the-art results for 10 out of 14 datasets. For the other 4 datasets, our

models are not far away from the previous best models.

5.4.2 Aggregated Comparison

Following the analysis from [Zhang and LeCun, 2017], we put a box plot on the

rank of development errors aggregated across different datasets in figure 5.2. For

each dataset, we rank all of the models in ascending order of their development

errors. As a result, the smaller the rank, the better the model performs. The

box plot in figure 5.2 shows the minimum, first quartile, median, third quartile,

and maximum rank across different datasets. In total there are 42 models in

comparison.

From this box plot, we could easily see that both residual and dense connec-

tions improved the results consistently. In particular, either of the models in this

chapter can do better than the previous best model – fastText [Joulin et al., 2016]

107

with 5-gram feature – in both result and consistency. That said, the amount of

computation our models require is far more than that of fastText, as evidenced

from 5.3. This figure is produced by running our models using the same hardware

as [Zhang and LeCun, 2017] – one NVIDIA Tesla K40 GPU, but the experiments

in this article are actually conducted on more recent GPUs such as NVIDIA Tesla

V100 and NVIDIA GTX 1080Ti, which are 2 to 3 times faster due to both software

and hardware improvements.

Given that these models all perform roughly the same, what sets these models

apart is their number of parameters. The number of parameters for each of the

models in this chapter is detailed in table 5.4 and figure 5.4. The use of dense

connections in general can reduce the number of parameters to less than 40%

of its counterparts using residual connections, whereas the use of recursion can

reduce the parameters in the convolutional layers to less than 25% of its static

counterparts. As a result, the dense-dynamic variant of our models has only less

than 25% of the number of parameters compared to residual-static variant, while

for convolutional layers the comparison is less than 10%. This aggressive reduction

in parameters while keeping roughly the same performance is the reason why both

dense connections and the recursive structure could pose an advantage in these

model designs.

5.5 Conclusion

This chapter benchmarked byte-level convolutional networks using recent de-

sign improvements including residual [Huang et al., 2016] and dense [He et al.,

2016] connections, and the use of recursive structure [Zhang and LeCun, 2018b].

108

Residual-Static Residual-Dynamic Dense-Static Dense-Dynamic
0

5000000

10000000

15000000

20000000

25000000

Convolution Linear Total

Figure 5.4: Number of parameters in different models

Results indicate that our models can achieve new state-of-the-art results for

text classification in 4 languages including Chinese, English, Japanese and Korean.

Analysis shows that our models are better than the previous best model in both

result and consistency.

109

Chapter 6

Conclusion and Outlook

This chapter provides some conclusions for this dissertation, and discusses some

possible research directions in the future.

6.1 Conclusion

This dissertation was split into 4 parts. The first part offers an empirical ex-

ploration on the use of character-level convolutional networks (ConvNets) for text

classification. The second part provides an exhaustive study on which encoding

for text could work well for convolutional networks. The third part proposes an

auto-encoder architecture using byte-level recursive convolutional networks. The

fourth part improves the previous text classification results using the auto-encoder

design proposed in previous parts.

We obtained many large-scale datasets in many different languages for these re-

search problems, including Arabic, Chinese, English, Japanese and Korean. These

multi-lingual large-scale datasets are very helpful for us to show the advantage of

character-level and byte-level encoding for convolutional networks, in which the

110

applicability of these models is greatly expanded since they are free from the need

to pre-process any language to the level of words. This is done mainly in the first

2 parts of the article in which the task being studied is text classification. Hun-

dreds of models are included in the comparisons, and many useful conclusions were

drawn such as byte-level text processing is both feasible and competitive.

Because of these results, the next parts of the article focus only on byte-level

convolutional networks. We proposed an auto-encoding architecture that is able

to reduce variable-length texts into fixed-length vectors, and then expand these

fixed-length vectors into variable-length texts. The entire process operates at the

level of bytes, and the maximum length admitted by the model is 1024. This

is actually quite long, and comparison with a simple recurrent network baseline

shows some advantage for the task of auto-encoding. Instead of processing the

sequence of symbols in a sequential way, the proposed architecture has recursion

groups that reduce or expand the length by a factor of 2. As a result, the depth of

the network is logarithm of that of recurrent networks, and the gradient vanishing

problem was mitigated due to this reduced order of depth.

With these positive results in the auto-encoding architecture, the fourth part

of the dissertation turns back to the text classification problem and uses the ar-

chitecture design principles in the previous part to achieve new state-of-the-art

results in text classification.

6.2 Short-term Outlook

The research projects shown in this dissertation are only the beginning of the

story in tackling challenges in natural language processing using byte-level recursive

111

convolutional networks. There are a few short-term research directions that the

author hopes to take in the future as continuation of the research projects presented

in this dissertation.

6.2.1 Text Generation with Uncertainty

The first step for text generation beyond auto-encoding using recursive Con-

vNets should be focused on the uncertainty problem. By uncertainty, we refer

to the case when there could be multiple acceptable outputs for the same input.

One example of uncertainty is in translation, in which there could be multiple

acceptable target translations for the same source text. Without an explicit way

of handling such uncertainty, traditional supervised training alone for recursive

ConvNets would fail because it does not model dependencies at the outputs. In

other words, compared to a sequential text generation process, recursive ConvNets

must be able to disentangle the mutual relationship of the outputs by itself, since

no generated outputs are fed back to the model.

Due to the dominance of sequential text generation models, the problem of un-

certainty is not broadly discussed for natural language processing. In these models,

one entity (a word, character or byte) is generated at a time, and it is fed back to

the next step for further generation. This allows the network to model the causal

dependency of the output texts explicitly while it can still be trained in a super-

vised fashion, therefore avoiding the uncertainty problem. Unfortunately this is

not the case for non-sequential generation, because it assumes conditional inde-

pendence between output entities and does not capture the sequence dependency

explicitly.

In the extreme case when there is no input but only multiple outputs, the uncer-

112

tainty framework collapses into purely generative models. Therefore, a simplified

project that can focus on handling uncertainty is to learn a generative model to

map random numbers into real samples. Then, the recently successful generative

models such as variational auto-encoders (VAE) [Kingma and Welling, 2013] and

generative adversarial networks (GAN) [Goodfellow et al., 2014] can be applied to

it.

There have been many attempts for applying GAN for text generation. The

idea of SeqGAN proposed by [Yu et al., 2017] uses policy gradient [Sutton et al.,

2000] to provide gradients to the generator, by casting the problem as a sequen-

tial decision making process. On the other hand, MaskGAN [Fedus et al., 2018]

uses a discriminator that accepts a discrete word with its surrounding context,

using the same policy gradient method in an actor-critic framework [Sutton and

Barto, 1998] [Degris et al., 2012]. Beyond reinforcement learning approaches, Ma-

liGAN [Che et al., 2017] uses the maximum likelihood principle by assuming the

discriminator has achieved optimum with respect to the current generator. Pro-

fessor forcing [Goyal et al., 2016] was proposed to use GAN on the hidden units to

ensure generator stability, which improves the quality of long samples. Adversar-

ial feature matching [Zhang et al., 2017a] was an idea to improve RNN generators

using a convolutional discriminator on the hidden units. Adversarially regularized

auto-encoder (ARAE) [Zhao et al., 2018] makes the generator match the feature

from the encoder. [Kusner and Hernández-Lobato, 2016] proposed to use a Gumbel-

softmax distribution on the output of an RNN while the samples are provided as

one-hot vectors.

