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ABSTRACT

Background: Several recent comparative functional genomics projects have indicated
that the co-regulation of many genes is conserved across species, at least in part. This
suggests that comparative analysis of functional genomics data-sets could prove
powerful in identifying co-regulated groups that are conserved across multiple species.
Results: We present recent work to extend our cMonkey algorithm to simultaneously
bicluster heterogeneous data from multiple species to identify conserved modules of
orthologous genes, which can yield evolutionary insights into the formation of
regulatory modules. We also present results from the multi-species analysis to two
triplets of bacteria. The first of these is a triplet of Gram-positive bacteria consisting
of Bacillus subtilis, Bacillus anthracis, and Listeria monocytogenes, while the second
is a triplet of Gram-negative bacteria that includes Escherichia coli, Salmonella
typhimurium and Vibrio cholerae. Finally, we will present initial results from the
multi-species biclustering analysis of human and mouse hematopoietic differentiation
data.

Conclusion: Analysis of biclusters obtained revealed a surprising number of gene
groups with conserved modularity and high biological significance as judged by
several measures of cluster quality. We also highlight cases of interest from the Gram-
positive triplet, including one that suggests a temporal difference in the expression of
genes governing sporulation in the two Bacillus species. While analysis of the mouse

and human hematopoietic differentiation is preliminary, it indicates the applicability of



this analysis to eukaryotic systems, including comparison of cancer model systems.
Finally, we suggest ways in which this analysis could be extended to identify

divergent modules that may exist between normal and disease tissue.
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1.1 Overview of Systems Biology

Recent advances in systems biology have dramatically accelerated the rate at
which biologists can acquire data on all informational levels of the cell (genome
sequence, RNA, protein, protein modification, metabolites, etc.). Concurrent advances
in computational biology have begun to allow for large multi-group efforts that
integrate these diverse data sources in order to generate predictive dynamical models
of whole cells (Bonneau, Facciotti et al. 2007). In addition, several groups such as the
ENCODE Project Consortium (Birney, Stamatoyannopoulos et al. 2007) and the
modENCODE Consortium (Celniker, Dillon et al. 2009) have recently produced first
drafts of global models of the functional elements of the genomes of several

eukaryotic organisms, including Homo sapiens and the model organisms Drosophila



melanogaster (Negre, Brown et al. 2011) and Caenorhabditis elegans (Gerstein, Lu et
al. 2010). In this introduction, which is heavily based upon the chapter “Prokaryotic
Systems Biology” in Plant Systems Biology (Waltman, Kacmarczyk et al. 2009), we’ll
discuss in detail several prokaryotic functional genomics projects, with the dual goals
of 1) illustrating how recent advances in computational techniques have advanced and
aided these projects; and 2) motivating the research that is presented in this thesis
dissertation.

We will show that, although many challenges remain, we are beginning to
cross critical milestones in our efforts to learn systems-wide quantitative models of
prokaryotic cells and their interactions with their environments. To do this, we will
provide a very brief explanation for the novice of the significance and utility of
prokaryotic systems biology. This will be followed by a review of some of the
technologies that are used to generate the high-throughput experimental data which
systems biologists analyze, after which we will provide examples of how systems
biology approaches have been used with four (4) prokaryotic organisms. The first of
these describes a multi-year, multi-team effort that used primarily non-computational
and non-systems-level approaches to map regulatory circuit governing the cell cycle of
Caulobacter crescentus. The second section discusses a number of systems biology
efforts to characterize various aspects of the regulatory network governing Bacillus
subtilis under various conditions, with many of these using the different technologies

that are available. This will be followed by a section describing three projects that



explored various aspects of the regulatory network governing Escherichia coli; one of
which was a project that used primarily non-systems techniques to map the acid shock
response of E. coli; another that used a novel computational method to infer a global
regulatory network based on systems-level expression data; and a third that integrated
known metabolic and regulatory interactions to generate an in silico model of E. coli.
The third section describes a multi-year project to map the complete regulatory
network of the archael organism, Halobacterium salinarium NRC-1 that was
performed by a single group which combined novel computational method
development and wet-bench verification of the predictions from these in an iterative
manner. Finally, in the remaining sections of this chapter, we motivate the research

that we present in following chapters of this thesis.

1.1.1 The importance of microbes:

Bacteria and archaea are abundant, diverse and important organisms. Many
currently relevant human pathogens are prokaryotic. Microbes have been used for
fermentation of foodstuffs for eons and more recently have been used in engineering
and synthesis applications spanning the full range of human activities (e.g. bacteria
can serve as platforms for the synthesis of drugs, vitamins, food additives).
Prokaryotes play critical roles in our environment and are central to efforts to mitigate
the human impact associated with solid waste/sewage, industrial toxic waste, and

agriculture. Prokaryotic biology is critical to our understanding the history of our



environment. Prokaryotes have traditionally provided biologists useful tools for

molecular and cell biology across all systems.

1.1.2 Experimental advantages of prokaryotic systems biology:

Archaea and bacterial systems offer a distinct advantage in complexity.
Although they have all the properties of life that warrant our awestruck admiration,
such as self-assembly, robustness, reproducible autonomous decision making, they are
orders of magnitude less complex than Eukaryotes, they often allow for collection of
larger amounts of material in the lab. Prokaryotes are often synchronizable (as are
many eukaryotic systems) and often amenable/robust to the manipulations needed for
single celled measurements (Alon 2007). Often the genetics of a given prokaryotic
system will allow for rapid construction of knock out and/or over-expression strains
that can be used to directly query the global result of specific genetic perturbation (this
is the case for all organisms described herein). Unfortunately these experimental
advantages do not extend to all organisms and several prokaryotes participate in
complex communities that currently elude even laboratory culture, and are thus only
now coming into focus via metagenomic sequencing directly from the environment
(Handelsman 2004). In this review we will focus on organisms that are amenable to

genetics, culture and have full genome sequence.

1.1.3 Types of questions
Before we begin our discussion we need to discuss the types of questions one

might answer with prokaryotic systems biology.



1.1.3.1 Core biology:

The first and most fundamental question one might ask is “how do all systems
components interact to form core aspects of biology with components and/or strategies
common to many systems.” For example we might study the cell cycle in several
organisms and compare common themes in an attempt to reveal the functional
requirements or ancestral progenitor of cell cycle control in different
niches/organisms. Systems biology becomes essential in answering this type of
question due to the sheer number of genes involved in many core processes. So the
fact that much of the cell is involved makes techniques based on global measurements
a natural fit to the question. So-called master regulators (hubs) are prevalent in biology
and determining the targets and control of such master regulators is more directly
accomplished via global techniques (such as ChIP-chip, yeast one hybrid, microarray

measurement following a genetic perturbation to the gene, etc.).

1.1.3.2 Environmental:

Another case where global measurements are key is in the deciphering of an
organisms response to its environment. A typical structure for such a study involves
the use of genomics techniques to identify key players in a physiological response to a
given cell environment, followed by more focused studies to investigate/validate the
role or necessity of the discovered proteins/genes. Many of the earliest studies
employing microarrays in prokaryotic systems were designed to characterize a cells

genome-wide/transcriptome response to environmental stress. In these studies we look



for novel regulation of known processes that have been discovered, novel associations

between proteins of unknown function with known environmental responses.

1.1.3.3 Disease related pathogens:

In cases where the prokaryote of interest is also a human pathogen, our
question is: “how to maximally disrupt the pathogen, disrupt its interaction with the
human host or vector, or otherwise mitigate its effect on human health”. In this study
we will focus less on this type of study, as the interaction with the human host often
requires as much study as the internal workings of the pathogen of interest. This
prokaryote-host interaction is, although currently the focus of several systems biology

efforts, beyond the scope of this review.

1.1.3.4 Engineering

Genome-wide models will inevitably be required if we are to rationally engineer
microbial systems. Reasons for engineering microbial systems span human efforts and
include: bioenergy, remediation of industrial waste sites, production of difficult to

synthesize compounds.

1.1.4 Global models

1.1.4.1 Emergent properties:
Emergent properties are properties of a system that cannot be trivially traced
back to properties of any single component of the system. Simple examples of

emergent properties abound in nature such as flock behavior, the decisions and



patterns of ant and termite colonies, dramatic trends in human economies, a tabby
cat’s stripes, spiral waves in heart defibrillation, etc. When we refer to the meaningful
properties of highly complex systems as emergent in this review it is simply a compact
way of describing the simple notion that if large complex systems have many inter-
component interactions then only by modeling the global system can we hope to
recapitulate or model the overall system behavior. Systems that involve interactions on
multiple scales, interactions between components that involve loops (such as feedback
loops), and non-linear effects such as saturation, recovery and auto-excitation all
contribute to the degree to which systems are likely to have difficult to predict
emergent properties.

Nearly all biological systems exhibit complex phenotypes and physiologies
that are not attributable to single subsystems or genes, and all biological systems are
large, complex systems involving all of the interaction types typically leading to
systems dominated by emergent behavior. Thus we must view important properties of
living systems as interdependent, emergent, or at least highly epigenetic phenomena.
Regardless of our diction we rapidly arrive at the conclusion that highly
interconnected phenomena like metabolism, signaling and regulation require modeling
at the global, genome-wide, scale if we are to construct predictive models of cellular

behavior.



1.1.4.2 Global models require the new approaches to experimental design,
technologies, and analysis:

This motivation for global measurement and modeling of biology has led to
prokaryotic biologists, working on several systems, to adopt some aspect of genomic
(genome-wide) experimentation and analysis. In the end this has led to many
successes and many mistakes, as the field wrestles with technical and computational
challenges generated by high throughput methods. After a decade of systems biology,
many biologists feel a bit unclear, pedagogically, as to the state of modern biology.
Many people incorrectly feel that biology is currently a disjoint field, with labs that
perform systems-biology/global studies existing in a sub-field separate from those
biologists that perform one-gene-at-a-time studies. One point we hope to convey by
reviewing several functional genomics projects below is that many of the most
interesting results are from work where more focused studies of subsystems and small

numbers of genes are embedded in or guided by global analysis.

1.2 Review of core technologies for prokaryotic systems biology.

Here we will briefly review the core technologies found in a typical prokaryotic
functional genomics pipeline as discussed throughout the paper. We will place
emphasis on these techniques in our discussion of four specific functional genomics
projects below. This section illustrates that many of these technologies, although
found throughout studies of Eukaryotes as well, were first developed in prokaryotic

systems.



1.2.1 Genomics

The sequenced genome is an essential prerequisite to determining the parts-list
for an organism, encoding its RNA transcripts, proteins, as well as several patterns and
properties beyond our current understanding. The field of genomics has expanded
during the past decade from the static study of DNA sequences, annotation, and
structure to dynamic studies of functional and comparative genomics, but all rests
squarely on our ability to determine complete genome sequences for organisms in a
cost effective manner. The process and capabilities of genome sequencing has
dramatically changed since the first complete genome in 1995 of Haemophilus
influenzae Rd. (Fleischmann, Adams et al. 1995) with innovations in cloning and high
throughput DNA sequencing technology. The Sanger (Sanger, Nicklen et al. 1977), or
chain termination method, is still the primary method for sequencing (although new
technologies are most certainly poised to overtake it as the most commonly used
method). Sanger sequencing has seen many optimizations and improvements since the
laboratory of Leroy Hood first automated the process in the mid 1980°s. These
advancements include advances in fluorescent labels and detection, capillary
electrophoresis and microfluidics, automation, informatics and computational power,
and now typically produce ~100kbp per run of a typical capillary sequencing machine.
There are two new promising technologies: 454 Life Sciences sequencing can produce
30Mbp per run by utilizing a sequence-by-synthesis (SBS) approach which integrates

pyrosequencing, massively parallel sequencing and microfabricated picoliter reactors
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(Margulies, Egholm et al. 2005). This technology has already resulted in economically
sequenced genomes (in combination with Sanger for longer reads). Solexa sequencing
technology also uses SBS and massively parallel technology on a clonal single
molecule array, and is working towards 1Gbp per run. Emerging methods based on
other technologies such as, sequence-by-hybridization, mass spectroscopy, and single
molecule nanopore sequencing are also being investigated. Regardless of which
technique wins the race, it is clear that sequencing 100s of prokaryotic genomes by
single groups with modest funding is on the horizon. Even without these new
technologies high throughput sequencing is pouring out raw data at a fantastic rate.
This along with new techniques for protein annotation has allowed us to compile a
very large compendium of gene and protein families that greatly facilitate our
management of the complexity of any given proteome (Tatusov, Koonin et al. 1997;
Finn, Mistry et al. 2006). Comparative genomics can illustrate genetic programs that
are global properties of organisms as well as properties specific to a species. This
sequencing power offers opportunities into the natural microbial world.

Much of the earth's biomass is comprised of microorganisms that participate in
tightly interconnected microbial communities. In many cases these communities are
too complex or adapted to a very particular microenvironment to culture. This inability
to culture a large number of microbes important to the environment under standard
laboratory conditions has motivated the development of metagenomics (sequencing

microbial communities directly from the environment, for example host tissue or soil,
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to study dynamic species interactions and diversity is being called environmental
genomics or metagenomics (Tringe and Rubin 2005)). Recent studies emphasize the
insights to be gained from metagenomic studies. Assembly of environmental microbial
sequences from acid mine drainage biofilms is one of several recent metagenomic
projects that illustrates that microbial community genomes can be reconstructed to
high completeness given sufficient coverage (Tyson, Chapman et al. 2004). Sogin et
al, surveyed the deep sea to show that current sequence databases represent only as
small fraction of global microbial diversity (Sogin, Morrison et al. 2006). The
Sargasso Sea metagenomics survey revealed a substantial amount of phylogenetic
diversity and complexity, identified 1.2 million genes and sampled from an estimated
1,800 bacterial species (Venter, Remington et al. 2004). Three new investigations
from the Sorcerer II Global Ocean Sampling expedition have enhanced this dataset,
which now includes 6.3 billion base pairs (Rusch, Halpern et al. 2007; Yooseph,
Sutton et al. 2007). Metagenomics shows us environmentally relevant protein
frequency of occurrence and diversity and that, when we consider the planet-wide
diversity of microbial ecology, we have just scratched the surface, with respect to

diversity, of microbial genomes and proteomes.

1.2.2 Proteome Annotation
Give the genome the next step is to predict proteins, functional RNAs and
other transcribed regions; we will only discuss annotation briefly. Methods for

annotating proteomes are still evolving, but generally rely on a mix of sequence-
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similarity, protein-domain or protein family searches (such as COG and Pfam).
Structure prediction based methods for genome annotation are emerging (Bonneau,
Baliga et al. 2004; Malmstrom, Riffle et al. 2007) and rely on fold recognition and de
novo structure prediction to extend the reach of our ability to detect distant homology
(structure similarity is conserved across a greater evolutionary distance than sequence
similarity). Methods for solving protein structures experimentally remain costly and a
mix of experimental structural biology and computational structure biology are likely
going to lead to prokaryotic genomes characterized at the protein 3D structure level to
high levels of completeness. Another promising note is that as more sequences are
added to the databases our ability to find sequence based homology via intervening

sequences (e.g. via multiple iterations of PSI-BLAST) also increases.

1.2.3 Transcriptomics

Transcriptomics is the measurement and study of the properties and dynamics
of all mRNA transcripts in the cell (the transcriptome). There are a variety of tools
used to measure transcriptomes, the most common being the microarray. All such
tools are high throughput methods for detecting and measuring the expression level, or
relative abundance of mRNA transcripts, for every gene within the cell, and results in
a snapshot of all the genes present at one time in the cell for a given condition. The
methods measure the abundance of RNAs, which is a convolution of the rate of
synthesis, transport, and degradation. Two common goals of transcriptomics are to

identify genes that are differentially expressed and recognize patterns in gene
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expression that correlate with the phenotype. The main technologies used to explore
this are DNA microarrays and serial analysis of gene expression (SAGE). SAGE
quantifies transcript levels by sequencing and counting cDNAs converted from small
unique tags of samples of RNA (Velculescu, Zhang et al. 1995). Parallel gene
expression analysis is typically done by either one-color oligonucleotide arrays from
Affymetrix (GeneChip) or NimbleGen, or by two-color spotted/printed arrays that can
be oligonucleotides, cDNAs, or ESTs printed onto a glass slide. The physical
microarray consists of probes (complementary to the RNA being measured), the
oligonucleotide or cDNA, printed (in the case of cDNA arrays) or built (for oligo
arrays) onto a glass slide or silicon chip. The array is perfused with the cell extracts of
RNA tagged with a fluorescent dye (Cy3, Cy5); labeled RNAs thus hybridize to the
DNA probes. Ideally it is the specificity guaranteed (excepting cross-hybridization) by
reverse complementarity that is core to all microarray technologies (alas, nothing
similar to reverse complementarity exists for proteins). Lastly, fluorescent intensities
are read to measure the relative abundance. It is therefore important to design the
experiment correctly for the comparison to be made. Data is collected by exciting the
fluorescent dye tagged RNA and scanning the image. Array scanners usually have
software that automatically scans the image, locates the spots, and computes the
intensities. The intensity data is converted into numerical data that can then be further
analyzed statistically to identify differentially expressed genes. RNA-seq — a more

recent technique that leverages next-generation deep-sequencing to generate highly
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precise assays that are more accurate than previous technologies - is also quickly
emerging as a transformative technology (Wang, Gerstein et al. 2009). Expression
profiles can be compared among different cells or tissues (e.g. cancerous versus non-
cancerous), time points, and perturbations. Clustering microarray data was an
important development (hierarchical clustering, k-means, self-organizing maps) for

identifying patterns of co-expressed genes.

1.2.4 Proteomics

Proteomics is a very large and expanding field with a large diversity of aims
and corresponding techniques. Recent advances have allowed identification and
quantification of all of the proteins that exist in a cell, their abundance, post-
translational modifications, interactions, localization, and modifications. However,
determination of an organism’s proteome is difficult due to the complexity of the large
number of proteins and their modifications (Bray 1995). We focus on studies that aim
to complete the characterization of the proteome by identifying and quantifying all of
the proteins encoded by the genome. The main methods for quantifying, characterizing
and profiling proteins and complexes are: two-dimensional gel electrophoresis (2DE),
mass spectroscopy (MS), matrix-assisted laser desorption-ionization time-of-flight
(MALDI-TOF/MS) and other combinations of MS (LC-MS, GC-MS, etc.)(Aggarwal
and Lee 2003). Advanced protein array technology can assay protein activity as well
as identifying protein-protein and protein-DNA interactions, here we focus on MS

based proteomics (Poetz, Schwenk et al. 2005; Vemuri and Aristidou 2005).
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Recent developments have included the development of methods for
measuring relative protein levels (proteome wide) by incorporating stable isotopically
labeled reagents into multiple samples (by cell culture, in SILAC, and by labeling with
reagents in ITRAQ, ICAT) (Gygi, Rist et al. 1999; Zhang, Spellman et al. 2006). In
these experiments each sample is labeled with a reagent containing different numbers
of stably incorporated heavy isotopes and MS is simultaneously performed on multiple
samples. These methods (e.g. SILAC, ICAT, ITRAQ) promise to provide proteome
wide measurements analogous to multi-color microarrays. Many technical challenges
remain, but mass-spec based proteomics is currently central to many functional
genomics projects, and with inbound improvements in resolution, reliability, cost (as
well as improvements in surrounding methods such as reagents and fractionation

steps) we will only see the importance of these technologies increase.

1.2.5 Techniques for measuring protein-DNA and protein-protein interactions.

Proteins function as networks of interconnected components, involving
networks composed of protein-protein and protein-DNA and protein-RNA interactions
for the cell overlaid to form an overall network for a given organism (Ge, Walhout et
al. 2003). Techniques for measuring such interactions are thus highly relevant to
prokaryotic functional genomics projects.

High-throughput interaction mapping methods have been developed for
measuring all three of these interaction networks. For example, yeast 2-hybrid (Y2H)

(Walhout and Vidal 2001) and chromatin immunoprecipitation (ChIP-chip) assays are
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methods for identifying protein-DNA interactions and co-immunoprecipitation (co-IP)
is used to identify protein complexes from cell extracts. Chromatin
immunoprecipitation (ChIP-chip) assays aim to identify the specific regions of the
genome a given protein binds. Proteins that interact with DNA will, by this procedure,
enrich segments containing high affinity binding sites for these proteins. Introduced in
2000 and 2001 by 3 papers that reported its first successful use, the general goal of
ChIP-chip is to use chromatin immunoprecipitation to help identify the upstream
binding sites for a given transcription factor. To accomplish this, the general strategy
is as follows. Once the transcription factor protein under consideration has been
bound either in vivo or in vitro to its DNA target, it is cross-linked to the DNA target,
often with formaldehyde, which can easily be unlinked with heat. After cross-linking,
the DNA is lysed, usually by sonication and the protein-DNA complex is then
immunoprecipitated using an anti-body specific to the transcription factor being
studied, allowing the cross-linked protein-DNA complex to be isolated. After
unlinking the transcription factor from the DNA, the DNA fragments are PCR
amplified and labeled before finally being evaluated with microarrays to identify
enriched regions of the genome that correspond to binding regions for the transcription
factor. Similar to ChIP-chip, a newer technique called chromatin
immunoprecipitation, followed by sequencing, or ChIP-seq, improves upon these

previous techniques by leveraging next-generation sequencing technologies to allow
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for high-throughput assays of binding sites, while providing far greater resolution than

ChIP-chip (Park 2009).

1.3 Caulobacter crescentus

The non-pathogenic oligotroph Caulobacter crescentus is a Gram-negative
[alpha]-proteobacterium that lives in aquatic environments; for the remainder of this
section, we will refer to it as Caulobacter. Morphologically, Caulobacter exhibits 3
distinct phenotypes. The first, referred to as swarmer cells (SW cells for the
remainder), are motile, rod-like cells that have in one pole both a flagellum, as well as
two type IV pili adjacent to the flagellum. Due to an as of yet unknown signal, an SW
cell will metamorphose into a stalked, or ST, cell, during which the pili are retracted
and the flagellum is ejected, replaced by a ‘stalk’ that is formed from a thin extension
of the cell wall that can help serve as an anchor for the new ST cell (Ausmees and
Jacobs-Wagner 2003; Skerker and Laub 2004; Holtzendorff, Reinhardt et al. 2006).

At the same time as this SW to ST cell transformation, chromosomal
replication, which had been repressed in the SW cell, is initiated from a single origin
of replication and the cell enters S phase. Following the completion of the
chromosomal replication, the two copies are sequestered to the two polar halves of the
pre-divisional (PD) cell, a new flagellum and pili are generated on the pole opposite of
the stalk, and a diffusion barrier develops separating the two polar halves. Once cell
division is complete, yielding both an SW and an ST cell, chromosomal replication is

reinitiated in the ST cell, while the new SW cell will relocate via chemotaxis, with
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chromosomal replication inhibited in it until it differentiates into an ST cell and the
entire process reinitiates.

The key observations to draw from the Caulobacter cell cycle are: 1) its
asymmetrical nature — as it yields 2 morphologically different daughter cells, and 2)
the replication process yields exactly 2 daughter cells (Skerker and Laub 2004). In
contrast, E. coli cell division in logarithmic phase can replicate the genome up to 4
times before cell division occurs (Skerker and Laub 2004). As cell division in
Caulobacter yields exactly 2 daughter cells, it exhibits a periodicity that lends itself
well to the examination of the bacterial cell cycle. In addition, the asymmetric nature
of its cell cycle allows researchers the opportunity to study bacterial cell
differentiation — an aspect shared with many other bacteria such as Bacillus subtilis
(Skerker and Laub 2004). However, as this asymmetry is accomplished via
asymmetric localization of proteins, a good portion of the current research directed at
deciphering this process uses lab techniques directed at study of single genes (such as
localization studies using green fluorescent protein, GFP). We will outline/review both
systems-wide studies employing microarrays, proteomics and ChIP-chip (as is the
mandate of this chapter) alongside studies aimed at determining the function of small
numbers/single genes. Thus, our goal is to illustrate how systems-level techniques
have been used alongside these more focused studies to successfully identify the

regulation of the cell cycle in Caulobacter.
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1.3.1 Afirst application of genome-wide expression profiling to Caulobacter.
The first systems-level examination of Caulobacter’s RNA expression during
its cell cycle was reported by Laub et al. in late 2000 (Laub, McAdams et al. 2000).
Interestingly, this was reported in advance of the publishing of Caulobacter’s
complete genome which was published 3 months later by Nierman et al. in 2001
(Nierman, Feldblyum et al. 2001). As such, the cDNA microarrays they used did not
cover the entire set of ORF’s in the Caulobacter genome, however they did represent
2966 predicted ORF’s, corresponding to nearly 80% of the 3767 that would be
reported by Nieman et al. Sampling every 15 minutes over the complete 150 minute
cell cycle progression from SW cell to ST cell and final asymmetric cell division,
Laub et al. identified 553 cell cycle regulated genes, 72 of which had been previously
identified using earlier genetic techniques. Clustering these cell cycle-regulated genes
using self-organizing maps (SOM’s), Laub et al. discovered that these were organized
into sets of functionally associated genes that were induced in synchronization with
the various events of the cell cycle. These included coordinated sets of genes involved
in DNA replication and cell division, protein synthesis and polar morphogenesis.
Significant among these included homologs of the E. coli cell division genes ftsl, ftsW,
ftsQ, ftsA, and ftsZ, the gene for the tubulin-like GTPase FtsZ, an essential protein for
cell division. Additionally, 16 histidine kinases were among these cell cycle regulated
genes, of which only 4 at the time had been characterized, these being CheA, DivJ,

CckA, and PleC.
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1.3.2 Laub, McAdams et al., 2000 — probing the CtrA regulon.

In addition to this time course expression profile, Laub et al. also explored the
regulon of CtrA, a member of the two-component response regulators that had already
been identified using earlier genetic techniques to be a master regulator of the
Caulobacter cell cycle (Ausmees and Jacobs-Wagner 2003). This was accomplished
by comparing the expression profiles of wild-type Caulobacter with those of a
temperature sensitive mutant, revealing 144 differentially expressed gene transcripts
as a result of CtrA expression. To identify which of these were directly regulated by
CtrA, Laub et al. used MEME (Bailey and Elkan 1994) to construct a consensus
profile of known CtrA binding sites and then used this profile in conjunction with the
expression data to identify several previously unknown genes under direct CtrA
regulation, including divK, a single domain response regulator. Finally, Laub et al.
compared the mMRNA expression of wild-type Caulobacter with another that contained
an allele that produces a form of CtrA that is both proteolysis-resistant and
constitutively active, resulting in cell cycle to arrest at the G; (SW) stage. From these
assays, they were able to identify a nearly 70% overlap with those genes differentially
expressed in the temperature sensitive mutant.

These findings were partially validated in a 2002 paper where CtrA targets
were identified by performing chromatin immunoprecipitation with microarrays (aka
ChlP-chip or ChlP-on-chip). Interestingly, this was one of the first papers to use

ChlP-chip data and for this reason, see § 1 for further discussion of ChIP-chip. Using

21



this, then new, ChIP-chip method, Laub et al. (Laub, Chen et al. 2002) identified 138
regions enriched for CtrA binding; the 196 genes flanking these regions were then
considered likely targets of CtrA. Of these, 116 had been assayed by the microarray
expression profiling reported by their earlier paper, as well as new expression profiling
they performed of a ctrA temperature-sensitive mutant over a 4 hour time period
(longer than the 2.5 hour cell-cycle) that was aimed at identifying CtrA-dependent
genes (including those not involved in the cell-cycle). Combining these three data sets
together allowed Laub et al. to identify 55 CtrA binding sites that corresponded to 34
individual genes and 21 putative operons yielding a total of 95 genes. Among these
included five genes involved in cell division and cell wall metabolism, 14 regulatory
genes, and 29 polar morphogenesis genes, with the remaining 47 either unknown (25)
or not discussed (22). Notably, these also included ccrM, a methyltransferase
previously known to be under CtrA regulation, as well the gene responsible for
producing S-adenosylmethionine (SAM), the substrate used by CcrM for methylation.
In addition, they also confirmed other prior results including those that showed CtrA
had multiple binding sites in the origin of replication, as well as directly regulated a
number of the main genes responsible for cell division, including ftsA, ftsQ ftsW and

ftsZ.

1.3.3 DivK:
Soon after these global characterizations of CtrA effects, Hung and Shapiro

(Hung and Shapiro 2002) described the impact of the single-domain response
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regulator, DivK, on the Caulobacter cell cycle by using a cold sensitive, divK-cs,
strain. They discovered that when grown at the restrictive temperature, the divK-cs
strain developed into long, filamentous stalk-like cells. A return to the permissive
temperature allowed these cells to recover morphologically, as cell division was
permitted to proceed, indicating the cell cycle of the divK-cs strain had been halted at
the G;-S stage by the restrictive temperature. To further explore this behavior Hung
and Shapiro next used cDNA microarrays to characterize the mRNA expression
profiles of the divK-cs strain during growth in both the restrictive and permissive
temperatures. From these, they discovered that many of the Caulobacter cell cycle
genes, including those involved in DNA replication, as well as pili and flagellar
synthesis, were repressed during growth in the restrictive temperature, but became
induced following the return to the permissive temperature. Combining these new
results with the prior understanding that CtrA must be proteolyzed in order for DNA
replication to initiate, they next performed a series of immunoblot and pulse-chase
analyses to examine CtrA quantities in the divK-cs strain. From these experiments,
they discovered that at the restrictive temperature, the divK-cs strain failed to
proteolyze CtrA, thus preventing the initiation of DNA replication, leading Hung and
Shapiro to conclude that DivK is requisite for CtrA proteolysis. While the exact
mechanism by which DivK mediated CtrA proteolysis was still unclear, Hung and
Shapiro, noting that divK had been shown to be part of the CtrA regulon, further

concluded that the two participate in a regulatory circuit with each other.
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1.3.4 Dissection of CckA’s global effect

Shortly following these reports on the role of DivK in the Caulobacter cell
cycle, Jacobs et al. (Jacobs, Ausmees et al. 2003) described the results of a series of
experiments performed to elucidate the effects of CckA, a histidine kinase, upon the
phosphorylation of the CtrA response regulator. As phosphorylation of CtrA is one of
the mechanisms by which CtrA activity is regulated and earlier studies had indicated
CckA has a role in phosphorylating CtrA, the goal of their study was to explore
CckA'’s role in regulating CtrA activity. As their initial step, Jacobs et al. used
microarrays and gel electrophoresis to compare the RNA and protein expression
profiles of a ctrA temperature sensitive mutant strain with those of a temperature
sensitive mutant strain for cckA. Discovering that RNA and protein expression was
virtually identical in both strains, Jacobs et al. next used *P radiolabelling and
immunoprecipitation with a Caulobacter wild-type strain to illustrate that
phosphorylated CtrA and CckA (CtrA~P and CckA~P) possessed nearly matching
patterns of expression during the cell cycle. Subsequent viability studies illustrated
that while a AcckA mutant strain was unviable, it could be rescued via a
phosphorylation-independent ctrA mutation, providing evidence that suggested CckA
was crucial for providing CckA~P mediated phosphorylation of CtrA. A final test
comparing RNA expression of a ActrAAcckA double mutant strain with that from a
AcckA strain, revealed nearly identical expression of the cell cycle-regulated genes for

both strains. As such, Jacobs et al. concluded from all these tests that CckA is a
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required regulator for CtrA phosphorylation and subsequent activation, though they

were unsure of what the exact mechanism for this regulation is.

1.3.5 The cell cycle circuit circa 2004:

Thus, from the results of these systems-level experiments, along with those
from other non-systems level studies of Caulobacter proteomic localization, a
regulatory circuit centered on CtrA that governed Caulobacter’s cell cycle gradually
began to emerge by early 2004. For example, it was understood that CtrA was
expressed at high levels during the SW cell (or G;) stage, but was quickly proteolyzed
by a ClpXP-dependant process during the transition to an ST cell. As a result of the
decrease in CtrA in the cell, it was understood that the CtrA-controlled inhibition of
DNA replication is released, allowing for replication to begin. Additionally, it was
also understood that expression of ctrA was induced shortly following the initiation of
replication, however, there was still confusion about the transcription machinery
driving this (Skerker and Laub 2004).

Specifically, by 2004 it was understood that as the levels of CtrA increase in
the cell, CtrA acts to repress transcription from a weak upstream promoter, CtrAP1,
while also activating expression from a stronger upstream promoter CtrAP2. It was
still unclear, though, what the exact mechanism was behind the expression of either of
these two promoters. For example, it was understood that ctrAP1 could only be
expressed during the short window of replication when the new daughter strand is

unmethylated. Furthermore, it had been discovered that newly expressed CtrA is
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quickly phosphorylated into its active form, CtrA~P which subsequently induces
expression of the CcrM methyltransferase that methylates the daughter strand. In so
doing, CtrA~P inhibits further activity from the ctrAP1 promoter. However, it was
not yet clear what transcription factor induces the transcription from ctrAP1 (Skerker
and Laub 2004).

It was also understood that the newly produced CtrA was phosphorylated
(CtrA~P) and that in the stalked portion of the PD cell, CtrA was again proteolyzed by
a ClpXP-dependant process, allowing DNA replication to continue. However, while
the phosphorylation of CtrA was understood to be related to CckA phosphorylation, as
described above, it was still unclear how the two were related. Furthermore, the
mechanism that allowed for the localized degradation of CtrA within the stalked end
of the predivisional cell was still unknown, though, it was suspected that it was related
to the localization to the stalked end of DivJ, a DivK kinase, which as described

above, will induce CtrA proteolysis (Skerker and Laub 2004).

1.3.6 Holtzendorff’s GerA - model

The next major step in the exploration of Caulobacter’s cell cycle was
provided by Holtzendorff et al. (Holtzendorff, Hung et al. 2004) who reported in 2004
that they had identified GcrA as a second master regulator of the Caulobacter cell
cycle. In their findings, Holtzedndorff et al. discovered that GcrA participates in a
regulatory circuit with CtrA where in the first step of this circuit, gcrA is

transcriptionally repressed by CtrA. However, in the next step of the circuit, the
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proteolysis of CtrA upon entry into S phase releases both the CtrA-mediated inhibition
of DNA replication, as well as CtrA’s repression of gCcrA expression. This
subsequently, allows GcrA to induce ctrA expression from the CtrA P1 promoter
during the short period while ctrAP1 is still in its hemi-methylated state on the
daughter strand. The circuit is closed when the resulting CtrA~P expression from the
activation of the CtrA P1 promoter consequently re-represses gcrA transcription,
thereby indirectly repressing the activation of the P1 promoter.

While the majority of the methods Holtzendorff et al. (Holtzendorff, Hung et
al. 2004) applied to identify the role of GcrA were not systems level techniques, such
as p-galactosidase assays and immunoblotting, they also performed expression
profiling to characterize its regulon once its role had been identified. Using oligo-
arrays that contained probe sets for 3761 predicted ORF’s, Holtzendorff examined the
expression profile of a AgcrA mutant strain in which a copy of gcrA was added under
the control of a xylose-inducible promoter. From the expression profile of this strain,
Holtzendorff discovered 125 known cell cycle genes that were GcrA dependent. Of
these 125 genes, however, only 8 overlapped with the CtrA regulon that had been
identified previously by Laub et al. (Laub, McAdams et al. 2000; Laub, Chen et al.
2002). Moreover, the fact that the two regulons for CtrA and GcrA consisted of only
30% of the 553 cell cycle-regulated genes Laub et al. identified (Laub, McAdams et
al. 2000) led Holtzendorff et al. to conclude that there were likely to exist additional

proteins regulating Caulobacter’s cell cycle.
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1.3.7 Global exploration of the effects of DnaA

The next such cell cycle-regulating protein to be identified was DnaA, the
DNA replication initiation factor. At the time, it was already well-established that
DnaA played a major role in the initiation of DNA replication whereby binding to
specific binding motifs within the origin of replication, called DnaA boxes, it ‘melts’
the hydrogen bonds holding together the double-stranded DNA, allowing polymerases
to access the individual strands. However, in 2005 Hottes et al. (Hottes, Shapiro et al.
2005) published results that indicated, similar to both E. coli and B. subtilis, DnaA
also functioned as a transcription factor in Caulobacter. Using a dnaA-inducible strain
(dnaA under control of a xylose-inducible promoter), Hottes et al. performed
expression profiling to identify 40 genes that were DnaA-dependent, 10 of which were
known to be GcrA induced. They next used the in silico motif-prediction tool,
MEME, to identify DnaA boxes within the upstream regions of 13 of these, including
gcrA, ftsZ, and podJ which Hottes et al. verified by using electrophoretic mobility
shift assays. Given these results, Hottes et al. concluded that these 13 genes
comprised a regulon under the direct transcriptional control of DnaA, with DnaA

serving as a promoter for GcrA, FtsZ and PodJ.

1.3.8 Holtzendorff’s model of the cell-cycle control circuit
Thus, by this point, we had an emerging model involving 3 master regulators.
Starting with active CtrA~P, the dephosphorylation and proteolysis of CtrA releases

its repression of DNA replication as well as both the gcrA promoter (Pgcra) and its own
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weak P1 promoter (ctrAPl). The release of this CtrA mediated repression
consequently allows DnaA to induce expression of GcrA. In kind, GerA induces
expression of ctrA via expression of CtrA’s weak P1 promoter, see figure 1. However,
as illustrated in figure 1, this newly expressed and phosphorylized CtrA (CtrA~P)
subsequently further accelerates its own induction by simultaneously repressing its P1
promoter, while inducing expression of its stronger P2 promoter (ctrAP2), with this
repression of its P1 promoter occurring via two mechanisms. The first of these being
direct repression of ctrAP1 by the binding CtrA~P upstream of the P1 promoter. The
second occurring when CtrA-induced expression of the CcrM methyltransferase
methylates the newly generated daughter strand, and thereby completely suppresses
further expression of the P1 promoter by GcrA (Holtzendorff, Reinhardt et al. 2006).
However, still left unanswered by this model are questions such as what is the
mechanism by which phosphorylated CckA (CckA~P) controls the phosphorylation
(and, thus activity) of CtrA. Another is the question of what is the mechanism by
which phosphorylated DivK (DivK~P) induces the dephosphorylation and proteolysis
of CtrA. A recently work by Biondi et al. addresses many of these questions;
however, before discussing this paper, we need to make a brief detour to describe the

underlying methods and motivation of the work.

1.3.9 Skerker et al.’s phosphotransfer method
In their paper, Biondi et al. utilized a biochemical phosphotransfer mapping

method that had been developed in their lab and described by Skerker et al. in 2005
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(Skerker, Prasol et al. 2005) which they named phosphotranfer profiling. In this
phosphotransfer profiling technique, a soluble kinase domain of a histidine kinase is
autophosphorylated with radiolabelled ATP ([y*3JATP) and then incubated in separate
in vitro experiments with each individual full-length response regulator. Using an
added autophosphorylated histidine kinase as a reference, phosphotranfer reactions
between the kinase domain and their specific response regulators can be identified
when the radiolabel is either depleted from the histidine kinase band or is transferred
to the response regulator (which can be identified as a band that corresponds to its
molecular weight). Therefore with this method, researchers can systematically
examine the complete compliment of response regulators of a given genome for
phosphotransfer reactions with a given kinase.

With this phosphotransfer method, Skerker et al. (Skerker, Prasol et al. 2005)
identified a signaling pathway between the cell envelop proteins CenK and CenR, and
soon after, Biondi working with Skerker and others used the method to identify a
signaling pathway involved in stalk biogenesis between ShkA and TacA (Biondi,
Skerker et al. 2006). Later, noting these open questions regarding CckA and DivK
and their relationships with CtrA, Biondi et al. (Biondi, Reisinger et al. 2006) set out
to determine their roles in Caulobacter’s cell cycle. Their first step was to definitively
determine whether or not CckA had the capacity to phosphorylize CtrA, which they
accomplished by using phosphotransfer profiling. From these tests, Biondi et al.

determined that while CckA could autophosphorylate via the phosphorylation of its
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receiver domain (CckA-RD) by its histidine kinase domain (CckA-HK), CckA had no
direct role in the phosphorylation of CtrA. Given these results, they suspected there
existed an histidine phosphotransferase (HPT) which served as an intermediary
between CckA~P and CtrA, as Jacobs et al. (Jacobs, Ausmees et al. 2003) had

speculated in their initial exploration of CckA’s relationship with CtrA.

1.3.10 Identifying the key histidine phosphotransferase

However, none of the predicted genes in the Caulobacter genome were
annotated as being an HPT. Therefore, using common characteristics of HPT’s as
criteria, along with the requirement that any such gene must have an ortholog in
another genome that also contained orthologs for CckA and CtrA as well, Biondi et al.
identified a single candidate that they subsequently named ChpT. To validate this
hypothesis, they next performed viability as well as expression profiling experiments
of a chpT deletion strain containing a plasmid with a xylose-inducible copy of chpT.
From these tests, Biondi et al. discovered that in a glucose-only environment this
strain was virtually identical to the ctrA® and cckA" strains that Jacobs et al. had used
when grown at the restrictive temperature, strongly indicating a connection between
the three genes. Given these results, Biondi et al. next returned to the
phosphotranspher profiling method to examine the relationship between these three
genes. From this method, Biondi et al. ascertained that, indeed, ChpT serves as the

histidine phosphotransferase bridge between CckA and CtrA.
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Furthermore, they also discovered that while CckA is ChpT’s only input, ChpT
can phosphorylate both CtrA as well as the single-domain response regulator, CpdR,
which had only just recently been shown by Iniesta et al. to be critical to the
localization of CtrA’s protease, ClpXP, to the stalked cell pole (Iniesta, McGrath et al.
2006) during the SW to ST transition. Though not discussed in detail here as it was
primarily a non-systems level study, this earlier work had demonstrated that CpdR
while in its un-phosphorylated state controls the localization of ClpXP to the stalked
cell pole, thereby facilitating CtrA proteolysis by ClpXP. Moreover, they too had
demonstrated that Cck~P was responsible for CpdR phosphorylation, resulting in
ClpXP de-localization from the pole. Thus, by demonstrating that ChpT served as the
histidine phosphotransferase between both CtrA and CpdR, Biondi et al. had shown

the mechanism by which CckA both activated and prevented its proteolysis.

1.3.11 DivK’s role in CtrA regulation

With these results indicating a clear phosphotranspher CckA-ChpT-CtrA
pathway, Biondi et al. turned their attention to DivK and its role in the
dephosphorylation and proteolysis of CtrA. Combining their results along with those
of Hung and Shapiro who had shown that a divK" mutant strain was phenotypically
similar to a constitutive expressing CtrA strain led Biondi et al. to hypothesize that
phosphorylated DivK (DivK~P) inhibited CtrA activity by inhibiting activity of CckA.

To verify their theory, they compared the CckA~P levels within a divk™ mutant strain
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with those of a wild type strain, finding a 4-fold increase of CckA~P in the divK®

mutant strain, giving evidence that DivK~P inhibited CckA~P.

1.3.12 divK localization impacts cckA

However, as Jacobs et al. (Jacobs, Ausmees et al. 2003) had illustrated that
CckA~P was also dynamically localized during the cell cycle, Biondi et al. performed
a long series of GFP localization experiments to determine the mechanisms driving
this. In their earlier work, Jacobs et al. had shown that CckA was localized to the
swarmer pole during G; phase, but was subsequently delocalized during the G;-S
phase transition before becoming localized to both poles of the predivisional cell and
then later delocalized from in the new stalked cell. While not discussed in detail,
Biondi et al. used GFP localization experiments to illustrate that indeed, DivK~P
triggers CckA to delocalize and inactivate, resulting in a consequent inactivation of
CtrA. Furthermore, as previous studies had shown that DivJ, a DivK kinase, localized
to the stalked pole, while PleC, a DivK~P phosphatase, localized to the swarmer pole,
Biondi et al. hypothesized that cell division was crucial for DivK~P induced
delocalization of CckA which they also verified using GFP localization experiments.
Finally, using a constitutively expression DivK strain, they also demonstrated that the
timing of DivK expression, normally mediated by CtrA, was necessary for normal or

wild-type cell cycle progression.
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Figure 1.1: Caulobacter cell-cycle circuit. Overview of the cell-circuit controlling the Caulobacter
cell cycle. Biochemical interactions are as indicated by the key in the figure. Proteins in their activated
state are shaded in blue, while those in their deactivated state are shaded in grey. Adapted from (Biondi,

Reisinger et al. 2006; Holtzendorff, Reinhardt et al. 2006)
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1.3.13 The current model

Thus, from the results of this work has emerged yet two more new feedback
loops that drive the Caulobacter cell cycle, both of which involve a phosphotransfer
cascade that starts with CckA and its activated form, CckA~P, and are determined by
the proteomic localization within the cell. In this circuit, as is illustrated in figure 1,
CtrA~P induces expression of DivK, which when phosphorylated by its kinase, DivJ,
will cause delocalization and proteolysis of CckA, preventing CckA from initiating
this cascade. In contrast, when DivK~P is inactivated by its phosphatase, PleC, into

its inactive form DivK, this repression of CckA is lifted, allowing CckA to initiate a
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phosphotransfer cascade that passes through the histidine phosphotransferase, ChpT.
In turn, ChpT~P both deactivates CpdR-mediated proteolysis of CtrA by
phophorylating it into its inactive form, CpdR~P, as well as phosphorylating CtrA into
its active form, CtrA~P, thereby completing the loop. Significant to understanding
this regulatory circuit is to recognize the role that localization plays in determining the
activity and inactivity of DivK. Specifically, as illustrated in figure 2, DivK’s kinase
and phosphatase, DivJ and PleC, respectively are located in the two opposing poles of
a late predivisional cell, with the PleC phosphatase in the swarmer pole and DivJ in
the stalked pole. As such, with PleC in the swarmer pole inhibiting DivK~P activity,
CtrA~P is left unencumbered to repress further DNA replication, while the opposite is
the case in the stalked pole, where DivJ induced phosphorylation of DivK and

subsequent proteolysis of CtrA~P allows replication to reinitiate.
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Figure 1.2: Caulobacter localization. Schematic of the proteomic localization during the cell cycle
progression of CtrA~P, CckA, DivJ, PleC, DivK and DivK~P. Adapted from (Biondi, Reisinger et al.

2006).

| G1 l S | G2 I

crA-P @ Pec O Divk-P
O ccka @ ow  DWwK

1.3.14 Future Caulobacter work:

Thus far, the bulk of the current research has focused on the regulatory
relationships of the Caulobacter cell cycle. However, as Biondi et al. identified, the
temporal dynamics of expression will need to be an area of further study.
Additionally, given its crucial role in the organism, localization and the mechanisms
driving this deserve further attention. On this last point, effort has focused on the
polar organelle development protein, PodJ, which has been associated with PleC
localization, though, neither the exact relationship and mechanism is known at this

time (Jacobs-Wagner 2004), nor is that which determines DivJ localization. Further
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mapping of Caulobacter’s stress response and metabolism also present areas for

further research as well.
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1.4 Bacillus subtilis

Bacillus subtilis is one of the best studied model organisms in biology today.
B. subtilis is a robust, non-pathogenic, aerobic, rod-shaped bacterium in the division
Firmicutes; it’s a member of the class Bacilli that includes other gram positive genera
such as Staphylococcus, Streptococcus, Enterococcus, and Clostridium. As a model
organism, B. subtilis has been studied for over a century (happily predating the earliest
pub med article), it was chosen as the best representative of the Gram-positive
bacteria, and studying it can help us understand the biology of these organisms. The
importance of the Bacillus genus spans biomedicine (w/ several pathogenic spore-
forming closely related species), industry (with several economically critical syntheses
carried out in Bacillus species) and agricultural (members of the genus are insect
pathogens that are used as a bio-insecticide). Bacilli are commonly found in soil, water
sources and in association with plants (Kunst, Ogasawara et al. 1997). B. subtilis can
be manipulated with relative ease since much of its genetics, biochemistry, and
physiology are well established. Other important properties that make B. subtilis
useful to study are: it is naturally competent, can form endospores, contains systems
for motility, has a highly diversified set of two-component signal transduction
pathways, quorum sensing, and a protein secretion system useful for expression of
engineered proteins.

