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ABSTRACT 

Background: Several recent comparative functional genomics projects have indicated 

that the co-regulation of many genes is conserved across species, at least in part. This 

suggests that comparative analysis of functional genomics data-sets could prove 

powerful in identifying co-regulated groups that are conserved across multiple species.  

Results: We present recent work to extend our cMonkey algorithm to simultaneously 

bicluster heterogeneous data from multiple species to identify conserved modules of 

orthologous genes, which can yield evolutionary insights into the formation of 

regulatory modules. We also present results from the multi-species analysis to two 

triplets of bacteria.  The first of these is a triplet of Gram-positive bacteria consisting 

of Bacillus subtilis, Bacillus anthracis, and Listeria monocytogenes, while the second 

is a triplet of Gram-negative bacteria that includes Escherichia coli, Salmonella 

typhimurium and Vibrio cholerae.  Finally, we will present initial results from the 

multi-species biclustering analysis of human and mouse hematopoietic differentiation 

data.  

Conclusion:  Analysis of biclusters obtained revealed a surprising number of gene 

groups with conserved modularity and high biological significance as judged by 

several measures of cluster quality. We also highlight cases of interest from the Gram-

positive triplet, including one that suggests a temporal difference in the expression of 

genes governing sporulation in the two Bacillus species.  While analysis of the mouse 

and human hematopoietic differentiation is preliminary, it indicates the applicability of 
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this analysis to eukaryotic systems, including comparison of cancer model systems.  

Finally, we suggest ways in which this analysis could be extended to identify 

divergent modules that may exist between normal and disease tissue. 
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 Waltman, P wrote the sections covering Caulobacter crescentus, Escherichia 

coli and the first 5 sub-sections of the section on Halobacterium salinarium 

NRC-1 (sections 1.3, 1.5-1.6.5).  He also updated both the introductory and 

conclusion sections that were original written by Bonneau, R (sections 1.1 and 

1.7-1.8, respectively). 

 Kacmarczyk, T wrote the section providing the review of core technologies as 

well as the section on Baciulls subtilis (sections 1.2 and 1.4). 

 Bonneau, R wrote the second half of section describing Halobacterium 

salinarium NRC-1, as well the original introductory and conclusion sections 

(sections 1.6.6-9, 1.1 and 1.7-1.8, respectively). 

1.1 Overview of Systems Biology  

 Recent advances in systems biology have dramatically accelerated the rate at 

which biologists can acquire data on all informational levels of the cell (genome 

sequence, RNA, protein, protein modification, metabolites, etc.). Concurrent advances 

in computational biology have begun to allow for large multi-group efforts that 

integrate these diverse data sources in order to generate predictive dynamical models 

of whole cells (Bonneau, Facciotti et al. 2007). In addition, several groups such as the 

ENCODE Project Consortium (Birney, Stamatoyannopoulos et al. 2007) and the 

modENCODE Consortium (Celniker, Dillon et al. 2009) have recently produced first 

drafts of global models of the functional elements of the genomes of several 

eukaryotic organisms, including Homo sapiens and the model organisms Drosophila 
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melanogaster (Negre, Brown et al. 2011) and Caenorhabditis elegans (Gerstein, Lu et 

al. 2010).  In this introduction, which is heavily based upon the chapter ―Prokaryotic 

Systems Biology‖ in Plant Systems Biology (Waltman, Kacmarczyk et al. 2009), we‘ll 

discuss in detail several prokaryotic functional genomics projects, with the dual goals 

of 1) illustrating how recent advances in computational techniques have advanced and 

aided these projects; and 2) motivating the research that is presented in this thesis 

dissertation. 

We will show that, although many challenges remain, we are beginning to 

cross critical milestones in our efforts to learn systems-wide quantitative models of 

prokaryotic cells and their interactions with their environments.  To do this, we will 

provide a very brief explanation for the novice of the significance and utility of 

prokaryotic systems biology.  This will be followed by a review of some of the 

technologies that are used to generate the high-throughput experimental data which 

systems biologists analyze, after which we will provide examples of how systems 

biology approaches have been used with four (4) prokaryotic organisms.  The first of 

these describes a multi-year, multi-team effort that used primarily non-computational 

and non-systems-level approaches to map regulatory circuit governing the cell cycle of 

Caulobacter crescentus.  The second section discusses a number of systems biology 

efforts to characterize various aspects of the regulatory network governing Bacillus 

subtilis under various conditions, with many of these using the different technologies 

that are available. This will be followed by a section describing three projects that 
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explored various aspects of the regulatory network governing Escherichia coli; one of 

which was a project that used primarily non-systems techniques to map the acid shock 

response of E. coli; another that used a novel computational method to infer a global 

regulatory network based on systems-level expression data; and a third that integrated 

known metabolic and regulatory interactions to generate an in silico model of E. coli.  

The third section describes a multi-year project to map the complete regulatory 

network of the archael organism, Halobacterium salinarium NRC-1 that was 

performed by a single group which combined novel computational method 

development and wet-bench verification of the predictions from these in an iterative 

manner.  Finally, in the remaining sections of this chapter, we motivate the research 

that we present in following chapters of this thesis. 

1.1.1 The importance of microbes: 

 Bacteria and archaea are abundant, diverse and important organisms. Many 

currently relevant human pathogens are prokaryotic. Microbes have been used for 

fermentation of foodstuffs for eons and more recently have been used in engineering 

and synthesis applications spanning the full range of human activities (e.g. bacteria 

can serve as platforms for the synthesis of drugs, vitamins, food additives). 

Prokaryotes play critical roles in our environment and are central to efforts to mitigate 

the human impact associated with solid waste/sewage, industrial toxic waste, and 

agriculture. Prokaryotic biology is critical to our understanding the history of our 
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environment. Prokaryotes have traditionally provided biologists useful tools for 

molecular and cell biology across all systems. 

1.1.2 Experimental advantages of prokaryotic systems biology: 

 Archaea and bacterial systems offer a distinct advantage in complexity. 

Although they have all the properties of life that warrant our awestruck admiration, 

such as self-assembly, robustness, reproducible autonomous decision making, they are 

orders of magnitude less complex than Eukaryotes, they often allow for collection of 

larger amounts of material in the lab. Prokaryotes are often synchronizable (as are 

many eukaryotic systems) and often amenable/robust to the manipulations needed for 

single celled measurements (Alon 2007).  Often the genetics of a given prokaryotic 

system will allow for rapid construction of knock out and/or over-expression strains 

that can be used to directly query the global result of specific genetic perturbation (this 

is the case for all organisms described herein). Unfortunately these experimental 

advantages do not extend to all organisms and several prokaryotes participate in 

complex communities that currently elude even laboratory culture, and are thus only 

now coming into focus via metagenomic sequencing directly from the environment 

(Handelsman 2004). In this review we will focus on organisms that are amenable to 

genetics, culture and have full genome sequence. 

1.1.3 Types of questions 

Before we begin our discussion we need to discuss the types of questions one 

might answer with prokaryotic systems biology. 
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1.1.3.1 Core biology:   

The first and most fundamental question one might ask is ―how do all systems 

components interact to form core aspects of biology with components and/or strategies 

common to many systems.‖ For example we might study the cell cycle in several 

organisms and compare common themes in an attempt to reveal the functional 

requirements or ancestral progenitor of cell cycle control in different 

niches/organisms. Systems biology becomes essential in answering this type of 

question due to the sheer number of genes involved in many core processes. So the 

fact that much of the cell is involved makes techniques based on global measurements 

a natural fit to the question. So-called master regulators (hubs) are prevalent in biology 

and determining the targets and control of such master regulators is more directly 

accomplished via global techniques (such as ChIP-chip, yeast one hybrid, microarray 

measurement following a genetic perturbation to the gene, etc.). 

1.1.3.2 Environmental:   

Another case where global measurements are key is in the deciphering of an 

organisms response to its environment. A typical structure for such a study involves 

the use of genomics techniques to identify key players in a physiological response to a 

given cell environment, followed by more focused studies to investigate/validate the 

role or necessity of the discovered proteins/genes. Many of the earliest studies 

employing microarrays in prokaryotic systems were designed to characterize a cells 

genome-wide/transcriptome response to environmental stress. In these studies we look 
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for novel regulation of known processes that have been discovered, novel associations 

between proteins of unknown function with known environmental responses. 

1.1.3.3 Disease related pathogens:   

In cases where the prokaryote of interest is also a human pathogen, our 

question is: ―how to maximally disrupt the pathogen, disrupt its interaction with the 

human host or vector, or otherwise mitigate its effect on human health‖. In this study 

we will focus less on this type of study, as the interaction with the human host often 

requires as much study as the internal workings of the pathogen of interest. This 

prokaryote-host interaction is, although currently the focus of several systems biology 

efforts, beyond the scope of this review. 

1.1.3.4 Engineering   

Genome-wide models will inevitably be required if we are to rationally engineer 

microbial systems. Reasons for engineering microbial systems span human efforts and 

include: bioenergy, remediation of industrial waste sites, production of difficult to 

synthesize compounds. 

1.1.4 Global models 

1.1.4.1 Emergent properties:  

Emergent properties are properties of a system that cannot be trivially traced 

back to properties of any single component of the system. Simple examples of 

emergent properties abound in nature such as flock behavior, the decisions and 
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patterns of ant and termite colonies, dramatic trends in human economies, a tabby 

cat‘s stripes, spiral waves in heart defibrillation, etc. When we refer to the meaningful 

properties of highly complex systems as emergent in this review it is simply a compact 

way of describing the simple notion that if large complex systems have many inter-

component interactions then only by modeling the global system can we hope to 

recapitulate or model the overall system behavior. Systems that involve interactions on 

multiple scales, interactions between components that involve loops (such as feedback 

loops), and non-linear effects such as saturation, recovery and auto-excitation all 

contribute to the degree to which systems are likely to have difficult to predict 

emergent properties. 

 Nearly all biological systems exhibit complex phenotypes and physiologies 

that are not attributable to single subsystems or genes, and all biological systems are 

large, complex systems involving all of the interaction types typically leading to 

systems dominated by emergent behavior. Thus we must view important properties of 

living systems as interdependent, emergent, or at least highly epigenetic phenomena. 

Regardless of our diction we rapidly arrive at the conclusion that highly 

interconnected phenomena like metabolism, signaling and regulation require modeling 

at the global, genome-wide, scale if we are to construct predictive models of cellular 

behavior. 
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1.1.4.2 Global models require the new approaches to experimental design, 

technologies, and analysis: 

 This motivation for global measurement and modeling of biology has led to 

prokaryotic biologists, working on several systems, to adopt some aspect of genomic 

(genome-wide) experimentation and analysis. In the end this has led to many 

successes and many mistakes, as the field wrestles with technical and computational 

challenges generated by high throughput methods. After a decade of systems biology, 

many biologists feel a bit unclear, pedagogically, as to the state of modern biology. 

Many people incorrectly feel that biology is currently a disjoint field, with labs that 

perform systems-biology/global studies existing in a sub-field separate from those 

biologists that perform one-gene-at-a-time studies. One point we hope to convey by 

reviewing several functional genomics projects below is that many of the most 

interesting results are from work where more focused studies of subsystems and small 

numbers of genes are embedded in or guided by global analysis. 

1.2 Review of core technologies for prokaryotic systems biology. 

Here we will briefly review the core technologies found in a typical prokaryotic 

functional genomics pipeline as discussed throughout the paper. We will place 

emphasis on these techniques in our discussion of four specific functional genomics 

projects below. This section illustrates that many of these technologies, although 

found throughout studies of Eukaryotes as well, were first developed in prokaryotic 

systems. 



 

 

 

10 

1.2.1 Genomics 

 The sequenced genome is an essential prerequisite to determining the parts-list 

for an organism, encoding its RNA transcripts, proteins, as well as several patterns and 

properties beyond our current understanding. The field of genomics has expanded 

during the past decade from the static study of DNA sequences, annotation, and 

structure to dynamic studies of functional and comparative genomics, but all rests 

squarely on our ability to determine complete genome sequences for organisms in a 

cost effective manner. The process and capabilities of genome sequencing has 

dramatically changed since the first complete genome in 1995 of Haemophilus 

influenzae Rd. (Fleischmann, Adams et al. 1995) with innovations in cloning and high 

throughput DNA sequencing technology. The Sanger (Sanger, Nicklen et al. 1977), or 

chain termination method, is still the primary method for sequencing (although new 

technologies are most certainly poised to overtake it as the most commonly used 

method). Sanger sequencing has seen many optimizations and improvements since the 

laboratory of Leroy Hood first automated the process in the mid 1980’s. These 

advancements include advances in fluorescent labels and detection, capillary 

electrophoresis and microfluidics, automation, informatics and computational power, 

and now typically produce ~100kbp per run of a typical capillary sequencing machine. 

There are two new promising technologies: 454 Life Sciences sequencing can produce 

30Mbp per run by utilizing a sequence-by-synthesis (SBS) approach which integrates 

pyrosequencing, massively parallel sequencing and microfabricated picoliter reactors 
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(Margulies, Egholm et al. 2005). This technology has already resulted in economically 

sequenced genomes (in combination with Sanger for longer reads). Solexa sequencing 

technology also uses SBS and massively parallel technology on a clonal single 

molecule array, and is working towards 1Gbp per run. Emerging methods based on 

other technologies such as, sequence-by-hybridization, mass spectroscopy, and single 

molecule nanopore sequencing are also being investigated. Regardless of which 

technique wins the race, it is clear that sequencing 100s of prokaryotic genomes by 

single groups with modest funding is on the horizon. Even without these new 

technologies high throughput sequencing is pouring out raw data at a fantastic rate. 

This along with new techniques for protein annotation has allowed us to compile a 

very large compendium of gene and protein families that greatly facilitate our 

management of the complexity of any given proteome (Tatusov, Koonin et al. 1997; 

Finn, Mistry et al. 2006). Comparative genomics can illustrate genetic programs that 

are global properties of organisms as well as properties specific to a species. This 

sequencing power offers opportunities into the natural microbial world. 

 Much of the earth's biomass is comprised of microorganisms that participate in 

tightly interconnected microbial communities. In many cases these communities are 

too complex or adapted to a very particular microenvironment to culture. This inability 

to culture a large number of microbes important to the environment under standard 

laboratory conditions has motivated the development of metagenomics (sequencing 

microbial communities directly from the environment, for example host tissue or soil, 
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to study dynamic species interactions and diversity is being called environmental 

genomics or metagenomics (Tringe and Rubin 2005)). Recent studies emphasize the 

insights to be gained from metagenomic studies. Assembly of environmental microbial 

sequences from acid mine drainage biofilms is one of several recent metagenomic 

projects that illustrates that microbial community genomes can be reconstructed to 

high completeness given sufficient coverage (Tyson, Chapman et al. 2004). Sogin et 

al, surveyed the deep sea to show that current sequence databases represent only as 

small fraction of global microbial diversity (Sogin, Morrison et al. 2006). The 

Sargasso Sea metagenomics survey revealed a substantial amount of phylogenetic 

diversity and complexity, identified 1.2 million genes and sampled from an estimated 

1,800 bacterial species (Venter, Remington et al. 2004). Three new investigations 

from the Sorcerer II Global Ocean Sampling expedition have enhanced this dataset, 

which now includes 6.3 billion base pairs (Rusch, Halpern et al. 2007; Yooseph, 

Sutton et al. 2007). Metagenomics shows us environmentally relevant protein 

frequency of occurrence and diversity and that, when we consider the planet-wide 

diversity of microbial ecology, we have just scratched the surface, with respect to 

diversity, of microbial genomes and proteomes. 

1.2.2 Proteome Annotation 

 Give the genome the next step is to predict proteins, functional RNAs and 

other transcribed regions; we will only discuss annotation briefly. Methods for 

annotating proteomes are still evolving, but generally rely on a mix of sequence-



 

 

 

13 

similarity, protein-domain or protein family searches (such as COG and Pfam). 

Structure prediction based methods for genome annotation are emerging (Bonneau, 

Baliga et al. 2004; Malmstrom, Riffle et al. 2007) and rely on fold recognition and de 

novo structure prediction to extend the reach of our ability to detect distant homology 

(structure similarity is conserved across a greater evolutionary distance than sequence 

similarity). Methods for solving protein structures experimentally remain costly and a 

mix of experimental structural biology and computational structure biology are likely 

going to lead to prokaryotic genomes characterized at the protein 3D structure level to 

high levels of completeness. Another promising note is that as more sequences are 

added to the databases our ability to find sequence based homology via intervening 

sequences (e.g. via multiple iterations of PSI-BLAST) also increases. 

1.2.3 Transcriptomics 

 Transcriptomics is the measurement and study of the properties and dynamics 

of all mRNA transcripts in the cell (the transcriptome). There are a variety of tools 

used to measure transcriptomes, the most common being the microarray. All such 

tools are high throughput methods for detecting and measuring the expression level, or 

relative abundance of mRNA transcripts, for every gene within the cell, and results in 

a snapshot of all the genes present at one time in the cell for a given condition. The 

methods measure the abundance of RNAs, which is a convolution of the rate of 

synthesis, transport, and degradation. Two common goals of transcriptomics are to 

identify genes that are differentially expressed and recognize patterns in gene 
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expression that correlate with the phenotype. The main technologies used to explore 

this are DNA microarrays and serial analysis of gene expression (SAGE). SAGE 

quantifies transcript levels by sequencing and counting cDNAs converted from small 

unique tags of samples of RNA (Velculescu, Zhang et al. 1995). Parallel gene 

expression analysis is typically done by either one-color oligonucleotide arrays from 

Affymetrix (GeneChip) or NimbleGen, or by two-color spotted/printed arrays that can 

be oligonucleotides, cDNAs, or ESTs printed onto a glass slide. The physical 

microarray consists of probes (complementary to the RNA being measured), the 

oligonucleotide or cDNA, printed (in the case of cDNA arrays) or built (for oligo 

arrays) onto a glass slide or silicon chip. The array is perfused with the cell extracts of 

RNA tagged with a fluorescent dye (Cy3, Cy5); labeled RNAs thus hybridize to the 

DNA probes. Ideally it is the specificity guaranteed (excepting cross-hybridization) by 

reverse complementarity that is core to all microarray technologies (alas, nothing 

similar to reverse complementarity exists for proteins). Lastly, fluorescent intensities 

are read to measure the relative abundance. It is therefore important to design the 

experiment correctly for the comparison to be made. Data is collected by exciting the 

fluorescent dye tagged RNA and scanning the image. Array scanners usually have 

software that automatically scans the image, locates the spots, and computes the 

intensities. The intensity data is converted into numerical data that can then be further 

analyzed statistically to identify differentially expressed genes. RNA-seq – a more 

recent technique that leverages next-generation deep-sequencing to generate highly 



 

 

 

15 

precise assays that are more accurate than previous technologies - is also quickly 

emerging as a transformative technology (Wang, Gerstein et al. 2009).  Expression 

profiles can be compared among different cells or tissues (e.g. cancerous versus non-

cancerous), time points, and perturbations. Clustering microarray data was an 

important development (hierarchical clustering, k-means, self-organizing maps) for 

identifying patterns of co-expressed genes.  

1.2.4 Proteomics 

 Proteomics is a very large and expanding field with a large diversity of aims 

and corresponding techniques. Recent advances have allowed identification and 

quantification of all of the proteins that exist in a cell, their abundance, post-

translational modifications, interactions, localization, and modifications. However, 

determination of an organism’s proteome is difficult due to the complexity of the large 

number of proteins and their modifications (Bray 1995). We focus on studies that aim 

to complete the characterization of the proteome by identifying and quantifying all of 

the proteins encoded by the genome. The main methods for quantifying, characterizing 

and profiling proteins and complexes are:  two-dimensional gel electrophoresis (2DE), 

mass spectroscopy (MS), matrix-assisted laser desorption-ionization time-of-flight 

(MALDI-TOF/MS) and other combinations of MS (LC-MS, GC-MS, etc.)(Aggarwal 

and Lee 2003). Advanced protein array technology can assay protein activity as well 

as identifying protein-protein and protein-DNA interactions, here we focus on MS 

based proteomics (Poetz, Schwenk et al. 2005; Vemuri and Aristidou 2005). 



 

 

 

16 

 Recent developments have included the development of methods for 

measuring relative protein levels (proteome wide) by incorporating stable isotopically 

labeled reagents into multiple samples (by cell culture, in SILAC, and by labeling with 

reagents in ITRAQ, ICAT) (Gygi, Rist et al. 1999; Zhang, Spellman et al. 2006). In 

these experiments each sample is labeled with a reagent containing different numbers 

of stably incorporated heavy isotopes and MS is simultaneously performed on multiple 

samples. These methods (e.g. SILAC, ICAT, ITRAQ) promise to provide proteome 

wide measurements analogous to multi-color microarrays. Many technical challenges 

remain, but mass-spec based proteomics is currently central to many functional 

genomics projects, and with inbound improvements in resolution, reliability, cost (as 

well as improvements in surrounding methods such as reagents and fractionation 

steps) we will only see the importance of these technologies increase. 

1.2.5 Techniques for measuring protein-DNA and protein-protein interactions. 

 Proteins function as networks of interconnected components, involving 

networks composed of protein-protein and protein-DNA and protein-RNA interactions 

for the cell overlaid to form an overall network for a given organism (Ge, Walhout et 

al. 2003). Techniques for measuring such interactions are thus highly relevant to 

prokaryotic functional genomics projects. 

 High-throughput interaction mapping methods have been developed for 

measuring all three of these interaction networks. For example, yeast 2-hybrid (Y2H) 

(Walhout and Vidal 2001) and chromatin immunoprecipitation (ChIP-chip) assays are 
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methods for identifying protein-DNA interactions and co-immunoprecipitation (co-IP) 

is used to identify protein complexes from cell extracts. Chromatin 

immunoprecipitation (ChIP-chip) assays aim to identify the specific regions of the 

genome a given protein binds. Proteins that interact with DNA will, by this procedure, 

enrich segments containing high affinity binding sites for these proteins. Introduced in 

2000 and 2001 by 3 papers that reported its first successful use, the general goal of 

ChIP-chip is to use chromatin immunoprecipitation to help identify the upstream 

binding sites for a given transcription factor. To accomplish this, the general strategy 

is as follows.  Once the transcription factor protein under consideration has been 

bound either in vivo or in vitro to its DNA target, it is cross-linked to the DNA target, 

often with formaldehyde, which can easily be unlinked with heat. After cross-linking, 

the DNA is lysed, usually by sonication and the protein-DNA complex is then 

immunoprecipitated using an anti-body specific to the transcription factor being 

studied, allowing the cross-linked protein-DNA complex to be isolated. After 

unlinking the transcription factor from the DNA, the DNA fragments are PCR 

amplified and labeled before finally being evaluated with microarrays to identify 

enriched regions of the genome that correspond to binding regions for the transcription 

factor.  Similar to ChIP-chip, a newer technique called chromatin 

immunoprecipitation, followed by sequencing, or ChIP-seq, improves upon these 

previous techniques by leveraging next-generation sequencing technologies to allow 
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for high-throughput assays of binding sites, while providing far greater resolution than 

ChIP-chip (Park 2009). 

1.3 Caulobacter crescentus  

 The non-pathogenic oligotroph Caulobacter crescentus is a Gram-negative 

[alpha]-proteobacterium that lives in aquatic environments; for the remainder of this 

section, we will refer to it as Caulobacter.  Morphologically, Caulobacter exhibits 3 

distinct phenotypes.  The first, referred to as swarmer cells (SW cells for the 

remainder), are motile, rod-like cells that have in one pole both a flagellum, as well as 

two type IV pili adjacent to the flagellum.  Due to an as of yet unknown signal, an SW 

cell will metamorphose into a stalked, or ST, cell, during which the pili are retracted 

and the flagellum is ejected, replaced by a ‗stalk‘ that is formed from a thin extension 

of the cell wall that can help serve as an anchor for the new ST cell (Ausmees and 

Jacobs-Wagner 2003; Skerker and Laub 2004; Holtzendorff, Reinhardt et al. 2006). 

 At the same time as this SW to ST cell transformation, chromosomal 

replication, which had been repressed in the SW cell, is initiated from a single origin 

of replication and the cell enters S phase.  Following the completion of the 

chromosomal replication, the two copies are sequestered to the two polar halves of the 

pre-divisional (PD) cell, a new flagellum and pili are generated on the pole opposite of 

the stalk, and a diffusion barrier develops separating the two polar halves.  Once cell 

division is complete, yielding both an SW and an ST cell, chromosomal replication is 

reinitiated in the ST cell, while the new SW cell will relocate via chemotaxis, with 
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chromosomal replication inhibited in it until it differentiates into an ST cell and the 

entire process reinitiates. 

 The key observations to draw from the Caulobacter cell cycle are:  1) its 

asymmetrical nature – as it yields 2 morphologically different daughter cells, and 2) 

the replication process yields exactly 2 daughter cells (Skerker and Laub 2004).  In 

contrast, E. coli cell division in logarithmic phase can replicate the genome up to 4 

times before cell division occurs (Skerker and Laub 2004).  As cell division in 

Caulobacter yields exactly 2 daughter cells, it exhibits a periodicity that lends itself 

well to the examination of the bacterial cell cycle.  In addition, the asymmetric nature 

of its cell cycle allows researchers the opportunity to study bacterial cell 

differentiation – an aspect shared with many other bacteria such as Bacillus subtilis 

(Skerker and Laub 2004).  However, as this asymmetry is accomplished via 

asymmetric localization of proteins, a good portion of the current research directed at 

deciphering this process uses lab techniques directed at study of single genes (such as 

localization studies using green fluorescent protein, GFP). We will outline/review both 

systems-wide studies employing microarrays, proteomics and ChIP-chip (as is the 

mandate of this chapter) alongside studies aimed at determining the function of small 

numbers/single genes.  Thus, our goal is to illustrate how systems-level techniques 

have been used alongside these more focused studies to successfully identify the 

regulation of the cell cycle in Caulobacter. 
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1.3.1 A first application of genome-wide expression profiling to Caulobacter. 

 The first systems-level examination of Caulobacter’s RNA expression during 

its cell cycle was reported by Laub et al. in late 2000 (Laub, McAdams et al. 2000).  

Interestingly, this was reported in advance of the publishing of Caulobacter’s 

complete genome which was published 3 months later by Nierman et al. in 2001 

(Nierman, Feldblyum et al. 2001).  As such, the cDNA microarrays they used did not 

cover the entire set of ORF‘s in the Caulobacter genome, however they did represent 

2966 predicted ORF‘s, corresponding to nearly 80% of the 3767 that would be 

reported by Nieman et al.  Sampling every 15 minutes over the complete 150 minute 

cell cycle progression from SW cell to ST cell and final asymmetric cell division, 

Laub et al. identified 553 cell cycle regulated genes, 72 of which had been previously 

identified using earlier genetic techniques.  Clustering these cell cycle-regulated genes 

using self-organizing maps (SOM‘s), Laub et al. discovered that these were organized 

into sets of functionally associated genes that were induced in synchronization with 

the various events of the cell cycle.  These included coordinated sets of genes involved 

in DNA replication and cell division, protein synthesis and polar morphogenesis.  

Significant among these included homologs of the E. coli cell division genes ftsI, ftsW, 

ftsQ, ftsA, and ftsZ, the gene for the tubulin-like GTPase FtsZ, an essential protein for 

cell division.  Additionally, 16 histidine kinases were among these cell cycle regulated 

genes, of which only 4 at the time had been characterized, these being CheA, DivJ, 

CckA, and PleC. 



 

 

 

21 

1.3.2 Laub, McAdams et al., 2000 – probing the CtrA regulon. 

 In addition to this time course expression profile, Laub et al. also explored the 

regulon of CtrA, a member of the two-component response regulators that had already 

been identified using earlier genetic techniques to be a master regulator of the 

Caulobacter cell cycle (Ausmees and Jacobs-Wagner 2003).  This was accomplished 

by comparing the expression profiles of wild-type Caulobacter with those of a 

temperature sensitive mutant, revealing 144 differentially expressed gene transcripts 

as a result of CtrA expression.  To identify which of these were directly regulated by 

CtrA, Laub et al. used MEME (Bailey and Elkan 1994) to construct a consensus 

profile of known CtrA binding sites and then used this profile in conjunction with the 

expression data to identify several previously unknown genes under direct CtrA 

regulation, including divK, a single domain response regulator.  Finally, Laub et al. 

compared the mRNA expression of wild-type Caulobacter with another that contained 

an allele that produces a form of CtrA that is both proteolysis-resistant and 

constitutively active, resulting in cell cycle to arrest at the G1 (SW) stage.  From these 

assays, they were able to identify a nearly 70% overlap with those genes differentially 

expressed in the temperature sensitive mutant. 

 These findings were partially validated in a 2002 paper where CtrA targets 

were identified by performing chromatin immunoprecipitation with microarrays (aka 

ChIP-chip or ChIP-on-chip).  Interestingly, this was one of the first papers to use 

ChIP-chip data and for this reason, see § 1 for further discussion of ChIP-chip. Using 
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this, then new, ChIP-chip method, Laub et al. (Laub, Chen et al. 2002) identified 138 

regions enriched for CtrA binding; the 196 genes flanking these regions were then 

considered likely targets of CtrA.  Of these, 116 had been assayed by the microarray 

expression profiling reported by their earlier paper, as well as new expression profiling 

they performed of a ctrA temperature-sensitive mutant over a 4 hour time period 

(longer than the 2.5 hour cell-cycle) that was aimed at identifying CtrA-dependent 

genes (including those not involved in the cell-cycle).  Combining these three data sets 

together allowed Laub et al. to identify 55 CtrA binding sites that corresponded to 34 

individual genes and 21 putative operons yielding a total of 95 genes.  Among these 

included five genes involved in cell division and cell wall metabolism, 14 regulatory 

genes, and 29 polar morphogenesis genes, with the remaining 47 either unknown (25) 

or not discussed (22).  Notably, these also included ccrM, a methyltransferase 

previously known to be under CtrA regulation, as well the gene responsible for 

producing S-adenosylmethionine (SAM), the substrate used by CcrM for methylation.  

In addition, they also confirmed other prior results including those that showed CtrA 

had multiple binding sites in the origin of replication, as well as directly regulated a 

number of the main genes responsible for cell division, including ftsA, ftsQ ftsW and 

ftsZ. 

1.3.3 DivK:  

Soon after these global characterizations of CtrA effects, Hung and Shapiro 

(Hung and Shapiro 2002) described the impact of the single-domain response 
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regulator, DivK, on the Caulobacter cell cycle by using a cold sensitive, divK-cs, 

strain. They discovered that when grown at the restrictive temperature, the divK-cs 

strain developed into long, filamentous stalk-like cells. A return to the permissive 

temperature allowed these cells to recover morphologically, as cell division was 

permitted to proceed, indicating the cell cycle of the divK-cs strain had been halted at 

the G1-S stage by the restrictive temperature.  To further explore this behavior Hung 

and Shapiro next used cDNA microarrays to characterize the mRNA expression 

profiles of the divK-cs strain during growth in both the restrictive and permissive 

temperatures.  From these, they discovered that many of the Caulobacter cell cycle 

genes, including those involved in DNA replication, as well as pili and flagellar 

synthesis, were repressed during growth in the restrictive temperature, but became 

induced following the return to the permissive temperature.  Combining these new 

results with the prior understanding that CtrA must be proteolyzed in order for DNA 

replication to initiate, they next performed a series of immunoblot and pulse-chase 

analyses to examine CtrA quantities in the divK-cs strain.  From these experiments, 

they discovered that at the restrictive temperature, the divK-cs strain failed to 

proteolyze CtrA, thus preventing the initiation of DNA replication, leading Hung and 

Shapiro to conclude that DivK is requisite for CtrA proteolysis.  While the exact 

mechanism by which DivK mediated CtrA proteolysis was still unclear, Hung and 

Shapiro, noting that divK had been shown to be part of the CtrA regulon, further 

concluded that the two participate in a regulatory circuit with each other. 



 

 

 

24 

1.3.4 Dissection of CckA’s global effect  

 Shortly following these reports on the role of DivK in the Caulobacter cell 

cycle, Jacobs et al. (Jacobs, Ausmees et al. 2003) described the results of a series of 

experiments performed to elucidate the effects of CckA, a histidine kinase, upon the 

phosphorylation of the CtrA response regulator.  As phosphorylation of CtrA is one of 

the mechanisms by which CtrA activity is regulated and earlier studies had indicated 

CckA has a role in phosphorylating CtrA, the goal of their study was to explore 

CckA‘s role in regulating CtrA activity.  As their initial step, Jacobs et al. used 

microarrays and gel electrophoresis to compare the RNA and protein expression 

profiles of a ctrA temperature sensitive mutant strain with those of a temperature 

sensitive mutant strain for cckA.  Discovering that RNA and protein expression was 

virtually identical in both strains, Jacobs et al. next used 
32

P radiolabelling and 

immunoprecipitation with a Caulobacter wild-type strain to illustrate that 

phosphorylated CtrA and CckA (CtrA~P and CckA~P) possessed nearly matching 

patterns of expression during the cell cycle.  Subsequent viability studies illustrated 

that while a ∆cckA mutant strain was unviable, it could be rescued via a 

phosphorylation-independent ctrA mutation, providing evidence that suggested CckA 

was crucial for providing CckA~P mediated phosphorylation of CtrA.  A final test 

comparing RNA expression of a ∆ctrA∆cckA double mutant strain with that from a 

∆cckA strain, revealed nearly identical expression of the cell cycle-regulated genes for 

both strains.  As such, Jacobs et al. concluded from all these tests that CckA is a 
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required regulator for CtrA phosphorylation and subsequent activation, though they 

were unsure of what the exact mechanism for this regulation is. 

1.3.5 The cell cycle circuit circa 2004: 

 Thus, from the results of these systems-level experiments, along with those 

from other non-systems level studies of Caulobacter proteomic localization, a 

regulatory circuit centered on CtrA that governed Caulobacter’s cell cycle gradually 

began to emerge by early 2004.  For example, it was understood that CtrA was 

expressed at high levels during the SW cell (or G1) stage, but was quickly proteolyzed 

by a ClpXP-dependant process during the transition to an ST cell.  As a result of the 

decrease in CtrA in the cell, it was understood that the CtrA-controlled inhibition of 

DNA replication is released, allowing for replication to begin.  Additionally, it was 

also understood that expression of ctrA was induced shortly following the initiation of 

replication, however, there was still confusion about the transcription machinery 

driving this (Skerker and Laub 2004). 

 Specifically, by 2004 it was understood that as the levels of CtrA increase in 

the cell, CtrA acts to repress transcription from a weak upstream promoter, CtrAP1, 

while also activating expression from a stronger upstream promoter CtrAP2.  It was 

still unclear, though, what the exact mechanism was behind the expression of either of 

these two promoters.  For example, it was understood that ctrAP1 could only be 

expressed during the short window of replication when the new daughter strand is 

unmethylated.  Furthermore, it had been discovered that newly expressed CtrA is 
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quickly phosphorylated into its active form, CtrA~P which subsequently induces 

expression of the CcrM methyltransferase that methylates the daughter strand. In so 

doing, CtrA~P inhibits further activity from the ctrAP1 promoter.  However, it was 

not yet clear what transcription factor induces the transcription from ctrAP1 (Skerker 

and Laub 2004). 

 It was also understood that the newly produced CtrA was phosphorylated 

(CtrA~P) and that in the stalked portion of the PD cell, CtrA was again proteolyzed by 

a ClpXP-dependant process, allowing DNA replication to continue.  However, while 

the phosphorylation of CtrA was understood to be related to CckA phosphorylation, as 

described above, it was still unclear how the two were related.  Furthermore, the 

mechanism that allowed for the localized degradation of CtrA within the stalked end 

of the predivisional cell was still unknown, though, it was suspected that it was related 

to the localization to the stalked end of DivJ, a DivK kinase, which as described 

above, will induce CtrA proteolysis (Skerker and Laub 2004). 

1.3.6 Holtzendorff’s GcrA - model 

 The next major step in the exploration of Caulobacter’s cell cycle was 

provided by Holtzendorff et al. (Holtzendorff, Hung et al. 2004) who reported in 2004 

that they had identified GcrA as a second master regulator of the Caulobacter cell 

cycle.  In their findings, Holtzedndorff et al. discovered that GcrA participates in a 

regulatory circuit with CtrA where in the first step of this circuit, gcrA is 

transcriptionally repressed by CtrA.  However, in the next step of the circuit, the 
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proteolysis of CtrA upon entry into S phase releases both the CtrA-mediated inhibition 

of DNA replication, as well as CtrA‘s repression of gcrA expression.  This 

subsequently, allows GcrA to induce ctrA expression from the CtrA P1 promoter 

during the short period while ctrAP1 is still in its hemi-methylated state on the 

daughter strand.  The circuit is closed when the resulting CtrA~P expression from the 

activation of the CtrA P1 promoter consequently re-represses gcrA transcription, 

thereby indirectly repressing the activation of the P1 promoter. 

 While the majority of the methods Holtzendorff et al. (Holtzendorff, Hung et 

al. 2004) applied to identify the role of GcrA were not systems level techniques, such 

as β-galactosidase assays and immunoblotting, they also performed expression 

profiling to characterize its regulon once its role had been identified.  Using oligo-

arrays that contained probe sets for 3761 predicted ORF‘s, Holtzendorff examined the 

expression profile of a ∆gcrA mutant strain in which a copy of gcrA was added under 

the control of a xylose-inducible promoter.  From the expression profile of this strain, 

Holtzendorff discovered 125 known cell cycle genes that were GcrA dependent.  Of 

these 125 genes, however, only 8 overlapped with the CtrA regulon that had been 

identified previously by Laub et al. (Laub, McAdams et al. 2000; Laub, Chen et al. 

2002).  Moreover, the fact that the two regulons for CtrA and GcrA consisted of only 

30% of the 553 cell cycle-regulated genes Laub et al. identified (Laub, McAdams et 

al. 2000) led Holtzendorff et al. to conclude that there were likely to exist additional 

proteins regulating Caulobacter’s cell cycle.  



 

 

 

28 

1.3.7 Global exploration of the effects of DnaA 

 The next such cell cycle-regulating protein to be identified was DnaA, the 

DNA replication initiation factor.  At the time, it was already well-established that 

DnaA played a major role in the initiation of DNA replication whereby binding to 

specific binding motifs within the origin of replication, called DnaA boxes, it ‗melts‘ 

the hydrogen bonds holding together the double-stranded DNA, allowing polymerases 

to access the individual strands.  However, in 2005 Hottes et al. (Hottes, Shapiro et al. 

2005) published results that indicated, similar to both E. coli and B. subtilis, DnaA 

also functioned as a transcription factor in Caulobacter.  Using a dnaA-inducible strain 

(dnaA under control of a xylose-inducible promoter), Hottes et al. performed 

expression profiling to identify 40 genes that were DnaA-dependent, 10 of which were 

known to be GcrA induced.  They next used the in silico motif-prediction tool, 

MEME, to identify DnaA boxes within the upstream regions of 13 of these, including 

gcrA, ftsZ, and podJ which Hottes et al. verified by using electrophoretic mobility 

shift assays.  Given these results, Hottes et al. concluded that these 13 genes 

comprised a regulon under the direct transcriptional control of DnaA, with DnaA 

serving as a promoter for GcrA, FtsZ and PodJ. 

1.3.8 Holtzendorff’s model of the cell-cycle control circuit 

 Thus, by this point, we had an emerging model involving 3 master regulators.  

Starting with active CtrA~P, the dephosphorylation and proteolysis of CtrA releases 

its repression of DNA replication as well as both the gcrA promoter (PgcrA) and its own 
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weak P1 promoter (ctrAP1).  The release of this CtrA mediated repression 

consequently allows DnaA to induce expression of GcrA.  In kind, GcrA induces 

expression of ctrA via expression of CtrA‘s weak P1 promoter, see figure 1.  However, 

as illustrated in figure 1, this newly expressed and phosphorylized CtrA (CtrA~P) 

subsequently further accelerates its own induction by simultaneously repressing its P1 

promoter, while inducing expression of its stronger P2 promoter (ctrAP2), with this 

repression of its P1 promoter occurring via two mechanisms.  The first of these being 

direct repression of ctrAP1 by the binding CtrA~P upstream of the P1 promoter.  The 

second occurring when CtrA-induced expression of the CcrM methyltransferase 

methylates the newly generated daughter strand, and thereby completely suppresses 

further expression of the P1 promoter by GcrA (Holtzendorff, Reinhardt et al. 2006).  

However, still left unanswered by this model are questions such as what is the 

mechanism by which phosphorylated CckA (CckA~P) controls the phosphorylation 

(and, thus activity) of CtrA.  Another is the question of what is the mechanism by 

which phosphorylated DivK (DivK~P) induces the dephosphorylation and proteolysis 

of CtrA.  A recently work by Biondi et al. addresses many of these questions; 

however, before discussing this paper, we need to make a brief detour to describe the 

underlying methods and motivation of the work. 

1.3.9 Skerker et al.’s phosphotransfer method 

In their paper, Biondi et al. utilized a biochemical phosphotransfer mapping 

method that had been developed in their lab and described by Skerker et al. in 2005 
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(Skerker, Prasol et al. 2005) which they named phosphotranfer profiling.  In this 

phosphotransfer profiling technique, a soluble kinase domain of a histidine kinase is 

autophosphorylated with radiolabelled ATP ([γ
-32

]ATP) and then incubated in separate 

in vitro experiments with each individual full-length response regulator.  Using an 

added autophosphorylated histidine kinase as a reference, phosphotranfer reactions 

between the kinase domain and their specific response regulators can be identified 

when the radiolabel is either depleted from the histidine kinase band or is transferred 

to the response regulator (which can be identified as a band that corresponds to its 

molecular weight).  Therefore with this method, researchers can systematically 

examine the complete compliment of response regulators of a given genome for 

phosphotransfer reactions with a given kinase. 

 With this phosphotransfer method, Skerker et al. (Skerker, Prasol et al. 2005) 

identified a signaling pathway between the cell envelop proteins CenK and CenR, and 

soon after, Biondi working with Skerker and others used the method to identify a 

signaling pathway involved in stalk biogenesis between ShkA and TacA (Biondi, 

Skerker et al. 2006).  Later, noting these open questions regarding CckA and DivK 

and their relationships with CtrA, Biondi et al. (Biondi, Reisinger et al. 2006) set out 

to determine their roles in Caulobacter’s cell cycle.  Their first step was to definitively 

determine whether or not CckA had the capacity to phosphorylize CtrA, which they 

accomplished by using phosphotransfer profiling.  From these tests, Biondi et al. 

determined that while CckA could autophosphorylate via the phosphorylation of its 
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receiver domain (CckA-RD) by its histidine kinase domain (CckA-HK), CckA had no 

direct role in the phosphorylation of CtrA.  Given these results, they suspected there 

existed an histidine phosphotransferase (HPT) which served as an intermediary 

between CckA~P and CtrA, as Jacobs et al. (Jacobs, Ausmees et al. 2003) had 

speculated in their initial exploration of CckA‘s relationship with CtrA. 

1.3.10 Identifying the key histidine phosphotransferase  

 However, none of the predicted genes in the Caulobacter genome were 

annotated as being an HPT.  Therefore, using common characteristics of HPT‘s as 

criteria, along with the requirement that any such gene must have an ortholog in 

another genome that also contained orthologs for CckA and CtrA as well, Biondi et al. 

identified a single candidate that they subsequently named ChpT.  To validate this 

hypothesis, they next performed viability as well as expression profiling experiments 

of a chpT deletion strain containing a plasmid with a xylose-inducible copy of chpT.  

From these tests, Biondi et al. discovered that in a glucose-only environment this 

strain was virtually identical to the ctrA
ts
 and cckA

ts
 strains that Jacobs et al. had used 

when grown at the restrictive temperature, strongly indicating a connection between 

the three genes.  Given these results, Biondi et al. next returned to the 

phosphotranspher profiling method to examine the relationship between these three 

genes.  From this method, Biondi et al. ascertained that, indeed, ChpT serves as the 

histidine phosphotransferase bridge between CckA and CtrA.   
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Furthermore, they also discovered that while CckA is ChpT‘s only input, ChpT 

can phosphorylate both CtrA as well as the single-domain response regulator, CpdR, 

which had only just recently been shown by Iniesta et al. to be critical to the 

localization of CtrA‘s protease, ClpXP, to the stalked cell pole (Iniesta, McGrath et al. 

2006) during the SW to ST transition.  Though not discussed in detail here as it was 

primarily a non-systems level study, this earlier work had demonstrated that CpdR 

while in its un-phosphorylated state controls the localization of ClpXP to the stalked 

cell pole, thereby facilitating CtrA proteolysis by ClpXP.  Moreover, they too had 

demonstrated that Cck~P was responsible for CpdR phosphorylation, resulting in 

ClpXP de-localization from the pole.  Thus, by demonstrating that ChpT served as the 

histidine phosphotransferase between both CtrA and CpdR, Biondi et al. had shown 

the mechanism by which CckA both activated and prevented its proteolysis. 

1.3.11 DivK’s role in CtrA regulation  

 With these results indicating a clear phosphotranspher CckA-ChpT-CtrA 

pathway, Biondi et al. turned their attention to DivK and its role in the 

dephosphorylation and proteolysis of CtrA.   Combining their results along with those 

of Hung and Shapiro who had shown that a divK
ts
 mutant strain was phenotypically 

similar to a constitutive expressing CtrA strain led Biondi et al. to hypothesize that 

phosphorylated DivK (DivK~P) inhibited CtrA activity by inhibiting activity of CckA.  

To verify their theory, they compared the CckA~P levels within a divK
ts
 mutant strain 
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with those of a wild type strain, finding a 4-fold increase of CckA~P in the divK
ts
 

mutant strain, giving evidence that DivK~P inhibited CckA~P. 

1.3.12 divK localization impacts cckA 

However, as Jacobs et al. (Jacobs, Ausmees et al. 2003) had illustrated that 

CckA~P was also dynamically localized during the cell cycle, Biondi et al. performed 

a long series of GFP localization experiments to determine the mechanisms driving 

this.  In their earlier work, Jacobs et al. had shown that CckA was localized to the 

swarmer pole during G1 phase, but was subsequently delocalized during the G1-S 

phase transition before becoming localized to both poles of the predivisional cell and 

then later delocalized from in the new stalked cell.  While not discussed in detail, 

Biondi et al. used GFP localization experiments to illustrate that indeed, DivK~P 

triggers CckA to delocalize and inactivate, resulting in a consequent inactivation of 

CtrA.  Furthermore, as previous studies had shown that DivJ, a DivK kinase, localized 

to the stalked pole, while PleC, a DivK~P phosphatase, localized to the swarmer pole, 

Biondi et al. hypothesized that cell division was crucial for DivK~P induced 

delocalization of CckA which they also verified using GFP localization experiments.  

Finally, using a constitutively expression DivK strain, they also demonstrated that the 

timing of DivK expression, normally mediated by CtrA, was necessary for normal or 

wild-type cell cycle progression. 
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Figure 1.1: Caulobacter cell-cycle circuit.   Overview of the cell-circuit controlling the Caulobacter 

cell cycle.  Biochemical interactions are as indicated by the key in the figure.  Proteins in their activated 

state are shaded in blue, while those in their deactivated state are shaded in grey. Adapted from (Biondi, 

Reisinger et al. 2006; Holtzendorff, Reinhardt et al. 2006) 

 

1.3.13 The current model  

Thus, from the results of this work has emerged yet two more new feedback 

loops that drive the Caulobacter cell cycle, both of which involve a phosphotransfer 

cascade that starts with CckA and its activated form, CckA~P, and are determined by 

the proteomic localization within the cell.  In this circuit, as is illustrated in figure 1, 

CtrA~P induces expression of DivK, which when phosphorylated by its kinase, DivJ, 

will cause delocalization and proteolysis of CckA, preventing CckA from initiating 

this cascade.  In contrast, when DivK~P is inactivated by its phosphatase, PleC, into 

its inactive form DivK, this repression of CckA is lifted, allowing CckA to initiate a 
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phosphotransfer cascade that passes through the histidine phosphotransferase, ChpT.  

In turn, ChpT~P both deactivates CpdR-mediated proteolysis of CtrA by 

phophorylating it into its inactive form, CpdR~P, as well as phosphorylating CtrA into 

its active form, CtrA~P, thereby completing the loop.  Significant to understanding 

this regulatory circuit is to recognize the role that localization plays in determining the 

activity and inactivity of DivK.  Specifically, as illustrated in figure 2, DivK‘s kinase 

and phosphatase, DivJ and PleC, respectively are located in the two opposing poles of 

a late predivisional cell, with the PleC phosphatase in the swarmer pole and DivJ in 

the stalked pole.  As such, with PleC in the swarmer pole inhibiting DivK~P activity, 

CtrA~P is left unencumbered to repress further DNA replication, while the opposite is 

the case in the stalked pole, where DivJ induced phosphorylation of DivK and 

subsequent proteolysis of CtrA~P allows replication to reinitiate. 
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Figure 1.2: Caulobacter localization.  Schematic of the proteomic localization during the cell cycle 

progression of CtrA~P, CckA, DivJ, PleC, DivK and DivK~P.  Adapted from (Biondi, Reisinger et al. 

2006). 

 

1.3.14 Future Caulobacter work: 

Thus far, the bulk of the current research has focused on the regulatory 

relationships of the Caulobacter cell cycle.  However, as Biondi et al. identified, the 

temporal dynamics of expression will need to be an area of further study.  

Additionally, given its crucial role in the organism, localization and the mechanisms 

driving this deserve further attention.  On this last point, effort has focused on the 

polar organelle development protein, PodJ, which has been associated with PleC 

localization, though, neither the exact relationship and mechanism is known at this 

time (Jacobs-Wagner 2004), nor is that which determines DivJ localization.  Further 
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mapping of Caulobacter’s stress response and metabolism also present areas for 

further research as well. 
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1.4 Bacillus subtilis 

 Bacillus subtilis is one of the best studied model organisms in biology today. 

B. subtilis is a robust, non-pathogenic, aerobic, rod-shaped bacterium in the division 

Firmicutes; it’s a member of the class Bacilli that includes other gram positive genera 

such as Staphylococcus, Streptococcus, Enterococcus, and Clostridium. As a model 

organism, B. subtilis has been studied for over a century (happily predating the earliest 

pub med article), it was chosen as the best representative of the Gram-positive 

bacteria, and studying it can help us understand the biology of these organisms. The 

importance of the Bacillus genus spans biomedicine (w/ several pathogenic spore-

forming closely related species), industry (with several economically critical syntheses 

carried out in Bacillus species) and agricultural (members of the genus are insect 

pathogens that are used as a bio-insecticide). Bacilli are commonly found in soil, water 

sources and in association with plants (Kunst, Ogasawara et al. 1997). B. subtilis can 

be manipulated with relative ease since much of its genetics, biochemistry, and 

physiology are well established. Other important properties that make B. subtilis 

useful to study are: it is naturally competent, can form endospores, contains systems 

for motility, has a highly diversified set of two-component signal transduction 

pathways, quorum sensing, and a protein secretion system useful for expression of 

engineered proteins. 

 B. subtilis plays an important role in industrial and medical fields and has been 

used as a platform for the biosynthesis of small molecules and proteins because it is 
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one of several bacteria that can secrete enzymes at gram per liter concentrations 

directly into medium (Kunst, Ogasawara et al. 1997). It is known specifically for 

producing proteases and amylases and is currently being developed as a vaccine 

development platform (Kunst, Ogasawara et al. 1997; Ferreira, Ferreira et al. 2005). 

Importantly, its secretion system is more compact (has fewer components) than that of 

E. coli (Yamane, Bunai et al. 2004). 

 Bacteria commonly use a two-component signal transduction mechanism to 

respond to changing environmental conditions (Fabret, Feher et al. 1999). These 

phosphotransfer systems contain two components, a histidine protein kinase that 

autophosphorylates, and a response regulator protein that elicits a specific response (as 

described above) (Stock, Robinson et al. 2000; Mascher, Helmann et al. 2006). 

Homologous versions of this system in several organisms have been shown to initiate 

and direct various processes such as sporulation, chemotaxis, aerobic and anaerobic 

respiration, and competence (Fabret, Feher et al. 1999; Ogura and Fujita 2007). 

 Several species of Bacillus also produce and release chemical signals, called 

autoinducers or pheromones, which act as cell-cell signaling molecules between 

bacteria (Miller and Bassler 2001). As population density increases so do these 

signals, until a threshold is reached and gene expression is modulated. This process is 

called quorum sensing and controls responses such as competence, sporulation, 

motility, biofilm formation, and others (Miller and Bassler 2001). Quorum sensing is 
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an active area of research, as biofilm formation is critical to several biomedical and 

bio-industrial applications. 

1.4.1 Genome sequence and annotation 

 The complete genome sequence of B. subtilis became available in 1997 

revealing a sequence of 4.21Mbp containing about 4,106 protein coding genes (Kunst, 

Ogasawara et al. 1997). Bioinformatics approaches revealed other properties of the 

genome such as, a large family of putative ABC transporters, a variable G+C ratio of 

43.5%, repetitive elements, and an average predicted protein size of 890bp (Kunst, 

Ogasawara et al. 1997). The B. subtilis genome is similar in size to E. coli (4.6Mbp) 

and share roughly 1000 orthologous genes. Comparing these two genomes, which 

diverged about one billion years ago, will facilitate evolutionary studies of core genes, 

while comparisons of B. subtilis to other more closely related genomes, such as B. 

anthrasis, may provide information about conserved promoter structure and aid in 

diverse bioinformatics techniques from biclustering to gene finding. 

1.4.2 Initial forays into transcriptomics 

 Exploration of whole genome expression profiles in B. subtilis began in 2000 

by Fawcett et al, who were able to assign a number of genes to the sporulation process 

by using nylon-substrate macroarrays, covering ~96% of predicted ORFs, and Hidden 

Markov models to study the transcriptional profile of early to middle stages of 

sporulation (Fawcett, Eichenberger et al. 2000). Ye and colleagues, using two-color 

glass slide arrays, compared mRNA levels from aerobic and anaerobic conditions (Ye, 
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Tao et al. 2000). The results of these initial genome wide investigations revealed 

complex expression patterns, including many genes of unknown function with highly 

different expression under the measured conditions, indicating that much still 

remained to be learned about the control of spore formations and spore 

induction/control. 

1.4.3 Bacillus stress responses 

 A number of investigations have focused on the cellular response to stress at 

the transcriptome level in B. subtilis (this so-called stress response is a key focus of 

several prokaryotic functional genomics projects). Yoshida et al, studied glucose 

repression by a combined approach of microarray and 2D gel electrophoresis, with a 

focus on the genes dependent on catabolite control protein, CcpA (Yoshida, 

Kobayashi et al. 2001). Helmann et al investigated the general stress response to heat 

shock in order to establish its profile thus allowing it to be compared to other stress 

response profiles (Helmann, Wu et al. 2001). Nakano et al described the role of Spx as 

a global transcriptional regulator of disulfide stress conditions (Nakano, Kuster-

Schock et al. 2003). Ren et al observed the induction of stress response genes by 

investigating the growth inhibition mechanism of a natural brominated furanone (Ren, 

Bedzyk et al. 2004). Also in the search of new antibiotics, Lin et al., determined B. 

subtilis expression profiles in response to treatment with subinhibitory amounts of 

chloramphenicol, erythromycin, and gentamicim (Lin, Connelly et al. 2005). Hayashi 

and colleagues determined that there is a direct interaction, during H2O2 oxidative 
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stress, between PerR, a stress response regulator, and srfA, an operon involved in 

surfactin biosynthesis (Hayashi, Ohsawa et al. 2005). Allenby et al characterized the 

phosphate starvation, PhoP, regulon, identifying some new members and a connection 

to the sigB general stress regulon (Allenby, O'Connor et al. 2005). Ogura et al, 

investigated the role of RapD, one of 11 Rap proteins that typically inhibit response 

regulators, and found it to be a negative regulator, in conjuntion with SigX and RghR, 

of the ComA regulon (Ogura, Tsukahara et al. 2007). 

 

 Overall these genomic studies helped to bring in many key proteins that would 

have been missed, including several proteins never before linked to a known process. 

Once these proteins are discovered by genomic techniques they are quickly validated 

and integrated into the aggregate picture of stress response.Furthermore, identification 

of key genes and proteins has enabled the construction of networks between the 

various pathways and processes within the cell. 

1.4.4 Exploration of Bacillus two-component regulatory systems 

  As described above, two-component regulatory systems are characterized by a 

sensor protein (e.g. kinase) and a response regulator protein (e.g. DNA-binding 

protein). Ogura et al began using whole genome microarray analysis in order to 

identify the target genes of the response regulators DegU, ComA, and PhoP (Ogura, 

Yamaguchi et al. 2001). Using the same strategy as Ogura et al, overexpressing the 

response regulator in mutants for their sensor kinase, Kobayashi et al, further analyzed 
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24 different two-component regulatory systems (Kobayashi, Ogura et al. 2001). These 

studies greatly expanded our knowledge of kinase -> target-gene specificity, and 

interestingly, the role of cross-talk between these sensory systems. For example, they 

identified many new genes regulated by ComK along with some previously known 

genes and identified a cellular state they called, the K-state, as a time for the cell to 

rest and recover from stress that is separate from sporulation (Berka, Hahn et al. 

2002). This work was quickly followed up by Ogura et al, who then explored the roles 

of many ComK regulated genes, in order to better understand competence (Ogura, 

Yamaguchi et al. 2002). Britton et al, performed a genome wide analysis of sigmaH, 

which is involved mainly in transitioning from growth to stationary phase, but is also 

involved in initiation into sporulation and competence (Britton, Eichenberger et al. 

2002). Hamon et al., investigated genes involved in biofilm formation that are 

regulated by AbrB (Hamon, Stanley et al. 2004) whose results led to the discovery of 

two non-transcription factor gene products, a signal peptidase and a secreted protein, 

that play an essential role in biofilm formation. Serizawa et al., studied the YvrGHb 

two-component system and found it to control the maintenance of the cell surface and 

its proteins, as well as being involved in preventing autolysis (Serizawa, Kodama et al. 

2005). Keijser et al investigated the regulatory process and outlined key events of 

spore germination and outgrowth by microscopy, genome wide expression profiles, 

and metabolite analysis (Keijser, Beek et al. 2007).  
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1.4.5 Other uses for microarrays 

 Several reports have focused on RNAs other than mRNA, such as tRNA, 

untranslated RNAs, and RNAs involved in the processing of other RNAs. Ohashi et al, 

examined the modulation of the translation machinery during sporulation, finding in 

accordance with previous reports that there tends to be a dramatic global decrease in 

RNA, but that certain ribosomal rRNA and mRNA genes either remain the same or 

can increase (Ohashi, Inaoka et al. 2003). Dittmar et al aimed to quantify tRNA 

transcription, processing, and degradation levels on a genomic scale and developed 

specifically for tRNAs, a microarray and method of selectively labeling them 

(Dittmar, Mobley et al. 2004). Silvaggi et al., Investigated the small non-translated 

RNAs involved in sporulation by microarray analysis with a microarray of intergenic 

regions as probes and a comparative computational analysis that predicts conserved 

RNA secondary structures (Silvaggi, Perkins et al. 2006). 

 Earl et al examined 17 B. subtilis strains in order to quantify their diversity and 

identify regions of variability by microarray-based comparative genomic hybridization 

(M-CGH) (Earl, Losick et al. 2007). M-CGH results in a measure of gene presence or 

absence by quantifying the relative hybridization efficiencies from two differently 

labeled bacterial strains. AS, bacterial genomes are dynamic, they found the gene 

content of their collection of strains to have at least 28% variability, meaning the 

genes could either have diverged or are missing. 
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1.4.6 Probing Bacillus with ChIP-chip 

 ChIP-chip (described above) in combination with transcriptional profiling and 

gel electrophoretic mobility shift assays has been performed to identify 103 additional 

genes regulated by Spo0A, the master regulator for entry into sporulation (Molle, 

Fujita et al. 2003) and many new targets of CodY, a GTP-activated repressor of early 

stationary genes in B. subtilis (Molle, Fujita et al. 2003). Also, a centromere-like 

element in B. subtilis was defined by mapping the binding sites for RacA, a 

chromosome remodeling and anchoring gene, and identifying 25 high selectivity 

binding sites (Ben-Yehuda, Fujita et al. 2005). 

1.4.7 The B. subtilis proteome 

 The global study of proteomes (e.g. using mass-spectroscopy coupled with 

multiple seperation strategies) lags behind transcriptome studies in reproducibility, 

cost and accuracy.  Studying the dynamic proteome is confounded by several factors, 

for example: 1) there is a lack cost effective methods for designing high affinity, high 

specificity, capture agents for all proteins in a given genome, and 2) several post-

translational modifications of a protein can complicate its identification and 

quantification. The genome of B. subtilis contains more than 4100 genes and therefore 

we expect at least on the order of 4100 gene products. The proteome of B. subtilis has 

been studied for more than 20 years starting with explorations of heat shock proteins 

(Streips and Polio 1985). Then with the sequencing of the genome, establishment of 

online databanks, and advances in MS and 2D-PAGE technology, proteome wide 
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characterizations became possible. In the cytosol of vegetatively growing cells, 

Buttner et al., first identified over 300 proteins (Buttner, Bernhardt et al. 2001), then 

Eymann identified 876 proteins (Eymann, Dreisbach et al. 2004). Tam et al., identified 

over 200 proteins in cells under stress or starvation conditions (Tam le, Antelmann et 

al. 2006). Finally, Wolff et al, has increased the number of identified proteins to 1395, 

thus covering over one third of the B. subtilis proteome (Wolff, Otto et al. 2006; 

Wolff, Antelmann et al. 2007).  Clearly with slightly more than a third of the B. 

subtilis proteome identified, dynamical characterization of the proteome (both levels 

of proteins and protein modifications) will reveal a great deal of novel biological 

information (sequence specific degradation and translational control, specificity and 

dynamics of modification, etc).   

 

1.4.8 Yeast 2-hybrid investigation of the Bacillus protein interaction network 

 As described above, yeast 2-hybrid (Y2H) analysis is a widely used method for 

detecting protein-protein interactions and screens can scale to test whole genomes 

(Fields and Song 1989). Noirot-Gros et al, made an initial Y2H analysis of DNA 

replication components in B. subtilis identifying 69 proteins with 91 interactions 

(Noirot-Gros, Dervyn et al. 2002). Their investigation yielded several interesting 

results that connect DNA replication to diverse cellular processes, including 

membrane and signaling pathways. 
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Predictions from the work of Noirot-Gros et al, influenced Meile et al, to perform a 

larger scale semi-systematic protein localization study for over 100 proteins in B. 

subtilis (Meile, Wu et al. 2006). To accomplish this, they developed a new approach 

for the rapid construction of GFP fusion constructs. In their study, 110 ORFs were 

selected, 50 chosen from known DNA replication components identified by previous 

Y2H screens. The remaining 60 selections were from various functional categories, 

including some of unknown function, from different functional categories based on 

annotations from Subtilist, Swiss-Prot, and NCBI. Overall, 90% of the proteins they 

studied were tagged with GFP with 78% tagged on both the N- and C- ends. In 

summary, they were able to identify interesting localization patterns for 85 previously 

un-localized proteins, and thus identified new proteins associated with DNA-

replication machinery.  The locations of all proteins in the cell, under various 

conditions, will need to be compiled before there can be a clear picture of the 

organism at the systems level. 

1.4.9 Investigating metabolome changes during sporulation 

 Clearly the levels of metabolites are important to microbial biology, but methods 

for measuring the metabolome are much less widely adopted than methods for 

measuring the transcriptome and proteome. Capillary electrophoresis mass 

spectroscopy (CE-MS) is a powerful, quantitative tool for the direct and sensitive 

global analysis of metabolites. Soga et al., were able to determine a total of 1692 

metabolites by splitting sample using three purification schemes (one each for cationic 
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metabolites, anionic metabolites, and nucleotides/coenzyme A compounds) in parallel 

to separate and subsequently identify metabolites (Soga, Ohashi et al. 2003). To detect 

as many metabolites as possible they used an instrument wide range of approximately 

70 to 1000 m/z. Their novel strategy was lengthy, 16 hours per run, with several runs 

required, but is highly automated. Soga et al used their metabolomic approach to 

profile metabolites before and during sporulation. They characterized unknown peaks 

by combining CE-MS results with bioinformatics and made headway into determining 

the (partially characterized prior) link between sporulation in B. subtilis is and the 

metabolic network. Thus, revealing possible functional links from some 

uncharacterized metabolites. The power of their approach was nicely demonstrated by 

the ability to simultaneously monitor glycolytic, pentose phosphate, and TCA pathway 

sporulation metabolite responses consistent with previous data. The study showed that 

metabolite concentrations cannot be accurately resolved by transcriptome analysis and 

revealed significant changes in metabolites during B. subtilis sporulation important for 

deciphering this important process. 

1.4.10 A systems approach to reconstruction of the sporulation control circuit. 

 As is commonly known, multicellular organisms contain many different types 

of cells. The mechanism of cellular differentiation is a fundamental problem in 

biology. Various developmental processes such as cell growth, morphogenesis, cell 

death, etc, occur in bacteria, with sporulation being a prime example. Sporulation can 

be considered a developmental process, albeit a simple one, as it is the process by 
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which an organism differentiates from a vegetative cell type into a completely 

different cell type, the spore. The fate of each cell type is due to both its particular 

developmental gene expression program, as well as its interaction with the cell’s 

environment. B. subtilis, like many gram-positive, low G+C content, bacteria is known 

to undergo this transformation, and is among the best studied in this area. Inhospitable 

environmental conditions cause B. subtilis to begin the sporulation process, but it is 

typically induced in the laboratory by low nutrient conditions, e.g. the removal a 

carbon, nitrogen or phosphorus source (Piggot and Hilbert 2004). In the beginning of 

sporulation, a septum forms asymmetrically, near one end of the cell, dividing it into 

two cells, the larger mother cell and the smaller forespore; the forespore is to become 

the mature spore. Immediately following septum formation, the two cells have 

identical genomes but asymetric gene expression programs. In the next stage, the 

forespore is completely engulfed by the mother cell in a phagocytic-like process. The 

mother cell then nurtures the endospore surrounding it with proteins that form a spore 

cortex, and a spore coat. Finally, the mother cell lyses to release the fully developed 

and remarkably resilient spore (the spore is resistant to heat, UV and  radiation, and 

various chemicals and enzymes). When nutrients are again sensed in the environment, 

the spore can germinate and flourish as a vegetative cell (Setlow 2003). 

 Various independent transcriptome analyses have elucidated, on a genome-

wide level, many of the relationships between genes, including a catalog for 

sporulation the process of at least 600 genes (Fawcett, Eichenberger et al. 2000; 
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Britton, Eichenberger et al. 2002; Eichenberger, Jensen et al. 2003; Feucht, Evans et 

al. 2003; Molle, Fujita et al. 2003). Eichenberger and colleagues utilized an elegant 

microarray strategy in conjunction with computational, biochemical, and in vivo 

analyses attempting to take transcriptome analysis a step further (Eichenberger, Fujita 

et al. 2004). Their systems level investigation comprehensibly illustrated a regulatory 

circuit by integrating data from transcriptomics and genomics approaches thus 

characterizing the mechanism controlling the cell’s decision to sporulate, and the 

timing of the process by which the spore is assembled. 

 Transcription in bacteria is mediated by sigma () factors (general 

transcription factors involved in a large fraction of bacterial transcription initiations). 

Sigma factors bind to specific promoter regions, and in Bacillus have been shown to 

be master regulators with sequence specific affinity for separate promoters. There are 

at least 17 sigma factors in B. subtilis but only 6 have a notable role in sporulation 

(Moszer 1998; Moszer, Jones et al. 2002). Gene expression during sporulation is 

coordinated by 4 sigma factors 
E
, 

F
, 

G
, and 

K
. The regulatory cascade in the 

forespore is initiated by 
F
; it includes 48 genes organized in 36 transcription units 

whose products govern spore morphogenesis and germination properties (Wang, 

Setlow et al. 2006). After engulfment, 
G
 regulates transcription of genes involved in 

chromosome condensation and equipping the spore for germination. In the mother 

cell, 
E
 begins the cascade and turns on 262 genes (Zheng and Losick 1990; 

Eichenberger, Jensen et al. 2003; Eichenberger, Fujita et al. 2004). Two of the targets 
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of 
E
 are DNA binding proteins, SpoIIID and GerR (Kunkel, Kroos et al. 1989; 

Stevens and Errington 1990; Tatti, Jones et al. 1991; Errington 2003; Eichenberger, 

Fujita et al. 2004). The function of GerR was previously unknown and now has a role 

as a negative regulator, switching off genes in the 
E
 regulon. SpoIIID is interesting in 

that it acts as a repressor for some genes activated by 
E
 and activates additional genes 

in conjunction with 
E
. SpoIIID is important for activating many coat proteins and 

especially the genes for an inactive proprotein, pro-
K
, that ultimately converts to 

mature 
K
 upon reception of an intercellular signal governed by forespore specific 

G
. 

This signal is important for keeping the separate mother cell and forespore programs 

coordinated during the morphogenesis (Errington 2003; Hilbert and Piggot 2004). The 


K
 regulon includes sets of genes for the spore cortex, structural components of the 

spore coat and germination (Steil, Serrano et al. 2005), and importantly GerE. Last in 

the mother cell line hierarchy, GerE, a DNA binding protein, activates a final set of 36 

genes and represses about half of the genes activated by 
K
. For example, two cell 

wall hydrolases are activated that play a role in lysis of the mother cell when spore 

morphogenesis is complete. 

  Eichenberger et al compared RNA from mutants in transcriptional regulators 

suspected/known to control sporulation; using prior knowledge of the sporulation 

process they were able to construct near-optimal experimental designs for measuring 

the effects of these perturbed transcription factors. As a result of their transcriptional 

profiling strategy, two DNA-binding proteins, SpoIIID and GerR, turned on by 
E
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were found to have significant effects on the 
E
 regulon. SpoIIID extensively affects 

the 
E
 regulated transcription pattern, influencing over half of the 

E
 regulon. This 

seems to be accomplished by direct interaction, as evidenced by assaying the promoter 

regions of the modulated genes. Evidence for direct interaction with the promoter 

regions was obtained first by identifying SpoIIID binding sites with gel 

electrophoresis mobility-shift assays and DNAse I footprinting. Their application of in 

vivo ChIP-chip revealed many regions on the chromosome that SpoIIID bound that did 

not include genes not known to be under under its control, and some sites were located 

within protein coding regions, possibly indicating an architectural role for SpoIIID. 

Finally, computational binding site sequence analysis was used to find putative 

conserved motifs in the upstream region of genes regulated by SpoIIID. Analysis of 

GerR by transcriptional profiling found that no genes that were dependent upon GerR 

for activation, but many genes were inhibited by GerR. Following SpoIIID in the 

cascade, the 
K
 regulon was delineated by transcriptional profiling and further 

resolved by computational sequence analysis to identify a conserved motif in the 

promoters of the 
K
 regulated genes. The last regulator in this cascade, another DNA-

binding protein, GerE, was found to inhibit the expression of slightly over half of the 


K
 regulon and activate at least 36 additional genes at the end of the mother-cell line 

of gene expression. 

 A comprehensive program of the mother-cell line of gene expression can be 

drawn from these results together, see figure 3. The resulting model consits of a 
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hierarchical regulatory cascade of three DNA-binding proteins (SpoIIID, GerR, and 

GerE) and two general transcription factors (sigma factors 
E
 and 

K
); 

E
 begins the 

cascade by activating transcription of 262 genes. SpoIIID and GerR repress many 

genes of the 
E
 regulon and SpoIIID and 

E
 activate 10 additional genes. 

K
 activates 

75 more genes, and finally, GerE, represses over half of the 
K
 regulon and activates 

36 more genes. Eichenberger et al., compiled these results into a transcriptional 

network composed of a linked series of five type-1 feed forward loops (FFLs) (Milo, 

Shen-Orr et al. 2002; Shen-Orr, Milo et al. 2002; Mangan and Alon 2003). Two of the 

FFLs are coherent and have the property of being persistence detectors (low pass 

filters), these may be used to minimized the effect of high frequency noise (Mangan 

and Alon 2003). Three of the FFLs are incoherent and have the property of producing 

pulses of gene transcription (Mangan and Alon 2003). 

 Finally, they performed comparative analyses to determine possible 

conservation of this spore formation curcuit in other endospore forming bacteria. 

There are differences in the presence of certain regulatory proteins, for example, 

Bacillus and Clostridium contain orthologs for 
E
, 

K
 and SpoIIID including 

conserved sequence recognition domains, but Clostridium is missing GerE and GerR. 