The author of this dissertation also proposed one approach – Adversarially-

Trained Normalized Noisy-Feature Auto-Encoder (ATNNFAE) [Zhang and LeCun,

113

2018a]. An ATNNFAE consists of an auto-encoder where the internal code is nor-

malized on the unit sphere and corrupted by additive noise. Simultaneously, a

replica of the decoder (sharing the same parameters as the AE decoder) is used

as the generator and fed with random latent vectors. An adversarial discriminator

is trained to distinguish training samples reconstructed from the AE from sam-

ples produced through the random-input generator, making the entire generator-

discriminator path differentiable for discrete data like text. The combined effect

of noise injection in the code and shared weights between the decoder and the

generator can prevent the mode collapsing phenomenon commonly observed in

GANs. The auto-encoder used here is the same as the one used in chapter 4 of

this dissertation due to its advantageous performance on text auto-encoding.

6.2.2 Controllable Machine Translation

The previous research projects for text generation using convolutional networks

focus on 2 basic questions – what kind of model design can work, and how to handle

uncertainty at large scale and low levels. If these two problems can be successfully

solved, applying byte-level text generation to differrent language processing tasks

would be feasible. By ensuring that the 2 goals of homogeneity and scalability

can be achieved, these models would have the advantage of better applicability

to different languages with a minimal requirement for design adaptation, and the

ability to scale with large-scale linguistic corpora.

Currently, most neural machine translation systems operate at the mixed levels

of words, sub-words and characters. Although better than word-level only systems,

they still require a significant amount of preprocessing to adapt to different lan-

guages. Meanwhile, most of them use some form of sequence-to-sequence recurrent

114

network model [Cho et al., 2014a] [Sutskever et al., 2014], and the scalability issue

with long text generation is circumvented by the use of attention [Bahdanau et al.,

2015] models. Our projects would offer a potential alternative to these models

and add to the already growing set of sequence-to-sequence toolkits for different

language tasks.

Furthermore, facing the uncertainty problem, the current neural machine trans-

lation models requires searching the probablistic space of outputs. With a text

generation model that can handle uncertainty explicitly, we hope that it is possi-

ble to enable a translation system to output multiple acceptable translated results

in a controllable fashion via internal representation or input hints. One way to

implement such a model is to augment the generative models with a conditional

component. In this case, the generated target translation is conditioned on a rep-

resentation from the source text. The uncertainty problem – multiple acceptable

target translations for the same source text – could be solved in the same way as

the generative models in the previous section. The scalability issue for generating

long texts is handled by the use of the non-sequential convolutional network text

generator.

6.2.3 From Representation to Reasoning

When we can sufficiently solve text representation and generation problems, we

would then be able to focus on reasoning models that can use memory, can infer

from a knowledge base, or can combine feature learned from visual recognition

or other senses. This is essentially the problem of how to learn, store and use

common-sense knowledge, and it could be a goal that can span multiple years with

multiple projects. In these projects, the byte-level recursive convolutional network

115

architecture proposed in this dissertation could become a useful component in both

representation and generation. Due to its conceptual simplicity and applicability

towards different languages (though not computationally simple or data efficient),

these models could hopefully help researchers focus on more important challenges

in machine reasoning.

In a summary, by thinking of natural language processing research as 3 compo-

nents – representation, reasoning and generation, the author focuses on research

projects that solve challenges and problems that are identified all across these com-

ponents. With the 2 goals for research – generality and scalability, the author is

focusing on models that can handle all different languages in the same fashion and

can scale with computation and data. The projects presented in this dissertation

are only the first steps towards applying convolutional networks to natural lan-

guage processing, and they are only focused on the representation problem. There

are many further challenges in all of representation, reasoning and generation that

convolutional networks could become part of the solution.

116

Appendix A

Training and Validation Errors

for Text Classification

The training errors of all models in chapter 3 are detailed in tables A.1, A.2,

A.3 and A.4. The validation errors of all the models are detailed in tables A.5,

A.6, A.7 and A.8.

117

Dataset
GlyphNet OnehotNet
Character Byte Romanized
large small large small large small

Dianping 23.97 24.33 22.42 22.68 22.78 22.97
JD f. 48.63 49.03 47.58 47.62 47.79 47.95
JD b. 9.73 9.97 9.03 9.06 9.16 9.17
Rakuten f. 46.59 46.94 44.62 44.95 44.74 44.96
Rakuten b. 6.45 6.63 5.54 5.71 5.64 5.75
11st f. 31.73 32.09 28.84 29.54 29.35 29.99
11st b. 13.78 13.88 13.01 13.07 13.15 13.20
Amazon f. 46.29 47.70 41.51 41.65 – –
Amazon b. 8.26 8.90 6.06 6.11 – –
Ifeng 16.35 17.35 12.43 13.62 14.99 15.90
Chinanews 11.58 12.44 9.32 9.61 10.12 10.52
NYTimes 17.24 17.99 12.36 12.57 – –
Joint f. 45.04 45.62 43.18 43.34 43.56 43.69
Joint b. 9.97 10.04 8.67 8.70 8.89 8.95

Table A.1: GlyphNet and OnehotNet training errors

Dataset
Character Byte Romanized Word Rom. word
large small large small large small large small large small

Dianping 22.97 23.17 23.33 23.60 24.66 25.45 24.03 24.25 23.07 23.31
JD f. 47.80 47.90 47.99 48.22 48.15 48.74 49.50 49.68 48.58 48.65
JD b. 9.23 9.24 8.96 9.04 9.17 9.48 10.19 10.23 9.34 9.47
Rakutenf f. 44.85 45.40 45.60 46.55 45.69 45.59 46.03 46.24 45.71 46.10
Rakuten b. 5.71 5.84 6.12 6.55 6.19 6.67 6.45 6.55 6.22 6.37
11st f. 29.80 30.39 31.65 32.90 32.50 33.74 33.50 34.70 38.79 39.74
11st b. 13.18 13.29 13.02 13.27 13.21 13.50 13.92 14.01 17.38 17.47
Amazon f. 43.05 43.76 – – – – 43.78 44.32 – –
Amazon b. 6.68 7.20 – – – – 7.56 7.68 – –
Ifeng 13.71 14.44 14.44 15.36 16.82 18.17 16.85 17.72 15.66 16.65
Chinanews 9.72 9.92 9.57 9.90 10.53 11.93 14.75 13.68 10.56 10.86
NYTimes 12.75 13.51 – – – – 15.83 16.15 – –
Joint f. 43.74 44.18 44.35 44.94 44.88 45.70 45.33 45.62 45.15 45.45
Joint b. 8.96 9.13 8.97 9.18 9.26 9.56 10.75 9.94 9.87 9.94