B. subtilis plays an important role in industrial and medical fields and has been

used as a platform for the biosynthesis of small molecules and proteins because it is
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one of several bacteria that can secrete enzymes at gram per liter concentrations
directly into medium (Kunst, Ogasawara et al. 1997). It is known specifically for
producing proteases and amylases and is currently being developed as a vaccine
development platform (Kunst, Ogasawara et al. 1997; Ferreira, Ferreira et al. 2005).
Importantly, its secretion system is more compact (has fewer components) than that of
E. coli (Yamane, Bunai et al. 2004).

Bacteria commonly use a two-component signal transduction mechanism to
respond to changing environmental conditions (Fabret, Feher et al. 1999). These
phosphotransfer systems contain two components, a histidine protein kinase that
autophosphorylates, and a response regulator protein that elicits a specific response (as
described above) (Stock, Robinson et al. 2000; Mascher, Helmann et al. 2006).
Homologous versions of this system in several organisms have been shown to initiate
and direct various processes such as sporulation, chemotaxis, aerobic and anaerobic
respiration, and competence (Fabret, Feher et al. 1999; Ogura and Fujita 2007).

Several species of Bacillus also produce and release chemical signals, called
autoinducers or pheromones, which act as cell-cell signaling molecules between
bacteria (Miller and Bassler 2001). As population density increases so do these
signals, until a threshold is reached and gene expression is modulated. This process is
called quorum sensing and controls responses such as competence, sporulation,

motility, biofilm formation, and others (Miller and Bassler 2001). Quorum sensing is
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an active area of research, as biofilm formation is critical to several biomedical and

bio-industrial applications.

1.4.1 Genome sequence and annotation

The complete genome sequence of B. subtilis became available in 1997
revealing a sequence of 4.21Mbp containing about 4,106 protein coding genes (Kunst,
Ogasawara et al. 1997). Bioinformatics approaches revealed other properties of the
genome such as, a large family of putative ABC transporters, a variable G+C ratio of
43.5%, repetitive elements, and an average predicted protein size of 890bp (Kunst,
Ogasawara et al. 1997). The B. subtilis genome is similar in size to E. coli (4.6Mbp)
and share roughly 1000 orthologous genes. Comparing these two genomes, which
diverged about one billion years ago, will facilitate evolutionary studies of core genes,
while comparisons of B. subtilis to other more closely related genomes, such as B.
anthrasis, may provide information about conserved promoter structure and aid in

diverse bioinformatics techniques from biclustering to gene finding.

1.4.2 Initial forays into transcriptomics

Exploration of whole genome expression profiles in B. subtilis began in 2000
by Fawcett et al, who were able to assign a number of genes to the sporulation process
by using nylon-substrate macroarrays, covering ~96% of predicted ORFs, and Hidden
Markov models to study the transcriptional profile of early to middle stages of
sporulation (Fawcett, Eichenberger et al. 2000). Ye and colleagues, using two-color

glass slide arrays, compared mRNA levels from aerobic and anaerobic conditions (Ye,

40



Tao et al. 2000). The results of these initial genome wide investigations revealed
complex expression patterns, including many genes of unknown function with highly
different expression under the measured conditions, indicating that much still
remained to be learned about the control of spore formations and spore

induction/control.

1.4.3 Bacillus stress responses

A number of investigations have focused on the cellular response to stress at
the transcriptome level in B. subtilis (this so-called stress response is a key focus of
several prokaryotic functional genomics projects). Yoshida et al, studied glucose
repression by a combined approach of microarray and 2D gel electrophoresis, with a
focus on the genes dependent on catabolite control protein, CcpA (Yoshida,
Kobayashi et al. 2001). Helmann et al investigated the general stress response to heat
shock in order to establish its profile thus allowing it to be compared to other stress
response profiles (Helmann, Wu et al. 2001). Nakano et al described the role of Spx as
a global transcriptional regulator of disulfide stress conditions (Nakano, Kuster-
Schock et al. 2003). Ren et al observed the induction of stress response genes by
investigating the growth inhibition mechanism of a natural brominated furanone (Ren,
Bedzyk et al. 2004). Also in the search of new antibiotics, Lin et al., determined B.
subtilis expression profiles in response to treatment with subinhibitory amounts of
chloramphenicol, erythromycin, and gentamicim (Lin, Connelly et al. 2005). Hayashi

and colleagues determined that there is a direct interaction, during H,O, oxidative
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stress, between PerR, a stress response regulator, and srfA, an operon involved in
surfactin biosynthesis (Hayashi, Ohsawa et al. 2005). Allenby et al characterized the
phosphate starvation, PhoP, regulon, identifying some new members and a connection
to the sigB general stress regulon (Allenby, O'Connor et al. 2005). Ogura et al,
investigated the role of RapD, one of 11 Rap proteins that typically inhibit response
regulators, and found it to be a negative regulator, in conjuntion with SigX and RghR,

of the ComA regulon (Ogura, Tsukahara et al. 2007).

Overall these genomic studies helped to bring in many key proteins that would
have been missed, including several proteins never before linked to a known process.
Once these proteins are discovered by genomic techniques they are quickly validated
and integrated into the aggregate picture of stress response.Furthermore, identification
of key genes and proteins has enabled the construction of networks between the

various pathways and processes within the cell.

1.4.4 Exploration of Bacillus two-component regulatory systems

As described above, two-component regulatory systems are characterized by a
sensor protein (e.g. kinase) and a response regulator protein (e.g. DNA-binding
protein). Ogura et al began using whole genome microarray analysis in order to
identify the target genes of the response regulators DegU, ComA, and PhoP (Ogura,
Yamaguchi et al. 2001). Using the same strategy as Ogura et al, overexpressing the

response regulator in mutants for their sensor kinase, Kobayashi et al, further analyzed
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24 different two-component regulatory systems (Kobayashi, Ogura et al. 2001). These
studies greatly expanded our knowledge of kinase -> target-gene specificity, and
interestingly, the role of cross-talk between these sensory systems. For example, they
identified many new genes regulated by ComK along with some previously known
genes and identified a cellular state they called, the K-state, as a time for the cell to
rest and recover from stress that is separate from sporulation (Berka, Hahn et al.
2002). This work was quickly followed up by Ogura et al, who then explored the roles
of many ComK regulated genes, in order to better understand competence (Ogura,
Yamaguchi et al. 2002). Britton et al, performed a genome wide analysis of sigmaH,
which is involved mainly in transitioning from growth to stationary phase, but is also
involved in initiation into sporulation and competence (Britton, Eichenberger et al.
2002). Hamon et al., investigated genes involved in biofilm formation that are
regulated by AbrB (Hamon, Stanley et al. 2004) whose results led to the discovery of
two non-transcription factor gene products, a signal peptidase and a secreted protein,
that play an essential role in biofilm formation. Serizawa et al., studied the YvrGHb
two-component system and found it to control the maintenance of the cell surface and
its proteins, as well as being involved in preventing autolysis (Serizawa, Kodama et al.
2005). Keijser et al investigated the regulatory process and outlined key events of
spore germination and outgrowth by microscopy, genome wide expression profiles,

and metabolite analysis (Keijser, Beek et al. 2007).
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1.4.5 Other uses for microarrays

Several reports have focused on RNAs other than mRNA, such as tRNA,
untranslated RNAs, and RNAs involved in the processing of other RNAs. Ohashi et al,
examined the modulation of the translation machinery during sporulation, finding in
accordance with previous reports that there tends to be a dramatic global decrease in
RNA, but that certain ribosomal rRNA and mRNA genes either remain the same or
can increase (Ohashi, Inaoka et al. 2003). Dittmar et al aimed to quantify tRNA
transcription, processing, and degradation levels on a genomic scale and developed
specifically for tRNAs, a microarray and method of selectively labeling them
(Dittmar, Mobley et al. 2004). Silvaggi et al., Investigated the small non-translated
RNAs involved in sporulation by microarray analysis with a microarray of intergenic
regions as probes and a comparative computational analysis that predicts conserved
RNA secondary structures (Silvaggi, Perkins et al. 2006).

Earl et al examined 17 B. subtilis strains in order to quantify their diversity and
identify regions of variability by microarray-based comparative genomic hybridization
(M-CGH) (Earl, Losick et al. 2007). M-CGH results in a measure of gene presence or
absence by quantifying the relative hybridization efficiencies from two differently
labeled bacterial strains. AS, bacterial genomes are dynamic, they found the gene
content of their collection of strains to have at least 28% variability, meaning the

genes could either have diverged or are missing.
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1.4.6 Probing Bacillus with ChIP-chip

ChIP-chip (described above) in combination with transcriptional profiling and
gel electrophoretic mobility shift assays has been performed to identify 103 additional
genes regulated by SpoOA, the master regulator for entry into sporulation (Molle,
Fujita et al. 2003) and many new targets of CodY, a GTP-activated repressor of early
stationary genes in B. subtilis (Molle, Fujita et al. 2003). Also, a centromere-like
element in B. subtilis was defined by mapping the binding sites for RacA, a
chromosome remodeling and anchoring gene, and identifying 25 high selectivity

binding sites (Ben-Yehuda, Fujita et al. 2005).

1.4.7 The B. subtilis proteome

The global study of proteomes (e.g. using mass-spectroscopy coupled with
multiple seperation strategies) lags behind transcriptome studies in reproducibility,
cost and accuracy. Studying the dynamic proteome is confounded by several factors,
for example: 1) there is a lack cost effective methods for designing high affinity, high
specificity, capture agents for all proteins in a given genome, and 2) several post-
translational modifications of a protein can complicate its identification and
quantification. The genome of B. subtilis contains more than 4100 genes and therefore
we expect at least on the order of 4100 gene products. The proteome of B. subtilis has
been studied for more than 20 years starting with explorations of heat shock proteins
(Streips and Polio 1985). Then with the sequencing of the genome, establishment of

online databanks, and advances in MS and 2D-PAGE technology, proteome wide
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characterizations became possible. In the cytosol of vegetatively growing cells,
Buttner et al., first identified over 300 proteins (Buttner, Bernhardt et al. 2001), then
Eymann identified 876 proteins (Eymann, Dreisbach et al. 2004). Tam et al., identified
over 200 proteins in cells under stress or starvation conditions (Tam le, Antelmann et
al. 2006). Finally, Wolff et al, has increased the number of identified proteins to 1395,
thus covering over one third of the B. subtilis proteome (Wolff, Otto et al. 2006;
Wolff, Antelmann et al. 2007). Clearly with slightly more than a third of the B.
subtilis proteome identified, dynamical characterization of the proteome (both levels
of proteins and protein modifications) will reveal a great deal of novel biological
information (sequence specific degradation and translational control, specificity and

dynamics of modification, etc).

1.4.8 Yeast 2-hybrid investigation of the Bacillus protein interaction network
As described above, yeast 2-hybrid (Y2H) analysis is a widely used method for
detecting protein-protein interactions and screens can scale to test whole genomes
(Fields and Song 1989). Noirot-Gros et al, made an initial Y2H analysis of DNA
replication components in B. subtilis identifying 69 proteins with 91 interactions
(Noirot-Gros, Dervyn et al. 2002). Their investigation yielded several interesting
results that connect DNA replication to diverse cellular processes, including

membrane and signaling pathways.
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Predictions from the work of Noirot-Gros et al, influenced Meile et al, to perform a
larger scale semi-systematic protein localization study for over 100 proteins in B.
subtilis (Meile, Wu et al. 2006). To accomplish this, they developed a new approach
for the rapid construction of GFP fusion constructs. In their study, 110 ORFs were
selected, 50 chosen from known DNA replication components identified by previous
Y2H screens. The remaining 60 selections were from various functional categories,
including some of unknown function, from different functional categories based on
annotations from Subtilist, Swiss-Prot, and NCBI. Overall, 90% of the proteins they
studied were tagged with GFP with 78% tagged on both the N- and C- ends. In
summary, they were able to identify interesting localization patterns for 85 previously
un-localized proteins, and thus identified new proteins associated with DNA-
replication machinery. The locations of all proteins in the cell, under various
conditions, will need to be compiled before there can be a clear picture of the

organism at the systems level.

1.4.9 Investigating metabolome changes during sporulation

Clearly the levels of metabolites are important to microbial biology, but methods
for measuring the metabolome are much less widely adopted than methods for
measuring the transcriptome and proteome. Capillary electrophoresis mass
spectroscopy (CE-MS) is a powerful, quantitative tool for the direct and sensitive
global analysis of metabolites. Soga et al., were able to determine a total of 1692

metabolites by splitting sample using three purification schemes (one each for cationic
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metabolites, anionic metabolites, and nucleotides/coenzyme A compounds) in parallel
to separate and subsequently identify metabolites (Soga, Ohashi et al. 2003). To detect
as many metabolites as possible they used an instrument wide range of approximately
70 to 1000 m/z. Their novel strategy was lengthy, 16 hours per run, with several runs
required, but is highly automated. Soga et al used their metabolomic approach to
profile metabolites before and during sporulation. They characterized unknown peaks
by combining CE-MS results with bioinformatics and made headway into determining
the (partially characterized prior) link between sporulation in B. subtilis is and the
metabolic network. Thus, revealing possible functional links from some
uncharacterized metabolites. The power of their approach was nicely demonstrated by
the ability to simultaneously monitor glycolytic, pentose phosphate, and TCA pathway
sporulation metabolite responses consistent with previous data. The study showed that
metabolite concentrations cannot be accurately resolved by transcriptome analysis and
revealed significant changes in metabolites during B. subtilis sporulation important for

deciphering this important process.

1.4.10 A systems approach to reconstruction of the sporulation control circuit.
As is commonly known, multicellular organisms contain many different types
of cells. The mechanism of cellular differentiation is a fundamental problem in
biology. Various developmental processes such as cell growth, morphogenesis, cell
death, etc, occur in bacteria, with sporulation being a prime example. Sporulation can

be considered a developmental process, albeit a simple one, as it is the process by
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which an organism differentiates from a vegetative cell type into a completely
different cell type, the spore. The fate of each cell type is due to both its particular
developmental gene expression program, as well as its interaction with the cell’s
environment. B. subtilis, like many gram-positive, low G+C content, bacteria is known
to undergo this transformation, and is among the best studied in this area. Inhospitable
environmental conditions cause B. subtilis to begin the sporulation process, but it is
typically induced in the laboratory by low nutrient conditions, e.g. the removal a
carbon, nitrogen or phosphorus source (Piggot and Hilbert 2004). In the beginning of
sporulation, a septum forms asymmetrically, near one end of the cell, dividing it into
two cells, the larger mother cell and the smaller forespore; the forespore is to become
the mature spore. Immediately following septum formation, the two cells have
identical genomes but asymetric gene expression programs. In the next stage, the
forespore is completely engulfed by the mother cell in a phagocytic-like process. The
mother cell then nurtures the endospore surrounding it with proteins that form a spore
cortex, and a spore coat. Finally, the mother cell lyses to release the fully developed
and remarkably resilient spore (the spore is resistant to heat, UV and y radiation, and
various chemicals and enzymes). When nutrients are again sensed in the environment,
the spore can germinate and flourish as a vegetative cell (Setlow 2003).

Various independent transcriptome analyses have elucidated, on a genome-
wide level, many of the relationships between genes, including a catalog for

sporulation the process of at least 600 genes (Fawcett, Eichenberger et al. 2000;
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Britton, Eichenberger et al. 2002; Eichenberger, Jensen et al. 2003; Feucht, Evans et
al. 2003; Molle, Fujita et al. 2003). Eichenberger and colleagues utilized an elegant
microarray strategy in conjunction with computational, biochemical, and in vivo
analyses attempting to take transcriptome analysis a step further (Eichenberger, Fujita
et al. 2004). Their systems level investigation comprehensibly illustrated a regulatory
circuit by integrating data from transcriptomics and genomics approaches thus
characterizing the mechanism controlling the cell’s decision to sporulate, and the
timing of the process by which the spore is assembled.

Transcription in bacteria is mediated by sigma (o) factors (general
transcription factors involved in a large fraction of bacterial transcription initiations).
Sigma factors bind to specific promoter regions, and in Bacillus have been shown to
be master regulators with sequence specific affinity for separate promoters. There are
at least 17 sigma factors in B. subtilis but only 6 have a notable role in sporulation
(Moszer 1998; Moszer, Jones et al. 2002). Gene expression during sporulation is
coordinated by 4 sigma factors o*, o, 6% and o*. The regulatory cascade in the
forespore is initiated by o'; it includes 48 genes organized in 36 transcription units
whose products govern spore morphogenesis and germination properties (Wang,
Setlow et al. 2006). After engulfment, ¢© regulates transcription of genes involved in
chromosome condensation and equipping the spore for germination. In the mother
cell, 6" begins the cascade and turns on 262 genes (Zheng and Losick 1990;

Eichenberger, Jensen et al. 2003; Eichenberger, Fujita et al. 2004). Two of the targets
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of ¢" are DNA binding proteins, SpollID and GerR (Kunkel, Kroos et al. 1989;
Stevens and Errington 1990; Tatti, Jones et al. 1991; Errington 2003; Eichenberger,
Fujita et al. 2004). The function of GerR was previously unknown and now has a role
as a negative regulator, switching off genes in the 6" regulon. SpollIID is interesting in
that it acts as a repressor for some genes activated by " and activates additional genes
in conjunction with o". SpollID is important for activating many coat proteins and
especially the genes for an inactive proprotein, pro-c®, that ultimately converts to
mature o® upon reception of an intercellular signal governed by forespore specific °.
This signal is important for keeping the separate mother cell and forespore programs
coordinated during the morphogenesis (Errington 2003; Hilbert and Piggot 2004). The
o® regulon includes sets of genes for the spore cortex, structural components of the
spore coat and germination (Steil, Serrano et al. 2005), and importantly GerE. Last in
the mother cell line hierarchy, GerE, a DNA binding protein, activates a final set of 36
genes and represses about half of the genes activated by o". For example, two cell
wall hydrolases are activated that play a role in lysis of the mother cell when spore
morphogenesis is complete.

Eichenberger et al compared RNA from mutants in transcriptional regulators
suspected/known to control sporulation; using prior knowledge of the sporulation
process they were able to construct near-optimal experimental designs for measuring
the effects of these perturbed transcription factors. As a result of their transcriptional

profiling strategy, two DNA-binding proteins, SpollID and GerR, turned on by c"
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were found to have significant effects on the 6" regulon. SpolIlID extensively affects
the o regulated transcription pattern, influencing over half of the c" regulon. This
seems to be accomplished by direct interaction, as evidenced by assaying the promoter
regions of the modulated genes. Evidence for direct interaction with the promoter
regions was obtained first by identifying SpollID binding sites with gel
electrophoresis mobility-shift assays and DNAse I footprinting. Their application of in
vivo ChIP-chip revealed many regions on the chromosome that SpollID bound that did
not include genes not known to be under under its control, and some sites were located
within protein coding regions, possibly indicating an architectural role for SpollID.
Finally, computational binding site sequence analysis was used to find putative
conserved motifs in the upstream region of genes regulated by SpollID. Analysis of
GerR by transcriptional profiling found that no genes that were dependent upon GerR
for activation, but many genes were inhibited by GerR. Following SpollID in the
cascade, the o regulon was delineated by transcriptional profiling and further
resolved by computational sequence analysis to identify a conserved motif in the
promoters of the ™ regulated genes. The last regulator in this cascade, another DNA-
binding protein, GerE, was found to inhibit the expression of slightly over half of the
o® regulon and activate at least 36 additional genes at the end of the mother-cell line
of gene expression.

A comprehensive program of the mother-cell line of gene expression can be

drawn from these results together, see figure 3. The resulting model consits of a
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hierarchical regulatory cascade of three DNA-binding proteins (SpollID, GerR, and
GerE) and two general transcription factors (sigma factors 6" and c*); c" begins the
cascade by activating transcription of 262 genes. SpollID and GerR repress many
genes of the 6" regulon and SpollID and c" activate 10 additional genes. ™ activates
75 more genes, and finally, GerE, represses over half of the * regulon and activates
36 more genes. Eichenberger et al., compiled these results into a transcriptional
network composed of a linked series of five type-1 feed forward loops (FFLs) (Milo,
Shen-Orr et al. 2002; Shen-Orr, Milo et al. 2002; Mangan and Alon 2003). Two of the
FFLs are coherent and have the property of being persistence detectors (low pass
filters), these may be used to minimized the effect of high frequency noise (Mangan
and Alon 2003). Three of the FFLs are incoherent and have the property of producing
pulses of gene transcription (Mangan and Alon 2003).

Finally, they performed comparative analyses to determine possible
conservation of this spore formation curcuit in other endospore forming bacteria.
There are differences in the presence of certain regulatory proteins, for example,
Bacillus and Clostridium contain orthologs for o, o and SpollID including
conserved sequence recognition domains, but Clostridium is missing GerE and GerR.
Also, there is variation in the composition of each individual regulon among species,
for example: 75% of the B. subtilis o™ regulon have orthologs in B. anthracis and B.
K

cereus whereas only 40% have orthologs in Clostridium, and 50% of the B. subtilis ¢

regulon have orthologs in B. anthracis and B. cereus compared to 20% that have
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orthologs in Clostridium. They show that this pattern of conservation is consistent
with the fact that the o™ regulon contains many components of the spore’s outer
surface and that spore surfaces of B. subtilis, B. anthracis and B. cereus are known to
be quite different quite different (Chada, Sanstad et al. 2003), the low level of
conservation among o regulons may be due to adaptation to an ecological niche.
Thus, the sporulation circuit (the regulatory control of the decision to sporulate and the
subsequent control of spore assembly) is more conserved than the target protein
components (the spore coat proteins). Finally, Wang et al, extended this work by
investigating the forespore line of gene expression and synthesized a single model

summarized in figure 3 (Wang, Setlow et al. 2006).

1.5 Escherichia coli

Discovered in 1886 by Theodore Escherich, Escherichia coli is a Gram-
negative species of bacteria that inhabit the mammalian gut, specifically the colon or
lower intestines. As one of the best studied organisms of the pre-genomic era, E. coli,
like B. subtilis was an early target for sequencing and in 1997, the complete sequence
for the K-12 (MG1655) strain, consisting of 4,639,221 base pairs, was completed and

reported by Blattner et al. (Blattner, Plunkett et al. 1997).

1.5.1 Early systems-wide studies:
Shortly following the completed sequencing of the E. coli genome in 1997,

later that same year, the first two genome-wide microarray studies of Sacromyces
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cerevisiae were reported. The first, by DeRisi et al. (DeRisi, lyer et al. 1997), used
spotted cDNA arrays to profile the expression changes of yeast during diauxic shift,
and then later Wodicka et al. (Wodicka, Dong et al. 1997) used 25-mer
oligonucleotide arrays from Affymetrix to profile the expression differences of yeast
grown on rich versus minimal media. Closely following these initial studies, two early
projects were performed to develop microarrays for E. coli. The first of these,
described by Tao, Busch et al. (Tao, Bausch et al. 1999) was a microarray that used
nylon membranes and radio-labels for the cDNA; making the experiment essentially a
genome-wide northern blot. In contrast, the second project by Wei, Lee et al. (Wei,
Lee et al. 2001) used the technique developed by Pat Brown to develop a two-color,
spotted cDNA microarray on glass slides. Shortly following these initial studies,
Richmond, Glasner et al. (Richmond, Glasner et al. 1999) compared these two
microarray technologies by comparing the expression profiles reported for two well-
studied environmental responses. Specifically, in their comparison, they used both
technologies to explore the RNA expression profiles of E. coli’s heat shock response,
as well as exposure to the lac operon inducer, isopropyl-b-D-thiogalactopyranoside
(IPTG). In their results, the authors reported that both microarray varieties indicated
expression differences for genes in both the lac and melibiose operons for the IPTG
tests, both of which were expected given previous published experimental work. A
sizeable intersection between the genes that the two technologies reported as being

induced during the heat shock response was found; 62 of the 77 genes reported by the
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nylon membrane microarrays were also identified as being induced by the glass cDNA
arrays. In contrast, the authors reported little overlap between the genes the two
technologies identified as being down regulated. Despite this discrepancy, the authors
concluded that glass microarrays were more reproducible and therefore recommended

it as the preferred method.

1.5.2 Overview of early E. coli microarray studies

Shortly after these initial projects, Selinger, Cheung et al. (Selinger, Cheung et
al. 2000) introduced the first Affymetrix chips designed for E. coli in a paper that
compared the expression profiles of E. coli during logarithmic growth and stationary
phases (on a rich medium). In addition to probes for the 4290 predicted ORF’s in the
E. coli genome, these new chips also contained probe sets for non-coding RNA’s such
as tRNA’s and ribosomal rRNA’s. While there was some discussion of results of the
biological findings of their experiment, the focus of the paper, not surprisingly, was on
the technology and the advantages offered by using short oligos, rather than whole
cDNA’s. The primary of which being lower cross-hybridization. However, it’s
important to also note that as these were still the early days of microarray design, these
chips had the design flaw of failing to randomize the location of the probes on the
chip. For example, the top half of the array contained all the probe sets for ORF’s and
untranslated RNA’s, while all the tRNA and rRNA probe sets were all located along
the bottom edge of the chip. As described by Qian and Kluger(Qian, Kluger et al.

2003), chips that manifest such a linearity in probe location are prone to biasing the
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expression levels reported when there is an uneven distribution of RNA in the solution
that is hybridized to the chip.

Following the announcements of these new E. coli-specific genome-wide
microarrays, they were quickly adopted by researchers who began applying them in
systems-wide studies of various environmental and metabolic responses. While many
of these responses had already been the subject of earlier studies using previously
existing genetic techniques, for most this was the first time they had been studied at a
genome, or systems-wide, level. Early examples include explorations of the SOS
response (Courcelle, Khodursky et al. 2001), metal-ion tolerance (Brocklehurst and
Morby 2000), osmostress (Weber and Jung 2002), and adaptation to acetate and
propionate (Polen, Rittmann et al. 2003). More recent examples of stress-response
examinations include inhibition of cell division (Arends and Weiss 2004), anti-
microbial peptides (Hong, Shchepetov et al. 2003; Tomasinsig, Scocchi et al. 2004),
and cadmium toxicity (Wang and Crowley 2005).

These early studies were primarily descriptive in nature but were also key in
motivating the development of several analysis techniques suited to these genome-
wide measurement technologies. In this sense, they can be viewed as foundational as
they reported systems wide expression differences, from which new hypotheses could
be drawn that could be validated and further explored in later studies. For example, it
was shown by Barbosa and Levy (Barbosa and Levy 2000), and later partially

validated by Pomposiello, Bennik and Demple (Pomposiello, Bennik et al. 2001) that
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there was a previously unknown overlap between the multiple antibiotic resistance and
oxidative stress regulons (MarRA and SoxRS, respectively), a finding that would not
have been easily identifiable using previous experimental methodologies. Another
example would be the results reported by Zheng, Wang et al. (Zheng, Wang et al.
2001) who discovered an additional overlap for the SoxRS response regulon with that

of the OxyR response regulon.

1.5.3 System level studies of regulatory interactions governing the glutamate
dependent acid response (AR):

One example of how systems level biology assisted in the study of E. coli
focused on and helped elucidate a complex network of regulatory interactions
governing its glutamate-dependent acid resistance or response (AR). While the ability
of E. coli to develop acid resistance was first observed over 50 years ago, it was not
until 1995, during the pre-genomic era, that it was discovered that there exist 4 distinct
systems within E. coli for acquiring AR (Lin, Lee et al. 1995; Foster 2004). These
include one system that is repressed by glucose (and only functions in its absence),
another that is dependent on arginine, as well as one more that is dependent upon
lysine, and finally a fourth that is glutamate dependent (with the last three functioning
in environments that include glucose). Of these, the glutamate-dependent system is
the most effective, the best studied, and the one upon which systems biology has had

the most impact.
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The first systems-level foray into the understanding of E. coli’s glutamate-
dependent AR was performed by Hommais et al. (Hommais, Krin et al. 2001), though
the original goal of the work was to explore the role of E. coli’s nucleoid-associated
protein, H-NS. Using nylon membrane microarrays to compare the RNA expression
profiles of wild type and an hns mutant strain, Hommais et al. identified expression
differences for genes involved in processes including those that were then known to be
involved in osmolarity and acid resistance. Note, for the majority of the observed
gene expression differences, the expression was induced or elevated in the Ahns strain,
leading them to conclude that H-NS was a repressor of gene regulation. Among the
genes up-regulated in the Ahns strain included evgA, the regulator from the EvVgAS
two-component system, as well as gadA and gadB, the two glutamate decarboxlyases
known to be required for acid resistance, as well as gadC, the GABA/glutamate
antiporter required by AR. Noting the induction of the genes involved in acid
resistance, Hommais et al. next explored the impact of the Ahns upon acid resistance.
Comparing the effects of arginine, lysine and glutamate acid stress upon both the Ahns
and the wild-type strains, Hommais et al. discovered that the Ahns strain only
conferred a resistance when in the presence of glutamate. Based on these results,
Hommais et al. used plasmid-induced overexpression strains to identify yhiX (later
renamed to gadX) as a gene whose overexpression will impart acid resistance, leading
them to conclude that it was likely to be a transcription factor necessary for glutamate-

dependent AR.
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A year after Hommais et al. published their results, Masuda and Church
(Masuda and Church 2002) set out to explore the regulon of the EvgA response
regulator protein in the EVgAS two-component signaling system, with the hope that
characterizing the response would help identify EvgA’s functional role. To
accomplish this, they used E. coli specific chips from Affymetrix to compare the
expression profiles of EvgA knockout and overexpressing (via a transfected plasmid)
strains to identify potential target genes of the EvgA regulon. Now, as EvgA’s
functional role was still unclear at the time, they also developed a similar set of strains
from an acrAB knockout strain, as it had been reported by Nishino and Yamaguchi
(Nishino and Yamaguchi 2001) that EvgA overexpression would bestow antibiotic
resistance to this strain. Comparing the expression profiles of all these strains,
Masuda and Church were able to identify 79 genes with induced expression as well as

another 24 that were repressed or reduced.

1.5.3.1 Exploring the genes necessary for acid resistance

Of these, they noted that several were genes known to be involved in
conferring acid resistance, motivating their exploration of the effect of EvgA
overexpression upon the organism’s response to acid stress. Thus, to verify their
hypothesis, they performed survivability tests for E. coli in a low pH environment and
discovered that, as they suspected, EvgA overexpressing strains were, indeed, acid
resistant.  Given this validation, the authors then performed another series of

survivability experiments using knockout strains for each of the genes most strongly
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induced by EvgA overexpression. From these tests, Masuda and Church were able to
identify 3 genes, ydeO, ydeP, and yhiE (later renamed to gadE) that were required for
the acid response of E. coli in logarithmic growth, while also discovering that gadE is

key to the organism’s acid response while in stationary phase.

15.3.2 Identifying EvgA’s role in acid resistance

Along with their findings for the acid stress response, Masuda and Church also
performed a similar set of experiments to explore the drug resistance that was induced
by EvgA overexpression in the Aacr strains. In so doing, they were able to identify
the YhiUV efflux pump and the TolC outer membrane channel proteins as being key
to the Aacr strain’s drug resistance during EvgA overexpression. However, in later
tests, they also observed that EvgA overexpression could not confer drug resistance
for strains without this Aacr deletion. For this reason, combining their observations
about both the drug and acid shock response, Masuda and Church concluded that
EvgA’s primary role is not in coordinating the organism’s drug response, but instead

its acid shock response.

1.5.3.3 Expanding the list of AR regulators

In a similar project, performed nearly concurrently with that done by Masuda
and Church, Nishino et al. (Nishino, Inazumi et al. 2003) partially validated Masuda
and Church’s findings. For example, they too recognized the induced expression of
genes known to be involved in the organism’s acid response and thus tested the effects

of EvgA overexpression on the survivability of the organism. While they also
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observed an increased resistance to acid shock, they however did not pursue this
further and thus did not identify the critical roles of ydeO, ydeP, and gadE in its acid
response.

In contrast to the Masuda et al. and Nishino et al. investigations, the goal of
Tucker et al. (Tucker, Tucker et al. 2002) was specifically to explore E. coli’s
glutamate-dependent AR. To accomplish this, they used nylon membrane chips to
compare the expression profiles of E. coli during logarithmic growth in glucose-rich
media of varying pH, with pH’s of 7.4, 5.5 and 4.5. Of the genes they identified as
being induced were included 6 genes that were either known or suspected of being
transcription factors, including 4 in the hdeA-gadA region with these being yhiF,
gadE, gadX, and gadW". Similar to Masuda and Church, to further explore the roles
of the induced genes, Tucker et al. generated gene knockout strains and performed
survivability tests on these. Focusing on 7 genes in the hdeA-gadA region, they
discovered that only one, gadE, was critical for the organism to become acid resistant
and for this reason, they concluded that it likely was an AR transcription factor.

Following up their initial study, Masuda and Church (Masuda and Church
2003) developed a set of deletion and overexpression E. coli strains for each of the
ydeO, ydeP, and gadE genes they identified in their earlier study. From the results of

a series of susceptibility tests for these strains, they hypothesized that there exists a set

! Note, in the text the last 3 genes are referred to as yhiE, yhiX, and yhiW, but were later renamed using the gad prefix
once they were recognized as being members of the glutamate AR regulon. For the sake of clarity and consistency,
we use their current naming scheme rather than those used in the original text.
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of cascading regulatory interactions where EvgA induces YdeO which subsequently
induces GadE. To validate this, they used a combination of in vitro and in silico
systems-level methods. Specifically, via the expression profiles of a new set of
deletion mutants for the ydeO and evgA genes, individually and in combination,
Masuda and Church identified 2 distinct regulons. One of these being induced directly
by EvgA expression (including YdeO), while the other was indirectly induced by
EvgA via YdeO. To further validate EvgA induction of YdeO, Masuda and Church
used the in silico motif discovery tool, ALIGNACE, (Roth, Hughes et al. 1998) to
identify a putative 18bp binding motif in the upstream regions of the genes that they
predicted to be induced directly by EvgA. Next, the putative binding sites in the
upstream regions of ydeP and b1500 (a gene upstream of ydeO that they suspected
formed an operon with it) were mutated in a new set of E. coli strains that were
subsequently subjected to acid resistance tests. The results from these experiments
indicated that the putative EvgA binding sites were, as they suspected, necessary for
acid resistance. Combining their latest results with those of Hommais et al., Masuda
and Church postulated a regulatory cascade with H-NS repressing EvgA, while EvgA
induces YdeO. As described above, YdeO was proposed to induce GadE, the
transcription factor responsible for inducing acid resistance, with their complete model
summarized in figure 3.

It is important to note, however, that in the network they proposed, Masuda

and Church argued that GadX — an AraC-like protein identified by Hommais et al. as
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being induced in hns mutants - did not induce GadE. In contrast, earlier studies had
concluded GadX was part of a complex regulatory circuit involving another AraC-like
protein GadW, the stress sigma factor, [°, and CRP (CAMP receptor protein).
Masuda and Church based their argument on a comparison of the expression profiles
of gadX deletion and gadX overexpression strains during exponential growth, which
did not show gadE to be differentially expressed. In contrast, in a nearly concurrent
study, Tucker, Tucker et al. (Tucker, Tucker et al. 2003) compared the expression
profiles of wild-type and deletion strains for gadX and gadW during stationary phase
which they believed indicated a regulatory relationship between GadX and GadE.
However, Tucker et al. argued that GadX works with GadW to integrate signals from
other sources, though the exact mechanism of this is as yet unknown. Regardless, this
inconsistency reminds us that co-expression is one facet of a highly interconnected
system (one on many informational levels including protein, protein modification,
etc.), but do not diminish the pioneering contributions made by these first global

studies.
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Figure 1.3: E. coli glutamate dependent acid resistance circuit. Masuda and Church’s model for E.
coli’s glutamate dependent acid response, adapted from (Masuda and Church 2003). Solid lines
represent confirmed regulatory relationships, while dotted lines represent relationships that were
unclear. In this model, H-NS serves to repress evgA and gadX expression, while EVgA expression
induces expression of ydeO and ydeP, both necessary for acid resistance, with YdeO expression
inducing gadE expression. Additionally, dotted lines are used to connect both YdeO and GadE with
gadA, hdeD and the slp-yhiF, hdeAB-yhiD and gadBC operons to reflect uncertainty as to whether
these were under YdeQO’s direct control or via GadE. Reflecting their conclusion that GadX did not
induce GadE expression, GadX is shown to induce some of the acid response genes and operons, but

not gadE-yhiUV.

65



1.5.4 Global computational models of E. coli metabolism and regulation.

In addition to allowing researchers to study E. coli on a genome-wide scale, the
completion of the sequencing of the E. coli genome also opened the door for the first
genome-scale in silico models. In fact, in silico models of E. coli have been around
since as early as 1990 (R. A. Majewski and Domach 1990), however, these were
limited in both scale and complexity, usually comprising a small set of genes and
modeling only a few processes. In contrast, the more recent models of regulation and
metabolism contain thousands of genes involved in a nearly comprehensive number of
processes (Covert, Knight et al. 2004).

We’ll describe these models and the ways they’re being used in greater detail

below, but first we need to cover a few basics.

1.5.4.1 Data driven models of the E. coli regulatory network

Generally speaking, the full spectrum of in silico research can be divided into 2
distinct classes consisting of: 1) regulatory network inference and 2) modeling of the
full metabolic network and its interactions with a subset of the regulatory network.
While there are networks that have been generated via manual collation and collection
of experimentally validated interactions from published literature (Ogata, Goto et al.
1998; Karp, Riley et al. 2000; Salgado, Gama-Castro et al. 2006), it is expensive and
time-consuming to create and maintain these networks as they require expert
knowledge and extensive experimentation (full field X 50 years) to be generated. As a

result, there have been a number of in silico methods developed that attempt to infer
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regulatory relationships from genome-wide experimental data such as microarray
expression and ChIP-chip data. Often, these methods use computational learning
algorithms that have been adapted to work specifically with biological data
(D'Haeseleer, Wen et al. 1999; Weaver, Workman et al. 1999; Friedman, Linial et al.
2000; van Someren, Wessels et al. 2000; Vanet, Marsan et al. 2000; Segal, Taskar et
al. 2001; van Someren, Wessels et al. 2002; Bar-Joseph, Gerber et al. 2003; Segal,
Shapira et al. 2003; Stuart, Segal et al. 2003; Hashimoto, Kim et al. 2004; Bonneau,
Reiss et al. 2006; Slonim, Friedman et al. 2006; Faith, Hayete et al. 2007). In addition
to offering the prospect of a cheaper and less costly solution, these automatic methods
also have the possibility of identifying previously unknown protein interactions,
providing quantitative means for experimental design, and a means for inferring the
roles of genes of unknown function. The development of these algorithms is still in the
nascent stage and currently there does not yet exist a “gold standard” data set or
known interaction map that can be used to gauge their performance. We will return to
the second class (models including flux through metabolic networks) shortly, but first
lets discuss one network inference project that has recently been applied to E. coli.
While, as mentioned above, there have been a number of efforts reported in
recent years to infer the regulatory networks of various organisms and other systems
the first such effort for E. coli has only recently been reported in early 2007 by Faith et
al. (Faith, Hayete et al. 2007). Faith et al. used an unsupervised network inference

method, the context likelihood relatedness algorithm (or CLR), of their own
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construction on a data set consisting of 445 E. coli Affymetrix microarray expression
measurements coming from both published sources as well as new experiments (> 1/2
of the collated data was new). Once generated, they then validated their inferred
network using a combination of in vitro and in silico methods. We’ll discuss the
overall work and its findings shortly, but first let’s describe the inference method they

used.

1.5.4.2 The CLR algorithm

The context likelihood relatedness (or CLR) algorithm compares expression
profiles of the genes by utilizing mutual information (MI), a commonly used
information theoretic similarity measure. Mutual information is defined as the relative
entropy between the joint distribution and the product distribution of 2 random

variables, X and Y, defined mathematically as:

- Ento el 75

where 1(X:Y) is the MI for two variables (in this case the levels of two genes under a
large number of conditions, p(x) is the probability of seeing a value for x in the
distribution, p(y) is the probability of seeing a value for y in the distribution, and
p(Xx,y) is the probability of seeing a given value for x and y in a single observation or
sample.

Generally speaking MI can be understood to be a measure of the coupling

between the distributions of two random variables, or in the case of the CLR
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algorithm, the similarity between the distributions of 2 genes. So, to get an intuition
of how this measure operates, consider an example of 2 genes that are completely
independent of each other such that p(genes;, gene;) = p(gene;) p(genez). As this
situation would give us a fractional value (the fraction inside of the log function, that
is) equal to 1, we would get a mutual information of 0 as log(1) = 0. Additionally,
another key aspect of MI is that we are guaranteed that the mutual information
between any two variables will be greater than or equal to 0. Thus, mutual
information is a measure of the non-independence of two variables (or genes in our
case). Importantly the measure can detect relationships that would not be detected by
a metric such as the Pearson correlation.

The CLR algorithm first calculates the background distribution of mutual
information scores for each gene, estimated for each gene by determining the pairwise
mutual information between it and the rest of the genes in the data set. Then, using
this background distribution of pairwise MI scores, the CLR algorithm calculates the
likelihood of their score. In so doing, this allows the CLR algorithm to filter out those
genes that have spurious similarities with large numbers of other genes.

To improve the likelihood that high scoring gene pairs are causal and improve
the stability and run time of their algorithm, Faith et al. selected a subset containing
328 known or putative transcription factors and used these as the centroids or mediods

of their clustering scheme. In so doing, they correctly reduced both the overall search
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space of their algorithm, improved the stability of the result with respect to small
changes in the data, and reduced the cost of the requisite computation.

To validate the results from their CLR algorithm, Faith et al. used the
RegulonDB database (Salgado, Gama-Castro et al. 2006) for its set of known
interactions for E. coli. Using these known interactions (culled from the literature) to
calculate precision and recall (percent true positives and percent true positives found),
Faith et al. found that at a 60% precision rate, CLR identified 1079 interactions, of
which 338 were known and 741 putative. Additionally, Faith et al. further explored
all of the discovered putative regulons containing 5 or more genes using the in silico
motif analysis tool MEME, discovering significant motifs in 28 of the 61 regulons
examined, with 13 of these corresponding to known motifs. As yet another validation
method, Faith et al. also performed in vivo validation using Chip-gPCR for 3 of the
transcription factors they considered significant, identifying 21 previously unknown
interactions.  Finally, the regulatory network identified a potential combinatorial
transcriptional control of iron transport by the central metabolism of E. coli, which
Faith et al. validated using real time quantitative PCR.

While these are clearly impressive and interesting results, one should also note
a few limitations of their approach; many of these limitations represent limitations for
all methods given current datasets and thus future directions for the field of regulatory
network inference. By limiting their search space to that of the known transcription

factors, as many other techniques do, the CLR algorithm cannot detect auto-regulated
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proteins such as the CtrA master control regulator in C. caulobacter (nor can any other
method we are aware of). Potentially, this could be resolved if the upstream region of
the transcription factor corresponding to a particular regulon was included in upstream
sequences that was validated using either of the in silico or in vivo methods they

employed.

1.5.4.3 Dynamic models of regulation and metabolism

In contrast, dynamic cellular models, as their name would imply, attempt to
simulate the internal physiology of a cell. A number of different approaches have
been created to do this including thermodynamic (Loew and Schaff 2001; Beard,
Liang et al. 2002; Edwards, Ramakrishna et al. 2002; Moraru, Schaff et al. 2002),
stochastic (Arkin, Ross et al. 1998), cybernetic (Varner and Ramkrishna 1998; Varner
and Ramkrishna 1999; Guardia, Gambhir et al. 2000) and constraint-based models (R.
A. Majewski and Domach 1990; Edwards and Palsson 2000; Covert, Schilling et al.
2001; Edwards, Ibarra et al. 2001; Covert and Palsson 2002; Edwards, Ramakrishna et
al. 2002; Reed, Vo et al. 2003; Covert, Knight et al. 2004; Barrett, Herring et al.
2005). However, of these, constraint-based models are the only approach that has
been shown to be scalable to genome-wide models as the others depend upon highly
specified parameterizations of attributes such as polymerase availability and quantity,
as well as other environmental factors such as temperature. For this reason, they don’t

scale well to full genome-wide models, and we will focus on constraint-based methods
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below. (Covert, Schilling et al. 2001; Price, Papin et al. 2003; Reed and Palsson

2003).

1.5.4.3.1 Constraint-based overview & basic stoichiometric matrix

The constraint-based approach described by Price et al. uses a matrix of pre-
specified constraints as the central model (Price, Papin et al. 2003). As such, rather
than a single solution, a constraints based model may have multiple valid solutions
provided they don’t violate these constraints. The earliest constraint-based models
were designed to model the metabolism of a cell in steady state by using a matrix
representation of the metabolic network for a given cell, denoted as S, that encodes the
stoichiometry of each of the biochemical reactions within that cell. To find the
allowable rates of each reaction (generally not known for more than a minority of
reactions in any cell) we find the null space of S by setting Sv=0, where v is vector of
the fluxes in the reactions described in S (and the unknown we are searching for). For
readers less familiar with this type of modeling we expand this discussion below. For a
more extensive discussion of this type of modeling we refer interested readers to

Palsson’s recent book, aptly named “Systems Biology” (Palsson 2006).

1.5.4.3.1.1 The S matrix explained

Let us first examine the matrix S. Each row of S represents a single metabolic
compound or metabolite, while each column represents an individual reaction that
reflects the stoichiometry of that reaction. So, for example, the following hypothetical

reaction involving 4 reactants:

72



A+B—->C+D
would be represented by the vector ( -1, -1, 1, 1 )T, where the symbol, ", is used to
represent the transpose of the vector. As such, the first two values of the vector (the -
1’s) correspond to the compounds that are consumed in the reaction, namely A and B,
while the latter two values correspond to the compounds produced by the reaction, C

and D.

Continuing our example, a reversible reaction such as:

CD+E~ C+DE
would require two vectors to represent the two possible reactions, i.e. (-1,-1,1, 1)" and
(1,1, -1,-1)". A more complex system involving 4 reactions (2 reversible and 2

irreversible) and 8 reactants is illustrated in figure 4.

Figure 1.4: A stoichiometric matrix, S, for a system of 4 reactions involving 8 reactants. Reaction
1 corresponds to column one, reaction 2 to column 2, reaction 3 to columns 3 and 4, and reaction 4

corresponds to columns 5 and 6.
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Given a stoichiometry matrix we still need to know the relative rate constants
corresponding to each reaction, a vector of rates v. One assumption is that the cell is at
homeostasis (or will reach homeostasis following any perturbation. This assumption
allows us to set Sv=0, this equality combined with other assumptions about allowable
rates (which impose only very broad constraints on rates, such as rates must be > 0)
allows us to find sets of allowable rates, v, which in turn allow us to predict the
outcome of changes in metabolic flux following perturbations. This approach, forcing
the solution to exist in the null space of S, centers on the simplifying assumption that
the organism and/or cell operates in perfect homeostasis. Other uses of this encoding
of metabolism do not require this assumption and are discussed briefly below, for
example Palsson’s group has also performed analysis that do not require the
assumption Sv=0, and have also carried out analysis that couple the metabolic and

regulatory networks to successfully predict systems wide properties.

1.5.4.3.1.2 A general approach for using stoichiometric models in simulation
Shortly following the formulation of this framework, in 1994 Varma and
Palsson (Varma and Palsson 1994) illustrated how these metabolic models could be
applied in simulation. As an iterative approach, their algorithm divides the simulation
into equal sized time slices or time points. Provided an initial condition for the first

time point t;, the solution v that produces optimal growth is chosen. Following this,
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any perturbations to the external media by this flux state are calculated, and then fed

back into model to produce the state for the next time point tj.;.