Also, there is variation in the composition of each individual regulon among species, 

for example:  75% of the B. subtilis 
E
 regulon have orthologs in B. anthracis and B. 

cereus whereas only 40% have orthologs in Clostridium, and 50% of the B. subtilis 
K
 

regulon have orthologs in B. anthracis and B. cereus compared to 20% that have 
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orthologs in Clostridium. They show that this pattern of conservation is consistent 

with the fact that the 
K
 regulon contains many components of the spore’s outer 

surface and that spore surfaces of B. subtilis, B. anthracis and B. cereus are known to 

be quite different quite different (Chada, Sanstad et al. 2003), the low level of 

conservation among 
K
 regulons may be due to adaptation to an ecological niche. 

Thus, the sporulation circuit (the regulatory control of the decision to sporulate and the 

subsequent control of spore assembly) is more conserved than the target protein 

components (the spore coat proteins). Finally, Wang et al, extended this work by 

investigating the forespore line of gene expression and synthesized a single model 

summarized in figure 3 (Wang, Setlow et al. 2006). 

1.5 Escherichia coli 

 Discovered in 1886 by Theodore Escherich, Escherichia coli is a Gram-

negative species of bacteria that inhabit the mammalian gut, specifically the colon or 

lower intestines.  As one of the best studied organisms of the pre-genomic era, E. coli, 

like B. subtilis was an early target for sequencing and in 1997, the complete sequence 

for the K-12 (MG1655) strain, consisting of 4,639,221 base pairs, was completed and 

reported by Blattner et al. (Blattner, Plunkett et al. 1997).  

1.5.1 Early systems-wide studies: 

Shortly following the completed sequencing of the E. coli genome in 1997, 

later that same year, the first two genome-wide microarray studies of Sacromyces 
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cerevisiae were reported.  The first, by DeRisi et al. (DeRisi, Iyer et al. 1997), used 

spotted cDNA arrays to profile the expression changes of yeast during diauxic shift, 

and then later Wodicka et al. (Wodicka, Dong et al. 1997) used 25-mer 

oligonucleotide arrays from Affymetrix to profile the expression differences of yeast 

grown on rich versus minimal media. Closely following these initial studies, two early 

projects were performed to develop microarrays for E. coli.  The first of these, 

described by Tao, Busch et al. (Tao, Bausch et al. 1999) was a microarray that used 

nylon membranes and radio-labels for the cDNA; making the experiment essentially a 

genome-wide northern blot.  In contrast, the second project by Wei, Lee et al. (Wei, 

Lee et al. 2001) used the technique developed by Pat Brown to develop a two-color, 

spotted cDNA microarray on glass slides.  Shortly following these initial studies, 

Richmond, Glasner et al. (Richmond, Glasner et al. 1999) compared these two 

microarray technologies by comparing the expression profiles reported for two well-

studied environmental responses.  Specifically, in their comparison, they used both 

technologies to explore the RNA expression profiles of E. coli’s heat shock response, 

as well as exposure to the lac operon inducer, isopropyl-b-D-thiogalactopyranoside 

(IPTG).  In their results, the authors reported that both microarray varieties indicated 

expression differences for genes in both the lac and melibiose operons for the IPTG 

tests, both of which were expected given previous published experimental work. A 

sizeable intersection between the genes that the two technologies reported as being 

induced during the heat shock response was found; 62 of the 77 genes reported by the 
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nylon membrane microarrays were also identified as being induced by the glass cDNA 

arrays.  In contrast, the authors reported little overlap between the genes the two 

technologies identified as being down regulated.  Despite this discrepancy, the authors 

concluded that glass microarrays were more reproducible and therefore recommended 

it as the preferred method. 

1.5.2 Overview of early E. coli microarray studies 

 Shortly after these initial projects, Selinger, Cheung et al. (Selinger, Cheung et 

al. 2000) introduced the first Affymetrix chips designed for E. coli in a paper that 

compared the expression profiles of E. coli during logarithmic growth and stationary 

phases (on a rich medium). In addition to probes for the 4290 predicted ORF‘s in the 

E. coli genome, these new chips also contained probe sets for non-coding RNA‘s such 

as tRNA‘s and ribosomal rRNA‘s.  While there was some discussion of results of the 

biological findings of their experiment, the focus of the paper, not surprisingly, was on 

the technology and the advantages offered by using short oligos, rather than whole 

cDNA‘s.  The primary of which being lower cross-hybridization.  However, it‘s 

important to also note that as these were still the early days of microarray design, these 

chips had the design flaw of failing to randomize the location of the probes on the 

chip.  For example, the top half of the array contained all the probe sets for ORF‘s and 

untranslated RNA‘s, while all the tRNA and rRNA probe sets were all located along 

the bottom edge of the chip.  As described by Qian and Kluger(Qian, Kluger et al. 

2003), chips that manifest such a linearity in probe location are prone to biasing the 
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expression levels reported when there is an uneven distribution of RNA in the solution 

that is hybridized to the chip. 

 Following the announcements of these new E. coli-specific genome-wide 

microarrays, they were quickly adopted by researchers who began applying them in 

systems-wide studies of various environmental and metabolic responses.  While many 

of these responses had already been the subject of earlier studies using previously 

existing genetic techniques, for most this was the first time they had been studied at a 

genome, or systems-wide, level.  Early examples include explorations of the SOS 

response (Courcelle, Khodursky et al. 2001), metal-ion tolerance (Brocklehurst and 

Morby 2000), osmostress (Weber and Jung 2002), and adaptation to acetate and 

propionate (Polen, Rittmann et al. 2003).  More recent examples of stress-response 

examinations include inhibition of cell division (Arends and Weiss 2004), anti-

microbial peptides (Hong, Shchepetov et al. 2003; Tomasinsig, Scocchi et al. 2004), 

and cadmium toxicity (Wang and Crowley 2005). 

 These early studies were primarily descriptive in nature but were also key in 

motivating the development of several analysis techniques suited to these genome-

wide measurement technologies.  In this sense, they can be viewed as foundational as 

they reported systems wide expression differences, from which new hypotheses could 

be drawn that could be validated and further explored in later studies.  For example, it 

was shown by Barbosa and Levy (Barbosa and Levy 2000), and later partially 

validated by Pomposiello, Bennik and Demple (Pomposiello, Bennik et al. 2001) that 
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there was a previously unknown overlap between the multiple antibiotic resistance and 

oxidative stress regulons (MarRA and SoxRS, respectively), a finding that would not 

have been easily identifiable using previous experimental methodologies.  Another 

example would be the results reported by Zheng, Wang et al. (Zheng, Wang et al. 

2001) who discovered an additional overlap for the SoxRS response regulon with that 

of the OxyR response regulon. 

1.5.3 System level studies of regulatory interactions governing the glutamate 

dependent acid response (AR): 

 One example of how systems level biology assisted in the study of E. coli 

focused on and helped elucidate a complex network of regulatory interactions 

governing its glutamate-dependent acid resistance or response (AR).  While the ability 

of E. coli to develop acid resistance was first observed over 50 years ago, it was not 

until 1995, during the pre-genomic era, that it was discovered that there exist 4 distinct 

systems within E. coli for acquiring AR (Lin, Lee et al. 1995; Foster 2004).  These 

include one system that is repressed by glucose (and only functions in its absence), 

another that is dependent on arginine, as well as one more that is dependent upon 

lysine, and finally a fourth that is glutamate dependent (with the last three functioning 

in environments that include glucose).  Of these, the glutamate-dependent system is 

the most effective, the best studied, and the one upon which systems biology has had 

the most impact. 
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 The first systems-level foray into the understanding of E. coli‘s glutamate-

dependent AR was performed by Hommais et al. (Hommais, Krin et al. 2001), though 

the original goal of the work was to explore the role of E. coli‘s nucleoid-associated 

protein, H-NS.  Using nylon membrane microarrays to compare the RNA expression 

profiles of wild type and an hns mutant strain, Hommais et al. identified expression 

differences for genes involved in processes including those that were then known to be 

involved in osmolarity and acid resistance.  Note, for the majority of the observed 

gene expression differences, the expression was induced or elevated in the ∆hns strain, 

leading them to conclude that H-NS was a repressor of gene regulation.  Among the 

genes up-regulated in the ∆hns strain included evgA, the regulator from the EvgAS 

two-component system, as well as gadA and gadB, the two glutamate decarboxlyases 

known to be required for acid resistance, as well as gadC, the GABA/glutamate 

antiporter required by AR.  Noting the induction of the genes involved in acid 

resistance, Hommais et al. next explored the impact of the ∆hns upon acid resistance.  

Comparing the effects of arginine, lysine and glutamate acid stress upon both the ∆hns 

and the wild-type strains, Hommais et al. discovered that the ∆hns strain only 

conferred a resistance when in the presence of glutamate.  Based on these results, 

Hommais et al. used plasmid-induced overexpression strains to identify yhiX (later 

renamed to gadX) as a gene whose overexpression will impart acid resistance, leading 

them to conclude that it was likely to be a transcription factor necessary for glutamate-

dependent AR. 
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 A year after Hommais et al. published their results, Masuda and Church 

(Masuda and Church 2002) set out to explore the regulon of the EvgA response 

regulator protein in the EvgAS two-component signaling system, with the hope that 

characterizing the response would help identify EvgA‘s functional role.  To 

accomplish this, they used E. coli specific chips from Affymetrix to compare the 

expression profiles of EvgA knockout and overexpressing (via a transfected plasmid) 

strains to identify potential target genes of the EvgA regulon.  Now, as EvgA‘s 

functional role was still unclear at the time, they also developed a similar set of strains 

from an acrAB knockout strain, as it had been reported by Nishino and Yamaguchi 

(Nishino and Yamaguchi 2001) that EvgA overexpression would bestow antibiotic 

resistance to this strain.  Comparing the expression profiles of all these strains, 

Masuda and Church were able to identify 79 genes with induced expression as well as 

another 24 that were repressed or reduced.  

1.5.3.1 Exploring the genes necessary for acid resistance 

 Of these, they noted that several were genes known to be involved in 

conferring acid resistance, motivating their exploration of the effect of EvgA 

overexpression upon the organism‘s response to acid stress.  Thus, to verify their 

hypothesis, they performed survivability tests for E. coli in a low pH environment and 

discovered that, as they suspected, EvgA overexpressing strains were, indeed, acid 

resistant.  Given this validation, the authors then performed another series of 

survivability experiments using knockout strains for each of the genes most strongly 
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induced by EvgA overexpression.  From these tests, Masuda and Church were able to 

identify 3 genes, ydeO, ydeP, and yhiE (later renamed to gadE) that were required for 

the acid response of E. coli in logarithmic growth, while also discovering that gadE is 

key to the organism‘s acid response while in stationary phase. 

1.5.3.2 Identifying EvgA’s role in acid resistance  

 Along with their findings for the acid stress response, Masuda and Church also 

performed a similar set of experiments to explore the drug resistance that was induced 

by EvgA overexpression in the ∆acr strains.  In so doing, they were able to identify 

the YhiUV efflux pump and the TolC outer membrane channel proteins as being key 

to the ∆acr strain‘s drug resistance during EvgA overexpression.  However, in later 

tests, they also observed that EvgA overexpression could not confer drug resistance 

for strains without this ∆acr deletion.  For this reason, combining their observations 

about both the drug and acid shock response, Masuda and Church concluded that 

EvgA‘s primary role is not in coordinating the organism‘s drug response, but instead 

its acid shock response. 

1.5.3.3 Expanding the list of AR regulators 

 In a similar project, performed nearly concurrently with that done by Masuda 

and Church, Nishino et al. (Nishino, Inazumi et al. 2003) partially validated Masuda 

and Church‘s findings.  For example, they too recognized the induced expression of 

genes known to be involved in the organism‘s acid response and thus tested the effects 

of EvgA overexpression on the survivability of the organism.  While they also 
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observed an increased resistance to acid shock, they however did not pursue this 

further and thus did not identify the critical roles of ydeO, ydeP, and gadE in its acid 

response. 

 In contrast to the Masuda et al. and Nishino et al. investigations, the goal of 

Tucker et al. (Tucker, Tucker et al. 2002)  was specifically to explore E. coli‘s 

glutamate-dependent AR.  To accomplish this, they used nylon membrane chips to 

compare the expression profiles of E. coli during logarithmic growth in glucose-rich 

media of varying pH, with pH‘s of 7.4, 5.5 and 4.5.  Of the genes they identified as 

being induced were included 6 genes that were either known or suspected of being 

transcription factors, including 4 in the hdeA-gadA region with these being yhiF, 

gadE, gadX, and gadW
1
.  Similar to Masuda and Church, to further explore the roles 

of the induced genes, Tucker et al. generated gene knockout strains and performed 

survivability tests on these.  Focusing on 7 genes in the hdeA-gadA region, they 

discovered that only one, gadE, was critical for the organism to become acid resistant 

and for this reason, they concluded that it likely was an AR transcription factor. 

 Following up their initial study, Masuda and Church (Masuda and Church 

2003) developed a set of deletion and overexpression E. coli strains for each of the 

ydeO, ydeP, and gadE genes they identified in their earlier study.  From the results of 

a series of susceptibility tests for these strains, they hypothesized that there exists a set 

                                                 

1 Note, in the text the last 3 genes are referred to as yhiE, yhiX, and yhiW, but were later renamed using the gad prefix 
once they were recognized as being members of the glutamate AR regulon.  For the sake of clarity and consistency, 
we use their current naming scheme rather than those used in the original text. 
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of cascading regulatory interactions where EvgA induces YdeO which subsequently 

induces GadE.  To validate this, they used a combination of in vitro and in silico 

systems-level methods.  Specifically, via the expression profiles of a new set of 

deletion mutants for the ydeO and evgA genes, individually and in combination, 

Masuda and Church identified 2 distinct regulons.  One of these being induced directly 

by EvgA expression (including YdeO), while the other was indirectly induced by 

EvgA via YdeO.  To further validate EvgA induction of YdeO, Masuda and Church 

used the in silico motif discovery tool, ALIGNACE, (Roth, Hughes et al. 1998) to 

identify a putative 18bp binding motif in the upstream regions of the genes that they 

predicted to be induced directly by EvgA.  Next, the putative binding sites in the 

upstream regions of ydeP and b1500 (a gene upstream of ydeO that they suspected 

formed an operon with it) were mutated in a new set of E. coli strains that were 

subsequently subjected to acid resistance tests.  The results from these experiments 

indicated that the putative EvgA binding sites were, as they suspected, necessary for 

acid resistance.  Combining their latest results with those of Hommais et al., Masuda 

and Church postulated a regulatory cascade with H-NS repressing EvgA, while EvgA 

induces YdeO.  As described above, YdeO was proposed to induce GadE, the 

transcription factor responsible for inducing acid resistance, with their complete model 

summarized in figure 3. 

 It is important to note, however, that in the network they proposed, Masuda 

and Church argued that GadX – an AraC-like protein identified by Hommais et al. as 
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being induced in hns mutants - did not induce GadE.  In contrast, earlier studies had 

concluded GadX was part of a complex regulatory circuit involving another AraC-like 

S
, and CRP (cAMP receptor protein).  

Masuda and Church based their argument on a comparison of the expression profiles 

of gadX deletion and gadX overexpression strains during exponential growth, which 

did not show gadE to be differentially expressed.  In contrast, in a nearly concurrent 

study, Tucker, Tucker et al. (Tucker, Tucker et al. 2003) compared the expression 

profiles of wild-type and deletion strains for gadX and gadW during stationary phase 

which they believed indicated a regulatory relationship between GadX and GadE.  

However, Tucker et al. argued that GadX works with GadW to integrate signals from 

other sources, though the exact mechanism of this is as yet unknown. Regardless, this 

inconsistency reminds us that co-expression is one facet of a highly interconnected 

system (one on many informational levels including protein, protein modification, 

etc.), but do not diminish the pioneering contributions made by these first global 

studies. 
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Figure 1.3: E. coli glutamate dependent acid resistance circuit.  Masuda and Church‘s model for E. 

coli’s glutamate dependent acid response, adapted from (Masuda and Church 2003).  Solid lines 

represent confirmed regulatory relationships, while dotted lines represent relationships that were 

unclear.  In this model, H-NS serves to repress evgA and gadX expression, while EvgA expression 

induces expression of ydeO and ydeP, both necessary for acid resistance, with YdeO expression 

inducing gadE expression.  Additionally, dotted lines are used to connect both YdeO and GadE with 

gadA, hdeD and the slp-yhiF, hdeAB-yhiD and gadBC operons to reflect uncertainty as to whether 

these were under YdeO‘s direct control or via GadE.  Reflecting their conclusion that GadX did not 

induce GadE expression, GadX is shown to induce some of the acid response genes and operons, but 

not gadE-yhiUV. 
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1.5.4 Global computational models of E. coli metabolism and regulation. 

 In addition to allowing researchers to study E. coli on a genome-wide scale, the 

completion of the sequencing of the E. coli genome also opened the door for the first 

genome-scale in silico models.  In fact, in silico models of E. coli have been around 

since as early as 1990 (R. A. Majewski and Domach 1990), however, these were 

limited in both scale and complexity, usually comprising a small set of genes and 

modeling only a few processes.  In contrast, the more recent models of regulation and 

metabolism contain thousands of genes involved in a nearly comprehensive number of 

processes (Covert, Knight et al. 2004). 

We‘ll describe these models and the ways they‘re being used in greater detail 

below, but first we need to cover a few basics. 

1.5.4.1 Data driven models of the E. coli regulatory network 

 Generally speaking, the full spectrum of in silico research can be divided into 2 

distinct classes consisting of:  1) regulatory network inference and 2) modeling of the 

full metabolic network and its interactions with a subset of the regulatory network. 

While there are networks that have been generated via manual collation and collection 

of experimentally validated interactions from published literature (Ogata, Goto et al. 

1998; Karp, Riley et al. 2000; Salgado, Gama-Castro et al. 2006), it is expensive and 

time-consuming to create and maintain these networks as they require expert 

knowledge and extensive experimentation (full field X 50 years) to be generated.  As a 

result, there have been a number of in silico methods developed that attempt to infer 
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regulatory relationships from genome-wide experimental data such as microarray 

expression and ChIP-chip data.  Often, these methods use computational learning 

algorithms that have been adapted to work specifically with biological data 

(D'Haeseleer, Wen et al. 1999; Weaver, Workman et al. 1999; Friedman, Linial et al. 

2000; van Someren, Wessels et al. 2000; Vanet, Marsan et al. 2000; Segal, Taskar et 

al. 2001; van Someren, Wessels et al. 2002; Bar-Joseph, Gerber et al. 2003; Segal, 

Shapira et al. 2003; Stuart, Segal et al. 2003; Hashimoto, Kim et al. 2004; Bonneau, 

Reiss et al. 2006; Slonim, Friedman et al. 2006; Faith, Hayete et al. 2007).  In addition 

to offering the prospect of a cheaper and less costly solution, these automatic methods 

also have the possibility of identifying previously unknown protein interactions, 

providing quantitative means for experimental design, and a means for inferring the 

roles of genes of unknown function. The development of these algorithms is still in the 

nascent stage and currently there does not yet exist a ―gold standard‖ data set or 

known interaction map that can be used to gauge their performance. We will return to 

the second class (models including flux through metabolic networks) shortly, but first 

lets discuss one network inference project that has recently been applied to E. coli. 

 While, as mentioned above, there have been a number of efforts reported in 

recent years to infer the regulatory networks of various organisms and other systems 

the first such effort for E. coli has only recently been reported in early 2007 by Faith et 

al. (Faith, Hayete et al. 2007).  Faith et al. used an unsupervised network inference 

method, the context likelihood relatedness algorithm (or CLR), of their own 
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construction on a data set consisting of 445 E. coli Affymetrix microarray expression 

measurements coming from both published sources as well as new experiments (> 1/2 

of the collated data was new).  Once generated, they then validated their inferred 

network using a combination of in vitro and in silico methods.  We‘ll discuss the 

overall work and its findings shortly, but first let‘s describe the inference method they 

used. 

1.5.4.2 The CLR algorithm 

 The context likelihood relatedness (or CLR) algorithm compares expression 

profiles of the genes by utilizing mutual information (MI), a commonly used 

information theoretic similarity measure. Mutual information is defined as the relative 

entropy between the joint distribution and the product distribution of 2 random 

variables, X and Y, defined mathematically as: 

I X;Y  p x, y log
p x, y 
p x p y 









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
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where I(X:Y) is the MI for two variables (in this case the levels of two genes under a 

large number of conditions, p(x) is the probability of seeing a value for x in the 

distribution, p(y) is the probability of seeing a value for y in the distribution, and 

p(x,y) is the probability of seeing a given value for x and y in a single observation or 

sample. 

 Generally speaking MI can be understood to be a measure of the coupling 

between the distributions of two random variables, or in the case of the CLR 
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algorithm, the similarity between the distributions of 2 genes.  So, to get an intuition 

of how this measure operates, consider an example of 2 genes that are completely 

independent of each other such that p(gene1, gene2) = p(gene1) p(gene2).  As this 

situation would give us a fractional value (the fraction inside of the log function, that 

is) equal to 1, we would get a mutual information of 0 as log(1) = 0.  Additionally, 

another key aspect of MI is that we are guaranteed that the mutual information 

between any two variables will be greater than or equal to 0.  Thus, mutual 

information is a measure of the non-independence of two variables (or genes in our 

case).  Importantly the measure can detect relationships that would not be detected by 

a metric such as the Pearson correlation. 

 The CLR algorithm first calculates the background distribution of mutual 

information scores for each gene, estimated for each gene by determining the pairwise 

mutual information between it and the rest of the genes in the data set.  Then, using 

this background distribution of pairwise MI scores, the CLR algorithm calculates the 

likelihood of their score.  In so doing, this allows the CLR algorithm to filter out those 

genes that have spurious similarities with large numbers of other genes. 

 To improve the likelihood that high scoring gene pairs are causal and improve 

the stability and run time of their algorithm, Faith et al. selected a subset containing 

328 known or putative transcription factors and used these as the centroids or mediods 

of their clustering scheme. In so doing, they correctly reduced both the overall search 
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space of their algorithm, improved the stability of the result with respect to small 

changes in the data, and reduced the cost of the requisite computation. 

 To validate the results from their CLR algorithm, Faith et al. used the 

RegulonDB database (Salgado, Gama-Castro et al. 2006) for its set of known 

interactions for E. coli.  Using these known interactions (culled from the literature) to 

calculate precision and recall (percent true positives and percent true positives found), 

Faith et al. found that at a 60% precision rate, CLR identified 1079 interactions, of 

which 338 were known and 741 putative.  Additionally, Faith et al. further explored 

all of the discovered putative regulons containing 5 or more genes using the in silico 

motif analysis tool MEME, discovering significant motifs in 28 of the 61 regulons 

examined, with 13 of these corresponding to known motifs.  As yet another validation 

method, Faith et al. also performed in vivo validation using Chip-qPCR for 3 of the 

transcription factors they considered significant, identifying 21 previously unknown 

interactions.  Finally, the regulatory network identified a potential combinatorial 

transcriptional control of iron transport by the central metabolism of E. coli, which 

Faith et al. validated using real time quantitative PCR. 

 While these are clearly impressive and interesting results, one should also note 

a few limitations of their approach; many of these limitations represent limitations for 

all methods given current datasets and thus future directions for the field of regulatory 

network inference.  By limiting their search space to that of the known transcription 

factors, as many other techniques do, the CLR algorithm cannot detect auto-regulated 
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proteins such as the CtrA master control regulator in C. caulobacter (nor can any other 

method we are aware of).  Potentially, this could be resolved if the upstream region of 

the transcription factor corresponding to a particular regulon was included in upstream 

sequences that was validated using either of the in silico or in vivo methods they 

employed.   

1.5.4.3 Dynamic models of regulation and metabolism 

 In contrast, dynamic cellular models, as their name would imply, attempt to 

simulate the internal physiology of a cell.  A number of different approaches have 

been created to do this including thermodynamic (Loew and Schaff 2001; Beard, 

Liang et al. 2002; Edwards, Ramakrishna et al. 2002; Moraru, Schaff et al. 2002), 

stochastic (Arkin, Ross et al. 1998), cybernetic (Varner and Ramkrishna 1998; Varner 

and Ramkrishna 1999; Guardia, Gambhir et al. 2000) and constraint-based models (R. 

A. Majewski and Domach 1990; Edwards and Palsson 2000; Covert, Schilling et al. 

2001; Edwards, Ibarra et al. 2001; Covert and Palsson 2002; Edwards, Ramakrishna et 

al. 2002; Reed, Vo et al. 2003; Covert, Knight et al. 2004; Barrett, Herring et al. 

2005).  However, of these, constraint-based models are the only approach that has 

been shown to be scalable to genome-wide models as the others depend upon highly 

specified parameterizations of attributes such as polymerase availability and quantity, 

as well as other environmental factors such as temperature.  For this reason, they don‘t 

scale well to full genome-wide models, and we will focus on constraint-based methods 
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below.  (Covert, Schilling et al. 2001; Price, Papin et al. 2003; Reed and Palsson 

2003).  

1.5.4.3.1 Constraint-based overview & basic stoichiometric matrix 

 The constraint-based approach described by Price et al. uses a matrix of pre-

specified constraints as the central model (Price, Papin et al. 2003).  As such, rather 

than a single solution, a constraints based model may have multiple valid solutions 

provided they don‘t violate these constraints.  The earliest constraint-based models 

were designed to model the metabolism of a cell in steady state by using a matrix 

representation of the metabolic network for a given cell, denoted as S, that encodes the 

stoichiometry of each of the biochemical reactions within that cell. To find the 

allowable rates of each reaction (generally not known for more than a minority of 

reactions in any cell) we find the null space of S by setting Sv=0, where v is vector of 

the fluxes in the reactions described in S (and the unknown we are searching for).  For 

readers less familiar with this type of modeling we expand this discussion below. For a 

more extensive discussion of this type of modeling we refer interested readers to 

Palsson‘s recent book, aptly named ―Systems Biology‖ (Palsson 2006). 

1.5.4.3.1.1 The S matrix explained  

Let us first examine the matrix S.  Each row of S represents a single metabolic 

compound or metabolite, while each column represents an individual reaction that 

reflects the stoichiometry of that reaction.  So, for example, the following hypothetical 

reaction involving 4 reactants:   
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A + B → C + D 

would be represented by the vector ( -1, -1, 1, 1 )
T
, where the symbol, 

T
, is used to 

represent the transpose of the vector.  As such, the first two values of the vector (the -

1‘s) correspond to the compounds that are consumed in the reaction, namely A and B, 

while the latter two values correspond to the compounds produced by the reaction, C 

and D.   

 

Continuing our example, a reversible reaction such as:   

CD + E ↔ C + DE 

would require two vectors to represent the two possible reactions, i.e. (-1,-1,1, 1)
T
 and 

(1,1, -1,-1)
T
.  A more complex system involving 4 reactions (2 reversible and 2 

irreversible) and 8 reactants is illustrated in figure 4. 

 

Figure 1.4:  A stoichiometric matrix, S, for a system of 4 reactions involving 8 reactants.  Reaction 

1 corresponds to column one, reaction 2 to column 2, reaction 3 to columns 3 and 4, and reaction 4 

corresponds to columns 5 and 6. 
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Given a stoichiometry matrix we still need to know the relative rate constants 

corresponding to each reaction, a vector of rates v. One assumption is that the cell is at 

homeostasis (or will reach homeostasis following any perturbation. This assumption 

allows us to set Sv=0, this equality combined with other assumptions about allowable 

rates (which impose only very broad constraints on rates, such as rates must be > 0) 

allows us to find sets of allowable rates, v, which in turn allow us to predict the 

outcome of changes in metabolic flux following perturbations.  This approach, forcing 

the solution to exist in the null space of S, centers on the simplifying assumption that 

the organism and/or cell operates in perfect homeostasis. Other uses of this encoding 

of metabolism do not require this assumption and are discussed briefly below, for 

example Palsson‘s group has also performed analysis that do not require the 

assumption Sv=0, and have also carried out analysis that couple the metabolic and 

regulatory networks to successfully predict systems wide properties. 

1.5.4.3.1.2 A general approach for using stoichiometric models in simulation 

 Shortly following the formulation of this framework, in 1994 Varma and 

Palsson (Varma and Palsson 1994) illustrated how these metabolic models could be 

applied in simulation.  As an iterative approach, their algorithm divides the simulation 

into equal sized time slices or time points.  Provided an initial condition for the first 

time point ti, the solution v that produces optimal growth is chosen.  Following this, 
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any perturbations to the external media by this flux state are calculated, and then fed 

back into model to produce the state for the next time point ti+1. 

1.5.4.3.2 The first metabolic-only models 

 While, the first stoichiometric models of E. coli appeared as early as 1990 (R. 

A. Majewski and Domach 1990), the first genome wide model was the iJE660 in silico 

model that Edwards and Palsson developed in 2000 (Edwards and Palsson 2000).  To 

build their model, Edwards and Palsson relied on established databases such as 

EcoCyc, MPW and KEGG (Ogata, Goto et al. 1998; Selkov, Grechkin et al. 1998; 

Karp, Riley et al. 2000) which contain massive collections of experimentally 

discovered enzymatic and metabolic reactions that have been manually culled from the 

available literature.  Using these resources as the basis for their model, it contained 

705 genes, as well as 436 metabolites involved in 720 reactions.  Once completed, 

Edwards and Palsson used the model as a platform to perform a series of in silico gene 

knockout simulations, accomplished by removing the enzyme under consideration in 

silico by setting all relevant reaction rates (those involving that enzyme) to zero.  To 

gauge the performance of their model, Edwards and Palsson next compared their in 

silico results with those from known experiments and found that their model had a 

predictive accuracy of 86%.  In subsequent studies, their model was also used to 

predict optimal growth rates and evolutionary adaptation (Edwards, Ibarra et al. 2001; 

Ibarra, Edwards et al. 2002). 
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1.5.4.3.3 Incorporating regulatory networks into constraints based metabolic 

models 

 So, what was missing from these purely stoichiometric models?  A careful 

reader will likely have noticed that regulatory interactions between transcription 

factors and enzymes were not part of the initial models.  Originally, this stemmed 

from the assumption that an organism would regulate protein expression so as to 

optimize the metabolism of the compounds available to it; therefore, by focusing on 

metabolic rates, one could argue the model was implicitly taking these regulatory 

relationships into account (rolling regulatory influences on flux into the allowable 

rates found during the calculation of v). This initial lack of regulatory information was 

also is a result of the fact that regulatory networks are less well determined than 

metabolic networks.  However, to more realistically reflect the underlying biology, in 

2001, Covert et al. (Covert, Schilling et al. 2001) introduced into the model the use of 

Boolean logic to represent the various regulatory relationships between genes. 

 As an example of such Boolean logic, consider the hypothetical case of a 

microbe having thriving happily on its preferred carbon source, Carbon1, while also 

having the capacity to utilize a secondary carbon source, Carbon2, when Carbon1 is 

unavailable.  Continuing the example, imagine that there exists a regulatory 

relationship such that the transcription of a protein to transport Carbon2 into the cell is 

repressed when the microbe is in the presence of Carbon1.  If we use RPc1 to 

represent an external cell sensor protein for Carbon1 and tTc2 to represent a 



 

 

 

77 

transcription factor that induces transcription of the transporter protein, this 

relationship can easily be encoded using the following Boolean logic rules: 

RPc1 = IF (Carbon1) 

tTc2 = IF NOT (RPc1).
2
 

 In their initial description of these Boolean rules, Covert et al. applied these to 

a simplified model that, as a proof of principle, covered only a few growth conditions.  

However, in 2002 Covert and Palsson extended this approach to generate a model of 

the central metabolism of E. coli (Covert and Palsson 2002).  Using a literature based 

approach similar to that used to build the iJE660 model, Covert and Palsson generated 

a regulatory network consisting of 149 genes that regulated 73 enzymes and 16 other 

regulatory proteins.  To produce their final model, this regulatory network was 

combined with the iJE660 metabolic model, with the final product containing 45 

reactions whose availability was impacted by the regulatory relationships represented 

in the regulatory network.  In a new set of in silico gene deletion simulations, using 

both the new regulatory network as well as the original metabolic network, Covert and 

Palsson discovered that the regulatory model improved the overall performance from 

83% for the metabolic model to 91% correctly predicted growth responses. 

 Following their early success, in 2004 Covert et al. (Covert, Knight et al. 2004) 

reported that they had extended this approach to create iMC1010
v1

, the first genome-

                                                 

2
 Example taken from Covert, Schilling and Palsson, 2001 Covert, M. W., C. H. Schilling, et al. 

(2001). "Regulation of gene expression in flux balance models of metabolism." J Theor Biol 
213(1): 73-88. 
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wide metabolic and transcriptional model or in silico strain. The iMC1010
v1

 strain was 

actually an extension of an earlier metabolic model, iJR904, that had been reported the 

year before by Reed et al. (Reed, Vo et al. 2003), who themselves had extended the 

earlier iJE660 model to include 904 genes following the release of the updated E. coli 

genome in 2001 (Serres, Gopal et al. 2001).  This latest model was extended to include 

1010 genes, 104 of which transcription factors that regulated 479 of the remaining 906 

genes in the model.  To validate their new model, Covert et al. compared the predicted 

growth responses with 13,750 known experimentally-derived growth phenotypes 

available from the ASAP database (Glasner, Liss et al. 2003), discovering that their 

model correctly predicted the growth response in 78.7% of the cases. 

 To improve on their model, Covert et al. analyzed those cases where the 

known response disagreed with those that the model predicted, in the process 

identifying several suspected cases of missing or unknown enzymes and 

transcriptional interactions.  Furthermore, focusing on the organism‘s response to 

oxygen deprivation, Covert et al. also performed microarray expression profiling of 

several gene knockout strains they created to explore this response.  From the results 

of the analysis of this expression data, a number of updates to the model‘s regulatory 

network were made, resulting in their next in silico model, iMC1010
v2

, which too was 

then tested using the same growth response cases that had been applied to iMC1010
v1

.  

Unfortunately, the improvement in the number of correctly identified growth 

responses was negligible (+5 cases called correctly).  Despite these disappointing 
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results, Cover et al. observed, however, that the new model was far more successful in 

predicting the expression differences of genes that had been revealed to be 

differentially expressed by the microarray data. 

 Following this announcement of the iMC1010
vX

 in silico strains, in 2005 

Barret et al. (Barrett, Herring et al. 2005) reported the result of an interesting 

experiment where they compared the simulations of the iMC1010
v1

 strain grown in 

various media.  For their experiment, the media chosen was selected such that it would 

cover the full range of growth media that could be used by the iMC1010
v1

 strain.  

Enumerating all possible combinations of carbon, nitrogen, phosphate, sulfur and 

electron-acceptor sources resulted in 108,723 combinations, 15,580 of which induced 

sufficient predicted growth by the iMC1010
v1

 strain to be used in their comparison.  

Note, that rather than comparing the resulting growth phenotype, as was done by 

previous studies, they instead compared the predicted gene expression and activities 

during these simulations against one another.  Using an agglomerative clustering 

algorithm in combination with principal components analysis, Barret et al. discovered 

that most of the simulations grouped together into a relatively small number clusters – 

36 or 13, depending upon whether gene expression or gene activity was compared.  

Moreover, for either type of comparison, Barret et al. discovered that these clusters 

were characterized by the terminal electron acceptor available in the in silico growth 

environment.  These results led them to conclude that despite the multitude of possible 

environments E. coli could be subjected to its genetic system is designed to function in 
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a few dominant modes of response.  Or, as they succinctly summarized it, their results 

were consistent with the hypothesis that ―system complexity is built in to robustly 

provide for simple behavior‖. 

 Though it would be interesting to see how these results would compare with a 

similar experiment using the MC1010
v2

 model, if we focus on just the technological 

aspects for the moment, the ability to perform simulations on nearly 110,000 different 

media is impressive, in and of itself.  While acknowledging the current limitations of 

the existing models, it is clear that they still have the capacity to provide some 

important observations about the underlying nature of these organisms. Considering 

the fact that nearly 80% of their phenotype predictions (growth or not-growth) were 

accurate, this is clearly a milestone for global in silico modeling of global dynamics. 

 

E. coli metabolomics 

Metabolomics, briefly, is the study of all metabolites (small molecules), and 

their dynamics, for various conditions in an organism. The metabolome is crucial to 

our understanding of phenotype and fitness outcomes of different cell states (Fiehn 

2002) and the number of metabolites accessible is on the order of hundreds to 

thousands. There is evidence from comparing multiple complete genomes of a 

common core of enzymes that are fundamental for metabolism (Jardine, Gough et al. 

2002). Metabolism may be conserved to some degree at the enzyme level, but the 

processes and networks by which the various organisms convert metabolites varies 
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significantly (Peregrin-Alvarez, Tsoka et al. 2003). The field of metabolomics is 

advancing quickly. One example, important for industry and medicine, is the 

improvement of bacterial strains by metabolic engineering.  

Nobeli and colleagues attempted to characterize the E. coli metabolome using 

two-dimensional NMR to classify and identify metabolites systems-wide from living 

cells (Nobeli, Ponstingl et al. 2003). They compiled their dataset of 745 metabolites, a 

subset of the complete metabolome, from publicly available, experimentally verified 

data from the EcoCyc (Keseler, Collado-Vides et al. 2005) and KEGG (Kanehisa, 

Goto et al. 2006) databases. Clustering of the metabolites revealed a continuum with 

significant overlap of clusters and no clearly defined classes of metabolites (with 

respect to presence of absence under varying conditions). This early study 

demonstrated a novel systems level perspective of the metabolome. Much ‗omic‘ data 

is available and its integration is fundamental to understanding the complexities and 

robustness of a living system in its environment. 

1.6 Halobacterium salinarium NRC-1 

The archaeal Halobacterium salinarum NRC-1 is a halophillic (salt loving) 

organism that can not only survive, but requires highly saline environments, 

flourishing in environments such as the Great Salt Lake in Utah with ~4.5M salinity 

(or roughly 5-10 times the salinity of sea water). Halobacterium can also withstand a 

surprising variety of other stresses, such as oxidative stress, DNA-damaging 

chemicals, heavy metals, UV and gamma radiation, low oxygen, and desiccation. To 
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withstand high salt, it maintains an isoosmotic cytoplasm by eliminating some Na+ 

ions and maintaining a high intracellular K, Mg (and also Na) ion concentration.  As 

such, its genome possesses multiple ion transporters such as active K+ transporters 

(KdpABC), Na+ / H+ antiporters (NhaC proteins), low affinity ion transporters driven 

by membrane potential (Trk proteins), and heavy metal (arsenic and cadmium) 

transporters.  More importantly, Halobacterium flourishes in these environments by 

adjusting its physiology appropriately in response to numerous external stimuli. For 

example, it can relocate, in search of favorable environments, using sensors that can 

discriminate beneficial and detrimental spectra of light (Bogomolni and Spudich 1982; 

Spudich and Bogomolni 1984; Spudich, Takahashi et al. 1989; Spudich 1993), an 

aerotaxis transducer (HtrVIII) (Brooun, Bell et al. 1998) and buoyant gas-filled 

vesicles (DasSarma 1993).  One of the hallmarks of Halobacterium is its ability to 

survive anaerobically using light and/or arginine as energy sources and aerobically as 

a chemoheterotroph.  Halobacterium generates energy from light by its retinal-

containing light-driven ion transporters, bacteriorhodopsin and halorhodopsin (Kolbe, 

Besir et al. 2000; Luecke, Schobert et al. 2000).  Additionally, Halobacterium can also 

ferment arginine via the arginine deiminase pathway with each mole of arginine 

fermented yielding one mole of ATP (Ruepp and Soppa 1996). As such an 

extremeophile, it represents an interesting, yet still poorly understood class of 

organisms.  Moreover, from a systems biology perspective archaea present an 

interesting opportunity as while they are prokaryotic organisms, they share many 
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attributes with eukaryotes such as eukaryotic-like transcription, translation and TATA-

boxes.  Though they have been the subjects of study since the 1960s, in 2000 the first 

Halobacterium salinarum genome was sequenced, opening the door for further 

systems-level study of the organism (Ng, Kennedy et al. 2000; Dassarma, Berquist et 

al. 2006). 

 Below, we go through how some of these efforts have been applied to 

Halobacterium.  We will illustrate a systematic process consisting of the following 

steps: 

1. Define all of the elements in the cell (or organism).  Develop an initial model 

of the cell using existing knowledge, i.e. literature review. 

2. Perturb the system environmentally and/or genetically (knockouts, over 

expressions, etc.) and globally assay the relationships of the elements one to 

another (e.g., levels of mRNA and protein, protein/protein interactions, etc.).  

Integration of data from different sources is critical to a complete 

understanding. 

3. Compare the model with the experimental results to formulate new hypotheses 

which explain the discrepancies.  

4. Test these hypotheses with a new series of perturbations and update the model 

to more accurately reflect the experimental results. 

5. Iterate steps 2 - 4. 
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1.6.1 Sequencing of Halobacterium 

 As mentioned above sequencing of the H. salinarium NRC-1 genome was 

completed by Ng et al. in 2000 (Ng, Kennedy et al. 2000), who used a whole-genome 

shotgun strategy to sequence the genome which consists of one large replicon and two, 

relatively smaller replicons.  The larger of these contains ~2Mbp (2,571,010 bp, 

exactly), while the two smaller replicons, pNRC100 and pNRC200 each contain 

roughly 200 and 350 Kpb, respectively (191,346 and 365,425 exactly).  Using the in 

silico gene prediction program, GLIMMER (Salzberg, Delcher et al. 1998; Delcher, 

Harmon et al. 1999), Ng and colleagues identified 2682 putative genes, of which 2111 

were located on the large replicon, while 197 and 374 were found on the 2 smaller 

replicons, pNRC100 and pNRC200, respectively.  To assign function to these, the 

putative genes were translated and then submitted to NETBLAST (Altschul, Madden 

et al. 1997) to query for homologues in the nonredundant database of proteins hosted 

on the National Center for Biotechnology Information (NCBI).  The results from this 

search revealed that 1658 had significant matches, though of these matches, only 1067 

had known function while the remainder were hypothetical proteins.  Of these matches 

to genes with known function were genes involved in metabolism, cellular envelop 

maintenance, photobiology, DNA replication, transcription and translation.  

Interestingly, Ng et al. also identified 91 transposable insertion elements, with the 

majority of these (62) located on the 2 smaller replicons or minichromosomes, leading 
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them to conclude that these play a significant role in Halobacterium evolution by 

allowing the organism to gain new genes. 

1.6.2 Baliga et al., 2002 – systems wide exploration of energy production in 

differing environments. 

 Following the sequencing of Halobacterium, the first system-level analysis 

was reported by Baliga et al. in 2002 (Baliga, Pan et al. 2002), who explored the 

combined RNA and protein expression of Halobacterium during anaerobic energy 

production.  As mentioned above, from earlier studies, it was already known that in 

anaerobic conditions, Halobacterium could generate energy from either arginine 

fermentation or photosynthesis.  Additionally, from earlier studies, it was known that 

during phototrophic growth the organism generates numerous copies of a light-driven 

proton pump called bacteriorhodopsin (bR), which is a protein complex composed of 

the 2 proteins bacterioopsin (Bop), and retinal.  During phototrophic growth these 

proton pumps are organized in a two-dimensional lattice called the purple membrane.  

Furthermore, it was also known that another protein, Bat, regulated the expression of 

itself, as well as 3 others involved in bR synthesis, bop, brp, and crtB1. 

 Thus, to explore the regulatory network driving phototrophic growth, Baliga et 

al. performed RNA and protein expression analyses of 4 different strains, including 

the NRC-1 wild-type, a bop knockout strain (bop-), as well as both a bat 

overexpression (bat+) and knockout (bat-) strain.  Using cDNA microarrays, they 

discovered that the bop- strain exhibited little expression difference from the bat+ 
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strain.  However, as would be expected of a transcription factor, the bat+ and bat- 

exhibited significant numbers of differentially expressed genes, with 151 and 157 

differentially expressed genes, respectively.  What was not expected, though, was that 

functionally, their expression profiles were inverted, as those genes involved in 

photosynthesis were induced in the bat+ strain, but repressed in the bat- strain, while 

the opposite was the case for those involved in arginine fermentation (repressed in the 

bat+ strain, but induced in the bat- strain).  While the exact mechanism for this was 

unclear, Baliga et al. hypothesized that this inversion represents a strategy to maintain 

a steady level of ATP within the cell.  Additionally, subsequent proteomics studies 

using the ICAT technique (Gygi, Rist et al. 1999) found a number of differentially 

expressed proteins had no corresponding change in mRNA (33/50), indicating 

posttranslational effects upon protein expression.  Furthermore, in silico promoter 

analysis of the genes induced in the bat+ strain found only one additional gene 

containing the Bat binding site, indicating that most of these were subject to indirect 

regulation by Bat.  However, promoter analysis using MEME was able to identify a 

likely binding motif among five genes involved with arginine fermentation.  In so 

doing, their study lead to new hypotheses later verified with future genetic 

modifications and later iterations of the group‘s systems-level analyses. 

1.6.3 The functional annotation of Halobacterium proteome 

 In addition to these findings, Baliga et al. discovered that they had also been 

able to verify the existence (at the protein and transcript level) of 496 of the 971 
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hypothetical genes in the Halobacterium genome – those that had been predicted by 

gene finders, but had no homologues with other known genes.  This annotation was 

further expanded by Bonneau et al. (Bonneau, Baliga et al. 2004) who in a paper from 

2004 reported both a new functional, structure-based annotation of the Halobacterium 

genome, as well as a new contextual annotation of the genome that linked proteins by 

associations such as shared operon membership. 

 To update this proteome annotation, Bonneau et al. used a method which 

they‘d used previously in the critical assessment of structure prediction (CASP3,4 & 

5) (Bonneau, Strauss et al. 2001; Bonneau, Tsai et al. 2001; Chivian, Kim et al. 2003) 

which used two algorithms, Ginzu and Rosetta (Bonneau, Tsai et al. 2001; Aloy, Stark 

et al. 2003; Bradley, Chivian et al. 2003; Fischer, Rychlewski et al. 2003; Kinch, 

Wrabl et al. 2003) to predict protein domain boundaries and protein structure. The 

method is a hierarchical workflow that utilizes a protein domain-centric approach to 

identify function and structure starting only with the primary sequence of a predicted 

protein.  As an initial, pre-processing step, each query sequence is filtered for regions 

that are likely to be either transmembrane, coiled coils, signal peptides or a disordered 

region.  These regions are removed from further analysis, with the remainder 

submitted to their protein-domain parsing program, Ginzu, which attempts to parse the 

primary sequence into likely domains and identify their functions by using a 

hierarchical workflow (with more accurate methods placed at the top of this 

hierarchy).  The first step of this process is to use PSI-BLAST to search for sequence 
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matches to the PDB, resulting in high-quality, high-likelihood domains of known 

function.  For those regions of the protein not identified by this PSI-BLAST search, 

they are next queried using HMMER for matches in Pfam.  If any regions still have 

not been identified by these previous searches, as a third step Ginzu next attempts to 

identify matches to protein structures using Fold Recognition.  As the fourth and final 

step of Ginzu, any regions not recognized by the previous 3 methods are aligned to all 

known sequences using PSI-BLAST; multiple sequence alignments are parsed for 

block patterns indicative of domain structure.  Finally, all domains not matched by a 

known structure using these methods are then passed to the Rosetta algorithm, a de 

novo structure prediction algorithm that uses information from the PDB to identify 

likely local structure confirmations. 

 With their functional annotation process, Bonneau et al. found 1077 of the 

2596 protein coding genes in the Halobacterium genome had significant matches 

found by the initial PSI-BLAST search of the PDB.  Additionally, 610 domains were 

identified by querying the Pfam database, with an additional 670 domains identified 

using the two de novo structure prediction methods (Rosetta).  While 1234 protein 

domains could not be annotated by this method, this still translates into a nearly 30% 

improvement over the collection of sequence-based methods which had initially been 

used. 
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1.6.3.1 Protein associations and structure prediction to derive putative 

annotations for proteins 

 To generate their contextual annotation of associations, Bonneau et al. 

considered 4 possible association types, including protein-protein interactions, fusions 

of Halobacterium protein domains found in other genomes, proteins grouped into 

operons, and phylogenetic profile edges (Tatusov, Natale et al. 2001).  To identify 

putative protein-protein interactions, they used the COG (Clusters of Orthologous 

Genes) database, along with other databases of known interactions to infer 1143 likely 

interactions.  For the fusions of Halobacterium domains, a method described by 

Enright et al. (Enright, Iliopoulos et al. 1999) was utilized to identify 2460 suspected 

associations.  To identify operons, two methods were used, one which considered 

clusters of genes with shared directionality, while the other considered nearby pairs of 

genes which had orthologs in other genomes that were similarly co-located (Mellor, 

Yanai et al. 2002; Moreno-Hagelsieb and Collado-Vides 2002).  With these two 

methods, 1335 total putative operon associations were identified.  Finally, 525 

association links were added using the phylogenetic profile method of Marcotte et al. 

to identify collections of genes which often co-occur in different genomes (Marcotte, 

Pellegrini et al. 1999; Eisenberg, Marcotte et al. 2000). These associations and the 

prior proteome annotation effort provided a rich environment in which to explore 

protein function that was much greater than the sum of the individual parts. 
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1.6.4 Halobacterium’s stress response following exposure to ultraviolet 

radiation 

 We now further review Halobacterium’s stress response following exposure to 

ultraviolet (UV) radiation (Baliga, Bjork et al. 2004). Damage to DNA as a result of 

exposure to shortwave UV light (UV-C) falls into two categories, one being 

pyrimidine and pyrimidone phosphoproducts that are created between the C6 and C4 

carbons of neighboring pyrimidine nucleotides (i.e. T-C or C-C), while the other are 

cyclobutane pyrimidine dimers (CPD) that are created between the C4 and C5 

positions of neighboring pyrimidines of the same type (i.e. C-C or T-T).  Similarly, 

there exists two repair mechanisms in most organisms, one of which is the nucleotide 

excision repair (NER) system that can occur at any time, but is better with repairing 

phosphoproducts.  The second is a photolyase-catalyzed phosphoreaction that can only 

occur in the presence of light, and is more effective at repairing CPD‘s.  Note, 

however, both repair pathways can repair both types of DNA lesions.  Prior to Baliga 

et al.‘s exploration of the UV response, it had been known that Halobacterium had 

homologs for proteins in both systems, including homologs for both bacterial and 

eukaryotic NER proteins, though there were still questions regarding the exact 

machinery of these repair mechanism within the organism. 

 As an initial foray, Baliga et al. explored the UV-C resistance of the 

Halobacterium, by exposing Halobacterium in a thin liquid culture to UV-C radiation, 

finding that up to 110 J/m
2
 there was no loss of viability and 37% survivability 
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following 280 J/m
2
.  However, these initial tests also indicated that photoreactivation 

was a major UV repair mechanism (growth in light following exposure was 16 times 

more likely (16-fold) than growth in dark conditions).  For this reason, they next 

focused on two photolyase homologs phr1 and phr2 within the Halobacterium 

genome.  While it was already known that phr2 was a photolyase, the role of phr1 was 

still unknown.  Using 3 strains, consisting of a phr1 knockout (phr1-), a phr2 

knockout (phr2-), and a phr1 and phr2 double knockout (phr1-/phr2-), they found that 

their results clearly revealed that only phr2 functioned as a CPD photolyase, as the 

phr1- strain exhibited no difference from the wild-type following UV exposure.  As 

they also found that both the phr2- and phr1-/ phr2- strains exhibited ~3.5 fold 

increased survivability when grown in the presence of light versus dark following UV 

exposure, they next explored the processes occurring during what they termed light 

versus dark repair following exposure to UV light.   

 To accomplish this, they used an experimental procedure where they examined 

the organism, grown in either light or dark conditions, at 30 and 60 minutes post UV-

exposure, as well as a control (no UV exposure) after 60 minutes growth in light.  

Thus, five separate assays were performed (L30, L60, D30, D60, and C60). Using new 

70-mer oligonucleotide microarrays to assay the RNA expression at these time points, 

they found that a total of 420 genes who‘s mRNA was differentially expressed, with 

273 of these only occurring during the repair tests, 40 of which occurred in both repair 

conditions and 61 that occurred in both the control and repair assays. One of the more 
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interesting findings from these assays was the difference in number of genes that were 

repressed after 60 minutes repair growth in light (L60) assay versus those that were 

differentially expressed in the other repair assays.  Specifically, while <2% of 

Halobacterium’s genes were differentially expressed in any of the other repair assays, 

roughly 12% of the genome was found to be down regulated in the L60 assay, 

including nearly all the ribosomal and RNA polymerase genes. This massive down-

regulation has also been found to be a general stress response in other conditions, as 

well as other organisms. 

 Based on the structure-based reannotation of the genome, Baliga et al. were 

able to identify at least two transcription factors, genes VNG1318H and VNG0019H, 

who‘s function were unknown previously.  In addition, using the association 

annotation that Bonneau et al. described, along with their own expression results and 

information from the Kyoto Encyclopedia of Genes and Genomes, Baliga et al. were 

able to identify and visualize the response of biomodules using Cytoscape (Shannon, 

Markiel et al. 2003), a genomic data visualization tool.  We will discuss Cytoscape in 

greater detail below. However, all these combined tools and newly acquired 

information allowed Baliga et al. to formulate a number of new conclusions and 

hypotheses. Among these was the conclusion that phr2, and not phr1, was clearly a 

photolyase and the major mechanism of UV-C damage repair.  Another conclusion, 

based on the number of genes downregulated in the L60 sample, was that the major 

response to UV-C damage is a halt in transcription and translation to allow the 
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organism or cell to recover from the UV-C induced damage before regular cell activity 

and division restarts (a result also seen in other organisms stress response).  

Furthermore, they identified 3 new putative transcriptional regulators involved in 

repair damage, including the VNG1218H gene that we mentioned above. Finally, the 

new experimental data and computational analyses techniques also allowed Baliga et 

al. to speculate on 2 parallel mechanisms involving Cobalamin (B-12) biosynthesis. 

1.6.5 Data Visualization: Cytoscape and the Gaggle  

 Cytoscape is a computer program that Shannon et al. (Shannon, Markiel et al. 

2003) first reported in 2003, which displays the genes and associations of a given 

organism as a network where the genes represent nodes, and the associations 

represented as edges between the genes/nodes.  Furthermore, attributes such as 

function and mRNA and protein expression data can then be assigned to each gene in 

the network.  With this setup, Boolean networks and active transcriptional paths 

calculated using mRNA expression data can then be explored in context of the other 

data types integrated into the network to gain systems level insights and formulate 

hypotheses for further testing. See cytoscape.org for details, code and Cytoscape 

compatible tools (plugins). 

1.6.6 The quest for the global Halobacterium regulatory network: Philosophy. 

 Distilling regulatory networks from large genomic, proteomic and expression 

datasets is one of the most important mathematical problems in biology today (Yuh, 

Bolouri et al. 1998; Friedman, Linial et al. 2000; Wahde and Hertz 2001; Ideker, Ozier 
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et al. 2002; Lee, Rinaldi et al. 2002; Shmulevich, Lahdesmaki et al. 2003; Hashimoto, 

Kim et al. 2004; Bonneau, Reiss et al. 2006). The development of accurate models of 

global regulatory networks is key to the understanding of a cell‘s dynamic behavior 

and its response to internal and external stimuli. A major goal of the Halobacterium 

project was thus to combine all data (including the data generated by the focused 

studies above) to generate a global regulatory network.  

 Methods for inferring and modeling regulatory networks must strike a balance 

between model complexity - a model must be sufficiently complex to describe the 

system accurately - and the limitations of the available data - in spite of dramatic 

advances in our ability to measure mRNA and protein levels in cells, nearly all 

biological systems are underdetermined with respect to the problem of regulatory 

network inference. We focus on further development of our algorithms for learning 

co-regulated modules and regulatory networks. Our aim is to learn models of 

regulation from data that include units of time, concentration (or at least relative 

concentration) and to explicitly model regulator binding-sites.  

1.6.7 Halobacterium global regulatory network inference. Methods, 

motivations, challenges and current progress. 

1.6.7.1 Challenges: 

A major challenge is to distill, from large genome-wide data sets, a reduced set 

of factors describing the behavior of the system. The number of potential regulators is 

often on the same order as the number of observations in current genome-wide 



 

 

 

95 

expression and proteomics datasets. A further challenge in regulatory network 

modeling is the complexity of accounting for transcription factor interactions and the 

interactions of transcription factors with environmental factors (e.g. it is known that 

many transcription regulators form heterodimers, or are structurally altered by an 

environmental stimulus such as light, thereby altering their regulatory influence on 

certain genes). A third challenge and practical consideration in network inference is 

that biology data sets are often heterogeneous mixes of equilibrium and kinetic (time-

series) measurements; both types of measurements can provide important supporting 

evidence for a given regulatory model if they are analyzed simultaneously. Last, but 

not least, is the challenge that data-derived network models be predictive, and not just 

descriptive:  can one predict the system-wide response in differing genetic 

backgrounds, or when the system is confronted with novel stimulatory factors or novel 

combinations of perturbations? 

 We describe the methods we used to predict the global network from The 

Halobacterium Data compendium as a two-part process (step 1, cMonkey, step2, the 

Inferelator). We follow this discussion with a brief discussion of the tools that are used 

to explore this data, the resulting networks and associated annotation data (the 

Gaggle). 

1.6.7.2 Step 1: cMonkey, the need for integrative biclustering:  

Learning and modeling of regulatory networks can be greatly aided by 

reducing the dimensionality of the search space prior to network inference. Two ways 



 

 

 

96 

to approach this are 1) limiting the number of regulators under consideration, and 2) 

grouping genes that are co-regulated into clusters. In the first case, candidates can be 

prioritized based on their functional role, e.g. limiting the set of potential predictors to 

include only transcription factors, and by grouping together regulators that are in some 

way similar. In the second case, gene-expression clustering, or unsupervised learning 

of gene-expression classes, is commonly applied. It is often incorrectly assumed that 

co-expressed genes correspond to co-regulated genes. However, for the purposes of 

learning regulatory networks it is desirable to classify genes on the basis of co-

regulation (shared transcriptional control) as opposed to simple co-expression. 

Furthermore, many standard clustering procedures assume that co-regulated genes are 

co-expressed across all observed experimental conditions. Since genes are often 

regulated differently under different conditions, this assumption is likely to break 

down as the size and variety of data grows. Biclustering was developed to better 

address the full complexity of finding co-regulated genes under multifactor control by 

grouping genes on the basis of coherence under subsets of observed conditions (Cheng 

and Church 2000; Tanay, Sharan et al. 2002; Yu 2002; Kluger, Basri et al. 2003; 

Segal, Shapira et al. 2003; Sheng, Moreau et al. 2003; Yu 2003; Tanay, Sharan et al. 

2004).  

 Co-regulated genes are often functionally (physically, spatially, genetically, 

and/or evolutionarily) linked (Moreno-Hagelsieb and Collado-Vides 2002; Harbison, 

Gordon et al. 2004).  For example, genes whose products form a protein complex are 
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likely to be co-regulated. Other types of associations among genes, or their protein 

products, that can imply functional couplings include (a) presence of common cis-

regulatory motifs; (b) co-occurrence in the same metabolic pathway(s); (c) cis-binding 

to common regulator(s); (d) physical interaction; (e) common ontology; (f) paired 

evolutionary conservation among many organisms; (g) common synthetic phenotypes 

upon joint deletion with a third gene; (h) sub-cellular co-location; and (i) proximity in 

the genome, or in bacteria and archaea, operon co-occurrence. These associations can 

be either derived experimentally or computationally (either pre-computed ahead-of-

time, or on-the-fly during the clustering process); indeed it is common practice to use 

one or more of these associations as a post-facto measure of the biological quality of a 

gene cluster.  However, it is important to note that these data types, to varying degrees, 

can contain a high rate of false positives, or may imply relationships that have no 

direct implication for co-regulation. Therefore in their consideration as evidence for 

co-regulation, these different sources of evidence should be treated as priors, with 

different amounts of influence on the overall procedure based upon prior knowledge 

of (or assumptions about) their quality and/or relevance.  

 Because a biological system‘s interaction with its environment is complex and 

gene regulation is multi-factorial, genes might not be co-regulated across all 

experimental conditions observed in any comprehensive set of transcript or protein 

levels. Also, genes can be involved in multiple different processes, depending upon 

the state of the organism during a given experiment. Therefore, a biologically 
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motivated clustering method should be able to detect patterns of co-expression across 

subsets of the observed experiments, and to place genes into multiple clusters. So-

called biclustering, clustering both genes and experimental conditions, is a widely 

studied problem and many different approaches to it have been published (Cheng and 

Church 2000; D'Haeseleer, Liang et al. 2000; Tanay, Sharan et al. 2002; Yu 2002; 

Kluger, Basri et al. 2003; Segal, Shapira et al. 2003; Sheng, Moreau et al. 2003; Yu 

2003; Balasubramanian, LaFramboise et al. 2004; Tanay, Sharan et al. 2004). Unlike 

standard clustering methods, most biclustering algorithms place genes into more than 

one cluster (genes can play more than one functional role in the cell). Because 

biclustering is an NP-hard problem (D'Haeseleer, Liang et al. 2000), no solution is 

guaranteed to find the optimal set of biclusters. However, many of these procedures 

have successfully demonstrated the value of biclustering when applied to real-world 

biological data (Balasubramanian, LaFramboise et al. 2004; Reiss, Baliga et al. 2006).  

 We compared the method to several other methods including but not limited 

to:  Order Preserving Sub-matrix (OPSM(Ben-Dor, Chor et al. 2003)), Iterative 

Signature (ISA(Bergmann, Ihmels et al. 2003)), Bimax (Prelic, Bleuler et al. 2006), 

and SAMBA(Shamir, Maron-Katz et al. 2005). We also compared our method to 

hierarchical clustering and k-means clustering. We used multiple parameterizations of 

each competing method. In addition, we performed these analyses on cMonkey runs 

with various model parameters up- and down-weighted to demonstrate tolerance of the 

cMonkey method to different parameterizations of free parameters. Additional details 
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on the analysis are provided previously (Reiss, Baliga et al. 2006). All biclusters 

generated by the cMonkey as well as the other algorithms we tested are available for 

interactive exploration via Cytoscape and the Gaggle (Shannon, Markiel et al. 2003; 

Shannon, Reiss et al. 2006) at (http://labs.systemsbiology.net/baliga/cmonkey/).  

1.6.7.3 Comparison in the context of regulatory network inference:  

A major motivation of cMonkey is to provide a method for deriving co-

regulated groups of genes for use in subsequent regulatory network inference 

procedures. Thus, we wish to find coherent groups of genes over those conditions with 

a large amount of variation. In other words, we are hoping to detect sub-matrices in 

the expression data matrix which are coherent and simultaneously have high 

information content or overall variance (and probability given the network and motif 

components). In addition, we need to find biclusters with many 

conditions/observations included, as this increases the significance of each bicluster 

and also of the subsequently inferred regulatory influences for that bicluster. In 

general we see that cMonkey generates biclusters with a significantly greater number 

of experiments than the other methods (higher coverage). Even with this additional 

constraint (i.e. including a greater number of experiments in the clusters) and further 

constraints that cMonkey imposes with the association network and motif priors, the 

algorithm in general generates biclusters with a ―tighter‖ profile, as measured by mean 

bicluster residual. Thus, we find that biclusters generated by cMonkey are generally 

better suited for inference algorithms such as the Inferelator (and potentially other 
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methods as well). We tested this by running the Inferelator on biclusters generated by 

SAMBA for Halobacterium and then comparing the predictive performance of the 

resultant regulatory network models on newly-collected data, relative to those 

generated for cMonkey generated biclusters. We found that, largely due to the smaller 

number of experiments included in SAMBA biclusters, the inferred network was 

significantly less able to predict new experiments (an increase in the predictive error 

from 0.368 to 0.470; p-value of difference by t-test < 1 × 10
-22

) (Kanehisa, Goto et al. 

2004). We find that cMonkey performs well in comparison to all other methods when 

the trade-off between sensitivity, specificity, and coverage is considered, particularly 

in context of the other bulk characteristics (cluster size, residual, etc.). Most 

importantly, cMonkey significantly improves the performance of downstream network 

inference procedures. cMonkey biclusters do a better job at regenerating the 

expression data than other methods, and a similar job at recapitulating the external (as 

well as internal) measures of bicluster quality. 

1.6.7.4 Step 2: The Inferelator:  

Given modules from a clustering/biclustering algorithm, for example 

cMonkey, we are then faced with the task of learning which genes and environmental 

conditions influence/control each module/cluster/bicluster/gene. We have described an 

algorithm for doing this, the Inferelator, which infers regulatory influences for genes 

and/or gene clusters from mRNA and/or protein expression levels. The method uses 

standard regression and model shrinkage (L1-shrinkage) techniques to select 
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parsimonious, predictive models for the expression of a gene or cluster of genes as a 

function of the levels of transcription factors, environmental influences and 

interactions between these factors (Thorsson, Hornquist et al. 2005). The procedure 

can simultaneously model equilibrium and time-course expression levels, such that 

both kinetic and equilibrium expression levels may be predicted by the resulting 

models. Through the explicit inclusion of time, and gene-knockout information, the 

method is capable of learning causal relationships. It also includes a novel solution to 

the problem of encoding interactions between predictors into the regression. We 

discuss the results from an initial run of this method on a set of microarray 

observations from the halophilic archaeon, Halobacterium NRC-1. We have found the 

network to be predictive of newly measured data and have also validated parts of the 

network using ChIP-chip. 

1.6.7.4.1 Model formulation:  

We assume that the expression level of a gene, or the mean expression level of 

a group of co-regulated genes, y, is influenced by the level of N other factors in the 

system: X={x1, x2, … , xN}. We consider factors for which we have measured levels 

under a wide range of conditions; in our work on Halobacterium we use transcription 

factor transcript levels and the levels of external/environmental conditions as 

predictors and gene and bicluster transcript levels as the response. The relation 

between y and X is given by the kinetic equation:   



 

 

 

102 

 

dy

dt
 y  g(  Z)

   (1) 

Here, Z = { z1(X), z2(X), …, zP(X) } represents a set of functions of the regulatory 

factors X. The coefficients beta describe the influence of each element of Z, with 

positive coefficients corresponding to inducers of transcription, and negative 

coefficients to transcriptional repressors (Wahde and Hertz 2001). The constant tau is 

the time constant of the level y in the absence of external determinants. We use a novel 

encoding of interactions by allowing functions in Z to be either: 1) the identity 

function of a single variable or 2) the minimum of two variables (Jürgen Richter-

Gebert 2003). For example, the inner product of the design matrix and linear 

coefficients for two predictors that are participating in an interaction is: 

 Z  1x1  2x2  3 min(x1,x2 )    (2) 

Using this encoding, for example, if x1 and x2 represent the levels of 

components forming an obligate dimer that activates y (x1 AND x2 required for 

expression of y), we would expect to fit the model such that 1 = 0, 2 = 0, 3 = 1. This 

encoding results in a linear interpolation of (linearly smoothed approximation to) the 

desired Boolean function. This and other interactions (OR, XOR, AND), as well as 

interactions involving more than two components, can be fit by this encoding. In 

regression terminology, the influencing factors, X, are referred to as regressors or 

predictors, while the functions Z specify what is often referred to as the ―design 

matrix‖. 
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 With this scheme for encoding interactions in the design matrix, we expect to 

capture many of the interactions between predictors necessary for modeling realistic 

regulatory networks, in a readily interpretable form. To date we have limited the 

procedure to binary interactions, as it is unlikely that the quantity of data used would 

support learning beyond these pair-wise interactions. Many other methods for 

capturing transcription factor cooperatively exist as well (Das, Banerjee et al. 2004). 

We have shown that removal of the capability to model interactions in this way 

reduces the predictive power of the Inferelator over the newly collected validation data 

set. 

 Various functional forms can be adopted for the function g, called the 

―nonlinearity‖ or ―activation‖ function for artificial neural networks, and the ―link‖ 

function in statistical modeling.  The function g often takes the form of a sigmoidal, or 

logistic, activation function. This form has been used successfully in models of 

developmental biology (von Dassow, Meir et al. 2000).  The function is compatible 

with L1-shrinkage (the method for enforcing model parsimony) (van Someren, 

Wessels et al. 2000; van Someren, Wessels et al. 2002; Efron 2003).  

 The simplified kinetic description of equation (1) encompasses essential 

elements to describe gene transcription, such as control by specific transcriptional 

activators (or repressors), activation kinetics, and transcript decay, while at the same 

time facilitating access to computationally efficient methods for searching among a 

combinatorially large number of possible regulators.  To better understand specific 
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details of regulation, it will almost certainly be required to follow up on specific 

regulatory hypotheses using more mechanistically detailed descriptions. Although this 

method (explicit time component) does not lessen the need for correct experimental 

design it does: 1) facilitate using data with reasonable variation in sampling structure 

and 2) allow for the simultaneous combination of data from equilibrium and time-

series data.  

1.6.7.5 Predictive power of the Halobacterium network over new data 

(performance on novel combinations of environmental and genetic 

perturbations):  

 Our initial application of the method to Halobacterium resulted in a 

statistically learned regulatory network that can predict, with reasonable accuracy, 

mRNA levels of ~1,900 out of the total ~2,400 genes found in the genome, using 

relative concentrations of transcription regulators and environmental factors as 

predictors. We find that applying cMonkey to our expression compendium, the 

metabolic network, comparative genomics edges and upstream sequences gives us a 

set of ~300 biclusters spanning ~2000 of the 2400 genes in this organism. This set of 

biclusters is also linked to a set of putative cis-acting regulatory motifs (some 

validated by prior experiments). The learned network controlling the 300 biclusters 

and 159 individual genes contained 1431 regulatory influences (network edges) of 

varying strength. Of these regulatory influences, 495 represent interactions between 

two TFs or between a TF and an environmental factor. We selected the null model for 
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21 biclusters (no influences or only weak regulatory influences found), indicating that 

we are stringently excluding under-determined genes and biclusters from our network 

model. The ratio of data points to estimated parameters is approximately 67 (one time 

constant plus three regulatory influences, on average, from 268 conditions).  The 

explicit time component and interaction component (which distinguish this method 

from other such shrinkage methods) were essential for predictive performance over the 

validation data and the new data.  

 In order to test predictive performance we chose to test the network model 

(trained prior on the 268 conditions available at the time) over 130 additional new 

measurements, collected after model fitting. We found that the prediction error over 

the training set was essentially the same as that over the new dataset. This is 

encouraging as the new data included environmental perturbations, new combination 

of environmental and genetic perturbations and time series measurements after novel 

entrainments of the cell. This predictive power is a prerequisite to further 

interpretation of organization of key processes in the network.  The ability of the same 

network to predict transcriptional control in novel environments (>130 new 

experiments) verifies that, irrespective of the nature of the environmental perturbation, 

Halobacterium utilizes a core set of regulatory mechanisms to maintain homeostasis 

under extreme conditions. The resultant network (as well as biclusters and supporting 

tools) for Halobacterium NRC-1 in Cytoscape, available as a Cytoscape/Gaggle web 
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start at: http://halo.systemsbiology.net/inferelator (Bonneau 2006; Shannon, Reiss et 

al. 2006). 

1.7 The relationship between systems biology and traditional 

molecular biology 

During our review of these systems-biology prokaryotic projects, our aim was 

also to illustrate that these systems biology projects were also well integrated with 

countless other more traditional molecular biology studies. Thus, if one looks at any 

single group, one might incorrectly see a divide between systems biology and biology 

as a whole.  However, looking across all studies for a single organism, one sees that 

hypotheses generated by global studies have permeated field-wide and, in a 

corresponding manner, high-confidence single-gene results from traditional 

reductionist biology commonly guide the design of global studies.  Therefore, rather 

than the two branches being in competition with each other, we argue that they are 

involved in a complex and mutually beneficial exchange.  In this sense then, any effort 

that improves the accuracy of the hypotheses that are being generated by systems 

biologists, especially those that are in silico will be of benefit to the entire field, 

regardless of whether one is a systems or traditional molecular biologist. 

http://halo.systemsbiology.net/inferelator
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1.8 ADDENDUM: Comparative functional genomics of prokaryotes 

and other subsequent projects 

Before continuing, we remind the reader that this introductory chapter is based 

heavily upon a review of prokaryotic system biology that was published in 2009 

(Waltman, Kacmarczyk et al. 2009).  Neither then, nor now, were the reviews of the 

systems biology projects that it presents meant to be comprehensive, field-wide 

reviews for each organism.  Nor are they now intended to provide definitive reviews 

that include all the ongoing research that has taken place since the original publication 

for the four (4) organisms.  Rather, the intention of this chapter is to provide recent 

examples of how genomics has been applied to study each of these organisms in order 

to illustrate the advantages offered by systems biology approaches. 

 While a comprehensive review of subsequent research for all four (4) 

organisms is not provided, we instead will present a brief review of some of the most 

recent work that has been applied to B. subtilis and E. coli, the two model organisms 

described above.  In addition, in subsequent chapters, we will provide detailed 

descriptions of a novel, comparative method that was recently developed and used to 

analyze both of these model organisms (as well as several closely related species to 

both).  The layout of the subsequent chapters will be presented below.  