Table A.2: EmbedNet training errors

118

Dataset
Character Word Romanized Word

1-gram 5-gram 1-gram 5-gram 1-gram 5-gram
plain tfidf plain tfidf plain tfidf plain tfidf plain tfidf plain tfidf

Dianping 26.03 26.72 24.26 23.30 23.94 23.39 23.47 22.59 27.35 28.03 24.37 23.14
JD f. 50.84 51.30 47.27 46.08 47.74 46.55 45.86 43.62 52.19 52.61 47.74 46.15
JD b. 11.84 12.12 8.99 8.68 9.68 9.49 8.89 8.28 13.06 13.35 9.09 8.75
Rakutenf f. 52.21 52.82 47.18 45.57 46.96 45.90 45.55 43.61 47.66 46.71 46.85 44.17
Rakuten b. 12.43 12.94 8.10 7.25 8.35 8.13 7.19 6.47 8.78 8.71 7.31 6.57
11st f. 43.51 47.63 43.14 43.16 44.14 42.20 42.16 40.62 40.17 35.30 40.52 35.29
11st b. 17.73 18.01 14.33 14.24 15.09 15.03 13.34 12.91 14.32 13.87 13.83 12.79
Amazon f. 69.28 68.13 56.28 50.01 44.84 42.85 43.97 41.78 – – – –
Amazon b. 34.36 33.91 14.92 12.08 9.15 8.37 8.43 8.03 – – – –
Ifeng 22.00 21.78 21.42 21.35 18.49 16.51 19.60 18.34 26.59 26.81 23.08 22.06
Chinanews 15.16 14.93 15.14 13.31 11.28 10.00 13.32 12.68 20.10 20.39 15.62 13.76
NYTimes 57.21 53.77 39.78 26.29 17.81 14.30 19.63 17.88 – – – –
Joint f. 57.16 56.72 49.68 47.43 46.53 45.57 44.97 44.43 47.93 47.19 47.22 46.61
Joint b. 19.77 19.40 12.07 10.85 10.08 10.51 9.44 8.94 11.86 11.43 11.41 11.02

Table A.3: Linear model training errors

Dataset
Character Word Romanized Word

1-gram 2-gram 5-gram 1-gram 2-gram 5-gram 1-gram 2-gram 5-gram
Dianping 25.82 21.03 19.34 23.12 21.45 16.21 27.07 22.07 19.43
JD f. 50.98 47.36 44.34 48.04 46.14 39.51 51.97 46.58 43.32
JD b. 11.83 8.32 7.49 9.60 6.19 6.14 13.01 8.64 7.48
Rakuten f. 51.92 43.38 40.54 45.83 42.30 36.13 46.57 41.15 37.66
Rakuten b. 12.15 6.51 3.91 7.80 4.88 3.26 8.30 5.18 3.68
11st f. 42.94 35.91 25.96 39.08 35.49 30.93 39.06 31.94 25.74
11st b. 17.68 13.17 12.12 15.12 12.75 10.63 11.80 11.29 8.11
Amazon f. 67.00 53.88 38.40 42.30 37.60 31.15 – – –
Amazon b. 32.72 18.60 5.46 7.78 3.47 0.22 – – –
Ifeng 21.00 11.21 3.90 13.84 10.81 0.62 25.84 13.11 4.40
Chinanews 13.55 5.93 0.17 7.03 1.61 0.02 18.58 6.53 2.36
NYTimes 51.07 24.13 8.75 10.73 3.53 6.47 – – –
Joint f. 56.79 46.61 40.52 45.47 41.98 33.90 47.01 41.08 38.17
Joint b. 19.51 11.96 7.79 10.31 7.36 6.09 11.11 7.19 7.10

Table A.4: fastText training errors

119

Dataset
GlyphNet OnehotNet
Character Byte Romanized
large small large small large small

Dianping 24.36 24.60 23.27 23.40 23.59 23.81
JD f. 49.00 49.33 48.14 48.30 48.44 48.58
JD b. 9.89 10.10 9.33 9.32 9.51 9.52
Rakuten f. 46.75 47.03 45.06 45.37 45.12 45.35
Rakuten b. 6.67 6.85 5.94 6.12 6.05 6.10
11st f. 32.74 33.04 32.59 32.47 32.76 32.72
11st b. 13.90 14.31 13.31 13.35 13.42 13.47
Amazon f. 46.61 47.89 42.20 42.28 – –
Amazon b. 8.52 9.09 6.51 6.58 – –
Ifeng 18.00 18.54 16.67 16.48 18.90 18.87
Chinanews 12.23 12.87 10.59 10.71 11.68 11.73
NYTimes 18.24 18.62 14.32 14.28 – –
Joint f. 45.17 45.78 42.91 43.07 43.27 43.23
Joint b. 9.97 10.38 8.78 8.76 8.98 9.00

Table A.5: GlyphNet and OnehotNet validation errors

Dataset
Character Byte Romanized Word Rom. word
large small large small large small large small large small

Dianping 23.68 23.70 24.18 24.30 25.48 26.09 24.60 24.77 23.77 23.88
JD f. 48.33 48.45 48.59 48.71 48.78 49.30 50.09 50.16 49.17 49.29
JD b. 9.45 9.43 9.22 9.23 9.49 9.74 10.39 10.46 9.60 9.71
Rakuten f. 45.18 45.66 45.94 46.86 46.14 46.76 46.33 46.53 45.94 46.31
Rakuten b. 6.09 6.14 6.50 6.88 6.57 6.97 6.82 6.88 6.56 6.69
11st f. 32.32 32.37 34.88 35.05 35.48 35.72 42.92 42.86 42.63 42.55
11st b. 13.44 13.51 13.27 13.48 13.49 13.72 16.43 15.75 17.67 17.70
Amazon f. 43.68 44.21 – – – – 44.24 44.80 – –
Amazon b. 7.15 7.46 – – – – 7.91 8.00 – –
Ifeng 16.99 17.05 17.10 17.53 19.19 19.98 20.81 20.71 19.44 19.46
Chinanews 11.01 11.10 10.52 10.82 11.83 12.75 14.72 14.94 11.90 12.04
NYTimes 14.14 14.61 – – – – 17.64 17.81 – –
Joint f. 43.61 44.09 44.16 44.76 44.72 45.44 45.48 45.84 45.00 45.32
Joint b. 9.01 9.17 9.07 9.26 9.32 9.63 10.65 10.75 9.92 10.01

Table A.6: EmbedNet validation errors

120

Dataset
Character Word Romanized Word

1-gram 5-gram 1-gram 5-gram 1-gram 5-gram
plain tfidf plain tfidf plain tfidf plain tfidf plain tfidf plain tfidf