1.5.4.3.2 The first metabolic-only models

While, the first stoichiometric models of E. coli appeared as early as 1990 (R.
A. Majewski and Domach 1990), the first genome wide model was the iJE660 in silico
model that Edwards and Palsson developed in 2000 (Edwards and Palsson 2000). To
build their model, Edwards and Palsson relied on established databases such as
EcoCyc, MPW and KEGG (Ogata, Goto et al. 1998; Selkov, Grechkin et al. 1998;
Karp, Riley et al. 2000) which contain massive collections of experimentally
discovered enzymatic and metabolic reactions that have been manually culled from the
available literature. Using these resources as the basis for their model, it contained
705 genes, as well as 436 metabolites involved in 720 reactions. Once completed,
Edwards and Palsson used the model as a platform to perform a series of in silico gene
knockout simulations, accomplished by removing the enzyme under consideration in
silico by setting all relevant reaction rates (those involving that enzyme) to zero. To
gauge the performance of their model, Edwards and Palsson next compared their in
silico results with those from known experiments and found that their model had a
predictive accuracy of 86%. In subsequent studies, their model was also used to
predict optimal growth rates and evolutionary adaptation (Edwards, Ibarra et al. 2001;

Ibarra, Edwards et al. 2002).
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1.5.4.3.3 Incorporating regulatory networks into constraints based metabolic
models

So, what was missing from these purely stoichiometric models? A careful
reader will likely have noticed that regulatory interactions between transcription
factors and enzymes were not part of the initial models. Originally, this stemmed
from the assumption that an organism would regulate protein expression so as to
optimize the metabolism of the compounds available to it; therefore, by focusing on
metabolic rates, one could argue the model was implicitly taking these regulatory
relationships into account (rolling regulatory influences on flux into the allowable
rates found during the calculation of v). This initial lack of regulatory information was
also is a result of the fact that regulatory networks are less well determined than
metabolic networks. However, to more realistically reflect the underlying biology, in
2001, Covert et al. (Covert, Schilling et al. 2001) introduced into the model the use of
Boolean logic to represent the various regulatory relationships between genes.

As an example of such Boolean logic, consider the hypothetical case of a
microbe having thriving happily on its preferred carbon source, Carbonl, while also
having the capacity to utilize a secondary carbon source, Carbon2, when Carbonl is
unavailable.  Continuing the example, imagine that there exists a regulatory
relationship such that the transcription of a protein to transport Carbon2 into the cell is
repressed when the microbe is in the presence of Carbonl. If we use RPcl to

represent an external cell sensor protein for Carbonl and tTc2 to represent a
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transcription factor that induces transcription of the transporter protein, this
relationship can easily be encoded using the following Boolean logic rules:

RPcl = IF (Carbonl)

tTc2 = IF NOT (RPc1).?

In their initial description of these Boolean rules, Covert et al. applied these to
a simplified model that, as a proof of principle, covered only a few growth conditions.
However, in 2002 Covert and Palsson extended this approach to generate a model of
the central metabolism of E. coli (Covert and Palsson 2002). Using a literature based
approach similar to that used to build the iJE660 model, Covert and Palsson generated
a regulatory network consisting of 149 genes that regulated 73 enzymes and 16 other
regulatory proteins. To produce their final model, this regulatory network was
combined with the IJE660 metabolic model, with the final product containing 45
reactions whose availability was impacted by the regulatory relationships represented
in the regulatory network. In a new set of in silico gene deletion simulations, using
both the new regulatory network as well as the original metabolic network, Covert and
Palsson discovered that the regulatory model improved the overall performance from
83% for the metabolic model to 91% correctly predicted growth responses.

Following their early success, in 2004 Covert et al. (Covert, Knight et al. 2004)

reported that they had extended this approach to create iMC1010"*, the first genome-

% Example taken from Covert, Schilling and Palsson, 2001 Covert, M. W., C. H. Schilling, et al.
(2001). "Regulation of gene expression in flux balance models of metabolism." J Theor Biol
213(1): 73-88.
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wide metabolic and transcriptional model or in silico strain. The iMC1010"* strain was
actually an extension of an earlier metabolic model, iJR904, that had been reported the
year before by Reed et al. (Reed, Vo et al. 2003), who themselves had extended the
earlier iIJE660 model to include 904 genes following the release of the updated E. coli
genome in 2001 (Serres, Gopal et al. 2001). This latest model was extended to include
1010 genes, 104 of which transcription factors that regulated 479 of the remaining 906
genes in the model. To validate their new model, Covert et al. compared the predicted
growth responses with 13,750 known experimentally-derived growth phenotypes
available from the ASAP database (Glasner, Liss et al. 2003), discovering that their
model correctly predicted the growth response in 78.7% of the cases.

To improve on their model, Covert et al. analyzed those cases where the
known response disagreed with those that the model predicted, in the process
identifying several suspected cases of missing or unknown enzymes and
transcriptional interactions. Furthermore, focusing on the organism’s response to
oxygen deprivation, Covert et al. also performed microarray expression profiling of
several gene knockout strains they created to explore this response. From the results
of the analysis of this expression data, a number of updates to the model’s regulatory
network were made, resulting in their next in silico model, iMC1010"%, which too was
then tested using the same growth response cases that had been applied to iMC1010"".
Unfortunately, the improvement in the number of correctly identified growth

responses was negligible (+5 cases called correctly). Despite these disappointing
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results, Cover et al. observed, however, that the new model was far more successful in
predicting the expression differences of genes that had been revealed to be
differentially expressed by the microarray data.

Following this announcement of the iMC1010"*

in silico strains, in 2005
Barret et al. (Barrett, Herring et al. 2005) reported the result of an interesting
experiment where they compared the simulations of the iIMC1010"* strain grown in
various media. For their experiment, the media chosen was selected such that it would
cover the full range of growth media that could be used by the iMC1010** strain.
Enumerating all possible combinations of carbon, nitrogen, phosphate, sulfur and
electron-acceptor sources resulted in 108,723 combinations, 15,580 of which induced
sufficient predicted growth by the iMC1010"* strain to be used in their comparison.
Note, that rather than comparing the resulting growth phenotype, as was done by
previous studies, they instead compared the predicted gene expression and activities
during these simulations against one another. Using an agglomerative clustering
algorithm in combination with principal components analysis, Barret et al. discovered
that most of the simulations grouped together into a relatively small number clusters —
36 or 13, depending upon whether gene expression or gene activity was compared.
Moreover, for either type of comparison, Barret et al. discovered that these clusters
were characterized by the terminal electron acceptor available in the in silico growth

environment. These results led them to conclude that despite the multitude of possible

environments E. coli could be subjected to its genetic system is designed to function in
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a few dominant modes of response. Or, as they succinctly summarized it, their results
were consistent with the hypothesis that “system complexity is built in to robustly
provide for simple behavior”.

Though it would be interesting to see how these results would compare with a
similar experiment using the MC1010*? model, if we focus on just the technological
aspects for the moment, the ability to perform simulations on nearly 110,000 different
media is impressive, in and of itself. While acknowledging the current limitations of
the existing models, it is clear that they still have the capacity to provide some
important observations about the underlying nature of these organisms. Considering
the fact that nearly 80% of their phenotype predictions (growth or not-growth) were

accurate, this is clearly a milestone for global in silico modeling of global dynamics.

E. coli metabolomics

Metabolomics, briefly, is the study of all metabolites (small molecules), and
their dynamics, for various conditions in an organism. The metabolome is crucial to
our understanding of phenotype and fitness outcomes of different cell states (Fiehn
2002) and the number of metabolites accessible is on the order of hundreds to
thousands. There is evidence from comparing multiple complete genomes of a
common core of enzymes that are fundamental for metabolism (Jardine, Gough et al.
2002). Metabolism may be conserved to some degree at the enzyme level, but the

processes and networks by which the various organisms convert metabolites varies
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significantly (Peregrin-Alvarez, Tsoka et al. 2003). The field of metabolomics is
advancing quickly. One example, important for industry and medicine, is the
improvement of bacterial strains by metabolic engineering.

Nobeli and colleagues attempted to characterize the E. coli metabolome using
two-dimensional NMR to classify and identify metabolites systems-wide from living
cells (Nobeli, Ponstingl et al. 2003). They compiled their dataset of 745 metabolites, a
subset of the complete metabolome, from publicly available, experimentally verified
data from the EcoCyc (Keseler, Collado-Vides et al. 2005) and KEGG (Kanehisa,
Goto et al. 2006) databases. Clustering of the metabolites revealed a continuum with
significant overlap of clusters and no clearly defined classes of metabolites (with
respect to presence of absence under varying conditions). This early study
demonstrated a novel systems level perspective of the metabolome. Much ‘omic’ data
is available and its integration is fundamental to understanding the complexities and

robustness of a living system in its environment.

1.6 Halobacterium salinarium NRC-1

The archaeal Halobacterium salinarum NRC-1 is a halophillic (salt loving)
organism that can not only survive, but requires highly saline environments,
flourishing in environments such as the Great Salt Lake in Utah with ~4.5M salinity
(or roughly 5-10 times the salinity of sea water). Halobacterium can also withstand a
surprising variety of other stresses, such as oxidative stress, DNA-damaging

chemicals, heavy metals, UV and gamma radiation, low oxygen, and desiccation. To
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withstand high salt, it maintains an isoosmotic cytoplasm by eliminating some Na+
ions and maintaining a high intracellular K, Mg (and also Na) ion concentration. As
such, its genome possesses multiple ion transporters such as active K+ transporters
(KdpABC), Na+ / H+ antiporters (NhaC proteins), low affinity ion transporters driven
by membrane potential (Trk proteins), and heavy metal (arsenic and cadmium)
transporters. More importantly, Halobacterium flourishes in these environments by
adjusting its physiology appropriately in response to numerous external stimuli. For
example, it can relocate, in search of favorable environments, using sensors that can
discriminate beneficial and detrimental spectra of light (Bogomolni and Spudich 1982;
Spudich and Bogomolni 1984; Spudich, Takahashi et al. 1989; Spudich 1993), an
aerotaxis transducer (HtrVIII) (Brooun, Bell et al. 1998) and buoyant gas-filled
vesicles (DasSarma 1993). One of the hallmarks of Halobacterium is its ability to
survive anaerobically using light and/or arginine as energy sources and aerobically as
a chemoheterotroph. Halobacterium generates energy from light by its retinal-
containing light-driven ion transporters, bacteriorhodopsin and halorhodopsin (Kolbe,
Besir et al. 2000; Luecke, Schobert et al. 2000). Additionally, Halobacterium can also
ferment arginine via the arginine deiminase pathway with each mole of arginine
fermented yielding one mole of ATP (Ruepp and Soppa 1996). As such an
extremeophile, it represents an interesting, yet still poorly understood class of
organisms. Moreover, from a systems biology perspective archaea present an

interesting opportunity as while they are prokaryotic organisms, they share many
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attributes with eukaryotes such as eukaryotic-like transcription, translation and TATA-
boxes. Though they have been the subjects of study since the 1960s, in 2000 the first
Halobacterium salinarum genome was sequenced, opening the door for further
systems-level study of the organism (Ng, Kennedy et al. 2000; Dassarma, Berquist et
al. 2006).

Below, we go through how some of these efforts have been applied to
Halobacterium. We will illustrate a systematic process consisting of the following
steps:

1. Define all of the elements in the cell (or organism). Develop an initial model
of the cell using existing knowledge, i.e. literature review.

2. Perturb the system environmentally and/or genetically (knockouts, over
expressions, etc.) and globally assay the relationships of the elements one to
another (e.g., levels of mMRNA and protein, protein/protein interactions, etc.).
Integration of data from different sources is critical to a complete
understanding.

3. Compare the model with the experimental results to formulate new hypotheses
which explain the discrepancies.

4. Test these hypotheses with a new series of perturbations and update the model
to more accurately reflect the experimental results.

5. lterate steps 2 - 4.
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1.6.1 Sequencing of Halobacterium

As mentioned above sequencing of the H. salinarium NRC-1 genome was
completed by Ng et al. in 2000 (Ng, Kennedy et al. 2000), who used a whole-genome
shotgun strategy to sequence the genome which consists of one large replicon and two,
relatively smaller replicons. The larger of these contains ~2Mbp (2,571,010 bp,
exactly), while the two smaller replicons, pNRC100 and pNRC200 each contain
roughly 200 and 350 Kpb, respectively (191,346 and 365,425 exactly). Using the in
silico gene prediction program, GLIMMER (Salzberg, Delcher et al. 1998; Delcher,
Harmon et al. 1999), Ng and colleagues identified 2682 putative genes, of which 2111
were located on the large replicon, while 197 and 374 were found on the 2 smaller
replicons, pNRC100 and pNRC200, respectively. To assign function to these, the
putative genes were translated and then submitted to NETBLAST (Altschul, Madden
et al. 1997) to query for homologues in the nonredundant database of proteins hosted
on the National Center for Biotechnology Information (NCBI). The results from this
search revealed that 1658 had significant matches, though of these matches, only 1067
had known function while the remainder were hypothetical proteins. Of these matches
to genes with known function were genes involved in metabolism, cellular envelop
maintenance, photobiology, DNA replication, transcription and translation.
Interestingly, Ng et al. also identified 91 transposable insertion elements, with the

majority of these (62) located on the 2 smaller replicons or minichromosomes, leading
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them to conclude that these play a significant role in Halobacterium evolution by

allowing the organism to gain new genes.

1.6.2 Baligaetal., 2002 — systems wide exploration of energy production in
differing environments.

Following the sequencing of Halobacterium, the first system-level analysis
was reported by Baliga et al. in 2002 (Baliga, Pan et al. 2002), who explored the
combined RNA and protein expression of Halobacterium during anaerobic energy
production. As mentioned above, from earlier studies, it was already known that in
anaerobic conditions, Halobacterium could generate energy from either arginine
fermentation or photosynthesis. Additionally, from earlier studies, it was known that
during phototrophic growth the organism generates numerous copies of a light-driven
proton pump called bacteriorhodopsin (bR), which is a protein complex composed of
the 2 proteins bacterioopsin (Bop), and retinal. During phototrophic growth these
proton pumps are organized in a two-dimensional lattice called the purple membrane.
Furthermore, it was also known that another protein, Bat, regulated the expression of
itself, as well as 3 others involved in bR synthesis, bop, brp, and crtB1.

Thus, to explore the regulatory network driving phototrophic growth, Baliga et
al. performed RNA and protein expression analyses of 4 different strains, including
the NRC-1 wild-type, a bop knockout strain (bop-), as well as both a bat
overexpression (bat+) and knockout (bat-) strain. Using cDNA microarrays, they

discovered that the bop- strain exhibited little expression difference from the bat+
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strain. However, as would be expected of a transcription factor, the bat+ and bat-
exhibited significant numbers of differentially expressed genes, with 151 and 157
differentially expressed genes, respectively. What was not expected, though, was that
functionally, their expression profiles were inverted, as those genes involved in
photosynthesis were induced in the bat+ strain, but repressed in the bat- strain, while
the opposite was the case for those involved in arginine fermentation (repressed in the
bat+ strain, but induced in the bat- strain). While the exact mechanism for this was
unclear, Baliga et al. hypothesized that this inversion represents a strategy to maintain
a steady level of ATP within the cell. Additionally, subsequent proteomics studies
using the ICAT technique (Gygi, Rist et al. 1999) found a number of differentially
expressed proteins had no corresponding change in mRNA (33/50), indicating
posttranslational effects upon protein expression. Furthermore, in silico promoter
analysis of the genes induced in the bat+ strain found only one additional gene
containing the Bat binding site, indicating that most of these were subject to indirect
regulation by Bat. However, promoter analysis using MEME was able to identify a
likely binding motif among five genes involved with arginine fermentation. In so
doing, their study lead to new hypotheses later verified with future genetic

modifications and later iterations of the group’s systems-level analyses.

1.6.3 The functional annotation of Halobacterium proteome
In addition to these findings, Baliga et al. discovered that they had also been

able to verify the existence (at the protein and transcript level) of 496 of the 971
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hypothetical genes in the Halobacterium genome — those that had been predicted by
gene finders, but had no homologues with other known genes. This annotation was
further expanded by Bonneau et al. (Bonneau, Baliga et al. 2004) who in a paper from
2004 reported both a new functional, structure-based annotation of the Halobacterium
genome, as well as a new contextual annotation of the genome that linked proteins by
associations such as shared operon membership.

To update this proteome annotation, Bonneau et al. used a method which
they’d used previously in the critical assessment of structure prediction (CASP3,4 &
5) (Bonneau, Strauss et al. 2001; Bonneau, Tsai et al. 2001; Chivian, Kim et al. 2003)
which used two algorithms, Ginzu and Rosetta (Bonneau, Tsai et al. 2001; Aloy, Stark
et al. 2003; Bradley, Chivian et al. 2003; Fischer, Rychlewski et al. 2003; Kinch,
Wrabl et al. 2003) to predict protein domain boundaries and protein structure. The
method is a hierarchical workflow that utilizes a protein domain-centric approach to
identify function and structure starting only with the primary sequence of a predicted
protein. As an initial, pre-processing step, each query sequence is filtered for regions
that are likely to be either transmembrane, coiled coils, signal peptides or a disordered
region. These regions are removed from further analysis, with the remainder
submitted to their protein-domain parsing program, Ginzu, which attempts to parse the
primary sequence into likely domains and identify their functions by using a
hierarchical workflow (with more accurate methods placed at the top of this

hierarchy). The first step of this process is to use PSI-BLAST to search for sequence
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matches to the PDB, resulting in high-quality, high-likelihood domains of known
function. For those regions of the protein not identified by this PSI-BLAST search,
they are next queried using HMMER for matches in Pfam. If any regions still have
not been identified by these previous searches, as a third step Ginzu next attempts to
identify matches to protein structures using Fold Recognition. As the fourth and final
step of Ginzu, any regions not recognized by the previous 3 methods are aligned to all
known sequences using PSI-BLAST; multiple sequence alignments are parsed for
block patterns indicative of domain structure. Finally, all domains not matched by a
known structure using these methods are then passed to the Rosetta algorithm, a de
novo structure prediction algorithm that uses information from the PDB to identify
likely local structure confirmations.

With their functional annotation process, Bonneau et al. found 1077 of the
2596 protein coding genes in the Halobacterium genome had significant matches
found by the initial PSI-BLAST search of the PDB. Additionally, 610 domains were
identified by querying the Pfam database, with an additional 670 domains identified
using the two de novo structure prediction methods (Rosetta). While 1234 protein
domains could not be annotated by this method, this still translates into a nearly 30%
improvement over the collection of sequence-based methods which had initially been

used.
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1.6.3.1 Protein associations and structure prediction to derive putative
annotations for proteins

To generate their contextual annotation of associations, Bonneau et al.
considered 4 possible association types, including protein-protein interactions, fusions
of Halobacterium protein domains found in other genomes, proteins grouped into
operons, and phylogenetic profile edges (Tatusov, Natale et al. 2001). To identify
putative protein-protein interactions, they used the COG (Clusters of Orthologous
Genes) database, along with other databases of known interactions to infer 1143 likely
interactions. For the fusions of Halobacterium domains, a method described by
Enright et al. (Enright, Iliopoulos et al. 1999) was utilized to identify 2460 suspected
associations. To identify operons, two methods were used, one which considered
clusters of genes with shared directionality, while the other considered nearby pairs of
genes which had orthologs in other genomes that were similarly co-located (Mellor,
Yanai et al. 2002; Moreno-Hagelsieb and Collado-Vides 2002). With these two
methods, 1335 total putative operon associations were identified. Finally, 525
association links were added using the phylogenetic profile method of Marcotte et al.
to identify collections of genes which often co-occur in different genomes (Marcotte,
Pellegrini et al. 1999; Eisenberg, Marcotte et al. 2000). These associations and the
prior proteome annotation effort provided a rich environment in which to explore

protein function that was much greater than the sum of the individual parts.
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1.6.4 Halobacterium’s stress response following exposure to ultraviolet

radiation

We now further review Halobacterium'’s stress response following exposure to
ultraviolet (UV) radiation (Baliga, Bjork et al. 2004). Damage to DNA as a result of
exposure to shortwave UV light (UV-C) falls into two categories, one being
pyrimidine and pyrimidone phosphoproducts that are created between the C6 and C4
carbons of neighboring pyrimidine nucleotides (i.e. T-C or C-C), while the other are
cyclobutane pyrimidine dimers (CPD) that are created between the C4 and C5
positions of neighboring pyrimidines of the same type (i.e. C-C or T-T). Similarly,
there exists two repair mechanisms in most organisms, one of which is the nucleotide
excision repair (NER) system that can occur at any time, but is better with repairing
phosphoproducts. The second is a photolyase-catalyzed phosphoreaction that can only
occur in the presence of light, and is more effective at repairing CPD’s. Note,
however, both repair pathways can repair both types of DNA lesions. Prior to Baliga
et al.’s exploration of the UV response, it had been known that Halobacterium had
homologs for proteins in both systems, including homologs for both bacterial and
eukaryotic NER proteins, though there were still questions regarding the exact
machinery of these repair mechanism within the organism.

As an initial foray, Baliga et al. explored the UV-C resistance of the
Halobacterium, by exposing Halobacterium in a thin liquid culture to UV-C radiation,

finding that up to 110 J/m? there was no loss of viability and 37% survivability
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following 280 J/m?. However, these initial tests also indicated that photoreactivation
was a major UV repair mechanism (growth in light following exposure was 16 times
more likely (16-fold) than growth in dark conditions). For this reason, they next
focused on two photolyase homologs phrl and phr2 within the Halobacterium
genome. While it was already known that phr2 was a photolyase, the role of phrl was
still unknown. Using 3 strains, consisting of a phrl knockout (phrl-), a phr2
knockout (phr2-), and a phrl and phr2 double knockout (phrl-/phr2-), they found that
their results clearly revealed that only phr2 functioned as a CPD photolyase, as the
phrl- strain exhibited no difference from the wild-type following UV exposure. As
they also found that both the phr2- and phrl-/ phr2- strains exhibited ~3.5 fold
increased survivability when grown in the presence of light versus dark following UV
exposure, they next explored the processes occurring during what they termed light
versus dark repair following exposure to UV light.

To accomplish this, they used an experimental procedure where they examined
the organism, grown in either light or dark conditions, at 30 and 60 minutes post UV-
exposure, as well as a control (no UV exposure) after 60 minutes growth in light.
Thus, five separate assays were performed (L30, L60, D30, D60, and C60). Using new
70-mer oligonucleotide microarrays to assay the RNA expression at these time points,
they found that a total of 420 genes who’s mRNA was differentially expressed, with
273 of these only occurring during the repair tests, 40 of which occurred in both repair

conditions and 61 that occurred in both the control and repair assays. One of the more
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interesting findings from these assays was the difference in number of genes that were
repressed after 60 minutes repair growth in light (L60) assay versus those that were
differentially expressed in the other repair assays. Specifically, while <2% of
Halobacterium’s genes were differentially expressed in any of the other repair assays,
roughly 12% of the genome was found to be down regulated in the L60 assay,
including nearly all the ribosomal and RNA polymerase genes. This massive down-
regulation has also been found to be a general stress response in other conditions, as
well as other organisms.

Based on the structure-based reannotation of the genome, Baliga et al. were
able to identify at least two transcription factors, genes VNG1318H and VNGO0019H,
who’s function were unknown previously. In addition, using the association
annotation that Bonneau et al. described, along with their own expression results and
information from the Kyoto Encyclopedia of Genes and Genomes, Baliga et al. were
able to identify and visualize the response of biomodules using Cytoscape (Shannon,
Markiel et al. 2003), a genomic data visualization tool. We will discuss Cytoscape in
greater detail below. However, all these combined tools and newly acquired
information allowed Baliga et al. to formulate a number of new conclusions and
hypotheses. Among these was the conclusion that phr2, and not phrl, was clearly a
photolyase and the major mechanism of UV-C damage repair. Another conclusion,
based on the number of genes downregulated in the L60 sample, was that the major

response to UV-C damage is a halt in transcription and translation to allow the
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organism or cell to recover from the UV-C induced damage before regular cell activity
and division restarts (a result also seen in other organisms stress response).
Furthermore, they identified 3 new putative transcriptional regulators involved in
repair damage, including the VNG1218H gene that we mentioned above. Finally, the
new experimental data and computational analyses techniques also allowed Baliga et

al. to speculate on 2 parallel mechanisms involving Cobalamin (B-12) biosynthesis.

1.6.5 Data Visualization: Cytoscape and the Gaggle

Cytoscape is a computer program that Shannon et al. (Shannon, Markiel et al.
2003) first reported in 2003, which displays the genes and associations of a given
organism as a network where the genes represent nodes, and the associations
represented as edges between the genes/nodes. Furthermore, attributes such as
function and mRNA and protein expression data can then be assigned to each gene in
the network. With this setup, Boolean networks and active transcriptional paths
calculated using mRNA expression data can then be explored in context of the other
data types integrated into the network to gain systems level insights and formulate
hypotheses for further testing. See cytoscape.org for details, code and Cytoscape

compatible tools (plugins).

1.6.6 The quest for the global Halobacterium regulatory network: Philosophy.
Distilling regulatory networks from large genomic, proteomic and expression
datasets is one of the most important mathematical problems in biology today (Yuh,

Bolouri et al. 1998:; Friedman, Linial et al. 2000; Wahde and Hertz 2001; Ideker, Ozier
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et al. 2002; Lee, Rinaldi et al. 2002; Shmulevich, Lahdesmaki et al. 2003; Hashimoto,
Kim et al. 2004; Bonneau, Reiss et al. 2006). The development of accurate models of
global regulatory networks is key to the understanding of a cell’s dynamic behavior
and its response to internal and external stimuli. A major goal of the Halobacterium
project was thus to combine all data (including the data generated by the focused
studies above) to generate a global regulatory network.

Methods for inferring and modeling regulatory networks must strike a balance
between model complexity - a model must be sufficiently complex to describe the
system accurately - and the limitations of the available data - in spite of dramatic
advances in our ability to measure mRNA and protein levels in cells, nearly all
biological systems are underdetermined with respect to the problem of regulatory
network inference. We focus on further development of our algorithms for learning
co-regulated modules and regulatory networks. Our aim is to learn models of
regulation from data that include units of time, concentration (or at least relative

concentration) and to explicitly model regulator binding-sites.

1.6.7 Halobacterium global regulatory network inference. Methods,

motivations, challenges and current progress.

1.6.7.1 Challenges:
A major challenge is to distill, from large genome-wide data sets, a reduced set
of factors describing the behavior of the system. The number of potential regulators is

often on the same order as the number of observations in current genome-wide
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expression and proteomics datasets. A further challenge in regulatory network
modeling is the complexity of accounting for transcription factor interactions and the
interactions of transcription factors with environmental factors (e.g. it is known that
many transcription regulators form heterodimers, or are structurally altered by an
environmental stimulus such as light, thereby altering their regulatory influence on
certain genes). A third challenge and practical consideration in network inference is
that biology data sets are often heterogeneous mixes of equilibrium and kinetic (time-
series) measurements; both types of measurements can provide important supporting
evidence for a given regulatory model if they are analyzed simultaneously. Last, but
not least, is the challenge that data-derived network models be predictive, and not just
descriptive:  can one predict the system-wide response in differing genetic
backgrounds, or when the system is confronted with novel stimulatory factors or novel
combinations of perturbations?

We describe the methods we used to predict the global network from The
Halobacterium Data compendium as a two-part process (step 1, cMonkey, step2, the
Inferelator). We follow this discussion with a brief discussion of the tools that are used
to explore this data, the resulting networks and associated annotation data (the

Gaggle).

1.6.7.2 Step 1: cMonkey, the need for integrative biclustering:
Learning and modeling of regulatory networks can be greatly aided by

reducing the dimensionality of the search space prior to network inference. Two ways
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to approach this are 1) limiting the number of regulators under consideration, and 2)
grouping genes that are co-regulated into clusters. In the first case, candidates can be
prioritized based on their functional role, e.g. limiting the set of potential predictors to
include only transcription factors, and by grouping together regulators that are in some
way similar. In the second case, gene-expression clustering, or unsupervised learning
of gene-expression classes, is commonly applied. It is often incorrectly assumed that
co-expressed genes correspond to co-regulated genes. However, for the purposes of
learning regulatory networks it is desirable to classify genes on the basis of co-
regulation (shared transcriptional control) as opposed to simple co-expression.
Furthermore, many standard clustering procedures assume that co-regulated genes are
co-expressed across all observed experimental conditions. Since genes are often
regulated differently under different conditions, this assumption is likely to break
down as the size and variety of data grows. Biclustering was developed to better
address the full complexity of finding co-regulated genes under multifactor control by
grouping genes on the basis of coherence under subsets of observed conditions (Cheng
and Church 2000; Tanay, Sharan et al. 2002; Yu 2002; Kluger, Basri et al. 2003;
Segal, Shapira et al. 2003; Sheng, Moreau et al. 2003; Yu 2003; Tanay, Sharan et al.
2004).

Co-regulated genes are often functionally (physically, spatially, genetically,
and/or evolutionarily) linked (Moreno-Hagelsieb and Collado-Vides 2002; Harbison,

Gordon et al. 2004). For example, genes whose products form a protein complex are
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likely to be co-regulated. Other types of associations among genes, or their protein
products, that can imply functional couplings include (a) presence of common cis-
regulatory motifs; (b) co-occurrence in the same metabolic pathway(s); (c) cis-binding
to common regulator(s); (d) physical interaction; (e) common ontology; (f) paired
evolutionary conservation among many organisms; (g) common synthetic phenotypes
upon joint deletion with a third gene; (h) sub-cellular co-location; and (i) proximity in
the genome, or in bacteria and archaea, operon co-occurrence. These associations can
be either derived experimentally or computationally (either pre-computed ahead-of-
time, or on-the-fly during the clustering process); indeed it is common practice to use
one or more of these associations as a post-facto measure of the biological quality of a
gene cluster. However, it is important to note that these data types, to varying degrees,
can contain a high rate of false positives, or may imply relationships that have no
direct implication for co-regulation. Therefore in their consideration as evidence for
co-regulation, these different sources of evidence should be treated as priors, with
different amounts of influence on the overall procedure based upon prior knowledge
of (or assumptions about) their quality and/or relevance.

Because a biological system’s interaction with its environment is complex and
gene regulation is multi-factorial, genes might not be co-regulated across all
experimental conditions observed in any comprehensive set of transcript or protein
levels. Also, genes can be involved in multiple different processes, depending upon

the state of the organism during a given experiment. Therefore, a biologically
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motivated clustering method should be able to detect patterns of co-expression across
subsets of the observed experiments, and to place genes into multiple clusters. So-
called biclustering, clustering both genes and experimental conditions, is a widely
studied problem and many different approaches to it have been published (Cheng and
Church 2000; D'Haeseleer, Liang et al. 2000; Tanay, Sharan et al. 2002; Yu 2002;
Kluger, Basri et al. 2003; Segal, Shapira et al. 2003; Sheng, Moreau et al. 2003; Yu
2003; Balasubramanian, LaFramboise et al. 2004; Tanay, Sharan et al. 2004). Unlike
standard clustering methods, most biclustering algorithms place genes into more than
one cluster (genes can play more than one functional role in the cell). Because
biclustering is an NP-hard problem (D'Haeseleer, Liang et al. 2000), no solution is
guaranteed to find the optimal set of biclusters. However, many of these procedures
have successfully demonstrated the value of biclustering when applied to real-world
biological data (Balasubramanian, LaFramboise et al. 2004; Reiss, Baliga et al. 2006).

We compared the method to several other methods including but not limited
to: Order Preserving Sub-matrix (OPSM(Ben-Dor, Chor et al. 2003)), Iterative
Signature (ISA(Bergmann, Ihmels et al. 2003)), Bimax (Prelic, Bleuler et al. 2006),
and SAMBA(Shamir, Maron-Katz et al. 2005). We also compared our method to
hierarchical clustering and k-means clustering. We used multiple parameterizations of
each competing method. In addition, we performed these analyses on cMonkey runs
with various model parameters up- and down-weighted to demonstrate tolerance of the

cMonkey method to different parameterizations of free parameters. Additional details
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on the analysis are provided previously (Reiss, Baliga et al. 2006). All biclusters
generated by the cMonkey as well as the other algorithms we tested are available for
interactive exploration via Cytoscape and the Gaggle (Shannon, Markiel et al. 2003;

Shannon, Reiss et al. 2006) at (http://labs.systemsbiology.net/baliga/cmonkeyy/).

1.6.7.3 Comparison in the context of regulatory network inference:

A major motivation of cMonkey is to provide a method for deriving co-
regulated groups of genes for use in subsequent regulatory network inference
procedures. Thus, we wish to find coherent groups of genes over those conditions with
a large amount of variation. In other words, we are hoping to detect sub-matrices in
the expression data matrix which are coherent and simultaneously have high
information content or overall variance (and probability given the network and motif
components). In addition, we need to find biclusters with many
conditions/observations included, as this increases the significance of each bicluster
and also of the subsequently inferred regulatory influences for that bicluster. In
general we see that cMonkey generates biclusters with a significantly greater number
of experiments than the other methods (higher coverage). Even with this additional
constraint (i.e. including a greater number of experiments in the clusters) and further
constraints that cMonkey imposes with the association network and motif priors, the
algorithm in general generates biclusters with a “tighter” profile, as measured by mean
bicluster residual. Thus, we find that biclusters generated by cMonkey are generally

better suited for inference algorithms such as the Inferelator (and potentially other
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methods as well). We tested this by running the Inferelator on biclusters generated by
SAMBA for Halobacterium and then comparing the predictive performance of the
resultant regulatory network models on newly-collected data, relative to those
generated for cMonkey generated biclusters. We found that, largely due to the smaller
number of experiments included in SAMBA biclusters, the inferred network was
significantly less able to predict new experiments (an increase in the predictive error
from 0.368 to 0.470; p-value of difference by t-test < 1 x 10%) (Kanehisa, Goto et al.
2004). We find that cMonkey performs well in comparison to all other methods when
the trade-off between sensitivity, specificity, and coverage is considered, particularly
in context of the other bulk characteristics (cluster size, residual, etc.). Most
importantly, cMonkey significantly improves the performance of downstream network
inference procedures. cMonkey biclusters do a better job at regenerating the
expression data than other methods, and a similar job at recapitulating the external (as

well as internal) measures of bicluster quality.

1.6.7.4 Step 2: The Inferelator:

Given modules from a clustering/biclustering algorithm, for example
cMonkey, we are then faced with the task of learning which genes and environmental
conditions influence/control each module/cluster/bicluster/gene. We have described an
algorithm for doing this, the Inferelator, which infers regulatory influences for genes
and/or gene clusters from mRNA and/or protein expression levels. The method uses

standard regression and model shrinkage (L1-shrinkage) techniques to select
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parsimonious, predictive models for the expression of a gene or cluster of genes as a
function of the levels of transcription factors, environmental influences and
interactions between these factors (Thorsson, Hornquist et al. 2005). The procedure
can simultaneously model equilibrium and time-course expression levels, such that
both kinetic and equilibrium expression levels may be predicted by the resulting
models. Through the explicit inclusion of time, and gene-knockout information, the
method is capable of learning causal relationships. It also includes a novel solution to
the problem of encoding interactions between predictors into the regression. We
discuss the results from an initial run of this method on a set of microarray
observations from the halophilic archaeon, Halobacterium NRC-1. We have found the
network to be predictive of newly measured data and have also validated parts of the

network using ChIP-chip.

1.6.7.4.1 Model formulation:

We assume that the expression level of a gene, or the mean expression level of
a group of co-regulated genes, v, is influenced by the level of N other factors in the
system: X={xi, X2, ... , Xn}. We consider factors for which we have measured levels
under a wide range of conditions; in our work on Halobacterium we use transcription
factor transcript levels and the levels of external/environmental conditions as
predictors and gene and bicluster transcript levels as the response. The relation

between y and X is given by the kinetic equation:
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dy
_ == .Z
T y+g(Be2) O

Here, Z = { z1(X), z2(X), ..., zp(X) } represents a set of functions of the regulatory
factors X. The coefficients beta describe the influence of each element of Z, with
positive coefficients corresponding to inducers of transcription, and negative
coefficients to transcriptional repressors (Wahde and Hertz 2001). The constant tau is
the time constant of the level y in the absence of external determinants. We use a novel
encoding of interactions by allowing functions in Z to be either: 1) the identity
function of a single variable or 2) the minimum of two variables (Jurgen Richter-
Gebert 2003). For example, the inner product of the design matrix and linear
coefficients for two predictors that are participating in an interaction is:

PL = Bx, + p,x, + f,min(x,,x,) 2)

Using this encoding, for example, if x; and X, represent the levels of
components forming an obligate dimer that activates y (x; AND X, required for
expression of y), we would expect to fit the model such that £,=0, £ =0, = 1. This
encoding results in a linear interpolation of (linearly smoothed approximation to) the
desired Boolean function. This and other interactions (OR, XOR, AND), as well as
interactions involving more than two components, can be fit by this encoding. In
regression terminology, the influencing factors, X, are referred to as regressors or
predictors, while the functions Z specify what is often referred to as the “design

matrix”.
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With this scheme for encoding interactions in the design matrix, we expect to
capture many of the interactions between predictors necessary for modeling realistic
regulatory networks, in a readily interpretable form. To date we have limited the
procedure to binary interactions, as it is unlikely that the quantity of data used would
support learning beyond these pair-wise interactions. Many other methods for
capturing transcription factor cooperatively exist as well (Das, Banerjee et al. 2004).
We have shown that removal of the capability to model interactions in this way
reduces the predictive power of the Inferelator over the newly collected validation data
set.

Various functional forms can be adopted for the function g, called the
“nonlinearity” or “activation” function for artificial neural networks, and the “link”
function in statistical modeling. The function g often takes the form of a sigmoidal, or
logistic, activation function. This form has been used successfully in models of
developmental biology (von Dassow, Meir et al. 2000). The function is compatible
with L1-shrinkage (the method for enforcing model parsimony) (van Someren,
Wessels et al. 2000; van Someren, Wessels et al. 2002; Efron 2003).

The simplified kinetic description of equation (1) encompasses essential
elements to describe gene transcription, such as control by specific transcriptional
activators (or repressors), activation kinetics, and transcript decay, while at the same
time facilitating access to computationally efficient methods for searching among a

combinatorially large number of possible regulators. To better understand specific
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details of regulation, it will almost certainly be required to follow up on specific
regulatory hypotheses using more mechanistically detailed descriptions. Although this
method (explicit time component) does not lessen the need for correct experimental
design it does: 1) facilitate using data with reasonable variation in sampling structure
and 2) allow for the simultaneous combination of data from equilibrium and time-

series data.

1.6.7.5 Predictive power of the Halobacterium network over new data
(performance on novel combinations of environmental and genetic
perturbations):

Our initial application of the method to Halobacterium resulted in a
statistically learned regulatory network that can predict, with reasonable accuracy,
MRNA levels of ~1,900 out of the total ~2,400 genes found in the genome, using
relative concentrations of transcription regulators and environmental factors as
predictors. We find that applying cMonkey to our expression compendium, the
metabolic network, comparative genomics edges and upstream sequences gives us a
set of ~300 biclusters spanning ~2000 of the 2400 genes in this organism. This set of
biclusters is also linked to a set of putative cis-acting regulatory motifs (some
validated by prior experiments). The learned network controlling the 300 biclusters
and 159 individual genes contained 1431 regulatory influences (network edges) of
varying strength. Of these regulatory influences, 495 represent interactions between

two TFs or between a TF and an environmental factor. We selected the null model for
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21 biclusters (no influences or only weak regulatory influences found), indicating that
we are stringently excluding under-determined genes and biclusters from our network
model. The ratio of data points to estimated parameters is approximately 67 (one time
constant plus three regulatory influences, on average, from 268 conditions). The
explicit time component and interaction component (which distinguish this method
from other such shrinkage methods) were essential for predictive performance over the
validation data and the new data.

In order to test predictive performance we chose to test the network model
(trained prior on the 268 conditions available at the time) over 130 additional new
measurements, collected after model fitting. We found that the prediction error over
the training set was essentially the same as that over the new dataset. This is
encouraging as the new data included environmental perturbations, new combination
of environmental and genetic perturbations and time series measurements after novel
entrainments of the cell. This predictive power is a prerequisite to further
interpretation of organization of key processes in the network. The ability of the same
network to predict transcriptional control in novel environments (>130 new
experiments) verifies that, irrespective of the nature of the environmental perturbation,
Halobacterium utilizes a core set of regulatory mechanisms to maintain homeostasis
under extreme conditions. The resultant network (as well as biclusters and supporting

tools) for Halobacterium NRC-1 in Cytoscape, available as a Cytoscape/Gaggle web

105



start at: http://halo.systemsbiology.net/inferelator (Bonneau 2006; Shannon, Reiss et

al. 2006).

1.7 The relationship between systems biology and traditional

molecular biology

During our review of these systems-biology prokaryotic projects, our aim was
also to illustrate that these systems biology projects were also well integrated with
countless other more traditional molecular biology studies. Thus, if one looks at any
single group, one might incorrectly see a divide between systems biology and biology
as a whole. However, looking across all studies for a single organism, one sees that
hypotheses generated by global studies have permeated field-wide and, in a
corresponding manner, high-confidence single-gene results from traditional
reductionist biology commonly guide the design of global studies. Therefore, rather
than the two branches being in competition with each other, we argue that they are
involved in a complex and mutually beneficial exchange. In this sense then, any effort
that improves the accuracy of the hypotheses that are being generated by systems
biologists, especially those that are in silico will be of benefit to the entire field,

regardless of whether one is a systems or traditional molecular biologist.
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1.8 ADDENDUM: Comparative functional genomics of prokaryotes

and other subsequent projects

Before continuing, we remind the reader that this introductory chapter is based
heavily upon a review of prokaryotic system biology that was published in 2009
(Waltman, Kacmarczyk et al. 2009). Neither then, nor now, were the reviews of the
systems biology projects that it presents meant to be comprehensive, field-wide
reviews for each organism. Nor are they now intended to provide definitive reviews
that include all the ongoing research that has taken place since the original publication
for the four (4) organisms. Rather, the intention of this chapter is to provide recent
examples of how genomics has been applied to study each of these organisms in order
to illustrate the advantages offered by systems biology approaches.

While a comprehensive review of subsequent research for all four (4)
organisms is not provided, we instead will present a brief review of some of the most
recent work that has been applied to B. subtilis and E. coli, the two model organisms
described above. In addition, in subsequent chapters, we will provide detailed
descriptions of a novel, comparative method that was recently developed and used to
analyze both of these model organisms (as well as several closely related species to
both). The layout of the subsequent chapters will be presented below.

Subsequent to the publishing of the original chapter that this introduction is
based upon, numerous efforts have taken place to expand upon the systems biology

projects described above. While these include both computational and experimental
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systems biology approaches, we limit the further discussion only to those
computational efforts that have taken place for both E.coli and B. subtilis. For
example, work to develop combined regulatory and metabolic networks for E. coli has
been ongoing (Lewis, Cho et al. 2009; Chandrasekaran and Price 2010). In addition,
since the project by Faith et al to infer the transcriptional regulatory network inference
of E. coli (Faith, Hayete et al. 2007), multiple subsequent projects have since taken
place in an attempt to improve the accuracy of the inferred networks that are generated
(Babu, Musso et al. 2009; Lemmens, De Bie et al. 2009; Zare, Sangurdekar et al.
2009; Kaleta, Gohler et al. 2010). Notable amongst these more recent projects is one
by Lemmens et al (Lemmens, De Bie et al. 2009) that utilizes a novel, integrative,
condition-dependent module network inference method (Lemmens, De Bie et al.
2009) called DISTILLER, that in many ways is similar to the cMonkey and Inferelator
module network pipeline described in section 1.6.7. For example, DISTILLER also
aims to identify genes with correlated expression profiles that share common binding
motifs in their upstream binding regions. However, the motifs that DISTILLER
incorporates must be specified prior to runtime, for example, including those from
RegulonDB (Gama-Castro, Salgado et al. 2011) or Transfac (Matys, Fricke et al.
2003), thus limiting its capacity to identify novel putative regulatory modules.
Despite this limitation, DISTILLER was also recently used by the same group to infer
a transcriptional regulatory network for B. subtilis (Fadda, Fierro et al. 2009) as well.

In addition to this regulatory network for B. subtilis, Goezler et al developed a
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network of metabolic interactions for B. subtilis as well, that was built via manual
curation (Goelzer, Bekkal Brikci et al. 2008). Finally, Vazquez et al (Vazquez,
Freyre-Gonzalez et al. 2009) performed a system-wide expression analysis of both B.
subtilis and E. coli to identify and compare the global network governing the response
to glucose for each organism.

This last project being an example of how the comparison of the results from
multiple functional genomics projects devoted to different organisms offers a look into
the evolution of not just sequences but sub-networks, networks and biomodules across
bacterial and archaeal clades. This possibility is made particularly exciting by recent
advances in the reconstruction of phylogenetic histories of microbes that explicitly
model lateral gene transfer. Uncovering these relationships at the module and network
level (in addition to the sequence level) is possible given the scale of prokaryotic
systems; in fact several meta-genomics projects, such as the Human Microbiome
Project (Turnbaugh, Ley et al. 2007), already exist and have begun to show results
such as the characterization of the community differences between obese and lean
individuals (Turnbaugh, Ley et al. 2006; Turnbaugh, Hamady et al. 2009).

Given the large number of prokaryotic functional genomics projects, multi-
species analysis (inferring networks and modules over multiple species datasets) is one
of the next major challenges, as prokaryotic systems rarely exist in clonal isolation
(consortia of microbes inhabiting ecological niches are the relevant system to study in

many cases). To prevent any misunderstanding, we should clarify that in the context
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of metagenomics that multi-species can mean one of two things. In one sense, “multi-
species” can mean the mapping and modeling of the complex interactions between the
members of a given microbial community, some of which are known to be dependent
on other community members, and cannot survive — or be cultured - on their own.
While this is an interesting topic and will be exciting an area of research, current
methods are not yet quite ready to provide the level of granularity such an analysis
will require.

In the other meaning, “multi-species” is used to refer the leveraging of
comparative biological analysis to identify modules and sub-networks that are
putatively conserved between organisms. As such, we argue that a multi-species
approach like this offers the possibility of identifying more biologically relevant
modules than those which a traditional single-species method might find. In chapter 2
of this thesis, we present a novel algorithm that will detect putatively conserved
modules by simultaneously considering data from multiple organisms by extending
the integrative framework utilized by cMonkey by allowing it to integrate data from
multiple organisms. In addition, in chapter 2, we will also present some of the
biological highlights that were found when it was applied to a triplet of Gram-positive
prokaryotes. In chapter 3, we will present the rigorous validation that was performed
to evaluate the results from this triplet of Gram-positive prokaryotes, as well as a
second triplet of Gram-negative prokaryotes. Finally, in chapter 4, we will present

initial results from a recent “multi-platform” extension of this multi-species method
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which has been used to perform a comparative analysis of mouse and human

hematopoietic differentiation.
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Abstract

We describe an algorithm, multi-species cMonkey, for the simultaneous
biclustering of heterogeneous multiple-species data collections and apply the
algorithm to two triplets of bacteria. The first of these is a triplet of Gram-positive
bacteria consisting of Bacillus subtilis, Bacillus anthracis, and Listeria
monocytogenes, while the second is a triplet of Gram-negative bacteria that includes
Escherichia coli, Salmonella typhimurium and Vibrio cholerae. The algorithm reveals
evolutionary insights into the surprisingly high degree of conservation of regulatory
modules across these three species and allows data and insights from well-studied
organisms to complement the analysis of related but less well studied organisms. This
chapter is heavily based upon our article which was published in Genome Biology

(Waltman, Kacmarczyk et al. 2010).
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2.1 Introduction

The rapidly increasing volume of genome scale data has enabled global
regulatory network inference and genome-wide prediction of gene function within
single organisms. In this work, we exploit another advantage of the growing quantity
of genomics data: by comparing genome-wide datasets for closely related organisms,
we can add a critical evolutionary component to systems biology data analysis.
Whereas several well-developed tools exist for identifying orthologous genes on the
basis of sequence similarity, the identification of conserved co-regulated gene groups
(modules) is a relatively recent problem requiring development of new methods. Here,
we present an algorithm that performs integrative biclustering for multiple-species
datasets in order to identify conserved modules and the conditions under which these
modules are active. The advantages of this method are that 1) conserved modules are
more likely to be biologically significant than co-regulated gene groups lacking
detectable conservation, and 2) the identification of these conserved modules can
provide a basis for investigating the evolution of gene regulatory networks.