Subsequent to the publishing of the original chapter that this introduction is 

based upon, numerous efforts have taken place to expand upon the systems biology 

projects described above.  While these include both computational and experimental 
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systems biology approaches, we limit the further discussion only to those 

computational efforts that have taken place for both E.coli and B. subtilis.  For 

example, work to develop combined regulatory and metabolic networks for E. coli has 

been ongoing (Lewis, Cho et al. 2009; Chandrasekaran and Price 2010).  In addition, 

since the project by Faith et al to infer the transcriptional regulatory network inference 

of E. coli (Faith, Hayete et al. 2007), multiple subsequent projects have since taken 

place in an attempt to improve the accuracy of the inferred networks that are generated 

(Babu, Musso et al. 2009; Lemmens, De Bie et al. 2009; Zare, Sangurdekar et al. 

2009; Kaleta, Gohler et al. 2010).  Notable amongst these more recent projects is one 

by Lemmens et al (Lemmens, De Bie et al. 2009) that utilizes a novel, integrative, 

condition-dependent module network inference method (Lemmens, De Bie et al. 

2009) called DISTILLER, that in many ways is similar to the cMonkey and Inferelator 

module network pipeline described in section 1.6.7.  For example, DISTILLER also 

aims to identify genes with correlated expression profiles that share common binding 

motifs in their upstream binding regions.  However, the motifs that DISTILLER 

incorporates must be specified prior to runtime, for example, including those from 

RegulonDB (Gama-Castro, Salgado et al. 2011) or Transfac (Matys, Fricke et al. 

2003), thus limiting its capacity to identify novel putative regulatory modules.  

Despite this limitation, DISTILLER was also recently used by the same group to infer 

a transcriptional regulatory network for B. subtilis (Fadda, Fierro et al. 2009) as well.  

In addition to this regulatory network for B. subtilis, Goezler et al developed a 
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network of metabolic interactions for B. subtilis as well, that was built via manual 

curation (Goelzer, Bekkal Brikci et al. 2008).  Finally, Vazquez et al (Vazquez, 

Freyre-Gonzalez et al. 2009) performed a system-wide expression analysis of both B. 

subtilis and E. coli to identify and compare the global network governing the response 

to glucose for each organism. 

 This last project being an example of how the comparison of the results from 

multiple functional genomics projects devoted to different organisms offers a look into 

the evolution of not just sequences but sub-networks, networks and biomodules across 

bacterial and archaeal clades. This possibility is made particularly exciting by recent 

advances in the reconstruction of phylogenetic histories of microbes that explicitly 

model lateral gene transfer. Uncovering these relationships at the module and network 

level (in addition to the sequence level) is possible given the scale of prokaryotic 

systems; in fact several meta-genomics projects, such as the Human Microbiome 

Project (Turnbaugh, Ley et al. 2007), already exist and have begun to show results 

such as the characterization of the community differences between obese and lean 

individuals (Turnbaugh, Ley et al. 2006; Turnbaugh, Hamady et al. 2009).  

Given the large number of prokaryotic functional genomics projects, multi-

species analysis (inferring networks and modules over multiple species datasets) is one 

of the next major challenges, as prokaryotic systems rarely exist in clonal isolation 

(consortia of microbes inhabiting ecological niches are the relevant system to study in 

many cases).  To prevent any misunderstanding, we should clarify that in the context 
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of metagenomics that multi-species can mean one of two things.  In one sense, ―multi-

species‖ can mean the mapping and modeling of the complex interactions between the 

members of a given microbial community, some of which are known to be dependent 

on other community  members, and cannot survive – or be cultured - on their own.  

While this is an interesting topic and will be exciting an area of research, current 

methods are not yet quite ready to provide the level of granularity such an analysis 

will require.   

In the other meaning, ―multi-species‖ is used to refer the leveraging of 

comparative biological analysis to identify modules and sub-networks that are 

putatively conserved between organisms.  As such, we argue that a multi-species 

approach like this offers the possibility of identifying more biologically relevant 

modules than those which a traditional single-species method might find.  In chapter 2 

of this thesis, we present a novel algorithm that will detect putatively conserved 

modules by simultaneously considering data from multiple organisms by extending 

the integrative framework utilized by cMonkey by allowing it to integrate data from 

multiple organisms.  In addition, in chapter 2, we will also present some of the 

biological highlights that were found when it was applied to a triplet of Gram-positive 

prokaryotes.  In chapter 3, we will present the rigorous validation that was performed 

to evaluate the results from this triplet of Gram-positive prokaryotes, as well as a 

second triplet of Gram-negative prokaryotes.  Finally, in chapter 4, we will present 

initial results from a recent ―multi-platform‖ extension of this multi-species method 
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which has been used to perform a comparative analysis of mouse and human 

hematopoietic differentiation.  
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NOTE: The sections of the original article that this chapter is based upon that describe 

the quantitative analysis which was performed have been combined with the relevant 

method sections of the original supplementary material to form the basis of chapter 3.  

The gene lists and images that were also contained in the supplement of the original 

article can now be found in Appendix 1, while the additional plots from the original 

supplementary material can now be found in Appendix 2. 

 

Author contributions: Provided below, in section 2.7. 

 

Abstract 

We describe an algorithm, multi-species cMonkey, for the simultaneous 

biclustering of heterogeneous multiple-species data collections and apply the 

algorithm to two triplets of bacteria.  The first of these is a triplet of Gram-positive 

bacteria consisting of Bacillus subtilis, Bacillus anthracis, and Listeria 

monocytogenes, while the second is a triplet of Gram-negative bacteria that includes 

Escherichia coli, Salmonella typhimurium and Vibrio cholerae. The algorithm reveals 

evolutionary insights into the surprisingly high degree of conservation of regulatory 

modules across these three species and allows data and insights from well-studied 

organisms to complement the analysis of related but less well studied organisms.  This 

chapter is heavily based upon our article which was published in Genome Biology 

(Waltman, Kacmarczyk et al. 2010). 
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2.1 Introduction 

The rapidly increasing volume of genome scale data has enabled global 

regulatory network inference and genome-wide prediction of gene function within 

single organisms. In this work, we exploit another advantage of the growing quantity 

of genomics data:  by comparing genome-wide datasets for closely related organisms, 

we can add a critical evolutionary component to systems biology data analysis. 

Whereas several well-developed tools exist for identifying orthologous genes on the 

basis of sequence similarity, the identification of conserved co-regulated gene groups 

(modules) is a relatively recent problem requiring development of new methods. Here, 

we present an algorithm that performs integrative biclustering for multiple-species 

datasets in order to identify conserved modules and the conditions under which these 

modules are active.  The advantages of this method are that 1) conserved modules are 

more likely to be biologically significant than co-regulated gene groups lacking 

detectable conservation, and 2) the identification of these conserved modules can 

provide a basis for investigating the evolution of gene regulatory networks.  

Clustering has long been a popular tool in analyzing systems biology data 

types (e.g. the clustering of microarray data to generate putative co-regulated gene 

groups). The majority of genomics studies employ clustering methods that require 

genes to participate in mutually exclusive clusters, such as hierarchical agglomerative 

clustering (HAC) (McQuitty 1966), k-means clustering (MacQueen 1967) and 

singular value decomposition derived methods (Golub and Kahan 1965; Alter, Brown 
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et al. 2000; Alter, Brown et al. 2003). Because most genes are unlikely to be co-

regulated under every possible condition (for instance, bacterial genes can have more 

than one transcription start site and, in that case, each site will be regulated by a 

different set of transcription factors depending on the cell‘s state), defining mutually 

exclusive gene clusters cannot capture the complexity of transcriptional regulatory 

networks. Clearly, sophisticated integrative methods are needed to arrive at the 

identification of more mechanistically meaningful condition-dependent conserved 

modules.   

Biclustering refers to the simultaneous clustering of both genes and conditions 

(Lazzeroni and Owen 1999; Cheng and Church 2000). Early works (Morgan and 

Sonquist 1963) introduced the idea of biclustering as ―direct clustering‖ (Hartigan 

1972), node deletion problems on graphs (Yannakakis 1981), and biclustering (Mirkin 

1996). More recently, biclustering has been used in several studies to address the 

biologically relevant condition dependence of co-expression patterns (Cheng and 

Church 2000; Ben-Dor, Chor et al. 2003; Bergmann, Ihmels et al. 2003; Kluger, Basri 

et al. 2003; Tanay, Sharan et al. 2004; Supper, Strauch et al. 2007; DiMaggio, 

McAllister et al. 2008; Gan, Liew et al. 2008; Lu, Huggins et al. 2009). Additional 

genome-wide data (such as association networks and transcription factor binding sites) 

greatly improves the performance of these approaches (Tanay, Sharan et al. 2004; 

Elemento and Tavazoie 2005; Reiss, Baliga et al. 2006; Huttenhower, Mutungu et al. 

2009).  Examples include the most recent version of SAMBA, which incorporates 
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experimentally validated protein-protein and protein-DNA associations into a 

Bayesian framework (Tanay, Sharan et al. 2004), and cMonkey (Reiss, Baliga et al. 

2006), an algorithm we recently introduced.  

cMonkey integrates expression and sequence data, metabolic and signaling 

pathways (Kanehisa, Goto et al. 2002), protein-protein interactions, and comparative 

genomics networks (Mellor, Yanai et al. 2002; Bowers, Pellegrini et al. 2004; Price, 

Huang et al. 2005) to estimate condition dependent co-regulated modules. We have 

previously shown that cMonkey can be used to ―pre-cluster‖ genes prior to learning 

global regulatory networks (Bonneau, Facciotti et al. 2007). Biclusters are iteratively 

optimized, starting with a random or semi-random seed, via a Monte Carlo Markov 

chain (MCMC) process. At each iteration, each bicluster‘s state is updated based upon 

conditional probability distributions computed using the bicluster's previous state. This 

enables cMonkey to determine the probability that a given gene or condition belongs in 

the bicluster, dependent upon the current state of the bicluster. The components of this 

conditional probability (one for each of the different data types) are modeled 

independently as p-values based upon individual data likelihoods, which are combined 

to determine the full conditional probability of a given gene or condition belonging to 

a given bicluster.  

Previous multi-species clustering methods generally fall into two classes (for 

reviews see (Tirosh, Bilu et al. 2007; Lu, Huggins et al. 2009)).  The first class 

attempts to match conditions between species in order to identify similarities and 



 

 

 

 

138 

differences for a given cell process (McCarroll, Murphy et al. 2004; Khaitovich, 

Hellmann et al. 2005; Gilad, Oshlack et al. 2006; Tirosh, Weinberger et al. 2006). By 

requiring matched conditions, this approach is not well suited to large sets of public 

experiments, as it is limited to only the conditions that have direct analogs for both 

species.  The second class of multi-species clustering methods employs a strategy 

where the datasets for each organism are reduced to a unit-less measure of co-

expression (for example Pearson‘s correlation) that are then used to compare co-

expression patterns in multiple species (Stuart, Segal et al. 2003; Bergmann, Ihmels et 

al. 2004; Ihmels, Bergmann et al. 2005; Tanay, Regev et al. 2005; Dutilh, Huynen et 

al. 2006; Tirosh and Barkai 2007). This second class includes methods analyzing the 

conservation of individual orthologous pairs (Dutilh, Huynen et al. 2006; Tirosh and 

Barkai 2007) and those seeking to identify larger conserved modules (Stuart, Segal et 

al. 2003; Bergmann, Ihmels et al. 2004; Tanay, Regev et al. 2005). The common 

objective is to gain insight into the evolution of related species; including the role of 

duplication in regulatory network evolution and the occurrence of convergent 

evolution vs. conserved co-expression (Ihmels, Bergmann et al. 2005; Tirosh and 

Barkai 2007). However, none of these studies can be considered a true multi-species 

biclustering algorithm; for example both (Bergmann, Ihmels et al. 2004) and (Tanay, 

Regev et al. 2005) perform the analyses of the different species sequentially.  

Furthermore, with the exception of (Tanay, Regev et al. 2005), the methods were 

limited to considering only expression data. 
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Below, we present multi-species cMonkey, a biclustering framework that 

enables us to integrate data across multiple species and multiple data-types 

simultaneously. Our approach maintains the independence of the organism-specific 

data while still allowing for true biclustering.  Specifically, gene membership in 

multiple clusters is possible and integration of a variety of data types remains an 

integral part of the approach. Once the conserved modules have been identified, our 

method further allows the discovery of species-specific modifications (which we term 

elaborations, i.e. the addition of species-specific genes that fit well with the conserved 

core of the bicluster according to the multi-data score). The ability to find species 

specific elaborations of conserved co-regulated core sets of genes is a unique strength 

of the method and is critical to understanding the evolution and function of conserved 

modules.  

Our multi-species biclustering method was applied to two triplets of bacteria, 

one a Gram-positive triplet and the other a Gram-negative, with the method used to 

analyze all the possible pairings between the three species of a given triplet.  Each 

triplet consisted of a model organism for the class of bacteria that the triplet 

represented, as well as two pathogens, where one of the pathogens was closely related 

species to the model organism, and the second was an outgroup.  For example, in the 

case of the Gram-positive triplet, this triplet contained three closely related species of 

Firmicutes: Bacillus subtilis, Bacillus anthracis and Listeria monocytogenes. As one 

of the best-studied bacterial model organisms, B. subtilis was selected due to the 
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wealth of publicly available genomic data and the large amount of knowledge 

accumulated on this organism over the years. Additionally, B. subtilis and B. anthracis 

have similar life cycles, alternating between vegetative cell and dormant spore states 

(Piggot and Coote 1976; Stragier and Losick 1996; Errington 2003; Waltman, 

Kacmarczyk et al. 2009; de Hoon, Eichenberger et al. 2010). The third member of the 

triplet, L. monocytogenes, was selected as it shares similar morphology and 

physiology with B. subtilis and B. anthracis, but lacks the ability to form spores. In 

addition, B. anthracis and L. monocytogenes are pathogenic species, while B. subtilis 

is non-pathogenic. Evolutionarily, the Bacillus and Listeria genera are estimated to 

have separated more than one billion years ago (Battistuzzi, Feijao et al. 2004). 

Analysis of the biclusters obtained as a result of the procedure revealed several gene 

groups of interest and led us to formulate new hypotheses about the biology of these 

organisms. Specifically, we were able to detect a temporal difference between the two 

Bacillus species in the expression of a group of metabolic genes involved in spore 

formation. Furthermore, the unexpected identification of a bicluster for genes required 

for flagellum formation in B. anthracis prompted us to re-examine the capacity for 

flagellar-based motility in that species. 

Similar to the Gram-positive triplet, the Gram-negative triplet contained three 

[gamma]-proteobacteria Escherichia coli, Salmonella typhimurium and Vibrio 

cholera.  In this triplet, S. typhimurium is the more closely related of the two 

pathogens to E. coli, estimated to have evolutionarily separated within the last 150 
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million years, while V. cholera is estimated to have separated nearly 750 million years 

ago(Battistuzzi, Feijao et al. 2004).  

2.2 Results: Examples of conserved modules detected by the multi-

species analysis: Application to the Gram-positive triplet 

There are two ways in which we will demonstrate the strengths of our novel 

method.  In the first of these, appearing below, we will provide clear examples of 

conserved modules that correspond to conserved biological processes.  In the second 

of these two methods, which appears in Chapter 3, we will provide a detailed 

comparison of several genome-wide metrics that were used to evaluate our method 

with six others.  In some cases, these alternate methods are multi-stage - as is our 

novel multi-species method – thus there were a total of fifteen (15) methods that we 

compared.  We direct the reader to the methods section (2.5) for a detailed 

presentation of our multi-species algorithm.  In order to reduce complexity, we limit 

the discussion below to the results from the analyses performed on the Gram-positive 

triplet, and direct the reader to Appendix 4 for an example that was found in the 

analyses of the Gram-negative triplet. 

To illustrate the strength of our method‘s ability to identify conserved modules 

and also to highlight species specific elaboration of these modules, we focus on two 

processes – endospore formation (sporulation) and flagellum synthesis. In the case of 

sporulation, both B. anthracis and B. subtilis can sporulate, while L. monocytogenes 
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cannot (Stragier 2002). Similarly, both B. subtilis (Kearns and Losick 2003) and L. 

monocytogenes (Grundling, Burrack et al. 2004) possess flagella and are motile, while 

B. anthracis is a non-motile species (Sterne and Proom 1957).  

2.2.1 Biclusters involved in sporulation shared between B. subtilis and B. 

anthracis: 

Sporulation is a cellular differentiation process that B. subtilis and B. anthracis 

undergo as a response to resource depletion (Piggot and Coote 1976; Stragier and 

Losick 1996; Errington 2003; de Hoon, Eichenberger et al. 2010). Sporulating cells 

divide asymmetrically near one cell pole to produce a smaller cell, the forespore and a 

larger cell, the mother cell. The forespore will differentiate into a highly resistant 

dormant cell type called an endospore (hereafter: spore).  The mature spore is 

surrounded by two membranes and a thick proteinaceous layer (the coat). A modified 

peptidoglycan layer (the cortex) is synthesized in the intermembrane space.  

As expected, the multi-species method identified several sporulation modules 

from the B. subtilis-B. anthracis pairing and no sporulation modules from the pairings 

involving L. monocytogenes. Here, we focus on three biclusters (32, 82 and 84), 

whose orthologous cores contained largely non-overlapping sets of genes. Analysis of 

the gene content indicated that each bicluster was involved in distinct biological 

functions during sporulation. Bicluster 84 primarily contained genes involved in 

metabolic functions (Figures S43 and S44). Bicluster 32 contained genes involved in 

activation of late sporulation σ factors (σ
G
 and σ

K
) and cortex synthesis (Figures S39 
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and S40). Bicluster 82 contained a majority of spore coat genes (Figures S41 and 

S42). 

Most of the genes found in those three biclusters had been previously 

identified as members of the mother cell transcriptome in B. subtilis (Feucht, Evans et 

al. 2003; Eichenberger, Fujita et al. 2004; Steil, Serrano et al. 2005). Specifically, 16 

of the 26 core genes from the metabolism bicluster, 36 of the 38 core genes from the 

cortex bicluster and the 24 core genes from the coat bicluster are expressed under the 

control of the early mother-cell σ factor, σ
E
. Nevertheless, the metabolism bicluster 

contained five previously unrecognized sporulation genes (ykwC, ctaC, ctaD, ctaE and 

ctaF). The ykwC gene encodes a protein from the 3-hydroxyisobutyrate 

dehydrogenase family, which is consistent with the function of several other genes 

found in that bicluster (e.g. the mmg and yngJ operons (Hsiao, Revelles et al.)). The 

cta operon encodes the four subunits of cytochrome C oxidase. These genes are 

subject to catabolite repression by glucose, therefore their expression is prevented 

during exponential growth in glucose-containing medium (Liu and Taber 1998). 

During sporulation initiation, the cta operon is activated by Spo0A~P (the master 

regulator of sporulation) (Fawcett, Eichenberger et al. 2000). The neighboring ctaA 

gene, which is transcribed in the divergent direction, has been previously reported to 

be controlled by RNA polymerase containing σ
E
 (Paul, Zhang et al. 2001). 

Examination of the ctaC upstream region reveals a possible σ
E
 binding site with a 

reasonable match to the consensus (Figure 2.1). Protracted expression of these genes 
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(first under the control of Spo0A~P in the pre-divisional cell and then of σ
E
 after 

asymmetric division) is consistent with the conclusions of previous studies indicating 

that tricarboxylic acid cycle function (and by extension the electron transport chain) is 

required during sporulation (Ireton, Jin et al. 1995; Jin, Levin et al. 1997; Matsuno, 

Blais et al. 1999).  

 

Figure 2.1: Putative σE
 binding site in the regulatory upstream sequence of the ctaC operon.  Four 

genes from Bicluster 84, ctaC ctaD ctaE ctaF, encode the subunits for cytochrome C oxidase. These 

genes have not been shown to be regulated by σE, however, the region upstream of ctaC contains a 

possible σE binding site. (A) Consensus binding sequence for σE (Eichenberger, Fujita et al. 2004; 

Sierro, Makita et al. 2008).  (B) Portion of the intercistronic region from B. subtilis between ctaB and 

ctaC showing the respective -35 and -10 regions of the potential σE binging site (blue, bold, uppercase 

letters). Also indicated are the consensus sequences for the two regions, the putative ribosomal binding 

site (underlined, uppercase letters), and the translation start site (green, uppercase letters). 

 

 



 

 

 

 

145 

Unexpectedly, we uncovered a key species-specific difference in the timing of 

expression of one conserved sporulation module (the metabolism bicluster). The 

expression data we used for B. anthracis is a time series transcriptional profile of the 

entire life-cycle, from germination through sporulation (Bergman, Anderson et al. 

2006). Expression of genes from the metabolism bicluster reaches its maximal level at 

t=180 minutes (Figure 2.2a), 2 hours before the expression peak of genes from the 

cortex and coat biclusters at t=270 minutes. No such temporal difference exists 

between the metabolism bicluster and the other two biclusters during B. subtilis 

sporulation (Figure 2.2b), because most of these genes are directly controlled by σ
E
 in 

B. subtilis. We propose that the observed timing difference between the two species is 

caused by transcriptional re-wiring. In support of this interpretation, examination of 

the regulatory sequence upstream of the genes from the metabolism bicluster did not 

reveal obvious σ
E
 binding sites in B. anthracis, while putative σ

E
 promoters were 

present upstream of genes from the cortex and coat biclusters in both species. Thus, in 

B. anthracis, the metabolism bicluster may be under the control of a transcription 

factor active prior to σ
E
 activation. This is further supported by the fact that in B. 

anthracis sigE itself is expressed after the expression peak of the metabolism bicluster 

(Ihmels, Bergmann et al. 2005). 
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Figure 2.2: Expression profiles of 3 partially conserved sporulation biclusters, identified by the 

multi-species analysis of B. subtilis and B. anthracis.  Bicluster 84 (blue line) is composed primarily 

of genes involved in metabolic functions during sporulation, bicluster 82 (green line) includes primarily 

genes encoding spore coat proteins, and bicluster 32 (red line) contains genes involved in spore cortex 

formation and activation of the σ factors required for the latest stages of sporulation. (A) The B. 

anthracis biclusters display distinct profiles, revealing a temporal aspect not present in the B. subtilis 

dataset. The B. subtilis biclusters all follow the same expression profile (i.e. similar expression over 

nearly every experimental condition included in the dataset), as shown in (B) only sporulation 

experimental conditions (with abscissa corresponding to: (1) Hour 2 sigF, (2) Hour 2.5 sigE, (3) Hour 
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3.5 gerR, (4) Hour 3.5 spoIIID, (5) Hour 4 sigG, (6) Hour 4.5 sigK, (7) Hour 5 spoVT, (8) Hour 5.5 

gerE, (9) Hour 6.5 gerE) and (C) all experimental conditions within the three biclusters. 

 

2.2.2 Flagellar assembly biclusters shared between B. subtilis, B. anthracis and 

L. monocytogenes: 

Assembly of the bacterial flagellum is a well-known pathway (Figure 2.3A) 

that has been studied over a wide range of prokaryotes (Macnab 2003; Liu and 

Ochman 2007; Liu and Ochman 2007).  It contains approximately 25 proteins 

conserved across numerous species, though not all these species are motile (Liu and 

Ochman 2007).  Here we use the expression of flagellar genes as another benchmark 

of the multi-species method. We expected that multi-species integrative biclustering 

with any pairing including B. anthracis would be unable to recover modules enriched 

with flagellar genes.  Nonetheless, we discovered that flagellar modules were retrieved 

with all possible pairings (Figure 2.3 and Table 7.13-Table 7.24). Furthermore, 

recovery was well supported by the B. anthracis portion of the multi-data score.  This 

result was unexpected as it was assumed that the loss of motility would be rapidly 

followed by loss of coordinated expression of flagellar genes.  
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Figure 2.3: Conserved motility modules active in all three organisms and motility assays.  (A) We 

show a schematic of the flagellar apparatus for B. subtilis showing the location of 26 flagellar proteins, 

two motor proteins (MotA and MotB) and two transcriptional regulators (FlgM and SigD) (using gene 

names from B. subtilis).  (B) The left panel shows the presence (blue)/absence (white) of the 

corresponding genes in the genomes of B. anthracis Sterne (BAS), B. cereus ATCC 14579 (BC), L. 

monocytogenes EGD-e (LMO) and B. subtilis 168 (BSU). In B. anthracis Sterne, motB, fliM, fliF, and 

flgL are represented by two colors indicating a gene coding for a truncated protein due to a frameshift 

mutation that introduces a premature stop codon. The right panel shows the gene presence in the main 

flagellar bicluster resulting from each of the three pairwise multi-species biclusterings. Indicated are 
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genes of the flagellar apparatus - included in the bicluster core (red), in the elaboration of the bicluster 

(orange), and not included in the bicluster (gray). B. subtilis and L. monocytogenes are both known to 

be flagellated and motile. B. anthracis Sterne is non-motile, but our results indicate a bicluster enriched 

for genes involved in flagellar biosynthesis.  (C) Swimming motility was assayed on 0.3% agar plates 

for B. cereus ATCC 14579, B. anthracis Sterne, B. subtilis PY79, and B. subtilis PY79 ∆motAB::tet 

(strain DS219). B. cereus and B. subtilis are motile (Kearns and Losick 2003; Salvetti, Ghelardi et al. 

2007). A deletion of motAB in B. subtilis impairs motility (Mirel, Lustre et al. 1992; Blair, Turner et al. 

2008). The assay shows that B. anthracis Sterne is not motile under the conditions tested. 

 

One simple explanation of the conservation of the B. anthracis motility 

bicluster would be that the strain is, in fact, still motile or able to recover motility 

through a common reversion mutation. To explore and partially rule out this 

possibility we confirmed experimentally that B. anthracis Sterne was non-motile at 

37˚C by performing swimming motility assays on 0.3% agar plates (Figure 2.3c).  We 

used B. cereus ATCC 14579 and B. subtilis PY79 as positive controls for swimming 

(Kearns and Losick 2003; Salvetti, Ghelardi et al. 2007) and B. subtilis PY79 

ΔmotAB::tet as a negative control (Mirel, Lustre et al. 1992).  Even after prolonged 

incubation of those plates at 37˚C for several days, we were unable to observe motile 

B. anthracis cells. 

B. anthracis Sterne lacks six flagellar genes present in B. subtilis (fliK, fliO, 

fliJ, fliT, flgM and sigD) (Kanehisa 2009).  Although most of these genes are likely to 

be essential for flagellum function in B. subtilis (Table 2.1), they are absent in several 
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motile species, including L. monocytogenes and B. cereus. These genes may in fact be 

dispensable for motility if a different gene provides a corresponding function. For 

example, while σ
D
 and FlgM (the anti-σ

D
 factor) regulate flagellar gene expression in 

B. subtilis, they are not found in L. monocytogenes, where flagellar gene expression is 

regulated by the transcription factor MogR, which is absent in B. subtilis (Grundling, 

Burrack et al. 2004) (Table 2.2). We performed a BLAST search-based analysis of the 

presence or absence of flagellar assembly and chemotaxis genes for L. monocytogenes 

and various Bacillus species (Table 2.3). Since B. cereus is the closest motile relative 

to B. anthracis (Rasko, Ravel et al. 2004), we focused on cases where a flagellar gene 

was present in B. cereus and absent in B. anthracis. Specifically, BLAST searches 

were performed against the genomes of various B. anthracis strains using B. cereus 

ATCC 14579 protein sequences as a reference. In B. anthracis Sterne two strong hits 

were retrieved for MotB; each of which covered a different half of the B. cereus MotB 

sequence.  Upon closer inspection, it was found that both these coding sequences 

derived from the same gene which had undergone a frameshift mutation via a one 

base-pair deletion.  The frameshift resulted in an in-frame stop codon shortly 

following the deletion (Figure 2.4). In B. subtilis, motB has been shown to be essential 

for motility ((Mirel, Lustre et al. 1992) and Figure 2.3c).  
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Table 2.1: B. subtilis flagellar assembly genes that are missing in B. anthracis, and their associated 

function. The genes in the table are present in the B. subtilis flagellar assembly pathway as indicated by 

KEGG, but missing in B. anthracis.   

Gene Function 

flgM anti-σD factor 

fliJ Part of the type III secretion chaperone-usher complex 

fliK hook length regulator 

fliO Part of the Type III secretion apparatus 

fliT Chaperone 

sigD Sigma factor responsible for the expression of motility and chemotaxis 

genes 

 

Table 2.2: Major Regulators of Motility in B. subtilis and L. monocytogenes 

Regulator Organism Function Reference 

sigD B. subtilis 

Sigma factor responsible for the expression 

of motility and chemotaxis genes 

Marques-

Magana and 

Chamberlin, 

1994 (Marquez-

Magana and 

Chamberlin 

1994) 
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mogR L. monocytogenes 

Transcriptional repressor of flagellar genes 

when at temperatures > 37°C 

Grundling et al., 

2004 (Grundling, 

Burrack et al. 

2004) 

degU L. monocytogenes 

Response regulator which controls 

temperature-responsive expression of gmaR  

Shen et al., 2006 

(Shen and 

Higgins 2006) 

gmaR L. monocytogenes Antirepressor of MogR 

Shen et al., 2006 

(Shen and 

Higgins 2006) 

 

 

 

Figure 2.4: B. anthracis Sterne frameshift mutations.  B. anthracis Sterne contains frameshift 

mutations in five motility genes (motB, flgL, fliF, fliM, and cheV). The frameshift mutation in motB 

was discovered in B. anthracis Sterne by first performing protein BLAST searches using B. cereus 

ATCC 14579 MotB as the query sequence. Investigation of the B. anthracis Sterne gene sequence 

revealed a single base deletion (red delta, Δ) that causes a frameshift mutation resulting in a stop codon 

(red, uppercase letters) thus truncating the MotB protein. The other B. anthracis frameshift mutations 

(flgL, fliF, fliM, cheV) were discovered using the same method. 
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Table 2.3: Genetic compositions of various Bacillus and other closely related species.  As shown in 

the table, the genetic composition of the B. anthracis strains Sterne, A2012 and CDC 684 are almost 

identical to the motile species B. cereus, B. thuringiensis, B. weihenstephanensis and L. monocytogenes. 

In contrast, the B. anthracis strains Ames, Ames 0581 and A0248 are lacking multiple genes present in 

the other motile organisms. 

 B.subtilis B. amyloliquefaciens B. clausii 

B. anthracis  

(Sterne, A2012, CDC 

684) 

B. anthracis  

(Ames, Ames 

0581, A0248) 

 B. halodurans B. pumilus  B. cereus (all)  

 

B. licheniformis 

(all)   B. thuringiensis  

    B. weihenstephanensis  

Genes    L. monocytogenes  

flgL X X X X 

 flgM X X X  

 fliF X X X X 

 fliJ X X X  

 fliK X *   

 fliM X X X X 

 fliO X X X  

 FliT X X   

 cheC X X X   

cheD X X X   

cheV X X X X‘  
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Chew X X X X‘‘  

X gene is present in the KEGG flagellar assembly pathway 

X’ gene is not present in B. anthracis Sterne or A2012 

X’’ gene is present in B. anthracis Sterne and A2012 but not the other organisms in the column  

* gene is not present in KEGG but is recognized by NCBI 

 

 

We then examined the protein sequences of all the flagellar proteins in B. 

anthracis Sterne by performing multiple alignments with other related Bacilli and 

discovered that three additional proteins appeared truncated: FliM, FliF and FlgL.  

Investigation of the gene sequences for these proteins in B. anthracis Sterne revealed 

that they all contained a frameshift mutation, which resulted in the introduction of an 

in-frame stop codon. In B. subtilis, fliM mutations result in a non-flagellated 

phenotype (Zuberi, Ying et al. 1990), while fliF and flgL are essential for flagellar 

assembly in L. monocytogenes (Bigot, Pagniez et al. 2005; Todhanakasem and Young 

2008). In addition, we found a similar frameshift in cheV, a gene required for 

chemotaxis in B. subtilis. 

The presence of the frameshift mutations for these key motility genes most 

likely explains why B. anthracis Sterne is non-motile and does not readily revert back 

to a motile phenotype. Importantly, this observation indicates that a conserved module 

can persist for some time even after the loss of the associated phenotype.   
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2.3 Discussion 

Any attempt to detect conserved modules across multiple species data 

collections needs to simultaneously address the following non-trivial challenges: 1) 

modules may be active or coherent in subsets of the conditions for each species; 2) in 

most cases there is little or no correspondence between the experimental conditions 

and experimental designs across different species datasets; 3) the amount and quality 

of data available often varies dramatically across species of interest; 4) modules may 

not be conserved in their regulation or function; 5) conserved modules may have 

extensive species specific elaborations that complicate their detection; 6) in many 

cases, the sequence-based orthology is not a one-to-one mapping; and 7) integration of 

additional data-types needs to be robust to the differences in the available data and 

annotation completeness of the species considered.  In this investigation, we have 

introduced a new algorithm, multi-species cMonkey (MScM) that allows us to address 

all of these challenges in a unified analysis. We tested 6 other biclustering and 

clustering methods in various combinations (13 clustering and biclustering 

formulations were tested) and found no other method capable of balancing all of these 

challenges. We have shown that MScM provides better or comparable coverage, 

functional enrichment scores, bicluster coherence, and conservation than other tested 

methods, with all other methods failing in one of the main categories of assessment.  

Furthermore, our method effectively balances the influence of each organism, 

preventing organisms with more complete datasets from dominating the analysis, 
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while also integrating other supporting data types, enabling the method to identify 

more biologically relevant modules and delimit the conditions over which the modules 

are active.  The fact that the MScM biclusters have many fold higher conservation 

scores than several of the tested methods suggests that they have a higher level of 

biological significance than equally co-expressed (and/or equally functionally 

enriched) non-conserved alternate biclusters. An analysis that takes into account 

several validation metrics supports the idea that MScM is the top performing method 

for comparative biclustering.  

In the single species setting, single-species-cMonkey and other biclustering 

methods, particularly COALESCE, are comparable in performance (when one 

considers score, enrichment and coverage but not conservation). Our analysis suggests 

that multi-species extensions of other top performing algorithms (particularly 

COALESCE) will also perform well at detecting conserved modules (assuming that 

such extensions are possible). For all the organisms pairings, there was a consistent 

increase in the percentage of GO and KEGG enrichments from the shared to 

elaboration steps of the MScM method. This results from shared biclusters that contain 

enrichments that are insignificant until genes from outside of the orthologous core are 

added during the elaboration step. We argue that this improved functional coherence 

illustrates the necessity of a species-specific elaboration step in any type of multi-

species analysis similar to the one described here.  Future work will include 
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development of methods for adding no-obvious homologs, and perhaps phenologs 

(McGary, Park et al.), to the comparative phase of our analysis. 

2.4 Conclusion 

A careful examination of several of the conserved biclusters generated as part 

of the MScM analysis indicates that our method can reveal important new biology. For 

instance, we found two cases where conserved biclusters function differently in the 

species analyzed. The recovery of a flagellar module in the non-motile B. anthracis 

species shows that it is possible to identify conserved modules, even in cases where 

phenotypic divergence suggests none should exist. In addition, a key temporal 

difference in the sporulation programs for B. subtilis and B. anthracis emerged that led 

us to propose that a rewiring event took place during the evolution of the expression of 

a group of metabolic genes involved in sporulation. Our biclustering approach also 

appears useful in generating functional hypotheses for genes that are grouped with 

other genes of previously established functions, considering that many of the 

unannotated genes contained in biclusters with GO or KEGG enrichments are well 

supported across six or more datasets (2 organisms x 3 or more data-types). Our 

method also reveals new links between functions that were previously considered to 

be separate, such as the association of the cta operon and the ykwC gene with several 

other B. subtilis metabolism genes.  
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2.5 Materials and Methods 

Here, we describe the main steps in the multi-species cMonkey algorithm, 

which is implemented in the R programming language and freely available (Waltman, 

Kuppusamy et al. 2010).  We emphasize the novel modifications to the algorithm that 

allow for identifying biclusters in a multi-species context; for a more detailed 

description of the individual cMonkey scoring function components see (Reiss, Baliga 

et al. 2006). Methods used for global assessment and comparison of our methods to 

other biclustering and clustering methods, experimental validation of results, and code 

release as well as two simple multi-species clustering methods of our own 

construction (multi-species k-means and balanced multi-species k-means), are also 

described.  A complete description of the data used for each organism is provided in 

the supplemental section.  

2.5.1 Multi-species cMonkey method overview 

Briefly, the MScM algorithm is composed of three steps, with an optional 

fourth (Figure 2.5). (1) the identification of orthologous genes between closely related 

species (2) an iterative, Monte Carlo optimization within the space of shared orthologs 

(involving pairs of orthologous genes) (3) an iterative, Monte Carlo optimization in 

the space of each organism‘s genome that elaborates the biclusters found in step 2 by 

adding non-orthologous genes and (4, optional) an application of the original, single-

species method to the remainder of each organism‘s genome (that was not added to the 
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conserved biclusters found in steps 2 and 3) to identify completely species-specific 

biclusters. 

2.5.1.1 Algorithm overview: 

1. Identification of orthologous genes 

2. Identification of shared biclusters by optimizing multi-species cMonkey score 

(orthologous gene space) 

3. Single-species Elaboration of shared biclusters from step 2 (single-species full 

genome space) 

4. Identification of non-shared biclusters (single species full genome space) 

(optional) 
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Figure 2.5: Schematic overview of multiple-species method.  (a) shared-space bicluster seeds are 

generated by calculating the pairwise correlation of the gene-pairs to a randomly selected gene-pair.  (b) 

The shared-space multi-species optimization, where orthologous gene pairs are iteratively added or 

dropped from the bicluster according to the multi-species multi-data score. (c) When completed, shared-
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space biclusters are separated into their respective species, and further optimized during the elaboration 

step.  During this step the genes from the original shared-space bicluster are prevented from being 

dropped, as indicated by the boxes surrounding these genes (represented as black circles).  

2.5.1.2 Determining putative orthologs spanning relevant genomes (step 1) 

Our analysis requires the identification of putative orthologs between each pair 

of organisms as input. As identification of ortholog sets between species is not a 

primary focus of this investigation, we rely on publicly available tools and resources 

to define our starting set of putative orthologs between two or more species. 

Dependent upon the organisms used, there may be databases that can provide these 

ortholog sets, such as the well-annotated list of orthologs from the Mouse Genomics 

Informatics database (Bult, Eppig et al. 2008). In cases where a pre-existing curated 

list of orthologs is unavailable, we use the InParanoid algorithm (Remm, Storm et al. 

2001) as two recent benchmarks (Hulsen, Huynen et al. 2006; Chen, Mackey et al. 

2007) determined it to be among the most accurate when identifying pairwise 

orthology. InParanoid allows for the identification of families of orthologous and 

paralogous genes that are shared by 2 genomes, rather just single pair matches (for 

example, as the cotZ gene in B. subtilis has two possible orthologs in B. anthracis, 

cotZ1 and cotZ2, both the cotZ-cotZ1 and cotZ-cotZ2 pairs will be considered by our 

algorithm). This feature of the InParanoid algorithm is useful in the context of this 

work as it allows for more permissive supersets of putative orthology from which we 
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can sample using cMonkey (thus letting the data select amongst orthologous super-

sets).  

2.5.1.3 Defining the multi-species data-space   

In the first phase of our algorithm, biclustering is performed on groups of 

orthologous genes (in this study we limit the algorithm to pairs, but the algorithm is 

easily extendable to larger groups). For any two genomes, GU and GV, we use OCU 

and OCV to refer to the portions of these genomes with one or more orthologs in the 

other genome, which we term the ‗Orthologous Cores‘ of these genomes. 

Furthermore, we will use OCUV to refer to the list of all possible pairings of orthologs 

between the species, which for convenience we will refer to as ‗orthologous pairs‘. In 

the case of gene families, where genes from one genome have several putative 

orthologs in the other, we allow the algorithm to separately consider gene pairs for 

each of the possible pairwise relationships. Thus, if we have a family, f, that has 4 

members in genome U, 
 1 4,f

U U UOC g g
, and 3 in genome V, 

 1 3,f

V V VOC g g
, 

this will result in 12 possible pairs for this family, i.e. 

 1 1 1 2 4 2 4 3, , , ,f

UV U V U V U V U VOC g g g g g g g g
 . 

2.5.1.4 Seeding the biclustering  

The first step in building multiple-species biclusters out of ortholog pairs, as 

defined above, consists of seeding a bicluster (selecting a starting subset of 
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orthologous pairs to define as the starting bicluster).  For example, this can be done via 

selection of a random subset of orthologous pairs as a ‗seed‘ which is then optimized. 

For this study we choose a semi-random seeding (Figure 2.5a). We choose a random 

orthologous gene pair and then 1) define the bicluster seed to be the 70% of conditions 

in each organism‘s dataset where the ortholog pair has the highest variance, and 2) add 

the most correlated 5-10 ortholog pairs (where the correlation is calculated as the 

average for each gene in the ortholog pair over only the conditions in the bicluster). 

We refer to this simple procedure for seeding the bicluster optimization as semi-

random seeding.   The main motivation behind this scheme (described in supplement 

and prior (Reiss, Baliga et al. 2006)) is to improve the convergence rate by jump-

starting the optimization, though MScM can also be used to refine randomly generated 

seeds. 

2.5.1.5 Finding biclusters in the multi-species data-space (step 2)  

Given a bicluster seed (semi-random, random or a seed generated via a 

different method) we begin the multi-species optimization by iteratively adding and 

dropping genes and conditions as part of a simulated annealing optimization of the 

multi-species integrative score (Figure 2.5c). Letting XU and XV represent the 

expression datasets for the two genomes considered, a single-species bicluster is 

defined as a set of genes and a set of conditions in XU and XV. In the single-species 

biclustering case, we calculate a combined score for every gene in the genome (given 

the supporting data) to determine the likelihood of it being added or dropped from the 
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bicluster.  Extending this idea to the multi-species space requires that for every 

orthologous pair, we can determine the likelihood of that ortholog pair being added or 

dropped from a given shared-space bicluster. We do this by combining the single-

species gene scores (calculated separately for each organism within its independent 

data space) for the genes in an orthologous pair to compute the multi-species score πik: 

    0 11| , expU V U V

ik ik ik ik ik ikp y g g g g      
 

where 
U
ikg  and 

V
ikg  are the species-specific likelihoods for the members of pair i for 

bicluster k, and β0 and β1 are the parameters of the logistic regression. Note, this 

framework can easily be extended to more than 2 organisms, where the likelihood of 

the orthologous N-tuples for the N organisms in would be defined as: 

   
 1 1

0 11 1
N N n

ik ik ik ik ik ik

n N

p y , , y | g , ,g exp g  


 
     

 


 

The parameters in this regression determine a decision boundary between 

genes in and out of the bicluster (fitted to the combined single-species scores for the 

pairs in OCUV at the previous iteration). It is important to note that individual data-

types from each species are not concatenated or combined through any other lossy or 

unbalanced transformation. The multiple species integration occurs solely via the 

computation of this decision boundary at this final step in computing the score. We 

believe that this imparts significant flexibility to the algorithm that will allow 

extension to other data-types and larger collections of species in the future within this 
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framework. For each organism j 
j  U,V  

, 
j

ikg is defined as in the single-species 

cMonkey algorithm, as: 

     0 0 0log log logj j j n j

ik ik ik nik

n N

g r r s s q q


  
 

where 
j

ikr
, 

j
iks

, and 
j

nikq
 are the individual likelihoods for the expression, sequence and 

networks, as defined by our earlier work and r0, s0 and q0 are mixing parameters set to 

roughly equalize the influence of each data type in this work (these mixing parameters 

can also be used to increase the influence of single datatypes if desired).  For this work 

these mixing parameters were set such that each data-type would have equal aggregate 

effect on the biclustering. Each of these individual score components, 
j

ikr
, 

j
iks

, and 
j

nikq

, are described previously (Reiss, Baliga et al. 2006) and in the supplemental section.  

The probability that any gene pair in OCUV is added to the growing bicluster is a well-

balanced function of the evidence derived from the integrated dataset for each species, 

formulated as the two multi-data scores, 
1
ikg  and 

2
ikg , that represent the individual 

species support values for each gene in an orthologous pair (
1
ikg  and 

2
ikg  represent the 

multi-data-type integration for each organism separately and πik effects the multi-

species integration). Once this coupled version of the cMonkey score is obtained, the 

algorithm progresses in a manner similar to SSCM, but adding and removing pairs 

from the bicluster during each iteration instead, and stopping when convergence 

criteria are met (Reiss, Baliga et al. 2006; Bonneau, Facciotti et al. 2007). At this 
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stage, the formation of ortholog-pair biclusters, we limit any given bicluster to 

including only a single pair from any one particular ortholog family.  Multiple 

members of an orthologous core can be included in different biclusters, and additional 

members of any given family of orthologs can be added in the following species 

specific elaboration stage.  

2.5.1.6 Identification of species-specific elaborations of conserved-core biclusters (step 3)   

In this step, we identify species-specific modifications to the biclusters that are 

discovered during the orthologous-pair biclustering described above (Figure 2.5c). To 

do this, we decouple the orthologous pairs from the shared-space modules to generate 

two biclusters, one for each organism, which represent the conserved cores of a 

putative, conserved, co-regulated module. These effectively serve as 'super-seeds' for 

this step, which are each separately optimized in a manner similar to the original 

single-species cMonkey method, but now considering the full genomes of each 

respective organism (genes without clear orthologs in the other organism can now be 

added if supported by the integrative score). Unlike the original method, though, in 

this step, we anchor these searches by preventing the genes from the original shared-

space orthologous cores from being dropped. In so doing, we maintain the original 

putative, conserved module, while allowing the addition of species-specific or non-

conserved orthologous core genes that fit well to the bicluster in a species-specific 

manner. During this stage, we also remove the constraint that only one gene from a 

given orthologous group can be selected by a given shared bicluster to permit 
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detection of bona fide co-regulation of multiple members of paralogous gene families  

(e.g. enabling the potential identification of dosage selection of paralogous genes). 

Finally, unlike either the shared-space or single-species optimizations previously 

described, where the mixing parameters, r0, p0 and q0, follow a structured annealing 

schedule during the optimization, in this optimization step we hold these mixing 

parameters constant, using the final values from the shared optimization for these. 

2.5.1.7 Identification of species-specific biclusters (optional, step 4) 

Once the multi-species analysis has been completed, as an optional final step, 

any species-specific modules that are completely unique to each organism can be 

identified by running single-species cMonkey on the remaining un-biclustered genes. 

We direct the reader to the supplementary material for a more detailed description and 

discussion of this step as it is not a main focus of this first demonstration of our 

method. These last two species-specific steps provide our method the strength and 

flexibility to simultaneously identify both conserved, partially conserved and species-

specific modules, giving a correct limiting behavior across a wide range of possible 

species pairings. 
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2.5.1.8  Algorithm pseudocode: 

Figure 2.6: Multi-species cMonkey algorithm pseudocode. 

 

2.5.2 Data set analyzed  

 In the following sections, we provide for each of the Gram-positive and Gram-

negative triplet a detailed description of the data sets that were analyzed.  In most 

cases, the expression data was collected from the GEO omnibus database (Edgar, 
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Domrachev et al. 2002; Barrett, Troup et al. 2007), though additional B. subtilis data 

also came from the KEGG Expression Database (Goto, Kawashima et al. 2000). In 

addition to these expression data sets, we also included upstream sequence data (200 

bases upstream of the start codon), retrieved from RSA Tools (van Helden 2003) as 

well as network associations from KEGG (Kanehisa and Goto 2000; Kanehisa, Goto 

et al. 2002; Kanehisa, Goto et al. 2006; Kanehisa, Araki et al. 2008), Prolinks 

(Bowers, Pellegrini et al. 2004) and Predictome (Mellor, Yanai et al. 2002).  We used 

InParanoid (Remm, Storm et al. 2001; Alexeyenko, Tamas et al. 2006) to identify 

putative sets of orthologs between these three species of each triplet. 

2.5.2.1 Gram-positive triplet 

 For B. subtilis, we compiled an expression data matrix that consisted of 314 

conditions from 15 studies that examine the regulons of over 40 known transcriptional 

regulators and sigma factors (Kobayashi, Ogura et al. 2001; Ogura, Yamaguchi et al. 

2001; Yoshida, Kobayashi et al. 2001; Ogura, Yamaguchi et al. 2002; Asai, 

Yamaguchi et al. 2003; Doan, Servant et al. 2003; Eichenberger, Jensen et al. 2003; 

Molle, Nakaura et al. 2003; Tojo, Matsunaga et al. 2003; Watanabe, Hamano et al. 

2003; Yoshida, Yamaguchi et al. 2003; Bunai, Ariga et al. 2004; Eichenberger, Fujita 

et al. 2004; Serizawa, Yamamoto et al. 2004; Yoshida, Ohki et al. 2004; Hayashi, 

Ohsawa et al. 2005; Hayashi, Kensuke et al. 2006; Wang, Wu et al. 2006). For the two 

pathogens, the L. monocytogenes expression matrix contained 56 conditions that were 

compiled from 8 studies covering early stationary phase, salt, alkali, and cold shocks 
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(Marr, Joseph et al. 2006; Hu, Oliver et al. 2007; Hu, Raengpradub et al. 2007; 

Severino, Dussurget et al. 2007; Bowman, Bittencourt et al. 2008; Giotis, Muthaiyan 

et al. 2008; Raengpradub, Wiedmann et al. 2008); while the B. anthracis matrix 

contained 51 conditions from a single study by Bergman et al (Bergman, Anderson et 

al. 2006) covering the full life-cycle of the B. anthracis Sterne strain. As mentioned 

previously, most data was collected from the GEO omnibus database (Edgar, 

Domrachev et al. 2002; Barrett, Troup et al. 2007), though additional B. subtilis data 

also came from the KEGG Expression Database (Goto, Kawashima et al. 2000). 

(Kanehisa and Goto 2000; Remm, Storm et al. 2001; Kanehisa, Goto et al. 2002; 

Mellor, Yanai et al. 2002; Bon, Casaregola et al. 2003; Bowers, Pellegrini et al. 2004; 

Alexeyenko, Tamas et al. 2006; Kanehisa, Goto et al. 2006; Kanehisa, Araki et al. 

2008)  To generate the list of orthologous pairs for each pairing, we used InParanoid 

with the default settings (BLOSSUM45 substitution matrix), to identify 2225 

orthologous groups between B. subtilis and B. anthracis, 1439 between B. subtilis and 

L. monocytogenes, and 1494 between B. anthracis and L. monocytogenes. Note, that 

while these are the total number of groups, the total number of genes and orthologous 

pairs is larger as we also include non-best-matching orthologs in our analysis. Table 

2.4 and Table 2.5 provide full listings of the number of genes, conditions and edges 

(by network association) in our database for each organism, as well as the total 

number of genes, orthologs and ortholog families for each pairing between the Gram-

positive triplet. 
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Table 2.4: Size of the data sets used for the Gram-positive triplet, by organism.  

Number of:  

Bacillus  

subtilis 

Bacillus 

anthracis 

Listeria  

monocytogenes 

 genes 3928 5861 2795 

 conditions 314 51 56 

association edges:     

operon 839 997 494 

metabolic (KEGG) 49630 73981 36825 

Gene Neighbor (Prolinks) 6105 7338 1982 

Phylogenetic Profile (Prolinks) 6036 7703 1970 

Gene Cluster  (Prolinks) 839 997 494 

COG-code 227096 370354 110489 

 

Table 2.5: Total number of orthologs, orthologous families, and ortholog pairs generated by 

InParanoid for the Gram-positive triplet, by organism pairing. 

Number of: 

B. subtilis –   

B. anthracis 

B. subtilis –   

L. monocytogenes 

B. anthracis –   

L. monocytogenes 

orthologous groups 2225 1439 1494 

orthologous pairs 2443 1564 1690 

multi-member groups 118 95 129 

Remaining unique genes 

(per organism) 

B. subtilis: 2279 B. subtilis: 1519 B. anthracis: 1634 

B. anthracis: 2339 L. monocytogenes: 1478 L. monocytogenes: 1537 
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2.5.2.2 Gram-negative triplet 

The E. coli expression data matrix consisted of 507 conditions from 16 projects 

acquired from the Many Microbe Microarrays Database (M3D) (Faith, Driscoll et al. 

2008) covering various conditions including:  genetic perturbations, changes in 

oxygen concentration and pH, growth phases, antibiotic treatment, heat shock, and 

different media.  The S. typhimurium expression data matrix consisted of 138 

conditions from 8 studies acquired from the Stanford Microarray Database (SMD) 

(Sherlock, Hernandez-Boussard et al. 2001) covering various conditions including:  

chemical effects, nutrient limitation, library verification, strain comparison, media 

comparisons, time course, and mutants (Chan, Baker et al. 2003; Detweiler, Monack et 

al. 2003; Kim and Falkow 2003; Kim and Falkow 2004; Prouty, Brodsky et al. 2004; 

Chan, Kim et al. 2005; Lawley, Chan et al. 2006; Halbleib, Saaf et al. 2007).  Finally, 

the V. cholerae expression data contained 441 conditions that were also collected from 

the SMD from 10 studies that explored host response(Merrell, Butler et al. 2002), 

chitin utilization (Meibom, Li et al. 2004), competence(Meibom, Blokesch et al. 2005; 

Blokesch and Schoolnik 2007),  mucosal escape response (Nielsen, Dolganov et al. 

2006), metabolism (Shi, Romero et al. 2006), comparisons with non-pathogenic 

strains (Keymer, Miller et al. 2007; Miller, Keymer et al. 2007), pigment (Valeru, 

Rompikuntal et al. 2009) and virulence (Nielsen, Dolganov et al. 2010).  Table 2.6 and  

Table 2.7 provide full listings of the number of genes, conditions and edges (by 

network association) in our database for each organism, as well as the total number of 
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genes, orthologs and ortholog families for each pairing between the Gram-negative 

triplet. 

Table 2.6: Size of the data sets used for the Gram-negative triplet, by organism.  

Number of:  

Escherichia 

coli 

Salmonella 

typimurium 

Vibrio  

cholerae 

 genes 4264 3745 3335 

 conditions 507 138 441 

association edges:     

operon 3414 2104 1920 

metabolic (KEGG) 96931 75363 106530 

Gene Neighbor (Prolinks) 29228 29942 19996 

Phylogenetic Profile (Prolinks) 20058 20094 17460 

Gene Cluster  (Prolinks) 6048 6476 1920 

COG-code 644856 379484 525328 

 

Table 2.7: Total number of orthologs, orthologous families, and ortholog pairs generated by 

InParanoid for the Gram-negative triplet, listed by organism pairing. 

Number of: 

E. coli –  

S. typhimurium 

E. coli – 

 V. cholera 

S. typhimurium –  

V. cholerae 

orthologous groups 2827 1834 1700 

orthologous pairs 2856 1965 1831 

multi-member groups 22 86 77 

Remaining unique genes E. coli: 1428 E. coli: 1961 S. typhimurium: 1972 
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(per organism) S. typhimurium: 900 V. cholera: 1467 V. cholera: 1594 

 

2.5.3 External tools used 

Ortholog analysis and identification was performed using InParanoid version 

2.0 on protein sequences in Fasta format that were retrieved from NCBI Bacterial 

Genomes (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/), and using BLAST version 2.2.10.  

During the cMonkey optimizations, MEME & MAST version 3.5.7 was used as part 

of the iterative search for new motifs. Upstream sequences were retrieved from 

Regulatory Sequence Analysis Tools (RSAT) (van Helden 2003; Thomas-Chollier, 

Sand et al. 2008).  All GO term enrichments were calculated using the GO-

TermFinder library (Sherlock 2009), using a Bonferonni false discovery correction.  

All KEGG pathway enrichments were calculated using a utility built in-house for this 

purpose; also Bonferonni corrected. 

2.5.4 Visualization and exploration of multi species biclusters 

The Comparative Microbial Module Resource (Kacmarczyk and Bonneau 

2010)  is an integrated collection of diverse functional genomics datasets and software 

tools that facilitate the visualization and analysis of conserved cMonkey biclusters, 

or putatively co-regulated gene modules, across species. The interface allows the 

visualization and exploration of a bicluster‘s properties (such as, coupled multi-species 

biclusters, conserved orthologous core gene members, species-specific gene members, 

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/
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experimental conditions, gene co-expression pattern, sequence motif logos, and 

significant functional annotations). Integration with the Gaggle allows access to 

additional biological information from online databases and further analysis (e.g. 

integrated tools include but are not limited to: the FireGoose plugin, cytoscape, the 

Data Matrix Viewer, and an R goose for using the R language and environment for 

statistical computing and graphics).  A comprehensive description of the CMMR is 

available in Appendix 3 (section 5). 

2.5.5 Multi-species cMonkey code release, maintenance and documentation:  

Both the multiple-species cMonkey and a re-factored single-species cMonkey 

are freely available for download and use (Waltman, Kuppusamy et al. 2010).  This 

website includes functionality for bug tracking, tutorials on use, example datasets and 

runs of the algorithm, links to required packages, and python code developed to aid in 

data-import.  MS-cMonkey is written in R (R Development Core Team 2009) with a 

data-import module written in Python and has three main modules: 

1. Reader: cMonkey is given gene expression matrices and ortholog pairs, along with 

optional protein association networks and upstream sequences. The user may 

request cMonkey to automatically find the required and optional datatypes for each 

organism. 

2. The main code: written in R, contains bicluster seeding, bicluster overall 

optimization, scoring functions, and methods for output and visualization of 

results.  
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3. Validation and visualization codes: codes that implement the bicluster and 

biclustering assessment described, code to facilitate connection to network and 

cluster visualization tools such as the Gaggle. 

All code (cMonkey, the reader, and validation code) are freely available.  We 

have attempted to make several of the steps required for assembling and integrated 

dataset automatic in this code release, in the hope that this will extend the usefulness 

of the algorithm to a greater number of biologists. The biologist needs to only prepare 

simple gene expression matrices and pairs of orthologs. The rest of the datatypes will 

be queried from biological databases (networks, sequences, annotations for validation 

scripts, etc.). All input and output will also be stored in a portable, standard relational 

database that will readily permit use of the integrated dataset and cMonkey results by 

other tools. These key changes to how data is imported and stored in cMonkey‘s 

database and the core data-object for cMonkey allow for multi-species integration.  

The biologist may use the Reader in two modes: automatic or manual. In automatic 

mode, the biologist need prepare only gene expression matrices and pairs of orthologs, 

while protein association networks and upstream sequences are queried from 

biological databases such as BioNetBuilder (Avila-Campillo, Drew et al. 2007), 

MicrobesOnline (Dehal, Joachimiak et al. 2009), Prolinks (Bowers, Pellegrini et al. 

2004), STRING (Snel, Lehmann et al. 2000; Jensen, Kuhn et al. 2009) and RSAT (van 

Helden 2003; Thomas-Chollier, Sand et al. 2008).  
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2.5.6 Swimming motility assays 

Individual colonies of B. subtilis PY79 (Youngman, Perkins et al. 1984) and 

DS219 (Blair, Turner et al. 2008), Bacillus cereus ATCC 14579 (obtained from Daniel 

Ziegler, Bacillus Genetic Stock Center, Ohio State University) and Bacillus anthracis 

Sterne (a gift from Adam Driks, Loyola University Chicago) were picked with a 

wooden stick and inoculated into Luria-Bertaini (LB) 10 g tryptone, 5 g yeast extract, 

5 g NaCL per L broth.  Cultures were grown to log phase and 3 μl of the broth culture 

was centrally inoculated on LB Agar plates containing 0.3% Agar.  Motility was 

scored after ~20 hour incubation at 30˚C.  Plates were photographed against a dark 

background such that areas of bacterial colonization appear light.   

2.6 Abbreviations Used 

OC: Orthologous Core (the set of actively expressed orthologous genes shared 

between a group of organisms on which we run our multi-species biclustering) 

MS: Multiple-species 

SS: Single species 

SSCM: Single-species cMonkey 

MScM: Multi-species cMonkey 

MSISA: Multi-species ISA 

MSKM: Multi-species K-Means 

BMSKM: Balanced Multi-species K-Means 
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EO: Expression Only 

FD: Full Data (EO and FD are used to distinguish between expression only tests and 

full data runs of integrative methods) 

SH: shared biclusters, biclusters generated only from orthologous pairs (MScM, 

MSKM, BMSKM) 

EL: elaborated biclusters, multi-species biclusters that have additional genes unique to 

each organism added (MScM, MSKM, BMSKM) 

P: purified biclusters, applies only to the ISA algorithm (MSISA-P) 

R: refined biclusters, applies only to the ISA algorithm (MSISA-R) 
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3. QUANTITIVE VALIDATION OF MULTI-SPECIES 

CMONKEY 

Original article: Waltman, P., T. Kacmarczyk, et al. (2010). "Multi-species integrative 

biclustering." Genome Biololgy 11(R96). 

 

NOTE: This chapter contains sections from the original article that this chapter is 

based upon which describe the quantitative analysis that was performed in 

combination with the relevant method sections of the original supplementary material.  

The majority of the main text of the original article now serves as Chapter 2.  The 

gene lists and images that were also contained in the supplement of the original article 

can now be found in Appendix 1, while the additional plots from the original 

supplementary material can now be found in Appendix 2. 

 

Author contributions: Provided above, in section 2.7. 

 

In this chapter we provide a description and genome-wide benchmarking of the 

multispecies integrative biclustering method (or FD-MScM for full-data multi-species 

cMonkey). We compare our method to the original single-species cMonkey algorithm, 

a simple k-means clustering method that has been adapted to multi-species analysis 

and to several other single- and multi-species biclustering algorithms. We will refer 

only to analysis of pairs of organisms here and focus primarily on the B. subtilis-B. 
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anthracis pair, though we performed the validation on all the pairings that were 

possible from the two organism triplets that were analyzed (yielding six (6) total 

pairings, with three each from both the Gram-positive and Gram-negative triplet). We 

note that the method scales linearly with the number of species being analyzed and can 

be extended to larger numbers of organisms. The difficulties in validating biclustering 

performance and the need to compare the algorithm to primarily single species 

methods required that we initially limit the scope of this work to the simpler pairwise 

case. This chapter is based heavily upon the global validation section of our article 

published in Genome Biology (Waltman, Kacmarczyk et al. 2010) 

 As described in chapter 2, our method is composed of two sequential phases: 

an initial step where conserved cores are learned in an integrated multiple-species 

fashion and a later step where species-specific features are added to the conserved core 

(called the elaboration step). The algorithm takes as input a matrix of normalized 

expression data for each organism (where each organism‘s data matrix may be 

normalized separately), upstream sequences for all genes, and one or more networks 

for each organism (in this case we used metabolic and signaling pathways from 

KEGG, predicted co-membership in an operon and phylogenetic profile networks). 

The experimental datasets collected for both triplets are described fully in chapter 2 

(Table 2.4– 

Table 2.7).  



 

 

 

195 

 As described in chapter 2, the method begins by randomly selecting a single 

orthologous pair (e.g. dnaA) around which to build a seed bicluster.  For the randomly 

selected orthologous pair, conditions are chosen in each organism‘s expression matrix 

where the orthologous gene from that organism is most significantly differentially 

expressed. The semi-random seed is completed by adding the 5 to 10 most correlated 

orthologous pairs (e.g. dnaN) to the randomly selected seed pair (over the conditions 

defined in each species). This heuristic seeding is required as most of the MScM score 

terms demand that a bicluster have three or more genes in each organism to compute 

the scores required for further iterations.  Once seeded, orthologous gene pairs are then 

iteratively added to (e.g. sigH) or dropped from (e.g. cwlH) the growing bicluster 

using the multi-data/multi-species score until no improvements can be made 

(convergence). After a bicluster converges, new biclusters are seeded and built from 

additional random seeds until no significant biclusters can be found or a maximum 

number of biclusters is reached.  

 Biclusters are generated sequentially and the number of biclusters to be 

optimized is chosen by the user. Considering that initially optimized biclusters will be 

unaffected by later biclusters, the number of biclusters is set higher than the expected 

number of true co-regulated modules. For each of the three possible species pairs, we 

generated 150 biclusters in the shared (multi-species) data-space that were then 

elaborated in the single-species data-space.  Thus, each bicluster contains a conserved 

core (orthologous pairs that were added based on the entire integrated dataset), and 0 
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or more genes that were added during the elaboration step (performed separately for 

each organism, based on each single species dataset). 

3.1 Genome-wide assessment of multi-species biclustering 

performance 

To validate MScM, we compared it to several multi-species and single-species 

methods (Table 3.1).  Among the single-species methods, we included the single-

species version of cMonkey (SSCM), which was previously shown to be competitive 

with other biclustering methods (Reiss, Baliga et al. 2006); as well as two recent 

single-species biclustering methods, QUBIC (Li, Ma et al. 2009) and Coalesce 

(Huttenhower, Mutungu et al. 2009) (COAL).  In addition, we compared our method 

to a multi-species version of the ISA biclustering algorithm (MSISA) (Bergmann, 

Ihmels et al. 2003); and two multi-species clustering methods, a simple multi-species 

K-means algorithm (MSKM) (Herschkowitz, Simin et al. 2007) and a balanced multi-

species K-means clustering method (BMSKM). We constructed the BMSKM version 

to balance the disproportionate size of expression datasets between the two species 

and thereby perform a more meaningful comparison to MScM.  We refer to the results 

as ―shared‖ (SH) if we restrict our analysis to orthologous pairs between the two 

species and ―elaborated‖ (EL) if a second step is used to add species-specific genes, 

i.e. MScM-EL. When possible, we evaluate both SH and EL results. In order to remain 

consistent with the MSISA nomenclature (Bergmann, Ihmels et al. 2003) we also use 

the terms purified (MSISA-P) and refined (MSISA-R), as these terms were used in the 
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original work describing these methods. Descriptions of the multi-species methods can 

be found in the methods section.  When evaluating integrative methods that take into 

account more than just expression data (FD: full data) we also compare to expression-

only (EO) runs of each method. Our evaluation of the various methods is based on two 

criteria: 1) the ability to detect statistically significant modules, and more importantly 

to this work, 2) the ability to identify conserved modules. We show that MScM 

produces biclusters that are a good balance of coverage, functional significance, and 

conservation, suggesting that the biclusters obtained by this procedure are of greater 

biological significance.  

 

Table 3.1: Key to abbreviations used for methods tested. Tested methods are shown organized by 

main method (leftmost column) data-types used, and whether the analysis was performed over the full 

genome or restricted to only genes with orthologs across the species analyzed. For each formulation 

(method, data and multi-species mode) we provide the short name or abbreviation that is used in tables, 

figures and throughout the text. 

  Expression Only  Full Data 

Multi-Species shared space 

full genome 

(elaboration)   shared space 

full genome 

(elaboration) 

  cMonkey EO-MScM-SH EO-MScM-EL   FD-MScM-SH FD-MScM-EL 

 ISA* MSISA-P MSISA-R  NA NA 

 K-Means* MSKM-SH MSKM-EL  NA NA 

 (Balanced) K-Means* BMSKM-SH BMSKM-EL  NA NA 
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Single-Species Expression Only   Full Data 

  cMonkey EO-SSCM   FD-SSCM 

 Coalesce EO-COAL  FD-COAL 

 Qubic* QUBIC  NA 

       

       

 

* Expression only method by method definition - no distinction between "expression only" 

or "full data" is necessary. 

 

 

 

We also note that the validation was originally performed only for the Gram-

positive triplet (B. subtilis, B. anthracis, and L. monocytogenes).  A subsequent, partial 

validation was later performed on the Gram-negative triplet (E. coli, S. typhimurium 

and V. cholerae), though, the validation on this triplet did not include the permutation 

tests we describe below, as these proved to largely uninformative because the results 

of nearly all the methods compared were significantly better than random. 

3.1.1 Using multiple metrics for validating multi-species biclustering: 

Validation and comparison of clustering methods remains a difficult problem 

(Prelic, Bleuler et al. 2006; Reiss, Baliga et al. 2006). There is, as of yet, no ―solved‖ 

organism (i.e., an organism whose full regulatory network is known and 

experimentally validated) that can be used as a benchmark.  Artificial datasets are also 

of limited value due to the complexity of generating reasonable synthetic datasets (one 
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would have to generate sequences, expression data and networks, and make 

assumptions about the evolution of these data-types). In the face of these challenges, 

several criteria for judging the biological significance of gene clusters have been 

implemented. We will focus on five metric classes: 1) bicluster coherence; 2) 

functional enrichment; 3) coverage; 4) overlap between biclusters and 5) conservation.  

We evaluate bicluster coherence with five metrics that gauge the support of the three 

data-types cMonkey integrates, described further below and in the supplement. We 

also assess the number of biclusters that have a significant enrichment, considering 

that enrichment metrics imply that co-functional and interacting genes (by protein-

protein or regulatory interaction) should have a higher probability of clustering. 

Expression matrix coverage and overlap between biclusters were calculated as the 

percentage of data-matrix elements that can be in one or more biclusters (as opposed 

to just genes). Gene-wise comparisons can be found in the supplementary information.  

The last metric we consider, unique to multi-species datasets, is the 

conservation of (bi)clustered genes between the two species.  Although we cannot 

know a priori what percentage of co-regulated genes will be preserved, we can state 

for two closely related organisms that: 1) if two biclustering methods are equivalent 

(according to all other metrics), then the more conserved method is likely to be of 

higher biological significance; 2) the conserved score between biclustering methods 

should be well separated from a random background, but still lower than one. In 

addition, more distantly related organisms should have less conserved co-regulation.  
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By strictly enforcing a perfect conservation between the species, the two k-means 

variants (B/MSKM) are good examples of methods that over-estimate the degree of 

conservation between two species.   

 Figure 3.1–Figure 3.2 and Table 3.2 present this multiple-metric comparison 

for the B. subtilis – B. anthracis pairing; the summary of this multi-metric comparison 

for the results of the other organism pairings from the 2 triplets can be found in  

Table 3.3–Table 3.7, and the associated figures can be found in Appendix 2. Given the 

above metrics and evolutionary considerations our assessment of methods attempts to 

balance the 5 metric classes above:   

bicluster-quality = 

      [data support: (1) coherence, (2) functional enrichment] X 

      [completeness:  (3) coverage, (4) overlap] X 

      [conservation: (5) conservation score] 

3.1.2 Comparing the degree of conserved co-regulation detected by each 

method: 

A bicluster is considered to be perfectly conserved when all of the orthologous 

genes from that bicluster are found in a single bicluster in the related species. We 

evaluated the ability of all the tested methods to identify conserved biclusters using a 

metric similar to the F-statistic (Stein, Eissen et al. 2003), which gauges the degree of 

recovery between a bicluster in one species with that of the closest bicluster in the 

other species. For the multi-species methods, we calculated the metric using the shared 
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bicluster for one organism with its bicluster counterpart in the other. Details of the 

procedure can be found in the methods section. 
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Figure 3.1: Comparing the distribution of expression and network coherence for single and multi-

species methods for B. subtilis – B. anthracis.  A comparison of the expression and network coherence 
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for the different MS and SS methods.  For brevity, we only present here the results from full data 

methods (FD) from the B. subtilis-B. anthracis pairing (the results for the other pairings and expression 

only (EO) methods can be found in the supplementary material).  Abbreviations are given for each 

method, a key to these abbreviations can be found in Table 3.1.  Across the three comparisons, no 

method outperformed all other methods as judged by all three metrics, with the MScM results 

performing competitively with the others.  (a) The distributions of the residuals from each method for 

the pairing of B. subtilis and B. anthracis.  We also show, next to each distribution (in gray), the 

residuals from randomly shuffled (bi)clusters that match the size distribution for each method with 

n=1000 for the number of copies of the original set of (bi)clusters (same number of genes, conditions 

and (bi)clusters).  Most methods tested were significantly better than random for both organisms; the 

exceptions being MSISA, Qubic, and Coalesce.  In addition, this plot illustrates the tendency of MSKM 

to allow an organism with a considerably larger expression dataset to dominate the analysis.  (b) The 

distributions of the average absolute correlation from each method for the pairing of B. subtilis and B. 

anthracis are displayed to allow comparison between methods that identify inversely correlated 

biclusters (MSISA, Qubic) and those that do not. As in (A), we also display the results from a randomly 

shuffled distribution next to each method in gray (n=1000).  In all cases, with the exception of Qubic 

for B. subtilis, the method was significantly higher than random. (c) The distributions of the association 

p-values (-log10) from each method compared. 

 

Using this simple measure of conservation, we evaluated the results from all 

the multi-species (MS) methods with those from several single-species (SS) methods 

(Table 3.2 displays the results for the B. subtilis-B. anthracis pairing;  

Table 3.3–Table 3.7 for the others).  With the exception of MSISA-R, the MS 

methods displayed a far greater degree of conservation than any of the SS methods, 



 

 

 

204 

with the shared (SH) steps (and the equivalent MSISA-P step) having perfect 

conservation, and the elaboration (EL) steps having conservation scores >0.85.  As 

they overestimate the conservation between the two species by assuming perfect 

conservation for all orthologous pairs during their shared steps, both B/MSKM-EL 

results display a greater degree of conservation than the MScM-EL results.  In 

contrast, none of the SS methods possessed a conservation score > 0.125 (although it 

is likely that this score underestimates the degree of conserved co-regulation 

conservation scores for many of these methods were still significantly greater than 

random (unpublished results)).  