Dianping 26.15 26.87 24.39 23.64 24.14 24.35 23.60 23.08 27.37 28.12 24.61 23.42
JD f. 51.52 51.67 48.48 48.23 49.43 50.09 48.33 48.33 52.18 52.80 49.00 48.50
JD b. 11.83 12.16 9.11 8.95 9.89 10.00 9.08 8.84 13.13 13.54 9.13 8.98
Rakuten f. 52.11 52.79 47.61 46.44 47.54 47.71 45.76 45.23 47.89 48.28 46.95 45.63
Rakuten b. 12.54 13.02 8.17 7.31 8.40 8.41 7.35 6.65 8.83 8.96 7.47 6.73
11st f. 43.92 48.38 43.63 43.45 49.81 48.31 54.86 51.95 45.42 44.82 45.59 44.25
11st b. 17.67 18.02 14.46 14.36 15.35 15.61 18.94 17.26 14.98 15.17 14.63 14.45
Amazon f. 69.45 68.59 56.83 51.30 45.36 44.88 44.66 42.67 – – – –
Amazon b. 34.46 33.68 14.98 12.13 9.32 8.78 8.54 8.21 – – – –
Ifeng 22.11 22.41 21.50 21.95 19.10 18.28 20.14 19.70 26.58 27.32 23.11 22.36
Chinanews 15.33 15.06 14.89 13.35 11.60 10.74 13.40 12.90 20.01 20.46 15.53 13.95
NYTimes 57.56 53.87 40.93 26.43 18.27 15.34 20.06 18.31 – – – –
Joint f. 60.27 59.67 49.18 48.19 46.80 46.52 45.24 45.06 47.50 47.13 46.87 46.37
Joint b. 20.19 19.72 12.11 10.89 10.81 10.64 9.44 8.98 11.72 11.43 11.30 11.00

Table A.7: Linear model validation errors

Dataset
Character Word Romanized Word

1-gram 2-gram 5-gram 1-gram 2-gram 5-gram 1-gram 2-gram 5-gram
Dianping 25.87 22.90 22.39 23.80 22.69 22.68 27.09 22.95 22.47
JD f. 51.29 48.31 48.02 49.27 48.16 48.64 52.24 48.41 48.17
JD b. 11.83 8.94 8.74 9.86 9.14 9.95 13.05 9.08 8.76
Rakuten f. 51.96 44.87 43.25 46.55 43.79 46.29 47.04 43.77 43.25
Rakuten b. 12.26 6.95 5.47 8.05 5.91 5.46 8.49 5.95 5.45
11st f. 43.23 38.73 38.62 41.66 41.20 42.20 40.75 41.78 43.20
11st b. 17.67 13.67 13.13 14.55 14.29 14.91 14.89 14.53 14.99
Amazon f. 67.06 53.97 41.03 43.80 40.19 39.99 – – –
Amazon b. 32.78 18.55 6.27 8.35 5.58 5.40 – – –
Ifeng 21.58 16.56 16.29 17.79 16.63 16.93 26.02 18.20 17.84
Chinanews 13.89 9.30 9.07 9.84 9.22 9.23 18.66 9.63 9.38
NYTimes 51.45 24.69 12.74 13.61 11.86 13.25 – – –
Joint f. 59.47 49.36 44.01 46.05 43.53 43.64 46.70 43.13 43.24
Joint b. 19.84 12.34 8.98 10.02 9.01 9.25 11.37 8.79 8.83

Table A.8: fastText validation errors

121

Appendix B

Validated Epoches for fastText

The validated epoches for running all fastText models in chapter 3 are detailed

in Table B.1.

122

Dataset
Character Word Romanized Word

1-gram 2-gram 5-gram 1-gram 2-gram 5-gram 1-gram 2-gram 5-gram
Dianping 10 10 2 10 2 2 5 5 2
JD f. 2 2 2 5 2 2 10 5 2
JD b. 10 10 2 10 10 2 10 5 2
Rakutenf f. 10 10 2 10 2 2 10 5 2
Rakuten b. 10 10 5 10 5 2 10 5 2
11st f. 5 5 5 5 2 2 2 2 2
11st b. 10 10 2 2 2 2 5 2 2
Amazon f. 10 10 10 10 2 2 – – –
Amazon b. 10 10 10 10 5 5 – – –
Ifeng 10 5 5 5 2 5 10 5 5
Chinanews 10 5 10 5 5 10 10 5 5
NYTimes 10 10 10 5 5 2 – – –
Joint f. 10 10 2 10 2 2 10 5 2
Joint b. 10 10 2 10 5 2 10 10 2

Table B.1: fastText epoches

123

Appendix C

Training and Validation Errors

for Improved Model

Training and validation errors are listed in the table C.1 and table C.2.

Dataset
Residual Dense

Dynamic Static Dynamic Static
Dianping 20.57% 17.41% 20.03% 17.40%
JD f. 45.11% 43.96% 45.80% 44.57%
JD b. 7.62% 7.48% 7.29% 7.19%
Rakuten f. 41.16% 40.35% 41.76% 39.43%
Rakuten b. 3.80% 3.48% 4.08% 3.09%
11st f. 13.89% 7.10% 26.67% 12.33%
11st b. 11.57% 11.16% 11.80% 10.98%
Amazon f. 36.99% 35.83% 37.42% 33.56%
Amazon b. 3.59% 3.50% 3.72% 2.56%
Ifeng 2.96% 0.86% 9.67% 2.27%
Chinanews 6.61% 1.65% 4.51% 2.28%
NYTimes 9.36% 3.33% 6.07% 4.08%
Joint f. 39.85% 39.45% 41.55% 39.42%
Joint b. 7.13% 7.07% 7.54% 6.89%

Table C.1: Training errors

124

Dataset
Residual Dense

Dynamic Static Dynamic Static
Dianping 22.40% 23.56% 22.32% 23.58%
JD f. 47.03% 47.54% 46.94% 46.81%
JD b. 8.35% 8.50% 8.34% 8.35%
Rakuten f. 42.25% 42.77% 42.61% 41.90%
Rakuten b. 4.64% 4.88% 4.86% 4.77%
11st f. 36.71% 37.62% 32.79% 36.09%
11st b. 12.29% 12.51% 12.52% 12.49%
Amazon f. 38.29% 38.29% 38.87% 38.11%
Amazon b. 4.28% 4.39% 4.59% 4.44%
Ifeng 17.45% 17.27% 15.54% 15.97%
Chinanews 9.28% 10.31% 10.12% 9.27%
NYTimes 11.79% 13.16% 13.27% 11.42%
Joint f. 40.20% 40.30% 41.41% 40.20%
Joint b. 7.44% 7.46% 7.76% 7.45%

Table C.2: Validation errors

125

Bibliography

[Bahdanau et al., 2015] Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural

machine translation by jointly learning to align and translate. In International

Conference on Learning Representations.

[Bengio et al., 2003] Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003).

A neural probabilistic language model. Journal of machine learning research,

3(Feb):1137–1155.

[Bengio et al., 1994] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning

long-term dependencies with gradient descent is difficult. Trans. Neur. Netw.,

5(2):157–166.

[Botha and Blunsom, 2014] Botha, J. and Blunsom, P. (2014). Compositional

morphology for word representations and language modelling. In International

Conference on Machine Learning, pages 1899–1907.