Clustering has long been a popular tool in analyzing systems biology data
types (e.g. the clustering of microarray data to generate putative co-regulated gene
groups). The majority of genomics studies employ clustering methods that require
genes to participate in mutually exclusive clusters, such as hierarchical agglomerative
clustering (HAC) (McQuitty 1966), k-means clustering (MacQueen 1967) and

singular value decomposition derived methods (Golub and Kahan 1965; Alter, Brown
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et al. 2000; Alter, Brown et al. 2003). Because most genes are unlikely to be co-
regulated under every possible condition (for instance, bacterial genes can have more
than one transcription start site and, in that case, each site will be regulated by a
different set of transcription factors depending on the cell’s state), defining mutually
exclusive gene clusters cannot capture the complexity of transcriptional regulatory
networks. Clearly, sophisticated integrative methods are needed to arrive at the
identification of more mechanistically meaningful condition-dependent conserved
modules.

Biclustering refers to the simultaneous clustering of both genes and conditions
(Lazzeroni and Owen 1999; Cheng and Church 2000). Early works (Morgan and
Sonquist 1963) introduced the idea of biclustering as “direct clustering” (Hartigan
1972), node deletion problems on graphs (Yannakakis 1981), and biclustering (Mirkin
1996). More recently, biclustering has been used in several studies to address the
biologically relevant condition dependence of co-expression patterns (Cheng and
Church 2000; Ben-Dor, Chor et al. 2003; Bergmann, IThmels et al. 2003; Kluger, Basri
et al. 2003; Tanay, Sharan et al. 2004; Supper, Strauch et al. 2007; DiMaggio,
McAllister et al. 2008; Gan, Liew et al. 2008; Lu, Huggins et al. 2009). Additional
genome-wide data (such as association networks and transcription factor binding sites)
greatly improves the performance of these approaches (Tanay, Sharan et al. 2004;
Elemento and Tavazoie 2005; Reiss, Baliga et al. 2006; Huttenhower, Mutungu et al.

2009). Examples include the most recent version of SAMBA, which incorporates
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experimentally validated protein-protein and protein-DNA associations into a
Bayesian framework (Tanay, Sharan et al. 2004), and cMonkey (Reiss, Baliga et al.
2006), an algorithm we recently introduced.

cMonkey integrates expression and sequence data, metabolic and signaling
pathways (Kanehisa, Goto et al. 2002), protein-protein interactions, and comparative
genomics networks (Mellor, Yanai et al. 2002; Bowers, Pellegrini et al. 2004; Price,
Huang et al. 2005) to estimate condition dependent co-regulated modules. We have
previously shown that cMonkey can be used to “pre-cluster” genes prior to learning
global regulatory networks (Bonneau, Facciotti et al. 2007). Biclusters are iteratively
optimized, starting with a random or semi-random seed, via a Monte Carlo Markov
chain (MCMC) process. At each iteration, each bicluster’s state is updated based upon
conditional probability distributions computed using the bicluster's previous state. This
enables cMonkey to determine the probability that a given gene or condition belongs in
the bicluster, dependent upon the current state of the bicluster. The components of this
conditional probability (one for each of the different data types) are modeled
independently as p-values based upon individual data likelihoods, which are combined
to determine the full conditional probability of a given gene or condition belonging to
a given bicluster.

Previous multi-species clustering methods generally fall into two classes (for
reviews see (Tirosh, Bilu et al. 2007; Lu, Huggins et al. 2009)). The first class

attempts to match conditions between species in order to identify similarities and
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differences for a given cell process (McCarroll, Murphy et al. 2004; Khaitovich,
Hellmann et al. 2005; Gilad, Oshlack et al. 2006; Tirosh, Weinberger et al. 2006). By
requiring matched conditions, this approach is not well suited to large sets of public
experiments, as it is limited to only the conditions that have direct analogs for both
species. The second class of multi-species clustering methods employs a strategy
where the datasets for each organism are reduced to a unit-less measure of co-
expression (for example Pearson’s correlation) that are then used to compare co-
expression patterns in multiple species (Stuart, Segal et al. 2003; Bergmann, Ihmels et
al. 2004; Ihmels, Bergmann et al. 2005; Tanay, Regev et al. 2005; Dutilh, Huynen et
al. 2006; Tirosh and Barkai 2007). This second class includes methods analyzing the
conservation of individual orthologous pairs (Dutilh, Huynen et al. 2006; Tirosh and
Barkai 2007) and those seeking to identify larger conserved modules (Stuart, Segal et
al. 2003; Bergmann, Ihmels et al. 2004; Tanay, Regev et al. 2005). The common
objective is to gain insight into the evolution of related species; including the role of
duplication in regulatory network evolution and the occurrence of convergent
evolution vs. conserved co-expression (lhmels, Bergmann et al. 2005; Tirosh and
Barkai 2007). However, none of these studies can be considered a true multi-species
biclustering algorithm; for example both (Bergmann, Ihmels et al. 2004) and (Tanay,
Regev et al. 2005) perform the analyses of the different species sequentially.
Furthermore, with the exception of (Tanay, Regev et al. 2005), the methods were

limited to considering only expression data.

138



Below, we present multi-species cMonkey, a biclustering framework that
enables us to integrate data across multiple species and multiple data-types
simultaneously. Our approach maintains the independence of the organism-specific
data while still allowing for true biclustering. Specifically, gene membership in
multiple clusters is possible and integration of a variety of data types remains an
integral part of the approach. Once the conserved modules have been identified, our
method further allows the discovery of species-specific modifications (which we term
elaborations, i.e. the addition of species-specific genes that fit well with the conserved
core of the bicluster according to the multi-data score). The ability to find species
specific elaborations of conserved co-regulated core sets of genes is a unique strength
of the method and is critical to understanding the evolution and function of conserved
modules.

Our multi-species biclustering method was applied to two triplets of bacteria,
one a Gram-positive triplet and the other a Gram-negative, with the method used to
analyze all the possible pairings between the three species of a given triplet. Each
triplet consisted of a model organism for the class of bacteria that the triplet
represented, as well as two pathogens, where one of the pathogens was closely related
species to the model organism, and the second was an outgroup. For example, in the
case of the Gram-positive triplet, this triplet contained three closely related species of
Firmicutes: Bacillus subtilis, Bacillus anthracis and Listeria monocytogenes. As one

of the best-studied bacterial model organisms, B. subtilis was selected due to the
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wealth of publicly available genomic data and the large amount of knowledge
accumulated on this organism over the years. Additionally, B. subtilis and B. anthracis
have similar life cycles, alternating between vegetative cell and dormant spore states
(Piggot and Coote 1976; Stragier and Losick 1996; Errington 2003; Waltman,
Kacmarczyk et al. 2009; de Hoon, Eichenberger et al. 2010). The third member of the
triplet, L. monocytogenes, was selected as it shares similar morphology and
physiology with B. subtilis and B. anthracis, but lacks the ability to form spores. In
addition, B. anthracis and L. monocytogenes are pathogenic species, while B. subtilis
IS non-pathogenic. Evolutionarily, the Bacillus and Listeria genera are estimated to
have separated more than one billion years ago (Battistuzzi, Feijao et al. 2004).
Analysis of the biclusters obtained as a result of the procedure revealed several gene
groups of interest and led us to formulate new hypotheses about the biology of these
organisms. Specifically, we were able to detect a temporal difference between the two
Bacillus species in the expression of a group of metabolic genes involved in spore
formation. Furthermore, the unexpected identification of a bicluster for genes required
for flagellum formation in B. anthracis prompted us to re-examine the capacity for
flagellar-based motility in that species.

Similar to the Gram-positive triplet, the Gram-negative triplet contained three
[gamma]-proteobacteria Escherichia coli, Salmonella typhimurium and Vibrio
cholera. In this triplet, S. typhimurium is the more closely related of the two

pathogens to E. coli, estimated to have evolutionarily separated within the last 150
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million years, while V. cholera is estimated to have separated nearly 750 million years

ago(Battistuzzi, Feijao et al. 2004).

2.2 Results: Examples of conserved modules detected by the multi-

species analysis: Application to the Gram-positive triplet

There are two ways in which we will demonstrate the strengths of our novel
method. In the first of these, appearing below, we will provide clear examples of
conserved modules that correspond to conserved biological processes. In the second
of these two methods, which appears in Chapter 3, we will provide a detailed
comparison of several genome-wide metrics that were used to evaluate our method
with six others. In some cases, these alternate methods are multi-stage - as is our
novel multi-species method — thus there were a total of fifteen (15) methods that we
compared. We direct the reader to the methods section (2.5) for a detailed
presentation of our multi-species algorithm. In order to reduce complexity, we limit
the discussion below to the results from the analyses performed on the Gram-positive
triplet, and direct the reader to Appendix 4 for an example that was found in the
analyses of the Gram-negative triplet.

To illustrate the strength of our method’s ability to identify conserved modules
and also to highlight species specific elaboration of these modules, we focus on two
processes — endospore formation (sporulation) and flagellum synthesis. In the case of

sporulation, both B. anthracis and B. subtilis can sporulate, while L. monocytogenes
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cannot (Stragier 2002). Similarly, both B. subtilis (Kearns and Losick 2003) and L.
monocytogenes (Grundling, Burrack et al. 2004) possess flagella and are motile, while

B. anthracis is a non-motile species (Sterne and Proom 1957).

2.2.1 Biclusters involved in sporulation shared between B. subtilis and B.
anthracis:

Sporulation is a cellular differentiation process that B. subtilis and B. anthracis
undergo as a response to resource depletion (Piggot and Coote 1976; Stragier and
Losick 1996; Errington 2003; de Hoon, Eichenberger et al. 2010). Sporulating cells
divide asymmetrically near one cell pole to produce a smaller cell, the forespore and a
larger cell, the mother cell. The forespore will differentiate into a highly resistant
dormant cell type called an endospore (hereafter: spore). The mature spore is
surrounded by two membranes and a thick proteinaceous layer (the coat). A modified
peptidoglycan layer (the cortex) is synthesized in the intermembrane space.

As expected, the multi-species method identified several sporulation modules
from the B. subtilis-B. anthracis pairing and no sporulation modules from the pairings
involving L. monocytogenes. Here, we focus on three biclusters (32, 82 and 84),
whose orthologous cores contained largely non-overlapping sets of genes. Analysis of
the gene content indicated that each bicluster was involved in distinct biological
functions during sporulation. Bicluster 84 primarily contained genes involved in
metabolic functions (Figures S43 and S44). Bicluster 32 contained genes involved in

activation of late sporulation o factors (¢© and o) and cortex synthesis (Figures S39
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and S40). Bicluster 82 contained a majority of spore coat genes (Figures S41 and
S42).

Most of the genes found in those three biclusters had been previously
identified as members of the mother cell transcriptome in B. subtilis (Feucht, Evans et
al. 2003; Eichenberger, Fujita et al. 2004; Steil, Serrano et al. 2005). Specifically, 16
of the 26 core genes from the metabolism bicluster, 36 of the 38 core genes from the
cortex bicluster and the 24 core genes from the coat bicluster are expressed under the
control of the early mother-cell o factor, oF. Nevertheless, the metabolism bicluster
contained five previously unrecognized sporulation genes (ykwC, ctaC, ctaD, ctaE and
ctaF). The ykwC gene encodes a protein from the 3-hydroxyisobutyrate
dehydrogenase family, which is consistent with the function of several other genes
found in that bicluster (e.g. the mmg and yngJ operons (Hsiao, Revelles et al.)). The
cta operon encodes the four subunits of cytochrome C oxidase. These genes are
subject to catabolite repression by glucose, therefore their expression is prevented
during exponential growth in glucose-containing medium (Liu and Taber 1998).
During sporulation initiation, the cta operon is activated by SpoOA~P (the master
regulator of sporulation) (Fawcett, Eichenberger et al. 2000). The neighboring ctaA
gene, which is transcribed in the divergent direction, has been previously reported to
be controlled by RNA polymerase containing o~ (Paul, Zhang et al. 2001).
Examination of the ctaC upstream region reveals a possible o= binding site with a

reasonable match to the consensus (Figure 2.1). Protracted expression of these genes
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(first under the control of SpoOA~P in the pre-divisional cell and then of oF after
asymmetric division) is consistent with the conclusions of previous studies indicating
that tricarboxylic acid cycle function (and by extension the electron transport chain) is
required during sporulation (lreton, Jin et al. 1995; Jin, Levin et al. 1997; Matsuno,

Blais et al. 1999).

Figure 2.1: Putative 6= binding site in the regulatory upstream sequence of the ctaC operon. Four
genes from Bicluster 84, ctaC ctaD ctaE ctaF, encode the subunits for cytochrome C oxidase. These
genes have not been shown to be regulated by cF, however, the region upstream of ctaC contains a
possible o binding site. (A) Consensus binding sequence for oF (Eichenberger, Fujita et al. 2004;
Sierro, Makita et al. 2008). (B) Portion of the intercistronic region from B. subtilis between ctaB and
ctaC showing the respective -35 and -10 regions of the potential o© binging site (blue, bold, uppercase
letters). Also indicated are the consensus sequences for the two regions, the putative ribosomal binding

site (underlined, uppercase letters), and the translation start site (green, uppercase letters).
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Unexpectedly, we uncovered a key species-specific difference in the timing of
expression of one conserved sporulation module (the metabolism bicluster). The
expression data we used for B. anthracis is a time series transcriptional profile of the
entire life-cycle, from germination through sporulation (Bergman, Anderson et al.
2006). Expression of genes from the metabolism bicluster reaches its maximal level at
t=180 minutes (Figure 2.2a), 2 hours before the expression peak of genes from the
cortex and coat biclusters at t=270 minutes. No such temporal difference exists
between the metabolism bicluster and the other two biclusters during B. subtilis
sporulation (Figure 2.2b), because most of these genes are directly controlled by o© in
B. subtilis. We propose that the observed timing difference between the two species is
caused by transcriptional re-wiring. In support of this interpretation, examination of
the regulatory sequence upstream of the genes from the metabolism bicluster did not
reveal obvious o= binding sites in B. anthracis, while putative 6= promoters were
present upstream of genes from the cortex and coat biclusters in both species. Thus, in
B. anthracis, the metabolism bicluster may be under the control of a transcription
factor active prior to o= activation. This is further supported by the fact that in B.
anthracis sigE itself is expressed after the expression peak of the metabolism bicluster

(Thmels, Bergmann et al. 2005).
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(8) B. anthracis union of all experiments (b) B. subtilis only sporulation experiments
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Figure 2.2: Expression profiles of 3 partially conserved sporulation biclusters, identified by the
multi-species analysis of B. subtilis and B. anthracis. Bicluster 84 (blue line) is composed primarily
of genes involved in metabolic functions during sporulation, bicluster 82 (green line) includes primarily
genes encoding spore coat proteins, and bicluster 32 (red line) contains genes involved in spore cortex
formation and activation of the ¢ factors required for the latest stages of sporulation. (A) The B.
anthracis biclusters display distinct profiles, revealing a temporal aspect not present in the B. subtilis
dataset. The B. subtilis biclusters all follow the same expression profile (i.e. similar expression over
nearly every experimental condition included in the dataset), as shown in (B) only sporulation

experimental conditions (with abscissa corresponding to: (1) Hour 2 sigF, (2) Hour 2.5 sigE, (3) Hour
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3.5 gerR, (4) Hour 3.5 spollID, (5) Hour 4 sigG, (6) Hour 4.5 sigK, (7) Hour 5 spoVT, (8) Hour 5.5

gerE, (9) Hour 6.5 gerE) and (C) all experimental conditions within the three biclusters.

2.2.2 Flagellar assembly biclusters shared between B. subtilis, B. anthracis and

L. monocytogenes:

Assembly of the bacterial flagellum is a well-known pathway (Figure 2.3A)
that has been studied over a wide range of prokaryotes (Macnab 2003; Liu and
Ochman 2007; Liu and Ochman 2007). It contains approximately 25 proteins
conserved across numerous species, though not all these species are motile (Liu and
Ochman 2007). Here we use the expression of flagellar genes as another benchmark
of the multi-species method. We expected that multi-species integrative biclustering
with any pairing including B. anthracis would be unable to recover modules enriched
with flagellar genes. Nonetheless, we discovered that flagellar modules were retrieved
with all possible pairings (Figure 2.3 and Table 7.13-Table 7.24). Furthermore,
recovery was well supported by the B. anthracis portion of the multi-data score. This
result was unexpected as it was assumed that the loss of motility would be rapidly

followed by loss of coordinated expression of flagellar genes.
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Figure 2.3: Conserved motility modules active in all three organisms and motility assays. (A) We
show a schematic of the flagellar apparatus for B. subtilis showing the location of 26 flagellar proteins,
two motor proteins (MotA and MotB) and two transcriptional regulators (FIgM and SigD) (using gene
names from B. subtilis). (B) The left panel shows the presence (blue)/absence (white) of the
corresponding genes in the genomes of B. anthracis Sterne (BAS), B. cereus ATCC 14579 (BC), L.
monocytogenes EGD-e (LMO) and B. subtilis 168 (BSU). In B. anthracis Sterne, motB, fliM, fliF, and
flgL are represented by two colors indicating a gene coding for a truncated protein due to a frameshift
mutation that introduces a premature stop codon. The right panel shows the gene presence in the main

flagellar bicluster resulting from each of the three pairwise multi-species biclusterings. Indicated are
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genes of the flagellar apparatus - included in the bicluster core (red), in the elaboration of the bicluster
(orange), and not included in the bicluster (gray). B. subtilis and L. monocytogenes are both known to
be flagellated and motile. B. anthracis Sterne is non-motile, but our results indicate a bicluster enriched
for genes involved in flagellar biosynthesis. (C) Swimming motility was assayed on 0.3% agar plates
for B. cereus ATCC 14579, B. anthracis Sterne, B. subtilis PY79, and B. subtilis PY79 AmotAB::tet
(strain DS219). B. cereus and B. subtilis are motile (Kearns and Losick 2003; Salvetti, Ghelardi et al.
2007). A deletion of motAB in B. subtilis impairs motility (Mirel, Lustre et al. 1992; Blair, Turner et al.

2008). The assay shows that B. anthracis Sterne is not motile under the conditions tested.

One simple explanation of the conservation of the B. anthracis motility
bicluster would be that the strain is, in fact, still motile or able to recover motility
through a common reversion mutation. To explore and partially rule out this
possibility we confirmed experimentally that B. anthracis Sterne was non-motile at
37°C by performing swimming motility assays on 0.3% agar plates (Figure 2.3c). We
used B. cereus ATCC 14579 and B. subtilis PY79 as positive controls for swimming
(Kearns and Losick 2003; Salvetti, Ghelardi et al. 2007) and B. subtilis PY79
AmOtAB::tet as a negative control (Mirel, Lustre et al. 1992). Even after prolonged
incubation of those plates at 37°C for several days, we were unable to observe motile
B. anthracis cells.

B. anthracis Sterne lacks six flagellar genes present in B. subtilis (fliK, fliO,
fliJ, fliT, flgM and sigD) (Kanehisa 2009). Although most of these genes are likely to

be essential for flagellum function in B. subtilis (Table 2.1), they are absent in several
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motile species, including L. monocytogenes and B. cereus. These genes may in fact be
dispensable for motility if a different gene provides a corresponding function. For
example, while o° and FIgM (the anti-c® factor) regulate flagellar gene expression in
B. subtilis, they are not found in L. monocytogenes, where flagellar gene expression is
regulated by the transcription factor MogR, which is absent in B. subtilis (Grundling,
Burrack et al. 2004) (Table 2.2). We performed a BLAST search-based analysis of the
presence or absence of flagellar assembly and chemotaxis genes for L. monocytogenes
and various Bacillus species (Table 2.3). Since B. cereus is the closest motile relative
to B. anthracis (Rasko, Ravel et al. 2004), we focused on cases where a flagellar gene
was present in B. cereus and absent in B. anthracis. Specifically, BLAST searches
were performed against the genomes of various B. anthracis strains using B. cereus
ATCC 14579 protein sequences as a reference. In B. anthracis Sterne two strong hits
were retrieved for MotB; each of which covered a different half of the B. cereus MotB
sequence. Upon closer inspection, it was found that both these coding sequences
derived from the same gene which had undergone a frameshift mutation via a one
base-pair deletion. The frameshift resulted in an in-frame stop codon shortly
following the deletion (Figure 2.4). In B. subtilis, motB has been shown to be essential

for motility ((Mirel, Lustre et al. 1992) and Figure 2.3c).
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Table 2.1: B. subtilis flagellar assembly genes that are missing in B. anthracis, and their associated

function. The genes in the table are present in the B. subtilis flagellar assembly pathway as indicated by

KEGG, but missing in B. anthracis.

Gene  Function

flgM  anti-c° factor

fliJ Part of the type 111 secretion chaperone-usher complex
flik hook length regulator

flio Part of the Type 11 secretion apparatus

fliT Chaperone

sigD Sigma factor responsible for the expression of motility and chemotaxis

genes

Table 2.2: Major Regulators of Motility in B. subtilis and L. monocytogenes

Regulator Organism Function

Reference

Sigma factor responsible for the expression
sigD B. subtilis
of motility and chemotaxis genes
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Marques-
Magana and
Chamberlin,
1994 (Marquez-
Magana and
Chamberlin

1994)



Grundling et al.,
Transcriptional repressor of flagellar genes 2004 (Grundling,

mogR L. monocytogenes
when at temperatures > 37°C Burrack et al.

2004)

Shen et al., 2006
Response regulator  which controls
degU L. monocytogenes (Shen and
temperature-responsive expression of gmaR
Higgins 2006)

Shen et al., 2006
gmaR L. monocytogenes Antirepressor of MogR (Shen and

Higgins 2006)

Bacillus cereus ATCC 14579 301 gctaaagaaaaaaaagagatggatgaattgaaagcattacaaaaaaagattgatcaatat 360

Bacillus anthracis str. Sterne 301 gaaaaaghaaaaaaagaaatggatgaatTGhaagcattacaaaaaaagattgatcaatat 359

Figure 2.4: B. anthracis Sterne frameshift mutations. B. anthracis Sterne contains frameshift
mutations in five motility genes (motB, flgL, fliF, fliM, and cheV). The frameshift mutation in motB
was discovered in B. anthracis Sterne by first performing protein BLAST searches using B. cereus
ATCC 14579 MotB as the query sequence. Investigation of the B. anthracis Sterne gene sequence
revealed a single base deletion (red delta, A) that causes a frameshift mutation resulting in a stop codon
(red, uppercase letters) thus truncating the MotB protein. The other B. anthracis frameshift mutations

(FlgL, fliF, fliM, cheV) were discovered using the same method.
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Table 2.3: Genetic compositions of various Bacillus and other closely related species. As shown in
the table, the genetic composition of the B. anthracis strains Sterne, A2012 and CDC 684 are almost
identical to the motile species B. cereus, B. thuringiensis, B. weihenstephanensis and L. monocytogenes.
In contrast, the B. anthracis strains Ames, Ames 0581 and A0248 are lacking multiple genes present in

the other motile organisms.

B. anthracis B. anthracis
(Sterne, A2012, CDC (Ames, Ames
B.subtilis B. amyloliquefaciens  B. clausii 684) 0581, A0248)
B. halodurans B. pumilus B. cereus (all)
B. licheniformis
(all) B. thuringiensis

B. weihenstephanensis

Genes L. monocytogenes
flgL X X X X
flgMm X X X
fliF X X X X
fliJ X X X
fliK X *
flim X X X X
flio X X X
FIiT X X
cheC X X X
cheD X X X
cheV X X X X’
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Chew X X X X’

X gene is present in the KEGG flagellar assembly pathway
X’ gene is not present in B. anthracis Sterne or A2012
X'’ gene is present in B. anthracis Sterne and A2012 but not the other organisms in the column

* gene is not present in KEGG but is recognized by NCBI

We then examined the protein sequences of all the flagellar proteins in B.
anthracis Sterne by performing multiple alignments with other related Bacilli and
discovered that three additional proteins appeared truncated: FliM, FliF and FigL.
Investigation of the gene sequences for these proteins in B. anthracis Sterne revealed
that they all contained a frameshift mutation, which resulted in the introduction of an
in-frame stop codon. In B. subtilis, fliM mutations result in a non-flagellated
phenotype (Zuberi, Ying et al. 1990), while fliF and flgL are essential for flagellar
assembly in L. monocytogenes (Bigot, Pagniez et al. 2005; Todhanakasem and Young
2008). In addition, we found a similar frameshift in cheV, a gene required for
chemotaxis in B. subtilis.

The presence of the frameshift mutations for these key motility genes most
likely explains why B. anthracis Sterne is non-motile and does not readily revert back
to a motile phenotype. Importantly, this observation indicates that a conserved module

can persist for some time even after the loss of the associated phenotype.
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2.3 Discussion

Any attempt to detect conserved modules across multiple species data
collections needs to simultaneously address the following non-trivial challenges: 1)
modules may be active or coherent in subsets of the conditions for each species; 2) in
most cases there is little or no correspondence between the experimental conditions
and experimental designs across different species datasets; 3) the amount and quality
of data available often varies dramatically across species of interest; 4) modules may
not be conserved in their regulation or function; 5) conserved modules may have
extensive species specific elaborations that complicate their detection; 6) in many
cases, the sequence-based orthology is not a one-to-one mapping; and 7) integration of
additional data-types needs to be robust to the differences in the available data and
annotation completeness of the species considered. In this investigation, we have
introduced a new algorithm, multi-species cMonkey (MScM) that allows us to address
all of these challenges in a unified analysis. We tested 6 other biclustering and
clustering methods in various combinations (13 clustering and biclustering
formulations were tested) and found no other method capable of balancing all of these
challenges. We have shown that MScM provides better or comparable coverage,
functional enrichment scores, bicluster coherence, and conservation than other tested
methods, with all other methods failing in one of the main categories of assessment.
Furthermore, our method effectively balances the influence of each organism,

preventing organisms with more complete datasets from dominating the analysis,
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while also integrating other supporting data types, enabling the method to identify
more biologically relevant modules and delimit the conditions over which the modules
are active. The fact that the MScM biclusters have many fold higher conservation
scores than several of the tested methods suggests that they have a higher level of
biological significance than equally co-expressed (and/or equally functionally
enriched) non-conserved alternate biclusters. An analysis that takes into account
several validation metrics supports the idea that MScM is the top performing method
for comparative biclustering.

In the single species setting, single-species-cMonkey and other biclustering
methods, particularly COALESCE, are comparable in performance (when one
considers score, enrichment and coverage but not conservation). Our analysis suggests
that multi-species extensions of other top performing algorithms (particularly
COALESCE) will also perform well at detecting conserved modules (assuming that
such extensions are possible). For all the organisms pairings, there was a consistent
increase in the percentage of GO and KEGG enrichments from the shared to
elaboration steps of the MScM method. This results from shared biclusters that contain
enrichments that are insignificant until genes from outside of the orthologous core are
added during the elaboration step. We argue that this improved functional coherence
illustrates the necessity of a species-specific elaboration step in any type of multi-

species analysis similar to the one described here. Future work will include
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development of methods for adding no-obvious homologs, and perhaps phenologs

(McGary, Park et al.), to the comparative phase of our analysis.

2.4 Conclusion

A careful examination of several of the conserved biclusters generated as part
of the MScM analysis indicates that our method can reveal important new biology. For
instance, we found two cases where conserved biclusters function differently in the
species analyzed. The recovery of a flagellar module in the non-motile B. anthracis
species shows that it is possible to identify conserved modules, even in cases where
phenotypic divergence suggests none should exist. In addition, a key temporal
difference in the sporulation programs for B. subtilis and B. anthracis emerged that led
us to propose that a rewiring event took place during the evolution of the expression of
a group of metabolic genes involved in sporulation. Our biclustering approach also
appears useful in generating functional hypotheses for genes that are grouped with
other genes of previously established functions, considering that many of the
unannotated genes contained in biclusters with GO or KEGG enrichments are well
supported across six or more datasets (2 organisms x 3 or more data-types). Our
method also reveals new links between functions that were previously considered to
be separate, such as the association of the cta operon and the ykwC gene with several

other B. subtilis metabolism genes.
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2.5 Materials and Methods

Here, we describe the main steps in the multi-species cMonkey algorithm,
which is implemented in the R programming language and freely available (Waltman,
Kuppusamy et al. 2010). We emphasize the novel modifications to the algorithm that
allow for identifying biclusters in a multi-species context; for a more detailed
description of the individual cMonkey scoring function components see (Reiss, Baliga
et al. 2006). Methods used for global assessment and comparison of our methods to
other biclustering and clustering methods, experimental validation of results, and code
release as well as two simple multi-species clustering methods of our own
construction (multi-species k-means and balanced multi-species k-means), are also
described. A complete description of the data used for each organism is provided in

the supplemental section.

2.5.1 Multi-species cMonkey method overview

Briefly, the MScM algorithm is composed of three steps, with an optional
fourth (Figure 2.5). (1) the identification of orthologous genes between closely related
species (2) an iterative, Monte Carlo optimization within the space of shared orthologs
(involving pairs of orthologous genes) (3) an iterative, Monte Carlo optimization in
the space of each organism’s genome that elaborates the biclusters found in step 2 by
adding non-orthologous genes and (4, optional) an application of the original, single-

species method to the remainder of each organism’s genome (that was not added to the
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conserved biclusters found in steps 2 and 3) to identify completely species-specific

biclusters.

2.5.1.1 Algorithm overview:
1. ldentification of orthologous genes
2. Identification of shared biclusters by optimizing multi-species cMonkey score
(orthologous gene space)
3. Single-species Elaboration of shared biclusters from step 2 (single-species full
genome space)
4. ldentification of non-shared biclusters (single species full genome space)

(optional)
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Figure 2.5: Schematic overview of multiple-species method. (&) shared-space bicluster seeds are
generated by calculating the pairwise correlation of the gene-pairs to a randomly selected gene-pair. (b)
The shared-space multi-species optimization, where orthologous gene pairs are iteratively added or

dropped from the bicluster according to the multi-species multi-data score. (¢) When completed, shared-
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2.5.1.2

space biclusters are separated into their respective species, and further optimized during the elaboration
step. During this step the genes from the original shared-space bicluster are prevented from being

dropped, as indicated by the boxes surrounding these genes (represented as black circles).

Determining putative orthologs spanning relevant genomes (step 1)

Our analysis requires the identification of putative orthologs between each pair
of organisms as input. As identification of ortholog sets between species is not a
primary focus of this investigation, we rely on publicly available tools and resources
to define our starting set of putative orthologs between two or more species.
Dependent upon the organisms used, there may be databases that can provide these
ortholog sets, such as the well-annotated list of orthologs from the Mouse Genomics
Informatics database (Bult, Eppig et al. 2008). In cases where a pre-existing curated
list of orthologs is unavailable, we use the InParanoid algorithm (Remm, Storm et al.
2001) as two recent benchmarks (Hulsen, Huynen et al. 2006; Chen, Mackey et al.
2007) determined it to be among the most accurate when identifying pairwise
orthology. InParanoid allows for the identification of families of orthologous and
paralogous genes that are shared by 2 genomes, rather just single pair matches (for
example, as the cotZ gene in B. subtilis has two possible orthologs in B. anthracis,
cotZ1l and cotZ2, both the cotZ-cotZ1 and cotZ-cotZ2 pairs will be considered by our
algorithm). This feature of the InParanoid algorithm is useful in the context of this

work as it allows for more permissive supersets of putative orthology from which we
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2514

can sample using cMonkey (thus letting the data select amongst orthologous super-

sets).

Defining the multi-species data-space

In the first phase of our algorithm, biclustering is performed on groups of
orthologous genes (in this study we limit the algorithm to pairs, but the algorithm is
easily extendable to larger groups). For any two genomes, Gy and Gy, we use OCy
and OCy to refer to the portions of these genomes with one or more orthologs in the
other genome, which we term the °‘Orthologous Cores’ of these genomes.
Furthermore, we will use OCyy to refer to the list of all possible pairings of orthologs
between the species, which for convenience we will refer to as ‘orthologous pairs’. In
the case of gene families, where genes from one genome have several putative
orthologs in the other, we allow the algorithm to separately consider gene pairs for

each of the possible pairwise relationships. Thus, if we have a family, f, that has 4

0c;) - {5 ..o} oc! - (o6}

members in genome U, , and 3 in genome V, ,

this  will result in 12 possible pairs for this family, i.e.

OCj, ={050,0507 .- 9507, 950y |

Seeding the biclustering
The first step in building multiple-species biclusters out of ortholog pairs, as

defined above, consists of seeding a bicluster (selecting a starting subset of
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orthologous pairs to define as the starting bicluster). For example, this can be done via
selection of a random subset of orthologous pairs as a ‘seed’ which is then optimized.
For this study we choose a semi-random seeding (Figure 2.5a). We choose a random
orthologous gene pair and then 1) define the bicluster seed to be the 70% of conditions
in each organism’s dataset where the ortholog pair has the highest variance, and 2) add
the most correlated 5-10 ortholog pairs (where the correlation is calculated as the
average for each gene in the ortholog pair over only the conditions in the bicluster).
We refer to this simple procedure for seeding the bicluster optimization as semi-
random seeding. The main motivation behind this scheme (described in supplement
and prior (Reiss, Baliga et al. 2006)) is to improve the convergence rate by jump-
starting the optimization, though MScM can also be used to refine randomly generated

seeds.

Finding biclusters in the multi-species data-space (step 2)

Given a bicluster seed (semi-random, random or a seed generated via a
different method) we begin the multi-species optimization by iteratively adding and
dropping genes and conditions as part of a simulated annealing optimization of the
multi-species integrative score (Figure 2.5c). Letting Xy and Xy represent the
expression datasets for the two genomes considered, a single-species bicluster is
defined as a set of genes and a set of conditions in Xy and Xy. In the single-species
biclustering case, we calculate a combined score for every gene in the genome (given

the supporting data) to determine the likelihood of it being added or dropped from the
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bicluster. Extending this idea to the multi-species space requires that for every
orthologous pair, we can determine the likelihood of that ortholog pair being added or
dropped from a given shared-space bicluster. We do this by combining the single-
species gene scores (calculated separately for each organism within its independent

data space) for the genes in an orthologous pair to compute the multi-species score i

7= (Vi =115 9% ) < exp( B + 4, (93 + i)

U \Y
where Y and 9 are the species-specific likelihoods for the members of pair i for
bicluster k, and po and p; are the parameters of the logistic regression. Note, this
framework can easily be extended to more than 2 organisms, where the likelihood of

the orthologous N-tuples for the N organisms in would be defined as:

7= P(Yi =Ly =1] g?k.---.gikN)ocexp[ﬂwﬁlZNgilJ
ne
The parameters in this regression determine a decision boundary between
genes in and out of the bicluster (fitted to the combined single-species scores for the
pairs in OCyy at the previous iteration). It is important to note that individual data-
types from each species are not concatenated or combined through any other lossy or
unbalanced transformation. The multiple species integration occurs solely via the
computation of this decision boundary at this final step in computing the score. We

believe that this imparts significant flexibility to the algorithm that will allow

extension to other data-types and larger collections of species in the future within this
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framework. For each organism |j (j E{U’V}), Jik is defined as in the single-species

cMonkey algorithm, as:

gif( =T |Og(fikj)+ S, |Og(§ii)+ Z as |og(qr{ik)

neN

where i : Si , and i are the individual likelihoods for the expression, sequence and
networks, as defined by our earlier work and ro, Sp and qo are mixing parameters set to
roughly equalize the influence of each data type in this work (these mixing parameters
can also be used to increase the influence of single datatypes if desired). For this work

these mixing parameters were set such that each data-type would have equal aggregate

5 gl qi
effect on the biclustering. Each of these individual score components, fic| ik and Ynic
, are described previously (Reiss, Baliga et al. 2006) and in the supplemental section.
The probability that any gene pair in OCyy is added to the growing bicluster is a well-

balanced function of the evidence derived from the integrated dataset for each species,
- 1 2 - - -
formulated as the two multi-data scores, 9k and Y, that represent the individual

species support values for each gene in an orthologous pair (gilk and Oie represent the
multi-data-type integration for each organism separately and =i effects the multi-
species integration). Once this coupled version of the cMonkey score is obtained, the
algorithm progresses in a manner similar to SSCM, but adding and removing pairs
from the bicluster during each iteration instead, and stopping when convergence

criteria are met (Reiss, Baliga et al. 2006; Bonneau, Facciotti et al. 2007). At this
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2.5.1.6

stage, the formation of ortholog-pair biclusters, we limit any given bicluster to
including only a single pair from any one particular ortholog family. Multiple
members of an orthologous core can be included in different biclusters, and additional
members of any given family of orthologs can be added in the following species

specific elaboration stage.

Identification of species-specific elaborations of conserved-core biclusters (step 3)

In this step, we identify species-specific modifications to the biclusters that are
discovered during the orthologous-pair biclustering described above (Figure 2.5c). To
do this, we decouple the orthologous pairs from the shared-space modules to generate
two biclusters, one for each organism, which represent the conserved cores of a
putative, conserved, co-regulated module. These effectively serve as 'super-seeds' for
this step, which are each separately optimized in a manner similar to the original
single-species cMonkey method, but now considering the full genomes of each
respective organism (genes without clear orthologs in the other organism can now be
added if supported by the integrative score). Unlike the original method, though, in
this step, we anchor these searches by preventing the genes from the original shared-
space orthologous cores from being dropped. In so doing, we maintain the original
putative, conserved module, while allowing the addition of species-specific or non-
conserved orthologous core genes that fit well to the bicluster in a species-specific
manner. During this stage, we also remove the constraint that only one gene from a

given orthologous group can be selected by a given shared bicluster to permit
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2.5.1.7

detection of bona fide co-regulation of multiple members of paralogous gene families
(e.g. enabling the potential identification of dosage selection of paralogous genes).
Finally, unlike either the shared-space or single-species optimizations previously
described, where the mixing parameters, ro, po and g, follow a structured annealing
schedule during the optimization, in this optimization step we hold these mixing

parameters constant, using the final values from the shared optimization for these.

Identification of species-specific biclusters (optional, step 4)

Once the multi-species analysis has been completed, as an optional final step,
any species-specific modules that are completely unique to each organism can be
identified by running single-species cMonkey on the remaining un-biclustered genes.
We direct the reader to the supplementary material for a more detailed description and
discussion of this step as it is not a main focus of this first demonstration of our
method. These last two species-specific steps provide our method the strength and
flexibility to simultaneously identify both conserved, partially conserved and species-
specific modules, giving a correct limiting behavior across a wide range of possible

species pairings.
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2.5.1.8 Algorithm pseudocode:

Figure 2.6: Multi-species cMonkey algorithm pseudocode.

Algorithm 1 MSCM.shared| crganisms, orthologs, num. biclust, itermax )

1: for i =1 to num.biclust do

# hicluster + seed.bicluster( organisms, orthologs, conditions )
3

|

5

iter +— 1
repeat
[ caleulate the shared gain for each ortholog pair }

fi: for ortholog pair in orthologs do
T for org in organisms do
& { compute motif likelihods in promoter regions of genes }
0 5+ detect.motifs{ orthologs, upstream. sequences |
10 QAN hared|ortholog pair, org] += G( bicluster|org|, conditions[org|, ortholog. pair(org|. org, v, s,q )
11: end for
12: end for
13: model +— logit| gain, e Weluster )
14: [ caleulate probability drop and add genes }
15; for orthelog.pair in orthelogs do
16: if ortholog pair € kicluster then
1T LI —— .-,,l...,.|m'I'hru'r.ﬂ_r;.,rﬂr.l'r': — PP gain e ortholog paiv|, model )
18: elze
19: pr'uh,,,,._.,,h,,M;,,‘"|r.-.l'r.f.lrn’n_rf.!.wir' +— Ppodd( T hare ot hedog. pdr], meodeld )
20: end if
2L end for
vk { caleulate probability drop and add conditions in each organism }
23 for condition in conditions do
24: if condition € bicluster then
35 POl gt ship[condition] « PP gain g lcondition], model )
24 else
27 prob, _.,r._,Mlululr'mlr.l'iii.rm] — [‘""'J"'{ _r,lr.l.;u“;m,,"ulr ol i .;rm:, el )
28 end if
29; end for
30: update bicluster based on probyensersnip sample distribution
3L iter += 1
32 until convergence or iter == iloramar
33 biclusterdist[i] + bicluster

#: end for
35 return bicluster.fisf

2.5.2 Data set analyzed

In the following sections, we provide for each of the Gram-positive and Gram-

negative triplet a detailed description of the data sets that were analyzed.

In most

cases, the expression data was collected from the GEO omnibus database (Edgar,
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Domrachev et al. 2002; Barrett, Troup et al. 2007), though additional B. subtilis data
also came from the KEGG Expression Database (Goto, Kawashima et al. 2000). In
addition to these expression data sets, we also included upstream sequence data (200
bases upstream of the start codon), retrieved from RSA Tools (van Helden 2003) as
well as network associations from KEGG (Kanehisa and Goto 2000; Kanehisa, Goto
et al. 2002; Kanehisa, Goto et al. 2006; Kanehisa, Araki et al. 2008), Prolinks
(Bowers, Pellegrini et al. 2004) and Predictome (Mellor, Yanai et al. 2002). We used
InParanoid (Remm, Storm et al. 2001; Alexeyenko, Tamas et al. 2006) to identify

putative sets of orthologs between these three species of each triplet.

2.5.2.1 Gram-positive triplet

For B. subtilis, we compiled an expression data matrix that consisted of 314
conditions from 15 studies that examine the regulons of over 40 known transcriptional
regulators and sigma factors (Kobayashi, Ogura et al. 2001; Ogura, Yamaguchi et al.
2001; Yoshida, Kobayashi et al. 2001; Ogura, Yamaguchi et al. 2002; Asai,
Yamaguchi et al. 2003; Doan, Servant et al. 2003; Eichenberger, Jensen et al. 2003;
Molle, Nakaura et al. 2003; Tojo, Matsunaga et al. 2003; Watanabe, Hamano et al.
2003; Yoshida, Yamaguchi et al. 2003; Bunai, Ariga et al. 2004; Eichenberger, Fujita
et al. 2004; Serizawa, Yamamoto et al. 2004; Yoshida, Ohki et al. 2004; Hayashi,
Ohsawa et al. 2005; Hayashi, Kensuke et al. 2006; Wang, Wu et al. 2006). For the two
pathogens, the L. monocytogenes expression matrix contained 56 conditions that were

compiled from 8 studies covering early stationary phase, salt, alkali, and cold shocks
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(Marr, Joseph et al. 2006; Hu, Oliver et al. 2007; Hu, Raengpradub et al. 2007;
Severino, Dussurget et al. 2007; Bowman, Bittencourt et al. 2008; Giotis, Muthaiyan
et al. 2008; Raengpradub, Wiedmann et al. 2008); while the B. anthracis matrix
contained 51 conditions from a single study by Bergman et al (Bergman, Anderson et
al. 2006) covering the full life-cycle of the B. anthracis Sterne strain. As mentioned
previously, most data was collected from the GEO omnibus database (Edgar,
Domrachev et al. 2002; Barrett, Troup et al. 2007), though additional B. subtilis data
also came from the KEGG Expression Database (Goto, Kawashima et al. 2000).
(Kanehisa and Goto 2000; Remm, Storm et al. 2001; Kanehisa, Goto et al. 2002;
Mellor, Yanai et al. 2002; Bon, Casaregola et al. 2003; Bowers, Pellegrini et al. 2004;
Alexeyenko, Tamas et al. 2006; Kanehisa, Goto et al. 2006; Kanehisa, Araki et al.
2008) To generate the list of orthologous pairs for each pairing, we used InParanoid
with the default settings (BLOSSUMA45 substitution matrix), to identify 2225
orthologous groups between B. subtilis and B. anthracis, 1439 between B. subtilis and
L. monocytogenes, and 1494 between B. anthracis and L. monocytogenes. Note, that
while these are the total number of groups, the total number of genes and orthologous
pairs is larger as we also include non-best-matching orthologs in our analysis. Table
2.4 and Table 2.5 provide full listings of the number of genes, conditions and edges
(by network association) in our database for each organism, as well as the total
number of genes, orthologs and ortholog families for each pairing between the Gram-

positive triplet.
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Table 2.4: Size of the data sets used for the Gram-positive triplet, by organism.

Bacillus Bacillus Listeria
Number of: subtilis anthracis monocytogenes
genes 3928 5861 2795
conditions 314 51 56
association edges:
operon 839 997 494
metabolic (KEGG) 49630 73981 36825
Gene Neighbor (Prolinks) 6105 7338 1982
Phylogenetic Profile (Prolinks) 6036 7703 1970
Gene Cluster (Prolinks) 839 997 494
COG-code 227096 370354 110489

Table 2.5: Total number of orthologs, orthologous families, and ortholog pairs generated by

InParanoid for the Gram-positive triplet, by organism pairing.

B. subtilis — B. subtilis — B. anthracis —
Number of:

B. anthracis L. monocytogenes L. monocytogenes
orthologous groups 2225 1439 1494
orthologous pairs 2443 1564 1690
multi-member groups 118 95 129
Remaining unique genes  B. subtilis: 2279 B. subtilis: 1519 B. anthracis: 1634
(per organism) B. anthracis: 2339 L. monocytogenes: 1478 L. monocytogenes: 1537
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2.5.2.2 Gram-negative triplet
The E. coli expression data matrix consisted of 507 conditions from 16 projects
acquired from the Many Microbe Microarrays Database (M3D) (Faith, Driscoll et al.
2008) covering various conditions including: genetic perturbations, changes in
oxygen concentration and pH, growth phases, antibiotic treatment, heat shock, and
different media. The S. typhimurium expression data matrix consisted of 138
conditions from 8 studies acquired from the Stanford Microarray Database (SMD)
(Sherlock, Hernandez-Boussard et al. 2001) covering various conditions including:
chemical effects, nutrient limitation, library verification, strain comparison, media
comparisons, time course, and mutants (Chan, Baker et al. 2003; Detweiler, Monack et
al. 2003; Kim and Falkow 2003; Kim and Falkow 2004; Prouty, Brodsky et al. 2004;
Chan, Kim et al. 2005; Lawley, Chan et al. 2006; Halbleib, Saaf et al. 2007). Finally,
the V. cholerae expression data contained 441 conditions that were also collected from
the SMD from 10 studies that explored host response(Merrell, Butler et al. 2002),
chitin utilization (Meibom, Li et al. 2004), competence(Meibom, Blokesch et al. 2005;
Blokesch and Schoolnik 2007), mucosal escape response (Nielsen, Dolganov et al.
2006), metabolism (Shi, Romero et al. 2006), comparisons with non-pathogenic
strains (Keymer, Miller et al. 2007; Miller, Keymer et al. 2007), pigment (Valeru,
Rompikuntal et al. 2009) and virulence (Nielsen, Dolganov et al. 2010). Table 2.6 and
Table 2.7 provide full listings of the number of genes, conditions and edges (by

network association) in our database for each organism, as well as the total number of
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genes, orthologs and ortholog families for each pairing between the Gram-negative

triplet.

Table 2.6: Size of the data sets used for the Gram-negative triplet, by organism.

Escherichia Salmonella Vibrio
Number of: coli typimurium cholerae
genes 4264 3745 3335
conditions 507 138 441
association edges:
operon 3414 2104 1920
metabolic (KEGG) 96931 75363 106530
Gene Neighbor (Prolinks) 29228 29942 19996
Phylogenetic Profile (Prolinks) 20058 20094 17460
Gene Cluster (Prolinks) 6048 6476 1920
COG-code 644856 379484 525328

Table 2.7: Total number of orthologs, orthologous families, and ortholog pairs generated by

InParanoid for the Gram-negative triplet, listed by organism pairing.

E. coli — E. coli - S. typhimurium -
Number of:
S. typhimurium V. cholera V. cholerae
orthologous groups 2827 1834 1700
orthologous pairs 2856 1965 1831
multi-member groups 22 86 77
Remaining unique genes E. coli: 1428 E. coli: 1961 S. typhimurium: 1972
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(per organism) S. typhimurium: 900 V. cholera: 1467 V. cholera: 1594

2.5.3 External tools used
Ortholog analysis and identification was performed using InParanoid version
2.0 on protein sequences in Fasta format that were retrieved from NCBI Bacterial

Genomes (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/), and using BLAST version 2.2.10.

During the cMonkey optimizations, MEME & MAST version 3.5.7 was used as part
of the iterative search for new motifs. Upstream sequences were retrieved from
Regulatory Sequence Analysis Tools (RSAT) (van Helden 2003; Thomas-Chollier,
Sand et al. 2008). AIll GO term enrichments were calculated using the GO-
TermFinder library (Sherlock 2009), using a Bonferonni false discovery correction.
All KEGG pathway enrichments were calculated using a utility built in-house for this

purpose; also Bonferonni corrected.