The low conservation score for closely related organisms obtained when 

running SS methods on individual datasets was surprising. We expected that the truly 

conserved co-regulated gene groups would be detected individually by the SS methods 

and thus contribute to higher conservation scores. We attribute the low conservation 

scores in part to biologically relevant differences in co-regulation, but also to the fact 

that SS biclusters are supported by smaller datasets that contain systematic errors that 

likely differ between species (and thus, correctly cancel out in the multi-species 

analysis). Importantly, the greater conservation scores for MScM had little or no 

negative impact on the other commonly used evaluation metrics we employed.   

3.1.3 Coherence of biclusters, coverage and bicluster overlap:  

In this section we evaluate the ability of each method to simultaneously find 

coherent biclusters (Figure 3.1), cover the input dataset, and minimize the overlap 
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between biclusters (Figure 3.2).  We assess bicluster expression coherence by 1) 

residual, the mean error when the average expression value over the bicluster is used 

to predict gene expression levels, (Figure 7.14–Figure 7.18); and 2) mean correlation, 

the average pairwise correlation between all (bi)cluster members, taking the absolute 

value of the correlation to allow unbiased comparison between methods that identify 

inversely correlated patterns (QUBIC and MSISA) and those that do not (Figure 7.19–

Figure 7.24).  These two measures are dependent on the number of conditions and 

rows in the bicluster and overall coverage of the data-matrix. Therefore, in all cases 

we compare co-expression values to a randomized background generated specifically 

for that biclustering (see methods).  We assess bicluster network coherence by 3) 

association network p-values, a measure of the significance of the sub-networks within 

biclusters compared to the full network (Figure 7.25–Figure 7.30).  We assess 

bicluster sequence coherence by 4) upstream motif E-values, a measure of the 

quality/significance of the upstream binding site motifs detected for each bicluster 

(Figure 7.31–Figure 7.36); and 5) sequence p-values, representing the preferential 

partitioning of the discovered motifs to genes in the bicluster over the remainder of the 

genome (Figure 7.37–Figure 7.42). We direct the reader to the supplementary material 

and prior work (Reiss, Baliga et al. 2006) for detailed descriptions of these metrics, 

along with the individual comparisons. Note, in the case of the non-integrative 

methods, sequence and network based metrics or scores were calculated post hoc for 

the (bi)clusters they produced.  



 

 

 

206 

3.1.3.1 Summary of bicluster coherence metric evaluations 

We found that for all 5 coherence metrics, FD-MScM performed as well or 

better than the other methods (Table 7.25–Table 7.34).  Specifically, in the case of the 

Gram-positive triplet, FD-MScM performed as well or better than the other methods in 

71 of the 92 individual comparisons of the expression residual distributions, in all 92 

of the mean correlation comparisons, in 77 of the 92 comparisons for the network 

association p-values, in 69 of the 92 comparisons for the motif E-values, and in 72 of 

the 92 comparisons for the sequence p-values.  Note, the large number of comparisons 

(92) results from the fact that we have three organism pairings and that for each run 

we must separate the multi-species run into a set of biclusters for each species to 

calculate these validation metrics (thus each species pair results in 2 x the number.  

Similar results were observed for FD-MScM on the Gram-negative triplet as well; and, 

likewise, comparisons with EO-MScM on the Gram-positive triplet (Table 7.35–Table 

7.39) indicated that for four of the five metrics, it did as well or better than the other 

methods tested – the sole exception being motif E-values.  Note, we re-iterate that 

during the generation of the EO-MScM results, the MScM optimization was run solely 

on expression data, with the scores for the other supporting data types (sequence and 

association networks) calculated apriori; thus, it is interesting that it‘d do so well on 

these other data types.  In contrast, in the comparisons with the EO-MScM results for 

the Gram-negative triplet, EO-MScM fared worse than its competitors in three of the 5 

metrics, though, ironically, the metrics in which it did better were those associated 
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with the sequence data.  It is unclear why this was the case.  However, given that four 

(4) of the competitors that consistently outperformed it were other cMonkey versions 

(FD-SSCM, EO-SSCM, and FD-MScM-SH/EL), the most likely explanation is that in 

this particular instance, the optimization settled into a sub-optimal local minima, as is 

possible with Monte Carlo methods. 

In the comparisons with the random permutation results for the expression 

metrics (Table 7.40–Table 7.41), expression residuals for the MScM and SSCM were 

all significantly better than random distributions generated for each method (differing 

cluster and bicluster sizes required a separate calculation of the random background 

for these expression coherence metrics for each method and for each data-set), for all 

organisms and pairing combinations, as were those for the two MS k-means variants 

(B/MSKM).  In contrast, the residuals from both QUBIC and the two MSISA steps 

were all significantly worse than random; while the residuals from COAL were 

significantly better for B. anthracis, but somewhat worse for B. subtilis and L. 

monocytogenes.  However, when considering the mean correlation results, nearly all 

methods were better than random; the sole exception to this being the MSISA results 

for L. monocytogenes in the pairing with B. subtilis. 
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Figure 3.2: Comparison of the size, coverage and overlap for single and multi-species methods for 

the B. subtilis – B. anthracis pairing (full data results only, where applicable).  For brevity, we only 

present here the results from full data methods (FD) from the B. subtilis-B. anthracis pairing (results for 
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the other pairings and EO methods can be found in the supplementary material) (A) The distribution of 

the number of genes in the (bi)clusters from the different methods.  There is a consistent increase in the 

median size between the shared and elaboration steps (this is most extreme in the case of the MSISA 

method).  For both organisms, Coalesce and Qubic produced the next largest biclusters, in terms of the 

number of genes.  (B) The distribution of the number of conditions in the biclusters from the different 

biclustering methods only. We do not show this for the MSKM and BMSKM results as these methods 

use all conditions.  For both organisms, the MS/SS cMonkey methods produced the biclusters with the 

most conditions.  The MSISA method produced the biclusters with the least number of conditions. (C) 

The coverage of the total expression data matrix by the (bi)clusters from the different methods is 

displayed.  The elaborated results of the MSKM and BMSKM methods achieve perfect coverage, by 

definition.  The MSISA and Qubic biclusters had the smallest coverage of any of the methods, while the 

Coalesce biclusters achieved coverages comparable with the SSCM biclusters. (D) The distribution of 

all pairwise, non-zero overlaps between the (bi)clusters from the different methods;  overlap in terms of 

the overlap of expression matrix elements, rather than genes.  By definition, the MSKM and BMSKM 

clusters have no overlap, while the MSISA and Qubic biclusters had the greatest.  Of the biclustering 

methods, Coalesce had the least overlap.  Coalesce identifies more distinct biclusters with greater 

numbers of genes, but fewer conditions; and the SS/MS cMonkey methods identify biclusters that are 

slightly more overlapped than does Coalesce, with fewer genes, but covering more conditions. 

 

3.1.3.2 Summary of bicluster coverage and overlap 

Regardless of the pairing, both QUBIC and MSISA produced biclusters with 

the most genes (Figure 7.43-Figure 7.48) and fewest conditions (Figure 7.49-Figure 

7.54), while also simultaneously having the least coverage (Figure 7.55-Figure 7.66) 

and most redundant set of biclusters (Figure 7.67-Figure 7.78).  The sole exception to 
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this are the QUBIC results from the Gram-negative triplet, which while still having the 

fewest conditions, least coverage and greatest overlap, produced the biclusters with the 

fewest genes.  This difference between the two triplets is most likely attributable to a 

different parameterization that was used for QUBIC, as described in section 3.4.4. 

We exclude QUBIC and MSISA from further consideration for this reason. By 

contrast, the two B/MSKM variants display complete coverage of the data space. 

Although it is not possible to say what the optimal value for coverage should be, it is 

clear that: 1) numbers approaching 100% include several false positives (with respect 

to conserved co-regulation) as one cannot reasonably expect every gene to be a 

member of a conserved regulatory module; 2) methods that cover 2% or less of the 

data space are likely missing the majority of conserved co-regulation.  We note that 

the coverage of both the genome and expression dataset for MScM is considerably 

smaller in comparison to SSCM and COAL.  This is not unexpected because the 

search spaces are constrained by the orthologous core, with the search space of the 

elaboration step indirectly constrained by results of the shared step.  The SS methods 

typically had better coverage, reflecting that a significant fraction of co-expressed 

gene-groups are not conserved across the species investigated. 

3.1.4 Estimating functional coherence via enrichment of function annotations: 

We compared the percentages of biclusters that were significantly enriched (p-

value < 0.01) for both GO terms and co-presence in KEGG pathways. Again, we limit 

the discussion of these below to the pairing of B. subtilis with B. anthracis (Figure 3.3 
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and Figure 7.79, in greater detail), though similar patterns were observed with the 

other pairings as well (Figure 7.80-Figure 7.84).  For all of the multi-species methods, 

there was a consistent increase between the shared and elaboration optimizations, 

indicating the importance of adding species-specific genes to conserved co-regulated 

cores. For example, for FD-MScM, the percentage of biclusters with GO term 

enrichments increases from 51.3% to 56.0% for B. subtilis (from 51.3% to 72.7% for 

B. anthracis) between the shared and elaboration optimizations (similarly, for MSKM, 

the increase is from 50.7% to 63.5% for B. subtilis; 39.2% to 75.7% for B. anthracis).  

The large increase observed for the MSISA results (53.7% to 95.1% for B. subtilis; 

75.7% to 100% for B. anthracis) is a reflection of the small number of large and 

highly redundant biclusters it identifies.  When a filter is applied that allows a GO 

term to be enriched for only a single bicluster, these percentages drop considerably 

(70.1% for B. subtilis, 39% for B. anthracis, MSISA-R biclusters).   

The percentage of biclusters with enriched KEGG pathways is much higher for 

the MS methods than for SSCM. For example, the percentage of the FD-MScM-EL 

for B. subtilis was enriched 15.3%, while the percentage of the FD-SSCM results was 

11.5% (21.3% vs. 9.4% for B. anthracis). We observed a pattern similar to what was 

observed with the GO terms, in the sense that there was also a consistent increase 

between the shared and elaboration runs. For example, with FD-MScM, the 

percentages increase from 12.7% to 15.3% for B. subtilis (12.7% to 21.3% for B. 

anthracis).  



 

 

 

212 

We also compared the performance of different species-species pairings (see 

supplement for data).  We observed that for both of the pairings involving B. subtilis, 

the residuals of the clusters generated by MSKM were significantly better for the B. 

subtilis clusters, but significantly worse for the other organisms. As the B. subtilis 

expression dataset contained nearly six times more conditions than the other 

organisms, a key limitation of this and other similarly constructed methods is the 

dominance of a single species in the results.  This effect was muted by the ‗balancing‘ 

procedure (i.e. the BMSKM method). However, while the performance for the 

organism with the smaller dataset improved, the performance for the organism with 

the larger dataset decreased significantly.  A similar effect was observed with MSISA. 
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Figure 3.3: Comparison of the fraction of biclusters with significant GO and KEGG annotation 

enrichments for the single and multi-species methods for the B. subtilis – B. anthracis pairing.  (A) 

GO Terms.  For all multi-species methods there is a consistent increase from the shared to elaboration 

step, with the percentage of elaborated biclusters with significant GO term enrichments consistently 

greater than those from the single species optimization.  (B) KEGG Pathways. For both of the multi-

species biclustering methods (MScM and MSISA), there is a consistent increase in percentage from the 

shared to elaborated optimizations, similar to the GO term enrichments, with a similarly large increase 

for the refined MSISA biclusters for B. anthracis.  The two k-means clustering variants showed either 

negligible increase or even a decrease between the shared and elaboration steps. 
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Finally, we noticed that there was a consistent increase in the quality of the 

motifs associated with the biclusters returned by the elaboration step of both MS 

methods. One possible explanation for this behavior is simply algorithmic, namely, 

that MEME (Bailey and Elkan 1994), the motif inference tool we use, is able to infer 

more significant motifs from the larger pool of sequences accessible to the elaborated 

biclusters. Another reason may be that this behavior indicates a significant species-

specific change at the level of binding sites, even when the gene membership in a 

module is conserved (an example of this is provided below). Our methodology for 

modeling and detecting binding sites as part of the multi-species procedure can likely 

be improved substantially and should prove a promising area for future work. 

3.2 Overview of the (bi)cluster comparison metrics 

We compared the relative performances of the four multi-species methods 

(MScM, MSISA, MSKM and BMSKM), and the three single species methods 

(SSCM, Coalesce and Qubic) compared in this study using 5 metric classes: 1) 

bicluster coherence; 2) functional enrichment; 3) coverage; 4) overlap between 

biclusters; and 5) conservation, described in the main text (Tables 2-7).  We gauge 

bicluster coherence with five commonly used metrics that gauge the degree of support 

that is provided to each bicluster by the three data types that cMonkey integrates 

(expression, sequence and association networks).  For comparison of SSCM to other 

biclustering algorithms, and comparison between single species biclustering and 

clustering algorithms, see (Prelic, Bleuler et al. 2006; Reiss, Baliga et al. 2006).  Our 
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coherence metrics are:  1) expression residuals, a measure of the coherence of 

expression across the two species datasets for conditions within the bicluster; 2) mean 

correlation, the average pairwise correlation between members of a (bi)cluster (taking 

the absolute value to allow fair comparison between methods that identify inversely 

correlated patterns (QUBIC and MSISA) and those that do not; 3) network p-values, a 

measure of the significance of the sub-networks within biclusters compared to the full 

network; 4) motif E-values, a measure of the quality/significance of the upstream 

binding site motifs detected for each bicluster; and 5) sequence p-values, an estimate 

of a sequence‘s match to the motifs associated with a (bi)cluster.  Each of the 

coherence metrics will be described in greater detail below as we discuss the relative 

performance of MScM to the other methods. 

3.3 Quick-glance tables for all pairings 

In the tables below, we compare several metrics of bicluster conservation, 

coverage, and functional enrichment. In all cases metrics are averaged over all 

biclusters produced by that method for each species. Abbreviations are given for each 

method, see Table 1 for a key to their abbreviations. In each column, the results for B. 

subtilis are listed first, with those for B. anthracis listed in parentheses.  Conservation 

Score provides an estimate of the conservation identified between biclusters of the 

different organisms as defined in the methods;  Mean Correlation measure the 

coherence of the biclusters given the expression; Mean Net p-value measures the 

enrichment of network edges within biclusters; Mean Number of Genes and 
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Conditions and Number of Biclusters summarize the size distributions of the 

(bi)clusters identified; Coverage is the percentage of the total expression data that is 

found in one or more (bi)cluster; Overlap estimates the redundancy of the (bi)clusters, 

overlap is calculated as the mean of the max % overlap for each bicluster in the full set 

of biclusters for a given method; Percent (bi)clusters enriched (pval < 0.01) for 

GO/KEGG provides an estimate of the functional significance of the (bi)clusters 

identified; and Number of Unique Enriched Terms for GO/KEGG are the number 

of unique terms across all biclusters for that method, this number of enriched terms 

provides an estimate of the redundancy of the biological functions enriched in one or 

more biclusters across the full set of biclusters for any given method.  Further 

explanations of these metrics can be found within the text and supplement. 

 

 



 

 

Table 3.2: Summary of evaluation criteria for the single and multi-species methods for the B. subtilis – B. anthracis 

pairingglffdlkjsajffladsfdf.   

 

Conservation  

Score 

Mean Correlation: 

absolute val 

Net p-value:  

-log10 

Mean Number of 

Genes 

Mean Number of 

Conditions 

Number of 

Biclusters 

EO MScM-SH 1 0.52  (0.69) 8.21  (6.45) 16.78  (16.78) 125.74  (25.86) 148  (148) 

FD MScM-SH 1 0.59  (0.85) 9.10  (8.57) 21.82  (21.82) 116.97  (24.87) 150  (150) 

MSISA-P 1 0.60  (0.56) 5.92  (5.63) 16.90  (16.90) 10.22  (6.85)  41  (41) 

MSKM-SH 1 0.58  (0.52) 11.49  (11.62) 14.99  (14.99) 314  (51) 148  (148) 

BMSKM-SH 1 0.49  (0.72) 9.89  (12.19) 15.00  (15.00) 314  (51) 148  (148) 

EO MScM-EL 0.907 0.54  (0.69) 7.41  (6.35) 22.74  (23.60) 129.69  (27.07) 148  (148) 

FD MScM-EL 0.852 0.61  (0.84) 7.64  (8.65) 33.75  (34.63) 119.87  (26.26) 150  (150) 

MSISA-R 0.093 0.55  (0.51) 3.54  (8.87) 106.05  (335.71) 10.22  (6.93)  41  (41) 

MSKM-EL 0.956 0.56  (0.58) 10.27  (6.65) 26.49  (39.44) 314  (51) 148  (148) 

BMSKM-EL 0.959 0.50  (0.71) 8.58  (7.93) 26.54  (39.63) 314  (51) 148  (148) 

EO SSCM 0.098 0.70  (0.91) 8.58  (7.43) 26.19  (34.11) 193.40  (38.66) 161  (210) 

FD SSCM 0.124 0.56  (0.82) 10.14  (7.31) 23.06  (40.65) 200.76  (39.81) 295  (315) 

EO COAL 0.107 0.58  (0.64) 5.21  (5.06) 86.65  (115.71) 20.09  (13.13) 300  (158) 

FD COAL 0.101 0.59  (0.62) 5.27  (5.69) 88.16  (131.12) 20.24  (14.24) 287  (136) 
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QUBIC 0.054 0.36  (0.49) 1.38  (5.90) 71.59  (188.25) 25.45  (12.63) 150  (150) 

       

   

GO 

 

KEGG 

 

 

Coverage  

element-wise 

Mean Overlap  

element-wise 

Percent (bi)clusters 

enriched (pval < 

0.01) 

Number Unique 

Enriched Terms 

Percent (bi)clusters 

enriched (pval < 0.01) 

Number 

Unique 

Enriched 

Pathways 

EO MScM-SH 18.69%  (15.73%) 4.76%  (5.20%) 33.78%  (37.16%) 378  (338) 4.05%  (6.76%)  10  (16) 

FD MScM-SH 21.71%  (18.53%) 5.33%  (5.93%) 51.33%  (51.33%) 575  (500) 12.67%  (12.67%)  24  (28) 

MSISA-P 0.41%  (0.95%) 22.24%  (34.64%) 53.66%  (75.61%) 160  (164) 19.51%  (19.51%)  12  (15) 

MSKM-SH 56.49%  (37.83%) 0%  (0%) 50.68%  (39.19%) 617  (559) 14.19%  (14.86%)  22  (25) 

BMSKM-SH 56.52%  (37.85%) 0%  (0%) 50.00%  (48.65%) 658  (578) 16.89%  (15.54%)  29  (34) 

EO MScM-EL 25.03%  (21.68%) 4.38%  (5.06%) 40.54%  (60.81%) 449  (485) 11.49%  (10.81%)  18  (18) 

FD MScM-EL 31.29%  (29.90%) 4.00%  (5.72%) 56.00%  (72.67%) 649  (664) 15.33%  (21.33%)  30  (37) 

MSISA-R 2.36%  (6.90%) 18.34%  (46.28%) 95.12%  (100.00%) 287  (235) 24.39%  (58.54%)  10  (20) 

MSKM-EL 99.80%  (99.52%) 0%  (0%) 63.51%  (75.68%) 732  (675) 14.86%  (12.16%)  31  (30) 

BMSKM-EL 100%  (100%) 0%  (0%) 52.70%  (81.76%) 743  (710) 15.54%  (11.49%)  35  (25) 

EO SSCM 39.48%  (46.81%) 9.44%  (14.10%) 42.24%  (66.19%) 499  (629) 10.56%  (17.62%)  19  (29) 
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FD SSCM 54.55%  (61.24%) 7.53%  (15.46%) 50.51%  (61.59%) 746  (712) 11.53%  (9.52%)  32  (31) 

EO COAL 40.21%  (66.40%) 1.94%  (2.12%) 63.67%  (76.58%) 744  (659) 17.67%  (9.49%)  32  (24) 

FD COAL 39.39%  (66.63%) 2.06%  (2.16%) 64.81%  (80.88%) 776  (686) 16.03%  (14.71%)  24  (24) 

QUBIC 2.43%  (12.95%) 38.34%  (26.49%) 43.33%  (88.67%) 227  (331) 3.33%  (14.67%)   5  (13) 

 

Table 3.3: Summary of evaluation criteria for the single and multi-species methods for the B. subtilis – L. monocytogenes pairing.    

 

Conservation  

Score 

Mean Correlation: 

absolute val 

Net p-value:  

-log10 

Mean Number of 

Genes 

Mean Number of 

Conditions 

Number of 

Biclusters 

EO MScM-SH 1 0.52  (0.64) 15.18  (8.20) 14.51  (14.51) 127.45  (27.31) 150  (150) 

FD MScM-SH 1 0.59  (0.80) 10.73  (8.79) 16.09  (16.09) 121.36  (25.96) 147  (147) 

MSISA-P 1 0.60  (0.47) 6.82  (0.00) 5.88  (5.88) 10.85  (4.97) 33  (33) 

MSKM-SH 1 0.59  (0.51) 12.14  (12.66) 9.83  (9.83) 314  (56) 145  (145) 

BMSKM-SH 1 0.52  (0.63) 11.96  (12.39) 9.78  (9.78) 314  (56) 146  (146) 

EO MScM-EL 0.951 0.54  (0.64) 13.59  (8.49) 20.05  (18.92) 132.92  (30.29) 150  (150) 

FD MScM-EL 0.884 0.61  (0.81) 9.13  (7.41) 26.44  (25.73) 123.17  (28.84) 147  (147) 

MSISA-R 0.060 0.55  (0.50) 3.15  (3.12) 106.39  (113.05) 10.37  (6.42) 38  (38) 

MSKM-EL 0.963 0.56  (0.55) 7.52  (8.37) 26.85  (18.66) 314  (56) 145  (145) 

BMSKM-EL 0.949 0.53  (0.64) 7.55  (9.43) 26.90  (19.14) 314  (56) 146  (146) 
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EO SSCM 0.096 0.70  (0.86) 8.58  (4.98) 26.19  (30.95) 193.40  (40.99) 161  (83) 

FD SSCM 0.147 0.56  (0.71) 10.14  (6.70) 23.06  (19.79) 200.76  (42.32) 295  (300) 

EO COAL 0.088 0.58  (0.81) 5.21  (5.60) 86.65  (78.81) 20.09  (12.04) 300  (81) 

FD COAL 0.095 0.59  (0.80) 5.27  (5.46) 88.16  (84.15) 20.24  (12.73) 287  (78) 

QUBIC 0.048 0.36  (0.45) 1.38  (5.26) 71.59  (182.92) 25.45  (19.91) 150  (150) 

       

   

GO 

 

KEGG 

 

 

Coverage  

element-wise 

Mean Overlap  

element-wise 

Percent (bi)clusters 

enriched (pval < 0.01) 

Number Unique 

Enriched Terms 

Percent (bi)clusters 

enriched (pval < 0.01) 

Number 

Unique 

Enriched 

Pathways 

EO MScM-SH 15.65%  (26.16%) 6.46%  (6.17%) 22.67%  (20.67%) 339  (303) 4.67%  (3.33%) 11  (13) 

FD MScM-SH 15.85%  (26.08%) 5.95%  (5.87%) 37.41%  (35.37%) 427  (371) 10.20%  (6.12%) 19  (19) 

MSISA-P 0.14%  (0.42%) 29.03%  (45.95%) 48.15%  (37.04%) 109  (86) 18.18%  (21.21%) 8  (9) 

MSKM-SH 36.28%  (50.98%) 0%  (0%) 37.93%  (34.48%) 500  (398) 10.34%  (8.97%) 24  (27) 

BMSKM-SH 36.35%  (51.09%) 0%  (0%) 30.82%  (31.51%) 479  (411) 11.64%  (11.64%) 18  (24) 

EO MScM-EL 21.98%  (32.52%) 5.36%  (6.47%) 37.33%  (30.67%) 449  (386) 8.67%  (8.00%) 16  (15) 

FD MScM-EL 25.95%  (40.29%) 4.65%  (6.12%) 56.46%  (53.74%) 542  (468) 16.33%  (10.20%) 23  (19) 

  

2
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MSISA-R 2.27%  (5.44%) 17.80%  (57.90%) 97.37%  (92.11%) 285  (179) 31.58%  (57.89%) 13  (14) 

MSKM-EL 99.11%  (96.78%) 0.00%  (0.00%) 59.31%  (44.14%) 640  (476) 15.17%  (11.03%) 28  (20) 

BMSKM-EL 100%  (100%) 0.00%  (0.00%) 51.37%  (46.58%) 669  (480) 12.33%  (11.64%) 25  (24) 

EO SSCM 39.48%  (37.34%) 9.44%  (15.76%) 42.24%  (55.42%) 499  (298) 10.56%  (19.28%) 19  (15) 

FD SSCM 54.55%  (61.27%) 7.53%  (13.19%) 50.51%  (36.91%) 746  (451) 11.53%  (5.67%) 32  (17) 

EO COAL 40.21%  (41.73%) 1.94%  (8.65%) 63.67%  (53.09%) 744  (319) 17.67%  (11.11%) 32  (12) 

FD COAL 39.39%  (43.07%) 2.06%  (9.69%) 64.81%  (56.41%) 776  (294) 16.03%  (11.54%) 24  (11) 

QUBIC 2.43%  (9.14%) 38.34%  (62.22%) 43.33%  (100.00%) 227  (175) 3.33%  (62.00%) 5  (4) 

 

Table 3.4: Summary of evaluation criteria for the single and multi-species methods for the B. anthracis – L. monocytogenes pairing.  Note, 

results for MSISA and BMSKM are not reported as these methods were not performed for this pairing. 

 

Conservation  

Score 

Mean Correlation 

(absolute value) 

Net p-value  

(-log10) Number of Genes Number of Conditions 

Number of 

Biclusters 

EO MScM-SH 1 0.63  (0.63) 5.90  (5.92) 15.78  (15.78) 25.60  (27.51) 141  (141) 

FD MScM-SH 1 0.82  (0.77) 8.82  (6.28) 16.81  (16.81) 24.82  (26.05) 148  (148) 

MSKM-SH 1 0.69  (0.60) 9.95  (13.62) 10.20  (10.20) 51.00  (56.00) 145  (145) 

EO MScM-EL 0.963 0.63  (0.63) 6.79  (6.51) 20.69  (19.79) 26.96  (30.59) 141  (141) 
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FD MScM-EL 0.906 0.80  (0.78) 8.15  (5.59) 25.26  (23.90) 26.43  (28.97) 148  (148) 

MSKM-EL 0.943 0.70  (0.63) 5.95  (9.19) 39.63  (19.11) 51.00  (56.00) 145  (145) 

EO SSCM 0.090 0.91  (0.86) 7.43  (4.98) 34.11  (30.95) 38.66  (40.99) 210  ( 83) 

FD SSCM 0.126 0.82  (0.71) 7.31  (6.70) 42.02  (19.79) 39.87  (42.32) 300  (300) 

EO COAL 0.102 0.64  (0.81) 5.06  (5.60) 115.71  (78.81) 13.13  (12.04) 158  (81) 

FD COAL 0.101 0.62  (0.80) 5.69  (5.46) 131.12  (84.15) 14.24  (12.73) 136  (78) 

QUBIC 0.045 0.49  (0.45) 5.90  (5.26) 188.25  (182.92) 12.63  (19.91) 150  (150) 
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Coverage  

(element-wise 

Overlap  

(element-wise) 

Percent Significant 

(bi)clusters 

Number of 

Significant Terms 

Percent Significant 

(bi)clusters 

Num. Unique 

Pathways 

EO MScM-SH 12.99%  (26.51%) 6.03%  (5.51%) 20.57%  (21.28%) 281  (286) 7.09%  (6.38%) 10  (11) 

FD MScM-SH 13.97%  (27.33%) 6.71%  (5.87%) 40.54%  (43.24%) 432  (423) 10.14%  (10.81%) 18  (17) 

MSKM-SH 25.22%  (52.92%) 0.00%  (0.00%) 38.62%  (37.24%) 454  (443) 9.66%  (9.66%) 20  (21) 

EO MScM-EL 16.89%  (32.56%) 5.60%  (6.10%) 52.48%  (33.33%) 466  (359) 9.22%  (7.09%) 21  (13) 

FD MScM-EL 20.80%  (38.82%) 5.99%  (5.61%) 79.73%  (56.76%) 590  (479) 16.22%  (14.86%) 30  (23) 

MSKM-EL 97.97%  (99.14%) 0.00%  (0.00%) 79.31%  (53.79%) 742  (525) 11.72%  (11.03%) 24  ( 24) 
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EO SSCM 46.81%  (37.34%) 14.10%  (15.76%) 66.19%  (55.42%) 629  (298) 17.62%  (19.28%) 29  (15) 

FD SSCM 60.29%  (61.27%) 15.72%  (13.19%) 62.33%  (36.91%) 707  (451) 10.00%  (5.67%) 32  (17) 

EO COAL 66.40%  (41.73%) 2.12%  (8.65%) 76.58%  (53.09%) 659  (319) 9.49%  (11.11%) 24  (12) 

FD COAL 66.63%  (43.07%) 2.16%  (9.69%) 80.88%  (56.41%) 686  (294) 14.71%  (11.54%) 24  (11) 

QUBIC 12.95%  (9.14%) 26.49%  (62.22%) 88.67%  (100.00%) 331  (175) 14.67%  (62.00%) 13  (4) 

 

Table 3.5: Summary of evaluation criteria for the single and multi-species methods for the E. coli – S. typhimurium pairing.   

 Conservation  

Score 

Mean Correlation: 

absolute val 

Mean Net p-value:  

-log10 

Mean Number of 

Genes 

Mean Number of 

Conditions 

Number of 

Biclusters 

EO MScM-SH 1 0.52 (0.45) 7.51 (3.56) 20.95 (20.95) 230.65 (58.93) 150 (150) 

FD MScM-SH 1 0.68 (0.55) 16.40 (13.65) 26.28 (26.28) 227.58 (56.08) 149 (149) 

MSISA-P 1 0.56 (0.60) 3.78 (8.43) 7.78 (7.78) 25.72 (11.88) 60 (60) 

MSKM-SH 1 0.59 (0.29) 9.64 (5.65) 19.07 (19.07) 507.00 (138.00) 148 (148) 

BMSKM-SH 1 0.54 (0.37) 11.77 (4.40) 18.85 (18.85) 507.00 (138.00) 150 (150) 

EO MScM-EL 0.894 0.54 (0.47) 4.71 (3.35) 29.13 (27.72) 231.82 (62.19) 150 (150) 

FD MScM-EL 0.764 0.66 (0.50) 19.92 (16.81) 39.65 (36.64) 227.23 (56.15) 149 (149) 

MSISA-R 0.022 0.52 (0.46) 6.13 (3.97) 38.85 (189.47) 25.72 (13.50) 60 (60) 
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MSKM-EL 0.994 0.57 (0.31) 8.84 (4.98) 28.81 (25.30) 507.00 (138.00) 148 (148) 

BMSKM-EL 0.995 0.54 (0.38) 9.61 (3.87) 28.43 (24.97) 507.00 (138.00) 150 (150) 

EO SSCM 0.106 0.76 (0.66) 6.73 (3.58) 26.31 (27.54) 346.84 (91.96) 204 (155) 

FD SSCM 0.1 0.59 (0.58) 19.50 (5.00) 19.40 (29.97) 354.48 (94.13) 425 (157) 

EO COAL 0.097 0.64 (0.57) 6.28 (3.18) 70.53 (100.58) 39.71 (14.89) 239 (159) 

FD COAL 0.095 0.63 (0.57) 6.18 (3.16) 70.43 (100.67) 38.96 (14.88) 247 (159) 

QUBIC 0.038 0.91 (0.86) 27.73 (6.33) 6.67 (6.88) 27.45 (5.41) 139 (113) 
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Coverage  

element-wise 

Mean Overlap  

element-wise 

Percent (bi)clusters 

enriched (pval < 0.01) 
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Enriched Terms 

Percent (bi)clusters 

enriched (pval < 0.01) 

Num. Unique 

Pathways 

EO MScM-SH 24.63% (25.89%) 4.31% (4.50%) 33.33% (36.67%) 479 (453) 9.33% (10.67%) 19 (18) 

FD MScM-SH 25.88% (26.83%) 6.42% (6.60%) 65.10% (67.11%) 806 (656) 23.49% (21.48%) 33 (38) 

MSISA-P 0.42% (0.64%) 9.57% (25.72%) 45.00% (33.33%) 228 (175) 23.33% (20.00%) 17 (12) 

MSKM-SH 66.18% (75.35%) 0.00% (0.00%) 62.84% (61.49%) 918 (742) 15.54% (18.24%) 33 (39) 

BMSKM-SH 66.30% (75.49%) 0.00% (0.00%) 58.00% (54.67%) 885 (739) 12.00% (12.00%) 32 (32) 

EO MScM-EL 31.13% (32.29%) 4.38% (4.10%) 46.67% (35.33%) 617 (424) 11.33% (10.00%) 25 (19) 

FD MScM-EL 33.88% (33.27%) 5.79% (5.08%) 89.93% (81.21%) 999 (720) 48.32% (40.94%) 58 (53) 
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MSISA-R 2.10% (2.69%) 6.00% (90.99%) 90.00% (18.33%) 570 (63) 31.67% (5.00%) 37 ( 2) 

MSKM-EL 100.00% (100.00%) 0.00% (0.00%) 69.59% (58.78%) 1037 (721) 16.22% (18.24%) 40 (37) 

BMSKM-EL 100.00% (100.00%) 0.00% (0.00%) 71.33% (51.33%) 1054 (728) 13.33% (12.00%) 32 (32) 

EO SSCM 45.92% (40.74%) 13.18% (10.90%) 59.80% (29.03%) 926 (355) 17.16% (5.16%) 44 (12) 

FD SSCM 69.12% (38.08%) 10.53% (14.14%) 64.24% (28.66%) 1221 (316) 12.71% (5.73%) 47 ( 9) 

EO COAL 25.18% (50.91%) 2.75% (1.87%) 77.41% (32.08%) 986 (388) 33.47% (3.77%) 49 (14) 

FD COAL 25.79% (50.90%) 2.70% (1.87%) 79.76% (33.33%) 984 (391) 35.22% (5.03%) 48 (11) 

QUBIC 0.53% (0.51%) 24.35% (8.43%) 76.26% (14.16%) 437 (84) 38.85% (3.54%) 21 ( 2) 

 

Table 3.6: Summary of evaluation criteria for the single and multi-species methods for the E. coli – V. cholerae pairing.  Note, results for 

BMSKM are not reported as this method was not performed on this pairing. 

 

Conservation  

Score 

Mean Correlation: 

absolute value 

Mean Net p-value:  

-log10 

Mean Number of 

Genes 

Mean Number of 

Conditions 

Number of 

Biclusters 

EO MScM-SH 1 0.52 (0.41) 7.46 (5.99) 20.97 (20.97) 229.32 (176.89) 150 (150) 

FD MScM-SH 1 0.70 (0.55) 19.25 (15.14) 18.49 (18.49) 226.87 (168.06) 150 (150) 

MSISA-P 1 0.56 (0.69) 6.49 (13.01) 6.70 (6.70) 26.27 (55.32) 37 (37) 

MSKM-SH 1 0.56 (0.43) 15.65 (6.75) 12.35 (12.35) 507.00 (441.00) 148 (148) 
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EO MScM-EL 0.944 0.54 (0.42) 7.93 (5.99) 29.01 (28.54) 231.03 (191.19) 150 (150) 

FD MScM-EL 0.748 0.66 (0.50) 20.03 (18.41) 31.34 (27.84) 226.27 (168.87) 150 (150) 

MSISA-R 0.022 0.51 (0.48) 6.21 (17.80) 46.38 (318.38) 26.27 (38.00) 37 (37) 

MSKM-EL 0.961 0.55 (0.44) 14.62 (6.38) 28.81 (22.53) 507.00 (441.00) 148 (148) 

EO SSCM 0.147 0.76 (0.68) 6.73 (8.82) 26.31 (21.86) 346.84 (289.72) 204 (202) 

FD SSCM 0.196 0.59 (0.60) 19.50 (9.04) 19.40 (24.41) 354.48 (266.31) 425 (274) 

EO COAL 0.141 0.64 (0.59) 6.28 (5.88) 70.53 (49.69) 39.71 (28.27) 239 (247) 

FD COAL 0.139 0.63 (0.59) 6.18 (6.04) 70.43 (50.65) 38.96 (28.49) 247 (248) 

QUBIC 0.003 0.91 (0.92) 27.73 (14.44) 6.67 (4.52) 27.45 (25.17) 139 (148) 
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EO MScM-SH 21.36% (25.17%) 5.90% (5.20%) 38.67% (34.67%) 612 (559) 14.00% (16.00%) 31 (28) 

FD MScM-SH 18.38% (21.28%) 7.40% (6.38%) 72.00% (66.00%) 830 (671) 19.33% (24.67%) 51 (45) 

MSISA-P 0.23% (0.56%) 12.25% (27.87%) 45.95% (45.95%) 209 (170) 32.43% (35.14%) 23 (27) 

MSKM-SH 42.87% (54.81%) 0.00% (0.00%) 55.41% (50.00%) 851 (719) 16.89% (15.54%) 42 (37) 
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EO MScM-EL 27.53% (33.98%) 5.54% (4.51%) 50.67% (47.33%) 773 (652) 15.33% (17.33%) 43 (35) 

FD MScM-EL 26.86% (29.26%) 6.18% (5.03%) 94.67% (86.00%) 1093 (831) 44.00% (38.00%) 69 (59) 

MSISA-R 1.58% (3.57%) 6.02% (81.10%) 94.59% (100.00%) 480 (148) 48.65% (97.30%) 30 (20) 

MSKM-EL 100.00% (100.00%) 0.00% (0.00%) 69.59% (60.81%) 1035 (845) 18.92% (16.89%) 43 (45) 

EO SSCM 45.92% (48.68%) 13.18% (11.05%) 59.80% (55.94%) 926 (638) 17.16% (20.30%) 44 (35) 

FD SSCM 69.12% (50.56%) 10.53% (11.10%) 64.24% (62.77%) 1221 (717) 12.71% (22.99%) 47 (37) 

EO COAL 25.18% (20.43%) 2.75% (3.23%) 77.41% (55.87%) 986 (531) 33.47% (17.81%) 49 (27) 

FD COAL 25.79% (20.90%) 2.70% (3.16%) 79.76% (57.66%) 984 (545) 35.22% (16.13%) 48 (28) 

QUBIC 0.53% (0.68%) 24.35% (12.74%) 76.26% (30.41%) 437 (132) 38.85% (9.46%) 21 ( 7) 

 

Table 3.7: Summary of evaluation criteria for the single and multi-species methods for the S. typhimurium – V. cholerae pairing. Note, results 

for MSISA are not reported as it was not performed on this pairing. 

 

Conservation  

Score 

Mean Correlation: 

absolute value 

Mean Net p-value:  

-log10 

Mean Number of 

Genes 

Mean Number of 

Conditions 

Number of 

Biclusters 

EO MScM-SH 1 0.44 (0.37) 4.31 (4.57) 19.96 (19.96) 56.58 (173.34) 150 (150) 

FD MScM-SH 1 0.55 (0.51) 11.68 (13.37) 17.81 (17.81) 54.57 (162.05) 150 (150) 

MSKM-SH 1 0.31 (0.49) 4.76 (4.90) 11.45 (11.45) 138.00 (441.00) 148 (148) 
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BMSKM-SH 1 0.39 (0.43) 3.91 (4.27) 11.45 (11.45) 138.00 (441.00) 148 (148) 

EO MScM-EL 0.939 0.45 (0.39) 3.45 (5.00) 27.29 (26.01) 60.67 (188.61) 150 (150) 

FD MScM-EL 0.819 0.50 (0.48) 15.78 (19.96) 26.24 (26.07) 54.81 (163.84) 150 (150) 

MSKM-EL 0.965 0.35 (0.47) 3.43 (5.28) 25.30 (22.53) 138.00 (441.00) 148 (148) 

BMSKM-EL 0.966 0.41 (0.44) 2.68 (4.62) 25.30 (22.53) 138.00 (441.00) 148 (148) 

EO SSCM 0.126 0.66 (0.68) 3.58 (8.82) 27.54 (21.86) 91.96 (289.72) 155 (202) 

FD SSCM 0.1 0.58 (0.60) 5.00 (9.04) 29.97 (24.41) 94.13 (266.31) 157 (274) 

EO COAL 0.104 0.57 (0.59) 3.18 (5.88) 100.58 (49.69) 14.89 (28.27) 159 (247) 

FD COAL 0.104 0.57 (0.59) 3.16 (6.04) 100.67 (50.65) 14.88 (28.49) 159 (248) 

QUBIC 0.023 0.86 (0.92) 6.33 (14.44) 6.88 (4.52) 5.41 (25.17) 113 (148) 
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EO MScM-SH 21.26% (24.31%) 5.61% (4.74%) 29.33% (30.00%) 368 (368) 6.67% (6.00%) 11 ( 9) 

FD MScM-SH 18.26% (19.75%) 6.05% (5.17%) 60.00% (60.67%) 571 (570) 16.67% (16.00%) 32 (38) 

MSKM-SH 45.26% (50.82%) 0.00% (0.00%) 45.27% (43.24%) 590 (587) 11.49% (13.51%) 21 (30) 

      
 

EO MScM-EL 27.65% (31.83%) 4.79% (4.31%) 32.67% (36.00%) 395 (483) 9.33% (11.33%) 12 (15) 
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FD MScM-EL 24.48% (26.53%) 5.03% (4.56%) 88.00% (93.33%) 690 (761) 37.33% (40.00%) 50 (60) 

MSKM-EL 100.00% (100.00%) 0.00% (0.00%) 42.57% (53.38%) 625 (719) 10.81% (18.24%) 29 (34) 

BMSKM-EL 100.00% (100.00%) 0.00% (0.00%) 45.27% (52.03%) 615 (742) 6.76% (13.51%) 22 (32) 

EO SSCM 40.74% (48.68%) 10.90% (11.05%) 29.03% (55.94%) 355 (638) 5.16% (20.30%) 12 (35) 

FD SSCM 38.08% (50.56%) 14.14% (11.10%) 28.66% (62.77%) 316 (717) 5.73% (22.99%)  9 (37) 

EO COAL 50.91% (20.43%) 1.87% (3.23%) 32.08% (55.87%) 388 (531) 3.77% (17.81%) 14 (27) 

FD COAL 50.90% (20.90%) 1.87% (3.16%) 33.33% (57.66%) 391 (545) 5.03% (16.13%) 11 (28) 

QUBIC 0.51% (0.68%) 8.43% (12.74%) 14.16% (30.41%) 84 (132) 3.54% (9.46%)  2 ( 7) 
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3.4 Methods 

3.4.1 Explanation of the (bi)cluster coherence metrics 

3.4.1.1 Residuals 

Cheng and Church (Cheng and Church 2000) originally introduced residuals as 

a measure of bicluster coherence.  For our purposes, we use a modified version of the 

residual measure used that takes into account gene-wise expression variance.  Thus, if 

we let xij be the expression value for gene g in condition c, these are defined for any 

bicluster containing a set of G genes over C conditions as: 
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As such, they can be understood to be a measure of the average deviation from the 

signal present within the bicluster, normalized by the average variance of the genes in 

G for the conditions in C.  As a simple comparison, the residuals from the (bi)clusters 
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produced by each method were pooled and compared with each other using two-sided 

Wilcoxon‘s non-parametric rank tests.  We direct the reader to Figure 7.13-Figure 7.18  

as well as Table 7.25 (FD-MScM Table 7.35 (EO-MScM) and Table 7.40 (randomized 

tests) for the results of these comparisons, for each pairing of organisms.  

3.4.1.2 Mean correlations 

We also evaluated (bi)cluster expression coherence using the average pairwise 

correlation between genes in  a (bi)cluster, over the conditions in the (bi)cluster.  

Because some of the methods we evaluated in this study could identify biclusters with 

inversely correlated patterns of expression, we took the absolute values of these 

correlations.  Thus, if we let xij be the expression value for gene g in condition c, the 

mean correlations are defined for any bicluster containing a set of G genes over C 

conditions as: 
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As a simple comparison, the average pairwise correlations from the (bi)clusters 

produced by each method were pooled and compared with each other using two-sided 

Wilcoxon‘s non-parametric rank tests.  We direct the reader to Figure 7.19-Figure 

7.24, as well as Table 7.27 (FD-MScM), Table 7.36 (EO-MScM) and Table 7.41 

(randomized tests) for the results of these comparisons. 
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3.4.1.3 Network Association p-values 

Briefly, the association p-values for a bicluster are modeled using a 

hypergeometric distribution, where for a given bicluster bk for genome G, the 

association p-value for an individual network, N, is calculated as: 
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Where is the number of edges in N shared between the genes in bk; and for any 

given set of vertices, X, poss(X) is the number of edges if X were completely 

connected, i.e. 
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As a simple comparison, the association p-values for all network types were pooled 

together and compared using two-sided Wilcoxon‘s non-parametric rank tests.  We 

direct the reader to Figure 7.25Figure 7.30, as well as Table 7.29 (FD-MScM) and 

Table 7.37 (EO-MScM) for the results of these comparisons. 

3.4.1.4 Motif E-values 

Motif E-values were generated by MEME, the motif discovery tool used by 

cMonkey (Bailey and Elkan 1994). MEME uses a metric, called an E-value, which 

was first described by Hertz and Stormo (Hertz and Stormo 1999) with the aim to 

assess the statistical significance of the information content (or relative entropy) of a 

kk bbn 
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sequence motif, defined as (Stormo 2000). Thus, for a given motif, an E-value is an 

estimate of the expected number of motifs of the same length that have the same or 

greater information content as the motif being considered.  The E-value can be 

interpreted as the score for a one-sided p-value for the null distribution of information 

content for motifs of a given length.  Therefore, the larger the E-value of a motif, the 

less significant it is; the smaller the E-value, the more significant it is.    As a simple 

comparison, the E-values from the (bi)clusters produced by each method were pooled 

and compared with each other using two-sided Wilcoxon‘s non-parametric rank tests.  

In this case, we selected the first motif identified by MEME for the (bi)clusters (as 

these are generally the most reliable).  We direct the reader to Figure 7.31-Figure 7.36, 

as well as Table 7.31 (FD-MScM) and Table 7.38 (EO-MScM) for the results of these 

comparisons. 

3.4.1.5 Sequence p-values 

In addition to the motif E-values, we also compared the distributions of the 

sequence p-values that were returned by MAST, the motif search utility used by 

cMonkey (Bailey and Gribskov 1998).  Briefly, sequence p-values are an estimate of 

the significance of a sequence‘s match to one or more motifs, and can be understood 

to be a measure of the likelihood of a random sequence having as good or better match 

or matches.  For a given sequence and motif, the motif‘s PSSM is used to score the 

degree of the match (likelihood of a match) to a sliding window across the length of 

the sequence, with the maximal match selected as sequence‘s score for that motif.  The 
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p-value reported by MAST, then, is simply this score if working with a single motif, 

and in the case of multiple motifs, it is the multiplication (or addition if using log-

likelihoods) of the individual motifs match score to the sequence.  To compare each 

optimization, then, we calculated the average p-value for the genes in each bi(cluster) 

with respect to the bi(cluster‘s) associated motifs, and compared the distributions of 

these. We direct the reader to Figure 7.37-Figure 7.39, as well as Table 7.33 (FD-

MScM) and Table 7.39 (EO-MScM) for these comparisons. 

3.4.2 Multi-species k-means and balanced multi-species k-means 

For comparison we also re-implemented a simple multi-species k-means 

method (MSKM) similar to the method used in Herschkowitz et al. to compare human 

and mouse microarray data (Herschkowitz, Simin et al. 2007). In this simple method, 

only the reciprocal best Blast matches are selected as orthologous pairs. These one-to-

one pairwise relationships are first used to form a concatenated expression matrix, so 

that a row in this matrix corresponds to the concatenation of the expression data for 2 

orthologous genes. This concatenated expression matrix is next clustered using k-

means, using the Euclidean distance metric and with k=150 (as this was the same size 

used for the test of the multi-species cMonkey method) to generate what we will call 

shared k-means clusters. Next, as a modification to Herschkowitz‘s shared k-means 

algorithm, we added a subsequent step, similar to the elaboration step of the multi-

species cMonkey algorithm. In this step, the components of the shared k-means 

centroids are separated by organism (into the components that correspond to the 
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organism-specific conditions of the concatenated expression dataset). For each 

organism, then, the organism-specific shared k-means (sub-)centroids are used to 

perform a Voronoi partitioning of that organism‘s non-orthologous core expression 

data. Thus, in this step, the orthologous genes that belonged to the original shared k-

means clusters remain in their original cluster. 

As our comparisons indicated that MSKM is prone to allowing an organism to 

dominate the analysis if its expression data has far more conditions than the other, we 

also implemented a balanced version of the multi-species k-means algorithm 

(BMSKM).  There are a number of ways this balancing could be implemented. One 

would be to use individual weights for the different conditions from the different 

species.  Another, even simpler implementation, which we used, is to concatenate the 

smaller dataset to itself so that it has roughly an equivalent number of conditions as 

the larger dataset, and use this in the MSKM analysis instead.  For example, when B. 

anthracis, with 51 conditions in its expression data, was paired with B. subtilis, which 

has >300 conditions, a new dataset for B. anthracis was generated that contained the 

original B. anthracis dataset concatenated it to itself 5 times, so that there were 6 

copies of each condition.  This analysis was not applied to this pairing of B. anthracis 

and L. monocytogenes as their expression datasets are roughly equivalent in size.  In 

the case of the Gram-negative triplet, BMSKM was not performed for the pairing 

involving E. coli and V. cholerae as they had nearly the same number of conditions, 

but was applied to the other 2 pairings. 
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3.4.3 Multi-species Iterative Signature Algorithm 

We re-implemented a multi-species version of the Iterative Signature 

Algorithm (ISA) described by Bergmann et al (Bergmann, Ihmels et al. 2003), using 

the isa2 package for R (Bergmann, Ihmels et al. 2003; Csardi 2010), available from 

CRAN.  A more thorough discussion of the MSISA method can be found in the 

supplement, but as a quick review of the method, MSISA contains five main steps: 

1. A well-characterized organism is used as a ‗reference‘ organism, with a less 

characterized organism as the ‗target‘ organism (note, we use the terminology 

of a later paper from the same group (Ihmels, Bergmann et al. 2005) which 

employs a similar strategy for multi-species comparisons). 

2. Using a pre-generated set of biclusters from the reference organism, biclusters 

containing genes that have putative orthologs in the target organism are 

selected and used to generate ‗homologous‘ biclusters for the target organism 

that contain these putative orthologs such that there is a direct one-to-one 

mapping between the biclusters for both organisms. 

3. Standard, single-species ISA is performed on the target organism, using only 

these homologous biclusters as seeds. 

4. The intersection of the input to and results from step 3 are selected to generate 

a set of 'purified‘ biclusters in order to select only the conserved genes in the 

reference organism. 
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5. In the final step, single-species ISA is run again on each organism, but using 

the purified biclusters to generate a set of 'refined‘ biclusters for each 

organism.  As such, this step is similar to the elaboration step of MScM as it is 

allows species-specific modifications to be added to the purified bicluster. 

 

For combinatoric reasons, MSISA was only applied to the pairings involving 

the respective model organism of each triplet.  For example, with the gram-positive 

triplet, MSISA was only applied to the pairings that involved B. subtilis, using B. 

subtilis as the reference organism as it is the best studied organism of the three we 

consider in this study.  Hence there are no MSISA results to report for the pairing of B. 

anthracis with L. monocytogenes, nor any for the S. typhimurium and V. cholerae 

pairing. 

3.4.4 External tools used 

Coalesce was downloaded and compiled from the Sleipnir library that is 

available from the published website (Huttenhower, Mutungu et al. 2009).  In all 

cases, Coalesce was run with the default parameters.  Similarly, QUBIC was retrieved 

and compiled from source code, which is available from (Li, Ma et al. 2009).  QUBIC 

was run with the default parameters for continuous data in the case of the Gram-

positive triplet, and for the organisms in the  Gram-negative triplet, it was run, using 

10 for the number of ranks (i.e. ―-r 5‖). 
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4. MULTI-PLATFORM, MULTI-SPECIES BICLUSTERING OF 

HUMAN AND MOUSE HEMATOPOIETIC CELL DATA 

In this chapter we present initial results from a comparative analysis of human and 

mouse hematopoietic cell expression data (with a focus on immune system cells) that 

was performed using an early, experimental version of a new multi-platform version of 

the multi-species cMonkey algorithm.  The results presented below are intended to be 

a part of two larger, multi-lab collaborations, one to infer the global regulatory 

network governing the T helper 17 (Th17) cell lineage; the other the global regulatory 

network governing Burkitt‘s  lymphoma. 

4.1 Introduction 

Many of the same reasons that made leukemia an attractive target for Dr. Sidney 

Farber‘s earliest forays in the 1940s into cancer and the development of 

chemotherapy also make it well-suited for systems‘ biology analysis today 

(Mukherjee 2010).  Chief amongst these are the relative ease-of-access one has to 

hematopoietic cell samples in comparison to those from other tissue types.  In 

addition, flow cytometry also allows one to more easily isolate specific cell sub-types 

or lineages.  At the broadest level, hematopoietic cell lineages are classified into 

being either a myeloid or lymphoid cell lineage.  The myeloid cell lineages includes 

erythrocytes and other cell lineages that are primarily involved in the innate immune 

response (i.e. neutrophils, monocytes, basophils, etc.); and the lymphoid cell lineages 

primarily contains cell lineages involved in the adaptive immune response (T- and B-
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cells), though, it also contains natural killer (NK) cells, which are part of the innate 

immune system.  All these various cell lineages stem from a common class of 

multipotent hematopoietic stem cells (or HSCs) that undergo a complex, non-

reversible differentiation process that is driven by a combination of external and 

transcriptional signaling (for more complete reviews of this process, see (Iwasaki and 

Akashi 2007; Orkin and Zon 2008; Kaushansky 2010)).   

This complexity of the differentiation process is yet other reason for why the 

immune system is well-suited for systems biology analysis.  As this brief introduction 

is not intended to be a comprehensive review of this prior work, we direct the reader 

to (Gardy, Lynn et al. 2009; Germain, Meier-Schellersheim et al. 2011) for 

discussions of prior systems biology analyses of the immune system.  Most recently, 

an extensive analysis of 38 different cell lineages from varying steps in the human 

hematopoietic differentiation process was recently published (Novershtern, 

Subramanian et al. 2011).  This analysis was able to characterize a number of 

different modules of genes that were differentially expressed by the different cell 

lineages they considered.  It also inferred two putative regulatory networks, with one 

based solely on expression data, while the other was based on sequence data alone, 

though, it did use the modules from the expression analysis for gene sets during the 

analysis.   

Another recent study (Painter, Davis et al. 2011) performed a more restricted 

analysis that compared expression data from mouse T and B cell data to identify 
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differentially expressed genes between the 2 cell lineages and also develop 

differential signatures for each cell type.  From a technical perspective, one of the 

most interesting aspects of the data set that was analyzed for this project is that it was 

a multi-platform data set that was collected using multiple platforms, including 

whole-genome arrays from Agilent, Affymetrix and Nimblegen.  Also integrated into 

this data set was data that is publicly available from the Immunological Genome 

Project, (hereafter ImmGen) (Heng and Painter 2008).  Finally, while the focus of 

this study was upon the B and T cell lineages, the signatures that were developed for 

each were then compared to a larger compendium of expression data from other 

mouse immune cell lineages that are available in the ImmGen data set. 

However, neither of these studies employed a comparative approach, nor did they 

effectively integrate multiple data types, except for the a posteriori manner in which 

the gene sets from the expression analysis were used during the sequence-based 

network inference of the first project (Novershtern, Subramanian et al. 2011).  

Furthermore, in the case of the multi-platform analysis of the mouse T and B cell 

lineages (Painter, Davis et al. 2011), the analysis required that the integrated data set 

only contain those genes in the intersection of the 4 platforms that were included, thus 

only 12000 genes were contained in the final data set.  In contrast, below, we will 

present preliminary results from a prototype of a multi-platform, multi-species version 

of cMonkey that was used to perform a comparative analysis of human and mouse 
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immune system cell data from multiple platforms without loss of data during the 

integration.  

4.2 Materials and Methods 

4.2.1 Data sets analyzed 

Below, we provide detailed descriptions of the data sets that were generated for both 

human and mouse.  Summary information can be found in Table 4.1. 

4.2.1.1 Expression data 

The primary source for the mouse immune cell expression data was the public 

repository of expression data that is provided by the ImmGen project (Heng and 

Painter 2008), which consists of 508 different samples from 14 different terminal 

lineages and numerous intermediate lineages that were measured using the Affymetrix 

Mouse Gene 1.0 ST Array.  An additional 61 RNAseq conditions examining the Th17 

cell lineage were generated from various time series and knock down or knock out 

studies of key transcription factors during the differentiation from naïve CD4+ cell to 

Th17.   

The human expression data is composed of a heterogeneous collection 532 

samples from nearly 20 studies that can be classified with 3 different, general 

categories, including explicit hematopoietic differentiation studies (Lee, Hanspers et 

al. 2004; Dybkaer, Iqbal et al. 2007; Elo, Jarvenpaa et al. 2010; Filen, Ylikoski et al. 

2010; Novershtern, Subramanian et al. 2011; Prots, Skapenko et al. 2011), immune 
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response (Buzzeo, Yang et al. 2007; Martinez-Llordella, Puig-Pey et al. 2007; Dower, 

Ellis et al. 2008; Grumann, Scharf et al. 2008; Radom-Aizik, Zaldivar et al. 2008; 

Woszczek, Chen et al. 2008; Li, Sze et al. 2010; Yu, Hu et al. 2010), and disease and 

other general profiling studies (Kim, Tchernyshyov et al. 2006; Piccaluga, Agostinelli 

et al. 2007; Mosig, Rennert et al. 2008; Abbas, Wolslegel et al. 2009; Longo, Lugar et 

al. 2009).  In total, the human expression data contained 136 conditions that were 

assayed using the Affymetrix Human Genome U133 Plus 2.0 Array, 185 that were 

assayed with the Affymetrix Human Genome U133A Array, and 211 samples that 

were assayed with the Affymetrix GeneChip HT-HG_U133A Early Access Array 

(hereafter referred to as the U133+2, U133A and U133AofA arrays, respectively). 

All microarray data was downloaded from the NCBI Gene Expression Omnibus 

(GEO) database (Edgar, Domrachev et al. 2002; Barrett, Troup et al. 2007) as raw 

.CEL files and normalized with RMA, using the Bioconductor suite of bioinformatics 

tools (Gentleman, Carey et al. 2004).  We also emphasized that in all cases, with the 

exception of the specialized U133AofA array, the latest custom CDF probe mappings 

that were generated by (Dai, Wang et al. 2005) were used when processing the raw 

.CEL data as two recent reviews have indicated these are more accurate than the 

original probe mapping provided by the manufacturer (Sandberg and Larsson 2007; 

Mieczkowski, Tyburczy et al. 2010).  This custom CDF also has the added advantage 

of providing probe sets that have a strict one-to-one mapping between genes and probe 

sets.  In so doing, this avoids the need to merge probe sets which map to a single gene 
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as was necessary with the specialized HT-HG_U133A Early Access Array for which 

no custom CDF was available.  We acknowledge that a strict one-to-one mapping is an 

over-simplification which ignores potential protein isoforms, but this is a problem 

common to all oligo-based arrays.  Finally, we should clarify that RMA was applied to 

only those samples that belong to a common platform, independent of those that were 

generated with the others (i.e. all samples from the U133A arrays were normalized 

together with RMA).  Integration of these different platform-specific data sets is 

explained below. 

In order to generate the RNAseq data, all RNAseq samples were sequenced using 

Illumina sequencer (Illumina Hiseq-2000), 36bp single ends with fragment size of 

225bp for library preparation.   All reads were aligned to the mouse genome, version 

v.mm9, using Bowtie (Langmead, Trapnell et al. 2009).  RNAseq reads per gene were 

quantified using Cufflinks (Roberts, Trapnell et al. 2011) to determine the expression 

levels, measured by  reads per kilobase per million (RPKM).  All genes with a median 

expression over the RNAseq samples that were less than 5 were excluded from 

consideration, and the final set was log-transformed to allow it to be compared with 

the data from the microarray platforms. 

For both organisms, samples from the various platforms that were included in this 

study were integrated into a single ―meta-expression‖ matrix using the following 

simple, two-step strategy.  In the first step, each platform-specific data set was row 

(gene) normalized to have a mean of 0 with a standard deviation of 1 in order to 
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prevent any platform-specific biases from impacting the other platform-specific data 

sets.  In the second, each platform-specific data set was merged into a ―meta-matrix‖ 

whose dimensions were determined by the union of both the genes and conditions.  In 

the cases where a particular platform-specific data set lacked a given gene, NA‘s (null 

values in R) were inserted into the matrix.  As the genomic coverage between some of 

the platforms was considerable this had the effect of generating a data matrix with 

large blocks of NA‘s.  For example, in the human data, the U133+2 array has a 

coverage of greater than 18,000 genes, while the U133A has a coverage of just over 

12,000 genes, and the U133AofA array has a coverage of over 13,000 genes. 

While the intersection of these gene sets is considerable, with nearly 11,000 

genes, we wanted to avoid the loss of information by filtering the matrix to consider 

only these genes.  There are additional considerations within a comparative 

environment as well as we will elaborate upon further when describing our new multi-

platform version of multi-species cMonkey.  In addition to not limiting the analysis to 

only those genes in the intersection, we also did not attempt to impute values for these 

large blocks of NA‘s as the size of these blocks was too large for any such effort to be 

meaningful.  Nor did we try to inject random values as we did not want to risk 

allowing these to skew the analysis one way or the other. 

4.2.1.2 Association data 

Networks for both organisms were retrieved from multiple databases including 

Bind (Bader, Donaldson et al. 2001), BioGRID (Stark, Breitkreutz et al. 2006; 
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Breitkreutz, Stark et al. 2008; Stark, Breitkreutz et al. 2011), DIP (Xenarios, Rice et al. 

2000; Xenarios, Fernandez et al. 2001; Xenarios, Salwinski et al. 2002; Salwinski, 

Miller et al. 2004), HPRD , InnateDB (Lynn, Chan et al. 2010), IntAct (Hermjakob, 

Montecchi-Palazzi et al. 2004; Kerrien, Alam-Faruque et al. 2007; Aranda, Achuthan 

et al. 2010) , InteroPORC (Michaut, Kerrien et al. 2008), MatrixDB (Chautard, Ballut 

et al. 2009), MINT (Zanzoni, Montecchi-Palazzi et al. 2002; Chatr-aryamontri, Ceol et 

al. 2007; Ceol, Chatr Aryamontri et al. 2010), Reactome (Matthews, Gopinath et al. 

2009; Croft, O'Kelly et al. 2011), STRING (Jensen, Kuhn et al. 2009), iRefIndex 

(Razick, Magklaras et al. 2008), and the Pathway Commons (Cerami, Gross et al. 

2011).  We note that several of these are ―meta pathway databases‖ as they include 

associations from other databases, many of which we downloaded associations from 

directly.  The other source databases that contributed edges via these meta databases 

which we have not already been listed include CORUM (Ruepp, Brauner et al. 2008), 

MPact (Guldener, Munsterkotter et al. 2006), MPPI (Pagel, Kovac et al. 2005) and 

OPHID (Brown and Jurisica 2005). 

As cMonkey does not use weighted graphs with its association data, all 

associations from these various databases were classified as being either high or low 

confidence associations, and split into separate networks that were assigned weights in 

the scoring function that reflected these respective confidences.  When making these 

high or low confidence assignments, the method by which a given interaction was 

determined was the primary determinant, with electronically inferred associations (i.e. 
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interologs, text mining) compromising the entirety of the low-confidence associations.  

To avoid double-counting when calculating the network score, all duplicate edges 

were removed so that no two genes could share more than one association. 

 

Table 4.1: Size of the data sets used for the human and mouse immune system analysis, by 

organism. 

Number of: Human   Mouse 

  U133+2 U133A U133 AofA ImmGen RNA-seq 

  genes 18107 12060 13276 21124 8966 

  intersection 10069 8514 

  total genes 21096 21634 

              

  conditions 136 185 211 508 61 

  total conditions 532 569 

       

association edges:         

high-confidence: 261641 9521 

low-confidence: 838743 373604 

            

Ortholog pairs:   15737 

 

4.2.1.3 Putative Orthology Predictions 

All putative orthology predictions between human and mouse were retrieved from 

the Mouse Genome Database (MGD) (Blake, Bult et al. 2011), which provides a 

comprehensive list of nearly 17850 orthology predictions that are produced via both 
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manual curation and electronic inference from the HomoloGene database provided by 

the NCBI (Wheeler, Barrett et al. 2006).  While HomoloGene allows for the 

identification of paralogous relationships, this list only contains one-to-one matches 

between the two genomes.  As some of this list of nearly 17850 orthology 

relationships that MGD provides includes genes from outside of our data sets, this 

yielded a total of 15737 orthologous pairs for our analysis.  

4.2.2 Multi-platform, multi-species cMonkey 

4.2.2.1 Motivation 

As described in section 4.2.1.1, both the mouse and human data have a similar 

"blocky" nature of the matrices, meaning that both contain large blocks of unobserved 

values that are the result of the merging of data sets with highly different gene 

coverage.  As mentioned above, a simple filtering strategy where only those genes in 

the intersection of the different platforms included in this study are considered would 

not be appropriate in a comparative context, as we illustrate in Figure 4.1.  In this 

simplified example, there are two organisms, each with a multi-platform ―meta-

expression‖ matrix similar to the one being analyzed, where one of the platforms has 

considerably greater genomic coverage than the other.  In this figure, then, it is easy to 

see that in each organism‘s respective expression data, there are 3 possible classes of 

genes – 1) those in the intersection, 2) those that are only represented by the platform 

with larger genomic coverage, and a 3) far smaller set of genes that are only 

represented by the platform with the smaller coverage.  The addition of other 
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platforms to a matrix only further complicates the number of sets of genes that are 

possible.   

 

Figure 4.1: Demonstration of the 4 major classes of orthologous pairs that are possible in a multi-

platform comparative analysis.  The first class, represented by the black orthologous pairs, 

corresponds to those genes that are represented by all platforms in the matrix.  Similarly, the green 

orthologs correspond to those genes that are only represented in the platforms with larger genomic 

coverage.  Finally, the blue and red orthologs correspond to the other 2 combinations of these that are 

possible.  Table 4.2 displays the number of orthologs which correspond to these sets in the human and 

mouse immune system expression data. 

 

Continuing the example, with 3 sets of genes in each organism‘s expression matrix 

possible, this translates into a total of 9 possible classes of orthologous pairs that are 

possible – with the majority of these being contained in the 4 classes that correspond 

to the largest sets of genes in the respective expression matrices.  Thus, a simple 

strategy that includes only those genes that are in the intersection of the different 
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platforms will likely translate into a considerable loss of biological information.  In the 

case of the human and mouse immune system data sets, this filtering strategy results in 

fewer than 5000 ortholog pairs that are available – out of the nearly 16000 that are 

possible (Table 4.2). Given the significant loss of information that is possible when 

one only includes those genes which are represented on all platforms, we elected to 

merge the data using the strategy described in section 4.2.1.1. 

 

Table 4.2: Number of orthologs that corresponds to the four major classes of genes in the human 

and mouse immune system expression data. 

Human  gene class number of orthologs Mouse gene class 

Intersection: 4997 Intersection: 

ImmGen only: 4110 Intersection: 

ImmGen only: 2890 U133+2 only: 

Intersection: 2629 U133+2 only: 

Others: 1111 Others: 

 

We were surprised to discover, however, that such a simple change in the 

expression matrix (the allowance of large ―blocks‖ of unobserved values) in the data 

posed a number of challenges to MScM, which – like many other methods – was 

designed with the assumption of a single, common platform for all samples.  Figure 

4.2 provides an example of one such challenge which can occur in the single- and 

multi-species analyses of a multi-platform expression matrix.  In this example, we 

display a snapshot after several iterations of the optimization of a bicluster that 



 

 

 

252 

contains conditions in both the low- and high-coverage platforms that at one point 

contained 8 genes, where 4 are represented in both platforms, while 4 are not.  At this 

iteration, we see that 3 of the 4 genes that are represented in both platforms have been 

removed from the bicluster as a result of the Monte Carlo optimization, leaving only a 

single gene represented in those conditions from the low-coverage platform.  Having 

so few genes in these conditions causes a number of both technical and statistical 

issues, and is best avoided. 

 

 

Figure 4.2: Example of the error states that are possible with a Monte Carlo search strategy with 

a multi-platform data set. 
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To address this issue, there are several possible approaches.  The simplest of these 

is to prune out during the optimization any conditions from the bicluster that have an 

insufficient number of genes that are represented in them.  Experiments with this 

approach indicated that this often causes a sudden and dramatic reduction in the 

number of conditions that are included in a bicluster, resulting in a considerable loss of 

coverage.  A second option would be to use a different scoring function for the 

expression data.  While this still remains a valid option, it is unclear whether this will 

introduce other issues.  Instead, we opted to update the search strategy that MScM 

employs to avoid these issues entirely, which we present below. 

4.2.2.2 Algorithm overview 

To work in this space, we first define the concept of a set of ―orthologous basis 

pairs,‖ which is simply one of the classes of orthologous pairs described above – for 

example, the class of orthologous pairs which correspond to those genes that are 

represented in all platforms of both organisms‘ expression matrices.  Using these basis 

pairs, we split the shared step of the multi-species method into 2 sub-steps.  During 

the first step, we limit the analysis to a single set of basis pairs such that we only seed 

and optimize a bicluster using the orthologous pairs in that basis pair set.  This allows 

us to avoid those cases where after several steps of the iteration, there are conditions 

with fewer than 2 genes.  We call this part of the optimization the "basis-pair step" - 

which is analogous to the shared step of the multi-species optimization. 
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The goal of the basis-pair step is to establish a bicluster with sufficient enough 

data support that it can be used to anchor a search within the complete set of 

orthologous pairs.  We call this second optimization the "augment" step - which is 

analogous to the elaboration step of the multi-species method.  To ensure that we 

avoid those cases where the bicluster conditions lack a sufficient number of bicluster 

genes that have valid values for them, we require that a minimum of 3 genes and 10 

conditions from the original basis-pair step bicluster remain in the bicluster as it is 

being augmented. 

4.3 Results 

Results are currently preliminary as the multi-platform extension of cMonkey is 

still experimental.  Currently we have 500 shared biclusters generated, with 250 

generated from the two basis pair sets that correspond to genes in the mouse RNAseq 

data (Table 4.2).  Note there are no elaborated biclusters at this point.   

Evaluation is ongoing, however encouraging as the new multi-platform, multi-

species cMonkey method (MPMScM hereafter) has identified several biclusters of 

interest.  For example, one of these, bicluster 31, includes a number of genes involved 

in hematopoietic and lymphoid organ development as well as B cell receptor signaling 

(Figure 7.85 and Table 7.42).  It‘s interesting as well because MPMScM also 

identified a major histocompatibility complex, class II (MHC, class II) module, 

bicluster 87 (Figure 7.86 and Table 7.43), which contains genes that are all also part of 

bicluster just mentioned (bicluster 31), and which we suspect is a sub-process of that 
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larger module.  Additional modules of interest that MPMScM identified include an 

innate immune response module that contains genes involved in Gram-positive 

bacterial response, phagocytosis, and inflammatory response several of which are 

Toll-like receptor genes (bicluster 2, see Figure 7.87 and Table 7.44).  Last, it also 

identified an adaptive immune response module that contains genes involved in T-cell 

differentiation and T-cell immune response, bicluster 480 (Figure 7.88 and Table 

7.45).   