[Bottou et al., 1989] Bottou, L., Fogelman Soulié, F., Blanchet, P., and Lienard,

J. (1989). Experiments with time delay networks and dynamic time warping for

speaker independent isolated digit recognition. In Proceedings of EuroSpeech 89,

volume 2, pages 537–540, Paris, France.

126

[Boureau et al., 2010a] Boureau, Y.-L., Bach, F., LeCun, Y., and Ponce, J.

(2010a). Learning mid-level features for recognition. In Computer Vision

and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 2559–2566.

IEEE.

[Boureau et al., 2010b] Boureau, Y.-L., Ponce, J., and LeCun, Y. (2010b). A

theoretical analysis of feature pooling in visual recognition. In Proceedings of the

27th International Conference on Machine Learning (ICML-10), pages 111–118.

[Che et al., 2017] Che, T., Li, Y., Zhang, R., Hjelm, R. D., Li, W., Song, Y., and

Bengio, Y. (2017). Maximum-likelihood augmented discrete generative adver-

sarial networks. arXiv preprint arXiv:1702.07983.

[Cho et al., 2014a] Cho, K., van Merriënboer, B., Bahdanau, D., and Bengio, Y.

(2014a). On the properties of neural machine translation: Encoder–decoder

approaches. Syntax, Semantics and Structure in Statistical Translation, page

103.

[Cho et al., 2014b] Cho, K., van Merriënboer, B., Gülçehre, Ç., Bahdanau, D.,

Bougares, F., Schwenk, H., and Bengio, Y. (2014b). Learning phrase repre-

sentations using rnn encoder–decoder for statistical machine translation. In

Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 1724–1734, Doha, Qatar. Association for Compu-

tational Linguistics.

[Chung et al., 2016] Chung, J., Ahn, S., and Bengio, Y. (2016). Hierarchical mul-

tiscale recurrent neural networks. arXiv preprint arXiv:1609.01704.

127

[Chung et al., 2014] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014).

Empirical evaluation of gated recurrent neural networks on sequence modeling.

arXiv preprint arXiv:1412.3555.

[Collobert et al., 2011a] Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011a).

Torch7: A matlab-like environment for machine learning. In BigLearn, NIPS

Workshop.

[Collobert and Weston, 2008] Collobert, R. and Weston, J. (2008). A unified ar-

chitecture for natural language processing: Deep neural networks with multitask

learning. In Proceedings of the 25th international conference on Machine learn-

ing, pages 160–167. ACM.

[Collobert et al., 2011b] Collobert, R., Weston, J., Bottou, L., Karlen, M.,

Kavukcuoglu, K., and Kuksa, P. (2011b). Natural language processing (almost)

from scratch. J. Mach. Learn. Res., 12:2493–2537.

[Collobert et al., 2011c] Collobert, R., Weston, J., Bottou, L., Karlen, M.,

Kavukcuoglu, K., and Kuksa, P. (2011c). Natural language processing (almost)

from scratch. Journal of Machine Learning Research, 12(Aug):2493–2537.

[Conneau et al., 2017] Conneau, A., Schwenk, H., Barrault, L., and Lecun, Y.

(2017). Very deep convolutional networks for text classification. In Proceedings

of the 15th Conference of the European Chapter of the Association for Compu-

tational Linguistics: Volume 1, Long Papers, pages 1107–1116, Valencia, Spain.

Association for Computational Linguistics.

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector net-

works. Machine learning, 20(3):273–297.

128

[Costa-jussà et al., 2017] Costa-jussà, M. R., Aldón, D., and Fonollosa, J. A. R.

(2017). Chinese–spanish neural machine translation enhanced with character

and word bitmap fonts. Machine Translation, pages 1–13.

[Cox, 1958] Cox, D. R. (1958). The regression analysis of binary sequences. Jour-

nal of the Royal Statistical Society. Series B (Methodological), pages 215–242.

[Dai and Le, 2015] Dai, A. M. and Le, Q. V. (2015). Semi-supervised sequence

learning. In Advances in Neural Information Processing Systems, NIPS.

[Degris et al., 2012] Degris, T., Pilarski, P. M., and Sutton, R. S. (2012). Model-

free reinforcement learning with continuous action in practice. In American

Control Conference (ACC), 2012, pages 2177–2182. IEEE.

[dos Santos and Gatti, 2014] dos Santos, C. and Gatti, M. (2014). Deep convolu-

tional neural networks for sentiment analysis of short texts. In Proceedings of

COLING 2014, the 25th International Conference on Computational Linguis-

tics: Technical Papers, pages 69–78, Dublin, Ireland. Dublin City University

and Association for Computational Linguistics.

[dos Santos et al., 2015] dos Santos, C., Guimaraes, V., Niterói, R., and

de Janeiro, R. (2015). Boosting named entity recognition with neural char-

acter embeddings. In Proceedings of NEWS 2015 The Fifth Named Entities

Workshop, page 25.

[dos Santos and Zadrozny, 2014] dos Santos, C. and Zadrozny, B. (2014). Learning

character-level representations for part-of-speech tagging. In Proceedings of the

31st International Conference on Machine Learning (ICML-14), pages 1818–

1826.

129

[El Hihi and Bengio, 1996] El Hihi, S. and Bengio, Y. (1996). Hierarchical recur-

rent neural networks for long-term dependencies. In Advances in neural infor-

mation processing systems, pages 493–499.

[Fedus et al., 2018] Fedus, W., Goodfellow, I., and Dai, A. M. (2018). MaskGAN:

Better text generation via filling in the . In International Conference on

Learning Representations.

[Fellbaum, 2005] Fellbaum, C. (2005). Wordnet and wordnets. In Brown, K., edi-

tor, Encyclopedia of Language and Linguistics, pages 665–670, Oxford. Elsevier.

[Gehring et al., 2017] Gehring, J., Auli, M., Grangier, D., Yarats, D., and

Dauphin, Y. N. (2017). Convolutional Sequence to Sequence Learning. In Proc.

of ICML.

[Gillick et al., 2016] Gillick, D., Brunk, C., Vinyals, O., and Subramanya, A.

(2016). Multilingual language processing from bytes. In Proceedings of NAA-

HLT, pages 1296–1306.

[Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,

Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative

adversarial nets. In Advances in neural information processing systems, pages

2672–2680.

[Goodman, 2001] Goodman, J. (2001). Classes for fast maximum entropy training.

In ICASSP, pages 561–564. IEEE.

[Goyal et al., 2016] Goyal, A., Lamb, A. M., Zhang, Y., Zhang, S., Courville,

A. C., and Bengio, Y. (2016). Professor forcing: A new algorithm for train-

130

ing recurrent networks. In Advances In Neural Information Processing Systems,

pages 4601–4609.

[Graves and Schmidhuber, 2005] Graves, A. and Schmidhuber, J. (2005). Frame-

wise phoneme classification with bidirectional lstm and other neural network

architectures. Neural Networks, 18(5):602–610.

[Graves et al., 2014] Graves, A., Wayne, G., and Danihelka, I. (2014). Neural

turing machines. arXiv preprint arXiv:1410.5401.