2.5.4 Visualization and exploration of multi species biclusters

The Comparative Microbial Module Resource (Kacmarczyk and Bonneau
2010) is an integrated collection of diverse functional genomics datasets and software
tools that facilitate the visualization and analysis of conserved cMonkey biclusters,
or putatively co-regulated gene modules, across species. The interface allows the
visualization and exploration of a bicluster’s properties (such as, coupled multi-species

biclusters, conserved orthologous core gene members, species-specific gene members,

174


ftp://ftp.ncbi.nih.gov/genomes/Bacteria/

experimental conditions, gene co-expression pattern, sequence motif logos, and
significant functional annotations). Integration with the Gaggle allows access to
additional biological information from online databases and further analysis (e.g.
integrated tools include but are not limited to: the FireGoose plugin, cytoscape, the
Data Matrix Viewer, and an R goose for using the R language and environment for
statistical computing and graphics). A comprehensive description of the CMMR s

available in Appendix 3 (section 5).

2.5.5 Multi-species cMonkey code release, maintenance and documentation:
Both the multiple-species cMonkey and a re-factored single-species cMonkey
are freely available for download and use (Waltman, Kuppusamy et al. 2010). This
website includes functionality for bug tracking, tutorials on use, example datasets and
runs of the algorithm, links to required packages, and python code developed to aid in

data-import. MS-cMonkey is written in R (R Development Core Team 2009) with a

data-import module written in Python and has three main modules:

1. Reader: cMonkey is given gene expression matrices and ortholog pairs, along with
optional protein association networks and upstream sequences. The user may
request cMonkey to automatically find the required and optional datatypes for each
organism.

2. The main code: written in R, contains bicluster seeding, bicluster overall
optimization, scoring functions, and methods for output and visualization of

results.
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3. Validation and visualization codes: codes that implement the bicluster and
biclustering assessment described, code to facilitate connection to network and
cluster visualization tools such as the Gaggle.

All code (cMonkey, the reader, and validation code) are freely available. We
have attempted to make several of the steps required for assembling and integrated
dataset automatic in this code release, in the hope that this will extend the usefulness
of the algorithm to a greater number of biologists. The biologist needs to only prepare
simple gene expression matrices and pairs of orthologs. The rest of the datatypes will
be queried from biological databases (networks, sequences, annotations for validation
scripts, etc.). All input and output will also be stored in a portable, standard relational
database that will readily permit use of the integrated dataset and cMonkey results by
other tools. These key changes to how data is imported and stored in cMonkey’s
database and the core data-object for cMonkey allow for multi-species integration.
The biologist may use the Reader in two modes: automatic or manual. In automatic
mode, the biologist need prepare only gene expression matrices and pairs of orthologs,
while protein association networks and upstream sequences are queried from
biological databases such as BioNetBuilder (Avila-Campillo, Drew et al. 2007),
MicrobesOnline (Dehal, Joachimiak et al. 2009), Prolinks (Bowers, Pellegrini et al.
2004), STRING (Snel, Lehmann et al. 2000; Jensen, Kuhn et al. 2009) and RSAT (van

Helden 2003; Thomas-Chollier, Sand et al. 2008).
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2.5.6 Swimming motility assays

Individual colonies of B. subtilis PY79 (Youngman, Perkins et al. 1984) and
DS219 (Blair, Turner et al. 2008), Bacillus cereus ATCC 14579 (obtained from Daniel
Ziegler, Bacillus Genetic Stock Center, Ohio State University) and Bacillus anthracis
Sterne (a gift from Adam Driks, Loyola University Chicago) were picked with a
wooden stick and inoculated into Luria-Bertaini (LB) 10 g tryptone, 5 g yeast extract,
5 g NaCL per L broth. Cultures were grown to log phase and 3 pl of the broth culture
was centrally inoculated on LB Agar plates containing 0.3% Agar. Motility was
scored after ~20 hour incubation at 30°C. Plates were photographed against a dark

background such that areas of bacterial colonization appear light.

2.6 Abbreviations Used

OC: Orthologous Core (the set of actively expressed orthologous genes shared
between a group of organisms on which we run our multi-species biclustering)

MS: Multiple-species

SS: Single species

SSCM: Single-species cMonkey

MScM: Multi-species cMonkey

MSISA: Multi-species ISA

MSKM: Multi-species K-Means

BMSKM: Balanced Multi-species K-Means
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EO: Expression Only

FD: Full Data (EO and FD are used to distinguish between expression only tests and
full data runs of integrative methods)

SH: shared biclusters, biclusters generated only from orthologous pairs (MScM,
MSKM, BMSKM)

EL.: elaborated biclusters, multi-species biclusters that have additional genes unique to
each organism added (MScM, MSKM, BMSKM)

P: purified biclusters, applies only to the ISA algorithm (MSISA-P)

R: refined biclusters, applies only to the ISA algorithm (MSISA-R)
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3. QUANTITIVE VALIDATION OF MULTI-SPECIES

CMONKEY

Original article: Waltman, P., T. Kacmarczyk, et al. (2010). "Multi-species integrative

biclustering." Genome Biololgy 11(R96).

NOTE: This chapter contains sections from the original article that this chapter is
based upon which describe the quantitative analysis that was performed in
combination with the relevant method sections of the original supplementary material.
The majority of the main text of the original article now serves as Chapter 2. The
gene lists and images that were also contained in the supplement of the original article
can now be found in Appendix 1, while the additional plots from the original

supplementary material can now be found in Appendix 2.

Author contributions: Provided above, in section 2.7.

In this chapter we provide a description and genome-wide benchmarking of the
multispecies integrative biclustering method (or FD-MScM for full-data multi-species
cMonkey). We compare our method to the original single-species cMonkey algorithm,
a simple k-means clustering method that has been adapted to multi-species analysis
and to several other single- and multi-species biclustering algorithms. We will refer

only to analysis of pairs of organisms here and focus primarily on the B. subtilis-B.
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anthracis pair, though we performed the validation on all the pairings that were
possible from the two organism triplets that were analyzed (yielding six (6) total
pairings, with three each from both the Gram-positive and Gram-negative triplet). We
note that the method scales linearly with the number of species being analyzed and can
be extended to larger numbers of organisms. The difficulties in validating biclustering
performance and the need to compare the algorithm to primarily single species
methods required that we initially limit the scope of this work to the simpler pairwise
case. This chapter is based heavily upon the global validation section of our article
published in Genome Biology (Waltman, Kacmarczyk et al. 2010)

As described in chapter 2, our method is composed of two sequential phases:
an initial step where conserved cores are learned in an integrated multiple-species
fashion and a later step where species-specific features are added to the conserved core
(called the elaboration step). The algorithm takes as input a matrix of normalized
expression data for each organism (where each organism’s data matrix may be
normalized separately), upstream sequences for all genes, and one or more networks
for each organism (in this case we used metabolic and signaling pathways from
KEGG, predicted co-membership in an operon and phylogenetic profile networks).
The experimental datasets collected for both triplets are described fully in chapter 2
(Table 2.4—

Table 2.7).
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As described in chapter 2, the method begins by randomly selecting a single
orthologous pair (e.g. dnaA) around which to build a seed bicluster. For the randomly
selected orthologous pair, conditions are chosen in each organism’s expression matrix
where the orthologous gene from that organism is most significantly differentially
expressed. The semi-random seed is completed by adding the 5 to 10 most correlated
orthologous pairs (e.g. dnaN) to the randomly selected seed pair (over the conditions
defined in each species). This heuristic seeding is required as most of the MScM score
terms demand that a bicluster have three or more genes in each organism to compute
the scores required for further iterations. Once seeded, orthologous gene pairs are then
iteratively added to (e.g. sigH) or dropped from (e.g. cwlH) the growing bicluster
using the multi-data/multi-species score until no improvements can be made
(convergence). After a bicluster converges, new biclusters are seeded and built from
additional random seeds until no significant biclusters can be found or a maximum
number of biclusters is reached.

Biclusters are generated sequentially and the number of biclusters to be
optimized is chosen by the user. Considering that initially optimized biclusters will be
unaffected by later biclusters, the number of biclusters is set higher than the expected
number of true co-regulated modules. For each of the three possible species pairs, we
generated 150 biclusters in the shared (multi-species) data-space that were then
elaborated in the single-species data-space. Thus, each bicluster contains a conserved

core (orthologous pairs that were added based on the entire integrated dataset), and 0
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or more genes that were added during the elaboration step (performed separately for

each organism, based on each single species dataset).

3.1 Genome-wide assessment of multi-species biclustering

performance

To validate MScM, we compared it to several multi-species and single-species
methods (Table 3.1). Among the single-species methods, we included the single-
species version of cMonkey (SSCM), which was previously shown to be competitive
with other biclustering methods (Reiss, Baliga et al. 2006); as well as two recent
single-species biclustering methods, QUBIC (Li, Ma et al. 2009) and Coalesce
(Huttenhower, Mutungu et al. 2009) (COAL). In addition, we compared our method
to a multi-species version of the ISA biclustering algorithm (MSISA) (Bergmann,
Ihmels et al. 2003); and two multi-species clustering methods, a simple multi-species
K-means algorithm (MSKM) (Herschkowitz, Simin et al. 2007) and a balanced multi-
species K-means clustering method (BMSKM). We constructed the BMSKM version
to balance the disproportionate size of expression datasets between the two species
and thereby perform a more meaningful comparison to MScM. We refer to the results
as “shared” (SH) if we restrict our analysis to orthologous pairs between the two
species and “elaborated” (EL) if a second step is used to add species-specific genes,
i.e. MScM-EL. When possible, we evaluate both SH and EL results. In order to remain
consistent with the MSISA nomenclature (Bergmann, Ihmels et al. 2003) we also use

the terms purified (MSISA-P) and refined (MSISA-R), as these terms were used in the
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original work describing these methods. Descriptions of the multi-species methods can
be found in the methods section. When evaluating integrative methods that take into
account more than just expression data (FD: full data) we also compare to expression-
only (EO) runs of each method. Our evaluation of the various methods is based on two
criteria: 1) the ability to detect statistically significant modules, and more importantly
to this work, 2) the ability to identify conserved modules. We show that MScM
produces biclusters that are a good balance of coverage, functional significance, and
conservation, suggesting that the biclusters obtained by this procedure are of greater

biological significance.

Table 3.1: Key to abbreviations used for methods tested. Tested methods are shown organized by
main method (leftmost column) data-types used, and whether the analysis was performed over the full
genome or restricted to only genes with orthologs across the species analyzed. For each formulation
(method, data and multi-species mode) we provide the short name or abbreviation that is used in tables,

figures and throughout the text.

Expression Only Full Data
full genome full genome
Multi-Species shared space  (elaboration) shared space  (elaboration)
cMonkey EO-MScM-SH EO-MScM-EL FD-MScM-SH FD-MScM-EL
ISA* MSISA-P MSISA-R
K-Means* MSKM-SH MSKM-EL

(Balanced) K-Means* BMSKM-SH  BMSKM-EL
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Single-Species Expression Only Full Data

cMonkey EO-SSCM FD-SSCM
Coalesce EO-COAL FD-COAL
Qubic* QuBIC

* Expression only method by method definition - no distinction between ""expression only"'

or "full data™ is necessary.

We also note that the validation was originally performed only for the Gram-
positive triplet (B. subtilis, B. anthracis, and L. monocytogenes). A subsequent, partial
validation was later performed on the Gram-negative triplet (E. coli, S. typhimurium
and V. cholerae), though, the validation on this triplet did not include the permutation
tests we describe below, as these proved to largely uninformative because the results

of nearly all the methods compared were significantly better than random.

3.1.1 Using multiple metrics for validating multi-species biclustering:

Validation and comparison of clustering methods remains a difficult problem
(Prelic, Bleuler et al. 2006; Reiss, Baliga et al. 2006). There is, as of yet, no “solved”
organism (i.e., an organism whose full regulatory network is known and
experimentally validated) that can be used as a benchmark. Artificial datasets are also

of limited value due to the complexity of generating reasonable synthetic datasets (one
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would have to generate sequences, expression data and networks, and make
assumptions about the evolution of these data-types). In the face of these challenges,
several criteria for judging the biological significance of gene clusters have been
implemented. We will focus on five metric classes: 1) bicluster coherence; 2)
functional enrichment; 3) coverage; 4) overlap between biclusters and 5) conservation.
We evaluate bicluster coherence with five metrics that gauge the support of the three
data-types cMonkey integrates, described further below and in the supplement. We
also assess the number of biclusters that have a significant enrichment, considering
that enrichment metrics imply that co-functional and interacting genes (by protein-
protein or regulatory interaction) should have a higher probability of clustering.
Expression matrix coverage and overlap between biclusters were calculated as the
percentage of data-matrix elements that can be in one or more biclusters (as opposed
to just genes). Gene-wise comparisons can be found in the supplementary information.

The last metric we consider, unique to multi-species datasets, is the
conservation of (bi)clustered genes between the two species. Although we cannot
know a priori what percentage of co-regulated genes will be preserved, we can state
for two closely related organisms that: 1) if two biclustering methods are equivalent
(according to all other metrics), then the more conserved method is likely to be of
higher biological significance; 2) the conserved score between biclustering methods
should be well separated from a random background, but still lower than one. In

addition, more distantly related organisms should have less conserved co-regulation.
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By strictly enforcing a perfect conservation between the species, the two k-means
variants (B/MSKM) are good examples of methods that over-estimate the degree of
conservation between two species.

Figure 3.1-Figure 3.2 and Table 3.2 present this multiple-metric comparison
for the B. subtilis — B. anthracis pairing; the summary of this multi-metric comparison
for the results of the other organism pairings from the 2 triplets can be found in
Table 3.3-Table 3.7, and the associated figures can be found in Appendix 2. Given the
above metrics and evolutionary considerations our assessment of methods attempts to
balance the 5 metric classes above:
bicluster-quality =

[data support: (1) coherence, (2) functional enrichment] X
[completeness: (3) coverage, (4) overlap] X

[conservation: (5) conservation score]

3.1.2 Comparing the degree of conserved co-regulation detected by each
method:

A bicluster is considered to be perfectly conserved when all of the orthologous
genes from that bicluster are found in a single bicluster in the related species. We
evaluated the ability of all the tested methods to identify conserved biclusters using a
metric similar to the F-statistic (Stein, Eissen et al. 2003), which gauges the degree of
recovery between a bicluster in one species with that of the closest bicluster in the

other species. For the multi-species methods, we calculated the metric using the shared
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bicluster for one organism with its bicluster counterpart in the other. Details of the

procedure can be found in the methods section.
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for the different MS and SS methods. For brevity, we only present here the results from full data
methods (FD) from the B. subtilis-B. anthracis pairing (the results for the other pairings and expression
only (EO) methods can be found in the supplementary material). Abbreviations are given for each
method, a key to these abbreviations can be found in Table 3.1. Across the three comparisons, no
method outperformed all other methods as judged by all three metrics, with the MScM results
performing competitively with the others. (a) The distributions of the residuals from each method for
the pairing of B. subtilis and B. anthracis. We also show, next to each distribution (in gray), the
residuals from randomly shuffled (bi)clusters that match the size distribution for each method with
n=1000 for the number of copies of the original set of (bi)clusters (same number of genes, conditions
and (bi)clusters). Most methods tested were significantly better than random for both organisms; the
exceptions being MSISA, Qubic, and Coalesce. In addition, this plot illustrates the tendency of MSKM
to allow an organism with a considerably larger expression dataset to dominate the analysis. (b) The
distributions of the average absolute correlation from each method for the pairing of B. subtilis and B.
anthracis are displayed to allow comparison between methods that identify inversely correlated
biclusters (MSISA, Qubic) and those that do not. As in (A), we also display the results from a randomly
shuffled distribution next to each method in gray (n=1000). In all cases, with the exception of Qubic
for B. subtilis, the method was significantly higher than random. (c) The distributions of the association

p-values (-log10) from each method compared.

Using this simple measure of conservation, we evaluated the results from all
the multi-species (MS) methods with those from several single-species (SS) methods
(Table 3.2 displays the results for the B. subtilis-B. anthracis pairing;

Table 3.3-Table 3.7 for the others). With the exception of MSISA-R, the MS

methods displayed a far greater degree of conservation than any of the SS methods,
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with the shared (SH) steps (and the equivalent MSISA-P step) having perfect
conservation, and the elaboration (EL) steps having conservation scores >0.85. As
they overestimate the conservation between the two species by assuming perfect
conservation for all orthologous pairs during their shared steps, both B/MSKM-EL
results display a greater degree of conservation than the MScM-EL results. In
contrast, none of the SS methods possessed a conservation score > 0.125 (although it
is likely that this score underestimates the degree of conserved co-regulation
conservation scores for many of these methods were still significantly greater than
random (unpublished results)).

The low conservation score for closely related organisms obtained when
running SS methods on individual datasets was surprising. We expected that the truly
conserved co-regulated gene groups would be detected individually by the SS methods
and thus contribute to higher conservation scores. We attribute the low conservation
scores in part to biologically relevant differences in co-regulation, but also to the fact
that SS biclusters are supported by smaller datasets that contain systematic errors that
likely differ between species (and thus, correctly cancel out in the multi-species
analysis). Importantly, the greater conservation scores for MScM had little or no

negative impact on the other commonly used evaluation metrics we employed.

3.1.3 Coherence of biclusters, coverage and bicluster overlap:
In this section we evaluate the ability of each method to simultaneously find

coherent biclusters (Figure 3.1), cover the input dataset, and minimize the overlap
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between biclusters (Figure 3.2). We assess bicluster expression coherence by 1)
residual, the mean error when the average expression value over the bicluster is used
to predict gene expression levels, (Figure 7.14—Figure 7.18); and 2) mean correlation,
the average pairwise correlation between all (bi)cluster members, taking the absolute
value of the correlation to allow unbiased comparison between methods that identify
inversely correlated patterns (QUBIC and MSISA) and those that do not (Figure 7.19—
Figure 7.24). These two measures are dependent on the number of conditions and
rows in the bicluster and overall coverage of the data-matrix. Therefore, in all cases
we compare co-expression values to a randomized background generated specifically
for that biclustering (see methods). We assess bicluster network coherence by 3)
association network p-values, a measure of the significance of the sub-networks within
biclusters compared to the full network (Figure 7.25-Figure 7.30). We assess
bicluster sequence coherence by 4) upstream motif E-values, a measure of the
quality/significance of the upstream binding site motifs detected for each bicluster
(Figure 7.31-Figure 7.36); and 5) sequence p-values, representing the preferential
partitioning of the discovered motifs to genes in the bicluster over the remainder of the
genome (Figure 7.37—Figure 7.42). We direct the reader to the supplementary material
and prior work (Reiss, Baliga et al. 2006) for detailed descriptions of these metrics,
along with the individual comparisons. Note, in the case of the non-integrative
methods, sequence and network based metrics or scores were calculated post hoc for

the (bi)clusters they produced.
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3.1.3.1 Summary of bicluster coherence metric evaluations

We found that for all 5 coherence metrics, FD-MScM performed as well or
better than the other methods (Table 7.25-Table 7.34). Specifically, in the case of the
Gram-positive triplet, FD-MScM performed as well or better than the other methods in
71 of the 92 individual comparisons of the expression residual distributions, in all 92
of the mean correlation comparisons, in 77 of the 92 comparisons for the network
association p-values, in 69 of the 92 comparisons for the motif E-values, and in 72 of
the 92 comparisons for the sequence p-values. Note, the large number of comparisons
(92) results from the fact that we have three organism pairings and that for each run
we must separate the multi-species run into a set of biclusters for each species to
calculate these validation metrics (thus each species pair results in 2 x the number.
Similar results were observed for FD-MScM on the Gram-negative triplet as well; and,
likewise, comparisons with EO-MScM on the Gram-positive triplet (Table 7.35-Table
7.39) indicated that for four of the five metrics, it did as well or better than the other
methods tested — the sole exception being motif E-values. Note, we re-iterate that
during the generation of the EO-MScM results, the MScM optimization was run solely
on expression data, with the scores for the other supporting data types (sequence and
association networks) calculated apriori; thus, it is interesting that it’d do so well on
these other data types. In contrast, in the comparisons with the EO-MScM results for
the Gram-negative triplet, EO-MScM fared worse than its competitors in three of the 5

metrics, though, ironically, the metrics in which it did better were those associated
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with the sequence data. It is unclear why this was the case. However, given that four
(4) of the competitors that consistently outperformed it were other cMonkey versions
(FD-SSCM, EO-SSCM, and FD-MScM-SH/EL), the most likely explanation is that in
this particular instance, the optimization settled into a sub-optimal local minima, as is
possible with Monte Carlo methods.

In the comparisons with the random permutation results for the expression
metrics (Table 7.40-Table 7.41), expression residuals for the MScM and SSCM were
all significantly better than random distributions generated for each method (differing
cluster and bicluster sizes required a separate calculation of the random background
for these expression coherence metrics for each method and for each data-set), for all
organisms and pairing combinations, as were those for the two MS k-means variants
(B/MSKM). In contrast, the residuals from both QUBIC and the two MSISA steps
were all significantly worse than random; while the residuals from COAL were
significantly better for B. anthracis, but somewhat worse for B. subtilis and L.
monocytogenes. However, when considering the mean correlation results, nearly all
methods were better than random; the sole exception to this being the MSISA results

for L. monocytogenes in the pairing with B. subtilis.
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the B. subtilis — B. anthracis pairing (full data results only, where applicable). For brevity, we only
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Figure 3.2: Comparison of the size, coverage and overlap for single and multi-species methods for
present here the results from full data methods (FD) from the B. subtilis-B. anthracis pairing (results for



the other pairings and EO methods can be found in the supplementary material) (A) The distribution of
the number of genes in the (bi)clusters from the different methods. There is a consistent increase in the
median size between the shared and elaboration steps (this is most extreme in the case of the MSISA
method). For both organisms, Coalesce and Qubic produced the next largest biclusters, in terms of the
number of genes. (B) The distribution of the number of conditions in the biclusters from the different
biclustering methods only. We do not show this for the MSKM and BMSKM results as these methods
use all conditions. For both organisms, the MS/SS cMonkey methods produced the biclusters with the
most conditions. The MSISA method produced the biclusters with the least number of conditions. (C)
The coverage of the total expression data matrix by the (bi)clusters from the different methods is
displayed. The elaborated results of the MSKM and BMSKM methods achieve perfect coverage, by
definition. The MSISA and Qubic biclusters had the smallest coverage of any of the methods, while the
Coalesce biclusters achieved coverages comparable with the SSCM biclusters. (D) The distribution of
all pairwise, non-zero overlaps between the (bi)clusters from the different methods; overlap in terms of
the overlap of expression matrix elements, rather than genes. By definition, the MSKM and BMSKM
clusters have no overlap, while the MSISA and Qubic biclusters had the greatest. Of the biclustering
methods, Coalesce had the least overlap. Coalesce identifies more distinct biclusters with greater
numbers of genes, but fewer conditions; and the SS/MS cMonkey methods identify biclusters that are

slightly more overlapped than does Coalesce, with fewer genes, but covering more conditions.

3.1.3.2 Summary of bicluster coverage and overlap

Regardless of the pairing, both QUBIC and MSISA produced biclusters with
the most genes (Figure 7.43-Figure 7.48) and fewest conditions (Figure 7.49-Figure
7.54), while also simultaneously having the least coverage (Figure 7.55-Figure 7.66)

and most redundant set of biclusters (Figure 7.67-Figure 7.78). The sole exception to
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this are the QUBIC results from the Gram-negative triplet, which while still having the
fewest conditions, least coverage and greatest overlap, produced the biclusters with the
fewest genes. This difference between the two triplets is most likely attributable to a
different parameterization that was used for QUBIC, as described in section 3.4.4.

We exclude QUBIC and MSISA from further consideration for this reason. By
contrast, the two B/MSKM variants display complete coverage of the data space.
Although it is not possible to say what the optimal value for coverage should be, it is
clear that: 1) numbers approaching 100% include several false positives (with respect
to conserved co-regulation) as one cannot reasonably expect every gene to be a
member of a conserved regulatory module; 2) methods that cover 2% or less of the
data space are likely missing the majority of conserved co-regulation. We note that
the coverage of both the genome and expression dataset for MScM is considerably
smaller in comparison to SSCM and COAL. This is not unexpected because the
search spaces are constrained by the orthologous core, with the search space of the
elaboration step indirectly constrained by results of the shared step. The SS methods
typically had better coverage, reflecting that a significant fraction of co-expressed

gene-groups are not conserved across the species investigated.

3.1.4 Estimating functional coherence via enrichment of function annotations:
We compared the percentages of biclusters that were significantly enriched (p-
value < 0.01) for both GO terms and co-presence in KEGG pathways. Again, we limit

the discussion of these below to the pairing of B. subtilis with B. anthracis (Figure 3.3
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and Figure 7.79, in greater detail), though similar patterns were observed with the
other pairings as well (Figure 7.80-Figure 7.84). For all of the multi-species methods,
there was a consistent increase between the shared and elaboration optimizations,
indicating the importance of adding species-specific genes to conserved co-regulated
cores. For example, for FD-MScM, the percentage of biclusters with GO term
enrichments increases from 51.3% to 56.0% for B. subtilis (from 51.3% to 72.7% for
B. anthracis) between the shared and elaboration optimizations (similarly, for MSKM,
the increase is from 50.7% to 63.5% for B. subtilis; 39.2% to 75.7% for B. anthracis).
The large increase observed for the MSISA results (53.7% to 95.1% for B. subtilis;
75.7% to 100% for B. anthracis) is a reflection of the small number of large and
highly redundant biclusters it identifies. When a filter is applied that allows a GO
term to be enriched for only a single bicluster, these percentages drop considerably
(70.1% for B. subtilis, 39% for B. anthracis, MSISA-R biclusters).

The percentage of biclusters with enriched KEGG pathways is much higher for
the MS methods than for SSCM. For example, the percentage of the FD-MScM-EL
for B. subtilis was enriched 15.3%, while the percentage of the FD-SSCM results was
11.5% (21.3% vs. 9.4% for B. anthracis). We observed a pattern similar to what was
observed with the GO terms, in the sense that there was also a consistent increase
between the shared and elaboration runs. For example, with FD-MScM, the
percentages increase from 12.7% to 15.3% for B. subtilis (12.7% to 21.3% for B.

anthracis).
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We also compared the performance of different species-species pairings (see
supplement for data). We observed that for both of the pairings involving B. subtilis,
the residuals of the clusters generated by MSKM were significantly better for the B.
subtilis clusters, but significantly worse for the other organisms. As the B. subtilis
expression dataset contained nearly six times more conditions than the other
organisms, a key limitation of this and other similarly constructed methods is the
dominance of a single species in the results. This effect was muted by the ‘balancing’
procedure (i.e. the BMSKM method). However, while the performance for the
organism with the smaller dataset improved, the performance for the organism with

the larger dataset decreased significantly. A similar effect was observed with MSISA.
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Figure 3.3: Comparison of the fraction of biclusters with significant GO and KEGG annotation
enrichments for the single and multi-species methods for the B. subtilis — B. anthracis pairing. (A)
GO Terms. For all multi-species methods there is a consistent increase from the shared to elaboration
step, with the percentage of elaborated biclusters with significant GO term enrichments consistently
greater than those from the single species optimization. (B) KEGG Pathways. For both of the multi-
species biclustering methods (MScM and MSISA), there is a consistent increase in percentage from the
shared to elaborated optimizations, similar to the GO term enrichments, with a similarly large increase

for the refined MSISA biclusters for B. anthracis. The two k-means clustering variants showed either

negligible increase or even a decrease between the shared and elaboration steps.
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Finally, we noticed that there was a consistent increase in the quality of the
motifs associated with the biclusters returned by the elaboration step of both MS
methods. One possible explanation for this behavior is simply algorithmic, namely,
that MEME (Bailey and Elkan 1994), the motif inference tool we use, is able to infer
more significant motifs from the larger pool of sequences accessible to the elaborated
biclusters. Another reason may be that this behavior indicates a significant species-
specific change at the level of binding sites, even when the gene membership in a
module is conserved (an example of this is provided below). Our methodology for
modeling and detecting binding sites as part of the multi-species procedure can likely

be improved substantially and should prove a promising area for future work.

3.2 Overview of the (bi)cluster comparison metrics

We compared the relative performances of the four multi-species methods
(MScM, MSISA, MSKM and BMSKM), and the three single species methods
(SSCM, Coalesce and Qubic) compared in this study using 5 metric classes: 1)
bicluster coherence; 2) functional enrichment; 3) coverage; 4) overlap between
biclusters; and 5) conservation, described in the main text (Tables 2-7). We gauge
bicluster coherence with five commonly used metrics that gauge the degree of support
that is provided to each bicluster by the three data types that cMonkey integrates
(expression, sequence and association networks). For comparison of SSCM to other
biclustering algorithms, and comparison between single species biclustering and

clustering algorithms, see (Prelic, Bleuler et al. 2006; Reiss, Baliga et al. 2006). Our
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coherence metrics are: 1) expression residuals, a measure of the coherence of
expression across the two species datasets for conditions within the bicluster; 2) mean
correlation, the average pairwise correlation between members of a (bi)cluster (taking
the absolute value to allow fair comparison between methods that identify inversely
correlated patterns (QUBIC and MSISA) and those that do not; 3) network p-values, a
measure of the significance of the sub-networks within biclusters compared to the full
network; 4) motif E-values, a measure of the quality/significance of the upstream
binding site motifs detected for each bicluster; and 5) sequence p-values, an estimate
of a sequence’s match to the motifs associated with a (bi)cluster. Each of the
coherence metrics will be described in greater detail below as we discuss the relative

performance of MScM to the other methods.

3.3 Quick-glance tables for all pairings

In the tables below, we compare several metrics of bicluster conservation,
coverage, and functional enrichment. In all cases metrics are averaged over all
biclusters produced by that method for each species. Abbreviations are given for each
method, see Table 1 for a key to their abbreviations. In each column, the results for B.
subtilis are listed first, with those for B. anthracis listed in parentheses. Conservation
Score provides an estimate of the conservation identified between biclusters of the
different organisms as defined in the methods; Mean Correlation measure the
coherence of the biclusters given the expression; Mean Net p-value measures the

enrichment of network edges within biclusters; Mean Number of Genes and
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Conditions and Number of Biclusters summarize the size distributions of the
(bi)clusters identified; Coverage is the percentage of the total expression data that is
found in one or more (bi)cluster; Overlap estimates the redundancy of the (bi)clusters,
overlap is calculated as the mean of the max % overlap for each bicluster in the full set
of biclusters for a given method; Percent (bi)clusters enriched (pval < 0.01) for
GO/KEGG provides an estimate of the functional significance of the (bi)clusters
identified; and Number of Unique Enriched Terms for GO/KEGG are the number
of unique terms across all biclusters for that method, this number of enriched terms
provides an estimate of the redundancy of the biological functions enriched in one or
more biclusters across the full set of biclusters for any given method. Further

explanations of these metrics can be found within the text and supplement.
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Table 3.2: Summary of evaluation criteria for the single and multi-species methods for the B. subtilis — B. anthracis

pairingglffdlkjsajffladsfdf.

LT¢C

Conservation Mean Correlation: Net p-value: Mean Number of Mean Number of Number of
Score absolute val -log10 Genes Conditions Biclusters
EO MScM-SH 1 0.52 (0.69) 8.21 (6.45) 16.78 (16.78) 125.74 (25.86) 148 (148)
FD MScM-SH 1 0.59 (0.85) 9.10 (8.57) 21.82 (21.82) 116.97 (24.87) 150 (150)
MSISA-P 1 0.60 (0.56) 5.92 (5.63) 16.90 (16.90) 10.22 (6.85) 41 (41)
MSKM-SH 1 0.58 (0.52) 11.49 (11.62) 14.99 (14.99) 314 (51) 148 (148)
BMSKM-SH 1 0.49 (0.72) 9.89 (12.19) 15.00 (15.00) 314 (51) 148 (148)
EO MScM-EL 0.907 0.54 (0.69) 7.41 (6.35) 22.74 (23.60) 129.69 (27.07) 148 (148)
FD MScM-EL 0.852 0.61 (0.84) 7.64 (8.65) 33.75 (34.63) 119.87 (26.26) 150 (150)
MSISA-R 0.093 0.55 (0.51) 3.54 (8.87) 106.05 (335.71) 10.22 (6.93) 41 (41)
MSKM-EL 0.956 0.56 (0.58) 10.27 (6.65) 26.49 (39.44) 314 (51) 148 (148)
BMSKM-EL 0.959 0.50 (0.71) 8.58 (7.93) 26.54 (39.63) 314 (51) 148 (148)
EO SSCM 0.098 0.70 (0.91) 8.58 (7.43) 26.19 (34.11) 193.40 (38.66) 161 (210)
FD SSCM 0.124 0.56 (0.82) 10.14 (7.31) 23.06 (40.65) 200.76 (39.81) 295 (315)
EO COAL 0.107 0.58 (0.64) 5.21 (5.06) 86.65 (115.71) 20.09 (13.13) 300 (158)
FD COAL 0.101 0.59 (0.62) 5.27 (5.69) 88.16 (131.12) 20.24 (14.24) 287 (136)
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QUBIC

EO MScM-SH
FD MScM-SH
MSISA-P
MSKM-SH
BMSKM-SH
EO MScM-EL
FD MScM-EL
MSISA-R
MSKM-EL
BMSKM-EL

EO SSCM

0.054

Coverage
element-wise
18.69% (15.73%)
21.71% (18.53%)
0.41% (0.95%)
56.49% (37.83%)
56.52% (37.85%0)
25.03% (21.68%)
31.29% (29.90%)
2.36% (6.90%)
99.80% (99.52%)
100% (100%0)

39.48% (46.81%)

0.36 (0.49)

Mean Overlap
element-wise
4.76% (5.20%)
5.33% (5.93%)
22.24% (34.64%)
0% (0%)
0% (0%)
4.38% (5.06%)
4.00% (5.72%)
18.34% (46.28%)
0% (0%)
0% (0%)

9.44% (14.10%)

1.38 (5.90)

GO

Percent (bi)clusters

enriched (pval <
0.01)
33.78% (37.16%)
51.33% (51.33%)
53.66% (75.61%)
50.68% (39.19%)
50.00% (48.65%)
40.54% (60.81%)
56.00% (72.67%)
95.12% (100.00%)
63.51% (75.68%)
52.70% (81.76%b)

42.24% (66.19%)

71.59 (188.25)

Number Unique

Enriched Terms

378 (338)
575 (500)
160 (164)
617 (559)
658 (578)
449 (485)
649 (664)
287 (235)
732 (675)
743 (710)

499 (629)

25.45 (12.63)

KEGG

Percent (bi)clusters

enriched (pval < 0.01)

4.05% (6.76%)
12.67% (12.67%)
19.51% (19.51%)
14.19% (14.86%)
16.89% (15.54%)
11.49% (10.81%)
15.33% (21.33%)
24.39% (58.54%)
14.86% (12.16%)
15.54% (11.49%)

10.56% (17.62%)

150 (150)

Number
Unique
Enriched
Pathways
10 (16)
24 (28)
12 (15)
22 (25)
29 (34)
18 (18)
30 (37)
10 (20)
31 (30)
35 (25)

19 (29)
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FD SSCM 54.55% (61.24%) 7.53% (15.46%) 50.51% (61.59%) 746 (712) 11.53% (9.52%) 32 (31)
EO COAL 40.21% (66.40%)  1.94% (2.12%)  63.67% (76.58%) 744 (659) 17.67% (9.49%) 32 (24)
FD COAL 39.39% (66.63%) 2.06% (2.16%)  64.81% (80.88%) 776 (686) 16.03% (14.71%) 24 (24)
QUBIC 2.43% (12.95%)  38.34% (26.49%)  43.33% (88.67%) 227 (331) 3.33% (14.67%) 5 (13)

Table 3.3: Summary of evaluation criteria for the single and multi-species methods for the B. subtilis — L. monocytogenes pairing.

Conservation Mean Correlation: Net p-value: Mean Number of  Mean Number of Number of
Score absolute val -log10 Genes Conditions Biclusters
EO MScM-SH 1 0.52 (0.64) 15.18 (8.20) 14.51 (14.51) 127.45 (27.31) 150 (150)
FD MScM-SH 1 0.59 (0.80) 10.73 (8.79) 16.09 (16.09) 121.36 (25.96) 147 (147)
MSISA-P 1 0.60 (0.47) 6.82 (0.00) 5.88 (5.88) 10.85 (4.97) 33 (33)
MSKM-SH 1 0.59 (0.51) 12.14 (12.66) 9.83 (9.83) 314 (56) 145 (145)
BMSKM-SH 1 0.52 (0.63) 11.96 (12.39) 9.78 (9.78) 314 (56) 146 (146)
EO MScM-EL 0.951 0.54 (0.64) 13.59 (8.49) 20.05 (18.92) 132.92 (30.29) 150 (150)
FD MScM-EL 0.884 0.61 (0.81) 9.13 (7.41) 26.44 (25.73) 123.17 (28.84) 147 (147)
MSISA-R 0.060 0.55 (0.50) 3.15 (3.12) 106.39 (113.05) 10.37 (6.42) 38 (38)
MSKM-EL 0.963 0.56 (0.55) 7.52 (8.37) 26.85 (18.66) 314 (56) 145 (145)
BMSKM-EL 0.949 0.53 (0.64) 7.55 (9.43) 26.90 (19.14) 314 (56) 146 (146)
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EO SSCM
FD SSCM
EO COAL
FD COAL

QUBIC

EO MScM-SH
FD MScM-SH
MSISA-P
MSKM-SH
BMSKM-SH
EO MScM-EL

FD MScM-EL

0.096
0.147
0.088
0.095

0.048

Coverage
element-wise
15.65% (26.16%)
15.85% (26.08%)
0.14% (0.42%)
36.28% (50.98%)
36.35% (51.09%)
21.98% (32.52%)

25.95% (40.29%)

0.70 (0.86) 8.58 (4.98) 26.19 (30.95) 193.40 (40.99)
0.56 (0.71) 10.14 (6.70) 23.06 (19.79) 200.76 (42.32)
0.58 (0.81) 5.21 (5.60) 86.65 (78.81) 20.09 (12.04)
0.59 (0.80) 5.27 (5.46) 88.16 (84.15) 20.24 (12.73)
0.36 (0.45) 1.38 (5.26) 71.59 (182.92) 25.45 (19.91)
GO KEGG

Mean Overlap Percent (bi)clusters  Number Unique  Percent (bi)clusters

element-wise enriched (pval <0.01) Enriched Terms enriched (pval < 0.01)

6.46% (6.17%) 22.67% (20.67%) 339 (303) 4.67% (3.33%)
595% (5.87%)  37.41% (35.37%) 427 (371) 10.20% (6.12%)
29.03% (45.95%)  48.15% (37.04%) 109 (86) 18.18% (21.21%)
0% (0%) 37.93% (34.48%) 500 (398) 10.34% (8.97%)
0% (0%) 30.82% (31.51%) 479 (411) 11.64% (11.64%)
5.36% (6.47%) 37.33% (30.67%) 449 (386) 8.67% (8.00%)
465% (6.12%)  56.46% (53.74%) 542 (468) 16.33% (10.20%)

161 (83)
295 (300)
300 (81)
287 (78)

150 (150)

Number
Unique
Enriched
Pathways
11 (13)
19 (19)
8 (9)
24 (27)
18 (24)
16 (15)

23 (19)
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MSISA-R
MSKM-EL
BMSKM-EL
EO SSCM
FD SSCM
EO COAL
FD COAL

QUBIC

2.27% (5.44%)
99.11% (96.78%)
100% (100%)
39.48% (37.34%)
54.55% (61.27%)
40.21% (41.73%)
39.39% (43.07%)

2.43% (9.14%)

17.80% (57.90%)
0.00% (0.00%)
0.00% (0.00%)
9.44% (15.76%)
7.53% (13.19%)
1.94% (8.65%)
2.06% (9.69%)

38.34% (62.22%)

97.37% (92.11%)
59.31% (44.14%)
51.37% (46.58%)
42.24% (55.42%)
50.51% (36.91%)
63.67% (53.09%)
64.81% (56.41%)

43.33% (100.00%)

285 (179)
640 (476)
669 (480)
499 (298)
746 (451)
744 (319)
776 (294)

227 (175)

31.58% (57.89%)
15.17% (11.03%)
12.33% (11.64%)
10.56% (19.28%)
11.53% (5.67%)
17.67% (11.11%)
16.03% (11.54%)

3.33% (62.00%)

13 (14)
28 (20)
25 (24)
19 (15)
32 (17)
32 (12)
24 (11)

54

Table 3.4: Summary of evaluation criteria for the single and multi-species methods for the B. anthracis — L. monocytogenes pairing. Note,

results for MSISA and BMSKM are not reported as these methods were not performed for this pairing.

EO MScM-SH

FD MScM-SH

MSKM-SH

EO MScM-EL

Conservation Mean Correlation Net p-value Number of
Score (absolute value) (-log10) Number of Genes Number of Conditions Biclusters

1 0.63 (0.63) 5.90 (5.92) 15.78 (15.78) 25.60 (27.51) 141 (141)

1 0.82 (0.77) 8.82 (6.28) 16.81 (16.81) 24.82 (26.05) 148 (148)

1 0.69 (0.60) 9.95 (13.62) 10.20 (10.20) 51.00 (56.00) 145 (145)
0.963 0.63 (0.63) 6.79 (6.51) 20.69 (19.79) 26.96 (30.59) 141 (141)
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FD MScM-EL 0.906 0.80 (0.78) 8.15 (5.59) 25.26 (23.90) 26.43 (28.97) 148 (148)
MSKM-EL 0.943 0.70 (0.63) 5.95 (9.19) 39.63 (19.11) 51.00 (56.00) 145 (145)
EO SSCM 0.090 0.91 (0.86) 7.43 (4.98) 34.11 (30.95) 38.66 (40.99) 210 (83)
FD SSCM 0.126 0.82 (0.71) 7.31 (6.70) 42.02 (19.79) 39.87 (42.32) 300 (300)
EO COAL 0.102 0.64 (0.81) 5.06 (5.60) 115.71 (78.81) 13.13 (12.04) 158 (81)
FD COAL 0.101 0.62 (0.80) 5.69 (5.46) 131.12 (84.15) 14.24 (12.73) 136 (78)
QUBIC 0.045 0.49 (0.45) 5.90 (5.26) 188.25 (182.92) 12.63 (19.91) 150 (150)
GO KEGG
Coverage Overlap Percent Significant Number of Percent Significant Num. Unique

(element-wise (element-wise) (bi)clusters Significant Terms (bi)clusters Pathways
EOMSCM-SH  12.99% (26.51%)  6.03% (5.51%) 20.57% (21.28%) 281 (286) 7.09% (6.38%) 10 (11)
FDMSCM-SH  13.97% (27.33%)  6.71% (5.87%) 40.54% (43.24%) 432 (423) 10.14% (10.81%) 18 (17)
MSKM-SH 25.22% (52.92%)  0.00% (0.00%) 38.62% (37.24%) 454 (443) 9.66% (9.66%) 20 (21)
EO MSCcM-EL  16.89% (32.56%)  5.60% (6.10%) 52.48% (33.33%) 466 (359) 9.22% (7.09%) 21 (13)
FD MScM-EL  20.80% (38.82%)  5.99% (5.61%) 79.73% (56.76%0) 590 (479) 16.22% (14.86%) 30 (23)
MSKM-EL 97.97% (99.14%)  0.00% (0.00%) 79.31% (53.79%) 742 (525) 11.72% (11.03%) 24 (24)
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EO SSCM
FD SSCM
EO COAL
FD COAL

QUBIC

EO MScM-SH
FD MScM-SH
MSISA-P
MSKM-SH
BMSKM-SH
EO MScM-EL
FD MScM-EL

MSISA-R

46.81% (37.34%) 14.10% (15.76%) 66.19% (55.42%) 629 (298) 17.62% (19.28%) 29 (15)
60.29% (61.27%) 15.72% (13.19%)  62.33% (36.91%) 707 (451) 10.00% (5.67%) 32 (17)
66.40% (41.73%) 2.12% (8.65%) 76.58% (53.09%) 659 (319) 9.49% (11.11%) 24 (12)
66.63% (43.07%)  2.16% (9.69%) 80.88% (56.41%) 686 (294) 14.71% (11.54%) 24 (11)
12.95% (9.14%)  26.49% (62.22%)  88.67% (100.00%) 331 (175) 14.67% (62.00%) 13 (4)
Table 3.5: Summary of evaluation criteria for the single and multi-species methods for the E. coli — S. typhimurium pairing.
Conservation Mean Correlation: Mean Net p-value: Mean Number of  Mean Number of Number of
Score absolute val -log10 Genes Conditions Biclusters
1 0.52 (0.45) 7.51 (3.56) 20.95 (20.95) 230.65 (58.93) 150 (150)
1 0.68 (0.55) 16.40 (13.65) 26.28 (26.28) 227.58 (56.08) 149 (149)
1 0.56 (0.60) 3.78 (8.43) 7.78 (7.78) 25.72 (11.88) 60 (60)
1 0.59 (0.29) 9.64 (5.65) 19.07 (19.07) 507.00 (138.00) 148 (148)
1 0.54 (0.37) 11.77 (4.40) 18.85 (18.85) 507.00 (138.00) 150 (150)
0.894 0.54 (0.47) 4.71 (3.35) 29.13 (27.72) 231.82 (62.19) 150 (150)
0.764 0.66 (0.50) 19.92 (16.81) 39.65 (36.64) 227.23 (56.15) 149 (149)
0.022 0.52 (0.46) 6.13 (3.97) 38.85 (189.47) 25.72 (13.50) 60 (60)



vec

MSKM-EL
BMSKM-EL
EO SSCM
FD SSCM
EO COAL
FD COAL

QUBIC

EO MScM-SH
FD MScM-SH
MSISA-P
MSKM-SH
BMSKM-SH
EO MScM-EL

FD MScM-EL

0.994 0.57 (0.31) 8.84 (4.98) 28.81 (25.30) 507.00 (138.00) 148 (148)

0.995 0.54 (0.38) 9.61 (3.87) 28.43 (24.97) 507.00 (138.00) 150 (150)

0.106 0.76 (0.66) 6.73 (3.58) 26.31 (27.54) 346.84 (91.96) 204 (155)

0.1 0.59 (0.58) 19.50 (5.00) 19.40 (29.97) 354.48 (94.13) 425 (157)

0.097 0.64 (0.57) 6.28 (3.18) 70.53 (100.58) 39.71 (14.89) 239 (159)

0.095 0.63 (0.57) 6.18 (3.16) 70.43 (100.67) 38.96 (14.88) 247 (159)

0.038 0.91 (0.86) 27.73 (6.33) 6.67 (6.88) 27.45 (5.41) 139 (113)

GO KEGG
Coverage Mean Overlap Percent (bi)clusters Num. of Unique  Percent (bi)clusters  Num. Unique

element-wise element-wise enriched (pval <0.01) Enriched Terms enriched (pval < 0.01) Pathways
24.63% (25.89%) 4.31% (4.50%) 33.33% (36.67%) 479 (453) 9.33% (10.67%) 19 (18)
25.88% (26.83%)  6.42% (6.60%) 65.10% (67.11%) 806 (656) 23.49% (21.48%) 33 (38)
0.42% (0.64%) 9.57% (25.72%) 45.00% (33.33%) 228 (175) 23.33% (20.00%) 17 (12)
66.18% (75.35%) 0.00% (0.00%) 62.84% (61.49%) 918 (742) 15.54% (18.24%) 33 (39)
66.30% (75.49%) 0.00% (0.00%0) 58.00% (54.67%0) 885 (739) 12.00% (12.00%6) 32 (32)
31.13% (32.29%) 4.38% (4.10%) 46.67% (35.33%) 617 (424) 11.33% (10.00%) 25 (19)
33.88% (33.27%) 5.79% (5.08%0) 89.93% (81.21%) 999 (720) 48.32% (40.94%) 58 (53)



Gec

MSISA-R 2.10% (2.69%)
MSKM-EL 100.00% (100.00%)
BMSKM-EL  100.00% (100.00%)
EO SSCM 45.92% (40.74%)
FD SSCM 69.12% (38.08%)
EO COAL 25.18% (50.91%)
FD COAL 25.79% (50.90%)
QUBIC 0.53% (0.51%)

6.00% (90.99%)
0.00% (0.00%)
0.00% (0.00%)
13.18% (10.90%)
10.53% (14.14%)
2.75% (1.87%)
2.70% (1.87%)

24.35% (8.43%)

90.00% (18.33%)
69.59% (58.78%)
71.33% (51.33%)
59.80% (29.03%)
64.24% (28.66%)
77.41% (32.08%)
79.76% (33.33%)

76.26% (14.16%)

570 (63)
1037 (721)
1054 (728)
926 (355)
1221 (316)
986 (388)
984 (391)

437 (84)

31.67% (5.00%)
16.22% (18.24%)
13.33% (12.00%)

17.16% (5.16%)
12.71% (5.73%)

33.47% (3.77%)
35.22% (5.03%)

38.85% (3.54%)

37(2)
40 (37)
32 (32)
44 (12)
47 (9)
49 (14)
48 (11)

21 (2)

Table 3.6: Summary of evaluation criteria for the single and multi-species methods for the E. coli — V. cholerae pairing. Note, results for

BMSKM are not reported as this method was not performed on this pairing.