4.4 Future Directions 

As future steps that may be explored when working in this space, there are several 

ideas that may help with the analysis in this space.  The first would make a small, but 

possibly significant modification during the augment step where we further pre-seed 

the basis pair biclusters with those orthologous pairs outside of the basis pair set that 

correlate best with the mean expression of the bicluster.  In the second, we would 

consider each component of the meta-expression matrix separately in a scheme where 

each component would have its‘ own expression-component-specific weight within 

the joint log-likelihood.  In so doing, this would allow researchers to specify weights 

for each platform that reflected their confidence in its accuracy, as is currently allowed 

by cMonkey with the different sources of association data. 
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5.1 Abstract 

The increasing abundance of large-scale, high-throughput datasets for many closely 

related organisms provides opportunities for comparative analysis via the 

simultaneous (bi)clustering of datasets from multiple species. These analyses require a 

reformulation of how to organize multi-species datasets and visualize comparative 

genomics data analyses results. Recently, we developed a method, multi-species 

cMonkey, which integrates heterogeneous high-throughput datatypes from multiple 

species to identify conserved regulatory modules (biclusters). Here we present an 

integrated data visualization system, built upon the Gaggle, enabling exploration of 
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our method‘s results (available at http://meatwad.bio.nyu.edu/cmmr.html). The system 

can also be used to explore other comparative genomics datasets and outputs from 

other data analysis procedures (e.g. results from other multiple-species clustering 

programs or from independent clustering of different single-species datasets). We 

provide an example use of our system for two bacteria, Escherichia coli and 

Salmonella typhimurium. We illustrate the use of our system by exploring conserved 

biclusters involved in nitrogen metabolism, uncovering a putative function for yjjI, a 

currently uncharacterized gene that we predict to be involved in nitrogen assimilation. 

5.2 Author Summary 

Advancing high-throughput experimental technologies are providing access to 

genome-wide measurements of multiple information levels (e.g. mRNA, protein, 

interactions, functional assays, etc.) for multiple related species. We present a 

biclustering algorithm and an associated visualization system, for generating and 

exploring regulatory modules derived from analysis of integrated multi-species 

genomics datasets. We use multi-species-cMonkey, an algorithm of our own 

construction that can integrate diverse systems-biology datatypes from multiple 

species to form biclusters (condition-dependent regulatory modules) that are both 

conserved across the multiple species analyzed and biclusters that are specific to 

subsets of the processed species. Our resource (an integrated web and java based 

system) allows biologists to explore both conserved and species-specific biclusters in 

the context of the data, associated networks for both species, and existing annotations 
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for both species. Our focus in this work is on the use of the integrated system with 

examples drawn from exploring modules associated with nitrogen metabolism in two, 

gram negative bacteria (E. coli and S. typhimurium) for which sufficient genomics 

data is available. 

5.3 Introduction 

It is now routine to have genomics data for multiple organisms of interest. For 

example, data may be available for both an organism of primary relevance to a 

specific study (perhaps a recently sequenced pathogen), as well as data for related 

model species (that offer advantages such as having better explored genetics, larger 

and more complete genomics datasets or ease of use in the lab). Tools and algorithms 

for comparative analysis of multi-species datasets are therefore in high demand. 

Comparative analysis of gene sequences is a mainstay in computational biology 

(Altschul, Madden et al. 1997), but comparative methods for genomics data analysis 

are relatively new, primarily due to the fact that only recently have researchers had 

access to large-scale datasets from multiple species (Stuart, Segal et al. 2003; Ihmels, 

Bergmann et al. 2005; Tanay, Regev et al. 2005; Tirosh, Bilu et al. 2007; Lu, Huggins 

et al. 2009; Chikina and Troyanskaya 2011). Several recent studies have shown that 

comparative genomics analysis improves our ability to learn regulatory interactions, 

co-regulated groups, and to delineate the conserved components of fundamental 

pathways and modules (Bergmann, Ihmels et al. 2004; Tanay, Sharan et al. 2004; Berg 

and Lassig 2006; Reiss, Baliga et al. 2006; Waltman, Kacmarczyk et al. 2010; Chikina 
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and Troyanskaya 2011). In particular, multiple-species clustering and biclustering can 

be used to detect conserved co-regulated gene groups and serve as a foundation to 

begin characterizing key differences in the regulatory programs of related species. In 

this work we present a data visualization system that enables the visualization and 

exploration of integrative multi-species biclustering analysis. We aim to both present 

our system and provide a general example of how multi-species datasets can be 

integrated by coupling new multiple-species biclustering algorithms with a system of 

visualization tools coordinated across organisms by predicted orthology relationships. 

Our interface is built on a loosely coupled system architecture that connects multiple 

tools and databases using the Gaggle (Shannon, Reiss et al. 2006), Sungear (Poultney, 

Gutierrez et al. 2007), and Cytoscape (Cline, Smoot et al. 2007). This interface 

provides coordinated access to multiple-species clusters, biclusters and networks 

derived from comparative genomics analysis tools such as multi-species cMonkey 

(MScM) (Waltman, Kacmarczyk et al. 2010). 

5.3.1 The challenges of visualizing multiple species data 

The analysis of multiple species datasets presents several challenges not encountered 

when analyzing single species datasets. In addition to the display and exploration of 

multiple datatypes (networks, cis-regulatory sequences and genomic context, 

transcriptome and proteome data) we add the challenge of tracking connections 

between orthologous groups of genes. In this work we focus on exploring sets of 
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multi-species biclusters generated with MScM. A typical multi-species biclustering 

(set of biclusters) will consist of: 

1. The source data used to:   

a. Compute the biclustering (for each species, its protein association 

networks, upstream sequences and expression data) 

b. Perform post-analytic evaluations, such as enrichment of ontology 

terms (i.e. GO functions and KEGG pathways) 

2. A set of conserved biclusters, i.e. composed of pairs of orthologous genes 

spanning both species 

3. Species-specific elaborations of the conserved biclusters – genes added to 

conserved biclusters based on evidence in a single species (including genes 

lacking putative orthologs in the other species) following the initial generation 

of the conserved core of the bicluster 

4. Species-specific biclusters (biclusters composed entirely of genes lacking 

detectable orthology relationships between the two species) 

Our system to navigate this analysis enables exploration of both the conserved 

biclusters (in the context of both species) and the elaborated portion of biclusters (in 

the context of each individual species dataset) and illustrates general strategies for 

building loosely coupled systems for exploring other multi-species genomics analysis. 
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5.3.2 Data integration across multiple species 

High-throughput data exists for many microbial organisms on multiple 

information levels (i.e. genome sequences, transcriptomics, proteomics, metabolomics, 

networks of pathways and interactions). Collecting and integrating diverse and 

heterogeneous datasets from disparate databases is not trivial and poses a number of 

barriers to automating the process. One of the most significant barriers to automation 

of data-import is the inconsistency between the naming schemes for loci, mRNA and 

protein products that are employed by the major public repositories such as NCBI, 

Uniprot and EMBL. Versioning can also be an issue if a given data source is delayed 

in updating their annotations. Our resource (described below) integrates diverse data 

(listed in full detail below) from microarray experiments, genomic sequences, and 

various functional associations, and uses a database (linked to the Gaggle) to translate 

gene names (across datatypes and disparate resources) and ortholog names (across 

species). We will focus our examples on two closely related -Proteobacteria:  E. coli 

and S. typhimurium. 

5.3.3 Multi-species Integrated Biclustering 

Clustering and biclustering are typically used to identify groups of co-

expressed genes that, ideally, represent true regulatory modules and co-functional 

groups such as pathways and complexes. Biclustering groups genes into condition-

specific gene clusters, and can allow genes to participate in more than one bicluster. 

Many biclustering methods have been previously described, for example, SAMBA 
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(Tanay, Sharan et al. 2002), QUBIC (Li, Ma et al. 2009), ISA (Ihmels, Bergmann et 

al. 2004), BIMAX (Prelic, Bleuler et al. 2006), and NNN (Huttenhower, Flamholz et 

al. 2007), and other algorithms (Cheng and Church 2000; Ben-Dor, Chor et al. 2003; 

Kluger, Basri et al. 2003; Supper, Strauch et al. 2007; Lu, Huggins et al. 2009). Recent 

integrative biclustering methods, such as MATISSE (Ulitsky and Shamir 2007), the 

recent version of SAMBA (Tanay, Sharan et al. 2004), and cMonkey (Reiss, Baliga et 

al. 2006; Waltman, Kacmarczyk et al. 2010) have shown that incorporating additional 

datatypes (e.g. protein interactions, cis-acting transcription factor binding sites) 

improves performance (with respect to the identification of co-functional putative co-

regulated modules). There are many benefits to comparing elements among species 

considering that a high fraction of co-regulated modules are conserved, in whole or in 

part, across species (Ihmels, Bergmann et al. 2005; Tirosh and Barkai 2007). Recent 

access to multiple genomics datasets from multiple species has allowed for new 

comparative analyses of genomics data, for example discovering regulatory elements 

(Elemento, Slonim et al. 2007) and the MScM algorithm (Waltman, Kacmarczyk et al. 

2010) used here. MScM learns coregulated modules by integrating expression data 

across subsets of experimental conditions, co-occurrence of putative cis-acting 

regulatory motifs in the regulatory regions of bicluster members, functional 

associations and physical interactions. The output consists of condition dependent 

conserved modules of orthologous gene groups as well as species-specific elaborations 

of these conserved groups. The method is a true biclustering method:  a typical 
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conserved bicluster is typically supported by a subset of the input data for each 

species.  

5.3.4 Component tools of our system 

To enable exploration of a multi-species integrative biclustering result, we have 

constructed a system using the Gaggle and MScM (Figure 5.1). The Gaggle is a Java 

program that integrates tools by broadcasting gene, network and data selections 

between tools (for example nodes selected in Cytoscape are sent to the Gaggle, which 

then sends the selections to all tools which then automatically mirror those selections). 

The Gaggle has been shown to enable efficient creation of multi-tool systems to 

explore complex datasets and associated analysis (Bonneau, Facciotti et al. 2007). 

Also, the loosely coupled visualization systems the Gaggle enables have several 

advantages including:  systems-performance advantages (one tool crashing does not 

disable the whole system), development advantages (existing tools need not be 

reengineered and can be incorporated with small development costs), and maintenance 

advantages (due to the modularity of the resulting systems). We have extended the 

gaggle tools (and built a corresponding database) to give the user the ability to mirror 

gene selections in tools populated with results for one organism with the 

corresponding selection of the correct orthologs in the network, data, and bicluster 

views of the other organism. Several component tools and databases are compatible 

(or have been made compatible as part of this work) with the Gaggle, including:  

Sungear, Cytoscape, Cytoscape plugins such as BioNetBuilder (Avila-Campillo, Drew 
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et al. 2007), several online public databases containing annotations and genomic 

sequence via the FireGoose (Bare, Shannon et al. 2007), a Global gene-synonym 

Translator, and several tools designed to enable exploration of the genomics data 

available for each species (such as the data matrix viewer (DMV) and annotations 

viewer). Selections in any tool are sent to the Gaggle which broadcasts both those 

gene selections to all tools for the organism in which the original selection was made 

and the orthologs in the other species of the selected genes. We show that this simple 

strategy enables effective exploration of this multi-datatype, multi-species integrative 

analysis.  

5.4 Materials and Methods 

We present an overview of the MScM algorithm, and the system we have 

constructed for visualizing the resulting multiple-species biclusters. Further 

methodological detail, additional validation of our method, and a full description of 

the dataset used to demonstrate our resource can be found in the supplemental section 

(section 5.8). 

 

5.4.1 Data sets acquisition, integration and import to our system 

Microarray data was acquired from several large, public repositories such as 

the Gene Expression Omnibus (GEO) (Edgar, Domrachev et al. 2002; Barrett and 

Edgar 2006), ArrayExpress (Brazma, Parkinson et al. 2003; Parkinson, Kapushesky et 
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al. 2009), Stanford Microarray Database (SMD) (Sherlock, Hernandez-Boussard et al. 

2001; Hubble, Demeter et al. 2009), Many Microbes Microarray database (M3D) 

(Faith, Driscoll et al. 2008), and KEGG Expression (Kanehisa, Goto et al. 2002), with 

newer datasets manually obtained from individual publications. Genomic sequences 

corresponding to the upstream promoter regions of each predicted gene in each 

genome were retrieved from Regulatory Sequence Analysis Tools (RSAT) (van 

Helden 2003; Thomas-Chollier, Sand et al. 2008). Lastly, functional associations, in 

the form interaction networks, were automatically acquired from multiple sources 

including Prolinks (Bowers, Pellegrini et al. 2004), Predictome (Mellor, Yanai et al. 

2002), STRING (Snel, Lehmann et al. 2000; Jensen, Kuhn et al. 2009), and 

MicrobesOnline (Dehal, Joachimiak et al. 2009). We have created a data compendium 

containing all publicly available data for a number of microbial species including 

several Gram negative species Escherichia coli, Salmonella typhimurium, Vibrio 

cholerae, Helicobacter pylori, Desulfovibrio vulgaris; three related Gram positive 

species Bacillus subtilis, Bacillus anthracis, Listeria monocytogenes, and the archeon 

Halobacterium salinarum; within this compendium all name translations have been 

curated to minimize error due to incorrect translation of gene synonyms. In selecting 

this group of microbial species, we decided to start with the two most extensively 

studied bacterial model organisms, E. coli and B. subtilis, include several closely 

related species and some representatives from important clades of the microbial tree of 

life. Additional species will be included in future versions of the database, as a 
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sufficient amount of large-scale data becomes available for those species. A full listing 

of all datasets used in this study for both species (including references to papers 

describing both original collection, and several data-bases that aided the import and 

curation of the datasets) are provided in the supplemental materials (section 5.8). 

5.4.2 Multi-species cMonkey 

The MScM algorithm consists of four main steps. Beginning with step 1, 

putative orthologous relationships between genes in each species are identified using 

InParanoid (Remm, Storm et al. 2001). InParanoid identifies not only single gene pair 

relationships (one-to-one) but also families of homologous genes (one-to-many, many-

to-many). This allows for flexibility when considering which orthologous gene pairs 

to cluster (i.e. in many-to-many groups the selection of orthologous pairs is driven by 

the genomics data, see Text S1 for details). After defining the set of gene pairs (pairs 

of genes spanning the two species, one pair per putative orthology relationship; genes 

are often in several putative orthology relationships following step one), or conserved 

core, step 2 identifies the conserved biclusters via an iterative Monte Carlo 

optimization of the MScM score (a score that judges biclusters composed of multiple 

orthologous gene pairs by a simultaneous scoring of expression, networks and 

upstream binding site support for the bicluster in each species). To determine the 

likelihood of an orthologous gene pair belonging to a bicluster, we compute a single, 

multi-species score based on the combined single-species scores for each gene 

supported by each organism‘s individual data space (expression, common sequence 
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motif, and connected subnetwork). The putative-orthology based gene coupling 

between species is removed in step 3, where each detected conserved bicluster is split 

into two single-species biclusters and species-specific additions are made separately 

for each species using the single species cMonkey score. The conserved core of the 

bicluster detected in step 2 is preserved (treated as read only) while species-specific 

additions to the conserved biclusters (including both non-orthologous and orthologous 

genes) are discovered via this iterative optimization. An optional step 4 (not carried 

out in this study) identifies purely species-specific biclusters for each organism using 

the original cMonkey algorithm applied to genes not yet in any conserved (multi-

species) bicluster. 

We have made the cMonkey and MScM code available including tools for 

automating many of the data acquisition and processing steps required for assembling 

an integrated dataset (Waltman, Kuppusamy et al. 2010). These tools facilitate 

automatic queries to online biological databases such as BioNetBuilder, 

MicrobesOnline (Dehal, Joachimiak et al. 2009), Prolinks (Bowers, Pellegrini et al. 

2004), STRING (Snel, Lehmann et al. 2000; Jensen, Kuhn et al. 2009) and RSAT (van 

Helden 2003; Thomas-Chollier, Sand et al. 2008) (for network and upstream data). All 

input and output are stored in a MySQL database to facilitate use of the integrated 

dataset and MScM results by other tools. We also include example inputs for the 

algorithm both as flat files and as R data objects for those wishing to use data not in 

public databases (requiring manual mode). These key changes to how data is imported 
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and stored in the MScM database and the core data-object for cMonkey and MScM 

are critical novel changes to the code that are required for multi-species integration 

and scaling of the code to much larger datasets and organisms.  

5.4.3 Visualizing multi-species clustering and biclusters 

We created a database containing the MScM biclustering analysis data 

compendium for a number of microbial species. Our pipeline begins with several post-

processing steps to convert cMonkey output to Gaggle compatible formats. 

Enrichment of functional annotations within biclusters is determined for each bicluster 

and the bicluster is assigned any significant annotations (p-values < 0.05). From the 

statistical components of each bicluster (e.g. residual, functional enrichment 

significance values, etc) a score is computed. Specifically, the bicluster score is 

computed using Stouffer‘s z-score method for meta-analysis from a collection of 

bicluster statistics. Data files are generated for the complete bicluster network and the 

subnetwork of related biclusters before the website for a result is generated. Lists of 

orthologous genes between each species are generated as part of the analysis and 

loaded into the synonym/ortholog database.  

 

5.4.4 Multi-species extension of the Gaggle 

To mirror selections simultaneously in several tools that visualize different 

aspects of the data, the results and the comparison between species we utilize the 

Gaggle, a loosely coupled system of web applications (geese) (Shannon, Reiss et al. 
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2006). The Gaggle is a software framework that integrates independent application 

tools and biological data into an environment that allows the exchange of data among 

tools. All of the tools employed in our resource are Java web-starts or directly 

integrated into the web interface, thus removing any barrier to use based on tool 

compatibility, installation or data-transfer. The Gaggle also serves to coordinate the 

deployment and interoperation of these Java Web Start tools. Each individual 

application, or goose, can be launched with the click of a button on the BiclusterCard. 

The geese included in the resource are:  a Global synonym Translator, BioNetBuilder 

(Cytoscape plug-in), the FireGoose, Data Matrix Viewer, Annotations viewer, 

Cytoscape (bicluster network and gene network viewers), and Sungear. All the tools 

are connected through a communication hub called the Gaggle Boss, which passes 

simple messages among the geese (called broadcasting), summarized in Figure 5.1. 

When a broadcast is received, the goose will display the relevant information for that 

data. BiclusterCards and online databases (e.g. STRING, KEGG, etc.) connect to the 

tools through the FireGoose, a browser plug-in for Firefox adding the capability to 

communicate with the Gaggle. Embedded in each BiclusterCard is microformat code 

containing metadata (e.g. gene names, bicluster nodes, condition names) that can be 

broadcasted to other geese. The Bicluster Network viewer is a Cytoscape goose that 

displays a network of bicluster interactions, where nodes are biclusters, and edges are 

any shared properties (e.g. functional annotation, gene overlap, etc). Similarly the 

Gene Associations viewer is a Cytoscape goose that displays the gene associations 
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from the data compendium. A Data Matrix Viewer goose acts as a spreadsheet 

program that can display and plot gene expression values. The Annotations goose 

displays a table of the genes and their various annotations (e.g. locus tag, gene name, 

protein id, gene id accession, etc.)—this is specific to a single organism. There is a 

Global Translator that, given a list of genes from one species, can display the 

orthologous genes from another species. Lastly, the MScM output showing gene 

expression, gene subnetwork, sequence motifs, and motif locations in promoter 

sequence, can be displayed in the ClusterInfo Viewer. 

5.4.5 The Web and Gaggle interface to our multi-species biclustering 

A web interface was implemented to facilitate exploration of the multi-species 

biclusters. The starting page allows users to create several types of queries and 

contains a text box to input a gene name or group of genes, select boxes to choose 

bicluster sets from single and, core or elaborated multi-species cMonkey analyses, and 

a submit button to begin the search for biclusters containing the gene or genes of 

interest from the selected biclustering analyses (Figure 5.2A). Any biclusters returned 

from a search are presented as a list ranked by bicluster score. A first step in 

organizing the diverse information contained in (supporting) each bicluster was to 

create a system for generating bicluster summaries that link to online tools and source 

data. To this end, for each bicluster, our system creates a ‗BiclusterCard‘. Each 

BiclusterCard provides the following information in the form of 

expandable/collapsible tabs, Figure 5.2B: 
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 Gaggle tools:  Embedded links to integrated software tools 

 Statistics:  The number of genes and conditions in the bicluster, score, residual, 

mean motifs p-value, motif E-values 

 Enrichment Summary:  based on the most significant annotations from COG, 

KEGG and GO enrichment analysis 

 Core Genes:  Genes table for conserved core members of the bicluster– 

including GO, KEGG, and COG gene annotations 

 Elaborated Genes:  Same as above, but for elaborated members of the bicluster 

 Experiments:  Table with links to the meta-data and primary articles 

 Bicluster Motifs:  if any motifs were found, the sequence logo is displayed 

here along with matches to any known motifs 

 Enrichment Analysis:  Tables for GO, KEGG, and COG annotation enrichment 

– with description and significance values 

 Related Biclusters:  Table with links to biclusters with similar 

functional/pathway annotations, similar motifs, or overlapping gene members 

 Plots:  Bicluster plots for gene expression, mean gene expression, expression 

heatmap, and motif locations in gene promoter regions 

Each element of the bicluster card is generated automatically by our system, is 

compatible with outputs from other widely used biclustering tools, and provides links 

to descriptions/tutorials for using the linked tools or databases. 
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5.5 Results/Discussion 

To demonstrate our resource‘s capabilities, we explore nitrogen metabolism 

associated multi-species biclusters with the specific biological goal of identifying new 

genes functionally associated with nitrogen metabolism in E.coli and S. typhimurium. 

For a global validation of our multi-species biclustering method and a detailed 

comparison of our method to several other methods, as well as a detailed description 

of the complete dataset used in this study see the supplemental section (section 5.8) 

provided in the electronic version of this article. The CMMR is available at 

http://meatwad.bio.nyu.edu/cmmr.html. 

5.5.1 Exploring nitrogen metabolism in an E. coli and S. typhimurium 

integrated genomics dataset 

Nitrogen is an essential input into several metabolic pathways including amino 

acid and nucleotide biosynthesis, and can act as a terminal electron acceptor in 

dissimilatory nitrate reactions (Stanley, Gunsalus et al. 2007). It is common for some 

microbes including E. coli to use nitrogen for energy-harvesting purposes in anaerobic 

and nutrient depleted conditions (Stanley, Gunsalus et al. 2007). A central component 

of nitrogen assimilation and metabolism is nitrate reductase, a membrane bound 

enzyme that catalyzes the conversion of nitrate to nitrite. The narGHJI operon 

encodes the multiple subunits of nitrate reductase A in E. coli. The following section 

sequentially guides the reader through using our system to explore biclusters 

containing genes in the nar operon and other nitrogen metabolism associated genes. A 
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web tutorial for the use of our system can also be found at:  

http://meatwad.bio.nyu.edu/psbr/index.php/Tutorials 

5.5.1.1 Identifying a potential role for unknown genes in biclusters containing 

nar genes 

We begin our exploration of identifying conserved biclusters containing nar 

genes by searching for ―narG‖ in the core set of genes from an E. coli and S. 

typhimurium MScM bicluster set (Figure 5.2A; typing ‗narG‘ into the gene-name 

textbox, selecting the core checkbox and clicking ‗submit‘ on the CMMR start page, 

will retrieve any biclusters containing narG in the core set of genes). The results page 

returned following our ―narG‖ query includes a header with links to the CMMR wiki, 

links to tutorials, a description of the search query and a list of any retrieved biclusters, 

in this case 3 biclusters were found (Figure 5.2B). There is a button for each bicluster 

that will display its BiclusterCard (see materials and methods). Looking at the first 

BiclusterCard for E. coli bicluster-57 (eco57), we will click on the ‗Coupled Bicluster‘ 

button to open the BiclusterCard for S. typhimurium bicluster 57 (stm57). Expanding 

the ‗Statistics‘ tab shows that eco57 contains 75 genes (51 core genes, 24 elaborated 

genes), 226 experiments, whereas stm57 contains 66 genes (51 core genes, 15 

elaborated genes) and 43 experiments (Figure 5.3A). This first table highlights 

differences in gene membership of the two biclusters. The ‗Enrichment Summary‘ 

shows similar but not identical annotations involved in various metabolic activities 

related to anaerobic respiration and energy production from nitrogen for both 
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biclusters (Figure 5.3B). The ‗Experiments‘ tab shows that expression of these genes 

changes under a variety of conditions including:  stress, growth on minimal media, 

anaerobic metabolism, and DNA damage. Expanding the ‗Enrichment Analysis‘ tab 

displays tables containing significant COG, GO and KEGG annotations. We can see 

that eco57 and stm57 differ in the ranking of the KEGG pathway annotations and 

stm57 includes an additional pathway (Figure 5.3C). This could reflect slightly 

different uses of these modules in these organisms or discrepancies in the gene 

annotations. 

Then, looking at the gene GO, KEGG and COG annotations by expanding the 

‗Core Genes‘ tab we see many genes have the same or similar annotations and some 

have either none or different annotations such as narG and yjjI (Figure 5.3D). Finally, 

under the ‗Plots‘ tab we can view plots for gene expression profiles, bicluster mean 

expression, and an expression heatmap – to visualize differences in clustering bicluster 

gene members (Figure 5.4A).  

Expanding the ‗Bicluster Motifs‘ tab displays the motifs detected in the 

bicluster. Two of the detected motifs for eco57 show similarity to known nitrate/nitrite 

response transcriptional regulator binding motifs (Figure 5.4B). Motif #1 matches the 

E. coli FNR (fumarate and nitrate reduction) binding consensus sequence (TTGAT N4 

ATCAA) (Winteler and Haas 1996) and eco57 motif #3 corresponds to the NarP 

binding sequence (Kazakov, Cipriano et al. 2007; Gama-Castro, Salgado et al. 2011). 

The sequence motifs of stm57 show no notable similarity to known motifs. The FNR 
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homolog in S. typhimurium, oxaR, has a similar but less defined consensus sequence 

(Fink, Evans et al. 2007), which could account for the lack of association with stm57 

motif #1. The promoter motif patterns display which gene members share common 

motifs and the location in the gene‘s upstream sequence. Identical motif patterns 

indicate they are an operon, such as operon narGHJI (Figure 5.4C). MScM and 

MicrobesOnline (Alm, Huang et al. 2005; Price, Huang et al. 2005) predict yjjI and 

yjjW to be in an operon, which is reflected in eco57 (yjjW is present in the elaborated 

gene set) but not stm57 (Figure 5.4C). Exploring the correspondence of the MScM 

detected motifs with known nitrogen metabolism motifs increases our level of 

confidence that this bicluster is truly coregulated in both organisms. 

Among the core gene list for this bicluster, yjjI is described only as encoding a 

conserved protein with no functional annotation (Figure 5.3D). To examine this gene 

in the context of multiple network-types, the original data, and the biclustering, we 

now open several Gaggle tools, including the bicluster and gene network Cytoscape 

geese, Data Matrix Viewer, BioNetBuilder, and the Global Translator. First, we 

explore associations between core gene members of eco57 and stm57. For the 51 

genes in the core gene member subnetworks, eco57 has 518 associations and stm57 

has 420 edges, with no associations for yjjI (Figure 5.5A; associations shown are 

operon edges, metabolic pathway edges, phylogenetic profile edges, and protein 

interaction edges between genes in different biclusters). Next, we explore the 

expression profiles of the bicluster gene members and conditions by broadcasting 
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them to the Data Matrix Viewer. Selecting yjjI, we can see that it has similar 

expression to other bicluster gene members (Figure 5.5). Thus, the data (sequence 

motifs, associations, expression) supports eco57 and stm57 as coherent, putatively 

coregulated gene groups, and gene yjjI, while lacking associations, is supported by 

common motifs and correlated expression. We can use more Gaggle tools to search for 

additional information characterizing the bicluster gene members, particularly yjjI. For 

example, broadcasting the gene members to BioNetBuilder, we can browse protein 

structure and functional predictions. YjjI is predicted to have a domain structure that 

matches a ―Class III anaerobic ribonucleotide reductase NRDD subunit‖ (Fontecave, 

Eliasson et al. 1989) and a function prediction of oxidoreductase activity (Riffle, 

Malmstrom et al. 2005; Malmstrom, Riffle et al. 2007). If we broadcast yjjI to other 

online databases such as Entrez Gene (Maglott, Ostell et al. 2005), we find that yjjI is 

adjacent to yjjW, but no information that they are in an operon. As mentioned above, 

both MScM and MicrobesOnline have predicted them to be in an operon. There is 

further information from EcoGene (Rudd 2000) reporting yjjI as an ortholog of H. 

influenzae hi0521, which is a pflB homolog and coding for a formate acetyltransferase 

(Kolker, Makarova et al. 2004). Taken together, this information suggests a role for 

YjjI in nitrogen metabolism. It is important to note that a corresponding single-species 

bicluster in E. coli was not found (in the E. coli single species cMonkey run we find 

no bicluster with significant gene overlap to this significant conserved bicluster), 

further illustrating the importance of the MScM method. However, the species-
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specific elaborations of the bicluster may display additional information, such as, 

individual adaptations to this metabolic process. 

Another possible use of our system is the exploration of collections of 

biclusters to identify novel interactions among modules. In the context of this example 

we can extract the subnetworks of biclusters related to the nar bicluster described 

above from a network that displays associations between biclusters by broadcasting 

the list of related biclusters from the BiclusterCard to the Bicluster Network Viewer 

(Figure 5.5C). Biclusters are nodes with width and height proportional to the number 

of genes and conditions, respectively, and shared significant KEGG pathway, COG 

function, and GO function annotations are edges). The subnetwork shows 27 related 

biclusters for E. coli and 17 biclusters for S. typhimurium; in this subnetwork there are 

several biclusters containing gene modules highlighting complementary interactions 

such as:  amino acid biosynthesis/metabolism pathways and glutamate metabolism 

(bicluster-61); NADH dehydrogenase, succinate dehydrogenase (bicluster-43), citrate 

fermentation (bicluster-147), and amino acid ABC-type transporters (bicluster-148). 

This highlights the presence of conserved core interactions among eco57 and stm57 

with other modules and independent species-specific modifications within these 

modules. 

Using the CMMR, much knowledge was uncovered from the search of just a 

single gene, narG. In one case, for a currently uncharacterized gene, yjjI, the gathering 

of diverse information such as:  putative orthology between two species, co-expression 
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and common putative regulatory motifs with other bicluster genes, and a prediction for 

the protein‘s structure and function, was facilitated by the various BiclusterCards and 

Gaggle tools. In another case, we could explore modules (biclusters) that included 

narG and their interactions. 

5.5.2 Conclusions 

We have developed a publicly accessible web resource for comparative 

genomics studies of several prokaryotic organisms, with plans to expand this resource 

over time. As described above, in our example with coupled E. coli – S. typhimurium 

bicluster 57, the combination of our method for simultaneously biclustering multiple 

datasets from multiple species and easy to use exploration system quickly led to novel 

biological insights and generate an informed hypothesis about the involvement of gene 

yjjI, a currently uncharacterized gene, in nitrogen metabolism. The complexity and 

richness of the results of comparative genomics data analysis requires a system like 

the one presented here. We present specific examples of the use of our system in the 

hopes of sparking discussion about what the next generations of comparative 

genomics analysis and visualization systems should look like. Our paper focuses on 

the combined, multi-tool interface required by biologists wishing to explore the 

biological significance and function of multi-species, multi-datatype biclusters and 

their species-specific elaborations and deletions. An important aspect of our system is 

the ability to submit new data for analysis and integrate the results into the resource 

for public access. We provide multiple avenues for researchers wishing to build this 
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system for their species of interest (tools and code are publicly available) and/or we 

will run our analysis and build this system for researchers without computational 

resources.  
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5.7 Figures 

 

Figure 5.1: Overview of the Comparative Microbial Module Resource components (CMMR). The 

CMMR consists of an integrated suite of web components for visualizing the diverse aspects of the 



 

 

 

287 

multi-species, multi-datatype analysis; facilitating access to each organism‘s dataset. (A) Written 

descriptions of the individual components (for hypothetical Organism 1). (B) The corresponding 

graphics of each component goose displaying example data (for hypothetical Organism 2). Each of the 

components fetches information from the data compendium (MScM results, and raw data). (C) The 

CMMR integrative components:  the FireGoose allows transfer of data between web pages and gaggled 

software, the Gaggle Boss acts as a hub for passing communications among the geese, and the Global 

Translator converts among gene annotations, accessions and translates orthologous genes between 

organisms. The arrows represent information flow between tools, primarily as broadcasts between tools 

and the Gaggle boss. 

 

 

Figure 5.2: CMMR Query Page and BiclusterCard. The CMMR web interface allows users to 

search for biclusters of interest, with each resulting bicluster displayed in a BiclusterCard format. (A) 
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The CMMR search page showing the title link to the CMMR wiki, query form button, upload form 

button, and input fields. Shown is the query form with an example search for narG in the core set 

(check box) of bicluster gene members for a MScM run of E. coli – S. typhimurium. (B) The result page 

from this search – a user has access to the CMMR wiki, tutorials, a brief description of the search 

query, the resulting bicluster list and BiclusterCards. The BiclusterCard contains links to Gaggle tools, 

and expandable/collapsible tabs to display the bicluster‘s diverse supporting information. 
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Figure 5.3: BiclusterCard components I:  Statistics, Enrichment Summary, Core Gene Table, 

KEGG Pathway Enrichment. The BiclusterCard is a summary of the information supporting a 

bicluster, including links to online tools and source data. Shown in the figure are the expanded tabs for:  

statistics, enrichment summary from COG, GO and KEGG enrichment analysis, KEGG pathway 
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enrichment, and core gene table for multi-species bicluster E. coli – S. typhimurium bicluster 57. (A) 

Statistics tab for eco57 (left) and stm57 (right) displays a table with the following columns:  Property 

and Value. The information contained in this table includes:  the number of core and elaborated genes, 

fraction of conditions in the bicluster, the bicluster score, bicluster residual, bicluster mean p-value 

(mean of all motifs found in the promoter sequences), and the E-value for each motif found in the 

bicluster. (B) Enrichment Summary tab for eco57 (top) and stm57 (bottom) displays a table with the 

following columns:  Term/Pathway and Description. This table lists the most significant annotations 

from ontological enrichment tests of COG, KEGG pathway, and GO annotations. (C) The Functional 

Enrichment tab displays tables listing the significant annotations from the COG, GO and KEGG 

enrichment analyses. Shown is the KEGG pathway enrichment table for eco57 (top) and stm57 

(bottom). The table consists of the following columns:  Pathway, Description, and p-value. Each 

column can be sorted. (D) Core Gene tab for eco57 (top) and stm57 (bottom), showing the number of 

core genes (51), and a table containing the following columns:  Locus Tag, Gene Name, Description, 

GO annotations, KEGG annotations, and COG annotations. Locus Tag, Gene Name and Description 

columns can be sorted. 
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Figure 5.4: BiclusterCard components II:  Bicluster Motifs, Upstream Patterns, Plots.  Shown in 

the figure are the expanded tab for Plots displaying a gene expression heatmap, the expanded tab for 

Bicluster Motifs, and an example of the upstream motif patterns for multi-species bicluster E. coli – S. 

typhimurium bicluster 57. (A) Example plot of a gene expression heatmap for the bicluster genes and 

conditions in eco57 (left) and stm57 (right); upregulated expression (green) and downregulated 

expression (red). (B) Putative regulatory sequence motifs found in bicluster gene member promoters for 

eco57 (left) and stm57 (right). The table displays a row for each motif found and columns for the motif 
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number, E-value, sequence logo, matches to any known motifs, and a link to motif pattern page. Eco57 

motif #1 matches the known FNR binding sequence and motif #3 matches the known NarP binding 

sequence. (C) The promoter motif patterns for the motifs shown in (B) for eco57 (left) and stm57 

(right). The location of the motifs are represented by colored rectangles on the promoter sequence 

(black line) and the colors correspond to the logo border colors seen in (B); motif #1 (red), motif #2 

(green) motif #3 (blue). For the bicluster gene members shown, bicluster motifs #1 and #3 appear in the 

promoter regions of the eco57 members, whereas all three bicluster motifs appear in the promoters for 

the stm57 members. The identical motif pattern indicates MScM has determined them to be in an 

operon. It is known that narGHJI exist as an operon, but MScM has determined that yjjI is in an operon 

with yjjW (this is also predicted by (Price, Huang et al. 2005)). However, yjjW is found only in the 

elaborated gene set of eco57 and it is not found in stm57. 
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Figure 5.5: CMMR linked Gaggled tools.  Expanding the Gaggle tools tab on the BiclusterCard for 

multi-species bicluster E. coli – S. typhimurium bicluster 57, reveals a list of links (buttons) to the 

various Gaggle tools. (A) The Gene Associations button opens a Cytoscape goose that displays the core 
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genes subnetwork for eco57 (top) and stm57 (bottom). The nodes represent genes and edges represent 

associations based on data from the compendium, indicated in yellow is gene yjjI. Edges are shared 

annotations:  COG code (pink), Prolinks phylogenetic profile (purple), metabolic pathway (blue), 

operon (light cyan), and Predictome phylogenetic pattern (dark cyan). (B) The expression profiles for 

the genes and conditions from eco57 (top) and stm57 (bottom) can be explored by opening the Data 

Matrix Viewer. Using the FireGoose, the bicluster‘s genes and conditions can be broadcast from the 

BiclusterCard. We can see how the expression profile of gene yjjI (indicated by the colored line) 

matches other profiles in the bicluster. (C) The Bicluster Network button opens a Cytoscape goose to 

display the complete bicluster network where each node is a bicluster (width and height proportional to 

number of genes and conditions, respectively) and edges represent any shared properties and 

annotations. We can explore the related bicluster subnetwork for bicluster 57 (yellow), eco57 (left) and 

stm57 (right), by broadcasting the list of related biclusters (using the FireGoose) from the BiclusterCard 

to select those biclusters and display them in a new window. There are 10 additional biclusters in the 

eco57 subnetwork. Node fill color represents significant COG annotation, border color represents 

significant GO annotation, node border thickness represents residual, and edge color represents shared 

COG (green) KEGG (red), or GO (blue) annotations. 

5.8 Supplementary text 

5.8.1 Materials 

5.8.1.1 Dataset analyzed  

The E. coli expression data matrix consisted of 507 conditions from 16 projects 

acquired from the Many Microbe Microarrays Database (M3D) (Faith, Driscoll et al. 

2008) covering various conditions including:  genetic perturbations, changes in 
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oxygen concentration and pH, growth phases, antibiotic treatment, heat shock, and 

different media. 

The S. typhimurium expression data matrix consisted of 138 conditions from 8 

studies acquired from the Stanford Microarray Database (SMD) (Sherlock, 

Hernandez-Boussard et al. 2001; Hubble, Demeter et al. 2009) covering various 

conditions including:  chemical effects, nutrient limitation, library verification, strain 

comparison, media comparisons, time course, and mutants. 

 

Table 5.1: Total number of genes, conditions, and association edges in each dataset used for the 

multi-species analysis, by organism. 

Number of: E. coli S. typhimurium 

 Genes 4264 3745 

 Conditions 507 138 

Association edges 

Source Egde type   

 Operon 3414 2104 

KEGG Metabolic 96931 75363 

Prolinks Gene Neighbor 29228 29942 

Prolinks Phylogenetic Profile 20058 20094 

Prolinks Gene Cluster 6048 6476 

COG COG-code 644856 379484 
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Table 5.2: Total number of orthologs, orthologous families, and ortholog pairs generated by 

InParanoid. 

Number of: E. coli  S. typhimurium 

orthologous groups 2827 

orthologous pairs 2856 

multi-member groups 22 

Remaining unique genes 2836 2845 

5.8.2 Methods 

5.8.3 MScM Algorithm Pseudocode Overview 

Define organisms, orthologs, num.biclust, and iter.max to be each organism’s 

dataset (expression, genomic sequence, network associations), putative orthologs 

between the organisms, the number of biclusters to search for, and the maximum 

number of iterations for the procedure, respectively. The method is a Monte Carlo 

optimization that, given a bicluster seed, optimizes a bicluster by iteratively adding or 

dropping genes and conditions according to the multi-species score (gain). The 

individual likelihoods for the gain for expression, sequence, and association networks, 

are represented by r, s, and q, respectively. The membership probability 

(probmembership) of becoming part of the bicluster is based on the gain and the decision 

boundary formed using logistic regession (model). See (Waltman, Kacmarczyk et al. 

2010) for the complete description of the method.  
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5.8.4 Validation 

Table 5.3: Quick lookup table for methods considered by this study. 

 Expression Only 

 

Full Data 

Multi-Species 

Shared 

space 

full genome 

(elaboration) 

Shared 

space 

full genome 

(elaboration) 

 

cMonkey EO-MScM-SH EO-MScM-EL 

 

FD-MScM-SH FD-MScM-EL 

ISA* MSISA-P MSISA-R NA NA 

K-Means* MSKM-SH MSKM-EL NA NA 

(Balanced) K-Means* BMSKM-SH BMSKM-EL NA NA 

 

Single-Species Expression Only 

 

Full Data 

 

cMonkey EO-SSCM FD-SSCM 

Coalesce EO-COAL FD-COAL 

Qubic* QUBIC NA 

 

* Expression only method by method definition - no distinction between "expression only" 

or "full data" is necessary. 

 

5.8.5 Overview of the bicluster comparison metrics 

A comparison of the relative performances of four multi-species methods 

(MScM, MSISA, MSKM and BMSKM), and three single species methods (SSCM, 

Coalesce and Qubic) in this study are based on 5 metric classes: 1) bicluster 
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coherence; 2) functional enrichment; 3) coverage; 4) overlap between biclusters; and 

5) conservation. Bicluster coherence is determined by the combination of five 

commonly used metrics that gauge the degree of support provided to each bicluster by 

the three data types that MScM integrates (expression, sequence and association 

networks). See [10] for comparisons of SSCM to other biclustering algorithms, and 

[19] comparisons between single species biclustering and clustering algorithms.  Our 

coherence metrics are:  1) expression residuals – a measure of the coherence of 

expression across the two species datasets for conditions within the bicluster; 2) mean 

correlation – the average pairwise correlation between members of a (bi)cluster 

(taking the absolute value to allow fair comparison between methods that identify 

inversely correlated patterns (QUBIC and MSISA) and those that do not; 3) network 

p-values – a measure of the significance of the sub-networks within biclusters 

compared to the full network; 4) motif E-values – a measure of the 

quality/significance of the upstream binding site motifs detected for each (bi)cluster; 

and 5) sequence p-values – an estimate of a sequence’s match to the motifs associated 

with a (bi)cluster.  Each of the coherence metrics is described in greater detail in 

(Waltman, Kacmarczyk et al. 2010). 

5.8.6 Quick-glance table & Additional figures for the E. coli – S. typhimurium 

pairing 

The Quick-glance table for E. coli and S. typhimurium is available in Appendix 1 

(Table 3.5), and the appropriate figures can be found in sections 7.2.1 and 7.2.2. 
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5.8.7 Description of highlighted biclusters 

5.8.7.1 E. coli bicluster 57 

 

Figure 5.6: E. coli bicluster 57 MScM output image 

 

5.8.7.2 E. coli bicluster 57 core gene list 

Locus Name Description 

B0693 SPEF ornithine decarboxylase isozyme, inducible 
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Locus Name Description 

B0782 MOAB molybdopterin biosynthesis protein B 

B0783 MOAC molybdopterin biosynthesis, protein C 

B0873 HCP hybrid-cluster [4Fe-2S-2O] protein in anaerobic 

B0894 DMSA dimethyl sulfoxide reductase, anaerobic, subunit 

B0895 DMSB dimethyl sulfoxide reductase, anaerobic, subunit 

B0896 DMSC dimethyl sulfoxide reductase, anaerobic, subunit 

B0903 PFLB pyruvate formate lyase I 

B1074 FLGC flagellar component of cell-proximal portion of 

B1587 YNFE oxidoreductase subunit 

B1588 YNFF oxidoreductase subunit 

B1476 FDNI formate dehydrogenase-N, cytochrome B556 (gamma) 

B1475 FDNH formate dehydrogenase-N, Fe-S (beta) subunit, nitrate-inducible 

B1474 FDNG formate dehydrogenase-N, alpha subunit, nitrate-inducible 

B1227 NARI nitrate reductase 1, gamma (cytochrome b(NR)) 

B1226 NARJ molybdenum-cofactor-assembly chaperone subunit 

B1225 NARH nitrate reductase 1, beta (Fe-S) subunit 



 

 

 

302 

Locus Name Description 

B1224 NARG nitrate reductase 1, alpha subunit 

B1223 NARK nitrate/nitrite transporter 

B2202 NAPC nitrate reductase, cytochrome c-type, periplasmic 

B2203 NAPB nitrate reductase, small, cytochrome C550 

B2204 NAPH ferredoxin-type protein essential for electron 

B2205 NAPG ferredoxin-type protein essential for electron 

B2206 NAPA nitrate reductase, periplasmic, large subunit 

B2207 NAPD assembly protein for periplasmic nitrate 

B2208 NAPF ferredoxin-type protein, predicted role in 

B2261 MENC o-succinylbenzoyl-CoA synthase 

B2262 MENB dihydroxynaphthoic acid synthetase 

B2997 HYBO hydrogenase 2, small subunit 

B4131 CADA lysine decarboxylase 1 

B2727 HYPB GTP hydrolase involved in nickel liganding into 

B2728 HYPC protein required for maturation of hydrogenases 

B2729 HYPD protein required for maturation of hydrogenases 
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Locus Name Description 

B2904 GCVH glycine cleavage complex lipoylprotein 

B2957 ANSB periplasmic L-asparaginase II 

B2992 HYBE hydrogenase 2-specific chaperone 

B2993 HYBD predicted maturation element for hydrogenase 2 

B2995 HYBB predicted hydrogenase 2 cytochrome b type 

B2996 HYBA hydrogenase 2 4Fe-4S ferredoxin-type component 

B3573 YSAA predicted hydrogenase, 4Fe-4S ferredoxin-type 

B4021 PEPE (alpha)-aspartyl dipeptidase 

B4122 FUMB anaerobic class I fumarate hydratase (fumarase 

B4123 DCUB C4-dicarboxylate antiporter 

B4138 DCUA C4-dicarboxylate antiporter 

B4151 FRDD fumarate reductase (anaerobic), membrane anchor 

B4152 FRDC fumarate reductase (anaerobic), membrane anchor 

B4153 FRDB fumarate reductase (anaerobic), Fe-S subunit 

B4154 FRDA fumarate reductase (anaerobic) catalytic and 

B4196 ULAD 3-keto-L-gulonate 6-phosphate decarboxylase 
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Locus Name Description 

B4238 NRDD anaerobic ribonucleoside-triphosphate reductase 

B4380 YJJI conserved protein 

 

5.8.7.3 E. coli bicluster 57 elaborated gene list 

Locus Name Description 

B0781 MOAA molybdopterin biosynthesis protein A 

B0902 PFLA pyruvate formate lyase activating enzyme 1 

B0904 FOCA formate channel 

B0972 HYAA hydrogenase 1, small subunit 

B0973 HYAB hydrogenase 1, large subunit 

B1465 NARV nitrate reductase 2 (NRZ), gamma subunit 

B1466 NARW nitrate reductase 2 (NRZ), delta subunit 

B1467 NARY nitrate reductase 2 (NRZ), beta subunit 

B1468 NARZ nitrate reductase 2 (NRZ), alpha subunit 

B1473 YDDG aromatic amino acid exporter 

B1593 YNFK predicted dethiobiotin synthetase 
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B1670 YDHU predicted cytochrome 

B1671 YDHX predicted 4Fe-4S ferridoxin-type protein 

B2241 GLPA sn-glycerol-3-phosphate dehydrogenase 

B2242 GLPB sn-glycerol-3-phosphate dehydrogenase 

B2243 GLPC sn-glycerol-3-phosphate dehydrogenase 

B2579 YFID autonomous glycyl radical cofactor 

B2726 HYPA protein involved in nickel insertion into 

B2730 HYPE carbamoyl dehydratase, hydrogenases 1,2,3 

B2994 HYBC hydrogenase 2, large subunit 

B3365 NIRB nitrite reductase, large subunit, NAD(P)H-binding 

B3366 NIRD nitrite reductase, NAD(P)H-binding, small 

B3426 GLPD sn-glycerol-3-phosphate dehydrogenase, aerobic, FAD/NAD(P)-binding 

B4379 YJJW predicted pyruvate formate lyase activating 
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5.8.8 S. typhimurium bicluster 57 

 

Figure 5.7: S. typhimurium bicluster 57 MScM output image 

5.8.8.1 S. typhimurium bicluster 57 core gene list 

Locus Name description 

STM0701 SPEF ornithine decarboxylase isozyme 

STM0803 MOAB molybdopterin biosynthetic protein B 

STM0804 MOAC molybdenum cofactor biosynthesis protein C 
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STM0937 HCP hydroxylamine reductase 

STM0964 DMSA anaerobic dimethyl sulfoxide reductase subunit 

STM0965 DMSB anaerobic dimethyl sulfoxide reductase subunit 

STM0966 DMSC anaerobic dimethyl sulfoxide reductase subunit 

STM0973 PFLB pyruvate formate lyase I 

STM1175 FLGC flagellar basal body rod protein FlgC 

STM1498  putative dimethyl sulphoxide reductase 

STM1499  putative dimethyl sulphoxide reductase chain A1 

STM1568 FDNI formate dehydrogenase-N subunit gamma 

STM1569 FDNH formate dehydrogenase-N beta subunit 

STM1570 FDNG formate dehydorgenase-N alpha subunit 

STM1761 NARI nitrate reductase 1 gamma subunit 

STM1762 NARJ nitrate reductase 1 delta subunit 

STM1763 NARH nitrate reductase 1 beta subunit 

STM1764 NARG nitrate reductase 1 alpha subunit 

STM1765 NARK nitrite extrusion protein 

STM2255 NAPC cytochrome c-type protein NapC 
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STM2256 NAPB diheme cytochrome c550 

STM2257 NAPH quinol dehydrogenase membrane component 

STM2258 NAPG quinol dehydrogenase periplasmic component 

STM2259 NAPA periplasmic nitrate reductase 

STM2260 NAPD assembly protein for periplasmic nitrate 

STM2261 NAPF ferredoxin-type protein 

STM2306 MENC O-succinylbenzoate synthase 

STM2307 MENB naphthoate synthase 

STM3150 HYPO hydrogenase 2 small subunit 

STM2559 CADA lysine decarboxylase 1 

STM2855 HYPB hydrogenase nickel incorporation protein HypB 

STM2856 HYPC hydrogenase isoenzymes formation protein 

STM2857 HYPD putative hydrogenase formation protein 

STM3054 GCVH glycine cleavage system protein H 

STM3106 ANSB L-asparaginase II 

STM3145 HYBE hydrogenase 2-specific chaperone 

STM3146 HYBD predicted maturation element for hydrogenase 2 
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STM3148 HYBB predicted hydrogenase 2 cytochrome b type 

STM3149 HYBA hydrogenase 2 protein HybA 

STM3666 YSAA putative oxidoreductase 

STM4190 PEPE peptidase E 

STM4300 FUMB fumarase B 

STM4301 DCUB anaerobic C4-dicarboxylate transporter 

STM4325 DCUA anaerobic C4-dicarboxylate transporter 

STM4340 FRDD fumarate reductase subunit D 

STM4341 FRDC fumarate reductase subunit C 

STM4342 FRDB fumarate reductase iron-sulfur subunit 

STM4343 FRDA fumarate reductase flavoprotein subunit 

STM4386 ULAD 3-keto-L-gulonate-6-phosphate decarboxylase 

STM4452 NRDD anaerobic ribonucleoside triphosphate reductase 

STM4566 YJJI hypothetical protein 

 

5.8.8.2 S. typhimurium bicluster 57 elaborated gene list 

Locus Name description 
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STM0733 SDHD succinate dehydrogenase cytochrome b556 small 

STM0734 SDHA succinate dehydrogenase flavoprotein subunit 

STM0735 SDHB succinate dehydrogenase iron-sulfur subunit 

STM1496 STM1496 putative dimethylsulfoxide reductase 

STM1497 STM1497 putative dimethyl sulphoxide reductase 

STM1538 STM1538 putative hydrogenase-1 large subunit 

STM1786 STM1786 hydrogenase-1 small subunit 

STM2284 GLPA sn-glycerol-3-phosphate dehydrogenase subunit A 

STM2285 GLPB anaerobic glycerol-3-phosphate dehydrogenase 

STM2286 GLPC sn-glycerol-3-phosphate dehydrogenase subunit C 

STM3526 GLPD glycerol-3-phosphate dehydrogenase 

STM3962 YIGL predicted hydrolase 

STM4252 STM4252 putative inner membrane protein 

STM4306 STM4306 putative anaerobic dimethylsulfoxide reductase 

STM4307 STM4307 putative anaerobic dimethylsulfoxide reductase 
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6. DISCUSSION AND FUTURE DIRECTIONS 

We present above a novel method for identifying modules of functionally 

conserved genes that identifies conserved modules by integrating multiple sources of 

data from multiple organisms simultaneously.  This is in comparison to sequence-

based comparison methods such as the Clusters of Orthologous  Groups  (COG) 

database (Tatusov, Galperin et al. 2000) and InParanoid (Remm, Storm et al. 2001), as 

well as several other more recent methods (Chen, Mackey et al. 2006; DeLuca, Wu et 

al. 2006; Schneider, Dessimoz et al. 2007).  However, the analysis provided by these 

sequence-based methods aims to identify clusters of orthology, based upon homology, 

not co-regulation.  Even more recent methods augment these sequence-based methods 

by seeking to identify functional orthology via the comparison of conserved protein-

protein interaction (PPI) networks – so-called network homology (Flannick, Novak et 

al. 2006; Kalaev, Smoot et al. 2008; Singh, Xu et al. 2008; Liao, Lu et al. 2009; Park, 

Singh et al. 2011; Zinman, Zhong et al. 2011).  Of these, only one (Zinman, Zhong et 

al. 2011) explicitly includes co-expression data in its analysis by including edges 

based on correlation, though, it would be relatively easy for the other methods to 

include these as well.  In any such analysis, obviously, great care must be taken to 

avoid circularity of reasoning, which would be possible for example by including 

interolog edges (Yu, Luscombe et al. 2004).  As described above in section 2.1, 

methods that are based primarily upon gene expression data can be segmented into 

two classes – those that seek to find matching conditions between the organisms and 
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those that do not.  We direct the reader to the section 2.1 for a more thorough 

discussion of this. 

Both of the newer approaches (those based primarily upon PPI networks, versus 

those based primarily upon expression data) have their strengths and weaknesses.  

Interaction-based function orthology methods provide the confidence of clustering 

orthologous genes based on known or putative interactions, though known interaction 

provide far higher degree of confidence.  However, the sparsity of these interactions 

for most organisms, especially those that are high-confidence, is a limiting factor on 

the genes that can be analyzed.  Correlation-based edges provide one possible 

workaround to this limit for interaction-based methods, however, the calculations 

made when generating these do not easily allow for condition-dependence, as is 

possible with biclustering methods.  Similarly, most expression-based comparative, 

multi-species methods allow for comprehensive, genome-wide analyses.  However, 

they too often fail to allow for condition-dependent expression patterns.  Finally, all 

these methods focus on the identification of conserved modules, but don‘t provide 

mechanisms for identifying species-specific changes or modification to these. 

In comparison to these other methods, multi-species cMonkey (MScM) allows for 

the integration of interactions or associations with sequence and co-expression data, 

while allowing for condition-dependence with the expression data.  In addition, MScM 

is explicitly written to identify species-specific difference to these conserved modules.  

However, MScM is not without its areas for potential improvement as well. 
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For example, the heuristic, correlation-based seeding strategy that MScM 

currently uses (described in section 2.5.1.4) could be replaced by one of these 

network-homology based methods.  An alternate strategy would be to use the 

balanced, multi-species k-means algorithm to generate the initial seeds.  While this 

would provide complete coverage, at least initially, this will also require a decision 

over how to handle the initial k clusters that are generated.  For example, would the 

search strategy need to be modified to process the initial k biclusters sequentially – as 

is currently done – or concurrently?  This also raises the question of how or whether to 

prune some of the initial k biclusters from consideration.  One possible idea would be 

to use a consensus approach that employs both the network homology and k-means 

clustering approaches together to determine an initial set of high-confidence seeds that 

can be further optimized, using the MCMC search that is used by MScM. 

While a change to the seeding strategy could be fruitful, there are several aspects 

to MScM that definitely deserve further attention, with two that should take priority.  

The first of these two aspects that deserve the most scrutiny are the integration or 

‗mixing‘ parameters that are used in the joint-likelihood function which is used to 

estimate the likelihood of a gene belonging to a bicluster.  Currently these are set by a 

schedule that gives the sequence support little weight in the beginning, and slowly 

increases it during the optimization of a single bicluster.  Similarly, the weight given 

to the network/interaction support starts off relatively high, and is progressively 

reduced during the optimization of a single cluster.  However, despite these general 
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strategies, there are many details that are not well-established yet, e.g. the exact 

weights at the beginning or end are not well-established, nor the rate at which the 

increase or decrease should occur.  It is unclear at the time of this writing what would 

be an optimal method to determine these, as any such method to determine these 

would need to allow users to specify the maximum weight they want given to a 

particular data type, while still allowing MScM to determine the optimal weighting of 

the different data types. 

However, this discussion naturally raises the question of what is optimal in an 

unsupervised learning environment such as the one with co-expression data.  While we 

provide in Chapter 3 a through comparison of MScM with several other methods, this 

is time-consuming and for this reason, does not lend itself well to an optimization 

problem.  The reason for this, as we discuss in Chapter 3 is that there is no complete 

‗gold-standard‘ clustering result that can be used to benchmark the results.   

This also becomes an issue in terms of what should be considered to be the 

‗correct‘ number of biclusters that are generated by MScM, which would be the 

second major aspect of MScM that deserves further attention.  However, without 

knowing a priori how many functional modules are active in an expression data set, it 

is difficult to determine the appropriate number of biclusters to generate.  Currently, 

MScM estimates the number of biclusters that will be generated based on the number 

of genes in the expression data set, divided by the estimated mean size of each 

bicluster.  One possible heuristic that could be used to address this is to have MScM 
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make a decision based on the latest bicluster that is generated to determine if it will 

continue to search for new biclusters.  In this case, it would consider the number of 

previously unclustered genes or percentage of the expression data that is added by the 

latest results.  If the number of new genes or areas of the expression matrix that are 

added by MScM falls below a certain threshold, then MScM could then decide to stop 

adding new biclusters to the set of those that it has identified. 

An alternate strategy would be to have MScM identify far more biclusters that are 

expected, and in a post-processing step, MScM would prune these down to a minimal 

set.  In any solution such as this, MScM would need to make a decision amongst 

numerous, overlapping bicluster/modules.  This, in turn, raises the question of what 

one should consider to be meaningful overlap between the modules, i.e. which 

biclusters are sub-modules of others?;  which biclusters reflect pleiotropy?;  which are 

simply the method settling into the same optima multiple times? 

One naïve solution to this question would be to use a threshold to determine 

sufficient similarity or difference between biclusters (a threshold on the percentage of 

the sub-matrices that overlap).  In addition, the non-expression data types such as 

sequence motifs and association edges could also be helpful in determining similarity 

and difference.  At this point, it is unclear what would be the optimal solution, but this 

could be a fruitful area for further research.  GO term and/or KEGG pathway 

annotations of the non-overlapping genes in a bicluster could also provide some 
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guidance as well; as would comparisons of the conditions that are included in the 

different bicluster. 

This question of how to determine similarity and difference between biclusters is 

essential when evaluating the stability of the method, where by stability we mean the 

consistency and reproducibility of the biclustering results between different analyses 

performed by the same method, on the same data set – an issue for all Monte Carlo 

methods, including MScM.  As of yet, no attempt has been made to quantify the 

stability of MScM (nor SScM), though, anecdotally, in our experience, the modules 

with clearest signal are retrieved consistently between different runs, though, it is 

unknown at this point how reproducible are those modules with more subtle signals. 

Ultimately, this question of stability should also need to be considered when 

determining the optimality of the parameterization of any given MScM run.  However,  

as we state in section 2.3 ―[w]e have shown that MScM provides better or comparable 

coverage, functional enrichment scores, bicluster coherence, and conservation than 

other tested methods, with all other methods failing in one of the main categories of 

assessment.  Furthermore, our method effectively balances the influence of each 

organism, preventing organisms with more complete datasets from dominating the 

analysis, while also integrating other supporting data types, enabling the method to 

identify more biologically relevant modules and delimit the conditions over which the 

modules are active.  The fact that the MScM biclusters have many fold higher 

conservation scores than several of the tested methods suggests that they have a higher 
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level of biological significance than equally co-expressed (and/or equally functionally 

enriched) non-conserved alternate biclusters. An analysis that takes into account 

several validation metrics supports the idea that MScM is the top performing method 

for comparative biclustering.‖  Thus, despite these open questions and limitations, 

MScM provides a robust and novel solution to the comparative analyses of multiple-

species, by providing analytical aspects that no other method yet provides. 
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7. SUPPLEMENTARY INFORMATION 

7.1 Gene lists and bicluster images of the biological highlights for 

the Gram-positive triplet 

7.1.1 Full descriptions of highlighted biclusters 

7.1.1.1 Gene lists for B. subtilis, B. anthracis Sterne sporulation clusters 32, 82, 

and 84. 

7.1.1.1.1 B. subtilis - B. anthracis cluster 32 

7.1.1.1.1.1 B. subtilis cluster 32 

Figure 7.1: B. subtilis cluster 32 image (post-elaboration) 
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Table 7.1: B. subtilis cluster 32 core genes 

Locus Name Function 

BSU06890 cotJA polypeptide composition of the spore coat; required for the assembly of CotJC 

BSU06900 cotJB polypeptide composition of the spore coat 

BSU06910 cotJC polypeptide composition of the spore coat 

BSU23190 dacB D-alanyl-D-alanine carboxypeptidase (penicillin-binding protein 5*) 

BSU28380 gerM germination (cortex hydrolysis) and sporulation (stage II, multiple polar septa) 

BSU27440 glnH glutamine ABC transporter (glutamine-binding protein) 

BSU27450 glnM glutamine ABC transporter (integral membrane protein) 

BSU27460 glnP glutamine ABC transporter (integral membrane protein) 

BSU27430 glnQ glutamine ABC transporter (ATP-binding protein) 

BSU15320 sigE sporulation sigma factor SigE 
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BSU23180 spmA spore maturation protein 

BSU23170 spmB spore maturation protein 

BSU24430 spoIIIAA mutants block sporulation after engulfment (stage III sporulation) 

BSU24420 spoIIIAB stage III sporulation protein SpoAB 

BSU24410 spoIIIAC mutants block sporulation after engulfment (stage III sporulation) 

BSU24400 spoIIIAD mutants block sporulation after engulfment (stage III sporulation) 

BSU24390 spoIIIAE mutants block sporulation after engulfment (stage III sporulation) 

BSU24380 spoIIIAF mutants block sporulation after engulfment (stage III sporulation) 

BSU24370 spoIIIAG mutants block sporulation after engulfment (stage III sporulation) 

BSU24360 spoIIIAH mutants block sporulation after engulfment (stage III sporulation) 

BSU27980 spoIVFA inhibition of SpoIVFB (negative regulation) and hypothesised to stabilize the 

thermolabile SpoIVFB product (positive regulation) (stage IV sporulation) 

BSU27970 spoIVFB membrane metalloprotease 

BSU27670 spoVB involved in spore cortex synthesis (stage V sporulation) 

BSU01570 ybaN hypothetical protein 

BSU09940 yhaL hypothetical protein 

BSU11510 yjbE hypothetical protein 

BSU14110 ykuK hypothetical protein 

BSU13710 ykvI hypothetical protein 

BSU15030 ylbJ hypothetical protein 

BSU15650 yloB hypothetical protein 

BSU25350 yqfD hypothetical protein 

BSU25060 yqfZ hypothetical protein 

BSU24440 yqhV hypothetical protein 

BSU27690 yrzE hypothetical protein 
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BSU28100 ysxE hypothetical protein 

BSU29240 ytrI hypothetical protein 

BSU28960 ytxC hypothetical protein 

BSU32350 yunB hypothetical protein 

 

Table 7.2: B. subtilis cluster 32 elaboration genes 

Locus Name Function 

BSU17260 aprX alkaline serine protease 

BSU17030 cotE morphogenic protein 

BSU26740 cypA cytochrome P450-like enzyme 

BSU12370 exuR transcriptional regulator (LacI family) 

BSU19690 kamA lysine 2,3-aminomutase 

BSU36410 mbl MreB-like protein 

BSU24170 mmgA acetyl-CoA acetyltransferase 

BSU24160 mmgB 3-hydroxybutyryl-CoA dehydrogenase 

BSU24150 mmgC acyl-CoA dehydrogenase 

BSU24140 mmgD citrate synthase 3 

BSU14000 patA aminotransferase A 

BSU38990 scoA succinyl CoA:3-oxoacid CoA-transferase (subunit A) 

BSU19330 sodF superoxide dismutase 

BSU36750 spoIID required for complete dissolution of the asymmetric septum (stage II 

sporulation) 

BSU15170 spoVD penicillin-binding protein 

BSU09400 spoVR involved in spore cortex synthesis (stage V sporulation) 

BSU37830 spsJ spore coat polysaccharide synthesis 
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BSU19320 sqhC squalene-hopene cyclase 

BSU12350 yjmF D-mannonate oxidoreductase 

BSU14830 ylaM glutaminase 

BSU18220 yngF enoyl-CoA hydratase 

BSU18230 yngG hydroxymethylglutaryl-CoA lyase 

BSU18240 yngH acetyl-CoA carboxylase biotin carboxylase subunit 

BSU18250 yngI acyl-CoA synthetase 

BSU12710 xkdR hypothetical protein 

BSU00160 yaaH hypothetical protein 

BSU03110 ycgH hypothetical protein 

BSU03670 yclF hypothetical protein 

BSU05710 ydhD hypothetical protein 

BSU06920 yesJ hypothetical protein 

BSU09830 yhaX hypothetical protein 

BSU08980 yhbH hypothetical protein 

BSU09770 yheD hypothetical protein 

BSU10230 yhfH hypothetical protein 

BSU10400 yhxC hypothetical protein 

BSU10960 yitE hypothetical protein 

BSU12110 yjfA hypothetical protein 

BSU12320 yjmC hypothetical protein 

BSU12330 yjmD hypothetical protein 

BSU14250 yknT hypothetical protein 

BSU14810 ylaK hypothetical protein 

BSU17320 ymaF hypothetical protein 
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BSU18210 yngE hypothetical protein 

BSU18260 yngJ hypothetical protein 

BSU19020 yobN hypothetical protein 

BSU19670 yodN hypothetical protein 

BSU19700 yodP hypothetical protein 

BSU19720 yodR hypothetical protein 

BSU19740 yodT hypothetical protein 

BSU21290 yomN hypothetical protein 

BSU22980 ypbG hypothetical protein 

BSU25420 yqeW hypothetical protein 

BSU26660 yrdN hypothetical protein 

BSU29160 ytvI hypothetical protein 

BSU31740 yuxH hypothetical protein 

BSU31730 yuzC hypothetical protein 

BSU38240 ywcA hypothetical protein 

BSU38230 ywcB hypothetical protein 

BSU39000 yxjC hypothetical protein 

BSU40940 yyaD hypothetical protein 
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7.1.1.1.1.2 B. anthracis cluster 32 

Figure 7.2: B. anthracis cluster 32 image (post-elaboration) 

 

Table 7.3: B. anthracis cluster 32 core genes 

Locus Name Function 

GBAA0805 cotJA cotja protein 

GBAA0804 cotJB cotjb protein 

GBAA0803 cotJC cotjc protein 

GBAA4716 gerM germination protein gerM 

GBAA4043 sigE sporulation sigma factor SigE 

GBAA1491 spmA spore maturation protein a 

GBAA4417 spoIIIAA stage iii sporulation protein aa 
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GBAA4416 spoIIIAB stage III sporulation protein SpoAB 

GBAA4415 spoIIIAC stage iii sporulation protein ac 

GBAA4414 spoIIIAD stage iii sporulation protein ad 

GBAA4413 spoIIIAE stage iii sporulation protein ae 

GBAA4412 spoIIIAF stage iii sporulation protein af 

GBAA4411 spoIIIAG stage iii sporulation protein ag 

GBAA4679 spoIVFA stage iv sporulation protein fa 

GBAA4678 spoIVFB stage iv sporulation protein fb 

GBAA4643 spoVB stage v sporulation protein b 

GBAA0640 - amino acid abc transporter, amino acid-binding protein 

GBAA0639 - amino acid abc transporter, atp-binding protein 

GBAA0641 - amino acid abc transporter, permease protein 

GBAA0642 - amino acid abc transporter, permease protein 

GBAA4012 - cation-transporting atpase, e1-e2 family 

GBAA1490 - d-alanyl-d-alanine carboxypeptidase family protein 

GBAA0150 - polysaccharide deacetylase, putative 

GBAA1492 - spore maturation protein 

GBAA4530 - sporulation protein 

GBAA4410 - stage iii sporulation protein ah 

GBAA1020 - hypothetical protein 

GBAA1201 - hypothetical protein 

GBAA2012 - hypothetical protein 

GBAA4138 - hypothetical protein 

GBAA4198 - hypothetical protein 

GBAA4418 - hypothetical protein 
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GBAA4501 - hypothetical protein 

GBAA4645 - hypothetical protein 

GBAA4691 - hypothetical protein 

GBAA4821 - hypothetical protein 

GBAA4851 - hypothetical protein 

GBAA5207 - hypothetical protein 

 

Table 7.4: B. anthracis cluster 32 elaboration genes 

Locus Name Function 

GBAA5449 celA-3 pts system, cellobiose-specific iib component 

GBAA0146 cwlD germination-specific n-acetylmuramoyl-l-alanine amidase 

GBAA5640 cwlJ-2 cell wall hydrolase 

GBAA4297 dacF d-alanyl-d-alanine carboxypeptidase 

GBAA1530 spoIVA stage iv sporulation protein a 

GBAA0767 spoVR stage v sporulation protein r 

GBAA1221 - bacteriocin o-metyltransferase, putative 

GBAA1755 - bnr repeat domain protein 

GBAA3030 - catalase 

GBAA3668 - glycosyl hydrolase, family 18 

GBAA0870 - hydrolase, haloacid dehalogenase-like family 

GBAA4659 - lysm domain protein 

GBAA2055 - magnesium transporter, cora family 

GBAA2980 - polyketide synthesis domain protein 

GBAA2981 - polyketide synthesis domain protein 

GBAA4067 - prophage lambdaba02, ftsk/spoiiie family protein 
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GBAA2462 - pts system, cellobiose-specific iib component, putative 

GBAA2463 - pts system, cellobiose-specific iic component, putative 

GBAA5524 - stage ii sporulation protein 

GBAA4692 - stage vi sporulation protein d, putative 

GBAA2979 - transcriptional regulator, putative 

GBAA0550 - hypothetical protein 

GBAA0806 - hypothetical protein 

GBAA0951 - hypothetical protein 

GBAA1021 - hypothetical protein 

GBAA1187 - hypothetical protein 

GBAA1843 - hypothetical protein 

GBAA1904 - hypothetical protein 

GBAA2292 - hypothetical protein 

GBAA2304 - hypothetical protein 

GBAA2305 - hypothetical protein 

GBAA2464 - hypothetical protein 

GBAA2466 - hypothetical protein 

GBAA2821 - hypothetical protein 

GBAA2982 - hypothetical protein 

GBAA3151 - hypothetical protein 

GBAA3636 - hypothetical protein 

GBAA3637 - hypothetical protein 

GBAA3638 - hypothetical protein 

GBAA3671 - hypothetical protein 

GBAA3844 - hypothetical protein 
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GBAA4069 - hypothetical protein 

GBAA4199 - hypothetical protein 

GBAA4317 - hypothetical protein 

GBAA4531 - hypothetical protein 

GBAA4619 - hypothetical protein 

GBAA5641 - hypothetical protein 

GBAA5728 - hypothetical protein 

7.1.1.1.2 B. subtilis - B. anthracis cluster 82 

7.1.1.1.2.1 B. subtilis cluster 82 
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Figure 7.3: B. subtilis cluster 82 image (post-elaboration) 

 

Table 7.5: B. subtilis cluster 82 core genes 

Locus Name Function 

BSU04640 alr D-alanine racemase 

BSU25600 comER late competence protein ComER 

BSU17030 cotE morphogenic protein (spore coat protein) 

BSU06890 cotJA polypeptide composition of the spore coat; required for the assembly of CotJC 

BSU06900 cotJB polypeptide composition of the spore coat 

BSU06910 cotJC polypeptide composition of the spore coat 

BSU02600 cwlJ cell wall hydrolase (stored in the spore coat) 

BSU08970 prkA serine protein kinase 

BSU27840 safA morphogenetic protein associated with SpoVID (spore coat protein) 
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BSU19330 sodF superoxide dismutase 

BSU28110 spoVID required for assembly of the spore coat (stage VI sporulation) 

BSU09400 spoVR involved in spore cortex synthesis (stage V sporulation) 

BSU19320 sqhC squalene-hopene cyclase 

BSU00160 yaaH hypothetical protein (spore coat protein) 

BSU09830 yhaX hypothetical protein (spore coat protein) 

BSU08980 yhbH hypothetical protein 

BSU10900 yisY hypothetical protein (spore coat protein) 

BSU11730 yjbX hypothetical protein (spore coat protein, cotO) 

BSU19020 yobN hypothetical protein 

BSU19660 yozD hypothetical protein 

BSU25360 yqfC hypothetical protein 

BSU28100 ysxE hypothetical protein (spore coat protein) 

BSU30080 yteV hypothetical protein 

BSU32350 yunB hypothetical protein 

BSU37920 ywdL hypothetical protein (spore coat protein, gerQ) 

 

Table 7.6: B. subtilis cluster 82 elaboration genes 

Locus Name Function 

BSU19690 kamA lysine 2,3-aminomutase 

BSU29300 ribR riboflavin kinase 

BSU24390 spoIIIAE mutants block sporulation after engulfment (stage III sporulation) 

BSU12350 yjmF D-mannonate oxidoreductase 

BSU06960 yesN hypothetical protein 

BSU09770 yheD hypothetical protein 
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BSU15090 ylbO hypothetical protein 

BSU17320 ymaF hypothetical protein 

 

Note: spore coat protein assignments are from Henriques and Moran (Henriques and 

Moran 2007). 