[Greff et al., 2015] Greff, K., Srivastava, R. K., Koutńık, J., Steunebrink, B. R.,

and Schmidhuber, J. (2015). LSTM: A search space odyssey. CoRR,

abs/1503.04069.

[Gu et al., 2018] Gu, J., Bradbury, J., Xiong, C., Li, V. O., and Socher, R. (2018).

Non-autoregressive neural machine translation. In International Conference on

Learning Representations.

[Gulcehre et al., 2016] Gulcehre, C., Chandar, S., Cho, K., and Bengio, Y. (2016).

Dynamic neural turing machine with soft and hard addressing schemes. arXiv

preprint arXiv:1607.00036.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep

into rectifiers: Surpassing human-level performance on imagenet classification.

In Proceedings of the IEEE international conference on computer vision, pages

1026–1034.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual

learning for image recognition. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 770–778.

131

[Hermann et al., 2015] Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt,

L., Kay, W., Suleyman, M., and Blunsom, P. (2015). Teaching machines to read

and comprehend. In Advances in Neural Information Processing Systems, pages

1693–1701.

[Hinton et al., 2012] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I.,

and Salakhutdinov, R. R. (2012). Improving neural networks by preventing

co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.

[Hochreiter et al., 2001] Hochreiter, S., Bengio, Y., and Frasconi, P. (2001). Gra-

dient flow in recurrent nets: the difficulty of learning long-term dependencies.

In Kolen, J. and Kremer, S., editors, Field Guide to Dynamical Recurrent Net-

works. IEEE Press.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997).

Long short-term memory. Neural computation, 9(8):1735–1780.

[Huang et al., 2016] Huang, G., Liu, Z., Weinberger, K. Q., and van der

Maaten, L. (2016). Densely connected convolutional networks. arXiv preprint

arXiv:1608.06993.

[Joachims, 1998] Joachims, T. (1998). Text categorization with suport vector ma-

chines: Learning with many relevant features. In Proceedings of the 10th Euro-

pean Conference on Machine Learning, pages 137–142. Springer-Verlag.

[Johnson and Zhang, 2014] Johnson, R. and Zhang, T. (2014). Effective use of

word order for text categorization with convolutional neural networks. CoRR,

abs/1412.1058.

132

[Johnson and Zhang, 2017] Johnson, R. and Zhang, T. (2017). Deep pyramid con-

volutional neural network for text classification. In Proceedings of the 55nd An-

nual Meeting of the Association for Computational Linguistics. Association for

Computational Linguistics.

[Jones, 1972] Jones, K. S. (1972). A statistical interpretation of term specificity

and its application in retrieval. Journal of Documentation, 28(1):11–21.

[Joulin et al., 2016] Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2016).

Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759.

[Joulin and Mikolov, 2015] Joulin, A. and Mikolov, T. (2015). Inferring algorith-

mic patterns with stack-augmented recurrent nets. In Advances in neural infor-

mation processing systems, pages 190–198.

[Józefowicz et al., 2016] Józefowicz, R., Vinyals, O., Schuster, M., Shazeer, N.,

and Wu, Y. (2016). Exploring the limits of language modeling. CoRR,

abs/1602.02410.

[Kalchbrenner et al., 2016] Kalchbrenner, N., Espeholt, L., Simonyan, K., Oord,

A. v. d., Graves, A., and Kavukcuoglu, K. (2016). Neural machine translation

in linear time. arXiv preprint arXiv:1610.10099.

[Kalchbrenner et al., 2014] Kalchbrenner, N., Grefenstette, E., and Blunsom, P.

(2014). A convolutional neural network for modelling sentences. In Proceedings

of the 52nd Annual Meeting of the Association for Computational Linguistics,

pages 212–217. Association for Computational Linguistics.

133

[Kanaris et al., 2007] Kanaris, I., Kanaris, K., Houvardas, I., and Stamatatos, E.

(2007). Words versus character n-grams for anti-spam filtering. International

Journal on Artificial Intelligence Tools, 16(06):1047–1067.

[Kim, 2014] Kim, Y. (2014). Convolutional neural networks for sentence classifi-

cation. EMNLP 2014.

[Kim et al., 2016] Kim, Y., Jernite, Y., Sontag, D., and Rush, A. M. (2016).

Character-aware neural language models. In Thirtieth AAAI Conference on

Artificial Intelligence.

[Kingma and Welling, 2013] Kingma, D. P. and Welling, M. (2013). Auto-

encoding variational bayes. arXiv preprint arXiv:1312.6114.

[Kiros et al., 2015] Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun,

R., Torralba, A., and Fidler, S. (2015). Skip-thought vectors. In Advances in

neural information processing systems, pages 3294–3302.

[Koutnik et al., 2014] Koutnik, J., Greff, K., Gomez, F., and Schmidhuber, J.

(2014). A clockwork rnn. In International Conference on Machine Learning,

pages 1863–1871.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).

Imagenet classification with deep convolutional neural networks. In Advances in

neural information processing systems, pages 1097–1105.

[Kusner and Hernández-Lobato, 2016] Kusner, M. J. and Hernández-Lobato,

J. M. (2016). Gans for sequences of discrete elements with the gumbel-softmax

distribution. CoRR, abs/1611.04051.

134

[Le and Mikolov, 2014] Le, Q. and Mikolov, T. (2014). Distributed representations

of sentences and documents. In International Conference on Machine Learning,

pages 1188–1196.

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.

nature, 521(7553):436.

[LeCun et al., 1989] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,

R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation applied to

handwritten zip code recognition. Neural Computation, 1(4):541–551.

[LeCun et al., 1990] LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D.,

Howard, R. E., Hubbard, W. E., and Jackel, L. D. (1990). Handwritten digit

recognition with a back-propagation network. In Touretzky, D. S., editor, Ad-

vances in Neural Information Processing Systems 2, pages 396–404. Morgan-

Kaufmann.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).

Gradient-based learning applied to document recognition. Proceedings of the

IEEE, 86(11):2278–2324.

[Lee et al., 2017] Lee, J., Cho, K., and Hofmann, T. (2017). Fully character-level

neural machine translation without explicit segmentation. Transactions of the

Association for Computational Linguistics, 5:365–378.

[Lehmann et al., 2014] Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kon-

tokostas, D., Mendes, P. N., Hellmann, S., Morsey, M., van Kleef, P., Auer,

S., and Bizer, C. (2014). DBpedia - a large-scale, multilingual knowledge base

extracted from wikipedia. Semantic Web Journal.

135

[Lev et al., 2015] Lev, G., Klein, B., and Wolf, L. (2015). In defense of word

embedding for generic text representation. In Biemann, C., Handschuh, S.,

Freitas, A., Meziane, F., and Métais, E., editors, Natural Language Processing

and Information Systems, volume 9103 of Lecture Notes in Computer Science,

pages 35–50. Springer International Publishing.

[Levy et al., 2015] Levy, O., Goldberg, Y., and Dagan, I. (2015). Improving dis-

tributional similarity with lessons learned from word embeddings. Transactions

of the Association for Computational Linguistics, 3:211–225.