Conservation

Score
EO MScM-SH 1
FD MScM-SH 1
MSISA-P 1
MSKM-SH 1

Mean Correlation:
absolute value
0.52 (0.41)
0.70 (0.55)
0.56 (0.69)

0.56 (0.43)

Mean Net p-value:
-log10
7.46 (5.99)
19.25 (15.14)
6.49 (13.01)

15.65 (6.75)

Mean Number of
Genes
20.97 (20.97)
18.49 (18.49)
6.70 (6.70)

12.35 (12.35)

Mean Number of
Conditions
229.32 (176.89)
226.87 (168.06)
26.27 (55.32)

507.00 (441.00)

Number of
Biclusters
150 (150)
150 (150)
37 (37)

148 (148)
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EO MScM-EL
FD MScM-EL
MSISA-R
MSKM-EL
EO SSCM

FD SSCM

EO COAL

FD COAL

QUBIC

EO MScM-SH
FD MScM-SH
MSISA-P

MSKM-SH

0.944
0.748
0.022
0.961
0.147
0.196
0.141
0.139

0.003

Coverage

element-wise

21.36% (25.17%)

18.38% (21.28%)

0.23% (0.56%)

42.87% (54.81%)

0.54 (0.42)
0.66 (0.50)
0.51 (0.48)
0.55 (0.44)
0.76 (0.68)
0.59 (0.60)
0.64 (0.59)
0.63 (0.59)

0.91 (0.92)

Mean Overlap
element-wise
5.90% (5.20%)

7.40% (6.38%)

12.25% (27.87%)

0.00% (0.00%)

7.93 (5.99)
20.03 (18.41)
6.21 (17.80)
14.62 (6.38)

6.73 (8.82)
19.50 (9.04)

6.28 (5.88)

6.18 (6.04)

27.73 (14.44)

38.67% (34.67%)

GO

Percent (bi)clusters

enriched (pval < 0.01)

72.00% (66.00%)

45.95% (45.95%)

55.41% (50.00%)

29.01 (28.54)
31.34 (27.84)
46.38 (318.38)
28.81 (22.53)
26.31 (21.86)
19.40 (24.41)
70.53 (49.69)
70.43 (50.65)

6.67 (4.52)

Num. of Unique

Enriched Terms

612 (559)
830 (671)
209 (170)

851 (719)

231.03 (191.19)
226.27 (168.87)
26.27 (38.00)
507.00 (441.00)
346.84 (289.72)
354.48 (266.31)
39.71 (28.27)
38.96 (28.49)

27.45 (25.17)

KEGG

Percent (bi)clusters
enriched (pval < 0.01)
14.00% (16.00%)
19.33% (24.67%)
32.43% (35.14%)

16.89% (15.54%)

150 (150)
150 (150)
37 (37)
148 (148)
204 (202)
425 (274)
239 (247)
247 (248)

139 (148)

Num.
Unique
Pathways
31(28)
51 (45)
23 (27)

42 (37)



Lic

EO MScM-EL
FD MScM-EL
MSISA-R
MSKM-EL
EO SSCM

FD SSCM

EO COAL

FD COAL

QUBIC

27.53% (33.98%)
26.86% (29.26%)
1.58% (3.57%)
100.00% (100.00%)
45.92% (48.68%)
69.12% (50.56%)
25.18% (20.43%)
25.79% (20.90%)

0.53% (0.68%)

5.54% (4.51%)
6.18% (5.03%)
6.02% (81.10%)
0.00% (0.00%)
13.18% (11.05%)
10.53% (11.10%)
2.75% (3.23%)
2.70% (3.16%)

24.35% (12.74%)

50.67% (47.33%)
94.67% (86.00%)
94.59% (100.00%)
69.59% (60.81%)
59.80% (55.94%)
64.24% (62.77%)
77.41% (55.87%)
79.76% (57.66%)

76.26% (30.41%)

773 (652)
1093 (831)
480 (148)
1035 (845)
926 (638)
1221 (717)
986 (531)
984 (545)

437 (132)

15.33% (17.33%)
44.00% (38.00%)
48.65% (97.30%)
18.92% (16.89%)
17.16% (20.30%)
12.71% (22.99%)
33.47% (17.81%)
35.22% (16.13%)

38.85% (9.46%)

43 (35)
69 (59)
30 (20)
43 (45)
44 (35)
47 (37)
49 (27)
48 (28)

21(7)

Table 3.7: Summary of evaluation criteria for the single and multi-species methods for the S. typhimurium — V. cholerae pairing. Note, results

for MSISA are not reported as it was not performed on this pairing.

EO MScM-SH

FD MScM-SH

MSKM-SH

Conservation Mean Correlation:  Mean Net p-value: Mean Number of Mean Number of Number of
Score absolute value -log10 Genes Conditions Biclusters

1 0.44 (0.37) 4.31 (4.57) 19.96 (19.96) 56.58 (173.34) 150 (150)

1 0.55 (0.51) 11.68 (13.37) 17.81 (17.81) 54.57 (162.05) 150 (150)

1 0.31 (0.49) 4.76 (4.90) 11.45 (11.45) 138.00 (441.00) 148 (148)
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BMSKM-SH 1 0.39 (0.43) 3.91 (4.27) 11.45 (11.45) 138.00 (441.00) 148 (148)
EO MScM-EL 0.939 0.45 (0.39) 3.45 (5.00) 27.29 (26.01) 60.67 (188.61) 150 (150)
FD MScM-EL 0.819 0.50 (0.48) 15.78 (19.96) 26.24 (26.07) 54.81 (163.84) 150 (150)
MSKM-EL 0.965 0.35 (0.47) 3.43 (5.28) 25.30 (22.53) 138.00 (441.00) 148 (148)
BMSKM-EL 0.966 0.41 (0.44) 2.68 (4.62) 25.30 (22.53) 138.00 (441.00) 148 (148)
EO SSCM 0.126 0.66 (0.68) 3.58 (8.82) 27.54 (21.86) 91.96 (289.72) 155 (202)
FD SSCM 0.1 0.58 (0.60) 5.00 (9.04) 29.97 (24.41) 94.13 (266.31) 157 (274)
EO COAL 0.104 0.57 (0.59) 3.18 (5.88) 100.58 (49.69) 14.89 (28.27) 159 (247)
FD COAL 0.104 0.57 (0.59) 3.16 (6.04) 100.67 (50.65) 14.88 (28.49) 159 (248)
QUBIC 0.023 0.86 (0.92) 6.33 (14.44) 6.88 (4.52) 5.41 (25.17) 113 (148)
GO KEGG
Coverage Mean Overlap Percent (bi)clusters  Number of Unique Percent (bi)clusters Num. Unique

element-wise element-wise enriched (pval <0.01) Enriched Terms enriched (pval <0.01) Pathways
EO MSCM-SH  21.26% (24.31%)  5.61% (4.74%) 29.33% (30.00%) 368 (368) 6.67% (6.00%) 11 (9)
FD MScM-SH  18.26% (19.75%)  6.05% (5.17%) 60.00% (60.67%) 571 (570) 16.67% (16.00%) 32 (38)
MSKM-SH 45.26% (50.82%)  0.00% (0.00%) 45.27% (43.24%) 590 (587) 11.49% (13.51%) 21 (30)
EO MScM-EL  27.65% (31.83%) 4.79% (4.31%) 32.67% (36.00%) 395 (483) 9.33% (11.33%) 12 (15)

8¢¢
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FD MScM-EL
MSKM-EL
BMSKM-EL
EO SSCM

FD SSCM

EO COAL

FD COAL

QUBIC

24.48% (26.53%)  5.03% (4.56%)

100.00% (100.00%)  0.00% (0.00%)

100.00% (100.00%)  0.00% (0.00%)
40.74% (48.68%)  10.90% (11.05%)

38.08% (50.56%) 14.14% (11.10%)

50.91% (20.43%)  1.87% (3.23%)

50.90% (20.90%)  1.87% (3.16%)
0.51% (0.68%)  8.43% (12.74%)

88.00% (93.33%)
42.57% (53.38%)
45.27% (52.03%)
29.03% (55.94%)
28.66% (62.77%)
32.08% (55.87%)
33.33% (57.66%)

14.16% (30.41%)

690 (761)
625 (719)
615 (742)
355 (638)
316 (717)
388 (531)
391 (545)

84 (132)

37.33% (40.00%)
10.81% (18.24%)
6.76% (13.51%)
5.16% (20.30%)
5.73% (22.99%)
3.77% (17.81%)
5.03% (16.13%)

3.54% (9.46%)

50 (60)
29 (34)
22 (32)
12 (35)
9(37)
14 (27)
11 (28)

2(7)



3.4 Methods

3.4.1 Explanation of the (bi)cluster coherence metrics

3.4.1.1 Residuals

Cheng and Church (Cheng and Church 2000) originally introduced residuals as
a measure of bicluster coherence. For our purposes, we use a modified version of the
residual measure used that takes into account gene-wise expression variance. Thus, if
we let xj; be the expression value for gene g in condition c, these are defined for any

bicluster containing a set of G genes over C conditions as:

1 abs (X, — X,c = X, + Xec )
. _ |G||C geG,ceC
resid (G,C) = 1
|szarc (Xg)
geG
where
1 1 1
Xoe =D Xy Xao =t D Xooy Xoe o X,
D R PI L TP
and

1
var, (xg): |EZ(XQC ~ Xy )2

ceC

As such, they can be understood to be a measure of the average deviation from the
signal present within the bicluster, normalized by the average variance of the genes in

G for the conditions in C. As a simple comparison, the residuals from the (bi)clusters
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produced by each method were pooled and compared with each other using two-sided
Wilcoxon’s non-parametric rank tests. We direct the reader to Figure 7.13-Figure 7.18
as well as Table 7.25 (FD-MScM Table 7.35 (EO-MScM) and Table 7.40 (randomized

tests) for the results of these comparisons, for each pairing of organisms.

3.4.1.2 Mean correlations

We also evaluated (bi)cluster expression coherence using the average pairwise
correlation between genes in a (bi)cluster, over the conditions in the (bi)cluster.
Because some of the methods we evaluated in this study could identify biclusters with
inversely correlated patterns of expression, we took the absolute values of these
correlations. Thus, if we let x;; be the expression value for gene g in condition c, the
mean correlations are defined for any bicluster containing a set of G genes over C
conditions as:

el 2t R0:9)

-1

mean.cor (G,C) = (T)j 3 abs cec 2 2
X,y €G;x=y Xc -X yc _ 7

\[/Cg DY)

As a simple comparison, the average pairwise correlations from the (bi)clusters

produced by each method were pooled and compared with each other using two-sided
Wilcoxon’s non-parametric rank tests. We direct the reader to Figure 7.19-Figure
7.24, as well as Table 7.27 (FD-MScM), Table 7.36 (EO-MScM) and Table 7.41

(randomized tests) for the results of these comparisons.
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3.4.1.3 Network Association p-values
Briefly, the association p-values for a bicluster are modeled using a
hypergeometric distribution, where for a given bicluster b, for genome G, the

association p-value for an individual network, N, is calculated as:

( IN| }( poss (G) - |N| J
pvalue (b, ,N) = M Ezz: (((b;k)) My,
[poss(bk )j

Where N,y is the number of edges in N shared between the genes in by; and for any

given set of vertices, X, poss(X) is the number of edges if X were completely

connected, i.e.

poss (X) = |X|(|>2<|—1)

As a simple comparison, the association p-values for all network types were pooled
together and compared using two-sided Wilcoxon’s non-parametric rank tests. We
direct the reader to Figure 7.25Figure 7.30, as well as Table 7.29 (FD-MScM) and

Table 7.37 (EO-MScM) for the results of these comparisons.

3.4.1.4 Motif E-values

Motif E-values were generated by MEME, the motif discovery tool used by
cMonkey (Bailey and Elkan 1994). MEME uses a metric, called an E-value, which
was first described by Hertz and Stormo (Hertz and Stormo 1999) with the aim to

assess the statistical significance of the information content (or relative entropy) of a
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sequence motif, defined as (Stormo 2000). Thus, for a given motif, an E-value is an
estimate of the expected number of motifs of the same length that have the same or
greater information content as the motif being considered. The E-value can be
interpreted as the score for a one-sided p-value for the null distribution of information
content for motifs of a given length. Therefore, the larger the E-value of a motif, the
less significant it is; the smaller the E-value, the more significant it is.  As a simple
comparison, the E-values from the (bi)clusters produced by each method were pooled
and compared with each other using two-sided Wilcoxon’s non-parametric rank tests.
In this case, we selected the first motif identified by MEME for the (bi)clusters (as
these are generally the most reliable). We direct the reader to Figure 7.31-Figure 7.36,
as well as Table 7.31 (FD-MScM) and Table 7.38 (EO-MScM) for the results of these

comparisons.

3.4.1.5 Sequence p-values

In addition to the motif E-values, we also compared the distributions of the
sequence p-values that were returned by MAST, the motif search utility used by
cMonkey (Bailey and Gribskov 1998). Briefly, sequence p-values are an estimate of
the significance of a sequence’s match to one or more motifs, and can be understood
to be a measure of the likelihood of a random sequence having as good or better match
or matches. For a given sequence and motif, the motif’s PSSM is used to score the
degree of the match (likelihood of a match) to a sliding window across the length of

the sequence, with the maximal match selected as sequence’s score for that motif. The
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p-value reported by MAST, then, is simply this score if working with a single motif,
and in the case of multiple motifs, it is the multiplication (or addition if using log-
likelihoods) of the individual motifs match score to the sequence. To compare each
optimization, then, we calculated the average p-value for the genes in each bi(cluster)
with respect to the bi(cluster’s) associated motifs, and compared the distributions of
these. We direct the reader to Figure 7.37-Figure 7.39, as well as Table 7.33 (FD-

MScM) and Table 7.39 (EO-MScM) for these comparisons.

3.4.2 Multi-species k-means and balanced multi-species k-means

For comparison we also re-implemented a simple multi-species k-means
method (MSKM) similar to the method used in Herschkowitz et al. to compare human
and mouse microarray data (Herschkowitz, Simin et al. 2007). In this simple method,
only the reciprocal best Blast matches are selected as orthologous pairs. These one-to-
one pairwise relationships are first used to form a concatenated expression matrix, so
that a row in this matrix corresponds to the concatenation of the expression data for 2
orthologous genes. This concatenated expression matrix is next clustered using k-
means, using the Euclidean distance metric and with k=150 (as this was the same size
used for the test of the multi-species cMonkey method) to generate what we will call
shared k-means clusters. Next, as a modification to Herschkowitz’s shared k-means
algorithm, we added a subsequent step, similar to the elaboration step of the multi-
species cMonkey algorithm. In this step, the components of the shared k-means

centroids are separated by organism (into the components that correspond to the
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organism-specific conditions of the concatenated expression dataset). For each
organism, then, the organism-specific shared k-means (sub-)centroids are used to
perform a Voronoi partitioning of that organism’s non-orthologous core expression
data. Thus, in this step, the orthologous genes that belonged to the original shared k-
means clusters remain in their original cluster.

As our comparisons indicated that MSKM is prone to allowing an organism to
dominate the analysis if its expression data has far more conditions than the other, we
also implemented a balanced version of the multi-species k-means algorithm
(BMSKM). There are a number of ways this balancing could be implemented. One
would be to use individual weights for the different conditions from the different
species. Another, even simpler implementation, which we used, is to concatenate the
smaller dataset to itself so that it has roughly an equivalent number of conditions as
the larger dataset, and use this in the MSKM analysis instead. For example, when B.
anthracis, with 51 conditions in its expression data, was paired with B. subtilis, which
has >300 conditions, a new dataset for B. anthracis was generated that contained the
original B. anthracis dataset concatenated it to itself 5 times, so that there were 6
copies of each condition. This analysis was not applied to this pairing of B. anthracis
and L. monocytogenes as their expression datasets are roughly equivalent in size. In
the case of the Gram-negative triplet, BMSKM was not performed for the pairing
involving E. coli and V. cholerae as they had nearly the same number of conditions,

but was applied to the other 2 pairings.
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3.4.3 Multi-species Iterative Signature Algorithm

We re-implemented a multi-species version of the Iterative Signature
Algorithm (ISA) described by Bergmann et al (Bergmann, Ihmels et al. 2003), using
the isa2 package for R (Bergmann, Ihmels et al. 2003; Csardi 2010), available from
CRAN. A more thorough discussion of the MSISA method can be found in the
supplement, but as a quick review of the method, MSISA contains five main steps:

1. A well-characterized organism is used as a ‘reference’ organism, with a less
characterized organism as the ‘target’ organism (note, we use the terminology
of a later paper from the same group (Ihmels, Bergmann et al. 2005) which
employs a similar strategy for multi-species comparisons).

2. Using a pre-generated set of biclusters from the reference organism, biclusters
containing genes that have putative orthologs in the target organism are
selected and used to generate “homologous’ biclusters for the target organism
that contain these putative orthologs such that there is a direct one-to-one
mapping between the biclusters for both organisms.

3. Standard, single-species ISA is performed on the target organism, using only
these homologous biclusters as seeds.

4. The intersection of the input to and results from step 3 are selected to generate
a set of 'purified’ biclusters in order to select only the conserved genes in the

reference organism.
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5. In the final step, single-species ISA is run again on each organism, but using
the purified biclusters to generate a set of 'refined’ biclusters for each
organism. As such, this step is similar to the elaboration step of MScM as it is

allows species-specific modifications to be added to the purified bicluster.

For combinatoric reasons, MSISA was only applied to the pairings involving
the respective model organism of each triplet. For example, with the gram-positive
triplet, MSISA was only applied to the pairings that involved B. subtilis, using B.
subtilis as the reference organism as it is the best studied organism of the three we
consider in this study. Hence there are no MSISA results to report for the pairing of B.
anthracis with L. monocytogenes, nor any for the S. typhimurium and V. cholerae

pairing.

3.4.4 External tools used

Coalesce was downloaded and compiled from the Sleipnir library that is
available from the published website (Huttenhower, Mutungu et al. 2009). In all
cases, Coalesce was run with the default parameters. Similarly, QUBIC was retrieved
and compiled from source code, which is available from (Li, Ma et al. 2009). QUBIC
was run with the default parameters for continuous data in the case of the Gram-
positive triplet, and for the organisms in the Gram-negative triplet, it was run, using

10 for the number of ranks (i.e. “-r 57).
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4, MULTI-PLATFORM, MULTI-SPECIES BICLUSTERING OF

HUMAN AND MOUSE HEMATOPOIETIC CELL DATA

In this chapter we present initial results from a comparative analysis of human and
mouse hematopoietic cell expression data (with a focus on immune system cells) that
was performed using an early, experimental version of a new multi-platform version of
the multi-species cMonkey algorithm. The results presented below are intended to be
a part of two larger, multi-lab collaborations, one to infer the global regulatory
network governing the T helper 17 (Th17) cell lineage; the other the global regulatory

network governing Burkitt’s lymphoma.

4.1 Introduction

Many of the same reasons that made leukemia an attractive target for Dr. Sidney
Farber’s earliest forays in the 1940s into cancer and the development of
chemotherapy also make it well-suited for systems’ biology analysis today
(Mukherjee 2010). Chief amongst these are the relative ease-of-access one has to
hematopoietic cell samples in comparison to those from other tissue types. In
addition, flow cytometry also allows one to more easily isolate specific cell sub-types
or lineages. At the broadest level, hematopoietic cell lineages are classified into
being either a myeloid or lymphoid cell lineage. The myeloid cell lineages includes
erythrocytes and other cell lineages that are primarily involved in the innate immune
response (i.e. neutrophils, monocytes, basophils, etc.); and the lymphoid cell lineages

primarily contains cell lineages involved in the adaptive immune response (T- and B-
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cells), though, it also contains natural killer (NK) cells, which are part of the innate
immune system. All these various cell lineages stem from a common class of
multipotent hematopoietic stem cells (or HSCs) that undergo a complex, non-
reversible differentiation process that is driven by a combination of external and
transcriptional signaling (for more complete reviews of this process, see (Iwasaki and
Akashi 2007; Orkin and Zon 2008; Kaushansky 2010)).

This complexity of the differentiation process is yet other reason for why the
immune system is well-suited for systems biology analysis. As this brief introduction
is not intended to be a comprehensive review of this prior work, we direct the reader
to (Gardy, Lynn et al. 2009; Germain, Meier-Schellersheim et al. 2011) for
discussions of prior systems biology analyses of the immune system. Most recently,
an extensive analysis of 38 different cell lineages from varying steps in the human
hematopoietic differentiation process was recently published (Novershtern,
Subramanian et al. 2011). This analysis was able to characterize a number of
different modules of genes that were differentially expressed by the different cell
lineages they considered. It also inferred two putative regulatory networks, with one
based solely on expression data, while the other was based on sequence data alone,
though, it did use the modules from the expression analysis for gene sets during the
analysis.

Another recent study (Painter, Davis et al. 2011) performed a more restricted

analysis that compared expression data from mouse T and B cell data to identify
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differentially expressed genes between the 2 cell lineages and also develop
differential signatures for each cell type. From a technical perspective, one of the
most interesting aspects of the data set that was analyzed for this project is that it was
a multi-platform data set that was collected using multiple platforms, including
whole-genome arrays from Agilent, Affymetrix and Nimblegen. Also integrated into
this data set was data that is publicly available from the Immunological Genome
Project, (hereafter ImmGen) (Heng and Painter 2008). Finally, while the focus of
this study was upon the B and T cell lineages, the signatures that were developed for
each were then compared to a larger compendium of expression data from other
mouse immune cell lineages that are available in the ImmGen data set.

However, neither of these studies employed a comparative approach, nor did they
effectively integrate multiple data types, except for the a posteriori manner in which
the gene sets from the expression analysis were used during the sequence-based
network inference of the first project (Novershtern, Subramanian et al. 2011).
Furthermore, in the case of the multi-platform analysis of the mouse T and B cell
lineages (Painter, Davis et al. 2011), the analysis required that the integrated data set
only contain those genes in the intersection of the 4 platforms that were included, thus
only 12000 genes were contained in the final data set. In contrast, below, we will
present preliminary results from a prototype of a multi-platform, multi-species version

of cMonkey that was used to perform a comparative analysis of human and mouse
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immune system cell data from multiple platforms without loss of data during the

integration.

4.2 Materials and Methods

4.2.1 Data sets analyzed
Below, we provide detailed descriptions of the data sets that were generated for both

human and mouse. Summary information can be found in Table 4.1.

4.2.1.1 Expression data

The primary source for the mouse immune cell expression data was the public
repository of expression data that is provided by the ImmGen project (Heng and
Painter 2008), which consists of 508 different samples from 14 different terminal
lineages and numerous intermediate lineages that were measured using the Affymetrix
Mouse Gene 1.0 ST Array. An additional 61 RNAseq conditions examining the Th17
cell lineage were generated from various time series and knock down or knock out
studies of key transcription factors during the differentiation from naive CD4+ cell to
Thl7.

The human expression data is composed of a heterogeneous collection 532
samples from nearly 20 studies that can be classified with 3 different, general
categories, including explicit hematopoietic differentiation studies (Lee, Hanspers et
al. 2004; Dybkaer, Igbal et al. 2007; Elo, Jarvenpaa et al. 2010; Filen, Ylikoski et al.

2010; Novershtern, Subramanian et al. 2011; Prots, Skapenko et al. 2011), immune
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response (Buzzeo, Yang et al. 2007; Martinez-Llordella, Puig-Pey et al. 2007; Dower,
Ellis et al. 2008; Grumann, Scharf et al. 2008; Radom-Aizik, Zaldivar et al. 2008;
Woszczek, Chen et al. 2008; Li, Sze et al. 2010; Yu, Hu et al. 2010), and disease and
other general profiling studies (Kim, Tchernyshyov et al. 2006; Piccaluga, Agostinelli
et al. 2007; Mosig, Rennert et al. 2008; Abbas, Wolslegel et al. 2009; Longo, Lugar et
al. 2009). In total, the human expression data contained 136 conditions that were
assayed using the Affymetrix Human Genome U133 Plus 2.0 Array, 185 that were
assayed with the Affymetrix Human Genome U133A Array, and 211 samples that
were assayed with the Affymetrix GeneChip HT-HG_U133A Early Access Array
(hereafter referred to as the U133+2, U133A and U133A0fA arrays, respectively).

All microarray data was downloaded from the NCBI Gene Expression Omnibus
(GEO) database (Edgar, Domrachev et al. 2002; Barrett, Troup et al. 2007) as raw
.CEL files and normalized with RMA, using the Bioconductor suite of bioinformatics
tools (Gentleman, Carey et al. 2004). We also emphasized that in all cases, with the
exception of the specialized U133A0fA array, the latest custom CDF probe mappings
that were generated by (Dai, Wang et al. 2005) were used when processing the raw
.CEL data as two recent reviews have indicated these are more accurate than the
original probe mapping provided by the manufacturer (Sandberg and Larsson 2007;
Mieczkowski, Tyburczy et al. 2010). This custom CDF also has the added advantage
of providing probe sets that have a strict one-to-one mapping between genes and probe

sets. In so doing, this avoids the need to merge probe sets which map to a single gene
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as was necessary with the specialized HT-HG_U133A Early Access Array for which
no custom CDF was available. We acknowledge that a strict one-to-one mapping is an
over-simplification which ignores potential protein isoforms, but this is a problem
common to all oligo-based arrays. Finally, we should clarify that RMA was applied to
only those samples that belong to a common platform, independent of those that were
generated with the others (i.e. all samples from the U133A arrays were normalized
together with RMA). Integration of these different platform-specific data sets is
explained below.

In order to generate the RNAseq data, all RNAseq samples were sequenced using
[llumina sequencer (Illumina Hiseq-2000), 36bp single ends with fragment size of
225bp for library preparation. All reads were aligned to the mouse genome, version
v.mm9, using Bowtie (Langmead, Trapnell et al. 2009). RNAseq reads per gene were
quantified using Cufflinks (Roberts, Trapnell et al. 2011) to determine the expression
levels, measured by reads per kilobase per million (RPKM). All genes with a median
expression over the RNAseq samples that were less than 5 were excluded from
consideration, and the final set was log-transformed to allow it to be compared with
the data from the microarray platforms.

For both organisms, samples from the various platforms that were included in this
study were integrated into a single “meta-expression” matrix using the following
simple, two-step strategy. In the first step, each platform-specific data set was row

(gene) normalized to have a mean of 0 with a standard deviation of 1 in order to
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prevent any platform-specific biases from impacting the other platform-specific data
sets. In the second, each platform-specific data set was merged into a “meta-matrix”
whose dimensions were determined by the union of both the genes and conditions. In
the cases where a particular platform-specific data set lacked a given gene, NA’s (null
values in R) were inserted into the matrix. As the genomic coverage between some of
the platforms was considerable this had the effect of generating a data matrix with
large blocks of NA’s. For example, in the human data, the U133+2 array has a
coverage of greater than 18,000 genes, while the U133A has a coverage of just over
12,000 genes, and the U133A0fA array has a coverage of over 13,000 genes.

While the intersection of these gene sets is considerable, with nearly 11,000
genes, we wanted to avoid the loss of information by filtering the matrix to consider
only these genes. There are additional considerations within a comparative
environment as well as we will elaborate upon further when describing our new multi-
platform version of multi-species cMonkey. In addition to not limiting the analysis to
only those genes in the intersection, we also did not attempt to impute values for these
large blocks of NA’s as the size of these blocks was too large for any such effort to be
meaningful. Nor did we try to inject random values as we did not want to risk

allowing these to skew the analysis one way or the other.

4.2.1.2 Association data
Networks for both organisms were retrieved from multiple databases including

Bind (Bader, Donaldson et al. 2001), BioGRID (Stark, Breitkreutz et al. 2006;
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Breitkreutz, Stark et al. 2008; Stark, Breitkreutz et al. 2011), DIP (Xenarios, Rice et al.
2000; Xenarios, Fernandez et al. 2001; Xenarios, Salwinski et al. 2002; Salwinski,
Miller et al. 2004), HPRD , InnateDB (Lynn, Chan et al. 2010), IntAct (Hermjakob,
Montecchi-Palazzi et al. 2004; Kerrien, Alam-Faruque et al. 2007; Aranda, Achuthan
et al. 2010) , InteroPORC (Michaut, Kerrien et al. 2008), MatrixDB (Chautard, Ballut
et al. 2009), MINT (Zanzoni, Montecchi-Palazzi et al. 2002; Chatr-aryamontri, Ceol et
al. 2007; Ceol, Chatr Aryamontri et al. 2010), Reactome (Matthews, Gopinath et al.
2009; Croft, O'Kelly et al. 2011), STRING (Jensen, Kuhn et al. 2009), iReflndex
(Razick, Magklaras et al. 2008), and the Pathway Commons (Cerami, Gross et al.
2011). We note that several of these are “meta pathway databases” as they include
associations from other databases, many of which we downloaded associations from
directly. The other source databases that contributed edges via these meta databases
which we have not already been listed include CORUM (Ruepp, Brauner et al. 2008),
MPact (Guldener, Munsterkotter et al. 2006), MPPI (Pagel, Kovac et al. 2005) and
OPHID (Brown and Jurisica 2005).

As cMonkey does not use weighted graphs with its association data, all
associations from these various databases were classified as being either high or low
confidence associations, and split into separate networks that were assigned weights in
the scoring function that reflected these respective confidences. When making these
high or low confidence assignments, the method by which a given interaction was

determined was the primary determinant, with electronically inferred associations (i.e.
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interologs, text mining) compromising the entirety of the low-confidence associations.
To avoid double-counting when calculating the network score, all duplicate edges

were removed so that no two genes could share more than one association.

Table 4.1: Size of the data sets used for the human and mouse immune system analysis, by

organism.
Number of: Human Mouse
U133+2 U133A U133 AofA ImmGen RNA-seq

genes 18107 12060 13276 21124 8966
intersection 10069 8514
total genes 21096 21634
conditions 136 185 211 508 61
total conditions 532 569

association edges:

high-confidence: 261641 9521
low-confidence: 838743 373604
Ortholog pairs: 15737

4.2.1.3 Putative Orthology Predictions
All putative orthology predictions between human and mouse were retrieved from
the Mouse Genome Database (MGD) (Blake, Bult et al. 2011), which provides a

comprehensive list of nearly 17850 orthology predictions that are produced via both
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manual curation and electronic inference from the HomoloGene database provided by
the NCBI (Wheeler, Barrett et al. 2006). While HomoloGene allows for the
identification of paralogous relationships, this list only contains one-to-one matches
between the two genomes. As some of this list of nearly 17850 orthology
relationships that MGD provides includes genes from outside of our data sets, this

yielded a total of 15737 orthologous pairs for our analysis.

4.2.2 Multi-platform, multi-species cMonkey

4.2.2.1 Motivation

As described in section 4.2.1.1, both the mouse and human data have a similar
"blocky" nature of the matrices, meaning that both contain large blocks of unobserved
values that are the result of the merging of data sets with highly different gene
coverage. As mentioned above, a simple filtering strategy where only those genes in
the intersection of the different platforms included in this study are considered would
not be appropriate in a comparative context, as we illustrate in Figure 4.1. In this
simplified example, there are two organisms, each with a multi-platform “meta-
expression” matrix similar to the one being analyzed, where one of the platforms has
considerably greater genomic coverage than the other. In this figure, then, it is easy to
see that in each organism’s respective expression data, there are 3 possible classes of
genes — 1) those in the intersection, 2) those that are only represented by the platform
with larger genomic coverage, and a 3) far smaller set of genes that are only

represented by the platform with the smaller coverage. The addition of other
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platforms to a matrix only further complicates the number of sets of genes that are

possible.

Smaller | Larger Platform Orthologous Larger Platform | Smaller
Platform . Platform
Pairs
~N | AT
APAAMNAA NN N A~ A AAAAN
L~ |~
/ \

Figure 4.1: Demonstration of the 4 major classes of orthologous pairs that are possible in a multi-
platform comparative analysis. The first class, represented by the black orthologous pairs,
corresponds to those genes that are represented by all platforms in the matrix. Similarly, the green
orthologs correspond to those genes that are only represented in the platforms with larger genomic
coverage. Finally, the blue and red orthologs correspond to the other 2 combinations of these that are
possible. Table 4.2 displays the number of orthologs which correspond to these sets in the human and

mouse immune system expression data.

Continuing the example, with 3 sets of genes in each organism’s expression matrix
possible, this translates into a total of 9 possible classes of orthologous pairs that are
possible — with the majority of these being contained in the 4 classes that correspond
to the largest sets of genes in the respective expression matrices. Thus, a simple

strategy that includes only those genes that are in the intersection of the different
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platforms will likely translate into a considerable loss of biological information. In the
case of the human and mouse immune system data sets, this filtering strategy results in
fewer than 5000 ortholog pairs that are available — out of the nearly 16000 that are
possible (Table 4.2). Given the significant loss of information that is possible when
one only includes those genes which are represented on all platforms, we elected to

merge the data using the strategy described in section 4.2.1.1.

Table 4.2: Number of orthologs that corresponds to the four major classes of genes in the human

and mouse immune system expression data.

Human gene class  number of orthologs  Mouse gene class

Intersection: 4997 Intersection:
ImmGen only: 4110 Intersection:
ImmGen only: 2890 U133+2 only:

Intersection: 2629 U133+2 only:

Others: 1111 Others:

We were surprised to discover, however, that such a simple change in the
expression matrix (the allowance of large “blocks” of unobserved values) in the data
posed a number of challenges to MScM, which — like many other methods — was
designed with the assumption of a single, common platform for all samples. Figure
4.2 provides an example of one such challenge which can occur in the single- and
multi-species analyses of a multi-platform expression matrix. In this example, we

display a snapshot after several iterations of the optimization of a bicluster that
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contains conditions in both the low- and high-coverage platforms that at one point
contained 8 genes, where 4 are represented in both platforms, while 4 are not. At this
iteration, we see that 3 of the 4 genes that are represented in both platforms have been
removed from the bicluster as a result of the Monte Carlo optimization, leaving only a
single gene represented in those conditions from the low-coverage platform. Having
so few genes in these conditions causes a number of both technical and statistical

issues, and is best avoided.

Figure 4.2: Example of the error states that are possible with a Monte Carlo search strategy with

a multi-platform data set.
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To address this issue, there are several possible approaches. The simplest of these
is to prune out during the optimization any conditions from the bicluster that have an
insufficient number of genes that are represented in them. Experiments with this
approach indicated that this often causes a sudden and dramatic reduction in the
number of conditions that are included in a bicluster, resulting in a considerable loss of
coverage. A second option would be to use a different scoring function for the
expression data. While this still remains a valid option, it is unclear whether this will
introduce other issues. Instead, we opted to update the search strategy that MScM

employs to avoid these issues entirely, which we present below.

4.2.2.2 Algorithm overview

To work in this space, we first define the concept of a set of “orthologous basis
pairs,” which is simply one of the classes of orthologous pairs described above — for
example, the class of orthologous pairs which correspond to those genes that are
represented in all platforms of both organisms’ expression matrices. Using these basis
pairs, we split the shared step of the multi-species method into 2 sub-steps. During
the first step, we limit the analysis to a single set of basis pairs such that we only seed
and optimize a bicluster using the orthologous pairs in that basis pair set. This allows
us to avoid those cases where after several steps of the iteration, there are conditions
with fewer than 2 genes. We call this part of the optimization the "basis-pair step™ -

which is analogous to the shared step of the multi-species optimization.
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The goal of the basis-pair step is to establish a bicluster with sufficient enough
data support that it can be used to anchor a search within the complete set of
orthologous pairs. We call this second optimization the "augment" step - which is
analogous to the elaboration step of the multi-species method. To ensure that we
avoid those cases where the bicluster conditions lack a sufficient number of bicluster
genes that have valid values for them, we require that a minimum of 3 genes and 10
conditions from the original basis-pair step bicluster remain in the bicluster as it is

being augmented.

4.3 Results

Results are currently preliminary as the multi-platform extension of cMonkey is
still experimental. Currently we have 500 shared biclusters generated, with 250
generated from the two basis pair sets that correspond to genes in the mouse RNAseq
data (Table 4.2). Note there are no elaborated biclusters at this point.

Evaluation is ongoing, however encouraging as the new multi-platform, multi-
species cMonkey method (MPMScM hereafter) has identified several biclusters of
interest. For example, one of these, bicluster 31, includes a number of genes involved
in hematopoietic and lymphoid organ development as well as B cell receptor signaling
(Figure 7.85 and Table 7.42). It’s interesting as well because MPMScM also
identified a major histocompatibility complex, class 1l (MHC, class 1) module,
bicluster 87 (Figure 7.86 and Table 7.43), which contains genes that are all also part of

bicluster just mentioned (bicluster 31), and which we suspect is a sub-process of that
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larger module. Additional modules of interest that MPMScM identified include an
innate immune response module that contains genes involved in Gram-positive
bacterial response, phagocytosis, and inflammatory response several of which are
Toll-like receptor genes (bicluster 2, see Figure 7.87 and Table 7.44). Last, it also
identified an adaptive immune response module that contains genes involved in T-cell
differentiation and T-cell immune response, bicluster 480 (Figure 7.88 and Table

7.45).

4.4 Future Directions

As future steps that may be explored when working in this space, there are several
ideas that may help with the analysis in this space. The first would make a small, but
possibly significant modification during the augment step where we further pre-seed
the basis pair biclusters with those orthologous pairs outside of the basis pair set that
correlate best with the mean expression of the bicluster. In the second, we would
consider each component of the meta-expression matrix separately in a scheme where
each component would have its’ own expression-component-specific weight within
the joint log-likelihood. In so doing, this would allow researchers to specify weights
for each platform that reflected their confidence in its accuracy, as is currently allowed

by cMonkey with the different sources of association data.
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5.1 Abstract

The increasing abundance of large-scale, high-throughput datasets for many closely
related organisms provides opportunities for comparative analysis via the
simultaneous (bi)clustering of datasets from multiple species. These analyses require a
reformulation of how to organize multi-species datasets and visualize comparative
genomics data analyses results. Recently, we developed a method, multi-species
cMonkey, which integrates heterogeneous high-throughput datatypes from multiple
species to identify conserved regulatory modules (biclusters). Here we present an

integrated data visualization system, built upon the Gaggle, enabling exploration of
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our method’s results (available at http://meatwad.bio.nyu.edu/cmmr.html). The system
can also be used to explore other comparative genomics datasets and outputs from
other data analysis procedures (e.g. results from other multiple-species clustering
programs or from independent clustering of different single-species datasets). We
provide an example use of our system for two bacteria, Escherichia coli and
Salmonella typhimurium. We illustrate the use of our system by exploring conserved
biclusters involved in nitrogen metabolism, uncovering a putative function for yjjl, a

currently uncharacterized gene that we predict to be involved in nitrogen assimilation.

5.2 Author Summary

Advancing high-throughput experimental technologies are providing access to
genome-wide measurements of multiple information levels (e.g. mRNA, protein,
interactions, functional assays, etc.) for multiple related species. We present a
biclustering algorithm and an associated visualization system, for generating and
exploring regulatory modules derived from analysis of integrated multi-species
genomics datasets. We use multi-species-cMonkey, an algorithm of our own
construction that can integrate diverse systems-biology datatypes from multiple
species to form biclusters (condition-dependent regulatory modules) that are both
conserved across the multiple species analyzed and biclusters that are specific to
subsets of the processed species. Our resource (an integrated web and java based
system) allows biologists to explore both conserved and species-specific biclusters in

the context of the data, associated networks for both species, and existing annotations
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for both species. Our focus in this work is on the use of the integrated system with
examples drawn from exploring modules associated with nitrogen metabolism in two,
gram negative bacteria (E. coli and S. typhimurium) for which sufficient genomics

data is available.

5.3 Introduction

It is now routine to have genomics data for multiple organisms of interest. For
example, data may be available for both an organism of primary relevance to a
specific study (perhaps a recently sequenced pathogen), as well as data for related
model species (that offer advantages such as having better explored genetics, larger
and more complete genomics datasets or ease of use in the lab). Tools and algorithms
for comparative analysis of multi-species datasets are therefore in high demand.
Comparative analysis of gene sequences is a mainstay in computational biology
(Altschul, Madden et al. 1997), but comparative methods for genomics data analysis
are relatively new, primarily due to the fact that only recently have researchers had
access to large-scale datasets from multiple species (Stuart, Segal et al. 2003; Ihmels,
Bergmann et al. 2005; Tanay, Regev et al. 2005; Tirosh, Bilu et al. 2007; Lu, Huggins
et al. 2009; Chikina and Troyanskaya 2011). Several recent studies have shown that
comparative genomics analysis improves our ability to learn regulatory interactions,
co-regulated groups, and to delineate the conserved components of fundamental
pathways and modules (Bergmann, Ihmels et al. 2004; Tanay, Sharan et al. 2004; Berg

and Lassig 2006; Reiss, Baliga et al. 2006; Waltman, Kacmarczyk et al. 2010; Chikina
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and Troyanskaya 2011). In particular, multiple-species clustering and biclustering can
be used to detect conserved co-regulated gene groups and serve as a foundation to
begin characterizing key differences in the regulatory programs of related species. In
this work we present a data visualization system that enables the visualization and
exploration of integrative multi-species biclustering analysis. We aim to both present
our system and provide a general example of how multi-species datasets can be
integrated by coupling new multiple-species biclustering algorithms with a system of
visualization tools coordinated across organisms by predicted orthology relationships.
Our interface is built on a loosely coupled system architecture that connects multiple
tools and databases using the Gaggle (Shannon, Reiss et al. 2006), Sungear (Poultney,
Gutierrez et al. 2007), and Cytoscape (Cline, Smoot et al. 2007). This interface
provides coordinated access to multiple-species clusters, biclusters and networks
derived from comparative genomics analysis tools such as multi-species cMonkey

(MScM) (Waltman, Kacmarczyk et al. 2010).

5.3.1 The challenges of visualizing multiple species data

The analysis of multiple species datasets presents several challenges not encountered
when analyzing single species datasets. In addition to the display and exploration of
multiple datatypes (networks, cis-regulatory sequences and genomic context,
transcriptome and proteome data) we add the challenge of tracking connections

between orthologous groups of genes. In this work we focus on exploring sets of
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multi-species biclusters generated with MScM. A typical multi-species biclustering
(set of biclusters) will consist of:
1. The source data used to:
a. Compute the biclustering (for each species, its protein association
networks, upstream sequences and expression data)
b. Perform post-analytic evaluations, such as enrichment of ontology
terms (i.e. GO functions and KEGG pathways)
2. A set of conserved biclusters, i.e. composed of pairs of orthologous genes
spanning both species
3. Species-specific elaborations of the conserved biclusters — genes added to
conserved biclusters based on evidence in a single species (including genes
lacking putative orthologs in the other species) following the initial generation
of the conserved core of the bicluster
4. Species-specific biclusters (biclusters composed entirely of genes lacking

detectable orthology relationships between the two species)

Our system to navigate this analysis enables exploration of both the conserved
biclusters (in the context of both species) and the elaborated portion of biclusters (in
the context of each individual species dataset) and illustrates general strategies for

building loosely coupled systems for exploring other multi-species genomics analysis.
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5.3.2 Data integration across multiple species

High-throughput data exists for many microbial organisms on multiple
information levels (i.e. genome sequences, transcriptomics, proteomics, metabolomics,
networks of pathways and interactions). Collecting and integrating diverse and
heterogeneous datasets from disparate databases is not trivial and poses a number of
barriers to automating the process. One of the most significant barriers to automation
of data-import is the inconsistency between the naming schemes for loci, mRNA and
protein products that are employed by the major public repositories such as NCBI,
Uniprot and EMBL. Versioning can also be an issue if a given data source is delayed
in updating their annotations. Our resource (described below) integrates diverse data
(listed in full detail below) from microarray experiments, genomic sequences, and
various functional associations, and uses a database (linked to the Gaggle) to translate
gene names (across datatypes and disparate resources) and ortholog names (across
species). We will focus our examples on two closely related y-Proteobacteria: E. coli

and S. typhimurium.

5.3.3 Multi-species Integrated Biclustering

Clustering and biclustering are typically used to identify groups of co-
expressed genes that, ideally, represent true regulatory modules and co-functional
groups such as pathways and complexes. Biclustering groups genes into condition-
specific gene clusters, and can allow genes to participate in more than one bicluster.

Many biclustering methods have been previously described, for example, SAMBA
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(Tanay, Sharan et al. 2002), QUBIC (Li, Ma et al. 2009), ISA (Ihmels, Bergmann et
al. 2004), BIMAX (Prelic, Bleuler et al. 2006), and NNN (Huttenhower, Flamholz et
al. 2007), and other algorithms (Cheng and Church 2000; Ben-Dor, Chor et al. 2003;
Kluger, Basri et al. 2003; Supper, Strauch et al. 2007; Lu, Huggins et al. 2009). Recent
integrative biclustering methods, such as MATISSE (Ulitsky and Shamir 2007), the
recent version of SAMBA (Tanay, Sharan et al. 2004), and cMonkey (Reiss, Baliga et
al. 2006; Waltman, Kacmarczyk et al. 2010) have shown that incorporating additional
datatypes (e.g. protein interactions, cis-acting transcription factor binding sites)
improves performance (with respect to the identification of co-functional putative co-
regulated modules). There are many benefits to comparing elements among species
considering that a high fraction of co-regulated modules are conserved, in whole or in
part, across species (Ihmels, Bergmann et al. 2005; Tirosh and Barkai 2007). Recent
access to multiple genomics datasets from multiple species has allowed for new
comparative analyses of genomics data, for example discovering regulatory elements
(Elemento, Slonim et al. 2007) and the MScM algorithm (Waltman, Kacmarczyk et al.
2010) used here. MScM learns coregulated modules by integrating expression data
across subsets of experimental conditions, co-occurrence of putative cis-acting
regulatory motifs in the regulatory regions of bicluster members, functional
associations and physical interactions. The output consists of condition dependent
conserved modules of orthologous gene groups as well as species-specific elaborations

of these conserved groups. The method is a true biclustering method: a typical
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conserved bicluster is typically supported by a subset of the input data for each

species.

5.3.4 Component tools of our system

To enable exploration of a multi-species integrative biclustering result, we have
constructed a system using the Gaggle and MScM (Figure 5.1). The Gaggle is a Java
program that integrates tools by broadcasting gene, network and data selections
between tools (for example nodes selected in Cytoscape are sent to the Gaggle, which
then sends the selections to all tools which then automatically mirror those selections).
The Gaggle has been shown to enable efficient creation of multi-tool systems to
explore complex datasets and associated analysis (Bonneau, Facciotti et al. 2007).
Also, the loosely coupled visualization systems the Gaggle enables have several
advantages including: systems-performance advantages (one tool crashing does not
disable the whole system), development advantages (existing tools need not be
reengineered and can be incorporated with small development costs), and maintenance
advantages (due to the modularity of the resulting systems). We have extended the
gaggle tools (and built a corresponding database) to give the user the ability to mirror
gene selections in tools populated with results for one organism with the
corresponding selection of the correct orthologs in the network, data, and bicluster
views of the other organism. Several component tools and databases are compatible
(or have been made compatible as part of this work) with the Gaggle, including:

Sungear, Cytoscape, Cytoscape plugins such as BioNetBuilder (Avila-Campillo, Drew
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et al. 2007), several online public databases containing annotations and genomic
sequence via the FireGoose (Bare, Shannon et al. 2007), a Global gene-synonym
Translator, and several tools designed to enable exploration of the genomics data
available for each species (such as the data matrix viewer (DMV) and annotations
viewer). Selections in any tool are sent to the Gaggle which broadcasts both those
gene selections to all tools for the organism in which the original selection was made
and the orthologs in the other species of the selected genes. We show that this simple
strategy enables effective exploration of this multi-datatype, multi-species integrative

analysis.