7.1.1.1.2.2 B. anthracis cluster 82 

Figure 7.4: B. anthracis cluster 82 image (post-elaboration) 

 

 

Table 7.7: B. anthracis cluster 82 core genes 

Locus Name Function 
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GBAA3906 cotE spore coat protein e 

GBAA0805 cotJA cotja protein 

GBAA0804 cotJB cotjb protein 

GBAA0803 cotJC cotjc protein 

GBAA5640 cwlJ-2 cell wall hydrolase 

GBAA0252 dal-1 alanine racemase 

GBAA0767 spoVR stage v sporulation protein r 

GBAA1924 - amine oxidase, flavin-containing 

GBAA3668 - glycosyl hydrolase, family 18 

GBAA5030 - hydrolase, alpha/beta fold family 

GBAA0870 - hydrolase, haloacid dehalogenase-like family 

GBAA4554 - late competence protein ComER 

GBAA4659 - lysm domain protein 

GBAA3612 - squalene-hopene cyclase 

GBAA4692 - stage vi sporulation protein d, putative 

GBAA1489 - superoxide dismutase 

GBAA0550 - hypothetical protein 

GBAA0551 - hypothetical protein 

GBAA1233 - hypothetical protein 

GBAA2305 - hypothetical protein 

GBAA4532 - hypothetical protein 

GBAA4691 - hypothetical protein 

GBAA4965 - hypothetical protein 

GBAA5207 - hypothetical protein 

GBAA5641 - hypothetical protein 
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Table 7.8: B. anthracis cluster 82 elaboration genes 

Locus Name Function 

GBAA1238 cotZ-2 spore coat protein z 

GBAA0176 - alcohol dehydrogenase, zinc-containing 

GBAA1221 - bacteriocin o-metyltransferase, putative 

GBAA1219 - glycosyl transferase, group 2 family protein 

GBAA5241 - spore coat protein f-related protein 

GBAA2002 - transcriptional regulator, arsr family 

GBAA0806 - hypothetical protein 

GBAA1220 - hypothetical protein 

GBAA1411 - hypothetical protein 

GBAA2344 - hypothetical protein 

GBAA3671 - hypothetical protein 

GBAA4041 - hypothetical protein 

GBAA4507 - hypothetical protein 

GBAA4966 - hypothetical protein 

GBAA5728 - hypothetical protein 
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7.1.1.1.3 B. subtilis - B. anthracis cluster 84 

7.1.1.1.3.1 B. subtilis cluster 84 

Figure 7.5: B. subtilis cluster 84 image (post-elaboration) 

 

Table 7.9: B. subtilis cluster 84 core genes 

Locus Name Function 

BSU14890 ctaC cytochrome caa3 oxidase (subunit II) 

BSU14900 ctaD cytochrome caa3 oxidase (subunit I) 

BSU14910 ctaE cytochrome caa3 oxidase (subunit III) 

BSU14920 ctaF cytochrome caa3 oxidase (subunit IV) 

BSU19690 kamA lysine 2,3-aminomutase 



 

 

 

341 

BSU24170 mmgA acetyl-CoA acetyltransferase 

BSU24150 mmgC acyl-CoA dehydrogenase 

BSU24140 mmgD citrate synthase 3 

BSU30070 opuD glycine betaine transporter 

BSU24130 prpD 2-methylcitrate dehydratase 

BSU02820 rapJ response regulator aspartate phosphatase 

BSU23470 spoIIAA anti-anti-sigma factor (antagonist of SpoIIAB) 

BSU23460 spoIIAB anti-sigma F factor 

BSU18220 yngF enoyl-CoA hydratase 

BSU18230 yngG hydroxymethylglutaryl-CoA lyase 

BSU18240 yngH acetyl-CoA carboxylase biotin carboxylase subunit 

BSU13960 ykwC hypothetical protein 

BSU14810 ylaK hypothetical protein 

BSU18210 yngE hypothetical protein 

BSU18260 yngJ hypothetical protein 

BSU19700 yodP hypothetical protein 

BSU19720 yodR hypothetical protein 

BSU19740 yodT hypothetical protein 

BSU24120 yqiQ hypothetical protein 

BSU38240 ywcA hypothetical protein 

BSU38230 ywcB hypothetical protein 

 

Table 7.10: B. subtilis cluster 84 elaboration genes 

Locus Name Function 

BSU28380 gerM germination (cortex hydrolysis) and sporulation (stage II, multiple polar septa) 
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BSU27440 glnH glutamine ABC transporter (glutamine-binding protein) 

BSU27430 glnQ glutamine ABC transporter (ATP-binding protein) 

BSU23170 spmB spore maturation protein 

BSU24420 spoIIIAB stage III sporulation protein SpoAB 

BSU15170 spoVD penicillin-binding protein 

BSU18250 yngI acyl-CoA synthetase 

BSU38990 scoA succinyl CoA:3-oxoacid CoA-transferase (subunit A) 

BSU05710 ydhD hypothetical protein 

BSU10400 yhxC hypothetical protein 

BSU12320 yjmC hypothetical protein 

BSU12330 yjmD hypothetical protein 

BSU17320 ymaF hypothetical protein 

BSU19110 yobW hypothetical protein 

BSU28960 ytxC hypothetical protein 

BSU31730 yuzC hypothetical protein 
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7.1.1.1.3.2 B. anthracis cluster 84 

Figure 7.6: B. anthracis cluster 84 image (post-elaboration) 

 

Table 7.11: B. anthracis cluster 84 core genes 

Locus Name Function 

GBAA4154 ctaC cytochrome c oxidase, subunit ii 

GBAA4153 ctaD cytochrome c oxidase, subunit i 

GBAA4152 ctaE cytochrome c oxidase, subunit iii 

GBAA4151 ctaF cytochrome c oxidase, subunit ivb 

GBAA2353 garR 2-hydroxy-3-oxopropionate reductase 

GBAA2300 kamA l-lysine 2,3-aminomutase 

GBAA2348 mmgD citrate synthase 
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GBAA2550 mvaB hydroxymethylglutaryl-CoA lyase 

GBAA0554 opuD-1 glycine betaine transporter 

GBAA2349 prpD 2-methylcitrate dehydratase 

GBAA4296 spoIIAA anti-sigma f factor antagonist 

GBAA4295 spoIIAB anti-sigma F factor 

GBAA2350 yqiQ carboxyvinyl-carboxyphosphonate phosphorylmutase 

GBAA5589 - acetyl-CoA acetyltransferase 

GBAA2548 - acetyl-CoA carboxylase 

GBAA2298 - acetyltransferase, gnat family 

GBAA2547 - acyl-coa dehydrogenase 

GBAA5587 - acyl-coa dehydrogenase 

GBAA2552 - carboxyl transferase domain protein 

GBAA2296 - coa-transferase, beta subunit 

GBAA2551 - enoyl-CoA hydratase 

GBAA4161 - phoh family protein 

GBAA3760 - prophage lambdaba01, tpr domain protein, putative 

GBAA1635 - sodium/solute symporter family protein 

GBAA1634 - hypothetical protein 

GBAA2294 - hypothetical protein 

 

Table 7.12: B. anthracis cluster 84 elaboration genes 

Locus Name Function 

GBAA2295 atoD acetate coa-transferase, subunit a 

GBAA0327 gabD succinate-semialdehyde dehydrogenase (nadp+) 

GBAA0240 hppD 4-hydroxyphenylpyruvate dioxygenase 
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GBAA1851 ilvB-2 acetolactate synthase III large subunit 

GBAA5535 nuoK NADH dehydrogenase kappa subunit 

GBAA5532 nuoN NADH dehydrogenase subunit N 

GBAA1331 phaC poly(r)-hydroxyalkanoic acid synthase, class iii, phac subunit 

GBAA2549 - acetyl-CoA carboxylase 

GBAA2352 - acyl-coa dehydrogenase 

GBAA0241 - fumarylacetoacetate hydrolase family protein 

GBAA0242 - homogentisate 1,2-dioxygenase, putative 

GBAA4586 - phenylalanine-4-hydroxylase, putative 

GBAA0326 - sensory box sigma-54 dependent dna-binding response regulator 

GBAA0937 - hypothetical protein 

GBAA2214 - hypothetical protein 

GBAA3017 - hypothetical protein 

GBAA3573 - hypothetical protein 

GBAA4834 - hypothetical protein 

7.1.1.2 Gene lists for flagellar clusters 

1. B. subtilis - B. anthracis cluster 58 

2. B. subtilis - L. monocytogenes cluster 79 

3. B. anthracis - L. monocytogenes cluster 102 

7.1.1.2.1 B. subtilis - B. anthracis cluster 58: 

7.1.1.2.1.1 B. subtilis cluster 58 
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Figure 7.7: B. subtilis cluster 58 image (post-elaboration) 

 

Table 7.13: B. subtilis cluster 58 shared 

Locus Name Function 

BSU13130 proA gamma-glutamyl phosphate reductase 

BSU13690 motA flagellar motor protein MotA 

BSU16180 flgB flagellar basal body rod protein FlgB 

BSU16190 flgC flagellar basal body rod protein FlgC 

BSU16220 fliG flagellar motor switch protein G 

BSU16240 fliI flagellum-specific ATP synthase 

BSU16290 flgG flagellar basal body rod protein FlgG 

BSU16320 fliY flagellar motor switch protein 

BSU16350 fliP flagellar biosynthesis protein FliP 
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BSU16360 fliQ flagellar biosynthesis protein FliQ 

BSU16370 fliR flagellar biosynthesis protein FliR 

BSU16380 flhB flagellar biosynthesis protein FlhB 

BSU16390 flhA flagellar biosynthesis protein A 

BSU16400 flhF flagellar biosynthesis regulator FlhF 

BSU22720 cheR methyl-accepting chemotaxis proteins (MCPs) methyltransferase 

BSU34800 yvcE hypothetical protein 

BSU35410 flgK flagellar hook-associated protein FlgK 

BSU35650 lytR membrane-bound transcriptional regulator LytR 

 

Table 7.14: B. subtilis cluster 58 elaboration genes 

Locus Name Function 

BSU01120 fusA elongation factor G 

BSU11340 fabF 3-oxoacyl-(acyl carrier protein) synthase II 

BSU12780 xepA lytic exoenzyme associated with defective prophage PBSX 

BSU14630 speA arginine decarboxylase 

BSU15450 lspA lipoprotein signal peptidase 

BSU15770 prkC protein kinase 

BSU16210 fliF flagellar MS-ring protein 

BSU16230 fliH flagellar assembly protein H 

BSU16250 fliJ flagellar biosynthesis chaperone 

BSU16260 ylxF hypothetical protein 

BSU16280 flgD flagellar basal body rod modification protein 

BSU16310 fliM flagellar motor switch protein FliM 

BSU16410 ylxH hypothetical protein 
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BSU16420 cheB chemotaxis-specific methylesterase 

BSU16430 cheA two-component sensor histidine kinase 

BSU16440 cheW modulation of CheA activity in response to attractants (chemotaxis) 

BSU16550 dxr 1-deoxy-D-xylulose 5-phosphate reductoisomerase 

BSU34020 yvbX hypothetical protein 

7.1.1.2.1.2 B. anthracis cluster 58 

Figure 7.8: B. anthracis cluster 58 image (post-elaboration) 

 

Table 7.15: B. anthracis cluster 58 core genes 

Locus Name Function 

GBAA1449 - peptidase, m23/m37 family 

GBAA1662 - flagellar motor switch protein 
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GBAA1665 cheR chemotaxis protein methyltransferase cher 

GBAA1669 - flagellar hook-associated protein 

GBAA1674 flgB flagellar basal body rod protein 

GBAA1675 flgC flagellar basal body rod protein 

GBAA1679 fliG flagellar motor protein 

GBAA1681 - flagellum-specific ATP synthase 

GBAA1686 - flagellar hook protein 

GBAA1712 - flagellar biosynthesis protein 

GBAA1713 - flagellar biosynthesis protein 

GBAA1714 fliR flagellar biosynthesis protein 

GBAA1715 - flagellar biosynthesis protein 

GBAA1716 flhA flagellar biosynthesis protein 

GBAA1718 - flagellar biosynthesis protein 

GBAA2992 proA gamma-glutamyl phosphate reductase 

GBAA4748 - flagellar motor protein 

GBAA5506 lytR membrane-bound transcriptional regulator LytR 

 

Table 7.16: B. anthracis cluster 58 elaboration genes 

Locus Name Function 

GBAA0631 treB pts system, trehalose-specific iibc component 

GBAA0683 uppP undecaprenyl pyrophosphate phosphatase 

GBAA0889 - alginate o-acetyltransferase, putative 

GBAA0890 - alginate o-acetyltransferase, putative 

GBAA1097 - hypothetical protein 

GBAA1098 - wall-associated domain protein 
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GBAA1099 - hypothetical protein 

GBAA1191 - oligopeptide abc transporter, oligopeptide-binding protein 

GBAA1657 - hypothetical protein 

GBAA1666 - hypothetical protein 

GBAA1667 - hypothetical protein 

GBAA1668 - hypothetical protein 

GBAA1670 - flagellar hook-associated protein 

GBAA1671 - flagellar hook-associated protein 

GBAA1672 - flagellar protein flis, putative 

GBAA1676 - flagellar basal body protein 

GBAA1680 - hypothetical protein 

GBAA1684 - hypothetical protein 

GBAA1685 - flagellar hook assembly protein 

GBAA1701 - hypothetical protein 

GBAA1706 - flagellin 

GBAA1717 - hypothetical protein 

GBAA1831 cysK-2 cysteine synthase a 

GBAA1868 - hydrolase, alpha/beta fold family 

GBAA2192 - hypothetical protein 

GBAA2383 - hypothetical protein 

GBAA2560 - sensor histidine kinase 

GBAA2561 - dna-binding response regulator 

GBAA2614 - hypothetical protein 

GBAA3142 brnQ-5 branched-chain amino acid transport system ii carrier protein 

GBAA3143 proC pyrroline-5-carboxylate reductase 
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GBAA3144 - hypothetical protein 

GBAA3145 - malate dehydrogenase, putative 

GBAA3146 - hypothetical protein 

GBAA3147 - hypothetical protein 

GBAA3893 - cell wall hydrolase, putative 

GBAA4747 - dna-binding protein 

GBAA4750 - d-alanyl-d-alanine carboxypeptidase family protein 

GBAA5317 - methyl-accepting chemotaxis protein 

GBAA5318 - endonuclease/exonuclease/phosphatase family 

GBAA5345 - hypothetical protein 

GBAA5415 ftsX cell division abc transporter, permease protein ftsx 

GBAA5604 - abc transporter, atp-binding protein 
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7.1.1.2.2 B. subtilis - L. monocytogenes cluster 79 

7.1.1.2.2.1 B. subtilis cluster 79 

Figure 7.9: B. subtilis cluster 79 image (post-elaboration) 

 

Table 7.17: B. subtilis cluster 79 shared genes 

Locus Name Function 

BSU12850 ykaA hypothetical protein 

BSU13680 motB flagellar motor protein MotB 

BSU16180 flgB flagellar basal body rod protein FlgB 

BSU16210 fliF flagellar MS-ring protein 

BSU16220 fliG flagellar motor switch protein G 
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BSU16240 fliI flagellum-specific ATP synthase 

BSU16280 flgD flagellar basal body rod modification protein 

BSU16290 flgG flagellar basal body rod protein FlgG 

BSU16310 fliM flagellar motor switch protein FliM 

BSU16320 fliY flagellar motor switch protein 

BSU16380 flhB flagellar biosynthesis protein FlhB 

BSU16390 flhA flagellar biosynthesis protein A 

BSU16400 flhF flagellar biosynthesis regulator FlhF 

BSU16430 cheA two-component sensor histidine kinase 

BSU16550 dxr 1-deoxy-D-xylulose 5-phosphate reductoisomerase 

BSU35150 yvzB hypothetical protein 

BSU35340 fliD flagellar capping protein 

BSU35400 flgL flagellar hook-associated protein FlgL 

 

Table 7.18: B. subtilis cluster 79 elaboration genes 

Locus Name Function 

BSU04450 dctS two-component sensor histidine kinase 

BSU16230 fliH flagellar assembly protein H 

BSU16250 fliJ flagellar biosynthesis chaperone 

BSU16260 ylxF hypothetical protein 

BSU16360 fliQ flagellar biosynthesis protein FliQ 

BSU16410 ylxH hypothetical protein 

BSU16420 cheB chemotaxis-specific methylesterase 
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7.1.1.2.2.2 L. monocytogenes cluster 79 

Figure 7.10: L. monocytogenes cluster 79 image (post-elaboration) 

 

Table 7.19: L. monocytogenes cluster 79 shared 

Locus Name Function 

LMO0679 flhB flagellar biosynthesis protein FlhB 

LMO0680 flhA flagellar biosynthesis protein A 

LMO0681 - flagellar biosynthesis regulator FlhF 

LMO0686 motB hypothetical protein 

LMO0690 flaA flagellin 

LMO0692 cheA two-component sensor histidine kinase CheA 

LMO0696 flgD flagellar basal body rod modification protein 
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LMO0697 flgE flagellar hook protein FlgE 

LMO0699 fliM flagellar motor switch protein FliM 

LMO0700 - flagellar motor switch protein 

LMO0706 flgL flagellar hook-associated protein FlgL 

LMO0707 fliD flagellar capping protein 

LMO0710 flgB flagellar basal body rod protein FlgB 

LMO0713 fliF flagellar MS-ring protein 

LMO0714 fliG flagellar motor switch protein G 

LMO0716 fliI flagellum-specific ATP synthase 

LMO1317 - 1-deoxy-D-xylulose 5-phosphate reductoisomerase 

LMO2248 - hypothetical protein 

 

Table 7.20: L. monocytogenes cluster 79 elaboration genes 

Locus Name Function 

LMO0682 flgG flagellar basal body rod protein FlgG 

LMO0683 - hypothetical protein 

LMO0685 - flagellar motor protein MotA 

LMO0687 - hypothetical protein 

LMO0695 - hypothetical protein 

LMO0698 - flagellar motor switch protein 

LMO0701 - hypothetical protein 

LMO0702 - hypothetical protein 

LMO0703 - hypothetical protein 

LMO0704 - hypothetical protein 

LMO0705 flgK flagellar hook-associated protein FlgK 
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LMO0708 - hypothetical protein 

LMO0709 - hypothetical protein 

LMO0711 flgC flagellar basal body rod protein FlgC 

LMO0715 fliH flagellar assembly protein H 

LMO0717 - hypothetical protein 

LMO0718 - hypothetical protein 

LMO0828 - hypothetical protein 

LMO0952 - hypothetical protein 

LMO1230 - hypothetical protein 

LMO1239 - hypothetical protein 

LMO1365 tktB 1-deoxy-D-xylulose-5-phosphate synthase 

LMO1389 - hypothetical protein 

LMO1390 - hypothetical protein 

LMO1496 - hypothetical protein 

LMO1598 tyrS tyrosyl-tRNA synthetase 

LMO1699 - hypothetical protein 

LMO1787 rplS 50S ribosomal protein L19 

LMO1815 - hypothetical protein 

LMO2037 mraY hypothetical protein 

LMO2044 - hypothetical protein 

LMO2537 - hypothetical protein 

LMO2635 - 1,4-dihydroxy-2-naphthoate octaprenyltransferase 
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7.1.1.2.3 B. anthracis - L. monocytogenes cluster 102 

7.1.1.2.3.1 B. anthracis cluster 102 

Figure 7.11: B. anthracis cluster 102 image (post-elaboration) 

 

Table 7.21: B. anthracis cluster 102 core genes 

Locus Name Function 

GBAA1667 - hypothetical protein 

GBAA1669 - flagellar hook-associated protein 

GBAA1670 - flagellar hook-associated protein 

GBAA1672 - flagellar protein flis, putative 

GBAA1674 flgB flagellar basal body rod protein 
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GBAA1675 flgC flagellar basal body rod protein 

GBAA1676 - flagellar basal body protein 

GBAA1679 fliG flagellar motor protein 

GBAA1680 - hypothetical protein 

GBAA1681 - flagellum-specific ATP synthase 

GBAA1685 - flagellar hook assembly protein 

GBAA1686 - flagellar hook protein 

GBAA1707 - transglycosylase, slt family 

GBAA1714 fliR flagellar biosynthesis protein 

GBAA5314 tyrS-2 tyrosyl-tRNA synthetase 

 

Table 7.22: B. anthracis cluster 102 elaboration genes 

Locus Name Function 

GBAA0558 - methyl-accepting chemotaxis protein 

GBAA0890 - alginate o-acetyltransferase, putative 

GBAA0891 - hypothetical protein 

GBAA1449 - peptidase, m23/m37 family 

GBAA1657 - hypothetical protein 

GBAA1663 - hypothetical protein 

GBAA1665 cheR chemotaxis protein methyltransferase cher 

GBAA1666 - hypothetical protein 

GBAA1668 - hypothetical protein 

GBAA1671 - flagellar hook-associated protein 

GBAA1684 - hypothetical protein 

GBAA1868 - hydrolase, alpha/beta fold family 
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GBAA2240 - 1-acyl-sn-glycerol-3-phosphate acyltransferase, putative 

GBAA2383 - hypothetical protein 

GBAA2613 - hypothetical protein 

GBAA2614 - hypothetical protein 

GBAA2839 - hypothetical protein 

GBAA3893 - cell wall hydrolase, putative 

GBAA4747 - dna-binding protein 

GBAA4748 - flagellar motor protein 

GBAA5317 - methyl-accepting chemotaxis protein 

GBAA5318 - endonuclease/exonuclease/phosphatase family 

7.1.1.2.3.2 L. monocytogenes cluster 102 

 



 

 

 

360 

Figure 7.12: L. monocytogenes cluster 102 image (post-elaboration) 

 

Table 7.23: L. monocytogenes cluster 102 core genes 

Locus Name Function 

LMO0678 fliR flagellar biosynthesis protein FliR 

LMO0696 flgD flagellar basal body rod modification protein 

LMO0697 flgE flagellar hook protein FlgE 

LMO0703 - hypothetical protein 

LMO0705 flgK flagellar hook-associated protein FlgK 

LMO0707 fliD flagellar capping protein 

LMO0708 - hypothetical protein 

LMO0710 flgB flagellar basal body rod protein FlgB 

LMO0711 flgC flagellar basal body rod protein FlgC 
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LMO0712 fliE flagellar hook-basal body protein FliE 

LMO0714 fliG flagellar motor switch protein G 

LMO0715 fliH flagellar assembly protein H 

LMO0716 fliI flagellum-specific ATP synthase 

LMO0717 - hypothetical protein 

LMO1598 tyrS tyrosyl-tRNA synthetase 

 

Table 7.24: L. monocytogenes cluster 102 elaboration genes 

Locus Name Function 

LMO0679 flhB flagellar biosynthesis protein FlhB 

LMO0681 - flagellar biosynthesis regulator FlhF 

LMO0682 flgG flagellar basal body rod protein FlgG 

LMO0683 - hypothetical protein 

LMO0686 motB hypothetical protein 

LMO0688 - hypothetical protein 

LMO0689 - hypothetical protein 

LMO0691 cheY Chemotaxis response regulator CheY 

LMO0695 - hypothetical protein 

LMO0699 fliM flagellar motor switch protein FliM 

LMO0700 - flagellar motor switch protein 

LMO0701 - hypothetical protein 

LMO0702 - hypothetical protein 

LMO0704 - hypothetical protein 

LMO0706 flgL flagellar hook-associated protein FlgL 

LMO0709 - hypothetical protein 
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LMO0718 - hypothetical protein 

LMO1239 - hypothetical protein 

LMO1492 - hypothetical protein 

LMO1708 - hypothetical protein 

LMO2242 - hypothetical protein 

LMO2346 - hypothetical protein 

LMO2428 - hypothetical protein 

LMO2537 - hypothetical protein 

LMO2669 - hypothetical protein 

 

7.2 Additional figures and tables from global validation 

7.2.1 (bi)cluster coherence metric figures 

7.2.1.1 Residuals 

In each of the plots shown below are the distributions of the residuals from all 

methods considered by this study for a given pairing.  Next to each distribution, in 

gray, are residuals from randomly shuffled (bi)clusters that match the size distribution 

for each method.  Explanations of the method name abbreviations can be found in 

Table 3.1. 



 

 

 

363 

7.2.1.1.1 Figures for the Gram-positive triplet 

 

Figure 7.13: Residuals from the B. subtilis – B. anthracis pairing.   
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Figure 7.14: Residuals from the B. subtilis – L. monocytogenes pairing 

  

 

 

Figure 7.15: Residuals from the B. anthracis – L. monocytogenes pairing 
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7.2.1.1.2 Figures for the Gram-negative triplet 

 

Figure 7.16: Residuals from the E. coli – S. typhimurium pairing. 
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Figure 7.17: Residuals from the E. coli – V. Cholerae pairing. 
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Figure 7.18: Residuals from the S. typhimurium – V. cholerae pairing 

 

7.2.1.2 Average pairwise correlations 

In each of the plots shown below are the distributions of the distributions of the mean 

correlations from all methods considered by this study for a given pairing.  Next to 

each distribution, in gray, are residuals from randomly shuffled (bi)clusters that match 

the size distribution for each method.  Explanations of the method name abbreviations 

can be found in Table 3.1. 
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7.2.1.2.1 Figures for the Gram-positive triplet 

 

Figure 7.19: Mean correlations from the B. subtilis – B. anthracis pairing. 

 

 

Figure 7.20: Mean correlations from the B. subtilis – L. monocytogenes pairing.   
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Figure 7.21: Mean correlations from the B. anthracis – L. monocytogenes pairing.   
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7.2.1.2.2 Figures for the Gram-negative triplet 

 

Figure 7.22: Mean correlations from the E. coli – S. typhimurium pairing.   
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Figure 7.23: Mean correlations from the E. coli – V. cholerae pairing.   

 

 

Figure 7.24: Mean correlations from the S. typhimurium – V. cholerae pairing.   
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7.2.1.3 Network Association p-values 

In each of the plots shown below are the distributions of the distributions of the 

network association p-values (-log10) from all methods considered by this study for a 

given pairing.  Explanations of the method name abbreviations can be found in Table 

3.1. 

7.2.1.3.1 Figures for the Gram-positive triplet 

 

Figure 7.25: Network Association p-values from the B. subtilis – B. anthracis pairing. 
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Figure 7.26: Network Association p-values from the B. subtilis – L. monocytogenes pairing 
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Figure 7.27: Network Association p-values from the B. anthracis – L. monocytogenes pairing. 

7.2.1.3.2 Figures for the Gram-negative triplet 

 

Figure 7.28: Network Association p-values from the E. coli – S. typhimurium pairing. 
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Figure 7.29: Network Association p-values from the E. coli – V. cholerae pairing 
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Figure 7.30: Network Association p-values from the S. typhimurium – V. cholerae pairing. 

 

7.2.1.4 Motif E-values 

In each of the plots shown below are the distributions of the motif E-values (-log10) 

from all methods considered by this study for a given pairing.  Explanations of the 

method name abbreviations can be found in Table 3.1. 
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7.2.1.4.1 Figures for the Gram-positive triplet 

 

Figure 7.31: Motif E-values from the B. subtilis-B. anthracis pairing.   

 

 

Figure 7.32: Motif E-values from the B. subtilis-L. monocytogenes pairing 
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Figure 7.33: Motif E-values from the B. anthracis-L. monocytogenes pairing.   
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7.2.1.4.2 Figures for the Gram-negative triplet 

 

Figure 7.34: Motif E-values from the E. coli – S. typhimurium pairing 
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Figure 7.35: Motif E-values from the E. coli – V. cholerae pairing.   

 

 

Figure 7.36: Motif E-values from the S. typhimurium – V. cholerae pairing.   
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7.2.1.5 Sequence p-values 

In each of the plots shown below are the distributions of the sequence p-values (-log10) 

from all methods considered by this study for a given pairing.  Explanations of the 

method name abbreviations can be found in Table 3.1. 

7.2.1.5.1 Figures for the Gram-positive triplet 

 

Figure 7.37: Sequence p-values from the B. subtilis-B. anthracis pairing.   
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Figure 7.38: Sequence p-values from the B. subtilis-L. monocytogenes pairing.   

 

 

Figure 7.39: Sequence p-values from the B. anthracis-L. monocytogenes pairing.   
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7.2.1.5.2 Figures for the Gram-negative triplet 

 

Figure 7.40: Sequence p-values from the E. coli – S. typhimurium pairing.   
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Figure 7.41: Sequence p-values from the E. coli – V. cholerae pairing.   

 

 

Figure 7.42: Sequence p-values from the S. typhimurium – V. cholerae pairing.   
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7.2.2 Additional size distribution, overlap and coverage figures 

7.2.2.1 Number of genes 

In each of the plots shown below are the distributions of the number of genes from all 

methods considered by this study for a given pairing.  Explanations of the method 

name abbreviations can be found in Table 3.1. 

7.2.2.1.1 Figures for the Gram-positive triplet 

 

Figure 7.43: Number of genes from the B. subtilis – B. anthracis pairing.   
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Figure 7.44: Number of genes from the B. subtilis – L. monocytogenes pairing 
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Figure 7.45: Number of genes from the B. anthracis – L. monocytogenes pairing 
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7.2.2.1.2 Figures for the Gram-negative triplet 

 

Figure 7.46: Number of genes from the E. coli – S. typhimurium pairing.   
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Figure 7.47: Number of genes from the E. coli – V. cholerae pairing 
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Figure 7.48: Number of genes from the S. typhimurium – V. cholerae pairing 

7.2.2.2 Number of conditions 

In each of the plots shown below are the distributions of the number of conditions 

from all methods considered by this study for a given pairing.  Explanations of the 

method name abbreviations can be found in Table 3.1. 
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7.2.2.2.1 Figures for the Gram-positive triplet 

 

Figure 7.49: Number of conditions from the B. subtilis – B. anthracis pairing.   
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Figure 7.50: Number of conditions from the B. subtilis – L. monocytogenes pairing 
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Figure 7.51: Number of conditions from the B. anthracis – L. monocytogenes pairing. 

7.2.2.2.2 Figures for the Gram-negative triplet 

 

Figure 7.52: Number of conditions from the E. coli – S. typhimurium pairing.   
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Figure 7.53: Number of conditions from the E. coli – V. cholerae pairing 
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Figure 7.54: Number of conditions from the S. typhimurium – V. cholerae pairing. 

7.2.2.3 Coverage (element-wise) 

In each of the plots shown below are the distributions of the coverages (matrix 

element-wise) from all methods considered by this study for a given pairing.  

Explanations of the method name abbreviations can be found in Table 3.1. 
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7.2.2.3.1 Figures for the Gram-positive triplet 

 

Figure 7.55: Coverages (matrix element-wise) from the B. subtilis – B. anthracis pairing.   

 

Figure 7.56: Coverages (matrix element-wise) from the B. subtilis – L. monocytogenes pairing. 
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Figure 7.57: Coverages (matrix element-wise) from the B. anthracis – L. monocytogenes pairing.   
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7.2.2.3.2 Figures for the Gram-negative triplet 

 

Figure 7.58: Coverages (matrix element-wise) from the E. coli – S. typhimurium pairing.   
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Figure 7.59: Coverages (matrix element-wise) from the E. coli – V. cholerae pairing. 

 

Figure 7.60: Coverages (matrix element-wise) from the S. typhimurium – V. cholerae pairing.   
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7.2.2.4 Coverage (gene-wise) 

In each of the plots shown below are the distributions of the coverages (gene-wise) 

from all methods considered by this study for a given pairing.  Explanations of the 

method name abbreviations can be found in Table 3.1. 

7.2.2.4.1 Figures for the Gram-positive triplet 

 

Figure 7.61: Coverages (gene-wise) from the B. subtilis – B. anthracis pairing.   
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Figure 7.62: Coverages (gene-wise) from the B. subtilis – L. monocytogenes pairing. 
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Figure 7.63: Coverages (gene-wise) from the B. anthracis – L. monocytogenes pairing. 

7.2.2.4.2 Figures for the Gram-negative triplet 

 

Figure 7.64: Coverages (gene-wise) from the E. coli – S. typhimurium pairing.   
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Figure 7.65: Coverages (gene-wise) from the E. coli – V. cholerae pairing. 
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Figure 7.66: Coverages (gene-wise) from the S. typhimurium – V. cholerae pairing. 

7.2.2.5 Overlap (element-wise) 

In each of the plots shown below are the distributions of the overlaps (matrix element-

wise) from all methods considered by this study for a given pairing.  Explanations of 

the method name abbreviations can be found in Table 3.1. 
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7.2.2.5.1 Figures for the Gram-positive triplet 

 

Figure 7.67: Overlaps (matrix element-wise) from the B. subtilis – B. anthracis pairing.   

 

Figure 7.68: Overlaps (matrix element-wise) from the B. subtilis – L. monocytogenes pairing.  
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Figure 7.69: Overlaps (matrix element-wise) from the B. anthracis – L. monocytogenes pairing. 

7.2.2.5.2 Figures for the Gram-negative triplet 

 

Figure 7.70: Overlaps (matrix element-wise) from the E. coli – S. typhimurium pairing.   
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Figure 7.71: Overlaps (matrix element-wise) from the E. coli – V. cholerae pairing.  
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Figure 7.72: Overlaps (matrix element-wise) from the S. typhimurium – V. cholerae pairing. 

7.2.2.6 Overlap (gene-wise) 

In each of the plots shown below are the distributions of the Overlaps (gene-wise) 

from all methods considered by this study for the B. subtilis- B. anthracis pairing.  

Explanations of the method name abbreviations can be found in Table 3.1. 
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7.2.2.6.1 Figures for the Gram-positive triplet 

 

Figure 7.73: Overlaps (gene-wise) from the B. subtilis – B. anthracis pairing.   

 

Figure 7.74: Overlaps (gene-wise) from the B. subtilis – L. monocytogenes pairing.   
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Figure 7.75: Overlaps (gene-wise) from the B. anthracis – L. monocytogenes pairing. 
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7.2.2.6.2 Figures for the Gram-negative triplet 

 

Figure 7.76: Overlaps (gene-wise) from the E. coli – S. typhimurium pairing.   
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Figure 7.77: Overlaps (gene-wise) from the E. coli – V. cholerae pairing.   
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Figure 7.78: Overlaps (gene-wise) from the S. typhimurium – V. cholerae pairing. 

 

 

7.2.3 Comparison of the (bi)cluster coherence metrics 

7.2.3.1 Comparisons with FD-MScM 

7.2.3.1.1 Residuals 

In the tables below, we present a comparison of the residuals of the results 

from MScM (full data) with all other relevant methods for all 3 pairings of a given 

triplet that‘s examined.  In the comparisons, we compare both MScM steps to the 

other methods.  Displayed are the means for each method and/or step compared, as 
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well as the Wilcoxon‘s non-parametric rank test (2-sided) comparing their 

distributions.  We use ‗dist.‘ as an abbreviation for distribution, and the ―dist1 vs. 

dist2‖ column to represent both the distributions being compared and their order in the 

table.  Therefore, for example, the FD-MScM-SH vs. FD-SSCM row displays the 

comparison of the distributions of residuals from the shared MS cMonkey results with 

those from the SS cMonkey, for the appropriate organism, with the FD-MScM-SH as 

dist1 (and FD-SSCM as dist2).  In addition, we color-code the Wilcoxon’s 2-sided 

column for a given organism to indicate whether the test indicated the distributions 

were the same or different, and if different, the distribution with the better overall 

score, as determined by the metric (Residuals).  In this scheme, we use green to 

indicate dist1 had a statistically better score, red if dist2, and yellow to indicate a tie.  

Therefore, as the MScM results are always the dist1 in these comparisons, this color 

scheme allows one to quickly and easily determine the overall frequency with which 

MScM did as well or better than the other methods.  In the case of the Gram-positive 

triplet, these results illustrate that in 71 of the 92 comparisons (77.2%) MScM step did 

as well or better than its competitors.  Similarly, in 47 of the 92 comparisons (51%) 

for the Gram-negative triplet, MScM did as well or better than its competitors. 

7.2.3.1.1.1 Gram-positive triplet 

Table 7.25: Comparison of bicluster residuals from the full data methods considered by this study 

for all pairings of B. subtilis, B. anthracis and L. monocytogenes.   

B. subtilis - B. anthracis pairing 
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  B. subtilis   B. anthracis 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

FD-MScM-SH vs. 

FD-SSCM 

0.51 ± 0.08 0.001 0.49 ± 0.13  0.30 ± 0.09 0.456 0.31 ± 0.12 

FD-MScM-SH vs. 

QUBIC 

0.51 ± 0.08 3.69E-37 0.87 ± 0.21  0.30 ± 0.09 1.08E-50 1.51 ± 0.29 

FD-MScM-SH vs. 

FD-COAL 

0.51 ± 0.08 9.94E-44 0.80 ± 0.25  0.30 ± 0.09 4.77E-38 0.58 ± 0.17 

FD-MScM-EL vs. 

FD-SSCM 

0.49 ± 0.09 0.273 0.49 ± 0.13  0.32 ± 0.09 0.036 0.31 ± 0.12 

FD-MScM-EL vs. 

QUBIC 

0.49 ± 0.09 5.60E-38 0.87 ± 0.21  0.32 ± 0.09 1.08E-50 1.51 ± 0.29 

FD-MScM-EL vs. 

FD-COAL 

0.49 ± 0.09 6.10E-47 0.80 ± 0.25  0.32 ± 0.09 8.43E-36 0.58 ± 0.17 

FD-MScM-SH vs. 

MSISA-P 

0.51 ± 0.08 2.62E-17 0.98 ± 0.39  0.30 ± 0.09 1.11E-22 1.97 ± 0.94 

FD-MScM-SH vs. 

MSISA-R 

0.51 ± 0.08 5.99E-20 1.11 ± 0.41  0.30 ± 0.09 1.11E-22 1.58 ± 0.38 

FD-MScM-SH vs. 

MSKM-SH 

0.51 ± 0.08 1.52E-25 0.41 ± 0.07  0.30 ± 0.09 7.05E-38 0.53 ± 0.12 

FD-MScM-SH vs. 

MSKM-EL 

0.51 ± 0.08 4.31E-23 0.42 ± 0.06  0.30 ± 0.09 2.63E-33 0.48 ± 0.11 

FD-MScM-SH vs. 

BMSKM-SH 

0.51 ± 0.08 2.68E-11 0.45 ± 0.07  0.30 ± 0.09 5.36E-16 0.38 ± 0.07 
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FD-MScM-SH vs. 

BMSKM-EL 

0.51 ± 0.08 1.84E-11 0.45 ± 0.06  0.30 ± 0.09 4.79E-18 0.39 ± 0.07 

FD-MScM-EL vs. 

MSISA-P 

0.49 ± 0.09 9.21E-18 0.98 ± 0.39  0.32 ± 0.09 1.11E-22 1.97 ± 0.94 

FD-MScM-EL vs. 

MSISA-R 

0.49 ± 0.09 5.02E-20 1.11 ± 0.41  0.32 ± 0.09 1.14E-22 1.58 ± 0.38 

FD-MScM-EL vs. 

MSKM-SH 

0.49 ± 0.09 1.33E-17 0.41 ± 0.07  0.32 ± 0.09 2.40E-35 0.53 ± 0.12 

FD-MScM-EL vs. 

MSKM-EL 

0.49 ± 0.09 4.38E-15 0.42 ± 0.06  0.32 ± 0.09 2.41E-29 0.48 ± 0.11 

FD-MScM-EL vs. 

BMSKM-SH 

0.49 ± 0.09 6.91E-05 0.45 ± 0.07  0.32 ± 0.09 3.02E-11 0.38 ± 0.07 

FD-MScM-EL vs. 

BMSKM-EL 

0.49 ± 0.09 1.30E-04 0.45 ± 0.06  0.32 ± 0.09 3.34E-13 0.39 ± 0.07 

        

        

B. subtilis - L. monocytogenes pairing 

  B. subtilis   L. monocytogenes 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's 2-

sided 

dist2 mean 

(red) 

FD-MScM-SH vs. 

FD-SSCM 

0.52 ± 0.08 2.82E-04 0.49 ± 0.13  0.34 ± 0.12 0.006 0.40 ± 0.18 

FD-MScM-SH vs. 

QUBIC 

0.52 ± 0.08 1.31E-36 0.87 ± 0.21  0.34 ± 0.12 5.94E-37 1.81 ± 0.85 
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FD-MScM-SH vs. 

FD-COAL 

0.52 ± 0.08 3.16E-42 0.80 ± 0.25  0.34 ± 0.12 1.91E-08 1.70 ± 3.24 

FD-MScM-EL vs. 

FD-SSCM 

0.50 ± 0.10 0.088 0.49 ± 0.13  0.34 ± 0.12 0.004 0.40 ± 0.18 

FD-MScM-EL vs. 

QUBIC 

0.50 ± 0.10 2.05E-36 0.87 ± 0.21  0.34 ± 0.12 3.99E-37 1.81 ± 0.85 

FD-MScM-EL vs. 

FD-COAL 

0.50 ± 0.10 1.35E-44 0.80 ± 0.25  0.34 ± 0.12 1.11E-08 1.70 ± 3.24 

FD-MScM-SH vs. 

MSISA-P 

0.52 ± 0.08 1.16E-09 0.87 ± 0.34  0.34 ± 0.12 3.21E-19 1.59 ± 0.52 

FD-MScM-SH vs. 

MSISA-R 

0.52 ± 0.08 1.90E-18 1.11 ± 0.42  0.34 ± 0.12 2.30E-21 1.31 ± 0.34 

FD-MScM-SH vs. 

MSKM-SH 

0.52 ± 0.08 1.07E-31 0.40 ± 0.07  0.34 ± 0.12 3.63E-22 0.50 ± 0.12 

FD-MScM-SH vs. 

MSKM-EL 

0.52 ± 0.08 1.07E-25 0.42 ± 0.06  0.34 ± 0.12 4.44E-19 0.48 ± 0.11 

FD-MScM-SH vs. 

BMSKM-SH 

0.52 ± 0.08 2.52E-19 0.43 ± 0.07  0.34 ± 0.12 1.37E-10 0.42 ± 0.09 

FD-MScM-SH vs. 

BMSKM-EL 

0.52 ± 0.08 3.47E-17 0.44 ± 0.06  0.34 ± 0.12 2.35E-11 0.42 ± 0.09 

FD-MScM-EL vs. 

MSISA-P 

0.50 ± 0.10 8.82E-10 0.87 ± 0.34  0.34 ± 0.12 3.21E-19 1.59 ± 0.52 

FD-MScM-EL vs. 

MSISA-R 

0.50 ± 0.10 2.99E-18 1.11 ± 0.42  0.34 ± 0.12 2.30E-21 1.31 ± 0.34 



 

 

 

419 

FD-MScM-EL vs. 

MSKM-SH 

0.50 ± 0.10 2.23E-25 0.40 ± 0.07  0.34 ± 0.12 1.17E-22 0.50 ± 0.12 

FD-MScM-EL vs. 

MSKM-EL 

0.50 ± 0.10 1.13E-18 0.42 ± 0.06  0.34 ± 0.12 1.32E-19 0.48 ± 0.11 

FD-MScM-EL vs. 

BMSKM-SH 

0.50 ± 0.10 6.56E-13 0.43 ± 0.07  0.34 ± 0.12 7.95E-11 0.42 ± 0.09 

FD-MScM-EL vs. 

BMSKM-EL 

0.50 ± 0.10 8.10E-11 0.44 ± 0.06  0.34 ± 0.12 8.42E-12 0.42 ± 0.09 

        

        

B. anthracis - L. monocytogenes pairing 

 B. anthracis  L. monocytogenes 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

FD-MScM-SH vs. 

FD-SSCM 

0.33 ± 0.10 0.004 0.31 ± 0.12  0.36 ± 0.14 0.097 0.40 ± 0.18 

FD-MScM-SH vs. 

QUBIC 

0.33 ± 0.10 2.30E-50 1.51 ± 0.29  0.36 ± 0.14 4.38E-35 1.81 ± 0.85 

FD-MScM-SH vs. 

FD-COAL 

0.33 ± 0.10 1.34E-33 0.58 ± 0.17  0.36 ± 0.14 1.83E-06 1.70 ± 3.24 

FD-MScM-EL vs. 

FD-SSCM 

0.36 ± 0.11 2.95E-07 0.31 ± 0.12  0.36 ± 0.13 0.049 0.40 ± 0.18 

FD-MScM-EL vs. 

QUBIC 

0.36 ± 0.11 2.30E-50 1.51 ± 0.29  0.36 ± 0.13 8.30E-36 1.81 ± 0.85 
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FD-MScM-EL vs. 

FD-COAL 

0.36 ± 0.11 8.77E-28 0.58 ± 0.17  0.36 ± 0.13 4.48E-07 1.70 ± 3.24 

FD-MScM-SH vs. 

MSKM-SH 

0.33 ± 0.10 2.89E-11 0.40 ± 0.08  0.36 ± 0.14 2.64E-10 0.43 ± 0.08 

FD-MScM-SH vs. 

MSKM-EL 

0.33 ± 0.10 3.35E-11 0.39 ± 0.07  0.36 ± 0.14 3.47E-09 0.43 ± 0.08 

FD-MScM-EL vs. 

MSKM-SH 

0.36 ± 0.11 5.90E-05 0.40 ± 0.08  0.36 ± 0.13 8.73E-12 0.43 ± 0.08 

FD-MScM-EL vs. 

MSKM-EL 

0.36 ± 0.11 9.70E-05 0.39 ± 0.07  0.36 ± 0.13 1.27E-10 0.43 ± 0.08 

7.2.3.1.1.2 Gram-negative triplet  

Table 7.26: Comparison of bicluster residuals from the full data methods considered by this study 

for all pairings of E. coli, S. typhimurium and V. cholerae.   

E. coli – S. typhimurium pairing    

  

E. coli 

  

S. typhimurium 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon’s  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon’s 

2-sided 

dist2 mean 

(red) 

FD-MScM-SH vs. 

FD-SSCM 0.45 ± 0.09 4.31E-08 0.50 ± 0.10 

 

0.57 ± 0.07 1.34E-23 0.46 ± 0.09 

FD-MScM-SH vs. 

QUBIC 0.45 ± 0.09 1.07E-23 0.29 ± 0.13 

 

0.57 ± 0.07 6.48E-07 0.58 ± 0.54 

FD-MScM-SH vs. 

FD-COAL 0.45 ± 0.09 1.87E-13 0.61 ± 0.34 

 

0.57 ± 0.07 1.29E-12 0.67 ± 0.15 
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FD-MScM-EL vs. 

FD-SSCM 0.47 ± 0.10 2.69E-04 0.50 ± 0.10 

 

0.60 ± 0.08 2.38E-30 0.46 ± 0.09 

FD-MScM-EL vs. 

QUBIC 0.47 ± 0.10 2.73E-26 0.29 ± 0.13 

 

0.60 ± 0.08 1.82E-08 0.58 ± 0.54 

FD-MScM-EL vs. 

FD-COAL 0.47 ± 0.10 2.83E-10 0.61 ± 0.34 

 

0.60 ± 0.08 6.21E-05 0.67 ± 0.15 

FD-MScM-SH vs. 

MSISA-P 0.45 ± 0.09 9.12E-18 0.78 ± 0.30 

 

0.57 ± 0.07 6.90E-09 0.71 ± 0.20 

FD-MScM-SH vs. 

MSISA-R 0.45 ± 0.09 3.09E-28 0.95 ± 0.34 

 

0.57 ± 0.07 8.53E-19 0.83 ± 0.36 

FD-MScM-SH vs. 

MSKM-SH 0.45 ± 0.09 0.93 0.45 ± 0.07 

 

0.57 ± 0.07 8.20E-03 0.58 ± 0.05 

FD-MScM-SH vs. 

MSKM-EL 0.45 ± 0.09 0.27 0.46 ± 0.07 

 

0.57 ± 0.07 0.10 0.57 ± 0.05 

FD-MScM-SH vs. 

BMSKM-SH 0.45 ± 0.09 0.01 0.47 ± 0.07 

 

0.57 ± 0.07 1.90E-04 0.54 ± 0.04 

FD-MScM-SH vs. 

BMSKM-EL 0.45 ± 0.09 8.76E-03 0.48 ± 0.07 

 

0.57 ± 0.07 6.50E-05 0.54 ± 0.04 

FD-MScM-EL vs. 

MSISA-P 0.47 ± 0.10 9.45E-17 0.78 ± 0.30 

 

0.60 ± 0.08 3.93E-06 0.71 ± 0.20 

FD-MScM-EL vs. 

MSISA-R 0.47 ± 0.10 7.56E-28 0.95 ± 0.34 

 

0.60 ± 0.08 2.07E-15 0.83 ± 0.36 

FD-MScM-EL vs. 

MSKM-SH 0.47 ± 0.10 5.58E-02 0.45 ± 0.07 

 

0.60 ± 0.08 6.56E-03 0.58 ± 0.05 
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FD-MScM-EL vs. 

MSKM-EL 0.47 ± 0.10 0.55 0.46 ± 0.07 

 

0.60 ± 0.08 3.84E-04 0.57 ± 0.05 

FD-MScM-EL vs. 

BMSKM-SH 0.47 ± 0.10 0.36 0.47 ± 0.07 

 

0.60 ± 0.08 1.91E-15 0.54 ± 0.04 

FD-MScM-EL vs. 

BMSKM-EL 0.47 ± 0.10 0.34 0.48 ± 0.07 

 

0.60 ± 0.08 5.04E-16 0.54 ± 0.04 

        

E. coli - V. cholerae pairing 

  

E. coli 

   

V. cholerae 

 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon’s  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon’s 

2-sided 

dist2 mean 

(red) 

FD-MScM-SH vs. 

FD-SSCM 0.44 ± 0.08 2.78E-12 0.50 ± 0.10 

 

0.58 ± 0.08 1.97E-21 0.50 ± 0.29 

FD-MScM-SH vs. 

QUBIC 0.44 ± 0.08 4.46E-23 0.29 ± 0.13 

 

0.58 ± 0.08 7.06E-33 0.33 ± 0.19 

FD-MScM-SH vs. 

FD-COAL 0.44 ± 0.08 1.12E-16 0.61 ± 0.34 

 

0.58 ± 0.08 3.86E-08 0.73 ± 0.35 

FD-MScM-EL vs. 

FD-SSCM 0.47 ± 0.09 4.65E-04 0.50 ± 0.10 

 

0.60 ± 0.09 5.10E-27 0.50 ± 0.29 

FD-MScM-EL vs. 

QUBIC 0.47 ± 0.09 2.16E-27 0.29 ± 0.13 

 

0.60 ± 0.09 1.01E-34 0.33 ± 0.19 

FD-MScM-EL vs. 

FD-COAL 0.47 ± 0.09 9.88E-10 0.61 ± 0.34 

 

0.60 ± 0.09 5.78E-05 0.73 ± 0.35 

FD-MScM-SH vs. 

MSISA-P 0.44 ± 0.08 9.44E-11 0.76 ± 0.30 

 

0.58 ± 0.08 3.30E-07 0.75 ± 0.28 
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FD-MScM-SH vs. 

MSISA-R 0.44 ± 0.08 1.31E-20 0.96 ± 0.35 

 

0.58 ± 0.08 1.51E-18 1.06 ± 0.19 

FD-MScM-SH vs. 

MSKM-SH 0.44 ± 0.08 8.13E-03 0.45 ± 0.09 

 

0.58 ± 0.08 9.43E-12 0.50 ± 0.09 

FD-MScM-SH vs. 

MSKM-EL 0.44 ± 0.08 1.97E-04 0.47 ± 0.08 

 

0.58 ± 0.08 9.89E-12 0.50 ± 0.08 

FD-MScM-EL vs. 

MSISA-P 0.47 ± 0.09 3.16E-09 0.76 ± 0.30 

 

0.60 ± 0.09 2.59E-05 0.75 ± 0.28 

FD-MScM-EL vs. 

MSISA-R 0.47 ± 0.09 5.45E-20 0.96 ± 0.35 

 

0.60 ± 0.09 3.60E-18 1.06 ± 0.19 

FD-MScM-EL vs. 

MSKM-SH 0.47 ± 0.09 0.52 0.45 ± 0.09 

 

0.60 ± 0.09 5.67E-20 0.50 ± 0.09 

FD-MScM-EL vs. 

MSKM-EL 0.47 ± 0.09 0.70 0.47 ± 0.08 

 

0.60 ± 0.09 1.07E-19 0.50 ± 0.08 

        

        

S. typhimurium - V. cholerae pairing 

 

S. typhimurium 

  

V. cholerae 

 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon’s  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon’s 

2-sided 

dist2 mean 

(red) 

FD-MScM-SH vs. 

FD-SSCM 0.57 ± 0.06 5.97E-24 0.46 ± 0.09 

 

0.60 ± 0.09 2.59E-26 0.50 ± 0.29 

FD-MScM-SH vs. 

QUBIC 0.57 ± 0.06 6.44E-07 0.58 ± 0.54 

 

0.60 ± 0.09 6.33E-35 0.33 ± 0.19 
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FD-MScM-SH vs. 

FD-COAL 0.57 ± 0.06 3.27E-12 0.67 ± 0.15 

 

0.60 ± 0.09 3.22E-05 0.73 ± 0.35 

FD-MScM-EL vs. 

FD-SSCM 0.60 ± 0.07 1.77E-31 0.46 ± 0.09 

 

0.62 ± 0.08 8.65E-30 0.50 ± 0.29 

FD-MScM-EL vs. 

QUBIC 0.60 ± 0.07 2.74E-08 0.58 ± 0.54 

 

0.62 ± 0.08 4.67E-36 0.33 ± 0.19 

FD-MScM-EL vs. 

FD-COAL 0.60 ± 0.07 1.12E-05 0.67 ± 0.15 

 

0.62 ± 0.08 8.74E-04 0.73 ± 0.35 

FD-MScM-SH vs. 

MSKM-SH 0.57 ± 0.06 0.20 0.56 ± 0.05 

 

0.60 ± 0.09 6.76E-30 0.47 ± 0.07 

FD-MScM-SH vs. 

MSKM-EL 0.57 ± 0.06 1.89E-02 0.55 ± 0.05 

 

0.60 ± 0.09 1.97E-23 0.49 ± 0.07 

FD-MScM-SH vs. 

BMSKM-SH 0.57 ± 0.06 5.35E-11 0.52 ± 0.04 

 

0.60 ± 0.09 7.93E-22 0.50 ± 0.07 

FD-MScM-SH vs. 

BMSKM-EL 0.57 ± 0.06 6.33E-09 0.53 ± 0.04 

 

0.60 ± 0.09 1.66E-19 0.51 ± 0.06 

FD-MScM-EL vs. 

MSKM-SH 0.60 ± 0.07 2.55E-08 0.56 ± 0.05 

 

0.62 ± 0.08 2.60E-34 0.47 ± 0.07 

FD-MScM-EL vs. 

MSKM-EL 0.60 ± 0.07 1.56E-10 0.55 ± 0.05 

 

0.62 ± 0.08 5.31E-29 0.49 ± 0.07 

FD-MScM-EL vs. 

BMSKM-SH 0.60 ± 0.07 4.93E-23 0.52 ± 0.04 

 

0.62 ± 0.08 3.92E-27 0.50 ± 0.07 

FD-MScM-EL vs. 

BMSKM-EL 0.60 ± 0.07 1.62E-20 0.53 ± 0.04 

 

0.62 ± 0.08 5.33E-25 0.51 ± 0.06 
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7.2.3.1.2 Mean correlations 

A comparison of the mean correlations of the results from MScM (full data) with all 

other relevant methods for all 3 pairings of a given triplet that‘s examined.  In the 

comparisons, we compare both MScM steps to the other methods.  Displayed are the 

means for each method and/or step compared, as well as the Wilcoxon‘s non-

parametric rank test (2-sided) comparing their distributions.  We direct the reader to 

the description for section 7.2.3.1.1 for instructions on how to interpret the table.  In 

this case, these results illustrate that in 92 of the 92 comparisons (100%) for the Gram-

positive triplet MScM step did as well or better than its competitors.  Similarly, in 65 

of the 92 comparisons (70.7%) for the Gram-negative triplet, MScM did as well or 

better than its competitors. 

7.2.3.1.2.1 Gram-positive triplet 

Table 7.27: Comparison of bicluster mean correlations from the full data methods considered by 

this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes.   

B. subtilis - B. anthracis pairing 

  B. subtilis   B. anthracis 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon's 

2-sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 0.59 ± 0.11 0.013 0.56 ± 0.14  0.85 ± 0.09 0.351 0.82 ± 0.15 

FD-MScM-SH 

vs. QUBIC 0.59 ± 0.11 7.33E-28 0.36 ± 0.19  0.85 ± 0.09 1.85E-50 0.49 ± 0.05 
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FD-MScM-SH 

vs. FD-COAL 0.59 ± 0.11 0.446 0.59 ± 0.15  0.85 ± 0.09 4.87E-35 0.62 ± 0.13 

FD-MScM-EL 

vs. FD-SSCM 0.61 ± 0.11 3.11E-04 0.56 ± 0.14  0.84 ± 0.09 0.760 0.82 ± 0.15 

FD-MScM-EL 

vs. QUBIC 0.61 ± 0.11 5.14E-29 0.36 ± 0.19  0.84 ± 0.09 1.37E-50 0.49 ± 0.05 

FD-MScM-EL 

vs. FD-COAL 0.61 ± 0.11 0.067 0.59 ± 0.15  0.84 ± 0.09 1.89E-33 0.62 ± 0.13 

FD-MScM-SH 

vs. MSISA-P 0.59 ± 0.11 0.963 0.60 ± 0.14  0.85 ± 0.09 9.59E-22 0.56 ± 0.07 

FD-MScM-SH 

vs. MSISA-R 0.59 ± 0.11 0.041 0.55 ± 0.13  0.85 ± 0.09 1.38E-22 0.51 ± 0.03 

FD-MScM-SH 

vs. MSKM-SH 0.59 ± 0.11 0.340 0.58 ± 0.11  0.85 ± 0.09 1.49E-43 0.52 ± 0.14 

FD-MScM-SH 

vs. MSKM-EL 0.59 ± 0.11 0.020 0.56 ± 0.11  0.85 ± 0.09 1.33E-40 0.58 ± 0.15 

FD-MScM-SH 

vs. BMSKM-SH 0.59 ± 0.11 1.11E-11 0.49 ± 0.13  0.85 ± 0.09 5.18E-25 0.72 ± 0.10 

FD-MScM-SH 

vs. BMSKM-EL 0.59 ± 0.11 1.17E-10 0.50 ± 0.12  0.85 ± 0.09 9.12E-26 0.71 ± 0.10 

FD-MScM-EL 

vs. MSISA-P 0.61 ± 0.11 0.500 0.60 ± 0.14  0.84 ± 0.09 7.49E-22 0.56 ± 0.07 

FD-MScM-EL 

vs. MSISA-R 0.61 ± 0.11 0.009 0.55 ± 0.13  0.84 ± 0.09 1.18E-22 0.51 ± 0.03 
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FD-MScM-EL 

vs. MSKM-SH 0.61 ± 0.11 0.035 0.58 ± 0.11  0.84 ± 0.09 4.07E-43 0.52 ± 0.14 

FD-MScM-EL 

vs. MSKM-EL 0.61 ± 0.11 0.001 0.56 ± 0.11  0.84 ± 0.09 1.01E-39 0.58 ± 0.15 

FD-MScM-EL 

vs. BMSKM-SH 0.61 ± 0.11 2.10E-14 0.49 ± 0.13  0.84 ± 0.09 7.87E-23 0.72 ± 0.10 

FD-MScM-EL 

vs. BMSKM-EL 0.61 ± 0.11 3.51E-13 0.50 ± 0.12  0.84 ± 0.09 1.31E-23 0.71 ± 0.10 

        

        

B. subtilis - L. monocytogenes pairing 

  B. subtilis   L. monocytogenes 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon's 

2-sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 0.59 ± 0.11 0.011 0.56 ± 0.14  0.80 ± 0.13 2.31E-04 0.71 ± 0.20 

FD-MScM-SH 

vs. QUBIC 0.59 ± 0.11 5.45E-27 0.36 ± 0.19  0.80 ± 0.13 2.92E-18 0.45 ± 0.27 

FD-MScM-SH 

vs. FD-COAL 0.59 ± 0.11 0.481 0.59 ± 0.15  0.80 ± 0.13 0.999 0.80 ± 0.12 

FD-MScM-EL 

vs. FD-SSCM 0.61 ± 0.10 2.58E-04 0.56 ± 0.14  0.81 ± 0.11 3.00E-05 0.71 ± 0.20 

FD-MScM-EL 

vs. QUBIC 0.61 ± 0.10 1.36E-28 0.36 ± 0.19  0.81 ± 0.11 3.29E-18 0.45 ± 0.27 
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FD-MScM-EL 

vs. FD-COAL 0.61 ± 0.10 0.064 0.59 ± 0.15  0.81 ± 0.11 0.674 0.80 ± 0.12 

FD-MScM-SH 

vs. MSISA-P 0.59 ± 0.11 0.639 0.60 ± 0.20  0.80 ± 0.13 5.34E-13 0.47 ± 0.23 

FD-MScM-SH 

vs. MSISA-R 0.59 ± 0.11 0.036 0.55 ± 0.12  0.80 ± 0.13 4.18E-08 0.50 ± 0.27 

FD-MScM-SH 

vs. MSKM-SH 0.59 ± 0.11 0.716 0.59 ± 0.11  0.80 ± 0.13 8.05E-33 0.51 ± 0.17 

FD-MScM-SH 

vs. MSKM-EL 0.59 ± 0.11 0.021 0.56 ± 0.11  0.80 ± 0.13 4.99E-29 0.55 ± 0.16 

FD-MScM-SH 

vs. BMSKM-SH 0.59 ± 0.11 6.43E-06 0.52 ± 0.14  0.80 ± 0.13 5.58E-20 0.63 ± 0.15 

FD-MScM-SH 

vs. BMSKM-EL 0.59 ± 0.11 1.28E-05 0.53 ± 0.12  0.80 ± 0.13 9.89E-19 0.64 ± 0.14 

FD-MScM-EL 

vs. MSISA-P 0.61 ± 0.10 0.440 0.60 ± 0.20  0.81 ± 0.11 1.28E-13 0.47 ± 0.23 

FD-MScM-EL 

vs. MSISA-R 0.61 ± 0.10 0.004 0.55 ± 0.12  0.81 ± 0.11 1.11E-08 0.50 ± 0.27 

FD-MScM-EL 

vs. MSKM-SH 0.61 ± 0.10 0.347 0.59 ± 0.11  0.81 ± 0.11 1.47E-34 0.51 ± 0.17 

FD-MScM-EL 

vs. MSKM-EL 0.61 ± 0.10 2.30E-04 0.56 ± 0.11  0.81 ± 0.11 3.83E-31 0.55 ± 0.16 

FD-MScM-EL 

vs. BMSKM-SH 0.61 ± 0.10 3.53E-08 0.52 ± 0.14  0.81 ± 0.11 3.86E-22 0.63 ± 0.15 
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FD-MScM-EL 

vs. BMSKM-EL 0.61 ± 0.10 4.23E-08 0.53 ± 0.12  0.81 ± 0.11 9.29E-21 0.64 ± 0.14 

        

        

B. anthracis - L. monocytogenes pairing 

 B. anthracis  L. monocytogenes 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon's 

2-sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 0.82 ± 0.11 0.227 0.82 ± 0.15  0.77 ± 0.14 0.011 0.71 ± 0.20 

FD-MScM-SH 

vs. QUBIC 0.82 ± 0.11 5.78E-49 0.49 ± 0.05  0.77 ± 0.14 1.03E-17 0.45 ± 0.27 

FD-MScM-SH 

vs. FD-COAL 0.82 ± 0.11 4.30E-29 0.62 ± 0.13  0.77 ± 0.14 0.344 0.80 ± 0.12 

FD-MScM-EL 

vs. FD-SSCM 0.80 ± 0.11 3.92E-04 0.82 ± 0.15  0.78 ± 0.13 0.003 0.71 ± 0.20 

FD-MScM-EL 

vs. QUBIC 0.80 ± 0.11 2.76E-48 0.49 ± 0.05  0.78 ± 0.13 1.22E-17 0.45 ± 0.27 

FD-MScM-EL 

vs. FD-COAL 0.80 ± 0.11 1.34E-24 0.62 ± 0.13  0.78 ± 0.13 0.532 0.80 ± 0.12 

FD-MScM-SH 

vs. MSKM-SH 0.82 ± 0.11 7.41E-21 0.69 ± 0.12  0.77 ± 0.14 6.55E-19 0.60 ± 0.14 

FD-MScM-SH 

vs. MSKM-EL 0.82 ± 0.11 6.40E-20 0.70 ± 0.10  0.77 ± 0.14 1.47E-16 0.63 ± 0.13 
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FD-MScM-EL 

vs. MSKM-SH 0.80 ± 0.11 1.09E-14 0.69 ± 0.12  0.78 ± 0.13 9.32E-22 0.60 ± 0.14 

FD-MScM-EL 

vs. MSKM-EL 0.80 ± 0.11 8.90E-14 0.70 ± 0.10  0.78 ± 0.13 4.40E-19 0.63 ± 0.13 

 

7.2.3.1.2.2 Gram-negative triplet  

Table 7.28: Comparison of bicluster mean correlations from the full data methods considered by 

this study for all pairings of E. coli, S. typhimurium and V. cholerae. 

E. coli - S. typhimurium pairing 

     

  

E. coli 

  

S. typhimurium 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon’s  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon’s 

2-sided 

dist2 mean 

(red) 

FD-MScM-SH vs. 

FD-SSCM 0.68 ± 0.12 1.40E-07 0.59 ± 0.17 

 

0.55 ± 0.11 1.55E-04 0.58 ± 0.18 

FD-MScM-SH vs. 

QUBIC 0.68 ± 0.12 1.27E-39 0.91 ± 0.08 

 

0.55 ± 0.11 3.48E-36 0.86 ± 0.12 

FD-MScM-SH vs. 

FD-COAL 0.68 ± 0.12 1.39E-03 0.63 ± 0.16 

 

0.55 ± 0.11 0.95 0.57 ± 0.15 

FD-MScM-EL vs. 

FD-SSCM 0.66 ± 0.13 4.23E-04 0.59 ± 0.17 

 

0.50 ± 0.11 1.04E-09 0.58 ± 0.18 

FD-MScM-EL vs. 

QUBIC 0.66 ± 0.13 8.01E-41 0.91 ± 0.08 

 

0.50 ± 0.11 1.34E-39 0.86 ± 0.12 

FD-MScM-EL vs. 

FD-COAL 0.66 ± 0.13 0.08 0.63 ± 0.16 

 

0.50 ± 0.11 8.47E-05 0.57 ± 0.15 
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FD-MScM-SH vs. 

MSISA-P 0.68 ± 0.12 4.60E-06 0.56 ± 0.20 

 

0.55 ± 0.11 0.14 0.60 ± 0.26 

FD-MScM-SH vs. 

MSISA-R 0.68 ± 0.12 2.03E-09 0.52 ± 0.18 

 

0.55 ± 0.11 3.91E-07 0.46 ± 0.23 

FD-MScM-SH vs. 

MSKM-SH 0.68 ± 0.12 1.16E-10 0.59 ± 0.12 

 

0.55 ± 0.11 1.03E-43 0.29 ± 0.08 

FD-MScM-SH vs. 

MSKM-EL 0.68 ± 0.12 2.18E-13 0.57 ± 0.12 

 

0.55 ± 0.11 1.74E-41 0.31 ± 0.08 

FD-MScM-SH vs. 

BMSKM-SH 0.68 ± 0.12 8.03E-19 0.54 ± 0.12 

 

0.55 ± 0.11 7.05E-33 0.37 ± 0.09 

FD-MScM-SH vs. 

BMSKM-EL 0.68 ± 0.12 8.43E-19 0.54 ± 0.12 

 

0.55 ± 0.11 1.33E-30 0.38 ± 0.09 

FD-MScM-EL vs. 

MSISA-P 0.66 ± 0.13 1.09E-04 0.56 ± 0.20 

 

0.50 ± 0.11 0.02 0.60 ± 0.26 

FD-MScM-EL vs. 

MSISA-R 0.66 ± 0.13 5.42E-08 0.52 ± 0.18 

 

0.50 ± 0.11 2.15E-05 0.46 ± 0.23 

FD-MScM-EL vs. 

MSKM-SH 0.66 ± 0.13 1.17E-06 0.59 ± 0.12 

 

0.50 ± 0.11 5.88E-40 0.29 ± 0.08 

FD-MScM-EL vs. 

MSKM-EL 0.66 ± 0.13 5.95E-09 0.57 ± 0.12 

 

0.50 ± 0.11 1.65E-35 0.31 ± 0.08 

FD-MScM-EL vs. 

BMSKM-SH 0.66 ± 0.13 4.49E-14 0.54 ± 0.12 

 

0.50 ± 0.11 7.54E-22 0.37 ± 0.09 

FD-MScM-EL vs. 

BMSKM-EL 0.66 ± 0.13 8.55E-14 0.54 ± 0.12 

 

0.50 ± 0.11 1.22E-18 0.38 ± 0.09 
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E. coli - V. cholerae pairing      

  

E. coli 

  

V. cholerae 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon’s  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon’s 

2-sided 

dist2 mean 

(red) 

FD-MScM-SH vs. 

FD-SSCM 0.70 ± 0.11 2.92E-11 0.59 ± 0.17 

 

0.55 ± 0.15 4.43E-03 0.60 ± 0.19 

FD-MScM-SH vs. 

QUBIC 0.70 ± 0.11 3.32E-39 0.91 ± 0.08 

 

0.55 ± 0.15 5.44E-49 0.92 ± 0.06 

FD-MScM-SH vs. 

FD-COAL 0.70 ± 0.11 9.05E-06 0.63 ± 0.16 

 

0.55 ± 0.15 0.03 0.59 ± 0.17 

FD-MScM-EL vs. 

FD-SSCM 0.66 ± 0.12 2.68E-04 0.59 ± 0.17 

 

0.50 ± 0.15 2.00E-07 0.60 ± 0.19 

FD-MScM-EL vs. 

QUBIC 0.66 ± 0.12 7.46E-42 0.91 ± 0.08 

 

0.50 ± 0.15 1.38E-49 0.92 ± 0.06 

FD-MScM-EL vs. 

FD-COAL 0.66 ± 0.12 0.07 0.63 ± 0.16 

 

0.50 ± 0.15 1.45E-06 0.59 ± 0.17 

FD-MScM-SH vs. 

MSISA-P 0.70 ± 0.11 5.18E-05 0.56 ± 0.21 

 

0.55 ± 0.15 3.09E-06 0.69 ± 0.19 

FD-MScM-SH vs. 

MSISA-R 0.70 ± 0.11 3.73E-09 0.51 ± 0.18 

 

0.55 ± 0.15 1.64E-03 0.48 ± 0.12 

FD-MScM-SH vs. 

MSKM-SH 0.70 ± 0.11 1.30E-17 0.56 ± 0.15 

 

0.55 ± 0.15 2.02E-11 0.43 ± 0.16 

FD-MScM-SH vs. 

MSKM-EL 0.70 ± 0.11 1.40E-19 0.55 ± 0.14 

 

0.55 ± 0.15 3.86E-10 0.44 ± 0.15 
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FD-MScM-EL vs. 

MSISA-P 0.66 ± 0.12 1.68E-03 0.56 ± 0.21 

 

0.50 ± 0.15 3.09E-08 0.69 ± 0.19 

FD-MScM-EL vs. 

MSISA-R 0.66 ± 0.12 1.81E-07 0.51 ± 0.18 

 

0.50 ± 0.15 0.46 0.48 ± 0.12 

FD-MScM-EL vs. 

MSKM-SH 0.66 ± 0.12 2.27E-10 0.56 ± 0.15 

 

0.50 ± 0.15 1.41E-05 0.43 ± 0.16 

  

  

   

  

 S. typhimurium - V. cholerae pairing 

     

 

S. typhimurium 

 

V. cholerae 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon’s  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon’s 

2-sided 

dist2 mean 

(red) 

FD-MScM-SH vs. 