[Lewis et al., 2004] Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. (2004). Rcv1:

A new benchmark collection for text categorization research. The Journal of

Machine Learning Research, 5:361–397.

[Liu et al., 2017] Liu, F., Lu, H., Lo, C., and Neubig, G. (2017). Learning

character-level compositionality with visual features. In The 55th Annual

Meeting of the Association for Computational Linguistics (ACL), Vancouver,

Canada.

[Liu et al., 2016] Liu, P., Qiu, X., and Huang, X. (2016). Recurrent neural network

for text classification with multi-task learning. In Proceedings of the Twenty-

Fifth International Joint Conference on Artificial Intelligence, pages 2873–2879.

AAAI Press.

[Luong et al., 2013] Luong, T., Socher, R., and Manning, C. (2013). Better word

representations with recursive neural networks for morphology. In Proceedings

of the Seventeenth Conference on Computational Natural Language Learning,

pages 104–113.

136

[McAuley and Leskovec, 2013] McAuley, J. and Leskovec, J. (2013). Hidden fac-

tors and hidden topics: understanding rating dimensions with review text. In

Proceedings of the 7th ACM conference on Recommender systems, pages 165–

172. ACM.

[Miikkulainen and Dyer, 1991] Miikkulainen, R. and Dyer, M. G. (1991). Nat-

ural language processing with modular pdp networks and distributed lexicon.

Cognitive Science, 15(3):343–399.

[Mikolov et al., 2013a] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).

Efficient estimation of word representations in vector space. arXiv preprint

arXiv:1301.3781.

[Mikolov et al., 2013b] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and

Dean, J. (2013b). Distributed representations of words and phrases and their

compositionality. In Burges, C., Bottou, L., Welling, M., Ghahramani, Z., and

Weinberger, K., editors, Advances in Neural Information Processing Systems 26,

pages 3111–3119.

[Nair and Hinton, 2010] Nair, V. and Hinton, G. E. (2010). Rectified linear units

improve restricted boltzmann machines. In Proceedings of the 27th international

conference on machine learning (ICML-10), pages 807–814.

[Niu et al., 2011] Niu, F., Recht, B., Re, C., and Wright, S. (2011). Hogwild: A

lock-free approach to parallelizing stochastic gradient descent. In Shawe-Taylor,

J., Zemel, R. S., Bartlett, P. L., Pereira, F., and Weinberger, K. Q., editors,

Advances in Neural Information Processing Systems 24, pages 693–701. Curran

Associates, Inc.

137

[Oord et al., 2016] Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals,

O., Graves, A., Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. (2016).

Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499.

[Parker et al., 2011a] Parker, R., Graff, D., Chen, K., Kong, J., and Maeda, K.

(2011a). Arabic gigaword fifth edition ldc2011t11. Web Download.

[Parker et al., 2011b] Parker, R., Graff, D., Chen, K., Kong, J., and Maeda, K.

(2011b). Chinese gigaword fifth edition ldc2011t13. Web Download.

[Parker et al., 2011c] Parker, R., Graff, D., Kong, J., Chen, K., and Maeda, K.

(2011c). English gigaword fifth edition ldc2011t07. Web Download.

[Pascanu et al., 2013] Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the

difficulty of training recurrent neural networks. In ICML 2013, volume 28 of

JMLR Proceedings, pages 1310–1318. JMLR.org.

[Peng et al., 2003] Peng, F., Huang, X., Schuurmans, D., and Wang, S. (2003).

Text classification in asian languages without word segmentation. In Proceed-

ings of the sixth international workshop on Information retrieval with Asian

languages-Volume 11, pages 41–48. Association for Computational Linguistics.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. D. (2014).

Glove: Global vectors for word representation. In Empirical Methods in Natural

Language Processing (EMNLP), pages 1532–1543.

[Polyak, 1964] Polyak, B. (1964). Some methods of speeding up the convergence

of iteration methods. USSR Computational Mathematics and Mathematical

Physics, 4(5):1 – 17.

138

[Rumelhart et al., 1986] Rumelhart, D., Hintont, G., and Williams, R. (1986).

Learning representations by back-propagating errors. Nature, 323(6088):533–

536.

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,

S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C.,

and Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision (IJCV), 115(3):211–252.

[Schmidhuber, 1992] Schmidhuber, J. (1992). Learning complex, extended se-

quences using the principle of history compression. Neural Computation,

4(2):234–242.

[Sermanet et al., 2014] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus,

R., and Lecun, Y. (2014). Overfeat: Integrated recognition, localization and

detection using convolutional networks. In International Conference on Learning

Representations (ICLR2014), CBLS, April 2014.

[Shen et al., 2014] Shen, Y., He, X., Gao, J., Deng, L., and Mesnil, G. (2014). A

latent semantic model with convolutional-pooling structure for information re-

trieval. In Proceedings of the 23rd ACM International Conference on Conference

on Information and Knowledge Management, pages 101–110. ACM.

[Shi et al., 2016] Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A. P., Bishop,

R., Rueckert, D., and Wang, Z. (2016). Real-time single image and video super-

resolution using an efficient sub-pixel convolutional neural network. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 1874–1883.

139

[Shimada et al., 2016] Shimada, D., Kotani, R., and Iyatomi, H. (2016). Doc-

ument classification through image-based character embedding and wildcard

training. In 2016 IEEE International Conference on Big Data (Big Data), pages

3922–3927.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very

deep convolutional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556.

[Sparck Jones, 1972] Sparck Jones, K. (1972). A statistical interpretation of term

specificity and its application in retrieval. Journal of documentation, 28(1):11–

21.

[Sukhbaatar et al., 2015] Sukhbaatar, S., Szlam, A., Weston, J., and Fergus, R.

(2015). End-to-end memory networks. In Cortes, C., Lawrence, N. D., Lee,

D. D., Sugiyama, M., and Garnett, R., editors, Advances in Neural Information

Processing Systems 28, pages 2440–2448. Curran Associates, Inc.

[Sutskever et al., 2013] Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013).

On the importance of initialization and momentum in deep learning. In Inter-

national conference on machine learning, pages 1139–1147.

[Sutskever et al., 2011] Sutskever, I., Martens, J., and Hinton, G. E. (2011). Gen-

erating text with recurrent neural networks. In Proceedings of the 28th Interna-

tional Conference on Machine Learning (ICML-11), pages 1017–1024.

[Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence

to sequence learning with neural networks. In Advances in neural information

processing systems, pages 3104–3112.

140

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Reinforcement

learning: An introduction.

[Sutton et al., 2000] Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,

Y. (2000). Policy gradient methods for reinforcement learning with function

approximation. In Advances in neural information processing systems, pages

1057–1063.

[van den Oord et al., 2017] van den Oord, A., Li, Y., Babuschkin, I., Simonyan,

K., Vinyals, O., Kavukcuoglu, K., van den Driessche, G., Lockhart, E., Cobo,

L. C., Stimberg, F., Casagrande, N., Grewe, D., Noury, S., Dieleman, S., Elsen,

E., Kalchbrenner, N., Zen, H., Graves, A., King, H., Walters, T., Belov, D.,

and Hassabis, D. (2017). Parallel wavenet: Fast high-fidelity speech synthesis.