5.4 Materials and Methods

We present an overview of the MScM algorithm, and the system we have
constructed for visualizing the resulting multiple-species biclusters. Further
methodological detail, additional validation of our method, and a full description of
the dataset used to demonstrate our resource can be found in the supplemental section

(section 5.8).

5.4.1 Data sets acquisition, integration and import to our system
Microarray data was acquired from several large, public repositories such as
the Gene Expression Omnibus (GEO) (Edgar, Domrachev et al. 2002; Barrett and

Edgar 2006), ArrayExpress (Brazma, Parkinson et al. 2003; Parkinson, Kapushesky et
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al. 2009), Stanford Microarray Database (SMD) (Sherlock, Hernandez-Boussard et al.
2001; Hubble, Demeter et al. 2009), Many Microbes Microarray database (M3D)
(Faith, Driscoll et al. 2008), and KEGG Expression (Kanehisa, Goto et al. 2002), with
newer datasets manually obtained from individual publications. Genomic sequences
corresponding to the upstream promoter regions of each predicted gene in each
genome were retrieved from Regulatory Sequence Analysis Tools (RSAT) (van
Helden 2003; Thomas-Chollier, Sand et al. 2008). Lastly, functional associations, in
the form interaction networks, were automatically acquired from multiple sources
including Prolinks (Bowers, Pellegrini et al. 2004), Predictome (Mellor, Yanai et al.
2002), STRING (Snel, Lehmann et al. 2000; Jensen, Kuhn et al. 2009), and
MicrobesOnline (Dehal, Joachimiak et al. 2009). We have created a data compendium
containing all publicly available data for a number of microbial species including
several Gram negative species Escherichia coli, Salmonella typhimurium, Vibrio
cholerae, Helicobacter pylori, Desulfovibrio vulgaris; three related Gram positive
species Bacillus subtilis, Bacillus anthracis, Listeria monocytogenes, and the archeon
Halobacterium salinarum; within this compendium all name translations have been
curated to minimize error due to incorrect translation of gene synonyms. In selecting
this group of microbial species, we decided to start with the two most extensively
studied bacterial model organisms, E. coli and B. subtilis, include several closely
related species and some representatives from important clades of the microbial tree of

life. Additional species will be included in future versions of the database, as a
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sufficient amount of large-scale data becomes available for those species. A full listing
of all datasets used in this study for both species (including references to papers
describing both original collection, and several data-bases that aided the import and

curation of the datasets) are provided in the supplemental materials (section 5.8).

5.4.2 Multi-species cMonkey

The MScM algorithm consists of four main steps. Beginning with step 1,
putative orthologous relationships between genes in each species are identified using
InParanoid (Remm, Storm et al. 2001). InParanoid identifies not only single gene pair
relationships (one-to-one) but also families of homologous genes (one-to-many, many-
to-many). This allows for flexibility when considering which orthologous gene pairs
to cluster (i.e. in many-to-many groups the selection of orthologous pairs is driven by
the genomics data, see Text S1 for details). After defining the set of gene pairs (pairs
of genes spanning the two species, one pair per putative orthology relationship; genes
are often in several putative orthology relationships following step one), or conserved
core, step 2 identifies the conserved biclusters via an iterative Monte Carlo
optimization of the MScM score (a score that judges biclusters composed of multiple
orthologous gene pairs by a simultaneous scoring of expression, networks and
upstream binding site support for the bicluster in each species). To determine the
likelihood of an orthologous gene pair belonging to a bicluster, we compute a single,
multi-species score based on the combined single-species scores for each gene

supported by each organism’s individual data space (expression, common sequence
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motif, and connected subnetwork). The putative-orthology based gene coupling
between species is removed in step 3, where each detected conserved bicluster is split
into two single-species biclusters and species-specific additions are made separately
for each species using the single species cMonkey score. The conserved core of the
bicluster detected in step 2 is preserved (treated as read only) while species-specific
additions to the conserved biclusters (including both non-orthologous and orthologous
genes) are discovered via this iterative optimization. An optional step 4 (not carried
out in this study) identifies purely species-specific biclusters for each organism using
the original cMonkey algorithm applied to genes not yet in any conserved (multi-
species) bicluster.

We have made the cMonkey and MScM code available including tools for
automating many of the data acquisition and processing steps required for assembling
an integrated dataset (Waltman, Kuppusamy et al. 2010). These tools facilitate
automatic queries to online biological databases such as BioNetBuilder,
MicrobesOnline (Dehal, Joachimiak et al. 2009), Prolinks (Bowers, Pellegrini et al.
2004), STRING (Snel, Lehmann et al. 2000; Jensen, Kuhn et al. 2009) and RSAT (van
Helden 2003; Thomas-Chollier, Sand et al. 2008) (for network and upstream data). All
input and output are stored in a MySQL database to facilitate use of the integrated
dataset and MScM results by other tools. We also include example inputs for the
algorithm both as flat files and as R data objects for those wishing to use data not in

public databases (requiring manual mode). These key changes to how data is imported
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and stored in the MScM database and the core data-object for cMonkey and MScM
are critical novel changes to the code that are required for multi-species integration

and scaling of the code to much larger datasets and organisms.

5.4.3 Visualizing multi-species clustering and biclusters

We created a database containing the MScM biclustering analysis data
compendium for a number of microbial species. Our pipeline begins with several post-
processing steps to convert cMonkey output to Gaggle compatible formats.
Enrichment of functional annotations within biclusters is determined for each bicluster
and the bicluster is assigned any significant annotations (p-values < 0.05). From the
statistical components of each bicluster (e.g. residual, functional enrichment
significance values, etc) a score is computed. Specifically, the bicluster score is
computed using Stouffer’s z-score method for meta-analysis from a collection of
bicluster statistics. Data files are generated for the complete bicluster network and the
subnetwork of related biclusters before the website for a result is generated. Lists of
orthologous genes between each species are generated as part of the analysis and

loaded into the synonym/ortholog database.

5.4.4 Multi-species extension of the Gaggle
To mirror selections simultaneously in several tools that visualize different
aspects of the data, the results and the comparison between species we utilize the

Gaggle, a loosely coupled system of web applications (geese) (Shannon, Reiss et al.
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2006). The Gaggle is a software framework that integrates independent application
tools and biological data into an environment that allows the exchange of data among
tools. All of the tools employed in our resource are Java web-starts or directly
integrated into the web interface, thus removing any barrier to use based on tool
compatibility, installation or data-transfer. The Gaggle also serves to coordinate the
deployment and interoperation of these Java Web Start tools. Each individual
application, or goose, can be launched with the click of a button on the BiclusterCard.
The geese included in the resource are: a Global synonym Translator, BioNetBuilder
(Cytoscape plug-in), the FireGoose, Data Matrix Viewer, Annotations viewer,
Cytoscape (bicluster network and gene network viewers), and Sungear. All the tools
are connected through a communication hub called the Gaggle Boss, which passes
simple messages among the geese (called broadcasting), summarized in Figure 5.1.
When a broadcast is received, the goose will display the relevant information for that
data. BiclusterCards and online databases (e.g. STRING, KEGG, etc.) connect to the
tools through the FireGoose, a browser plug-in for Firefox adding the capability to
communicate with the Gaggle. Embedded in each BiclusterCard is microformat code
containing metadata (e.g. gene names, bicluster nodes, condition names) that can be
broadcasted to other geese. The Bicluster Network viewer is a Cytoscape goose that
displays a network of bicluster interactions, where nodes are biclusters, and edges are
any shared properties (e.g. functional annotation, gene overlap, etc). Similarly the

Gene Associations viewer is a Cytoscape goose that displays the gene associations
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from the data compendium. A Data Matrix Viewer goose acts as a spreadsheet
program that can display and plot gene expression values. The Annotations goose
displays a table of the genes and their various annotations (e.g. locus tag, gene name,
protein id, gene id accession, etc.)—this is specific to a single organism. There is a
Global Translator that, given a list of genes from one species, can display the
orthologous genes from another species. Lastly, the MScM output showing gene
expression, gene subnetwork, sequence motifs, and motif locations in promoter

sequence, can be displayed in the ClusterIinfo Viewer.

5.4.5 The Web and Gaggle interface to our multi-species biclustering

A web interface was implemented to facilitate exploration of the multi-species
biclusters. The starting page allows users to create several types of queries and
contains a text box to input a gene name or group of genes, select boxes to choose
bicluster sets from single and, core or elaborated multi-species cMonkey analyses, and
a submit button to begin the search for biclusters containing the gene or genes of
interest from the selected biclustering analyses (Figure 5.2A). Any biclusters returned
from a search are presented as a list ranked by bicluster score. A first step in
organizing the diverse information contained in (supporting) each bicluster was to
create a system for generating bicluster summaries that link to online tools and source
data. To this end, for each bicluster, our system creates a ‘BiclusterCard’. Each
BiclusterCard  provides the following information in the form of

expandable/collapsible tabs, Figure 5.2B:
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e Gaggle tools: Embedded links to integrated software tools

e Statistics: The number of genes and conditions in the bicluster, score, residual,
mean motifs p-value, motif E-values

e Enrichment Summary: based on the most significant annotations from COG,
KEGG and GO enrichment analysis

e Core Genes: Genes table for conserved core members of the bicluster—
including GO, KEGG, and COG gene annotations

o Elaborated Genes: Same as above, but for elaborated members of the bicluster

e Experiments: Table with links to the meta-data and primary articles

e Bicluster Motifs: if any motifs were found, the sequence logo is displayed
here along with matches to any known motifs

e Enrichment Analysis: Tables for GO, KEGG, and COG annotation enrichment
— with description and significance values

e Related Biclusters: Table with links to biclusters with similar
functional/pathway annotations, similar motifs, or overlapping gene members

e Plots: Bicluster plots for gene expression, mean gene expression, expression

heatmap, and motif locations in gene promoter regions

Each element of the bicluster card is generated automatically by our system, is
compatible with outputs from other widely used biclustering tools, and provides links

to descriptions/tutorials for using the linked tools or databases.
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5.5 Results/Discussion

To demonstrate our resource’s capabilities, we explore nitrogen metabolism
associated multi-species biclusters with the specific biological goal of identifying new
genes functionally associated with nitrogen metabolism in E.coli and S. typhimurium.
For a global validation of our multi-species biclustering method and a detailed
comparison of our method to several other methods, as well as a detailed description
of the complete dataset used in this study see the supplemental section (section 5.8)
provided in the electronic version of this article. The CMMR is available at

http://meatwad.bio.nyu.edu/cmmr.html.

5.5.1 Exploring nitrogen metabolism in an E. coli and S. typhimurium

integrated genomics dataset

Nitrogen is an essential input into several metabolic pathways including amino
acid and nucleotide biosynthesis, and can act as a terminal electron acceptor in
dissimilatory nitrate reactions (Stanley, Gunsalus et al. 2007). It is common for some
microbes including E. coli to use nitrogen for energy-harvesting purposes in anaerobic
and nutrient depleted conditions (Stanley, Gunsalus et al. 2007). A central component
of nitrogen assimilation and metabolism is nitrate reductase, a membrane bound
enzyme that catalyzes the conversion of nitrate to nitrite. The narGHJI operon
encodes the multiple subunits of nitrate reductase A in E. coli. The following section
sequentially guides the reader through using our system to explore biclusters

containing genes in the nar operon and other nitrogen metabolism associated genes. A
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web tutorial for the wuse of our system can also be found at:

http://meatwad.bio.nyu.edu/psbr/index.php/Tutorials

5.5.1.1 Identifying a potential role for unknown genes in biclusters containing
nar genes

We begin our exploration of identifying conserved biclusters containing nar
genes by searching for “narG” in the core set of genes from an E. coli and S.
typhimurium MScM bicluster set (Figure 5.2A; typing ‘narG’ into the gene-name
textbox, selecting the core checkbox and clicking ‘submit’ on the CMMR start page,
will retrieve any biclusters containing narG in the core set of genes). The results page
returned following our “narG” query includes a header with links to the CMMR wiki,
links to tutorials, a description of the search query and a list of any retrieved biclusters,
in this case 3 biclusters were found (Figure 5.2B). There is a button for each bicluster
that will display its BiclusterCard (see materials and methods). Looking at the first
BiclusterCard for E. coli bicluster-57 (eco57), we will click on the ‘Coupled Bicluster’
button to open the BiclusterCard for S. typhimurium bicluster 57 (stm57). Expanding
the ‘Statistics’ tab shows that eco57 contains 75 genes (51 core genes, 24 elaborated
genes), 226 experiments, whereas stm57 contains 66 genes (51 core genes, 15
elaborated genes) and 43 experiments (Figure 5.3A). This first table highlights
differences in gene membership of the two biclusters. The ‘Enrichment Summary’
shows similar but not identical annotations involved in various metabolic activities

related to anaerobic respiration and energy production from nitrogen for both
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biclusters (Figure 5.3B). The ‘Experiments’ tab shows that expression of these genes
changes under a variety of conditions including: stress, growth on minimal media,
anaerobic metabolism, and DNA damage. Expanding the ‘Enrichment Analysis’ tab
displays tables containing significant COG, GO and KEGG annotations. We can see
that eco57 and stm57 differ in the ranking of the KEGG pathway annotations and
stm57 includes an additional pathway (Figure 5.3C). This could reflect slightly
different uses of these modules in these organisms or discrepancies in the gene
annotations.

Then, looking at the gene GO, KEGG and COG annotations by expanding the
‘Core Genes’ tab we see many genes have the same or similar annotations and some
have either none or different annotations such as narG and yjjl (Figure 5.3D). Finally,
under the ‘Plots’ tab we can view plots for gene expression profiles, bicluster mean
expression, and an expression heatmap — to visualize differences in clustering bicluster
gene members (Figure 5.4A).

Expanding the ‘Bicluster Motifs’ tab displays the motifs detected in the
bicluster. Two of the detected motifs for eco57 show similarity to known nitrate/nitrite
response transcriptional regulator binding motifs (Figure 5.4B). Motif #1 matches the
E. coli FNR (fumarate and nitrate reduction) binding consensus sequence (TTGAT N4
ATCAA) (Winteler and Haas 1996) and eco57 motif #3 corresponds to the NarP
binding sequence (Kazakov, Cipriano et al. 2007; Gama-Castro, Salgado et al. 2011).

The sequence motifs of stm57 show no notable similarity to known motifs. The FNR
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homolog in S. typhimurium, oxaR, has a similar but less defined consensus sequence
(Fink, Evans et al. 2007), which could account for the lack of association with stm57
motif #1. The promoter motif patterns display which gene members share common
motifs and the location in the gene’s upstream sequence. Identical motif patterns
indicate they are an operon, such as operon narGHJI (Figure 5.4C). MScM and
MicrobesOnline (Alm, Huang et al. 2005; Price, Huang et al. 2005) predict yjjl and
yjJW to be in an operon, which is reflected in eco57 (yjjW is present in the elaborated
gene set) but not stm57 (Figure 5.4C). Exploring the correspondence of the MScM
detected motifs with known nitrogen metabolism motifs increases our level of
confidence that this bicluster is truly coregulated in both organisms.

Among the core gene list for this bicluster, yjjl is described only as encoding a
conserved protein with no functional annotation (Figure 5.3D). To examine this gene
in the context of multiple network-types, the original data, and the biclustering, we
now open several Gaggle tools, including the bicluster and gene network Cytoscape
geese, Data Matrix Viewer, BioNetBuilder, and the Global Translator. First, we
explore associations between core gene members of eco57 and stm57. For the 51
genes in the core gene member subnetworks, eco57 has 518 associations and stm57
has 420 edges, with no associations for yjjl (Figure 5.5A; associations shown are
operon edges, metabolic pathway edges, phylogenetic profile edges, and protein
interaction edges between genes in different biclusters). Next, we explore the

expression profiles of the bicluster gene members and conditions by broadcasting
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them to the Data Matrix Viewer. Selecting yjjl, we can see that it has similar
expression to other bicluster gene members (Figure 5.5). Thus, the data (sequence
motifs, associations, expression) supports eco57 and stm57 as coherent, putatively
coregulated gene groups, and gene yjjl, while lacking associations, is supported by
common motifs and correlated expression. We can use more Gaggle tools to search for
additional information characterizing the bicluster gene members, particularly yjjl. For
example, broadcasting the gene members to BioNetBuilder, we can browse protein
structure and functional predictions. Yjjl is predicted to have a domain structure that
matches a “Class III anaerobic ribonucleotide reductase NRDD subunit” (Fontecave,
Eliasson et al. 1989) and a function prediction of oxidoreductase activity (Riffle,
Malmstrom et al. 2005; Malmstrom, Riffle et al. 2007). If we broadcast yjjl to other
online databases such as Entrez Gene (Maglott, Ostell et al. 2005), we find that yjjl is
adjacent to yjjW, but no information that they are in an operon. As mentioned above,
both MScM and MicrobesOnline have predicted them to be in an operon. There is
further information from EcoGene (Rudd 2000) reporting yjjl as an ortholog of H.
influenzae hi0521, which is a pfIB homolog and coding for a formate acetyltransferase
(Kolker, Makarova et al. 2004). Taken together, this information suggests a role for
Yjjl in nitrogen metabolism. It is important to note that a corresponding single-species
bicluster in E. coli was not found (in the E. coli single species cMonkey run we find
no bicluster with significant gene overlap to this significant conserved bicluster),

further illustrating the importance of the MScM method. However, the species-
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specific elaborations of the bicluster may display additional information, such as,
individual adaptations to this metabolic process.

Another possible use of our system is the exploration of collections of
biclusters to identify novel interactions among modules. In the context of this example
we can extract the subnetworks of biclusters related to the nar bicluster described
above from a network that displays associations between biclusters by broadcasting
the list of related biclusters from the BiclusterCard to the Bicluster Network Viewer
(Figure 5.5C). Biclusters are nodes with width and height proportional to the number
of genes and conditions, respectively, and shared significant KEGG pathway, COG
function, and GO function annotations are edges). The subnetwork shows 27 related
biclusters for E. coli and 17 biclusters for S. typhimurium; in this subnetwork there are
several biclusters containing gene modules highlighting complementary interactions
such as: amino acid biosynthesis/metabolism pathways and glutamate metabolism
(bicluster-61); NADH dehydrogenase, succinate dehydrogenase (bicluster-43), citrate
fermentation (bicluster-147), and amino acid ABC-type transporters (bicluster-148).
This highlights the presence of conserved core interactions among eco57 and stm57
with other modules and independent species-specific modifications within these
modules.

Using the CMMR, much knowledge was uncovered from the search of just a
single gene, narG. In one case, for a currently uncharacterized gene, yjjl, the gathering

of diverse information such as: putative orthology between two species, co-expression
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and common putative regulatory motifs with other bicluster genes, and a prediction for
the protein’s structure and function, was facilitated by the various BiclusterCards and
Gaggle tools. In another case, we could explore modules (biclusters) that included

narG and their interactions.

5.5.2 Conclusions

We have developed a publicly accessible web resource for comparative
genomics studies of several prokaryotic organisms, with plans to expand this resource
over time. As described above, in our example with coupled E. coli — S. typhimurium
bicluster 57, the combination of our method for simultaneously biclustering multiple
datasets from multiple species and easy to use exploration system quickly led to novel
biological insights and generate an informed hypothesis about the involvement of gene
yjjl, a currently uncharacterized gene, in nitrogen metabolism. The complexity and
richness of the results of comparative genomics data analysis requires a system like
the one presented here. We present specific examples of the use of our system in the
hopes of sparking discussion about what the next generations of comparative
genomics analysis and visualization systems should look like. Our paper focuses on
the combined, multi-tool interface required by biologists wishing to explore the
biological significance and function of multi-species, multi-datatype biclusters and
their species-specific elaborations and deletions. An important aspect of our system is
the ability to submit new data for analysis and integrate the results into the resource

for public access. We provide multiple avenues for researchers wishing to build this
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system for their species of interest (tools and code are publicly available) and/or we
will run our analysis and build this system for researchers without computational

resources.
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5.7 Figures
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Figure 5.1: Overview of the Comparative Microbial Module Resource components (CMMR). The

CMMR consists of an integrated suite of web components for visualizing the diverse aspects of the
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multi-species, multi-datatype analysis; facilitating access to each organism’s dataset. (A) Written
descriptions of the individual components (for hypothetical Organism 1). (B) The corresponding
graphics of each component goose displaying example data (for hypothetical Organism 2). Each of the
components fetches information from the data compendium (MScM results, and raw data). (C) The
CMMR integrative components: the FireGoose allows transfer of data between web pages and gaggled
software, the Gaggle Boss acts as a hub for passing communications among the geese, and the Global
Translator converts among gene annotations, accessions and translates orthologous genes between
organisms. The arrows represent information flow between tools, primarily as broadcasts between tools

and the Gaggle boss.
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Figure 5.2: CMMR Query Page and BiclusterCard. The CMMR web interface allows users to

search for biclusters of interest, with each resulting bicluster displayed in a BiclusterCard format. (A)
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The CMMR search page showing the title link to the CMMR wiki, query form button, upload form
button, and input fields. Shown is the query form with an example search for narG in the core set
(check box) of bicluster gene members for a MScM run of E. coli — S. typhimurium. (B) The result page
from this search — a user has access to the CMMR wiki, tutorials, a brief description of the search
query, the resulting bicluster list and BiclusterCards. The BiclusterCard contains links to Gaggle tools,

and expandable/collapsible tabs to display the bicluster’s diverse supporting information.
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Figure 5.3: BiclusterCard components |: Statistics, Enrichment Summary, Core Gene Table,
KEGG Pathway Enrichment. The BiclusterCard is a summary of the information supporting a
bicluster, including links to online tools and source data. Shown in the figure are the expanded tabs for:

statistics, enrichment summary from COG, GO and KEGG enrichment analysis, KEGG pathway
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enrichment, and core gene table for multi-species bicluster E. coli — S. typhimurium bicluster 57. (A)
Statistics tab for eco57 (left) and stm57 (right) displays a table with the following columns: Property
and Value. The information contained in this table includes: the number of core and elaborated genes,
fraction of conditions in the bicluster, the bicluster score, bicluster residual, bicluster mean p-value
(mean of all motifs found in the promoter sequences), and the E-value for each motif found in the
bicluster. (B) Enrichment Summary tab for eco57 (top) and stm57 (bottom) displays a table with the
following columns: Term/Pathway and Description. This table lists the most significant annotations
from ontological enrichment tests of COG, KEGG pathway, and GO annotations. (C) The Functional
Enrichment tab displays tables listing the significant annotations from the COG, GO and KEGG
enrichment analyses. Shown is the KEGG pathway enrichment table for eco57 (top) and stm57
(bottom). The table consists of the following columns: Pathway, Description, and p-value. Each
column can be sorted. (D) Core Gene tab for eco57 (top) and stm57 (bottom), showing the number of
core genes (51), and a table containing the following columns: Locus Tag, Gene Name, Description,
GO annotations, KEGG annotations, and COG annotations. Locus Tag, Gene Name and Description

columns can be sorted.
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Figure 5.4: BiclusterCard components I1: Bicluster Motifs, Upstream Patterns, Plots. Shown in
the figure are the expanded tab for Plots displaying a gene expression heatmap, the expanded tab for
Bicluster Motifs, and an example of the upstream motif patterns for multi-species bicluster E. coli — S.
typhimurium bicluster 57. (A) Example plot of a gene expression heatmap for the bicluster genes and
conditions in eco57 (left) and stm57 (right); upregulated expression (green) and downregulated
expression (red). (B) Putative regulatory sequence motifs found in bicluster gene member promoters for

eco57 (left) and stm57 (right). The table displays a row for each motif found and columns for the motif

291



number, E-value, sequence logo, matches to any known motifs, and a link to motif pattern page. Eco57
motif #1 matches the known FNR binding sequence and motif #3 matches the known NarP binding
sequence. (C) The promoter motif patterns for the motifs shown in (B) for eco57 (left) and stm57
(right). The location of the motifs are represented by colored rectangles on the promoter sequence
(black line) and the colors correspond to the logo border colors seen in (B); motif #1 (red), motif #2
(green) motif #3 (blue). For the bicluster gene members shown, bicluster motifs #1 and #3 appear in the
promoter regions of the eco57 members, whereas all three bicluster motifs appear in the promoters for
the stm57 members. The identical motif pattern indicates MScM has determined them to be in an
operon. It is known that narGHJI exist as an operon, but MScM has determined that yjjl is in an operon
with yjjW (this is also predicted by (Price, Huang et al. 2005)). However, yjjW is found only in the

elaborated gene set of eco57 and it is not found in stm57.
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Figure 5.5: CMMR linked Gaggled tools. Expanding the Gaggle tools tab on the BiclusterCard for
multi-species bicluster E. coli — S. typhimurium bicluster 57, reveals a list of links (buttons) to the

various Gaggle tools. (A) The Gene Associations button opens a Cytoscape goose that displays the core
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genes subnetwork for eco57 (top) and stm57 (bottom). The nodes represent genes and edges represent
associations based on data from the compendium, indicated in yellow is gene yjjl. Edges are shared
annotations: COG code (pink), Prolinks phylogenetic profile (purple), metabolic pathway (blue),
operon (light cyan), and Predictome phylogenetic pattern (dark cyan). (B) The expression profiles for
the genes and conditions from eco57 (top) and stm57 (bottom) can be explored by opening the Data
Matrix Viewer. Using the FireGoose, the bicluster’s genes and conditions can be broadcast from the
BiclusterCard. We can see how the expression profile of gene yjjl (indicated by the colored line)
matches other profiles in the bicluster. (C) The Bicluster Network button opens a Cytoscape goose to
display the complete bicluster network where each node is a bicluster (width and height proportional to
number of genes and conditions, respectively) and edges represent any shared properties and
annotations. We can explore the related bicluster subnetwork for bicluster 57 (yellow), eco57 (left) and
stm57 (right), by broadcasting the list of related biclusters (using the FireGoose) from the BiclusterCard
to select those biclusters and display them in a new window. There are 10 additional biclusters in the
eco57 subnetwork. Node fill color represents significant COG annotation, border color represents
significant GO annotation, node border thickness represents residual, and edge color represents shared

COG (green) KEGG (red), or GO (blue) annotations.

5.8 Supplementary text

5.8.1 Materials

5.8.1.1 Dataset analyzed
The E. coli expression data matrix consisted of 507 conditions from 16 projects
acquired from the Many Microbe Microarrays Database (M3D) (Faith, Driscoll et al.

2008) covering various conditions including: genetic perturbations, changes in
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oxygen concentration and pH, growth phases, antibiotic treatment, heat shock, and

different media.

The S. typhimurium expression data matrix consisted of 138 conditions from 8

studies acquired from the Stanford Microarray Database (SMD) (Sherlock,

Hernandez-Boussard et al. 2001; Hubble, Demeter et al. 2009) covering various

conditions including: chemical effects, nutrient limitation, library verification, strain

comparison, media comparisons, time course, and mutants.

Table 5.1: Total number of genes, conditions, and association edges in each dataset used for the

multi-species analysis, by organism.

Number of: E. coli S. typhimurium
Genes 4264 3745
Conditions 507 138

Association edges

Source Egde type
Operon 3414 2104

KEGG |Metabolic 96931 75363

Prolinks |Gene Neighbor 29228 29942

Prolinks |Phylogenetic Profile 20058 20094

Prolinks |Gene Cluster 6048 6476

COG COG-code 644856 379484
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Table 5.2: Total number of orthologs, orthologous families, and ortholog pairs generated by

InParanoid.
Number of: E. coli S. typhimurium
orthologous groups 2827
orthologous pairs 2856
multi-member groups 22
Remaining unique genes 2836 2845

5.8.2 Methods

5.8.3 MScM Algorithm Pseudocode Overview

Define organisms, orthologs, num.biclust, and iter.max to be each organism’s
dataset (expression, genomic sequence, network associations), putative orthologs
between the organisms, the number of biclusters to search for, and the maximum
number of iterations for the procedure, respectively. The method is a Monte Carlo
optimization that, given a bicluster seed, optimizes a bicluster by iteratively adding or
dropping genes and conditions according to the multi-species score (gain). The
individual likelihoods for the gain for expression, sequence, and association networks,
are represented by r, s, and ¢, respectively. The membership probability
(probmempersnip) of becoming part of the bicluster is based on the gain and the decision
boundary formed using logistic regession (model). See (Waltman, Kacmarczyk et al.

2010) for the complete description of the method.
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Algorithm 1 MSCM.shared( organisms, orthologs, num.biclust, iter.max )

1: for ¢ =1 to num.biclust do

2: bicluster < seed.bicluster( organisms, orthologs, conditions )

3 iter < 1

4 repeat

5: { calculate the shared gain for each ortholog pair }

6 for ortholog.pair in orthologs do

7 for org in organisms do

8 { compute motif likelihods in promoter regions of genes }

9: s < detect.motifs( orthologs, upstream.sequences )

10: Gaingparealortholog.pair, org] += G( bicluster[org], conditions|org], ortholog.pair(org),org,r, s,q )
11: end for

12: end for

13: model < logit( gainspareq, bicluster )

14: { calculate probability drop and add genes }

15: for ortholog.pair in orthologs do

16: if ortholog.pair € bicluster then

17: Proboembershiplortholog.pair] < P P( gaingparcdlortholog.pair], model )
18: else

19: Probmempershiplortholog.pair]| + P gain garea|ortholog.pair], model )
20: end if
21: end for
22: { calculate probability drop and add conditions in each organism }
23 for condition in conditions do
24: if condition € bicluster then
25: Probempershiplcondition] <— PTP( gain,q,cqlcondition], model )
26: else
27 Probuempershiplcondition] <= P( gaingyareq(condition], model )
28: end if
29: end for
30: update bicluster based on probyempership sample distribution
31: iter +=1
32:  until convergence or iter == iter.mazx
33:  bicluster.list[i] « bicluster
34: end for

35: return bicluster.list
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5.8.4 Validation

Table 5.3: Quick lookup table for methods considered by this study.

Expression Only Full Data
Shared full genome Shared full genome
Multi-Species
space (elaboration) space (elaboration)
cMonkey EO-MScM-SH EO-MScM-EL FD-MScM-SH FD-MScM-EL
ISA* MSISA-P MSISA-R
K-Means* MSKM-SH MSKM-EL

(Balanced) K-Means* BMSKM-SH BMSKM-EL

Single-Species Expression Only Full Data
cMonkey EO-SSCM FD-SSCM
Coalesce EO-COAL FD-COAL
Qubic* QUBIC

* Expression only method by method definition - no distinction between "expression only"

or "full data" is necessary.

5.8.5 Overview of the bicluster comparison metrics
A comparison of the relative performances of four multi-species methods
(MScM, MSISA, MSKM and BMSKM), and three single species methods (SSCM,

Coalesce and Qubic) in this study are based on 5 metric classes: 1) bicluster
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coherence; 2) functional enrichment; 3) coverage; 4) overlap between biclusters; and
5) conservation. Bicluster coherence is determined by the combination of five
commonly used metrics that gauge the degree of support provided to each bicluster by
the three data types that MScM integrates (expression, sequence and association
networks). See [10] for comparisons of SSCM to other biclustering algorithms, and
[19] comparisons between single species biclustering and clustering algorithms. Our
coherence metrics are: 1) expression residuals — a measure of the coherence of
expression across the two species datasets for conditions within the bicluster; 2) mean
correlation — the average pairwise correlation between members of a (bi)cluster
(taking the absolute value to allow fair comparison between methods that identify
inversely correlated patterns (QUBIC and MSISA) and those that do not; 3) network
p-values — a measure of the significance of the sub-networks within biclusters
compared to the full network; 4) motif E-values — a measure of the
quality/significance of the upstream binding site motifs detected for each (bi)cluster;
and 5) sequence p-values — an estimate of a sequence’s match to the motifs associated
with a (bi)cluster. Each of the coherence metrics is described in greater detail in

(Waltman, Kacmarczyk et al. 2010).

5.8.6 Quick-glance table & Additional figures for the E. coli — S. typhimurium
pairing
The Quick-glance table for E. coli and S. typhimurium is available in Appendix 1

(Table 3.5), and the appropriate figures can be found in sections 7.2.1 and 7.2.2.

299



5.8.7 Description of highlighted biclusters

5.8.7.1 E. coli bicluster 57

Cluster: 57 ; resid: 0.565 ; genes: 75 ; conds: 226 ; iter: 100 Cluster: 57 ; resid: 0.565 ; genes: 75 ; conds: 226 ; iter: 100

T T T T T T T T T T T
0 100 200 300 400 500 0 50 100 150 200

Scaled PSSM #1: E=6.3e-09 Scaled PSSM #2: E=150
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Figure 5.6: E. coli bicluster 57 MScM output image

5.8.7.2 E. coli bicluster 57 core gene list

B0693 SPEF ornithine decarboxylase isozyme, inducible
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Locus Name Description

B0782 MOAB molybdopterin biosynthesis protein B

B0783 MOAC molybdopterin biosynthesis, protein C

B0873 HCP hybrid-cluster [4Fe-2S-20] protein in anaerobic

B0894 DMSA dimethyl sulfoxide reductase, anaerobic, subunit

B0895 DMSB dimethyl sulfoxide reductase, anaerobic, subunit

B0896 DMSC dimethyl sulfoxide reductase, anaerobic, subunit

B0903 PFLB pyruvate formate lyase I

B1074 FLGC flagellar component of cell-proximal portion of

B1587 YNFE oxidoreductase subunit

B1588 YNFF oxidoreductase subunit

B1476 FDNI formate dehydrogenase-N, cytochrome B556 (gamma)
B1475 FDNH formate dehydrogenase-N, Fe-S (beta) subunit, nitrate-inducible
B1474 FDNG formate dehydrogenase-N, alpha subunit, nitrate-inducible
B1227 NARI nitrate reductase 1, gamma (cytochrome b(NR))

B1226 NARJ molybdenum-cofactor-assembly chaperone subunit

B1225 NARH nitrate reductase 1, beta (Fe-S) subunit
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Locus Name Description

B1224 NARG nitrate reductase 1, alpha subunit

B1223 NARK nitrate/nitrite transporter

B2202 NAPC nitrate reductase, cytochrome c-type, periplasmic
B2203 NAPB nitrate reductase, small, cytochrome C550
B2204 NAPH ferredoxin-type protein essential for electron
B2205 NAPG ferredoxin-type protein essential for electron
B2206 NAPA nitrate reductase, periplasmic, large subunit
B2207 NAPD assembly protein for periplasmic nitrate

B2208 NAPF ferredoxin-type protein, predicted role in

B2261 MENC o-succinylbenzoyl-CoA synthase

B2262 MENB dihydroxynaphthoic acid synthetase

B2997 HYBO hydrogenase 2, small subunit

B4131 CADA lysine decarboxylase 1

B2727 HYPB GTP hydrolase involved in nickel liganding into
B2728 HYPC protein required for maturation of hydrogenases
B2729 HYPD protein required for maturation of hydrogenases
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Locus Name Description

B2904 GCVH glycine cleavage complex lipoylprotein

B2957 ANSB periplasmic L-asparaginase I1

B2992 HYBE hydrogenase 2-specific chaperone

B2993 HYBD predicted maturation element for hydrogenase 2
B2995 HYBB predicted hydrogenase 2 cytochrome b type
B2996 HYBA hydrogenase 2 4Fe-4S ferredoxin-type component
B3573 YSAA predicted hydrogenase, 4Fe-4S ferredoxin-type
B4021 PEPE (alpha)-aspartyl dipeptidase

B4122 FUMB anaerobic class I fumarate hydratase (fumarase
B4123 DCUB C4-dicarboxylate antiporter

B4138 DCUA C4-dicarboxylate antiporter

B4151 FRDD fumarate reductase (anaerobic), membrane anchor
B4152 FRDC fumarate reductase (anaerobic), membrane anchor
B4153 FRDB fumarate reductase (anaerobic), Fe-S subunit
B4154 FRDA fumarate reductase (anaerobic) catalytic and
B4196 ULAD 3-keto-L-gulonate 6-phosphate decarboxylase
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B4238 NRDD anaerobic ribonucleoside-triphosphate reductase

B4380 Y1 conserved protein

5.8.7.3 E. coli bicluster 57 elaborated gene list

B0781 MOAA molybdopterin biosynthesis protein A
B0902 PFLA pyruvate formate lyase activating enzyme 1
B0904 FOCA formate channel

B0972 HYAA hydrogenase 1, small subunit

B0973 HYAB hydrogenase 1, large subunit

B1465 NARV nitrate reductase 2 (NRZ), gamma subunit
B1466 NARW nitrate reductase 2 (NRZ), delta subunit
B1467 NARY nitrate reductase 2 (NRZ), beta subunit
B1468 NARZ nitrate reductase 2 (NRZ), alpha subunit
B1473 YDDG aromatic amino acid exporter

B1593 YNFK predicted dethiobiotin synthetase
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B1670 YDHU predicted cytochrome

B1671 YDHX predicted 4Fe-4S ferridoxin-type protein

B2241 GLPA sn-glycerol-3-phosphate dehydrogenase

B2242 GLPB sn-glycerol-3-phosphate dehydrogenase

B2243 GLPC sn-glycerol-3-phosphate dehydrogenase

B2579 YFID autonomous glycyl radical cofactor

B2726 HYPA protein involved in nickel insertion into

B2730 HYPE carbamoyl dehydratase, hydrogenases 1,2,3
B2994 HYBC hydrogenase 2, large subunit

B3365 NIRB nitrite reductase, large subunit, NAD(P)H-binding
B3366 NIRD nitrite reductase, NAD(P)H-binding, small

B3426 GLPD sn-glycerol-3-phosphate dehydrogenase, acrobic, FAD/NAD(P)-binding
B4379 YIIW predicted pyruvate formate lyase activating
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5.8.8 S. typhimurium bicluster 57

Cluster: 57 ; resid: 0.671 ; genes: 66 ; conds: 43 ; iter: 100
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Figure 5.7: 8. typhimurium bicluster 57 MScM output image

5.8.8.1 S. typhimurium bicluster 57 core gene list

a2
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Locus Name description

STM0701 | SPEF ornithine decarboxylase isozyme

STM0803 | MOAB molybdopterin biosynthetic protein B
STM0804 | MOAC molybdenum cofactor biosynthesis protein C
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STM0937 | HCP hydroxylamine reductase

STM0964 | DMSA anaerobic dimethyl sulfoxide reductase subunit
STM0965 | DMSB anaerobic dimethyl sulfoxide reductase subunit
STM0966 | DMSC anaerobic dimethyl sulfoxide reductase subunit
STM0973 | PFLB pyruvate formate lyase I

STM1175 | FLGC flagellar basal body rod protein FlgC
STM1498 putative dimethyl sulphoxide reductase

STM 1499 putative dimethyl sulphoxide reductase chain Al
STM1568 | FDNI formate dehydrogenase-N subunit gamma
STM1569 | FDNH formate dehydrogenase-N beta subunit
STM1570 | FDNG formate dehydorgenase-N alpha subunit
STM1761 | NARI nitrate reductase | gamma subunit

STM1762 | NARIJ nitrate reductase 1 delta subunit

STM1763 | NARH nitrate reductase 1 beta subunit

STM1764 | NARG nitrate reductase 1 alpha subunit

STM1765 | NARK nitrite extrusion protein

STM2255 | NAPC cytochrome c-type protein NapC
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STM2256 | NAPB diheme cytochrome ¢550

STM2257 | NAPH quinol dehydrogenase membrane component
STM2258 | NAPG quinol dehydrogenase periplasmic component
STM2259 | NAPA periplasmic nitrate reductase

STM2260 | NAPD assembly protein for periplasmic nitrate
STM2261 | NAPF ferredoxin-type protein

STM2306 | MENC O-succinylbenzoate synthase

STM2307 | MENB naphthoate synthase

STM3150 | HYPO hydrogenase 2 small subunit

STM2559 | CADA lysine decarboxylase 1

STM2855 | HYPB hydrogenase nickel incorporation protein HypB
STM2856 | HYPC hydrogenase isoenzymes formation protein
STM2857 | HYPD putative hydrogenase formation protein
STM3054 | GCVH glycine cleavage system protein H

STM3106 | ANSB L-asparaginase 11

STM3145 | HYBE hydrogenase 2-specific chaperone

STM3146 | HYBD predicted maturation element for hydrogenase 2

308




STM3148 | HYBB predicted hydrogenase 2 cytochrome b type
STM3149 | HYBA hydrogenase 2 protein HybA

STM3666 | YSAA putative oxidoreductase

STM4190 | PEPE peptidase E

STM4300 [ FUMB fumarase B

STM4301 | DCUB anaerobic C4-dicarboxylate transporter
STM4325 | DCUA anaerobic C4-dicarboxylate transporter
STM4340 | FRDD fumarate reductase subunit D

STM4341 | FRDC fumarate reductase subunit C

STM4342 | FRDB fumarate reductase iron-sulfur subunit
STM4343 | FRDA fumarate reductase flavoprotein subunit
STM4386 | ULAD 3-keto-L-gulonate-6-phosphate decarboxylase
STM4452 | NRDD anaerobic ribonucleoside triphosphate reductase
STM4566 | YJII hypothetical protein

5.8.8.2 S. typhimurium bicluster 57 elaborated gene list

Locus

Name

description
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STM0733 | SDHD succinate dehydrogenase cytochrome b556 small
STM0734 | SDHA succinate dehydrogenase flavoprotein subunit
STMO0735 | SDHB succinate dehydrogenase iron-sulfur subunit
STM1496 | STM1496 putative dimethylsulfoxide reductase

STM1497 | STM1497 putative dimethyl sulphoxide reductase

STM1538 | STM1538 putative hydrogenase-1 large subunit

STM1786 | STM1786 hydrogenase-1 small subunit

STM2284 | GLPA sn-glycerol-3-phosphate dehydrogenase subunit A
STM2285 | GLPB anaerobic glycerol-3-phosphate dehydrogenase
STM2286 | GLPC sn-glycerol-3-phosphate dehydrogenase subunit C
STM3526 | GLPD glycerol-3-phosphate dehydrogenase

STM3962 | YIGL predicted hydrolase

STM4252 | STM4252 putative inner membrane protein

STM4306 | STM4306 putative anaerobic dimethylsulfoxide reductase
STM4307 | STM4307 putative anaerobic dimethylsulfoxide reductase
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6. DISCUSSION AND FUTURE DIRECTIONS

We present above a novel method for identifying modules of functionally
conserved genes that identifies conserved modules by integrating multiple sources of
data from multiple organisms simultaneously. This is in comparison to sequence-
based comparison methods such as the Clusters of Orthologous Groups (COG)
database (Tatusov, Galperin et al. 2000) and InParanoid (Remm, Storm et al. 2001), as
well as several other more recent methods (Chen, Mackey et al. 2006; DelL.uca, Wu et
al. 2006; Schneider, Dessimoz et al. 2007). However, the analysis provided by these
sequence-based methods aims to identify clusters of orthology, based upon homology,
not co-regulation. Even more recent methods augment these sequence-based methods
by seeking to identify functional orthology via the comparison of conserved protein-
protein interaction (PPI) networks — so-called network homology (Flannick, Novak et
al. 2006; Kalaev, Smoot et al. 2008; Singh, Xu et al. 2008; Liao, Lu et al. 2009; Park,
Singh et al. 2011; Zinman, Zhong et al. 2011). Of these, only one (Zinman, Zhong et
al. 2011) explicitly includes co-expression data in its analysis by including edges
based on correlation, though, it would be relatively easy for the other methods to
include these as well. In any such analysis, obviously, great care must be taken to
avoid circularity of reasoning, which would be possible for example by including
interolog edges (Yu, Luscombe et al. 2004). As described above in section 2.1,
methods that are based primarily upon gene expression data can be segmented into

two classes — those that seek to find matching conditions between the organisms and
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those that do not. We direct the reader to the section 2.1 for a more thorough
discussion of this.

Both of the newer approaches (those based primarily upon PPl networks, versus
those based primarily upon expression data) have their strengths and weaknesses.
Interaction-based function orthology methods provide the confidence of clustering
orthologous genes based on known or putative interactions, though known interaction
provide far higher degree of confidence. However, the sparsity of these interactions
for most organisms, especially those that are high-confidence, is a limiting factor on
the genes that can be analyzed. Correlation-based edges provide one possible
workaround to this limit for interaction-based methods, however, the calculations
made when generating these do not easily allow for condition-dependence, as is
possible with biclustering methods. Similarly, most expression-based comparative,
multi-species methods allow for comprehensive, genome-wide analyses. However,
they too often fail to allow for condition-dependent expression patterns. Finally, all
these methods focus on the identification of conserved modules, but don’t provide
mechanisms for identifying species-specific changes or modification to these.

In comparison to these other methods, multi-species cMonkey (MScM) allows for
the integration of interactions or associations with sequence and co-expression data,
while allowing for condition-dependence with the expression data. In addition, MScM
is explicitly written to identify species-specific difference to these conserved modules.

However, MScM is not without its areas for potential improvement as well.
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For example, the heuristic, correlation-based seeding strategy that MScM
currently uses (described in section 2.5.1.4) could be replaced by one of these
network-homology based methods. An alternate strategy would be to use the
balanced, multi-species k-means algorithm to generate the initial seeds. While this
would provide complete coverage, at least initially, this will also require a decision
over how to handle the initial k clusters that are generated. For example, would the
search strategy need to be modified to process the initial k biclusters sequentially — as
is currently done — or concurrently? This also raises the question of how or whether to
prune some of the initial k biclusters from consideration. One possible idea would be
to use a consensus approach that employs both the network homology and k-means
clustering approaches together to determine an initial set of high-confidence seeds that
can be further optimized, using the MCMC search that is used by MScM.

While a change to the seeding strategy could be fruitful, there are several aspects
to MScM that definitely deserve further attention, with two that should take priority.
The first of these two aspects that deserve the most scrutiny are the integration or
‘mixing’ parameters that are used in the joint-likelihood function which is used to
estimate the likelihood of a gene belonging to a bicluster. Currently these are set by a
schedule that gives the sequence support little weight in the beginning, and slowly
increases it during the optimization of a single bicluster. Similarly, the weight given
to the network/interaction support starts off relatively high, and is progressively

reduced during the optimization of a single cluster. However, despite these general
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strategies, there are many details that are not well-established yet, e.g. the exact
weights at the beginning or end are not well-established, nor the rate at which the
increase or decrease should occur. It is unclear at the time of this writing what would
be an optimal method to determine these, as any such method to determine these
would need to allow users to specify the maximum weight they want given to a
particular data type, while still allowing MScM to determine the optimal weighting of
the different data types.

However, this discussion naturally raises the question of what is optimal in an
unsupervised learning environment such as the one with co-expression data. While we
provide in Chapter 3 a through comparison of MScM with several other methods, this
is time-consuming and for this reason, does not lend itself well to an optimization
problem. The reason for this, as we discuss in Chapter 3 is that there is no complete
‘gold-standard’ clustering result that can be used to benchmark the results.

This also becomes an issue in terms of what should be considered to be the
‘correct” number of biclusters that are generated by MScM, which would be the
second major aspect of MScM that deserves further attention. However, without
knowing a priori how many functional modules are active in an expression data set, it
is difficult to determine the appropriate number of biclusters to generate. Currently,
MScM estimates the number of biclusters that will be generated based on the number
of genes in the expression data set, divided by the estimated mean size of each

bicluster. One possible heuristic that could be used to address this is to have MScM
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make a decision based on the latest bicluster that is generated to determine if it will
continue to search for new biclusters. In this case, it would consider the number of
previously unclustered genes or percentage of the expression data that is added by the
latest results. If the number of new genes or areas of the expression matrix that are
added by MScM falls below a certain threshold, then MScM could then decide to stop
adding new biclusters to the set of those that it has identified.