FD-SSCM 0.55 ± 0.11 6.81E-05 0.58 ± 0.18 

 

0.51 ± 0.17 1.30E-05 0.60 ± 0.19 

FD-MScM-SH vs. 

QUBIC 0.55 ± 0.11 1.33E-36 0.86 ± 0.12 

 

0.51 ± 0.17 1.55E-49 0.92 ± 0.06 

FD-MScM-SH vs. 

FD-COAL 0.55 ± 0.11 0.90 0.57 ± 0.15 

 

0.51 ± 0.17 6.29E-05 0.59 ± 0.17 

FD-MScM-EL vs. 

FD-SSCM 0.50 ± 0.11 6.42E-10 0.58 ± 0.18 

 

0.48 ± 0.17 8.12E-09 0.60 ± 0.19 

FD-MScM-EL vs. 

QUBIC 0.50 ± 0.11 6.93E-40 0.86 ± 0.12 

 

0.48 ± 0.17 7.54E-50 0.92 ± 0.06 

FD-MScM-EL vs. 

FD-COAL 0.50 ± 0.11 1.43E-04 0.57 ± 0.15 

 

0.48 ± 0.17 3.54E-08 0.59 ± 0.17 

FD-MScM-SH vs. 

MSKM-SH 0.55 ± 0.11 2.42E-41 0.31 ± 0.09 

 

0.51 ± 0.17 0.16 0.49 ± 0.13 
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FD-MScM-SH vs. 

MSKM-EL 0.55 ± 0.11 6.12E-35 0.35 ± 0.10 

 

0.51 ± 0.17 6.38E-03 0.47 ± 0.13 

FD-MScM-SH vs. 

BMSKM-SH 0.55 ± 0.11 3.48E-28 0.39 ± 0.10 

 

0.51 ± 0.17 1.03E-05 0.43 ± 0.13 

FD-MScM-SH vs. 

BMSKM-EL 0.55 ± 0.11 6.95E-25 0.41 ± 0.09 

 

0.51 ± 0.17 3.96E-05 0.44 ± 0.12 

FD-MScM-EL vs. 

MSKM-SH 0.50 ± 0.11 3.17E-34 0.31 ± 0.09 

 

0.48 ± 0.17 0.66 0.49 ± 0.13 

FD-MScM-EL vs. 

MSKM-EL 0.50 ± 0.11 5.78E-24 0.35 ± 0.10 

 

0.48 ± 0.17 0.39 0.47 ± 0.13 

FD-MScM-EL vs. 

BMSKM-SH 0.50 ± 0.11 1.87E-15 0.39 ± 0.10 

 

0.48 ± 0.17 5.48E-03 0.43 ± 0.13 

FD-MScM-EL vs. 

BMSKM-EL 0.50 ± 0.11 5.57E-12 0.41 ± 0.09 

 

0.48 ± 0.17 0.02 0.44 ± 0.12 

 

7.2.3.1.3 Network Association p-values 

A comparison of the association p-values (-log10) from MScM (full data) with all 

other relevant methods for all 3 pairings of a given triplet that‘s examined.  In the 

comparisons, we compare both MScM steps to the other methods.  Displayed are the 

means for each method and/or step compared, as well as the Wilcoxon‘s non-

parametric rank test (2-sided) comparing their distributions. We direct the reader to 

7.2.3.1.1 for instructions on how to interpret the table.  For example, these results 

indicate that in 77 of the 92 comparisons (83.7%) for the Gram-positive triplet MScM 
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does as well or better than its competitors.  Similarly, in all of the 92 comparisons 

(100%) for the Gram-negative triplet, MScM did as well or better than its competitors. 

7.2.3.1.3.1 Gram-positive triplet 

Table 7.29: Comparison of bicluster network association p-values from the full data methods 

considered by this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes  

B. subtilis - B. anthracis pairing    

  B. subtilis   B. anthracis 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 7.82 ± 8.76 0.009 9.78 ± 9.76  6.16 ± 7.23 0.935 5.44 ± 5.38 

FD-MScM-SH 

vs. QUBIC 7.82 ± 8.76 5.42E-36 2.52 ± 4.78  6.16 ± 7.23 0.658 6.73 ± 7.52 

FD-MScM-SH 

vs. FD-COAL 7.82 ± 8.76 0.042 7.57 ± 9.16  6.16 ± 7.23 0.132 6.50 ± 8.74 

FD-MScM-EL 

vs. FD-SSCM 7.79 ± 9.05 0.001 9.78 ± 9.76  6.38 ± 7.19 0.753 5.44 ± 5.38 

FD-MScM-EL 

vs. QUBIC 7.79 ± 9.05 1.09E-35 2.52 ± 4.78  6.38 ± 7.19 0.853 6.73 ± 7.52 

FD-MScM-EL 

vs. FD-COAL 7.79 ± 9.05 0.114 7.57 ± 9.16  6.38 ± 7.19 0.098 6.50 ± 8.74 

FD-MScM-SH 

vs. MSISA-P 7.82 ± 8.76 0.300 5.56 ± 5.86  6.16 ± 7.23 0.834 5.61 ± 7.17 
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FD-MScM-SH 

vs. MSISA-R 7.82 ± 8.76 0.041 9.69 ± 9.37  6.16 ± 7.23 0.186 9.66 ± 9.95 

FD-MScM-SH 

vs. MSKM-SH 7.82 ± 8.76 0.416 7.87 ± 9.35  6.16 ± 7.23 0.084 4.38 ± 5.10 

FD-MScM-SH 

vs. MSKM-EL 7.82 ± 8.76 0.505 8.15 ± 9.65  6.16 ± 7.23 0.003 4.06 ± 5.32 

FD-MScM-SH 

vs. BMSKM-SH 7.82 ± 8.76 0.527 7.27 ± 8.25  6.16 ± 7.23 0.591 5.54 ± 6.48 

FD-MScM-SH 

vs. BMSKM-EL 7.82 ± 8.76 0.128 6.93 ± 8.19  6.16 ± 7.23 0.021 4.56 ± 5.86 

FD-MScM-EL 

vs. MSISA-P 7.79 ± 9.05 0.539 5.56 ± 5.86  6.38 ± 7.19 0.987 5.61 ± 7.17 

FD-MScM-EL 

vs. MSISA-R 7.79 ± 9.05 0.017 9.69 ± 9.37  6.38 ± 7.19 0.241 9.66 ± 9.95 

FD-MScM-EL 

vs. MSKM-SH 7.79 ± 9.05 0.742 7.87 ± 9.35  6.38 ± 7.19 0.093 4.38 ± 5.10 

FD-MScM-EL 

vs. MSKM-EL 7.79 ± 9.05 0.867 8.15 ± 9.65  6.38 ± 7.19 0.005 4.06 ± 5.32 

FD-MScM-EL 

vs. BMSKM-SH 7.79 ± 9.05 0.871 7.27 ± 8.25  6.38 ± 7.19 0.700 5.54 ± 6.48 

FD-MScM-EL 

vs. BMSKM-EL 7.79 ± 9.05 0.296 6.93 ± 8.19  6.38 ± 7.19 0.018 4.56 ± 5.86 

        

        

B. subtilis - L. monocytogenes pairing      
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  B. subtilis   L. monocytogenes 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 7.70 ± 8.79 0.004 9.78 ± 9.76  5.84 ± 7.26 0.012 6.90 ± 7.75 

FD-MScM-SH 

vs. QUBIC 7.70 ± 8.79 8.94E-30 2.52 ± 4.78  5.84 ± 7.26 1.73E-05 9.95 ± 10.82 

FD-MScM-SH 

vs. FD-COAL 7.70 ± 8.79 0.165 7.57 ± 9.16  5.84 ± 7.26 0.146 5.93 ± 8.27 

FD-MScM-EL 

vs. FD-SSCM 7.68 ± 9.27 1.72E-04 9.78 ± 9.76  5.69 ± 6.92 0.007 6.90 ± 7.75 

FD-MScM-EL 

vs. QUBIC 7.68 ± 9.27 3.99E-27 2.52 ± 4.78  5.69 ± 6.92 3.27E-06 9.95 ± 10.82 

FD-MScM-EL 

vs. FD-COAL 7.68 ± 9.27 0.636 7.57 ± 9.16  5.69 ± 6.92 0.138 5.93 ± 8.27 

FD-MScM-SH 

vs. MSISA-P 7.70 ± 8.79 0.185 9.05 ± 8.89  5.84 ± 7.26 0.948 3.70 ± 1.79 

FD-MScM-SH 

vs. MSISA-R 7.70 ± 8.79 0.025 9.61 ± 9.29  5.84 ± 7.26 0.257 6.20 ± 6.65 

FD-MScM-SH 

vs. MSKM-SH 7.70 ± 8.79 0.088 

9.76 ± 

10.54  5.84 ± 7.26 0.165 7.88 ± 9.56 

FD-MScM-SH 

vs. MSKM-EL 7.70 ± 8.79 0.364 7.68 ± 9.47  5.84 ± 7.26 0.152 4.91 ± 6.44 

FD-MScM-SH 

vs. BMSKM-SH 7.70 ± 8.79 0.392 

9.23 ± 

10.39  5.84 ± 7.26 0.874 7.10 ± 9.45 
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FD-MScM-SH 

vs. BMSKM-EL 7.70 ± 8.79 0.025 6.79 ± 8.75  5.84 ± 7.26 0.179 4.86 ± 6.39 

FD-MScM-EL 

vs. MSISA-P 7.68 ± 9.27 0.137 9.05 ± 8.89  5.69 ± 6.92 0.941 3.70 ± 1.79 

FD-MScM-EL 

vs. MSISA-R 7.68 ± 9.27 0.005 9.61 ± 9.29  5.69 ± 6.92 0.218 6.20 ± 6.65 

FD-MScM-EL 

vs. MSKM-SH 7.68 ± 9.27 0.018 

9.76 ± 

10.54  5.69 ± 6.92 0.152 7.88 ± 9.56 

FD-MScM-EL 

vs. MSKM-EL 7.68 ± 9.27 0.878 7.68 ± 9.47  5.69 ± 6.92 0.138 4.91 ± 6.44 

FD-MScM-EL 

vs. BMSKM-SH 7.68 ± 9.27 0.127 

9.23 ± 

10.39  5.69 ± 6.92 0.854 7.10 ± 9.45 

FD-MScM-EL 

vs. BMSKM-EL 7.68 ± 9.27 0.146 6.79 ± 8.75  5.69 ± 6.92 0.147 4.86 ± 6.39 

        

        

B. anthracis - L. monocytogenes pairing      

 B. anthracis  L. monocytogenes 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 6.80 ± 8.19 0.944 5.47 ± 5.39  5.35 ± 6.97 6.99E-04 6.90 ± 7.75 

FD-MScM-SH 

vs. QUBIC 6.80 ± 8.19 0.679 6.73 ± 7.52  5.35 ± 6.97 6.82E-08 9.95 ± 10.82 
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FD-MScM-SH 

vs. FD-COAL 6.80 ± 8.19 0.226 6.50 ± 8.74  5.35 ± 6.97 0.281 5.93 ± 8.27 

FD-MScM-EL 

vs. FD-SSCM 6.70 ± 7.99 0.869 5.47 ± 5.39  5.03 ± 6.91 8.08E-06 6.90 ± 7.75 

FD-MScM-EL 

vs. QUBIC 6.70 ± 7.99 0.838 6.73 ± 7.52  5.03 ± 6.91 2.94E-11 9.95 ± 10.82 

FD-MScM-EL 

vs. FD-COAL 6.70 ± 7.99 0.095 6.50 ± 8.74  5.03 ± 6.91 0.567 5.93 ± 8.27 

FD-MScM-SH 

vs. MSKM-SH 6.80 ± 8.19 0.930 5.67 ± 7.00  5.35 ± 6.97 0.418 6.83 ± 8.86 

FD-MScM-SH 

vs. MSKM-EL 6.80 ± 8.19 0.049 3.86 ± 4.13  5.35 ± 6.97 0.334 4.94 ± 6.73 

FD-MScM-EL 

vs. MSKM-SH 6.70 ± 7.99 0.778 5.67 ± 7.00  5.03 ± 6.91 0.186 6.83 ± 8.86 

FD-MScM-EL 

vs. MSKM-EL 6.70 ± 7.99 0.011 3.86 ± 4.13  5.03 ± 6.91 0.687 4.94 ± 6.73 

 

7.2.3.1.3.2 Gram-negative triplet 

Table 7.30: Comparison of bicluster network association p-values from the full data methods 

considered by this study for all pairings of E. coli, S. typhimurium and V. cholerae. 

E. coli - S. typhimurium pairing 

     

  
E. coli 

  
S. typhimurium 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon’s  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon’s 

2-sided 

dist2 mean 

(red) 
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FD-MScM-SH 

vs. FD-SSCM 

17.22 ± 10.39 0.45 17.95 ± 10.94 

 

16.55 ± 10.70 1.21E-38 6.57 ± 9.02 

FD-MScM-SH 

vs. QUBIC 

17.22 ± 10.39 0.07 15.63 ± 10.47 

 

16.55 ± 10.70 9.77E-05 9.12 ± 11.64 

FD-MScM-SH 

vs. FD-COAL 

17.22 ± 10.39 2.43E-27 10.91 ± 10.78 

 

16.55 ± 10.70 1.83E-77 3.85 ± 7.07 

FD-MScM-EL 

vs. FD-SSCM 

23.06 ± 9.27 4.88E-22 17.95 ± 10.94 

 

20.69 ± 10.28 2.29E-60 6.57 ± 9.02 

FD-MScM-EL 

vs. QUBIC 

23.06 ± 9.27 2.77E-19 15.63 ± 10.47 

 

20.69 ± 10.28 8.25E-07 9.12 ± 11.64 

FD-MScM-EL 

vs. FD-COAL 

23.06 ± 9.27 4.34E-82 10.91 ± 10.78 

 

20.69 ± 10.28 8.96E-105 3.85 ± 7.07 

FD-MScM-SH 

vs. MSISA-P 

17.22 ± 10.39 2.89E-06 9.62 ± 7.69 

 

16.55 ± 10.70 7.25E-06 8.54 ± 7.50 

FD-MScM-SH 

vs. MSISA-R 

17.22 ± 10.39 5.82E-17 10.12 ± 10.22 

 

16.55 ± 10.70 6.61E-56 3.79 ± 5.04 

FD-MScM-SH 

vs. MSKM-SH 

17.22 ± 10.39 6.55E-42 7.37 ± 8.70 

 

16.55 ± 10.70 8.63E-36 6.81 ± 8.49 

FD-MScM-SH 

vs. MSKM-EL 

17.22 ± 10.39 5.26E-42 7.78 ± 8.98 

 

16.55 ± 10.70 7.24E-45 6.05 ± 8.05 

FD-MScM-SH 

vs. BMSKM-SH 

17.22 ± 10.39 9.58E-50 6.02 ± 8.14 

 

16.55 ± 10.70 5.71E-45 5.34 ± 7.28 

FD-MScM-SH 

vs. BMSKM-EL 

17.22 ± 10.39 6.98E-52 6.37 ± 8.28 

 

16.55 ± 10.70 2.14E-52 4.98 ± 7.05 
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FD-MScM-EL 

vs. MSISA-P 

23.06 ± 9.27 7.86E-17 9.62 ± 7.69 

 

20.69 ± 10.28 1.04E-11 8.54 ± 7.50 

FD-MScM-EL 

vs. MSISA-R 

23.06 ± 9.27 1.13E-43 10.12 ± 10.22 

 

20.69 ± 10.28 3.89E-78 3.79 ± 5.04 

FD-MScM-EL 

vs. MSKM-SH 

23.06 ± 9.27 8.25E-84 7.37 ± 8.70 

 

20.69 ± 10.28 8.27E-59 6.81 ± 8.49 

FD-MScM-EL 

vs. MSKM-EL 

23.06 ± 9.27 9.64E-88 7.78 ± 8.98 

 

20.69 ± 10.28 1.59E-70 6.05 ± 8.05 

FD-MScM-EL 

vs. BMSKM-SH 

23.06 ± 9.27 7.35E-87 6.02 ± 8.14 

 

20.69 ± 10.28 2.04E-67 5.34 ± 7.28 

FD-MScM-EL 

vs. BMSKM-EL 

23.06 ± 9.27 2.32E-94 6.37 ± 8.28 

 

20.69 ± 10.28 3.75E-77 4.98 ± 7.05 

        
E. coli - V. cholerae pairing 

     

  

E. coli 

   

V. cholerae 

 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon’s  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon’s 

2-sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 

18.38 ± 10.17 0.43 17.95 ± 10.94 

 

17.92 ± 10.12 8.14E-35 9.66 ± 10.28 

FD-MScM-SH 

vs. QUBIC 

18.38 ± 10.17 2.07E-03 15.63 ± 10.47 

 

17.92 ± 10.12 0.43 16.69 ± 12.25 

FD-MScM-SH 

vs. FD-COAL 

18.38 ± 10.17 1.72E-33 10.91 ± 10.78 

 

17.92 ± 10.12 7.07E-64 6.92 ± 9.00 

FD-MScM-EL 

vs. FD-SSCM 

22.53 ± 9.47 1.97E-17 17.95 ± 10.94 

 

21.35 ± 9.62 5.99E-61 9.66 ± 10.28 
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FD-MScM-EL 

vs. QUBIC 

22.53 ± 9.47 2.30E-16 15.63 ± 10.47 

 

21.35 ± 9.62 1.22E-02 16.69 ± 12.25 

FD-MScM-EL 

vs. FD-COAL 

22.53 ± 9.47 4.42E-76 10.91 ± 10.78 

 

21.35 ± 9.62 9.71E-95 6.92 ± 9.00 

FD-MScM-SH 

vs. MSISA-P 

18.38 ± 10.17 3.25E-05 11.12 ± 10.80 

 

17.92 ± 10.12 1.10E-03 12.19 ± 12.04 

FD-MScM-SH 

vs. MSISA-R 

18.38 ± 10.17 1.16E-12 11.22 ± 10.86 

 

17.92 ± 10.12 4.15E-04 14.88 ± 10.17 

FD-MScM-SH 

vs. MSKM-SH 

18.38 ± 10.17 3.95E-31 8.92 ± 9.93 

 

17.92 ± 10.12 9.51E-33 8.04 ± 10.11 

FD-MScM-SH 

vs. MSKM-EL 

18.38 ± 10.17 8.90E-47 7.99 ± 9.13 

 

17.92 ± 10.12 3.94E-43 7.33 ± 9.49 

FD-MScM-EL 

vs. MSISA-P 

22.53 ± 9.47 1.09E-09 11.12 ± 10.80 

 

21.35 ± 9.62 3.67E-06 12.19 ± 12.04 

FD-MScM-EL 

vs. MSISA-R 

22.53 ± 9.47 2.79E-26 11.22 ± 10.86 

 

21.35 ± 9.62 3.56E-13 14.88 ± 10.17 

FD-MScM-EL 

vs. MSKM-SH 

22.53 ± 9.47 6.07E-56 8.92 ± 9.93 

 

21.35 ± 9.62 9.87E-48 8.04 ± 10.11 

FD-MScM-EL 

vs. MSKM-EL 

22.53 ± 9.47 2.74E-82 7.99 ± 9.13 

 

21.35 ± 9.62 4.41E-62 7.33 ± 9.49 

        

        
S. typhimurium - V. cholerae pairing 

     

 

S. typhimurium 
  

V. cholerae 

 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon’s  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon’s 

2-sided 

dist2 mean 

(red) 
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FD-MScM-SH 

vs. FD-SSCM 

15.10 ± 10.15 1.12E-33 6.57 ± 9.02 

 

15.61 ± 10.24 2.47E-22 9.66 ± 10.28 

FD-MScM-SH 

vs. QUBIC 

15.10 ± 10.15 2.03E-04 9.12 ± 11.64 

 

15.61 ± 10.24 0.75 16.69 ± 12.25 

FD-MScM-SH 

vs. FD-COAL 

15.10 ± 10.15 4.45E-71 3.85 ± 7.07 

 

15.61 ± 10.24 4.51E-48 6.92 ± 9.00 

FD-MScM-EL 

vs. FD-SSCM 

19.84 ± 10.08 1.37E-55 6.57 ± 9.02 

 

21.63 ± 9.52 6.04E-62 9.66 ± 10.28 

FD-MScM-EL 

vs. QUBIC 

19.84 ± 10.08 2.40E-06 9.12 ± 11.64 

 

21.63 ± 9.52 1.10E-02 16.69 ± 12.25 

FD-MScM-EL 

vs. FD-COAL 

19.84 ± 10.08 1.10E-98 3.85 ± 7.07 

 

21.63 ± 9.52 9.02E-96 6.92 ± 9.00 

FD-MScM-SH 

vs. MSKM-SH 

15.10 ± 10.15 1.40E-26 6.75 ± 9.30 

 

15.61 ± 10.24 7.59E-33 6.43 ± 9.17 

FD-MScM-SH 

vs. MSKM-EL 

15.10 ± 10.15 5.31E-49 4.57 ± 7.03 

 

15.61 ± 10.24 2.29E-36 6.69 ± 9.35 

FD-MScM-SH 

vs. BMSKM-SH 

15.10 ± 10.15 5.74E-30 5.51 ± 8.19 

 

15.61 ± 10.24 2.82E-36 5.57 ± 8.59 

FD-MScM-SH 

vs. BMSKM-EL 

15.10 ± 10.15 4.18E-55 3.76 ± 6.26 

 

15.61 ± 10.24 1.57E-41 6.02 ± 8.86 

FD-MScM-EL 

vs. MSKM-SH 

19.84 ± 10.08 1.69E-41 6.75 ± 9.30 

 

21.63 ± 9.52 3.35E-56 6.43 ± 9.17 

FD-MScM-EL 

vs. MSKM-EL 

19.84 ± 10.08 2.69E-71 4.57 ± 7.03 

 

21.63 ± 9.52 1.79E-64 6.69 ± 9.35 



 

 

 

444 

FD-MScM-EL 

vs. BMSKM-SH 

19.84 ± 10.08 3.54E-43 5.51 ± 8.19 

 

21.63 ± 9.52 1.22E-57 5.57 ± 8.59 

FD-MScM-EL 

vs. BMSKM-EL 

19.84 ± 10.08 5.07E-75 3.76 ± 6.26 

 

21.63 ± 9.52 3.21E-70 6.02 ± 8.86 

 

7.2.3.1.4 Motif E-values 

A comparison of the motif E-values (-log10) from MScM (full data) with all other 

relevant methods for all 3 pairings of a given triplet that‘s examined.  In the 

comparisons, we compare both MScM steps to the other methods.  Displayed are the 

means for each method and/or step compared, as well as the Wilcoxon‘s non-

parametric rank test (2-sided) comparing their distributions. We direct the reader to 

7.2.3.1.1 for instructions on how to interpret the table.  For example, these results 

indicate that in 69 of the 92 of the comparisons for the Gram-positive triplet (75%) 

MScM does as well or better than its competitors.  Similarly, in 85 of the 92 

comparisons (92.4%) for the Gram-negative triplet, MScM did as well or better than 

its competitors. 

7.2.3.1.4.1 Gram-positive triplet 

Table 7.31: Comparison of bicluster motif E-values(-log10) from the full data methods considered 

by this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes.   

B. subtilis - B. anthracis pairing   

 B. subtilis  B. anthracis 
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dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 

2.17 ± 10.07 2.91E-10 7.03 ± 18.81  2.46 ± 8.08 0.043 4.98 ± 10.63 

FD-MScM-SH 

vs. QUBIC 

2.17 ± 10.07 0.033 1.41 ± 3.94  2.46 ± 8.08 1.43E-07 13.72 ± 14.49 

FD-MScM-SH 

vs. FD-COAL 

2.17 ± 10.07 0.172 2.72 ± 7.30  2.46 ± 8.08 0.618 3.85 ± 8.83 

FD-MScM-EL 

vs. FD-SSCM 

3.34 ± 8.22 4.28E-04 7.03 ± 18.81  3.74 ± 10.70 0.427 4.98 ± 10.63 

FD-MScM-EL 

vs. QUBIC 

3.34 ± 8.22 0.802 1.41 ± 3.94  3.74 ± 10.70 5.09E-07 13.72 ± 14.49 

FD-MScM-EL 

vs. FD-COAL 

3.34 ± 8.22 0.464 2.72 ± 7.30  3.74 ± 10.70 0.685 3.85 ± 8.83 

FD-MScM-SH 

vs. MSISA-P 

2.17 ± 10.07 0.002 -1.12 ± 2.03  2.46 ± 8.08 0.226 0.46 ± 3.43 

FD-MScM-SH 

vs. MSISA-R 

2.17 ± 10.07 1.12E-08 9.40 ± 9.19  2.46 ± 8.08 4.99E-06 2.34 ± 11.56 

FD-MScM-SH 

vs. MSKM-SH 

2.17 ± 10.07 1.75E-07 -1.18 ± 2.62  2.46 ± 8.08 0.001 -0.22 ± 2.96 

FD-MScM-SH 

vs. MSKM-EL 

2.17 ± 10.07 0.045 0.19 ± 4.26  2.46 ± 8.08 0.037 2.74 ± 5.66 

FD-MScM-SH 

vs. BMSKM-SH 

2.17 ± 10.07 1.02E-06 -1.09 ± 2.68  2.46 ± 8.08 1.87E-04 -0.39 ± 2.87 
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FD-MScM-SH 

vs. BMSKM-EL 

2.17 ± 10.07 0.378 0.44 ± 4.06  2.46 ± 8.08 0.002 3.07 ± 5.44 

FD-MScM-EL 

vs. MSISA-P 

3.34 ± 8.22 5.26E-05 -1.12 ± 2.03  3.74 ± 10.70 0.059 0.46 ± 3.43 

FD-MScM-EL 

vs. MSISA-R 

3.34 ± 8.22 7.22E-06 9.40 ± 9.19  3.74 ± 10.70 5.97E-06 2.34 ± 11.56 

FD-MScM-EL 

vs. MSKM-SH 

3.34 ± 8.22 2.91E-11 -1.18 ± 2.62  3.74 ± 10.70 2.12E-05 -0.22 ± 2.96 

FD-MScM-EL 

vs. MSKM-EL 

3.34 ± 8.22 1.88E-04 0.19 ± 4.26  3.74 ± 10.70 0.495 2.74 ± 5.66 

FD-MScM-EL 

vs. BMSKM-SH 

3.34 ± 8.22 2.18E-10 -1.09 ± 2.68  3.74 ± 10.70 3.64E-06 -0.39 ± 2.87 

FD-MScM-EL 

vs. BMSKM-EL 

3.34 ± 8.22 0.004 0.44 ± 4.06  3.74 ± 10.70 0.101 3.07 ± 5.44 

        

        

B. subtilis - L. monocytogenes pairing      

 B. subtilis  L. monocytogenes 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 

0.43 ± 5.96 7.22E-18 7.03 ± 18.81  1.65 ± 5.96 3.46E-07 0.46 ± 4.73 

FD-MScM-SH 

vs. QUBIC 

0.43 ± 5.96 6.64E-06 1.41 ± 3.94  1.65 ± 5.96 0.352 9.57 ± 13.54 
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FD-MScM-SH 

vs. FD-COAL 

0.43 ± 5.96 0.001 2.72 ± 7.30  1.65 ± 5.96 0.325 3.66 ± 7.60 

FD-MScM-EL 

vs. FD-SSCM 

2.12 ± 7.86 3.86E-08 7.03 ± 18.81  3.32 ± 9.98 1.17E-10 0.46 ± 4.73 

FD-MScM-EL 

vs. QUBIC 

2.12 ± 7.86 0.127 1.41 ± 3.94  3.32 ± 9.98 0.573 9.57 ± 13.54 

FD-MScM-EL 

vs. FD-COAL 

2.12 ± 7.86 0.370 2.72 ± 7.30  3.32 ± 9.98 0.917 3.66 ± 7.60 

FD-MScM-SH 

vs. MSISA-P 

0.43 ± 5.96 1.84E-07 -2.63 ± 1.00  1.65 ± 5.96 1.29E-06 -1.56 ± 1.40 

FD-MScM-SH 

vs. MSISA-R 

0.43 ± 5.96 5.52E-13 10.37 ± 8.84  1.65 ± 5.96 1.12E-07 9.06 ± 7.74 

FD-MScM-SH 

vs. MSKM-SH 

0.43 ± 5.96 5.11E-07 -1.91 ± 1.56  1.65 ± 5.96 4.50E-07 -0.83 ± 1.64 

FD-MScM-SH 

vs. MSKM-EL 

0.43 ± 5.96 0.985 0.52 ± 5.33  1.65 ± 5.96 0.169 0.36 ± 2.68 

FD-MScM-SH 

vs. BMSKM-SH 

0.43 ± 5.96 5.07E-08 -1.97 ± 1.58  1.65 ± 5.96 5.68E-08 -0.89 ± 1.69 

FD-MScM-SH 

vs. BMSKM-EL 

0.43 ± 5.96 0.992 0.02 ± 3.81  1.65 ± 5.96 0.177 0.43 ± 3.17 

FD-MScM-EL 

vs. MSISA-P 

2.12 ± 7.86 7.84E-10 -2.63 ± 1.00  3.32 ± 9.98 1.56E-08 -1.56 ± 1.40 

FD-MScM-EL 

vs. MSISA-R 

2.12 ± 7.86 6.40E-10 10.37 ± 8.84  3.32 ± 9.98 2.25E-06 9.06 ± 7.74 
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FD-MScM-EL 

vs. MSKM-SH 

2.12 ± 7.86 2.41E-13 -1.91 ± 1.56  3.32 ± 9.98 1.69E-11 -0.83 ± 1.64 

FD-MScM-EL 

vs. MSKM-EL 

2.12 ± 7.86 0.013 0.52 ± 5.33  3.32 ± 9.98 0.002 0.36 ± 2.68 

FD-MScM-EL 

vs. BMSKM-SH 

2.12 ± 7.86 2.88E-14 -1.97 ± 1.58  3.32 ± 9.98 2.44E-12 -0.89 ± 1.69 

FD-MScM-EL 

vs. BMSKM-EL 

2.12 ± 7.86 0.007 0.02 ± 3.81  3.32 ± 9.98 0.002 0.43 ± 3.17 

        

        

B. anthracis - L. monocytogenes pairing      

 B. anthracis  L. monocytogenes 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 

0.02 ± 3.66 3.12E-08 5.21 ± 10.80  1.69 ± 5.21 1.86E-06 0.46 ± 4.73 

FD-MScM-SH 

vs. QUBIC 

0.02 ± 3.66 5.33E-10 

13.72 ± 

14.49 

 1.69 ± 5.21 0.326 9.57 ± 13.54 

FD-MScM-SH 

vs. FD-COAL 

0.02 ± 3.66 0.004 3.85 ± 8.83  1.69 ± 5.21 0.337 3.66 ± 7.60 

FD-MScM-EL 

vs. FD-SSCM 

1.68 ± 6.38 0.001 5.21 ± 10.80  3.17 ± 8.21 3.92E-10 0.46 ± 4.73 

FD-MScM-EL 

vs. QUBIC 

1.68 ± 6.38 4.06E-08 

13.72 ± 

14.49 

 3.17 ± 8.21 0.686 9.57 ± 13.54 
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FD-MScM-EL 

vs. FD-COAL 

1.68 ± 6.38 0.213 3.85 ± 8.83  3.17 ± 8.21 0.999 3.66 ± 7.60 

FD-MScM-SH 

vs. MSKM-SH 

0.02 ± 3.66 3.71E-05 -1.58 ± 1.60  1.69 ± 5.21 5.77E-06 -0.67 ± 1.69 

FD-MScM-SH 

vs. MSKM-EL 

0.02 ± 3.66 1.47E-04 2.52 ± 6.60  1.69 ± 5.21 0.118 0.44 ± 3.00 

FD-MScM-EL 

vs. MSKM-SH 

1.68 ± 6.38 2.02E-09 -1.58 ± 1.60  3.17 ± 8.21 3.65E-09 -0.67 ± 1.69 

FD-MScM-EL 

vs. MSKM-EL 

1.68 ± 6.38 0.099 2.52 ± 6.60  3.17 ± 8.21 0.004 0.44 ± 3.00 

 

7.2.3.1.4.2 Gram-negative triplet 

Table 7.32: Comparison of bicluster motif E-values from the full data methods considered by this 

study for all pairings of E. coli, S. typhimurium and V. cholerae. 

E. coli - S. typhimurium pairing 
     

  
E. coli 

  
S. typhimurium 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon’s  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon’s 

2-sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 

5.03 ± 34.70 5.06E-09 3.37 ± 25.14 

 

7.25 ± 38.52 0.90 0.38 ± 3.97 

FD-MScM-SH 

vs. QUBIC 

5.03 ± 34.70 2.31E-19 -3.15 ± 1.19 

 

7.25 ± 38.52 5.55E-15 -2.53 ± 1.10 

FD-MScM-SH 

vs. FD-COAL 

5.03 ± 34.70 0.03 1.00 ± 6.43 

 

7.25 ± 38.52 0.12 1.51 ± 5.76 
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FD-MScM-EL 

vs. FD-SSCM 

6.82 ± 40.87 0.51 3.37 ± 25.14 

 

9.91 ± 43.33 5.71E-04 0.38 ± 3.97 

FD-MScM-EL 

vs. QUBIC 

6.82 ± 40.87 1.39E-29 -3.15 ± 1.19 

 

9.91 ± 43.33 3.56E-21 -2.53 ± 1.10 

FD-MScM-EL 

vs. FD-COAL 

6.82 ± 40.87 0.12 1.00 ± 6.43 

 

9.91 ± 43.33 0.04 1.51 ± 5.76 

FD-MScM-SH 

vs. MSISA-P 

5.03 ± 34.70 3.21E-05 -2.45 ± 1.71 

 

7.25 ± 38.52 7.87E-10 -2.39 ± 1.66 

FD-MScM-SH 

vs. MSISA-R 

5.03 ± 34.70 6.58E-05 2.35 ± 6.98 

 

7.25 ± 38.52 5.16E-04 0.44 ± 7.23 

FD-MScM-SH 

vs. MSKM-SH 

5.03 ± 34.70 0.58 -1.35 ± 3.16 

 

7.25 ± 38.52 0.67 -0.27 ± 3.92 

FD-MScM-SH 

vs. MSKM-EL 

5.03 ± 34.70 2.24E-03 0.36 ± 4.76 

 

7.25 ± 38.52 0.52 0.20 ± 4.25 

FD-MScM-SH 

vs. BMSKM-SH 

5.03 ± 34.70 0.77 -1.36 ± 2.31 

 

7.25 ± 38.52 0.47 -0.56 ± 2.60 

FD-MScM-SH 

vs. BMSKM-EL 

5.03 ± 34.70 3.84E-03 -0.17 ± 3.41 

 

7.25 ± 38.52 0.62 -0.13 ± 2.88 

FD-MScM-EL 

vs. MSISA-P 

6.82 ± 40.87 1.07E-11 -2.45 ± 1.71 

 

9.91 ± 43.33 8.48E-14 -2.39 ± 1.66 

FD-MScM-EL 

vs. MSISA-R 

6.82 ± 40.87 0.21 2.35 ± 6.98 

 

9.91 ± 43.33 8.03E-06 0.44 ± 7.23 

FD-MScM-EL 

vs. MSKM-SH 

6.82 ± 40.87 3.75E-07 -1.35 ± 3.16 

 

9.91 ± 43.33 2.58E-06 -0.27 ± 3.92 
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FD-MScM-EL 

vs. MSKM-EL 

6.82 ± 40.87 0.33 0.36 ± 4.76 

 

9.91 ± 43.33 2.74E-04 0.20 ± 4.25 

FD-MScM-EL 

vs. BMSKM-SH 

6.82 ± 40.87 9.47E-06 -1.36 ± 2.31 

 

9.91 ± 43.33 7.20E-07 -0.56 ± 2.60 

FD-MScM-EL 

vs. BMSKM-EL 

6.82 ± 40.87 0.19 -0.17 ± 3.41 

 

9.91 ± 43.33 8.29E-05 -0.13 ± 2.88 

        

        
E. coli - V. cholerae pairing 

     

  

E. coli 

   

V. cholerae 

 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon’s  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon’s 

2-sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 

-0.92 ± 3.47 9.55E-08 3.37 ± 25.14 

 

-0.18 ± 8.74 2.66E-12 8.65 ± 31.60 

FD-MScM-SH 

vs. QUBIC 

-0.92 ± 3.47 4.42E-23 -3.15 ± 1.19 

 

-0.18 ± 8.74 3.63E-11 -1.97 ± 3.33 

FD-MScM-SH 

vs. FD-COAL 

-0.92 ± 3.47 0.07 1.00 ± 6.43 

 

-0.18 ± 8.74 8.16E-05 

11.28 ± 

35.97 

FD-MScM-EL 

vs. FD-SSCM 

1.42 ± 5.48 0.15 3.37 ± 25.14 

 

6.09 ± 31.78 0.04 8.65 ± 31.60 

FD-MScM-EL 

vs. QUBIC 

1.42 ± 5.48 7.77E-33 -3.15 ± 1.19 

 

6.09 ± 31.78 1.34E-19 -1.97 ± 3.33 

FD-MScM-EL 

vs. FD-COAL 

1.42 ± 5.48 3.18E-03 1.00 ± 6.43 

 

6.09 ± 31.78 0.87 

11.28 ± 

35.97 

FD-MScM-SH 

vs. MSISA-P 

-0.92 ± 3.47 2.04E-06 -2.64 ± 1.48 

 

-0.18 ± 8.74 1.27E-05 -2.57 ± 1.63 
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FD-MScM-SH 

vs. MSISA-R 

-0.92 ± 3.47 5.25E-03 2.63 ± 7.50 

 

-0.18 ± 8.74 3.36E-13 

-0.65 ± 

11.66 

FD-MScM-SH 

vs. MSKM-SH 

-0.92 ± 3.47 5.98E-03 -1.94 ± 1.74 

 

-0.18 ± 8.74 9.48E-03 -1.87 ± 2.01 

FD-MScM-SH 

vs. MSKM-EL 

-0.92 ± 3.47 0.18 -0.01 ± 4.79 

 

-0.18 ± 8.74 0.43 2.71 ± 29.53 

FD-MScM-EL 

vs. MSISA-P 

1.42 ± 5.48 7.03E-11 -2.64 ± 1.48 

 

6.09 ± 31.78 3.40E-10 -2.57 ± 1.63 

FD-MScM-EL 

vs. MSISA-R 

1.42 ± 5.48 0.92 2.63 ± 7.50 

 

6.09 ± 31.78 5.80E-14 

-0.65 ± 

11.66 

FD-MScM-EL 

vs. MSKM-SH 

1.42 ± 5.48 4.37E-15 -1.94 ± 1.74 

 

6.09 ± 31.78 7.35E-12 -1.87 ± 2.01 

FD-MScM-EL 

vs. MSKM-EL 

1.42 ± 5.48 3.82E-04 -0.01 ± 4.79 

 

6.09 ± 31.78 2.42E-04 2.71 ± 29.53 

        

        
S. typhimurium - V. cholerae pairing 

     

 

S. typhimurium 
  

V. cholerae 

 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon’s  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon’s 

2-sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 

1.97 ± 13.19 0.35 0.38 ± 3.97 

 

-0.63 ± 9.18 2.09E-15 8.65 ± 31.60 

FD-MScM-SH 

vs. QUBIC 

1.97 ± 13.19 1.44E-19 -2.53 ± 1.10 

 

-0.63 ± 9.18 9.85E-09 -1.97 ± 3.33 

FD-MScM-SH 

vs. FD-COAL 

1.97 ± 13.19 0.28 1.51 ± 5.76 

 

-0.63 ± 9.18 1.74E-06 

11.28 ± 

35.97 



 

 

 

453 

FD-MScM-EL 

vs. FD-SSCM 

10.63 ± 33.85 1.97E-06 0.38 ± 3.97 

 

6.57 ± 32.51 1.37E-03 8.65 ± 31.60 

FD-MScM-EL 

vs. QUBIC 

10.63 ± 33.85 1.39E-26 -2.53 ± 1.10 

 

6.57 ± 32.51 1.15E-15 -1.97 ± 3.33 

FD-MScM-EL 

vs. FD-COAL 

10.63 ± 33.85 9.79E-04 1.51 ± 5.76 

 

6.57 ± 32.51 0.27 

11.28 ± 

35.97 

FD-MScM-SH 

vs. MSKM-SH 

1.97 ± 13.19 4.57E-06 -1.46 ± 1.83 

 

-0.63 ± 9.18 0.04 -1.94 ± 2.27 

FD-MScM-SH 

vs. MSKM-EL 

1.97 ± 13.19 0.53 -0.24 ± 3.27 

 

-0.63 ± 9.18 0.70 0.38 ± 12.80 

FD-MScM-SH 

vs. BMSKM-SH 

1.97 ± 13.19 1.81E-06 -1.52 ± 1.75 

 

-0.63 ± 9.18 0.06 -2.03 ± 1.65 

FD-MScM-SH 

vs. BMSKM-EL 

1.97 ± 13.19 0.28 -0.21 ± 3.35 

 

-0.63 ± 9.18 0.27 0.35 ± 15.26 

FD-MScM-EL 

vs. MSKM-SH 

10.63 ± 33.85 1.88E-17 -1.46 ± 1.83 

 

6.57 ± 32.51 3.05E-09 -1.94 ± 2.27 

FD-MScM-EL 

vs. MSKM-EL 

10.63 ± 33.85 1.23E-08 -0.24 ± 3.27 

 

6.57 ± 32.51 4.65E-04 0.38 ± 12.80 

FD-MScM-EL 

vs. BMSKM-SH 

10.63 ± 33.85 3.78E-18 -1.52 ± 1.75 

 

6.57 ± 32.51 7.13E-09 -2.03 ± 1.65 

FD-MScM-EL 

vs. BMSKM-EL 

10.63 ± 33.85 1.35E-08 -0.21 ± 3.35 

 

6.57 ± 32.51 1.99E-03 0.35 ± 15.26 
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7.2.3.1.5 Sequence p-values 

A comparison of the sequence p-values (-log10) from MScM (full data) with all other 

relevant methods for all 3 pairings of the three organisms examined.  In the 

comparisons, we compare both MScM steps to the other methods.  Displayed are the 

means for each method and/or step compared, as well as the Wilcoxon‘s non-

parametric rank test (2-sided) comparing their distributions. We direct the reader to the 

description for section 7.2.3.1.1 for instructions on how to interpret the table.  As the 

table indicates, in 72 of the 92 of the comparisons (78.3%) MScM does as well or 

better than its competitors.  In contrast, in only 38 of the 92 comparisons (41.3%) for 

the Gram-negative triplet, MScM did as well or better than its competitors. 

7.2.3.1.5.1 Gram-positive triplet 

Table 7.33: Comparison of bicluster sequence p-values (-log10) from the full data methods 

considered by this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes.   

B. subtilis - B. anthracis pairing   

 B. subtilis  B. anthracis 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's 

2-sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 

3.86 ± 1.39 2.84E-22 6.73 ± 3.35  3.49 ± 1.31 0.303 3.90 ± 2.62 

FD-MScM-SH 

vs. QUBIC 

3.86 ± 1.39 4.41E-33 2.06 ± 0.50  3.49 ± 1.31 1.78E-32 1.77 ± 0.26 

FD-MScM-SH 

vs. FD-COAL 

3.86 ± 1.39 7.40E-25 2.47 ± 1.12  3.49 ± 1.31 1.71E-18 2.32 ± 1.57 
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FD-MScM-EL 

vs. FD-SSCM 

3.47 ± 1.31 3.39E-29 6.73 ± 3.35  3.24 ± 1.22 0.721 3.90 ± 2.62 

FD-MScM-EL 

vs. QUBIC 

3.47 ± 1.31 1.83E-25 2.06 ± 0.50  3.24 ± 1.22 5.27E-31 1.77 ± 0.26 

FD-MScM-EL 

vs. FD-COAL 

3.47 ± 1.31 1.64E-16 2.47 ± 1.12  3.24 ± 1.22 1.08E-15 2.32 ± 1.57 

FD-MScM-SH 

vs. MSISA-P 

3.86 ± 1.39 0.164 3.65 ± 1.74  3.49 ± 1.31 0.345 3.34 ± 1.33 

FD-MScM-SH 

vs. MSISA-R 

3.86 ± 1.39 5.63E-15 2.02 ± 0.52  3.49 ± 1.31 5.99E-07 1.79 ± 0.27 

FD-MScM-SH 

vs. MSKM-SH 

3.86 ± 1.39 0.879 3.97 ± 1.81  3.49 ± 1.31 0.985 3.59 ± 1.53 

FD-MScM-SH 

vs. MSKM-EL 

3.86 ± 1.39 8.16E-06 3.24 ± 1.58  3.49 ± 1.31 1.04E-09 2.66 ± 1.03 

FD-MScM-SH 

vs. BMSKM-SH 

3.86 ± 1.39 0.806 4.05 ± 1.86  3.49 ± 1.31 0.577 3.42 ± 1.33 

FD-MScM-SH 

vs. BMSKM-EL 

3.86 ± 1.39 1.02E-07 3.06 ± 1.30  3.49 ± 1.31 2.97E-11 2.57 ± 0.88 

FD-MScM-EL 

vs. MSISA-P 

3.47 ± 1.31 0.915 3.65 ± 1.74  3.24 ± 1.22 0.890 3.34 ± 1.33 

FD-MScM-EL 

vs. MSISA-R 

3.47 ± 1.31 1.63E-12 2.02 ± 0.52  3.24 ± 1.22 1.06E-06 1.79 ± 0.27 

FD-MScM-EL 

vs. MSKM-SH 

3.47 ± 1.31 0.029 3.97 ± 1.81  3.24 ± 1.22 0.077 3.59 ± 1.53 
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FD-MScM-EL 

vs. MSKM-EL 

3.47 ± 1.31 0.046 3.24 ± 1.58  3.24 ± 1.22 2.57E-06 2.66 ± 1.03 

FD-MScM-EL 

vs. BMSKM-SH 

3.47 ± 1.31 0.008 4.05 ± 1.86  3.24 ± 1.22 0.238 3.42 ± 1.33 

FD-MScM-EL 

vs. BMSKM-EL 

3.47 ± 1.31 0.004 3.06 ± 1.30  3.24 ± 1.22 9.75E-08 2.57 ± 0.88 

        

        

B. subtilis - L. monocytogenes pairing      

 B. subtilis  L. monocytogenes 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's 

2-sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 

4.31 ± 1.94 6.74E-15 6.73 ± 3.35  4.82 ± 1.63 0.245 5.24 ± 2.35 

FD-MScM-SH 

vs. QUBIC 

4.31 ± 1.94 4.06E-33 2.06 ± 0.50  4.82 ± 1.63 2.19E-30 2.36 ± 0.37 

FD-MScM-SH 

vs. FD-COAL 

4.31 ± 1.94 9.99E-27 2.47 ± 1.12  4.82 ± 1.63 1.35E-08 3.51 ± 1.51 

FD-MScM-EL 

vs. FD-SSCM 

3.85 ± 1.82 1.47E-22 6.73 ± 3.35  4.55 ± 1.60 0.015 5.24 ± 2.35 

FD-MScM-EL 

vs. QUBIC 

3.85 ± 1.82 8.34E-29 2.06 ± 0.50  4.55 ± 1.60 1.38E-26 2.36 ± 0.37 

FD-MScM-EL 

vs. FD-COAL 

3.85 ± 1.82 3.61E-20 2.47 ± 1.12  4.55 ± 1.60 1.80E-06 3.51 ± 1.51 
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FD-MScM-SH 

vs. MSISA-P 

4.31 ± 1.94 0.054 5.06 ± 2.38  4.82 ± 1.63 0.007 5.77 ± 1.91 

FD-MScM-SH 

vs. MSISA-R 

4.31 ± 1.94 4.83E-15 1.99 ± 0.50  4.82 ± 1.63 9.28E-16 2.42 ± 0.56 

FD-MScM-SH 

vs. MSKM-SH 

4.31 ± 1.94 0.007 4.79 ± 1.75  4.82 ± 1.63 4.44E-04 5.49 ± 1.73 

FD-MScM-SH 

vs. MSKM-EL 

4.31 ± 1.94 4.42E-06 3.45 ± 1.88  4.82 ± 1.63 0.004 4.35 ± 1.67 

FD-MScM-SH 

vs. BMSKM-SH 

4.31 ± 1.94 0.161 4.61 ± 2.13  4.82 ± 1.63 0.320 5.02 ± 1.71 

FD-MScM-SH 

vs. BMSKM-EL 

4.31 ± 1.94 3.12E-08 3.19 ± 1.39  4.82 ± 1.63 0.006 4.43 ± 1.62 

FD-MScM-EL 

vs. MSISA-P 

3.85 ± 1.82 0.002 5.06 ± 2.38  4.55 ± 1.60 0.001 5.77 ± 1.91 

FD-MScM-EL 

vs. MSISA-R 

3.85 ± 1.82 4.04E-13 1.99 ± 0.50  4.55 ± 1.60 1.78E-13 2.42 ± 0.56 

FD-MScM-EL 

vs. MSKM-SH 

3.85 ± 1.82 3.82E-07 4.79 ± 1.75  4.55 ± 1.60 5.17E-06 5.49 ± 1.73 

FD-MScM-EL 

vs. MSKM-EL 

3.85 ± 1.82 0.007 3.45 ± 1.88  4.55 ± 1.60 0.145 4.35 ± 1.67 

FD-MScM-EL 

vs. BMSKM-SH 

3.85 ± 1.82 2.38E-04 4.61 ± 2.13  4.55 ± 1.60 0.026 5.02 ± 1.71 

FD-MScM-EL 

vs. BMSKM-EL 

3.85 ± 1.82 4.73E-04 3.19 ± 1.39  4.55 ± 1.60 0.244 4.43 ± 1.62 
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B. anthracis - L. monocytogenes pairing      

 B. anthracis  L. monocytogenes 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's 

2-sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 

3.80 ± 1.49 0.007 3.83 ± 2.57  4.98 ± 1.73 0.673 5.24 ± 2.35 

FD-MScM-SH 

vs. QUBIC 

3.80 ± 1.49 1.97E-33 1.77 ± 0.26  4.98 ± 1.73 1.03E-33 2.36 ± 0.37 

FD-MScM-SH 

vs. FD-COAL 

3.80 ± 1.49 1.47E-20 2.32 ± 1.57  4.98 ± 1.73 6.20E-10 3.51 ± 1.51 

FD-MScM-EL 

vs. FD-SSCM 

3.38 ± 1.31 0.662 3.83 ± 2.57  4.66 ± 1.73 0.044 5.24 ± 2.35 

FD-MScM-EL 

vs. QUBIC 

3.38 ± 1.31 2.49E-29 1.77 ± 0.26  4.66 ± 1.73 1.04E-30 2.36 ± 0.37 

FD-MScM-EL 

vs. FD-COAL 

3.38 ± 1.31 6.13E-16 2.32 ± 1.57  4.66 ± 1.73 3.57E-07 3.51 ± 1.51 

FD-MScM-SH 

vs. MSKM-SH 

3.80 ± 1.49 0.303 3.94 ± 1.46  4.98 ± 1.73 0.001 5.61 ± 1.74 

FD-MScM-SH 

vs. MSKM-EL 

3.80 ± 1.49 8.75E-14 2.61 ± 1.04  4.98 ± 1.73 0.001 4.37 ± 1.51 

FD-MScM-EL 

vs. MSKM-SH 

3.38 ± 1.31 4.908E-04 3.94 ± 1.46  4.66 ± 1.73 3.80E-07 5.61 ± 1.74 

FD-MScM-EL 

vs. MSKM-EL 

3.38 ± 1.31 3.44E-08 2.61 ± 1.04  4.66 ± 1.73 0.191 4.37 ± 1.51 
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7.2.3.1.5.2 Gram-negative triplet 

Table 7.34: Comparison of bicluster sequence p-values from the full data methods considered by 

this study for all pairings of E. coli, S. typhimurium and V. cholerae. 

E. coli - S. typhimurium pairing 
     

  

E. coli 

  

S. typhimurium 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon’s  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon’s 2-

sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 

3.31 ± 2.19 5.25E-49 8.24 ± 4.43 

 

3.29 ± 1.47 2.86E-05 4.67 ± 3.36 

FD-MScM-SH 

vs. QUBIC 

3.31 ± 2.19 4.87E-17 7.36 ± 4.69 

 

3.29 ± 1.47 1.81E-20 5.98 ± 2.47 

FD-MScM-SH 

vs. FD-COAL 

3.31 ± 2.19 6.97E-07 4.75 ± 3.19 

 

3.29 ± 1.47 1.87E-03 2.84 ± 1.31 

FD-MScM-EL 

vs. FD-SSCM 

5.24 ± 2.98 9.21E-18 8.24 ± 4.43 

 

4.54 ± 1.94 0.03 4.67 ± 3.36 

FD-MScM-EL 

vs. QUBIC 

5.24 ± 2.98 3.19E-04 7.36 ± 4.69 

 

4.54 ± 1.94 2.92E-07 5.98 ± 2.47 

FD-MScM-EL 

vs. FD-COAL 

5.24 ± 2.98 0.01 4.75 ± 3.19 

 

4.54 ± 1.94 7.68E-18 2.84 ± 1.31 

FD-MScM-SH 

vs. MSISA-P 

3.31 ± 2.19 3.90E-13 6.59 ± 3.53 

 

3.29 ± 1.47 6.13E-10 5.66 ± 2.66 

FD-MScM-SH 

vs. MSISA-R 

3.31 ± 2.19 1.55E-04 4.32 ± 2.19 

 

3.29 ± 1.47 6.10E-04 2.28 ± 0.57 

FD-MScM-SH 

vs. MSKM-SH 

3.31 ± 2.19 4.96E-07 4.56 ± 2.71 

 

3.29 ± 1.47 1.58E-09 4.51 ± 2.24 
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FD-MScM-SH 

vs. MSKM-EL 

3.31 ± 2.19 6.70E-06 4.37 ± 2.67 

 

3.29 ± 1.47 1.37E-04 4.07 ± 2.07 

FD-MScM-SH 

vs. BMSKM-SH 

3.31 ± 2.19 6.26E-08 4.39 ± 2.52 

 

3.29 ± 1.47 2.24E-08 4.32 ± 1.90 

FD-MScM-SH 

vs. BMSKM-EL 

3.31 ± 2.19 9.65E-05 4.12 ± 2.59 

 

3.29 ± 1.47 2.05E-03 3.83 ± 1.97 

FD-MScM-EL 

vs. MSISA-P 

5.24 ± 2.98 5.95E-03 6.59 ± 3.53 

 

4.54 ± 1.94 9.72E-03 5.66 ± 2.66 

FD-MScM-EL 

vs. MSISA-R 

5.24 ± 2.98 0.05 4.32 ± 2.19 

 

4.54 ± 1.94 3.79E-11 2.28 ± 0.57 

FD-MScM-EL 

vs. MSKM-SH 

5.24 ± 2.98 0.02 4.56 ± 2.71 

 

4.54 ± 1.94 0.52 4.51 ± 2.24 

FD-MScM-EL 

vs. MSKM-EL 

5.24 ± 2.98 1.50E-03 4.37 ± 2.67 

 

4.54 ± 1.94 3.87E-03 4.07 ± 2.07 

FD-MScM-EL 

vs. BMSKM-SH 

5.24 ± 2.98 6.44E-03 4.39 ± 2.52 

 

4.54 ± 1.94 0.36 4.32 ± 1.90 

FD-MScM-EL 

vs. BMSKM-EL 

5.24 ± 2.98 2.50E-05 4.12 ± 2.59 

 

4.54 ± 1.94 3.93E-05 3.83 ± 1.97 

        

        
E. coli - V. cholerae pairing 

     

  
E. coli 

   
V. cholerae 

 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon’s  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon’s 2-

sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 

3.50 ± 1.31 1.69E-47 8.24 ± 4.43 

 

3.25 ± 1.24 8.29E-28 9.14 ± 6.57 
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FD-MScM-SH 

vs. QUBIC 

3.50 ± 1.31 6.52E-15 7.36 ± 4.69 

 

3.25 ± 1.24 1.29E-26 9.18 ± 6.74 

FD-MScM-SH 

vs. FD-COAL 

3.50 ± 1.31 3.13E-03 4.75 ± 3.19 

 

3.25 ± 1.24 2.70E-03 4.77 ± 3.84 

FD-MScM-EL 

vs. FD-SSCM 

5.43 ± 2.66 7.26E-15 8.24 ± 4.43 

 

5.02 ± 2.42 2.64E-10 9.14 ± 6.57 

FD-MScM-EL 

vs. QUBIC 

5.43 ± 2.66 4.92E-03 7.36 ± 4.69 

 

5.02 ± 2.42 1.24E-09 9.18 ± 6.74 

FD-MScM-EL 

vs. FD-COAL 

5.43 ± 2.66 2.39E-04 4.75 ± 3.19 

 

5.02 ± 2.42 8.58E-04 4.77 ± 3.84 

FD-MScM-SH 

vs. MSISA-P 

3.50 ± 1.31 2.88E-10 7.05 ± 3.51 

 

3.25 ± 1.24 7.91E-08 5.94 ± 2.76 

FD-MScM-SH 

vs. MSISA-R 

3.50 ± 1.31 0.25 4.06 ± 2.05 

 

3.25 ± 1.24 0.64 3.73 ± 1.77 

FD-MScM-SH 

vs. MSKM-SH 

3.50 ± 1.31 4.45E-09 5.28 ± 3.32 

 

3.25 ± 1.24 4.46E-16 5.27 ± 2.56 

FD-MScM-SH 

vs. MSKM-EL 

3.50 ± 1.31 0.10 4.38 ± 3.11 

 

3.25 ± 1.24 9.73E-05 4.42 ± 2.69 

FD-MScM-EL 

vs. MSISA-P 

5.43 ± 2.66 7.92E-03 7.05 ± 3.51 

 

5.02 ± 2.42 0.05 5.94 ± 2.76 

FD-MScM-EL 

vs. MSISA-R 

5.43 ± 2.66 1.34E-03 4.06 ± 2.05 

 

5.02 ± 2.42 0.17 3.73 ± 1.77 

FD-MScM-EL 

vs. MSKM-SH 

5.43 ± 2.66 0.23 5.28 ± 3.32 

 

5.02 ± 2.42 0.29 5.27 ± 2.56 
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FD-MScM-EL 

vs. MSKM-EL 

5.43 ± 2.66 1.11E-06 4.38 ± 3.11 

 

5.02 ± 2.42 4.43E-03 4.42 ± 2.69 

        

        
S. typhimurium - V. cholerae pairing 

     

 

S. typhimurium 

  

V. cholerae 

 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon’s  

2-sided 

dist2 mean 

(red)  

dist1 mean 

(green) 

Wilcoxon’s 2-

sided 

dist2 mean 

(red) 

FD-MScM-SH 

vs. FD-SSCM 

3.26 ± 1.25 7.83E-05 4.67 ± 3.36 

 

2.98 ± 1.28 8.90E-32 9.14 ± 6.57 

FD-MScM-SH 

vs. QUBIC 

3.26 ± 1.25 1.18E-21 5.98 ± 2.47 

 

2.98 ± 1.28 3.50E-29 9.18 ± 6.74 

FD-MScM-EL 

vs. FD-SSCM 

5.10 ± 2.06 2.59E-05 4.67 ± 3.36 

 

4.85 ± 2.25 2.04E-11 9.14 ± 6.57 

FD-MScM-EL 

vs. QUBIC 

5.10 ± 2.06 2.92E-03 5.98 ± 2.47 

 

4.85 ± 2.25 1.06E-10 9.18 ± 6.74 

FD-MScM-EL 

vs. FD-COAL 

5.10 ± 2.06 1.92E-23 2.84 ± 1.31 

 

4.85 ± 2.25 3.03E-03 4.77 ± 3.84 

FD-MScM-SH 

vs. MSKM-SH 

3.26 ± 1.25 1.42E-16 5.17 ± 2.34 

 

2.98 ± 1.28 8.44E-18 5.06 ± 2.61 

FD-MScM-SH 

vs. MSKM-EL 

3.26 ± 1.25 3.49E-03 3.84 ± 1.93 

 

2.98 ± 1.28 1.71E-07 4.32 ± 2.55 

FD-MScM-SH 

vs. BMSKM-SH 

3.26 ± 1.25 7.36E-16 5.03 ± 2.17 

 

2.98 ± 1.28 3.95E-14 4.89 ± 2.53 

FD-MScM-EL 

vs. MSKM-SH 

5.10 ± 2.06 0.86 5.17 ± 2.34 

 

4.85 ± 2.25 0.62 5.06 ± 2.61 
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FD-MScM-EL 

vs. BMSKM-SH 

5.10 ± 2.06 0.56 5.03 ± 2.17 

 

4.85 ± 2.25 0.95 4.89 ± 2.53 

FD-MScM-EL 

vs. BMSKM-EL 

5.10 ± 2.06 4.46E-11 3.78 ± 1.96 

 

4.85 ± 2.25 5.53E-06 3.89 ± 2.22 

 

7.2.3.2 Comparisons with EO-MScM 

In the comparisons below, we only show results from the Gram-positive triplet, as the 

expression only results from the Gram-negative triplet were largely uninformative.  

We direct the reader to section 3.1.3.1 for a further explanation. 

7.2.3.2.1 Residuals 

Table 7.35: Comparison of bicluster residuals from the expression only methods considered by 

this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes.  A comparison of the 

residuals of the results from MScM (expression only) with all other relevant methods for all 3 pairings 

of the three organisms examined.  In the comparisons, we compare both MScM steps to the other 

methods.  Displayed are the means for each method and/or step compared, as well as the Wilcoxon‘s 

non-parametric rank test (2-sided) comparing their distributions.  We direct the reader to section 

7.2.3.1.1 for instructions on how to interpret the table.  In this case, these results illustrate that in 61 of 

the 116 comparisons (52.6%) MScM step did as well or better than its competitors. 

B. subtilis - B. anthracis pairing      

  B. subtilis   B. anthracis 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 
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EO-MScM-SH vs. 

EO-SSCM 

0.52 ± 0.09 6.21E-20 0.44 ± 0.20  0.50 ± 0.20 1.89E-38 0.23 ± 0.06 

EO-MScM-SH vs. 

FD-SSCM 

0.52 ± 0.09 2.38E-05 0.49 ± 0.13  0.50 ± 0.20 1.79E-23 0.31 ± 0.12 

EO-MScM-SH vs. 

QUBIC 

0.52 ± 0.09 9.34E-36 0.87 ± 0.21  0.50 ± 0.20 3.12E-50 1.51 ± 0.29 

EO-MScM-SH vs. 

EO-COAL 

0.52 ± 0.09 7.01E-40 0.78 ± 0.23  0.50 ± 0.20 1.98E-04 0.58 ± 0.17 

EO-MScM-SH vs. 

FD-COAL 

0.52 ± 0.09 3.60E-40 0.80 ± 0.25  0.50 ± 0.20 3.53E-04 0.58 ± 0.17 

EO-MScM-EL vs. 

EO-SSCM 

0.52 ± 0.10 2.72E-18 0.44 ± 0.20  0.49 ± 0.20 3.63E-35 0.23 ± 0.06 

EO-MScM-EL vs. 

FD-SSCM 

0.52 ± 0.10 0.003 0.49 ± 0.13  0.49 ± 0.20 2.76E-20 0.31 ± 0.12 

EO-MScM-EL vs. 

QUBIC 

0.52 ± 0.10 1.35E-35 0.87 ± 0.21  0.49 ± 0.20 2.88E-50 1.51 ± 0.29 

EO-MScM-EL vs. 

EO-COAL 

0.52 ± 0.10 2.61E-42 0.78 ± 0.23  0.49 ± 0.20 3.81E-05 0.58 ± 0.17 

EO-MScM-EL vs. 

FD-COAL 

0.52 ± 0.10 1.63E-42 0.80 ± 0.25  0.49 ± 0.20 6.99E-05 0.58 ± 0.17 

EO-MScM-SH vs. 

MSISA-P 

0.52 ± 0.09 9.13E-17 0.98 ± 0.39  0.50 ± 0.20 1.71E-22 1.97 ± 0.94 

EO-MScM-SH vs. 

MSISA-R 

0.52 ± 0.09 2.34E-19 1.11 ± 0.41  0.50 ± 0.20 5.65E-22 1.58 ± 0.38 
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EO-MScM-SH vs. 

MSKM-SH 

0.52 ± 0.09 4.07E-30 0.41 ± 0.07  0.50 ± 0.20 0.107 0.53 ± 0.12 

EO-MScM-SH vs. 

MSKM-EL 

0.52 ± 0.09 2.86E-27 0.42 ± 0.06  0.50 ± 0.20 0.455 0.48 ± 0.11 

EO-MScM-SH vs. 

BMSKM-SH 

0.52 ± 0.09 4.07E-14 0.45 ± 0.07  0.50 ± 0.20 8.32E-08 0.38 ± 0.07 

EO-MScM-SH vs. 

BMSKM-EL 

0.52 ± 0.09 1.08E-14 0.45 ± 0.06  0.50 ± 0.20 1.06E-06 0.39 ± 0.07 

EO-MScM-EL vs. 

MSISA-P 

0.52 ± 0.10 6.41E-17 0.98 ± 0.39  0.49 ± 0.20 1.51E-22 1.97 ± 0.94 

EO-MScM-EL vs. 

MSISA-R 

0.52 ± 0.10 2.20E-19 1.11 ± 0.41  0.49 ± 0.20 5.31E-22 1.58 ± 0.38 

EO-MScM-EL vs. 

MSKM-SH 

0.52 ± 0.10 5.39E-27 0.41 ± 0.07  0.49 ± 0.20 0.047 0.53 ± 0.12 

EO-MScM-EL vs. 

MSKM-EL 

0.52 ± 0.10 5.92E-24 0.42 ± 0.06  0.49 ± 0.20 0.703 0.48 ± 0.11 

EO-MScM-EL vs. 

BMSKM-SH 

0.52 ± 0.10 1.11E-09 0.45 ± 0.07  0.49 ± 0.20 1.04E-06 0.38 ± 0.07 

EO-MScM-EL vs. 

BMSKM-EL 

0.52 ± 0.10 1.24E-09 0.45 ± 0.06  0.49 ± 0.20 8.70E-06 0.39 ± 0.07 

        

        

B. subtilis - L. monocytogenes pairing      

  B. subtilis   L. monocytogenes 
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dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

EO-MScM-SH vs. 

EO-SSCM 

0.52 ± 0.08 6.03E-20 0.44 ± 0.20  0.49 ± 0.17 1.42E-17 0.29 ± 0.10 

EO-MScM-SH vs. 

FD-SSCM 

0.52 ± 0.08 1.30E-04 0.49 ± 0.13  0.49 ± 0.17 5.74E-08 0.40 ± 0.18 

EO-MScM-SH vs. 

QUBIC 

0.52 ± 0.08 6.59E-37 0.87 ± 0.21  0.49 ± 0.17 1.06E-23 1.81 ± 0.85 

EO-MScM-SH vs. 

EO-COAL 

0.52 ± 0.08 1.33E-43 0.78 ± 0.23  0.49 ± 0.17 0.657 1.63 ± 3.07 

EO-MScM-SH vs. 

FD-COAL 

0.52 ± 0.08 2.21E-43 0.80 ± 0.25  0.49 ± 0.17 0.617 1.70 ± 3.24 

EO-MScM-EL vs. 

EO-SSCM 

0.50 ± 0.09 7.36E-17 0.44 ± 0.20  0.48 ± 0.17 1.85E-17 0.29 ± 0.10 

EO-MScM-EL vs. 

FD-SSCM 

0.50 ± 0.09 0.055 0.49 ± 0.13  0.48 ± 0.17 1.75E-07 0.40 ± 0.18 

EO-MScM-EL vs. 

QUBIC 

0.50 ± 0.09 1.10E-37 0.87 ± 0.21  0.48 ± 0.17 5.53E-24 1.81 ± 0.85 

EO-MScM-EL vs. 

EO-COAL 

0.50 ± 0.09 6.71E-47 0.78 ± 0.23  0.48 ± 0.17 0.755 1.63 ± 3.07 

EO-MScM-EL vs. 

FD-COAL 

0.50 ± 0.09 1.26E-46 0.80 ± 0.25  0.48 ± 0.17 0.734 1.70 ± 3.24 

EO-MScM-SH vs. 

MSISA-P 

0.52 ± 0.08 8.65E-10 0.87 ± 0.34  0.49 ± 0.17 4.97E-19 1.59 ± 0.52 
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EO-MScM-SH vs. 

MSISA-R 

0.52 ± 0.08 1.64E-18 1.11 ± 0.42  0.49 ± 0.17 3.60E-21 1.31 ± 0.34 

EO-MScM-SH vs. 

MSKM-SH 

0.52 ± 0.08 1.11E-34 0.40 ± 0.07  0.49 ± 0.17 0.358 0.50 ± 0.12 

EO-MScM-SH vs. 

MSKM-EL 

0.52 ± 0.08 3.97E-28 0.42 ± 0.06  0.49 ± 0.17 0.683 0.48 ± 0.11 

EO-MScM-SH vs. 

BMSKM-SH 

0.52 ± 0.08 1.14E-20 0.43 ± 0.07  0.49 ± 0.17 3.32E-04 0.42 ± 0.09 

EO-MScM-SH vs. 

BMSKM-EL 

0.52 ± 0.08 1.16E-18 0.44 ± 0.06  0.49 ± 0.17 7.46E-04 0.42 ± 0.09 

EO-MScM-EL vs. 

MSISA-P 

0.50 ± 0.09 4.44E-10 0.87 ± 0.34  0.48 ± 0.17 4.97E-19 1.59 ± 0.52 

EO-MScM-EL vs. 

MSISA-R 

0.50 ± 0.09 1.38E-18 1.11 ± 0.42  0.48 ± 0.17 3.60E-21 1.31 ± 0.34 

EO-MScM-EL vs. 

MSKM-SH 

0.50 ± 0.09 4.41E-29 0.40 ± 0.07  0.48 ± 0.17 0.190 0.50 ± 0.12 

EO-MScM-EL vs. 

MSKM-EL 

0.50 ± 0.09 5.98E-22 0.42 ± 0.06  0.48 ± 0.17 0.972 0.48 ± 0.11 

EO-MScM-EL vs. 

BMSKM-SH 

0.50 ± 0.09 2.09E-14 0.43 ± 0.07  0.48 ± 0.17 0.001 0.42 ± 0.09 

EO-MScM-EL vs. 

BMSKM-EL 

0.50 ± 0.09 4.23E-12 0.44 ± 0.06  0.48 ± 0.17 0.002 0.42 ± 0.09 

        

        

B. anthracis - L. monocytogenes pairing      
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 B. anthracis  L. monocytogenes 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

EO-MScM-SH vs. 

EO-SSCM 

0.52 ± 0.17 1.52E-48 0.23 ± 0.06  0.50 ± 0.18 2.48E-17 0.29 ± 0.10 

EO-MScM-SH vs. 

FD-SSCM 

0.52 ± 0.17 9.86E-34 0.31 ± 0.12  0.50 ± 0.18 1.67E-08 0.40 ± 0.18 

EO-MScM-SH vs. 

QUBIC 

0.52 ± 0.17 4.65E-49 1.51 ± 0.29  0.50 ± 0.18 1.06E-22 1.81 ± 0.85 

EO-MScM-SH vs. 

EO-COAL 

0.52 ± 0.17 5.58E-04 0.58 ± 0.17  0.50 ± 0.18 0.568 1.63 ± 3.07 

EO-MScM-SH vs. 

FD-COAL 

0.52 ± 0.17 8.27E-04 0.58 ± 0.17  0.50 ± 0.18 0.532 1.70 ± 3.24 

EO-MScM-EL vs. 

EO-SSCM 

0.50 ± 0.17 2.27E-45 0.23 ± 0.06  0.50 ± 0.19 1.46E-16 0.29 ± 0.10 

EO-MScM-EL vs. 

FD-SSCM 

0.50 ± 0.17 1.11E-29 0.31 ± 0.12  0.50 ± 0.19 1.20E-07 0.40 ± 0.18 

EO-MScM-EL vs. 

QUBIC 

0.50 ± 0.17 4.46E-49 1.51 ± 0.29  0.50 ± 0.19 2.80E-23 1.81 ± 0.85 

EO-MScM-EL vs. 

EO-COAL 

0.50 ± 0.17 5.24E-05 0.58 ± 0.17  0.50 ± 0.19 0.810 1.63 ± 3.07 

EO-MScM-EL vs. 

FD-COAL 

0.50 ± 0.17 6.24E-05 0.58 ± 0.17  0.50 ± 0.19 0.753 1.70 ± 3.24 

EO-MScM-SH vs. 