CoRR, abs/1711.10433.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you

need. In Advances in Neural Information Processing Systems, pages 5998–6008.

[Waibel et al., 1989] Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and

Lang, K. J. (1989). Phoneme recognition using time-delay neural networks.

Acoustics, Speech and Signal Processing, IEEE Transactions on, 37(3):328–339.

[Wang et al., 2008] Wang, C., Zhang, M., Ma, S., and Ru, L. (2008). Automatic

online news issue construction in web environment. In Proceedings of the 17th

International Conference on World Wide Web, WWW ’08, pages 457–466, New

York, NY, USA. ACM.

141

[Weinberger et al., 2009] Weinberger, K., Dasgupta, A., Langford, J., Smola, A.,

and Attenberg, J. (2009). Feature hashing for large scale multitask learning. In

Proceedings of the 26th Annual International Conference on Machine Learning,

pages 1113–1120. ACM.

[Weston et al., 2014] Weston, J., Chopra, S., and Bordes, A. (2014). Memory

networks. CoRR, abs/1410.3916.

[Xiao and Cho, 2016] Xiao, Y. and Cho, K. (2016). Efficient character-level docu-

ment classification by combining convolution and recurrent layers. arXiv preprint

arXiv:1602.00367.

[Xu et al., 2015] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov,

R., Zemel, R., and Bengio, Y. (2015). Show, attend and tell: Neural image

caption generation with visual attention. In International conference on machine

learning, pages 2048–2057.

[Yu et al., 2017] Yu, L., Zhang, W., Wang, J., and Yu, Y. (2017). Seqgan: Se-

quence generative adversarial nets with policy gradient. In AAAI, pages 2852–

2858.

[Zhang, 2013] Zhang, X. (2013). Pac-learning for energy-based models. Master’s

thesis, Computer Science Department, Courant Institute of Mathematical Sci-

ences, New York University.

[Zhang and LeCun, 2017] Zhang, X. and LeCun, Y. (2017). Which encoding is

the best for text classification in chinese, english, japanese and korean? CoRR,

abs/1708.02657.

142

[Zhang and LeCun, 2018a] Zhang, X. and LeCun, Y. (2018a). Adversarially-

trained normalized noisy-feature auto-encoder for text generation. CoRR,

abs/1811.04201.

[Zhang and LeCun, 2018b] Zhang, X. and LeCun, Y. (2018b). Byte-level recur-

sive convolutional auto-encoder for text. International Conference on Learning

Representations. rejected.

[Zhang et al., 2015] Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-level

convolutional networks for text classification. In Advances in neural information

processing systems, pages 649–657.

[Zhang et al., 2017a] Zhang, Y., Gan, Z., Fan, K., Chen, Z., Henao, R., Shen, D.,

and Carin, L. (2017a). Adversarial feature matching for text generation. In

International Conference on Machine Learning, pages 4006–4015.

[Zhang et al., 2014a] Zhang, Y., Lai, G., Zhang, M., Zhang, Y., Liu, Y., and Ma,

S. (2014a). Explicit factor models for explainable recommendation based on

phrase-level sentiment analysis. In Proceedings of the 37th international ACM

SIGIR conference on Research & development in information retrieval, pages

83–92. ACM.

[Zhang et al., 2017b] Zhang, Y., Shen, D., Wang, G., Gan, Z., Henao, R., and

Carin, L. (2017b). Deconvolutional paragraph representation learning. In Ad-

vances in Neural Information Processing Systems, pages 4169–4179.

[Zhang et al., 2014b] Zhang, Y., Zhang, H., Zhang, M., Liu, Y., and Ma, S.

(2014b). Do users rate or review?: Boost phrase-level sentiment labeling with

review-level sentiment classification. In Proceedings of the 37th international

143

ACM SIGIR conference on Research & development in information retrieval,

pages 1027–1030. ACM.

[Zhang et al., 2013a] Zhang, Y., Zhang, M., Liu, Y., and Ma, S. (2013a). Im-

prove collaborative filtering through bordered block diagonal form matrices. In

Proceedings of the 36th international ACM SIGIR conference on Research and

development in information retrieval, pages 313–322. ACM.

[Zhang et al., 2013b] Zhang, Y., Zhang, M., Liu, Y., Ma, S., and Feng, S. (2013b).

Localized matrix factorization for recommendation based on matrix block diag-

onal forms. In Proceedings of the 22nd international conference on World Wide

Web, pages 1511–1520. ACM.

[Zhao et al., 2018] Zhao, J. J., Kim, Y., Zhang, K., Rush, A. M., and LeCun, Y.

(2018). Adversarially regularized autoencoders. In ICML, volume 80 of JMLR

Workshop and Conference Proceedings, pages 5897–5906. JMLR.org.

144

	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	Background Overview for Text Representation Learning
	Simple Representation
	Distributed Representation
	Recurrent Neural Networks
	Convolutional Networks
	Learning from Character and Byte Levels

	Motivation
	End-to-End Learning for Text
	Motivation for Text Representation Learning

	Dissertation Content

	Character-level Convolutional Networks for Text Classification
	Introduction
	Character-level Convolutional Networks
	Key Modules
	Character quantization
	Model Design
	Data Augmentation using Thesaurus

	Comparison Models
	Traditional Methods
	Deep Learning Methods
	Choice of Alphabet

	Large-scale Datasets and Results
	Discussion
	Conclusion and Outlook

	Which Encoding is the Best for Text Classification in Chinese, English, Japanese and Korean?
	Introduction
	Encoding Mechanisms for Convolutional Networks
	Character Glyph
	One-hot Encoding
	Embedding

	Linear Models and fastText
	Linear Models
	fastText

	Datasets and Preprocessing
	Datasets
	Word Segmentation and Romanization

	Experiments
	Optimization
	Results

	Analysis
	Rank the Models
	Generalization
	Training Time
	Influence from Representation
	Linguistic Properties

	Other Models
	Conclusion

	Byte-level Recursive Convolutional Auto-Encoder
	Introduction
	Recursive Convolutional Auto-Encoder
	Result for Multi-lingual Auto-Encoding
	Dataset
	Result

	Analysis
	Comparison with Recurrent Networks
	End of Sequence
	Random Permutation of Samples
	Sample Length
	Pooling Layers
	Recursion
	Model Depth

	Representation Learning for Text Classification
	Conclusion

	Model Improvement for Text Classification
	Introduction
	Recursive Convolutional Networks using Residual or Dense Connections
	Residual Connections
	Dense Connections
	Static (Non-Recursive) Variants

	Datasets and Results
	Datasets
	Training Parameters and Results

	Discussion
	State-of-the-Art Models
	Aggregated Comparison

	Conclusion

	Conclusion and Outlook
	Conclusion
	Short-term Outlook
	Text Generation with Uncertainty
	Controllable Machine Translation
	From Representation to Reasoning

	Training and Validation Errors for Text Classification
	Appendices
	Validated Epoches for fastText
	Training and Validation Errors for Improved Model
	Bibliography