MSKM-SH 

0.52 ± 0.17 1.15E-10 0.40 ± 0.08  0.50 ± 0.18 0.002 0.43 ± 0.08 
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EO-MScM-SH vs. 

MSKM-EL 

0.52 ± 0.17 1.26E-11 0.39 ± 0.07  0.50 ± 0.18 4.66E-04 0.43 ± 0.08 

EO-MScM-EL vs. 

MSKM-SH 

0.50 ± 0.17 6.56E-09 0.40 ± 0.08  0.50 ± 0.19 0.010 0.43 ± 0.08 

EO-MScM-EL vs. 

MSKM-EL 

0.50 ± 0.17 1.83E-09 0.39 ± 0.07  0.50 ± 0.19 0.003 0.43 ± 0.08 

 

 

7.2.3.2.2 Mean correlations 

Table 7.36: Comparison of bicluster mean correlations from the expression only methods 

considered by this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes.  A 

comparison of the mean correlations of the results from MScM (expression only) with all other relevant 

methods for all 3 pairings of the three organisms examined.  In the comparisons, we compare both 

MScM steps to the other methods.  Displayed are the means for each method and/or step compared, as 

well as the Wilcoxon‘s non-parametric rank test (2-sided) comparing their distributions.  We direct the 

reader to section 7.2.3.1.1 for instructions on how to interpret the table.  In this case, these results 

illustrate that in 65 of the 116 comparisons (56%) MScM step did as well or better than its competitors. 

B. subtilis - B. anthracis pairing    

  B. subtilis   B. anthracis 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

EO-MScM-SH vs. 

EO-SSCM 

0.52 ± 0.12 2.25E-29 0.70 ± 0.11  0.69 ± 0.17 1.02E-34 0.91 ± 0.05 
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EO-MScM-SH vs. 

FD-SSCM 

0.52 ± 0.12 0.007 0.56 ± 0.14  0.69 ± 0.17 7.13E-15 0.82 ± 0.15 

EO-MScM-SH vs. 

QUBIC 

0.52 ± 0.12 1.23E-21 0.36 ± 0.19  0.69 ± 0.17 4.14E-23 0.49 ± 0.05 

EO-MScM-SH vs. 

EO-COAL 

0.52 ± 0.12 5.25E-05 0.58 ± 0.14  0.69 ± 0.17 0.002 0.64 ± 0.13 

EO-MScM-SH vs. 

FD-COAL 

0.52 ± 0.12 2.49E-05 0.59 ± 0.15  0.69 ± 0.17 1.05E-04 0.62 ± 0.13 

EO-MScM-EL vs. 

EO-SSCM 

0.54 ± 0.12 2.67E-26 0.70 ± 0.11  0.69 ± 0.19 2.90E-31 0.91 ± 0.05 

EO-MScM-EL vs. 

FD-SSCM 

0.54 ± 0.12 0.098 0.56 ± 0.14  0.69 ± 0.19 4.09E-13 0.82 ± 0.15 

EO-MScM-EL vs. 

QUBIC 

0.54 ± 0.12 3.57E-23 0.36 ± 0.19  0.69 ± 0.19 3.11E-19 0.49 ± 0.05 

EO-MScM-EL vs. 

EO-COAL 

0.54 ± 0.12 0.003 0.58 ± 0.14  0.69 ± 0.19 0.004 0.64 ± 0.13 

EO-MScM-EL vs. 

FD-COAL 

0.54 ± 0.12 0.001 0.59 ± 0.15  0.69 ± 0.19 2.44E-04 0.62 ± 0.13 

EO-MScM-SH vs. 

MSISA-P 

0.52 ± 0.12 0.003 0.60 ± 0.14  0.69 ± 0.17 5.35E-06 0.56 ± 0.07 

EO-MScM-SH vs. 

MSISA-R 

0.52 ± 0.12 0.304 0.55 ± 0.13  0.69 ± 0.17 7.54E-10 0.51 ± 0.03 

EO-MScM-SH vs. 

MSKM-SH 

0.52 ± 0.12 2.38E-05 0.58 ± 0.11  0.69 ± 0.17 1.58E-14 0.52 ± 0.14 
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EO-MScM-SH vs. 

MSKM-EL 

0.52 ± 0.12 0.003 0.56 ± 0.11  0.69 ± 0.17 4.87E-07 0.58 ± 0.15 

EO-MScM-SH vs. 

BMSKM-SH 

0.52 ± 0.12 0.028 0.49 ± 0.13  0.69 ± 0.17 0.265 0.72 ± 0.10 

EO-MScM-SH vs. 

BMSKM-EL 

0.52 ± 0.12 0.107 0.50 ± 0.12  0.69 ± 0.17 0.341 0.71 ± 0.10 

EO-MScM-EL vs. 

MSISA-P 

0.54 ± 0.12 0.020 0.60 ± 0.14  0.69 ± 0.19 2.01E-05 0.56 ± 0.07 

EO-MScM-EL vs. 

MSISA-R 

0.54 ± 0.12 0.629 0.55 ± 0.13  0.69 ± 0.19 4.92E-08 0.51 ± 0.03 

EO-MScM-EL vs. 

MSKM-SH 

0.54 ± 0.12 0.002 0.58 ± 0.11  0.69 ± 0.19 2.01E-13 0.52 ± 0.14 

EO-MScM-EL vs. 

MSKM-EL 

0.54 ± 0.12 0.057 0.56 ± 0.11  0.69 ± 0.19 1.23E-06 0.58 ± 0.15 

EO-MScM-EL vs. 

BMSKM-SH 

0.54 ± 0.12 0.002 0.49 ± 0.13  0.69 ± 0.19 0.346 0.72 ± 0.10 

EO-MScM-EL vs. 

BMSKM-EL 

0.54 ± 0.12 0.012 0.50 ± 0.12  0.69 ± 0.19 0.413 0.71 ± 0.10 

        

        

B. subtilis - L. monocytogenes pairing      

  B. subtilis   L. monocytogenes 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 
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EO-MScM-SH vs. 

EO-SSCM 

0.52 ± 0.13 3.09E-28 0.70 ± 0.11  0.64 ± 0.18 1.43E-18 0.86 ± 0.08 

EO-MScM-SH vs. 

FD-SSCM 

0.52 ± 0.13 0.004 0.56 ± 0.14  0.64 ± 0.18 1.67E-04 0.71 ± 0.20 

EO-MScM-SH vs. 

QUBIC 

0.52 ± 0.13 3.89E-21 0.36 ± 0.19  0.64 ± 0.18 1.06E-13 0.45 ± 0.27 

EO-MScM-SH vs. 

EO-COAL 

0.52 ± 0.13 2.15E-05 0.58 ± 0.14  0.64 ± 0.18 1.37E-09 0.81 ± 0.13 

EO-MScM-SH vs. 

FD-COAL 

0.52 ± 0.13 9.27E-06 0.59 ± 0.15  0.64 ± 0.18 5.02E-09 0.80 ± 0.12 

EO-MScM-EL vs. 

EO-SSCM 

0.54 ± 0.12 1.67E-24 0.70 ± 0.11  0.64 ± 0.18 2.87E-19 0.86 ± 0.08 

EO-MScM-EL vs. 

FD-SSCM 

0.54 ± 0.12 0.187 0.56 ± 0.14  0.64 ± 0.18 8.67E-05 0.71 ± 0.20 

EO-MScM-EL vs. 

QUBIC 

0.54 ± 0.12 1.86E-23 0.36 ± 0.19  0.64 ± 0.18 2.98E-13 0.45 ± 0.27 

EO-MScM-EL vs. 

EO-COAL 

0.54 ± 0.12 0.007 0.58 ± 0.14  0.64 ± 0.18 8.12E-10 0.81 ± 0.13 

EO-MScM-EL vs. 

FD-COAL 

0.54 ± 0.12 0.003 0.59 ± 0.15  0.64 ± 0.18 1.67E-09 0.80 ± 0.12 

EO-MScM-SH vs. 

MSISA-P 

0.52 ± 0.13 0.099 0.60 ± 0.20  0.64 ± 0.18 8.39E-05 0.47 ± 0.23 

EO-MScM-SH vs. 

MSISA-R 

0.52 ± 0.13 0.268 0.55 ± 0.12  0.64 ± 0.18 0.001 0.50 ± 0.27 
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EO-MScM-SH vs. 

MSKM-SH 

0.52 ± 0.13 1.40E-07 0.59 ± 0.11  0.64 ± 0.18 7.37E-10 0.51 ± 0.17 

EO-MScM-SH vs. 

MSKM-EL 

0.52 ± 0.13 0.002 0.56 ± 0.11  0.64 ± 0.18 1.87E-05 0.55 ± 0.16 

EO-MScM-SH vs. 

BMSKM-SH 

0.52 ± 0.13 0.737 0.52 ± 0.14  0.64 ± 0.18 0.403 0.63 ± 0.15 

EO-MScM-SH vs. 

BMSKM-EL 

0.52 ± 0.13 0.311 0.53 ± 0.12  0.64 ± 0.18 0.883 0.64 ± 0.14 

EO-MScM-EL vs. 

MSISA-P 

0.54 ± 0.12 0.324 0.60 ± 0.20  0.64 ± 0.18 6.38E-05 0.47 ± 0.23 

EO-MScM-EL vs. 

MSISA-R 

0.54 ± 0.12 0.874 0.55 ± 0.12  0.64 ± 0.18 0.002 0.50 ± 0.27 

EO-MScM-EL vs. 

MSKM-SH 

0.54 ± 0.12 8.84E-05 0.59 ± 0.11  0.64 ± 0.18 4.30E-10 0.51 ± 0.17 

EO-MScM-EL vs. 

MSKM-EL 

0.54 ± 0.12 0.121 0.56 ± 0.11  0.64 ± 0.18 1.46E-05 0.55 ± 0.16 

EO-MScM-EL vs. 

BMSKM-SH 

0.54 ± 0.12 0.298 0.52 ± 0.14  0.64 ± 0.18 0.406 0.63 ± 0.15 

EO-MScM-EL vs. 

BMSKM-EL 

0.54 ± 0.12 0.578 0.53 ± 0.12  0.64 ± 0.18 0.852 0.64 ± 0.14 

        

        

B. anthracis - L. monocytogenes pairing      

 B. anthracis  L. monocytogenes 



 

 

 

474 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

EO-MScM-SH vs. 

EO-SSCM 

0.63 ± 0.16 2.22E-48 0.91 ± 0.05  0.63 ± 0.19 1.01E-18 0.86 ± 0.08 

EO-MScM-SH vs. 

FD-SSCM 

0.63 ± 0.16 1.47E-28 0.82 ± 0.15  0.63 ± 0.19 2.84E-05 0.71 ± 0.20 

EO-MScM-SH vs. 

QUBIC 

0.63 ± 0.16 3.47E-14 0.49 ± 0.05  0.63 ± 0.19 3.42E-12 0.45 ± 0.27 

EO-MScM-SH vs. 

EO-COAL 

0.63 ± 0.16 0.824 0.64 ± 0.13  0.63 ± 0.19 5.52E-10 0.81 ± 0.13 

EO-MScM-SH vs. 

FD-COAL 

0.63 ± 0.16 0.341 0.62 ± 0.13  0.63 ± 0.19 1.30E-09 0.80 ± 0.12 

EO-MScM-EL vs. 

EO-SSCM 

0.63 ± 0.17 6.29E-45 0.91 ± 0.05  0.63 ± 0.19 1.54E-18 0.86 ± 0.08 

EO-MScM-EL vs. 

FD-SSCM 

0.63 ± 0.17 1.56E-25 0.82 ± 0.15  0.63 ± 0.19 3.54E-05 0.71 ± 0.20 

EO-MScM-EL vs. 

QUBIC 

0.63 ± 0.17 3.37E-15 0.49 ± 0.05  0.63 ± 0.19 1.22E-11 0.45 ± 0.27 

EO-MScM-EL vs. 

EO-COAL 

0.63 ± 0.17 0.910 0.64 ± 0.13  0.63 ± 0.19 5.61E-10 0.81 ± 0.13 

EO-MScM-EL vs. 

FD-COAL 

0.63 ± 0.17 0.280 0.62 ± 0.13  0.63 ± 0.19 1.98E-09 0.80 ± 0.12 

EO-MScM-SH vs. 

MSKM-SH 

0.63 ± 0.16 0.002 0.69 ± 0.12  0.63 ± 0.19 0.250 0.60 ± 0.14 
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EO-MScM-SH vs. 

MSKM-EL 

0.63 ± 0.16 4.39E-05 0.70 ± 0.10  0.63 ± 0.19 0.892 0.63 ± 0.13 

EO-MScM-EL vs. 

MSKM-SH 

0.63 ± 0.17 0.003 0.69 ± 0.12  0.63 ± 0.19 0.224 0.60 ± 0.14 

EO-MScM-EL vs. 

MSKM-EL 

0.63 ± 0.17 1.20E-04 0.70 ± 0.10  0.63 ± 0.19 0.817 0.63 ± 0.13 

 

7.2.3.2.3 Network Association p-values 

Table 7.37: Comparison of bicluster network association p-values from the expression only 

methods considered by this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes.  

A comparison of the residuals of the results from MScM (expression only) with all other relevant 

methods for all 3 pairings of the three organisms examined.  In the comparisons, we compare both 

MScM steps to the other methods.  Displayed are the means for each method and/or step compared, as 

well as the Wilcoxon‘s non-parametric rank test (2-sided) comparing their distributions.  We direct the 

reader to section 7.2.3.1.1 for instructions on how to interpret the table.  In this case, these results 

illustrate that in 103 of the 116 comparisons (88.8%) MScM step did as well or better than its 

competitors. 

B. subtilis - B. anthracis pairing    

  B. subtilis   B. anthracis 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

EO-MScM-SH vs. 

EO-SSCM 

6.24 ± 7.63 0.435 7.63 ± 9.05  6.45 ± 7.29 0.416 5.39 ± 6.03 
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EO-MScM-SH vs. 

FD-SSCM 

6.24 ± 7.63 2.07E-05 9.78 ± 9.76  6.45 ± 7.29 0.721 5.44 ± 5.38 

EO-MScM-SH vs. 

QUBIC 

6.24 ± 7.63 6.42E-16 2.52 ± 4.78  6.45 ± 7.29 0.938 6.73 ± 7.52 

EO-MScM-SH vs. 

EO-COAL 

6.24 ± 7.63 0.568 7.75 ± 9.50  6.45 ± 7.29 0.198 6.18 ± 7.98 

EO-MScM-SH vs. 

FD-COAL 

6.24 ± 7.63 0.451 7.57 ± 9.16  6.45 ± 7.29 0.144 6.50 ± 8.74 

EO-MScM-EL vs. 

EO-SSCM 

6.32 ± 7.80 0.328 7.63 ± 9.05  6.24 ± 7.31 0.716 5.39 ± 6.03 

EO-MScM-EL vs. 

FD-SSCM 

6.32 ± 7.80 3.91E-06 9.78 ± 9.76  6.24 ± 7.31 0.950 5.44 ± 5.38 

EO-MScM-EL vs. 

QUBIC 

6.32 ± 7.80 6.13E-16 2.52 ± 4.78  6.24 ± 7.31 0.702 6.73 ± 7.52 

EO-MScM-EL vs. 

EO-COAL 

6.32 ± 7.80 0.402 7.75 ± 9.50  6.24 ± 7.31 0.316 6.18 ± 7.98 

EO-MScM-EL vs. 

FD-COAL 

6.32 ± 7.80 0.330 7.57 ± 9.16  6.24 ± 7.31 0.226 6.50 ± 8.74 

EO-MScM-SH vs. 

MSISA-P 

6.24 ± 7.63 0.490 5.56 ± 5.86  6.45 ± 7.29 0.814 5.61 ± 7.17 

EO-MScM-SH vs. 

MSISA-R 

6.24 ± 7.63 4.21E-04 9.69 ± 9.37  6.45 ± 7.29 0.464 9.66 ± 9.95 

EO-MScM-SH vs. 

MSKM-SH 

6.24 ± 7.63 0.190 7.87 ± 9.35  6.45 ± 7.29 0.060 4.38 ± 5.10 
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EO-MScM-SH vs. 

MSKM-EL 

6.24 ± 7.63 0.137 8.15 ± 9.65  6.45 ± 7.29 0.005 4.06 ± 5.32 

EO-MScM-SH vs. 

BMSKM-SH 

6.24 ± 7.63 0.110 7.27 ± 8.25  6.45 ± 7.29 0.489 5.54 ± 6.48 

EO-MScM-SH vs. 

BMSKM-EL 

6.24 ± 7.63 0.346 6.93 ± 8.19  6.45 ± 7.29 0.024 4.56 ± 5.86 

EO-MScM-EL vs. 

MSISA-P 

6.32 ± 7.80 0.429 5.56 ± 5.86  6.24 ± 7.31 0.935 5.61 ± 7.17 

EO-MScM-EL vs. 

MSISA-R 

6.32 ± 7.80 0.000 9.69 ± 9.37  6.24 ± 7.31 0.282 9.66 ± 9.95 

EO-MScM-EL vs. 

MSKM-SH 

6.32 ± 7.80 0.130 7.87 ± 9.35  6.24 ± 7.31 0.113 4.38 ± 5.10 

EO-MScM-EL vs. 

MSKM-EL 

6.32 ± 7.80 0.090 8.15 ± 9.65  6.24 ± 7.31 0.012 4.06 ± 5.32 

EO-MScM-EL vs. 

BMSKM-SH 

6.32 ± 7.80 0.063 7.27 ± 8.25  6.24 ± 7.31 0.676 5.54 ± 6.48 

EO-MScM-EL vs. 

BMSKM-EL 

6.32 ± 7.80 0.247 6.93 ± 8.19  6.24 ± 7.31 0.054 4.56 ± 5.86 

        

        

B. subtilis - L. monocytogenes pairing      

  B. subtilis   L. monocytogenes 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 
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EO-MScM-SH vs. 

EO-SSCM 

9.11 ± 10.61 0.419 7.63 ± 9.05  6.31 ± 8.71 0.594 4.42 ± 6.01 

EO-MScM-SH vs. 

FD-SSCM 

9.11 ± 10.61 0.058 9.78 ± 9.76  6.31 ± 8.71 0.003 6.90 ± 7.75 

EO-MScM-SH vs. 

QUBIC 

9.11 ± 10.61 8.39E-16 2.52 ± 4.78  6.31 ± 8.71 2.23E-05 9.95 ± 10.82 

EO-MScM-SH vs. 

EO-COAL 

9.11 ± 10.61 0.279 7.75 ± 9.50  6.31 ± 8.71 0.422 5.24 ± 7.41 

EO-MScM-SH vs. 

FD-COAL 

9.11 ± 10.61 0.334 7.57 ± 9.16  6.31 ± 8.71 0.744 5.93 ± 8.27 

EO-MScM-EL vs. 

EO-SSCM 

8.50 ± 10.57 0.852 7.63 ± 9.05  6.00 ± 8.15 0.546 4.42 ± 6.01 

EO-MScM-EL vs. 

FD-SSCM 

8.50 ± 10.57 0.002 9.78 ± 9.76  6.00 ± 8.15 0.002 6.90 ± 7.75 

EO-MScM-EL vs. 

QUBIC 

8.50 ± 10.57 1.01E-13 2.52 ± 4.78  6.00 ± 8.15 1.34E-05 9.95 ± 10.82 

EO-MScM-EL vs. 

EO-COAL 

8.50 ± 10.57 0.999 7.75 ± 9.50  6.00 ± 8.15 0.440 5.24 ± 7.41 

EO-MScM-EL vs. 

FD-COAL 

8.50 ± 10.57 0.894 7.57 ± 9.16  6.00 ± 8.15 0.751 5.93 ± 8.27 

EO-MScM-SH vs. 

MSISA-P 

9.11 ± 10.61 0.317 9.05 ± 8.89  6.31 ± 8.71 0.533 3.70 ± 1.79 

EO-MScM-SH vs. 

MSISA-R 

9.11 ± 10.61 0.126 9.61 ± 9.29  6.31 ± 8.71 0.077 6.20 ± 6.65 
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EO-MScM-SH vs. 

MSKM-SH 

9.11 ± 10.61 0.199 9.76 ± 10.54  6.31 ± 8.71 0.052 7.88 ± 9.56 

EO-MScM-SH vs. 

MSKM-EL 

9.11 ± 10.61 0.499 7.68 ± 9.47  6.31 ± 8.71 0.895 4.91 ± 6.44 

EO-MScM-SH vs. 

BMSKM-SH 

9.11 ± 10.61 0.504 9.23 ± 10.39  6.31 ± 8.71 0.327 7.10 ± 9.45 

EO-MScM-SH vs. 

BMSKM-EL 

9.11 ± 10.61 0.112 6.79 ± 8.75  6.31 ± 8.71 0.960 4.86 ± 6.39 

EO-MScM-EL vs. 

MSISA-P 

8.50 ± 10.57 0.139 9.05 ± 8.89  6.00 ± 8.15 0.603 3.70 ± 1.79 

EO-MScM-EL vs. 

MSISA-R 

8.50 ± 10.57 0.015 9.61 ± 9.29  6.00 ± 8.15 0.061 6.20 ± 6.65 

EO-MScM-EL vs. 

MSKM-SH 

8.50 ± 10.57 0.022 9.76 ± 10.54  6.00 ± 8.15 0.038 7.88 ± 9.56 

EO-MScM-EL vs. 

MSKM-EL 

8.50 ± 10.57 0.712 7.68 ± 9.47  6.00 ± 8.15 0.873 4.91 ± 6.44 

EO-MScM-EL vs. 

BMSKM-SH 

8.50 ± 10.57 0.110 9.23 ± 10.39  6.00 ± 8.15 0.304 7.10 ± 9.45 

EO-MScM-EL vs. 

BMSKM-EL 

8.50 ± 10.57 0.548 6.79 ± 8.75  6.00 ± 8.15 0.932 4.86 ± 6.39 

        

        

B. anthracis - L. monocytogenes pairing      

 B. anthracis  L. monocytogenes 
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dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

EO-MScM-SH vs. 

EO-SSCM 

6.75 ± 9.09 0.621 5.39 ± 6.03  5.63 ± 8.48 0.982 4.42 ± 6.01 

EO-MScM-SH vs. 

FD-SSCM 

6.75 ± 9.09 0.440 5.47 ± 5.39  5.63 ± 8.48 6.20E-05 6.90 ± 7.75 

EO-MScM-SH vs. 

QUBIC 

6.75 ± 9.09 0.392 6.73 ± 7.52  5.63 ± 8.48 1.87E-07 9.95 ± 10.82 

EO-MScM-SH vs. 

EO-COAL 

6.75 ± 9.09 0.794 6.18 ± 7.98  5.63 ± 8.48 0.687 5.24 ± 7.41 

EO-MScM-SH vs. 

FD-COAL 

6.75 ± 9.09 0.623 6.50 ± 8.74  5.63 ± 8.48 0.929 5.93 ± 8.27 

EO-MScM-EL vs. 

EO-SSCM 

6.82 ± 8.86 0.872 5.39 ± 6.03  5.93 ± 8.70 0.859 4.42 ± 6.01 

EO-MScM-EL vs. 

FD-SSCM 

6.82 ± 8.86 0.653 5.47 ± 5.39  5.93 ± 8.70 1.29E-04 6.90 ± 7.75 

EO-MScM-EL vs. 

QUBIC 

6.82 ± 8.86 0.514 6.73 ± 7.52  5.93 ± 8.70 3.52E-07 9.95 ± 10.82 

EO-MScM-EL vs. 

EO-COAL 

6.82 ± 8.86 0.555 6.18 ± 7.98  5.93 ± 8.70 0.533 5.24 ± 7.41 

EO-MScM-EL vs. 

FD-COAL 

6.82 ± 8.86 0.451 6.50 ± 8.74  5.93 ± 8.70 0.959 5.93 ± 8.27 

EO-MScM-SH vs. 

MSKM-SH 

6.75 ± 9.09 0.623 5.67 ± 7.00  5.63 ± 8.48 0.087 6.83 ± 8.86 
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EO-MScM-SH vs. 

MSKM-EL 

6.75 ± 9.09 0.401 3.86 ± 4.13  5.63 ± 8.48 0.693 4.94 ± 6.73 

EO-MScM-EL vs. 

MSKM-SH 

6.82 ± 8.86 0.749 5.67 ± 7.00  5.93 ± 8.70 0.118 6.83 ± 8.86 

EO-MScM-EL vs. 

MSKM-EL 

6.82 ± 8.86 0.190 3.86 ± 4.13  5.93 ± 8.70 0.847 4.94 ± 6.73 

 

7.2.3.2.4 Motif E-values 

Table 7.38: Comparison of bicluster motif E-values (-log10) from the expression only methods 

considered by this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes.  A 

comparison of the motif E-values (-log10) from MScM (expression only) with all other relevant 

methods for all 3 pairings of the three organisms examined.  In the comparisons, we compare both 

MScM steps to the other methods.  Displayed are the means for each method and/or step compared, as 

well as the Wilcoxon‘s non-parametric rank test (2-sided) comparing their distributions. We direct the 

reader to section 7.2.3.1.1 for instructions on how to interpret the table.  As the table indicates, in 39 of 

the 116 of the comparisons (33.7%) MScM does as well or better than its competitors.  This is by far 

the metric that EO-MScM does on. 

B. subtilis - B. anthracis pairing   

 B. subtilis  B. anthracis 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

EO-MScM-SH vs. 

EO-SSCM 

-0.90 ± 3.44 0.026 0.71 ± 5.69  0.09 ± 4.65 6.24E-07 2.17 ± 5.38 
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EO-MScM-SH vs. 

FD-SSCM 

-0.90 ± 3.44 2.01E-28 7.03 ± 18.81  0.09 ± 4.65 3.33E-09 4.98 ± 10.63 

EO-MScM-SH vs. 

QUBIC 

-0.90 ± 3.44 9.92E-13 1.41 ± 3.94  0.09 ± 4.65 1.28E-09 13.72 ± 14.49 

EO-MScM-SH vs. 

EO-COAL 

-0.90 ± 3.44 4.24E-08 2.40 ± 7.33  0.09 ± 4.65 1.56E-04 3.94 ± 8.70 

EO-MScM-SH vs. 

FD-COAL 

-0.90 ± 3.44 2.22E-08 2.72 ± 7.30  0.09 ± 4.65 0.001 3.85 ± 8.83 

EO-MScM-EL vs. 

EO-SSCM 

-0.20 ± 4.56 0.157 0.71 ± 5.69  1.02 ± 6.11 3.26E-04 2.17 ± 5.38 

EO-MScM-EL vs. 

FD-SSCM 

-0.20 ± 4.56 4.99E-22 7.03 ± 18.81  1.02 ± 6.11 2.59E-06 4.98 ± 10.63 

EO-MScM-EL vs. 

QUBIC 

-0.20 ± 4.56 4.60E-09 1.41 ± 3.94  1.02 ± 6.11 9.04E-09 13.72 ± 14.49 

EO-MScM-EL vs. 

EO-COAL 

-0.20 ± 4.56 1.25E-05 2.40 ± 7.33  1.02 ± 6.11 0.005 3.94 ± 8.70 

EO-MScM-EL vs. 

FD-COAL 

-0.20 ± 4.56 5.86E-06 2.72 ± 7.30  1.02 ± 6.11 0.022 3.85 ± 8.83 

EO-MScM-SH vs. 

MSISA-P 

-0.90 ± 3.44 0.295 -1.12 ± 2.03  0.09 ± 4.65 0.120 0.46 ± 3.43 

EO-MScM-SH vs. 

MSISA-R 

-0.90 ± 3.44 3.54E-13 9.40 ± 9.19  0.09 ± 4.65 2.25E-05 2.34 ± 11.56 

EO-MScM-SH vs. 

MSKM-SH 

-0.90 ± 3.44 0.915 -1.18 ± 2.62  0.09 ± 4.65 0.294 -0.22 ± 2.96 
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EO-MScM-SH vs. 

MSKM-EL 

-0.90 ± 3.44 0.002 0.19 ± 4.26  0.09 ± 4.65 3.74E-09 2.74 ± 5.66 

EO-MScM-SH vs. 

BMSKM-SH 

-0.90 ± 3.44 0.620 -1.09 ± 2.68  0.09 ± 4.65 0.639 -0.39 ± 2.87 

EO-MScM-SH vs. 

BMSKM-EL 

-0.90 ± 3.44 8.72E-05 0.44 ± 4.06  0.09 ± 4.65 1.18E-11 3.07 ± 5.44 

EO-MScM-EL vs. 

MSISA-P 

-0.20 ± 4.56 0.701 -1.12 ± 2.03  1.02 ± 6.11 0.434 0.46 ± 3.43 

EO-MScM-EL vs. 

MSISA-R 

-0.20 ± 4.56 1.40E-11 9.40 ± 9.19  1.02 ± 6.11 1.57E-05 2.34 ± 11.56 

EO-MScM-EL vs. 

MSKM-SH 

-0.20 ± 4.56 0.353 -1.18 ± 2.62  1.02 ± 6.11 0.957 -0.22 ± 2.96 

EO-MScM-EL vs. 

MSKM-EL 

-0.20 ± 4.56 0.036 0.19 ± 4.26  1.02 ± 6.11 4.10E-06 2.74 ± 5.66 

EO-MScM-EL vs. 

BMSKM-SH 

-0.20 ± 4.56 0.663 -1.09 ± 2.68  1.02 ± 6.11 0.518 -0.39 ± 2.87 

EO-MScM-EL vs. 

BMSKM-EL 

-0.20 ± 4.56 0.006 0.44 ± 4.06  1.02 ± 6.11 6.89E-08 3.07 ± 5.44 

        

        

B. subtilis - L. monocytogenes pairing      

 B. subtilis  L. monocytogenes 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 
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EO-MScM-SH vs. 

EO-SSCM 

-1.56 ± 3.27 1.06E-05 0.71 ± 5.69  0.29 ± 5.09 4.46E-05 2.04 ± 4.51 

EO-MScM-SH vs. 

FD-SSCM 

-1.56 ± 3.27 3.94E-37 7.03 ± 18.81  0.29 ± 5.09 0.162 0.46 ± 4.73 

EO-MScM-SH vs. 

QUBIC 

-1.56 ± 3.27 4.26E-19 1.41 ± 3.94  0.29 ± 5.09 0.302 9.57 ± 13.54 

EO-MScM-SH vs. 

EO-COAL 

-1.56 ± 3.27 3.88E-13 2.40 ± 7.33  0.29 ± 5.09 0.001 2.92 ± 6.80 

EO-MScM-SH vs. 

FD-COAL 

-1.56 ± 3.27 3.68E-13 2.72 ± 7.30  0.29 ± 5.09 4.89E-04 3.66 ± 7.60 

EO-MScM-EL vs. 

EO-SSCM 

-0.95 ± 4.01 0.003 0.71 ± 5.69  0.34 ± 5.08 8.48E-05 2.04 ± 4.51 

EO-MScM-EL vs. 

FD-SSCM 

-0.95 ± 4.01 1.28E-30 7.03 ± 18.81  0.34 ± 5.08 0.121 0.46 ± 4.73 

EO-MScM-EL vs. 

QUBIC 

-0.95 ± 4.01 2.38E-14 1.41 ± 3.94  0.34 ± 5.08 0.269 9.57 ± 13.54 

EO-MScM-EL vs. 

EO-COAL 

-0.95 ± 4.01 2.27E-09 2.40 ± 7.33  0.34 ± 5.08 0.001 2.92 ± 6.80 

EO-MScM-EL vs. 

FD-COAL 

-0.95 ± 4.01 1.14E-09 2.72 ± 7.30  0.34 ± 5.08 0.001 3.66 ± 7.60 

EO-MScM-SH vs. 

MSISA-P 

-1.56 ± 3.27 0.023 -2.63 ± 1.00  0.29 ± 5.09 0.011 -1.56 ± 1.40 

EO-MScM-SH vs. 

MSISA-R 

-1.56 ± 3.27 6.06E-17 10.37 ± 8.84  0.29 ± 5.09 1.01E-09 9.06 ± 7.74 
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EO-MScM-SH vs. 

MSKM-SH 

-1.56 ± 3.27 0.592 -1.91 ± 1.56  0.29 ± 5.09 0.617 -0.83 ± 1.64 

EO-MScM-SH vs. 

MSKM-EL 

-1.56 ± 3.27 5.02E-06 0.52 ± 5.33  0.29 ± 5.09 0.002 0.36 ± 2.68 

EO-MScM-SH vs. 

BMSKM-SH 

-1.56 ± 3.27 0.913 -1.97 ± 1.58  0.29 ± 5.09 0.284 -0.89 ± 1.69 

EO-MScM-SH vs. 

BMSKM-EL 

-1.56 ± 3.27 2.33E-06 0.02 ± 3.81  0.29 ± 5.09 0.002 0.43 ± 3.17 

EO-MScM-EL vs. 

MSISA-P 

-0.95 ± 4.01 0.002 -2.63 ± 1.00  0.34 ± 5.08 0.008 -1.56 ± 1.40 

EO-MScM-EL vs. 

MSISA-R 

-0.95 ± 4.01 1.89E-15 10.37 ± 8.84  0.34 ± 5.08 1.08E-09 9.06 ± 7.74 

EO-MScM-EL vs. 

MSKM-SH 

-0.95 ± 4.01 0.292 -1.91 ± 1.56  0.34 ± 5.08 0.459 -0.83 ± 1.64 

EO-MScM-EL vs. 

MSKM-EL 

-0.95 ± 4.01 0.001 0.52 ± 5.33  0.34 ± 5.08 0.004 0.36 ± 2.68 

EO-MScM-EL vs. 

BMSKM-SH 

-0.95 ± 4.01 0.143 -1.97 ± 1.58  0.34 ± 5.08 0.196 -0.89 ± 1.69 

EO-MScM-EL vs. 

BMSKM-EL 

-0.95 ± 4.01 0.001 0.02 ± 3.81  0.34 ± 5.08 0.004 0.43 ± 3.17 

        

        

B. anthracis - L. monocytogenes pairing      

 B. anthracis  L. monocytogenes 
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dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

EO-MScM-SH vs. 

EO-SSCM 

-0.81 ± 3.42 8.48E-12 2.17 ± 5.38  0.50 ± 5.37 1.24E-04 2.04 ± 4.51 

EO-MScM-SH vs. 

FD-SSCM 

-0.81 ± 3.42 1.14E-15 5.21 ± 10.80  0.50 ± 5.37 0.161 0.46 ± 4.73 

EO-MScM-SH vs. 

QUBIC 

-0.81 ± 3.42 3.82E-10 

13.72 ± 

14.49 

 0.50 ± 5.37 0.333 9.57 ± 13.54 

EO-MScM-SH vs. 

EO-COAL 

-0.81 ± 3.42 4.78E-07 3.94 ± 8.70  0.50 ± 5.37 0.002 2.92 ± 6.80 

EO-MScM-SH vs. 

FD-COAL 

-0.81 ± 3.42 8.93E-06 3.85 ± 8.83  0.50 ± 5.37 0.001 3.66 ± 7.60 

EO-MScM-EL vs. 

EO-SSCM 

-0.42 ± 3.90 1.18E-09 2.17 ± 5.38  0.99 ± 6.39 0.001 2.04 ± 4.51 

EO-MScM-EL vs. 

FD-SSCM 

-0.42 ± 3.90 2.52E-13 5.21 ± 10.80  0.99 ± 6.39 0.020 0.46 ± 4.73 

EO-MScM-EL vs. 

QUBIC 

-0.42 ± 3.90 1.15E-09 

13.72 ± 

14.49 

 0.99 ± 6.39 0.398 9.57 ± 13.54 

EO-MScM-EL vs. 

EO-COAL 

-0.42 ± 3.90 6.80E-06 3.94 ± 8.70  0.99 ± 6.39 0.012 2.92 ± 6.80 

EO-MScM-EL vs. 

FD-COAL 

-0.42 ± 3.90 8.02E-05 3.85 ± 8.83  0.99 ± 6.39 0.008 3.66 ± 7.60 

EO-MScM-SH vs. 

MSKM-SH 

-0.81 ± 3.42 0.595 -1.58 ± 1.60  0.50 ± 5.37 0.940 -0.67 ± 1.69 
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EO-MScM-SH vs. 

MSKM-EL 

-0.81 ± 3.42 1.22E-09 2.52 ± 6.60  0.50 ± 5.37 0.009 0.44 ± 3.00 

EO-MScM-EL vs. 

MSKM-SH 

-0.42 ± 3.90 0.201 -1.58 ± 1.60  0.99 ± 6.39 0.271 -0.67 ± 1.69 

EO-MScM-EL vs. 

MSKM-EL 

-0.42 ± 3.90 5.61E-08 2.52 ± 6.60  0.99 ± 6.39 0.108 0.44 ± 3.00 

 

7.2.3.2.5 Sequence p-values 

Table 7.39: Comparison of bicluster sequence p-values (-log10) from the expression only methods 

considered by this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes.  A 

comparison of the sequence p-values (-log10) from MScM (expression only) with all other relevant 

methods for all 3 pairings of the three organisms examined.  In the comparisons, we compare both 

MScM steps to the other methods.  Displayed are the means for each method and/or step compared, as 

well as the Wilcoxon‘s non-parametric rank test (2-sided) comparing their distributions. We direct the 

reader to section 7.2.3.1.1 for instructions on how to interpret the table.  As the table indicates, in 72 of 

the 92 of the comparisons (78.3%) MScM does as well or better than its competitors. 

B. subtilis - B. anthracis pairing   

 B. subtilis  B. anthracis 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

EO-MScM-SH vs. 

EO-SSCM 

4.11 ± 2.04 0.026 3.68 ± 1.88  3.77 ± 1.69 4.87E-07 2.92 ± 1.17 

EO-MScM-SH vs. 

FD-SSCM 

4.11 ± 2.04 7.33E-18 6.73 ± 3.35  3.77 ± 1.69 0.097 3.90 ± 2.62 
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EO-MScM-SH vs. 

QUBIC 

4.11 ± 2.04 7.49E-27 2.06 ± 0.50  3.77 ± 1.69 6.20E-31 1.77 ± 0.26 

EO-MScM-SH vs. 

EO-COAL 

4.11 ± 2.04 4.30E-21 2.50 ± 1.30  3.77 ± 1.69 1.25E-16 2.36 ± 1.16 

EO-MScM-SH vs. 

FD-COAL 

4.11 ± 2.04 1.07E-20 2.47 ± 1.12  3.77 ± 1.69 2.74E-18 2.32 ± 1.57 

EO-MScM-EL vs. 

EO-SSCM 

3.86 ± 1.82 0.235 3.68 ± 1.88  3.55 ± 1.73 7.07E-04 2.92 ± 1.17 

EO-MScM-EL vs. 

FD-SSCM 

3.86 ± 1.82 4.50E-21 6.73 ± 3.35  3.55 ± 1.73 0.831 3.90 ± 2.62 

EO-MScM-EL vs. 

QUBIC 

3.86 ± 1.82 1.00E-24 2.06 ± 0.50  3.55 ± 1.73 1.51E-24 1.77 ± 0.26 

EO-MScM-EL vs. 

EO-COAL 

3.86 ± 1.82 4.31E-18 2.50 ± 1.30  3.55 ± 1.73 5.34E-12 2.36 ± 1.16 

EO-MScM-EL vs. 

FD-COAL 

3.86 ± 1.82 1.79E-17 2.47 ± 1.12  3.55 ± 1.73 9.21E-14 2.32 ± 1.57 

EO-MScM-SH vs. 

MSISA-P 

4.11 ± 2.04 0.166 3.65 ± 1.74  3.77 ± 1.69 0.152 3.34 ± 1.33 

EO-MScM-SH vs. 

MSISA-R 

4.11 ± 2.04 1.18E-12 2.02 ± 0.52  3.77 ± 1.69 1.67E-06 1.79 ± 0.27 

EO-MScM-SH vs. 

MSKM-SH 

4.11 ± 2.04 0.742 3.97 ± 1.81  3.77 ± 1.69 0.442 3.59 ± 1.53 

EO-MScM-SH vs. 

MSKM-EL 

4.11 ± 2.04 4.81E-05 3.24 ± 1.58  3.77 ± 1.69 3.42E-10 2.66 ± 1.03 

EO-MScM-SH vs. 4.11 ± 2.04 0.944 4.05 ± 1.86  3.77 ± 1.69 0.175 3.42 ± 1.33 
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BMSKM-SH 

EO-MScM-SH vs. 

BMSKM-EL 

4.11 ± 2.04 9.38E-07 3.06 ± 1.30  3.77 ± 1.69 1.05E-11 2.57 ± 0.88 

EO-MScM-EL vs. 

MSISA-P 

3.86 ± 1.82 0.480 3.65 ± 1.74  3.55 ± 1.73 0.663 3.34 ± 1.33 

EO-MScM-EL vs. 

MSISA-R 

3.86 ± 1.82 1.66E-11 2.02 ± 0.52  3.55 ± 1.73 2.55E-05 1.79 ± 0.27 

EO-MScM-EL vs. 

MSKM-SH 

3.86 ± 1.82 0.421 3.97 ± 1.81  3.55 ± 1.73 0.502 3.59 ± 1.53 

EO-MScM-EL vs. 

MSKM-EL 

3.86 ± 1.82 0.002 3.24 ± 1.58  3.55 ± 1.73 2.00E-06 2.66 ± 1.03 

EO-MScM-EL vs. 

BMSKM-SH 

3.86 ± 1.82 0.240 4.05 ± 1.86  3.55 ± 1.73 0.891 3.42 ± 1.33 

EO-MScM-EL vs. 

BMSKM-EL 

3.86 ± 1.82 9.51E-05 3.06 ± 1.30  3.55 ± 1.73 1.27E-07 2.57 ± 0.88 

        

        

B. subtilis - L. monocytogenes pairing      

 B. subtilis  L. monocytogenes 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

EO-MScM-SH vs. 

EO-SSCM 

4.31 ± 1.90 2.75E-04 3.68 ± 1.88  5.07 ± 2.00 2.69E-09 3.62 ± 1.26 

EO-MScM-SH vs. 

FD-SSCM 

4.31 ± 1.90 1.51E-14 6.73 ± 3.35  5.07 ± 2.00 0.692 5.24 ± 2.35 
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EO-MScM-SH vs. 

QUBIC 

4.31 ± 1.90 5.23E-29 2.06 ± 0.50  5.07 ± 2.00 5.51E-28 2.36 ± 0.37 

EO-MScM-SH vs. 

EO-COAL 

4.31 ± 1.90 1.80E-24 2.50 ± 1.30  5.07 ± 2.00 6.16E-07 3.74 ± 1.68 

EO-MScM-SH vs. 

FD-COAL 

4.31 ± 1.90 1.28E-24 2.47 ± 1.12  5.07 ± 2.00 5.19E-09 3.51 ± 1.51 

EO-MScM-EL vs. 

EO-SSCM 

3.99 ± 1.82 0.050 3.68 ± 1.88  5.08 ± 2.02 3.38E-09 3.62 ± 1.26 

EO-MScM-EL vs. 

FD-SSCM 

3.99 ± 1.82 5.33E-19 6.73 ± 3.35  5.08 ± 2.02 0.722 5.24 ± 2.35 

EO-MScM-EL vs. 

QUBIC 

3.99 ± 1.82 9.61E-25 2.06 ± 0.50  5.08 ± 2.02 1.73E-27 2.36 ± 0.37 

EO-MScM-EL vs. 

EO-COAL 

3.99 ± 1.82 9.45E-20 2.50 ± 1.30  5.08 ± 2.02 7.06E-07 3.74 ± 1.68 

EO-MScM-EL vs. 

FD-COAL 

3.99 ± 1.82 2.81E-19 2.47 ± 1.12  5.08 ± 2.02 6.43E-09 3.51 ± 1.51 

EO-MScM-SH vs. 

MSISA-P 

4.31 ± 1.90 0.069 5.06 ± 2.38  5.07 ± 2.00 0.045 5.77 ± 1.91 

EO-MScM-SH vs. 

MSISA-R 

4.31 ± 1.90 6.55E-13 1.99 ± 0.50  5.07 ± 2.00 9.08E-15 2.42 ± 0.56 

EO-MScM-SH vs. 

MSKM-SH 

4.31 ± 1.90 0.021 4.79 ± 1.75  5.07 ± 2.00 0.015 5.49 ± 1.73 

EO-MScM-SH vs. 

MSKM-EL 

4.31 ± 1.90 3.99E-06 3.45 ± 1.88  5.07 ± 2.00 0.001 4.35 ± 1.67 

EO-MScM-SH vs. 4.31 ± 1.90 0.263 4.61 ± 2.13  5.07 ± 2.00 0.965 5.02 ± 1.71 
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BMSKM-SH 

EO-MScM-SH vs. 

BMSKM-EL 

4.31 ± 1.90 1.77E-08 3.19 ± 1.39  5.07 ± 2.00 0.001 4.43 ± 1.62 

EO-MScM-EL vs. 

MSISA-P 

3.99 ± 1.82 0.010 5.06 ± 2.38  5.08 ± 2.02 0.057 5.77 ± 1.91 

EO-MScM-EL vs. 

MSISA-R 

3.99 ± 1.82 9.88E-12 1.99 ± 0.50  5.08 ± 2.02 2.42E-14 2.42 ± 0.56 

EO-MScM-EL vs. 

MSKM-SH 

3.99 ± 1.82 1.04E-04 4.79 ± 1.75  5.08 ± 2.02 0.022 5.49 ± 1.73 

EO-MScM-EL vs. 

MSKM-EL 

3.99 ± 1.82 0.002 3.45 ± 1.88  5.08 ± 2.02 0.001 4.35 ± 1.67 

EO-MScM-EL vs. 

BMSKM-SH 

3.99 ± 1.82 0.009 4.61 ± 2.13  5.08 ± 2.02 0.979 5.02 ± 1.71 

EO-MScM-EL vs. 

BMSKM-EL 

3.99 ± 1.82 7.87E-05 3.19 ± 1.39  5.08 ± 2.02 0.001 4.43 ± 1.62 

        

        

B. anthracis - L. monocytogenes pairing      

 B. anthracis  L. monocytogenes 

dist1 vs. dist2 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

 

dist1 mean 

(green) 

Wilcoxon's  

2-sided 

dist2 mean 

(red) 

EO-MScM-SH vs. 

EO-SSCM 

3.88 ± 1.80 2.58E-07 2.92 ± 1.17  5.02 ± 2.21 5.62E-07 3.62 ± 1.26 

EO-MScM-SH vs. 

FD-SSCM 

3.88 ± 1.80 0.028 3.83 ± 2.57  5.02 ± 2.21 0.414 5.24 ± 2.35 
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EO-MScM-SH vs. 

QUBIC 

3.88 ± 1.80 1.13E-27 1.77 ± 0.26  5.02 ± 2.21 2.09E-27 2.36 ± 0.37 

EO-MScM-SH vs. 

EO-COAL 

3.88 ± 1.80 6.71E-16 2.36 ± 1.16  5.02 ± 2.21 7.56E-06 3.74 ± 1.68 

EO-MScM-SH vs. 

FD-COAL 

3.88 ± 1.80 6.01E-17 2.32 ± 1.57  5.02 ± 2.21 2.04E-07 3.51 ± 1.51 

EO-MScM-EL vs. 

EO-SSCM 

3.80 ± 1.80 9.81E-06 2.92 ± 1.17  4.90 ± 2.13 1.37E-06 3.62 ± 1.26 

EO-MScM-EL vs. 

FD-SSCM 

3.80 ± 1.80 0.118 3.83 ± 2.57  4.90 ± 2.13 0.203 5.24 ± 2.35 

EO-MScM-EL vs. 

QUBIC 

3.80 ± 1.80 9.30E-27 1.77 ± 0.26  4.90 ± 2.13 2.78E-25 2.36 ± 0.37 

EO-MScM-EL vs. 

EO-COAL 

3.80 ± 1.80 2.42E-14 2.36 ± 1.16  4.90 ± 2.13 2.77E-05 3.74 ± 1.68 

EO-MScM-EL vs. 

FD-COAL 

3.80 ± 1.80 9.99E-16 2.32 ± 1.57  4.90 ± 2.13 9.20E-07 3.51 ± 1.51 

EO-MScM-SH vs. 

MSKM-SH 

3.88 ± 1.80 0.333 3.94 ± 1.46  5.02 ± 2.21 6.34E-04 5.61 ± 1.74 

EO-MScM-SH vs. 

MSKM-EL 

3.88 ± 1.80 7.27E-11 2.61 ± 1.04  5.02 ± 2.21 0.035 4.37 ± 1.51 

EO-MScM-EL vs. 

MSKM-SH 

3.80 ± 1.80 0.149 3.94 ± 1.46  4.90 ± 2.13 1.80E-04 5.61 ± 1.74 

EO-MScM-EL vs. 

MSKM-EL 

3.80 ± 1.80 3.18E-09 2.61 ± 1.04  4.90 ± 2.13 0.067 4.37 ± 1.51 
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7.2.3.3 Comparisons with Randomized tests 

In the comparisons below, we only show results from the Gram-positive triple.  They 

were not generated for the Gram-negative triple as the initial results for the Gram-

positive triple - displayed below - indicate that they are largely uninformative. 

7.2.3.3.1 Residuals 

Table 7.40: Comparison of bicluster residuals with randomized tests for all methods considered 

by this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes.  A comparison of the 

residuals of the results from all methods considered for all 3 pairings of the three organisms examined, 

where each method is compared with its equivalent randomized test.  Displayed are the means for each 

method and/or step compared, as well as the Wilcoxon‘s non-parametric rank test (2-sided) comparing 

their distributions.  We direct the reader to section 7.2.3.1.1 for instructions on how to interpret the 

table.  In this case, MSISA and Qubic always reported results worse than random, most likely due their 

identification of inversely correlated biclusters.  Coalesce was worse than random for B. subtilis and L. 

monocytogenes, but better for B. anthracis. 

B. subtilis - B. anthracis pairing      

  B. subtilis    B. anthracis  

Method 

derived  

mean (green) 

Wilcoxon's  

2-sided 

shuffle 

mean (red) 

 

derived  

mean (green) 

Wilcoxon's  

2-sided 

shuffle 

mean (red) 

FD-MScM-SH 0.51 ± 0.08 3.61E-51 0.59 ± 0.04  0.30 ± 0.09 1.15E-99 0.78 ± 0.06 

FD-MScM-EL 0.49 ± 0.09 7.10E-59 0.59 ± 0.03  0.32 ± 0.09 1.19E-99 0.78 ± 0.05 

FD-SSCM 0.49 ± 0.13 6.97E-81 0.58 ± 0.03  0.31 ± 0.12 3.06E-202 0.79 ± 0.05 

MSKM-SH 0.41 ± 0.07 7.34E-97 0.56 ± 0.03  0.53 ± 0.12 3.71E-86 0.76 ± 0.05 

MSKM-EL 0.42 ± 0.06 1.51E-97 0.57 ± 0.02  0.48 ± 0.11 7.31E-98 0.80 ± 0.03 

MSISA-P 0.98 ± 0.39 1.47E-10 0.69 ± 0.15  1.97 ± 0.94 3.74E-28 0.76 ± 0.08 
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MSISA-R 1.11 ± 0.41 3.92E-19 0.66 ± 0.10  1.58 ± 0.38 5.50E-26 0.79 ± 0.03 

EO-MScM-SH 0.52 ± 0.09 8.04E-35 0.58 ± 0.04  0.50 ± 0.20 1.12E-57 0.76 ± 0.07 

EO-MScM-EL 0.52 ± 0.10 1.25E-47 0.58 ± 0.04  0.49 ± 0.20 1.01E-66 0.77 ± 0.06 

EO-SSCM 0.44 ± 0.20 9.78E-61 0.58 ± 0.03  0.23 ± 0.06 6.94E-139 0.80 ± 0.04 

QUBIC 0.87 ± 0.21 7.37E-54 0.63 ± 0.06  1.51 ± 0.29 2.93E-97 0.81 ± 0.02 

EO-COAL 0.78 ± 0.23 3.90E-27 0.65 ± 0.11  0.58 ± 0.17 3.14E-69 0.80 ± 0.05 

FD-COAL 0.80 ± 0.25 2.63E-31 0.65 ± 0.10  0.58 ± 0.17 5.66E-66 0.80 ± 0.04 

BMSKM-SH 0.45 ± 0.07 5.36E-88 0.56 ± 0.03  0.38 ± 0.07 2.41E-98 0.77 ± 0.05 

BMSKM-EL 0.45 ± 0.06 5.82E-96 0.57 ± 0.02  0.39 ± 0.07 1.83E-98 0.80 ± 0.02 

        

        

B. subtilis - L. monocytogenes pairing      

  B. subtilis   L. monocytogenes 

Method 

derived  

mean (green) 

Wilcoxon's  

2-sided 

shuffle 

mean (red) 

 

derived  

mean (green) 

Wilcoxon's  

2-sided 

shuffle 

mean (red) 

FD-MScM-SH 0.52 ± 0.08 1.56E-43 0.58 ± 0.04  0.34 ± 0.12 7.38E-93 0.71 ± 0.08 

FD-MScM-EL 0.50 ± 0.10 7.54E-64 0.59 ± 0.03  0.34 ± 0.12 2.00E-93 0.73 ± 0.08 

FD-SSCM 0.49 ± 0.13 6.97E-81 0.58 ± 0.03  0.40 ± 0.18 6.90E-158 0.76 ± 0.08 

MSKM-SH 0.40 ± 0.07 3.81E-94 0.55 ± 0.03  0.50 ± 0.12 4.09E-62 0.68 ± 0.09 

MSKM-EL 0.42 ± 0.06 2.01E-95 0.57 ± 0.02  0.48 ± 0.11 9.44E-88 0.74 ± 0.07 

MSISA-P 0.87 ± 0.34 5.97E-05 0.68 ± 0.20  1.59 ± 0.52 4.72E-20 0.71 ± 0.32 

MSISA-R 1.11 ± 0.42 2.40E-17 0.66 ± 0.10  1.31 ± 0.34 2.48E-21 0.79 ± 0.09 

EO-MScM-SH 0.52 ± 0.08 4.19E-33 0.57 ± 0.04  0.49 ± 0.17 5.28E-50 0.70 ± 0.10 

EO-MScM-EL 0.50 ± 0.09 4.34E-52 0.58 ± 0.04  0.48 ± 0.17 6.06E-54 0.70 ± 0.10 

EO-SSCM 0.44 ± 0.20 9.78E-61 0.58 ± 0.03  0.29 ± 0.10 7.26E-56 0.79 ± 0.05 
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QUBIC 0.87 ± 0.21 7.37E-54 0.63 ± 0.06  1.81 ± 0.85 2.51E-24 0.82 ± 0.03 

EO-COAL 0.78 ± 0.23 3.90E-27 0.65 ± 0.11  1.63 ± 3.07 7.52E-18 0.79 ± 0.08 

FD-COAL 0.80 ± 0.25 2.63E-31 0.65 ± 0.10  1.70 ± 3.24 2.90E-19 0.80 ± 0.07 

BMSKM-SH 0.43 ± 0.07 3.02E-85 0.55 ± 0.03  0.42 ± 0.09 1.73E-87 0.68 ± 0.09 

BMSKM-EL 0.44 ± 0.06 9.03E-96 0.57 ± 0.02  0.42 ± 0.09 2.28E-95 0.74 ± 0.06 

        

        

B. anthracis - L. monocytogenes pairing      

  B. anthracis   L. monocytogenes 

Method 

derived  

mean (green) 

Wilcoxon's  

2-sided 

shuffle 

mean (red) 

 

derived  

mean (green) 

Wilcoxon's  

2-sided 

shuffle 

mean (red) 

FD-MScM-SH 0.33 ± 0.10 2.75E-97 0.73 ± 0.07  0.36 ± 0.14 4.59E-88 0.73 ± 0.08 

FD-MScM-EL 0.36 ± 0.11 7.87E-97 0.75 ± 0.07  0.36 ± 0.13 9.49E-91 0.75 ± 0.08 

FD-SSCM 0.31 ± 0.12 1.02E-192 0.79 ± 0.05  0.40 ± 0.18 6.90E-158 0.76 ± 0.08 

MSKM-SH 0.40 ± 0.08 2.42E-94 0.70 ± 0.07  0.43 ± 0.08 3.22E-89 0.70 ± 0.08 

MSKM-EL 0.39 ± 0.07 1.68E-96 0.78 ± 0.04  0.43 ± 0.08 5.25E-95 0.75 ± 0.06 

EO-MScM-SH 0.52 ± 0.17 1.08E-42 0.71 ± 0.09  0.50 ± 0.18 1.35E-41 0.71 ± 0.10 

EO-MScM-EL 0.50 ± 0.17 8.12E-50 0.72 ± 0.09  0.50 ± 0.19 7.83E-45 0.72 ± 0.10 

EO-SSCM 0.23 ± 0.06 6.94E-139 0.80 ± 0.04  0.29 ± 0.10 7.26E-56 0.79 ± 0.05 

QUBIC 1.51 ± 0.29 2.93E-97 0.81 ± 0.02  1.81 ± 0.85 2.51E-24 0.82 ± 0.03 

EO-COAL 0.58 ± 0.17 3.14E-69 0.80 ± 0.05  1.63 ± 3.07 7.52E-18 0.79 ± 0.08 

FD-COAL 0.58 ± 0.17 5.66E-66 0.80 ± 0.04  1.70 ± 3.24 2.90E-19 0.80 ± 0.07 
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7.2.3.3.2 Mean correlations 

Table 7.41: Comparison of bicluster mean correlations with randomized tests for all methods 

considered by this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes.  A 

comparison of the mean correlations of the results from all methods considered for all 3 pairings of the 

three organisms examined, where each method is compared with its equivalent randomized test.  

Displayed are the means for each method and/or step compared, as well as the Wilcoxon‘s non-

parametric rank test (2-sided) comparing their distributions.  We direct the reader to section 7.2.3.1.1 

for instructions on how to interpret the table.  In nearly all comparisons, the method was significantly 

better than random.  The sole exceptions were the biclusters produces by MSISA-R for L. 

monocytogenes from the pairing of B. subtilis and L. monocytogenes. 

B. subtilis - B. anthracis pairing    

  B. subtilis   B. anthracis 

Method 

derived  

mean (green) 

Wilcoxon's  

2-sided 

shuffle 

mean (red) 

 

derived  

mean (green) 

Wilcoxon's  

2-sided 

shuffle 

mean (red) 

FD-MScM-SH 0.59 ± 0.11 3.99E-99 0.27 ± 0.04  0.85 ± 0.09 1.28E-99 0.40 ± 0.06 

FD-MScM-EL 0.61 ± 0.11 1.36E-99 0.26 ± 0.04  0.84 ± 0.09 1.10E-99 0.39 ± 0.05 

FD-SSCM 0.56 ± 0.14 1.49E-190 0.25 ± 0.04  0.82 ± 0.15 1.36E-191 0.37 ± 0.06 

MSKM-SH 0.58 ± 0.11 4.49E-98 0.25 ± 0.04  0.52 ± 0.14 1.18E-39 0.39 ± 0.05 

MSKM-EL 0.56 ± 0.11 3.37E-98 0.25 ± 0.03  0.58 ± 0.15 9.14E-65 0.37 ± 0.03 

MSISA-P 0.60 ± 0.14 2.43E-12 0.44 ± 0.10  0.56 ± 0.07 1.12E-07 0.49 ± 0.08 

MSISA-R 0.55 ± 0.13 2.61E-10 0.42 ± 0.08  0.51 ± 0.03 6.32E-09 0.47 ± 0.04 

EO-MScM-SH 0.52 ± 0.12 2.44E-90 0.27 ± 0.05  0.69 ± 0.17 1.29E-73 0.40 ± 0.07 

EO-MScM-EL 0.54 ± 0.12 1.41E-93 0.26 ± 0.05  0.69 ± 0.19 1.80E-69 0.40 ± 0.06 

EO-SSCM 0.70 ± 0.11 1.05E-106 0.25 ± 0.04  0.91 ± 0.05 6.91E-139 0.37 ± 0.04 

QUBIC 0.36 ± 0.19 2.58E-10 0.32 ± 0.04  0.49 ± 0.05 8.79E-67 0.41 ± 0.03 
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EO-COAL 0.58 ± 0.14 1.28E-115 0.37 ± 0.10  0.64 ± 0.13 6.88E-84 0.42 ± 0.06 

FD-COAL 0.59 ± 0.15 1.73E-99 0.38 ± 0.10  0.62 ± 0.13 3.19E-74 0.41 ± 0.05 

BMSKM-SH 0.49 ± 0.13 3.89E-92 0.25 ± 0.04  0.72 ± 0.10 1.12E-97 0.39 ± 0.05 

BMSKM-EL 0.50 ± 0.12 1.89E-97 0.25 ± 0.03  0.71 ± 0.10 2.07E-98 0.37 ± 0.03 

        

        

B. subtilis - L. monocytogenes pairing      

  B. subtilis   L. monocytogenes 

Method 

derived  

mean (green) 

Wilcoxon's  

2-sided 

shuffle 

mean (red) 

 

derived  

mean (green) 

Wilcoxon's  

2-sided 

shuffle 

mean (red) 

FD-MScM-SH 0.59 ± 0.11 1.07E-95 0.27 ± 0.05  0.80 ± 0.13 1.06E-89 0.44 ± 0.09 

FD-MScM-EL 0.61 ± 0.10 2.81E-97 0.26 ± 0.04  0.81 ± 0.11 1.05E-93 0.43 ± 0.08 

FD-SSCM 0.56 ± 0.14 1.24E-190 0.25 ± 0.04  0.71 ± 0.20 2.05E-106 0.42 ± 0.10 

MSKM-SH 0.59 ± 0.11 5.31E-95 0.26 ± 0.05  0.51 ± 0.17 4.57E-11 0.42 ± 0.10 

MSKM-EL 0.56 ± 0.11 3.20E-96 0.25 ± 0.03  0.55 ± 0.16 4.76E-27 0.42 ± 0.07 

MSISA-P 0.60 ± 0.20 4.42E-06 0.44 ± 0.14  0.47 ± 0.23 0.010 0.55 ± 0.23 

MSISA-R 0.55 ± 0.12 3.47E-10 0.42 ± 0.08  0.50 ± 0.27 0.009 0.51 ± 0.17 

EO-MScM-SH 0.52 ± 0.13 8.75E-85 0.27 ± 0.06  0.64 ± 0.18 1.24E-41 0.44 ± 0.11 

EO-MScM-EL 0.54 ± 0.12 2.58E-91 0.27 ± 0.06  0.64 ± 0.18 1.52E-43 0.43 ± 0.10 

EO-SSCM 0.70 ± 0.11 1.04E-106 0.25 ± 0.04  0.86 ± 0.08 6.49E-56 0.43 ± 0.07 

QUBIC 0.36 ± 0.19 2.58E-10 0.32 ± 0.04  0.45 ± 0.27 4.59E-23 0.45 ± 0.03 

EO-COAL 0.58 ± 0.14 1.28E-115 0.37 ± 0.10  0.81 ± 0.13 2.05E-39 0.51 ± 0.10 

FD-COAL 0.59 ± 0.15 1.73E-99 0.38 ± 0.10  0.80 ± 0.12 3.70E-41 0.50 ± 0.08 

BMSKM-SH 0.52 ± 0.14 2.18E-85 0.26 ± 0.05  0.63 ± 0.15 4.15E-54 0.42 ± 0.10 

BMSKM-EL 0.53 ± 0.12 9.89E-96 0.25 ± 0.03  0.64 ± 0.14 3.92E-66 0.42 ± 0.07 
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B. anthracis - L. monocytogenes pairing      

 B. anthracis  L. monocytogenes 

Method 

derived  

mean (green) 

Wilcoxon's  

2-sided 

shuffle 

mean (red) 

 

derived  

mean (green) 

Wilcoxon's  

2-sided 

shuffle 

mean (red) 

FD-MScM-SH 0.82 ± 0.11 1.43E-97 0.40 ± 0.07  0.77 ± 0.14 2.14E-84 0.44 ± 0.09 

FD-MScM-EL 0.80 ± 0.11 9.72E-98 0.39 ± 0.06  0.78 ± 0.13 5.76E-91 0.43 ± 0.08 

FD-SSCM 0.82 ± 0.15 4.67E-182 0.37 ± 0.05  0.71 ± 0.20 2.23E-106 0.42 ± 0.10 

MSKM-SH 0.69 ± 0.12 2.60E-88 0.39 ± 0.07  0.60 ± 0.14 2.13E-51 0.42 ± 0.10 

MSKM-EL 0.70 ± 0.10 2.16E-95 0.37 ± 0.03  0.63 ± 0.13 2.53E-65 0.42 ± 0.07 

EO-MScM-SH 0.63 ± 0.16 3.74E-56 0.40 ± 0.08  0.63 ± 0.19 7.13E-36 0.43 ± 0.11 

EO-MScM-EL 0.63 ± 0.17 9.25E-57 0.40 ± 0.08  0.63 ± 0.19 7.82E-36 0.43 ± 0.10 

EO-SSCM 0.91 ± 0.05 6.93E-139 0.37 ± 0.04  0.86 ± 0.08 6.28E-56 0.43 ± 0.07 

QUBIC 0.49 ± 0.05 8.79E-67 0.41 ± 0.03  0.45 ± 0.27 4.59E-23 0.45 ± 0.03 

EO-COAL 0.64 ± 0.13 6.88E-84 0.42 ± 0.06  0.81 ± 0.13 2.05E-39 0.51 ± 0.10 

FD-COAL 0.62 ± 0.13 3.19E-74 0.41 ± 0.05  0.80 ± 0.12 3.70E-41 0.50 ± 0.08 

 

7.2.4 Additional GO term and KEGG pathway enrichment figures 

GO term enrichments were initially introduced by Draghici et al (Draghici, 

Khatri et al. 2003) as a measure of the functional coherence of a set of genes.  

Effectively, GO term enrichments represent the probability, by chance, that a set of 

genes share the same functional annotation, which is approximated using the 

hypergeometric distribution: 
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where bk is the set of genes in bicluster k; G is the set of genes in the genome ; and T is 

the set of genes having a particular GO term annotation.  Similarly, KEGG pathway 

enrichments were approximated with a hypergeometric distribution, where T was 

instead the set of genes associated with a given KEGG pathway. 

For all the pairings between B. subtilis, B. anthracis and L. monocytogenes, 

there is a consistent increase from the shared to elaboration steps of all the multi-

species methods, with the percentage of FD-MScM-EL biclusters with significant GO 

term enrichments consistently greater than the SSCM results.  Similar behavior is 

observed with the KEGG pathway enrichments.  The higher percentages reported for 

the MSISA and Qubic methods are a reflection of the high redundancy of the 

biclusters identified by them. 

Below, we show plots of the GO term and K pathway enrichments, where in 

panel(A) GO Terms are displayed the percentage of biclusters with enriched GO 

terms.  In (B) KEGG Pathways, the percentage of biclusters with enriched KEGG 

pathways are displayed.  Explanations of the method name abbreviations can be found 

in. 
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7.2.4.1 Figures for the Gram-positive triplet 

 

Figure 7.79: Comparison of the fraction of biclusters with significant GO and KEGG annotation 

enrichments from all methods considered by this study for the B. subtilis – B. anthracis pairing. 
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Figure 7.80: Comparison of the fraction of biclusters with significant GO and KEGG annotation 

enrichments for  the multi-species cMonkey, multi-species k-means and single-species cMonkey 

methods for the B. subtilis – L. monocytogenes pairing. 
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Figure 7.81: Comparison of the fraction of biclusters with significant GO and KEGG annotation 

enrichments for  the multi-species cMonkey, multi-species k-means and single-species cMonkey 

methods for the B. anthracis – L. monocytogenes pairing.  (A) GO Terms. 
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7.2.4.2 Figures for the Gram-negative triplet 

 

Figure 7.82: Comparison of the fraction of biclusters with significant GO and KEGG annotation 

enrichments from all methods considered by this study for the E. coli – S. typhimurium pairing. 
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Figure 7.83: Comparison of the fraction of biclusters with significant GO and KEGG annotation 

enrichments from all methods considered by this study for the E. coli – V. cholerae pairing. 
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Figure 7.84: Comparison of the fraction of biclusters with significant GO and KEGG annotation 

enrichments from all methods considered by this study for the S. typhimurium – V. cholerae 

pairing. 
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7.3 Gene lists and bicluster images for biological highlights from the 

human and mouse immune system cell data analysis 

7.3.1 Full descriptions of highlighted biclusters 

7.3.1.1 Bicluster 31 (Human and Mouse listed together) 

7.3.1.1.1 Shared Bicluster  

 

Figure 7.85: Shared Human-Mouse bicluster 32 image (pre-elaboration) 
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7.3.1.1.2 Gene list 

Table 7.42: Human-Mouse Immune System bicluster 32 (Conserved Bicluster) 

Mouse genes Human genes 

KMO KMO 

BCL11A BCL11A 

BANK1 BANK1 

DAPP1 DAPP1 

CD180 CD180 

MEF2C MEF2C 

CD74 CD74 

LY86 LY86 

HLA-DMA H2-DMA 

HLA-DQA1 H2-AA 

HLA-DQB1 H2-AB1 

HLA-DRB1 H2-EB1 

LAT2 LAT2 

BLK BLK 

LYN LYN 

CD72 CD72 

SYK SYKB 

BLNK BLNK 

MS4A1 MS4A1 

C13ORF18 5031414D18RIK 

CD19 CD19 

CMTM3 CMTM3 
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CBFA2T3 CBFA2T3 

PLCG2 PLCG2 

CD79B CD79B 

TCF4 TCF4 

CD22 CD22 

CD79A CD79A 

NFAM1 NFAM1 

BTK BTK 
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7.3.1.2 Bicluster 87 (Human and Mouse listed together) 

7.3.1.2.1 Shared Bicluster  

 

Figure 7.86: Shared Human-Mouse bicluster 87 image (pre-elaboration) 

7.3.1.2.2 Gene list 

Table 7.43: Human-Mouse Immune System bicluster 87 (Conserved Bicluster) 

Mouse genes Human genes 

CD74 CD74 

HLA-DMA H2-DMA 

HLA-DMB H2-DMB1 
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HLA-DQA1 H2-AA 

HLA-DQB1 H2-AB1 

HLA-DRB1 H2-EB1 

RNASE6 RNASE6 

CYBB CYBB 

 

7.3.1.3 Bicluster 2 (Human and Mouse listed together) 

7.3.1.3.1 Shared Bicluster  

 

Figure 7.87: Shared Human-Mouse bicluster 2 image (pre-elaboration) 



 

 

 

511 

 

7.3.1.3.2 Gene list 

Table 7.44: Human-Mouse Immune System bicluster 2 (Conserved Bicluster) 

Mouse genes Human genes 

CSF3R CSF3R 

CTSS CTSS 

S100A8 S100A8 

NCF2 NCF2 

HLX HLX 

TLR5 TLR5 

SLC11A1 SLC11A1 

MYD88 MYD88 

PRKCD PRKCD 

TLR9 TLR9 

RBM47 RBM47 

TLR1 TLR1 

TLR6 TLR6 

TLR2 TLR2 

TICAM2 TICAM2 

CD14 CD14 

CSF1R CSF1R 

LY86 LY86 

TREM1 TREM1 

SKAP2 SKAP2 
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PILRA PILRA 

IRF5 IRF5 

ASAH1 ASAH1 

LY96 LY96 

TLR4 TLR4 

PSAP PSAP 

SPI1 SFPI1 

MPEG1 MPEG1 

SLC15A3 SLC15A3 

UNC93B1 UNC93B1 

TIRAP TIRAP 

CLEC12A CLEC12A 

CLEC7A CLEC7A 

PLBD1 PLBD1 

CLEC4A CLEC4A2 

IRAK4 IRAK4 

IRAK3 IRAK3 

SLC7A7 SLC7A7 

CTSH CTSH 

IGSF6 IGSF6 

LPCAT2 LPCAT2 

CD68 CD68 

GRN GRN 

CD300LF CD300LF 

RAB31 RAB31 
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C5AR1 C5AR1 

SIRPA SIRPA 

CST3 CST3 

HCK HCK 

CTSZ CTSZ 

CSF2RB CSF2RB 

NFAM1 NFAM1 

TLR7 TLR7 

TLR8 TLR8 

CYBB CYBB 

IL13RA1 IL13RA1 

CSF2RA CSF2RA 
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7.3.1.4 Bicluster 480 (Human and Mouse listed together) 

7.3.1.4.1 Shared Bicluster  

 

Figure 7.88: Shared Human-Mouse bicluster 482 image (pre-elaboration) 

7.3.1.4.2 Gene list 

Table 7.45: Human-Mouse Immune System bicluster 480 (Conserved Bicluster) 

Mouse genes Human genes 

REL REL 

NFKBIZ NFKBIZ 

TNIP1 TNIP1 
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NFKBIE NFKBIE 

NFKB2 NFKB2 

PDE8A PDE8A 

SPAG9 SPAG9 

BCL3 BCL3 

RELB RELB 
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