An alternate strategy would be to have MScM identify far more biclusters that are
expected, and in a post-processing step, MScM would prune these down to a minimal
set. In any solution such as this, MScM would need to make a decision amongst
numerous, overlapping bicluster/modules. This, in turn, raises the question of what
one should consider to be meaningful overlap between the modules, i.e. which
biclusters are sub-modules of others?; which biclusters reflect pleiotropy?; which are
simply the method settling into the same optima multiple times?

One naive solution to this question would be to use a threshold to determine
sufficient similarity or difference between biclusters (a threshold on the percentage of
the sub-matrices that overlap). In addition, the non-expression data types such as
sequence motifs and association edges could also be helpful in determining similarity
and difference. At this point, it is unclear what would be the optimal solution, but this
could be a fruitful area for further research. GO term and/or KEGG pathway

annotations of the non-overlapping genes in a bicluster could also provide some
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guidance as well; as would comparisons of the conditions that are included in the
different bicluster.

This question of how to determine similarity and difference between biclusters is
essential when evaluating the stability of the method, where by stability we mean the
consistency and reproducibility of the biclustering results between different analyses
performed by the same method, on the same data set — an issue for all Monte Carlo
methods, including MScM. As of yet, no attempt has been made to quantify the
stability of MScM (nor SScM), though, anecdotally, in our experience, the modules
with clearest signal are retrieved consistently between different runs, though, it is
unknown at this point how reproducible are those modules with more subtle signals.

Ultimately, this question of stability should also need to be considered when
determining the optimality of the parameterization of any given MScM run. However,
as we state in section 2.3 “[w]e have shown that MScM provides better or comparable
coverage, functional enrichment scores, bicluster coherence, and conservation than
other tested methods, with all other methods failing in one of the main categories of
assessment.  Furthermore, our method effectively balances the influence of each
organism, preventing organisms with more complete datasets from dominating the
analysis, while also integrating other supporting data types, enabling the method to
identify more biologically relevant modules and delimit the conditions over which the
modules are active. The fact that the MScM biclusters have many fold higher

conservation scores than several of the tested methods suggests that they have a higher
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level of biological significance than equally co-expressed (and/or equally functionally
enriched) non-conserved alternate biclusters. An analysis that takes into account
several validation metrics supports the idea that MScM is the top performing method
for comparative biclustering.” Thus, despite these open questions and limitations,
MScM provides a robust and novel solution to the comparative analyses of multiple-

species, by providing analytical aspects that no other method yet provides.
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7. SUPPLEMENTARY INFORMATION

7.1 Gene lists and bicluster images of the biological highlights for

the Gram-positive triplet

7.1.1 Full descriptions of highlighted biclusters

7.1.1.1 Gene lists for B. subtilis, B. anthracis Sterne sporulation clusters 32, 82,

and 84.
7.1.1.1.1 B. subtilis - B. anthracis cluster 32

7.1.1.1.1.1 B. subtilis cluster 32

Figure 7.1: B. subtilis cluster 32 image (post-elaboration)
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BSUBT Cluster: 32 ; resid: 0.287 ; genes: 96 ; conds: 139 ; iter: 50 BSUBT Cluster: 32 ; resid: 0.287 ; genes: 96 ; conds: 139 ; iter: 50
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Table 7.1: B. subtilis cluster 32 core genes

Locus

BSU06890

BSU06900

BSU06910

BSU23190

BSU28380

BSU27440

BSU27450

BSU27460

BSU27430

BSU15320

Name
cotJA
cotJB
cotJC
dacB
gerM
ginH
ginM
glnP
ginQ

SigE

Function

polypeptide composition of the spore coat; required for the assembly of CotJC
polypeptide composition of the spore coat

polypeptide composition of the spore coat

D-alanyl-D-alanine carboxypeptidase (penicillin-binding protein 5*)
germination (cortex hydrolysis) and sporulation (stage I, multiple polar septa)
glutamine ABC transporter (glutamine-binding protein)

glutamine ABC transporter (integral membrane protein)

glutamine ABC transporter (integral membrane protein)

glutamine ABC transporter (ATP-binding protein)

sporulation sigma factor SigE
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BSU23180

BSU23170

BSU24430

BSU24420

BSU24410

BSU24400

BSU24390

BSU24380

BSU24370

BSU24360

BSU27980

BSU27970

BSU27670

BSU01570

BSU09940

BSU11510

BSU14110

BSU13710

BSU15030

BSU15650

BSU25350

BSU25060

BSU24440

BSU27690

SpmA
spmB
spolllAA
spolll1AB
spolllAC
spolllAD
spollIAE
spolllAF
spolllAG
spolllAH

spolVFA

spolVFB
SpoVB
ybaN
yhalL
yjbE
ykukK
ykvl
ylbJ
yloB
yafD

yafz
yghV

yrze

spore maturation protein

spore maturation protein

mutants block sporulation after engulfment (stage I11 sporulation)
stage 111 sporulation protein SpoAB

mutants block sporulation after engulfment (stage |11 sporulation)
mutants block sporulation after engulfment (stage |11 sporulation)
mutants block sporulation after engulfment (stage 111 sporulation)
mutants block sporulation after engulfment (stage 111 sporulation)
mutants block sporulation after engulfment (stage I11 sporulation)
mutants block sporulation after engulfment (stage I11 sporulation)
inhibition of SpolVFB (negative regulation) and hypothesised to stabilize the
thermolabile SpolVFB product (positive regulation) (stage IV sporulation)
membrane metalloprotease

involved in spore cortex synthesis (stage V sporulation)
hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein
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BSU28100 ysXxE  hypothetical protein
BSU29240 ytrl hypothetical protein
BSU28960 ytxC  hypothetical protein

BSU32350 yunB  hypothetical protein

Table 7.2: B. subtilis cluster 32 elaboration genes
Locus Name Function
BSU17260 aprX  alkaline serine protease
BSU17030 cotE  morphogenic protein
BSU26740 cypA  cytochrome P450-like enzyme
BSU12370 exuR transcriptional regulator (Lacl family)
BSU19690 kamA  lysine 2,3-aminomutase
BSU36410 mbl MreB-like protein
BSU24170  mmgA acetyl-CoA acetyltransferase
BSU24160 mmgB  3-hydroxybutyryl-CoA dehydrogenase
BSU24150 mmgC acyl-CoA dehydrogenase
BSU24140 mmgD citrate synthase 3
BSU14000 patA  aminotransferase A
BSU38990 scoA  succinyl CoA:3-oxoacid CoA-transferase (subunit A)
BSU19330 sodF  superoxide dismutase
BSU36750  spollD required for complete dissolution of the asymmetric septum (stage Il
sporulation)
BSU15170  spoVD penicillin-binding protein
BSU09400 spoVR involved in spore cortex synthesis (stage V sporulation)

BSU37830 spsJ  spore coat polysaccharide synthesis
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BSU19320 sghC  squalene-hopene cyclase
BSU12350 yjmF  D-mannonate oxidoreductase
BSU14830 ylaM  glutaminase

BSU18220 yngF  enoyl-CoA hydratase
BSU18230 yngG  hydroxymethylglutaryl-CoA lyase
BSU18240 yngH  acetyl-CoA carboxylase biotin carboxylase subunit
BSU18250 yngl  acyl-CoA synthetase
BSU12710 xkdR  hypothetical protein
BSU00160 yaaH hypothetical protein
BSU03110 ycgH  hypothetical protein
BSU03670 yclF  hypothetical protein
BSU05710  ydhD  hypothetical protein
BSU06920 yesJ  hypothetical protein
BSU09830 yhaX  hypothetical protein
BSU08980 yhbH  hypothetical protein
BSU09770 yheD  hypothetical protein
BSU10230 yhfH  hypothetical protein
BSU10400 yhxC  hypothetical protein
BSU10960 yitE  hypothetical protein
BSU12110 yjifA  hypothetical protein
BSU12320 yjmC  hypothetical protein
BSU12330 yjmD  hypothetical protein
BSU14250 yknT  hypothetical protein
BSU14810 ylaK  hypothetical protein

BSU17320 ymaF  hypothetical protein
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BSU18210

BSU18260

BSU19020

BSU19670

BSU19700

BSU19720

BSU19740

BSU21290

BSU22980

BSU25420

BSU26660

BSU29160

BSU31740

BSU31730

BSU38240

BSU38230

BSU39000

BSU40940

yngE
yngJ
yobN
yodN
yodP
yodR
yodT
yomN
ypbG
ygew
yrdN
ytvl
yuxH
yuzC
yWCA
ywcB
yxjC

yyaD

hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein

hypothetical protein
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7.1.1.1.1.2 B. anthracis cluster 32

Figure 7.2: B. anthracis cluster 32 image (post-elaboration)

BANTH Cluster: 32 ; resid: 0.158 ; genes: 85 ; conds: 27 ; iter: 50 BANTH Cluster: 32 ; resid: 0.158 ; genes: 85 ; conds: 27 ; iter: 50
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Table 7.3: B. anthracis cluster 32 core genes

Locus

GBAAO0805

GBAAO0804

GBAAO0803

GBAA4716

GBAA4043

GBAA1491

GBAA4417

Name
CotJA
cotJB
cotJC
gerM
SigE

SpmA

Function

cotja protein

cotjb protein

cotjc protein

germination protein gerM
sporulation sigma factor SigE

spore maturation protein a

spolllAA stage iii sporulation protein aa
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GBAA4416

GBAA4415

GBAA4414

GBAA4413

GBAA4412

GBAA4411

GBAA4679

GBAA4678

GBAA4643

GBAA0640

GBAA0639

GBAA0641

GBAA0642

GBAA4012

GBAA1490

GBAAO0150

GBAA1492

GBAA4530

GBAA4410

GBAA1020

GBAA1201

GBAA2012

GBAA4138

GBAA4198

GBAA4418

spolllAB
spolllAC
spolllAD
spolllAE
spolllAF
spolllAG
spolVFA
spolVFB

SpoVB

stage 111 sporulation protein SpoAB

stage iii sporulation protein ac

stage iii sporulation protein ad

stage iii sporulation protein ae

stage iii sporulation protein af

stage iii sporulation protein ag

stage iv sporulation protein fa

stage iv sporulation protein fb

stage v sporulation protein b

amino acid abc transporter, amino acid-binding protein
amino acid abc transporter, atp-binding protein
amino acid abc transporter, permease protein
amino acid abc transporter, permease protein
cation-transporting atpase, e1-e2 family
d-alanyl-d-alanine carboxypeptidase family protein
polysaccharide deacetylase, putative

spore maturation protein

sporulation protein

stage iii sporulation protein ah

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein
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GBAA4501

GBAA4645

GBAA4691

GBAA4821

GBAA4851

GBAA5207

hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein

hypothetical protein

Table 7.4: B. anthracis cluster 32 elaboration genes

Locus Name

GBAA5449 celA-3
GBAAO0146 cwlD
GBAA5640 cwlJ-2
GBAA4297 dacF
GBAA1530  spolVA

GBAAO0767 spoVR

GBAA1221 -
GBAA1755
GBAA3030
GBAA3668
GBAAO0870
GBAA4659
GBAA2055
GBAA2980
GBAA2981

GBAA4067

Function

pts system, cellobiose-specific iib component

germination-specific n-acetylmuramoyl-I-alanine amidase

cell wall hydrolase

d-alanyl-d-alanine carboxypeptidase
stage iv sporulation protein a

stage v sporulation protein r

bacteriocin o-metyltransferase, putative
bnr repeat domain protein

catalase

glycosyl hydrolase, family 18
hydrolase, haloacid dehalogenase-like family
lysm domain protein

magnesium transporter, cora family
polyketide synthesis domain protein

polyketide synthesis domain protein

prophage lambdaba02, ftsk/spoiiie family protein
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GBAA2462 - pts system, cellobiose-specific iib component, putative

GBAA2463 - pts system, cellobiose-specific iic component, putative
GBAA5524 - stage ii sporulation protein
GBAA4692 - stage vi sporulation protein d, putative
GBAA2979 - transcriptional regulator, putative
GBAAO0550 - hypothetical protein

GBAA0806 - hypothetical protein

GBAA0951 - hypothetical protein

GBAA1021 - hypothetical protein

GBAA1187 - hypothetical protein

GBAA1843 - hypothetical protein

GBAA1904 - hypothetical protein

GBAA2292 - hypothetical protein

GBAA2304 - hypothetical protein

GBAA2305 - hypothetical protein

GBAA2464 - hypothetical protein

GBAA2466 - hypothetical protein

GBAA2821 - hypothetical protein

GBAA2982 - hypothetical protein

GBAA3151 - hypothetical protein

GBAA3636 - hypothetical protein

GBAA3637 - hypothetical protein

GBAA3638 - hypothetical protein

GBAA3671 - hypothetical protein

GBAA3844 - hypothetical protein
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GBAA4069 - hypothetical protein

GBAA4199 - hypothetical protein
GBAA4317 - hypothetical protein
GBAA4531 - hypothetical protein
GBAA4619 - hypothetical protein
GBAA5641 - hypothetical protein
GBAA5728 - hypothetical protein

7.1.1.1.2 B. subtilis - B. anthracis cluster 82

7.1.1.1.2.1 B. subtilis cluster 82
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Figure 7.3: B. subtilis cluster 82 image (post-elaboration)

BSUBT Cluster: 82 ; resid: 0.335 ; genes: 33 ; conds: 133 ; iter: 40 BSUBT Cluster: 82 ; resid: 0.335 ; genes: 33 ; conds: 133 ; iter: 40
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Table 7.5: B. subtilis cluster 82 core genes
Locus Name Function
BSU04640 alr  D-alanine racemase
BSU25600 comER late competence protein ComER
BSU17030 cotE  morphogenic protein (spore coat protein)
BSU06890  cotJA polypeptide composition of the spore coat; required for the assembly of CotJC
BSU06900 cotJB  polypeptide composition of the spore coat
BSU06910 cotJC polypeptide composition of the spore coat
BSU02600  cwlJ  cell wall hydrolase (stored in the spore coat)
BSU08970  prkA  serine protein kinase

BSU27840  safA  morphogenetic protein associated with SpoVID (spore coat protein)
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BSU19330

BSU28110

BSU09400

BSU19320

BSU00160

BSU09830

BSU08980

BSU10900

BSU11730

BSU19020

BSU19660

BSU25360

BSU28100

BSU30080

BSU32350

BSU37920

sodF
spoVID
SpoVR
sghC
yaaH
yhaX
yhbH
yisY
yibX
yobN
yozD
yafC
ysxE
yteV

yunB

ywdL

superoxide dismutase

required for assembly of the spore coat (stage VI sporulation)
involved in spore cortex synthesis (stage V sporulation)
squalene-hopene cyclase

hypothetical protein (spore coat protein)

hypothetical protein (spore coat protein)

hypothetical protein

hypothetical protein (spore coat protein)

hypothetical protein (spore coat protein, cotO)
hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein (spore coat protein)

hypothetical protein

hypothetical protein

hypothetical protein (spore coat protein, gerQ)

Table 7.6: B. subtilis cluster 82 elaboration genes

Locus

BSU19690

BSU29300

BSU24390

BSU12350

BSU06960

BSU09770

Name

kamA

ribR

Function
lysine 2,3-aminomutase

riboflavin kinase

spolllAE  mutants block sporulation after engulfment (stage 111 sporulation)

yjmF
yesN

yheD

D-mannonate oxidoreductase
hypothetical protein

hypothetical protein
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BSU15090 ylbO hypothetical protein

BSU17320 ymaF hypothetical protein

Note: spore coat protein assignments are from Henriques and Moran (Henriques and

Moran 2007).

7.1.1.1.2.2 B. anthracis cluster 82

Figure 7.4: B. anthracis cluster 82 image (post-elaboration)
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Table 7.7: B. anthracis cluster 82 core genes

Locus Name Function
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GBAA3906 cotE spore coat protein e
GBAAQ0805 cotJA cotja protein
GBAA0804 cotJB cotjb protein
GBAAO0803  cotJC cotjc protein
GBAA5640  cwlJ-2 cell wall hydrolase
GBAA0252 dal-1 alanine racemase

GBAAO0767  spoVR stage v sporulation protein r

GBAA1924 - amine oxidase, flavin-containing
GBAA3668 - glycosyl hydrolase, family 18
GBAA5030 - hydrolase, alpha/beta fold family
GBAA0870 - hydrolase, haloacid dehalogenase-like family
GBAA4554 - late competence protein ComER
GBAA4659 - lysm domain protein

GBAA3612 - squalene-hopene cyclase

GBAA4692 - stage vi sporulation protein d, putative
GBAA1489 - superoxide dismutase

GBAA0550 - hypothetical protein

GBAAO0551 - hypothetical protein

GBAA1233 - hypothetical protein

GBAA2305 - hypothetical protein

GBAA4532 - hypothetical protein

GBAA4691 - hypothetical protein

GBAA4965 - hypothetical protein

GBAA5207 - hypothetical protein

GBAA5641 - hypothetical protein
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Table 7.8: B. anthracis cluster 82 elaboration genes
Locus Name Function

GBAA1238 cotz-2 spore coat protein z

GBAAQ0176 - alcohol dehydrogenase, zinc-containing
GBAA1221 - bacteriocin o-metyltransferase, putative
GBAA1219 - glycosyl transferase, group 2 family protein
GBAA5241 - spore coat protein f-related protein
GBAA2002 - transcriptional regulator, arsr family
GBAAQ0806 - hypothetical protein

GBAA1220 - hypothetical protein

GBAA1411 - hypothetical protein

GBAA2344 - hypothetical protein

GBAA3671 - hypothetical protein

GBAA4041 - hypothetical protein

GBAA4507 - hypothetical protein

GBAA4966 - hypothetical protein

GBAA5728 - hypothetical protein
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7.1.1.1.3 B. subtilis - B. anthracis cluster 84

7.1.1.1.3.1 B. subtilis cluster 84

Figure 7.5: B. subtilis cluster 84 image (post-elaboration)
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Table 7.9: B. subtilis cluster 84 core genes
Locus Name Function
BSU14890 ctaC cytochrome caa3 oxidase (subunit I1)
BSU14900 ctaD cytochrome caa3 oxidase (subunit I)
BSU14910 ctaE cytochrome caa3 oxidase (subunit 111)
BSU14920 ctaF cytochrome caa3 oxidase (subunit 1V)

BSU19690 kamA lysine 2,3-aminomutase
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BSU24170 mmgA acetyl-CoA acetyltransferase

BSU24150 mmgC acyl-CoA dehydrogenase

BSU24140 mmgD citrate synthase 3

BSU30070 opuD glycine betaine transporter

BSU24130 prpD 2-methylcitrate dehydratase

BSU02820 rapJ response regulator aspartate phosphatase
BSU23470  spollAA  anti-anti-sigma factor (antagonist of SpollAB)
BSU23460  spollAB  anti-sigma F factor

BSU18220 yngF enoyl-CoA hydratase

BSU18230 yngG hydroxymethylglutaryl-CoA lyase

BSU18240 yngH acetyl-CoA carboxylase biotin carboxylase subunit
BSU13960 ykwC hypothetical protein

BSU14810 ylaK hypothetical protein

BSU18210 yngE hypothetical protein

BSU18260 yngJ hypothetical protein

BSU19700 yodP hypothetical protein

BSU19720 yodR hypothetical protein

BSU19740 yodT hypothetical protein

BSU24120 yqiQ hypothetical protein

BSU38240 ywcA hypothetical protein

BSU38230 ywcB hypothetical protein

Table 7.10: B. subtilis cluster 84 elaboration genes
Locus Name Function

BSU28380 gerM  germination (cortex hydrolysis) and sporulation (stage 11, multiple polar septa)
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BSU27440

BSU27430

BSU23170

BSU24420

BSU15170

BSU18250

BSU38990

BSUO05710

BSU10400

BSU12320

BSU12330

BSU17320

BSU19110

BSU28960

BSU31730

ginH
ginQ
spmB
spolll1AB
spoVD
yngl
SCOA
ydhD
yhxC
yjmC
yjmD
ymaF
yobW
ytxC

yuzC

glutamine ABC transporter (glutamine-binding protein)
glutamine ABC transporter (ATP-binding protein)
spore maturation protein

stage 111 sporulation protein SpoAB
penicillin-binding protein

acyl-CoA synthetase

succinyl CoA:3-oxoacid CoA-transferase (subunit A)
hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein
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7.1.1.1.3.2 B. anthracis cluster 84

Figure 7.6: B. anthracis cluster 84 image (post-elaboration)
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Table 7.11: B. anthracis cluster 84 core genes
Locus Name  Function

GBAA4154 ctaC cytochrome c oxidase, subunit ii
GBAA4153 ctaD cytochrome c oxidase, subunit i
GBAA4152 ctak cytochrome c oxidase, subunit iii
GBAA4151 ctaF cytochrome c oxidase, subunit ivb
GBAA2353 garR 2-hydroxy-3-oxopropionate reductase
GBAA2300 kamA I-lysine 2,3-aminomutase

GBAA2348 mmgD citrate synthase
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GBAA2550 mvaB hydroxymethylglutaryl-CoA lyase
GBAA0554  opuD-1  glycine betaine transporter
GBAA2349 prpD 2-methylcitrate dehydratase
GBAA4296  spollAA  anti-sigma f factor antagonist
GBAA4295  spollAB  anti-sigma F factor

GBAA2350 yqiQ carboxyvinyl-carboxyphosphonate phosphorylmutase

GBAA5589 - acetyl-CoA acetyltransferase
GBAA2548 - acetyl-CoA carboxylase

GBAA2298 - acetyltransferase, gnat family
GBAA2547 - acyl-coa dehydrogenase

GBAA5587 - acyl-coa dehydrogenase

GBAA2552 - carboxyl transferase domain protein
GBAA2296 - coa-transferase, beta subunit
GBAA2551 - enoyl-CoA hydratase

GBAA4161 - phoh family protein

GBAA3760 - prophage lambdaba01, tpr domain protein, putative
GBAA1635 - sodium/solute symporter family protein
GBAA1634 - hypothetical protein

GBAA2294 - hypothetical protein

Table 7.12: B. anthracis cluster 84 elaboration genes
Locus Name Function
GBAA2295 atoD acetate coa-transferase, subunit a
GBAA0327 gabD succinate-semialdehyde dehydrogenase (nadp+)

GBAA0240 hppD 4-hydroxyphenylpyruvate dioxygenase
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GBAA1851 ilvB-2  acetolactate synthase Il large subunit
GBAA5535 nuoK NADH dehydrogenase kappa subunit
GBAA5532 nuoN NADH dehydrogenase subunit N

GBAA1331 phaC poly(r)-hydroxyalkanoic acid synthase, class iii, phac subunit

GBAA2549 - acetyl-CoA carboxylase

GBAA2352 - acyl-coa dehydrogenase

GBAA0241 - fumarylacetoacetate hydrolase family protein
GBAA0242 - homogentisate 1,2-dioxygenase, putative
GBAA4586 - phenylalanine-4-hydroxylase, putative
GBAA0326 - sensory box sigma-54 dependent dna-binding response regulator
GBAA0937 - hypothetical protein

GBAA2214 - hypothetical protein

GBAA3017 - hypothetical protein

GBAA3573 - hypothetical protein

GBAA4834 - hypothetical protein

7.1.1.2 Gene lists for flagellar clusters
1. B. subtilis - B. anthracis cluster 58
2. B. subtilis - L. monocytogenes cluster 79

3. B. anthracis - L. monocytogenes cluster 102

7.1.1.2.1 B. subtilis - B. anthracis cluster 58:

7.1.1.2.1.1 B. subtilis cluster 58
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Figure 7.7: B. subtilis cluster 58 image (post-elaboration)
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200 250 300
Scaled PSSM #2: E=1.9e-10

mﬂend: 123 log10(P.clust)=-5.558 36 sequences; 27 uniqu

e log1!
—— D

H

Il

il
|
l

Table 7.13: B. subtilis cluster 58 shared

Locus

BSU13130

BSU13690

BSU16180

BSU16190

BSU16220

BSU16240

BSU16290

BSU16320

BSU16350

Name
proA
motA
flgB
flgC
fliG

flil
flgG
fliy

fliP

Function

gamma-glutamyl phosphate reductase
flagellar motor protein MotA
flagellar basal body rod protein FIgB
flagellar basal body rod protein FIgC
flagellar motor switch protein G
flagellum-specific ATP synthase
flagellar basal body rod protein FIgG
flagellar motor switch protein

flagellar biosynthesis protein FliP
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BSU16360 fliQ flagellar biosynthesis protein FliQ

BSU16370 fliR flagellar biosynthesis protein FIiR

BSU16380 flnB flagellar biosynthesis protein FIhB

BSU16390 flnA flagellar biosynthesis protein A

BSU16400 flnF flagellar biosynthesis regulator FIhF

BSU22720 cheR methyl-accepting chemotaxis proteins (MCPs) methyltransferase
BSU34800 yvcE hypothetical protein

BSU35410 flgK flagellar hook-associated protein FIgK

BSU35650 IytR membrane-bound transcriptional regulator LytR

Table 7.14: B. subtilis cluster 58 elaboration genes
Locus Name  Function
BSU01120 fusA elongation factor G
BSU11340 fabF 3-oxoacyl-(acyl carrier protein) synthase |1
BSU12780 XepA Iytic exoenzyme associated with defective prophage PBSX
BSU14630 SpeA arginine decarboxylase
BSU15450 IspA lipoprotein signal peptidase
BSU15770 prkC protein kinase
BSU16210 fliF flagellar MS-ring protein
BSU16230 fliH flagellar assembly protein H
BSU16250 fliJ flagellar biosynthesis chaperone
BSU16260 yIxF hypothetical protein
BSU16280 flgD flagellar basal body rod modification protein
BSU16310 fliM flagellar motor switch protein FliM

BSU16410 yIxH hypothetical protein
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BSU16420 cheB chemotaxis-specific methylesterase

BSU16430 cheA two-component sensor histidine kinase

BSU16440 cheW  modulation of CheA activity in response to attractants (chemotaxis)

BSU16550 dxr 1-deoxy-D-xylulose 5-phosphate reductoisomerase

BSU34020 yvbX hypothetical protein

7.1.1.2.1.2 B. anthracis cluster 58

Figure 7.8: B. anthracis cluster 58 image (post-elaboration)

Cluster: 58 ; resid: 0.180 ; genes: 61 ; conds: 21 ; iter: 100 Cluster: 58 ; resid: 0.180 ; genes: 61 ; conds: 21 ; iter: 100
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Table 7.15: B. anthracis cluster 58 core genes

Locus Name Function
GBAA1449 - peptidase, m23/m37 family
GBAA1662 - flagellar motor switch protein
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GBAA1665

GBAA1669

GBAA1674

GBAA1675

GBAA1679

GBAA1681

GBAA1686

GBAA1712

GBAA1713

GBAA1714

GBAA1715

GBAA1716

GBAA1718

GBAA2992

GBAA4748

GBAA5506

cheR

flgB

flgC

fliG

fliR

fInA

proA

IytR

chemotaxis protein methyltransferase cher
flagellar hook-associated protein
flagellar basal body rod protein
flagellar basal body rod protein
flagellar motor protein
flagellum-specific ATP synthase
flagellar hook protein

flagellar biosynthesis protein
flagellar biosynthesis protein
flagellar biosynthesis protein
flagellar biosynthesis protein
flagellar biosynthesis protein
flagellar biosynthesis protein
gamma-glutamyl phosphate reductase
flagellar motor protein

membrane-bound transcriptional regulator LytR

Table 7.16: B. anthracis cluster 58 elaboration genes

Locus

GBAA0631

GBAAO0683

GBAAO0889

GBAAO0890

GBAA1097

GBAA1098

Name

treB

uppP

Function

pts system, trehalose-specific iibc component
undecaprenyl pyrophosphate phosphatase
alginate o-acetyltransferase, putative

alginate o-acetyltransferase, putative
hypothetical protein

wall-associated domain protein
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GBAA1099 - hypothetical protein

GBAA1191 - oligopeptide abc transporter, oligopeptide-binding protein
GBAA1657 - hypothetical protein
GBAA1666 - hypothetical protein
GBAA1667 - hypothetical protein
GBAA1668 - hypothetical protein
GBAA1670 - flagellar hook-associated protein
GBAA1671 - flagellar hook-associated protein
GBAA1672 - flagellar protein flis, putative
GBAA1676 - flagellar basal body protein
GBAA1680 - hypothetical protein
GBAA1684 - hypothetical protein
GBAA1685 - flagellar hook assembly protein
GBAA1701 - hypothetical protein
GBAA1706 - flagellin

GBAA1717 - hypothetical protein

GBAA1831 cysK-2 cysteine synthase a

GBAA1868 - hydrolase, alpha/beta fold family
GBAA2192 - hypothetical protein

GBAA2383 - hypothetical protein

GBAA2560 - sensor histidine kinase
GBAA2561 - dna-binding response regulator
GBAA2614 - hypothetical protein

GBAA3142 brnQ-5 branched-chain amino acid transport system ii carrier protein

GBAA3143  proC pyrroline-5-carboxylate reductase
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GBAA3144

GBAA3145

GBAA3146

GBAA3147

GBAA3893

GBAA4747

GBAA4750

GBAAS5317

GBAA5318

GBAA5345

GBAA5415

GBAA5604

ftsX

hypothetical protein

malate dehydrogenase, putative

hypothetical protein

hypothetical protein

cell wall hydrolase, putative

dna-binding protein

d-alanyl-d-alanine carboxypeptidase family protein
methyl-accepting chemotaxis protein
endonuclease/exonuclease/phosphatase family
hypothetical protein

cell division abc transporter, permease protein ftsx

abc transporter, atp-binding protein
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7.1.1.2.2 B. subtilis - L. monocytogenes cluster 79

7.1.1.2.2.1 B. subtilis cluster 79

Figure 7.9: B. subtilis cluster 79 image (post-elaboration)

Cluster: 79 ; resid: 0.494 ; genes: 25 ; conds: 81 ; iter: 100

Cluster: 79 ; resid: 0.494 ; genes: 25 ; conds: 81 ; iter: 100

o 50 100 150

Scaled PSSM #1: E=de-12

Scaled PSSM #3: E=2.5e-12

=
=
&
@
3
@
8

200 250 300 0
Scaled PSSM #2: E=5.1e-12

i

Table 7.17: B. subtilis cluster 79 shared genes

Locus

BSU12850

BSU13680

BSU16180

BSU16210

BSU16220

Name
ykaA
motB
flgB
fliF

fliG

Function

hypothetical protein

flagellar motor protein MotB
flagellar basal body rod protein FIgB
flagellar MS-ring protein

flagellar motor switch protein G
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BSU16240

BSU16280

BSU16290

BSU16310

BSU16320

BSU16380

BSU16390

BSU16400

BSU16430

BSU16550

BSU35150

BSU35340

BSU35400

flil
flgD
flgG
fliM
fliy
flhB
flhA
flhF
cheA
dxr
yvzB
fliD

flgL

flagellum-specific ATP synthase

flagellar basal body rod modification protein
flagellar basal body rod protein FIgG
flagellar motor switch protein FIiM

flagellar motor switch protein

flagellar biosynthesis protein FIhB

flagellar biosynthesis protein A

flagellar biosynthesis regulator FIhF
two-component sensor histidine kinase
1-deoxy-D-xylulose 5-phosphate reductoisomerase
hypothetical protein

flagellar capping protein

flagellar hook-associated protein FlgL

Table 7.18: B. subtilis cluster 79 elaboration genes

Locus

BSU04450

BSU16230

BSU16250

BSU16260

BSU16360

BSU16410

BSU16420

Name
dctS
fliH
fliJ
yIxF
fliQ
yIxH

cheB

Function

two-component sensor histidine kinase
flagellar assembly protein H

flagellar biosynthesis chaperone
hypothetical protein

flagellar biosynthesis protein FliQ
hypothetical protein

chemotaxis-specific methylesterase

353



7.1.1.2.2.2 L. monocytogenes cluster 79

Figure 7.10: L. monocytogenes cluster 79 image (post-elaboration)

Cluster: 79 ; resid: 0.543 ; genes: 51 ; conds: 30 ; iter: 100 Cluster: 79 ; resid: 0.543 ; genes: 51 ; conds: 30 ; iter: 100
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Table 7.19: L. monocytogenes cluster 79 shared
Locus Name Function
LMOO0679 flnB  flagellar biosynthesis protein FIhB
LMOO0680 flhnA  flagellar biosynthesis protein A
LMO0681 - flagellar biosynthesis regulator FIhF
LMO0686 motB  hypothetical protein
LMO0690 flaA  flagellin
LMO0692 cheA  two-component sensor histidine kinase CheA

LMO0696 flgD  flagellar basal body rod modification protein
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LMO0697

LMO0699

LMOO0700

LMOO0706

LMOO0707

LMOO0710

LMOO0713

LMOO0714

LMOO0716

LMO1317

LMO2248

flge

fliM

flgL
fliD
flgB
fliF
fliG

flil

flagellar hook protein FIgE

flagellar motor switch protein FIiM

flagellar motor switch protein

flagellar hook-associated protein FlgL

flagellar capping protein

flagellar basal body rod protein FlgB

flagellar MS-ring protein

flagellar motor switch protein G
flagellum-specific ATP synthase
1-deoxy-D-xylulose 5-phosphate reductoisomerase

hypothetical protein

Table 7.20: L. monocytogenes cluster 79 elaboration genes

Locus

LMO0682

LMO0683

LMO0685

LMO0687

LMO0695

LMO0698

LMOO0701

LMO0702

LMO0703

LMOO0704

LMOO0705

Name
flgG

flgk

Function

flagellar basal body rod protein FIgG
hypothetical protein

flagellar motor protein MotA
hypothetical protein
hypothetical protein

flagellar motor switch protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein

flagellar hook-associated protein FIgK
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LMOO0708

LMOO0709

LMO0711

LMOO0715

LMOO0717

LMOO0718

LMO0828

LMO0952

LMO1230

LMO1239

LMO1365

LMO1389

LMO1390

LMO1496

LMO1598

LMO1699

LMO1787

LMO1815

LMO2037

LMO2044

LMO2537

LMO2635

flgC

fliH

tyrS

rplS

mraY

hypothetical protein
hypothetical protein
flagellar basal body rod protein FIgC
flagellar assembly protein H
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
1-deoxy-D-xylulose-5-phosphate synthase
hypothetical protein
hypothetical protein
hypothetical protein
tyrosyl-tRNA synthetase
hypothetical protein

50S ribosomal protein L19
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein

1,4-dihydroxy-2-naphthoate octaprenyltransferase
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7.1.1.2.3 B. anthracis - L. monocytogenes cluster 102

7.1.1.2.3.1 B. anthracis cluster 102

Figure 7.11: B. anthracis cluster 102 image (post-elaboration)

Cluster: 102 ; resid: 0.197 ; genes: 37 ; conds: 24 ; iter: 100 Cluster: 102 ; resid: 0.197 ; genes: 37 ; conds: 24 ; iter: 100
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Table 7.21: B. anthracis cluster 102 core genes

Locus Name Function

GBAA1667 - hypothetical protein
GBAA1669 - flagellar hook-associated protein
GBAA1670 - flagellar hook-associated protein
GBAA1672 - flagellar protein flis, putative
GBAA1674 flgB flagellar basal body rod protein
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GBAA1675

GBAA1676

GBAA1679

GBAA1680

GBAA1681

GBAA1685

GBAA1686

GBAAL1707

GBAA1714

GBAA5314

flgC

fliG

fliR

tyrS-2

flagellar basal body rod protein
flagellar basal body protein
flagellar motor protein
hypothetical protein
flagellum-specific ATP synthase
flagellar hook assembly protein
flagellar hook protein
transglycosylase, slt family
flagellar biosynthesis protein

tyrosyl-tRNA synthetase

Table 7.22: B. anthracis cluster 102 elaboration genes

Locus

GBAAO0558

GBAAO0890

GBAA0891

GBAA1449

GBAA1657

GBAA1663

GBAA1665

GBAA1666

GBAA1668

GBAA1671

GBAA1684

GBAA1868

Name

Function

methyl-accepting chemotaxis protein
alginate o-acetyltransferase, putative
hypothetical protein

peptidase, m23/m37 family
hypothetical protein

hypothetical protein

chemotaxis protein methyltransferase cher

hypothetical protein
hypothetical protein
flagellar hook-associated protein
hypothetical protein

hydrolase, alpha/beta fold family
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GBAA2240

GBAA2383

GBAA2613

GBAA2614

GBAA2839

GBAA3893

GBAAA4747

GBAA4748

GBAA5317

GBAA5318

1-acyl-sn-glycerol-3-phosphate acyltransferase, putative
hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

cell wall hydrolase, putative

dna-binding protein

flagellar motor protein

methyl-accepting chemotaxis protein

endonuclease/exonuclease/phosphatase family

7.1.1.2.3.2 L. monocytogenes cluster 102
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Figure 7.12: L. monocytogenes cluster 102 image (post-elaboration)

Cluster: 102 ; resid: 0.423 ; genes: 40 ; conds: 23 ; iter: 100 Cluster: 102 ; resid: 0.423 ; genes: 40 ; conds: 23 ; iter: 100

Table 7.23: L. monocytogenes cluster 102 core genes

Locus

LMOO0678

LMO0696

LMO0697

LMOO0703

LMOO0705

LMOO0707

LMOO0708

LMOO0710

LMO0711

Name
fliR
flgD

flge

flgk

fliD

flgB

flgC

Function

flagellar biosynthesis protein FIiR

flagellar basal body rod modification protein
flagellar hook protein FIgE

hypothetical protein

flagellar hook-associated protein FlgK
flagellar capping protein

hypothetical protein

flagellar basal body rod protein FIgB

flagellar basal body rod protein FIgC
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LMOO0712

LMOO0714

LMOO0715

LMOO0716

LMOO0717

LMO1598

fliE
fliG
fliH

flil

tyrS

flagellar hook-basal body protein FIiE
flagellar motor switch protein G
flagellar assembly protein H
flagellum-specific ATP synthase
hypothetical protein

tyrosyl-tRNA synthetase

Table 7.24: L. monocytogenes cluster 102 elaboration genes

Locus

LMO0679

LMO0681

LMO0682

LMO0683

LMO0686

LMO0688

LMO0689

LMO0691

LMO0695

LMO0699

LMOO0700

LMOO0701

LMO0702

LMOO0704

LMOO0706

LMOO0709

Name

flhB

flgG

motB

cheY

fliM

flgL

Function

flagellar biosynthesis protein FIhB
flagellar biosynthesis regulator FIhF
flagellar basal body rod protein FIgG
hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

Chemotaxis response regulator CheY
hypothetical protein

flagellar motor switch protein FIiM
flagellar motor switch protein
hypothetical protein

hypothetical protein

hypothetical protein

flagellar hook-associated protein FIgL

hypothetical protein
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LMOO0718

LMO1239

LMO1492

LMO1708

LMO2242

LMO2346

LMO2428

LMO2537

LMO2669

7.2 Additional figures and tables from global validation

hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein
hypothetical protein

hypothetical protein

7.2.1 (bi)cluster coherence metric figures

7.2.1.1 Residuals

In each of the plots shown below are the distributions of the residuals from all
methods considered by this study for a given pairing. Next to each distribution, in
gray, are residuals from randomly shuffled (bi)clusters that match the size distribution

for each method. Explanations of the method name abbreviations can be found in

Table 3.1.
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7.2.1.1.1 Figures for the Gram-positive triplet

B. anthracis

B. subtilis
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Figure 7.13: Residuals from the B. subtilis — B. anthracis pairing.
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L. monocytogenes
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Figure 7.14: Residuals from the B. subtilis — L. monocytogenes pairing
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Figure 7.15: Residuals from the B. anthracis — L. monocytogenes pairing
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7.2.1.1.2 Figures for the Gram-negative triplet
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Figure 7.16: Residuals from the E. coli — S. typhimurium pairing.
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V. cholerae

E. coli
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Figure 7.17: Residuals from the E. coli — V. Cholerae pairing.
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S. typhimurium V. cholerae
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Figure 7.18: Residuals from the S. typhimurium — V. cholerae pairing

7.2.1.2 Average pairwise correlations

In each of the plots shown below are the distributions of the distributions of the mean
correlations from all methods considered by this study for a given pairing. Next to
each distribution, in gray, are residuals from randomly shuffled (bi)clusters that match
the size distribution for each method. Explanations of the method name abbreviations

can be found in Table 3.1.
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7.2.1.2.1 Figures for the Gram-positive triplet
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Figure 7.19: Mean correlations from the B. subtilis — B. anthracis pairing.
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Figure 7.20: Mean correlations from the B. subtilis — L. monocytogenes pairing.
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L. monocytogenes
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Figure 7.21: Mean correlations from the B. anthracis — L. monocytogenes pairing.
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7.2.1.2.2 Figures for the Gram-negative triplet
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Figure 7.22: Mean correlations from the E. coli — S. typhimurium pairing.
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Figure 7.23: Mean correlations from the E. coli — V. cholerae pairing.

V. cholerae

£6'0

850

850

290

90

eFo

0

¥

o

eFo

80

S. typhimurium

uoljejanog anjosqy ueap

feli=lplo]
vO0-ad
O2-03
Woss-ad
WOss-03
RERUNEGLE]
3WHS
13-WOSW-ad
13-WOSW-03
HS=xsneg
HS=IMSIN
HS-NOSW-04

HS=WOSN-03

o18N0
vO0-ad
vO0-03
Woss-ad
Woss-03
RERIEEUE]
RERIEE]
13-WOSW-a4
13-WOSW-03
HS=NXsSnE
HS=IMSIN
HS=NOSN-04
HS=NOSN-03

Figure 7.24: Mean correlations from the S. typhimurium — V. cholerae pairing.
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7.2.1.3 Network Association p-values

In each of the plots shown below are the distributions of the distributions of the
network association p-values (-logig) from all methods considered by this study for a
given pairing. Explanations of the method name abbreviations can be found in Table

3.1.

7.2.1.3.1 Figures for the Gram-positive triplet
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Figure 7.25: Network Association p-values from the B. subtilis — B. anthracis pairing.
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Figure 7.26: Network Association p-values from the B. subtilis — L. monocytogenes pairing
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Figure 7.27: Network Association p-values from the B. anthracis — L. monocytogenes pairing.

7.2.1.3.2 Figures for the Gram-negative triplet
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Figure 7.28: Network Association p-values from the E. coli — S. typhimurium pairing.
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Figure 7.29: Network Association p-values from the E. coli — V. cholerae pairing
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Figure 7.30: Network Association p-values from the S. typhimurium — V. cholerae pairing.

7.2.1.4 Motif E-values

In each of the plots shown below are the distributions of the motif E-values (-1ogio)

from all methods considered by this study for a given pairing. Explanations of the

method name abbreviations can be found in Table 3.1.
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7.2.1.4.1 Figures for the Gram-positive triplet
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Figure 7.31: Motif E-values from the B. subtilis-B. anthracis pairing.
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Figure 7.32: Motif E-values from the B. subtilis-L. monocytogenes pairing
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Figure 7.33: Motif E-values from the B. anthracis-L. monocytogenes pairing.
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7.2.1.4.2 Figures for the Gram-negative triplet
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Figure 7.34: Motif E-values from the E. coli — S. typhimurium pairing
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Figure 7.35: Motif E
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Figure 7.36: Motif E-values from the S. typhimurium — V. cholerae pairing.
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7.2.1.5 Sequence p-values

In each of the plots shown below are the distributions of the sequence p-values (-10g1o)

from all methods considered by this study for a given pairing. Explanations of the

method name abbreviations can be found in Table 3.1.

7.2.1.5.1 Figures for the Gram-positive triplet
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Figure 7.37: Sequence p-values from the B. subtilis-B. anthracis pairing.
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Figure 7.38: Sequence p-values from the B. subtilis-L. monocytogenes pairing.
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Figure 7.39: Sequence p-values from the B. anthracis-L. monocytogenes pairing.
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7.2.1.5.2 Figures for the Gram-negative triplet
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Figure 7.40: Sequence p-values from the E. coli — S. typhimurium pairing.
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V. cholerae
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Figure 7.41: Sequence p-values from the E. coli — V. cholerae pairing.
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Figure 7.42: Sequence p-values from the S. typhimurium — V. cholerae pairing.
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7.2.2 Additional size distribution, overlap and coverage figures

7.2.2.1 Number of genes

In each of the plots shown below are the distributions of the number of genes from all

methods considered by this study for a given pairing. Explanations of the method

name abbreviations can be found in Table 3.1.

7.2.2.1.1 Figures for the Gram-positive triplet
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Figure 7.43: Number of genes from the B. subtilis — B. anthracis pairing.
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L. monocytogenes
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Figure 7.44: Number of genes from the B. subtilis — L. monocytogenes pairing
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Figure 7.45: Number of genes from the B. anthracis — L. monocytogenes pairing
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7.2.2.1.2 Figures for the Gram-negative triplet
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Figure 7.46: Number of genes from the E. coli — S. typhimurium pairing.
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V. cholerae
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Figure 7.47: Number of genes from the E. coli — V. cholerae pairing
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S. typhimurium V. cholerae
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Figure 7.48: Number of genes from the S. typhimurium — V. cholerae pairing

7.2.2.2 Number of conditions
In each of the plots shown below are the distributions of the number of conditions
from all methods considered by this study for a given pairing. Explanations of the

method name abbreviations can be found in Table 3.1.
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7.2.2.2.1 Figures for the Gram-positive triplet
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Figure 7.49: Number of conditions from the B. subtilis — B. anthracis pairing.
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L. monocytogenes
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Figure 7.50: Number of conditions from the B. subtilis — L. monocytogenes pairing
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L. monocytogenes

B. anthracis

SUCIIPUOY 10 JaqunN

joll:ale]

IWOoo-a4d

Woo-03

Woss-ad

Woss-03

13-NOSW-a4

13-NOSW-03

HS=WOSs-ad

HS-WOSI-03

28N

Iv0oo-a4

W0a-03

Woss-ad

Woss-03

3-WIsW-a4

3-WIsW-03

HS-WOs-ad

HS-WOSIN-03

Figure 7.51: Number of conditions from the B. anthracis — L. monocytogenes pairing.

7.2.2.2.2 Figures for the Gram-negative triplet
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Figure 7.52: Number of conditions from the E. coli — S. typhimurium pairing.
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V. cholerae
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Figure 7.53: Number of conditions from the E. coli — V. cholerae pairing
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S. typhimurium V. cholerae
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Figure 7.54: Number of conditions from the S. typhimurium — V. cholerae pairing.

7.2.2.3 Coverage (element-wise)
In each of the plots shown below are the distributions of the coverages (matrix
element-wise) from all methods considered by this study for a given pairing.

Explanations of the method name abbreviations can be found in Table 3.1.
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Figure 7.55: Coverages (matrix element-wise) from the B. subtilis — B. anthracis pairing.
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Figure 7.56: Coverages (matrix element-wise) from the B. subtilis — L. monocytogenes pairing.
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Figure 7.57: Coverages (matrix element-wise) from the B. anthracis — L. monocytogenes pairing.
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7.2.2.3.2 Figures for the Gram-negative triplet
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Figure 7.58: Coverages (matrix element-wise) from the E. coli — S. typhimurium pairing.
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V. cholerae
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Figure 7.59: Coverages (matrix element-wise) from the E. coli — V. cholerae pairing.
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Figure 7.60: Coverages (matrix element-wise) from the S. typhimurium — V. cholerae pairing.
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7.2.2.4 Coverage (gene-wise)
In each of the plots shown below are the distributions of the coverages (gene-wise)
from all methods considered by this study for a given pairing. Explanations of the

method name abbreviations can be found in Table 3.1.

7.2.2.4.1 Figures for the Gram-positive triplet
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Figure 7.61: Coverages (gene-wise) from the B. subtilis — B. anthracis pairing.
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Figure 7.62: Coverages (gene-wise) from the B. subtilis — L. monocytogenes pairing.
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Figure 7.63: Coverages (gene-wise) from the B. anthracis — L. monocytogenes pairing.

7.2.2.4.2 Figures for the Gram-negative triplet
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Figure 7.64: Coverages (gene-wise) from the E. coli — S. typhimurium pairing.
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V. cholerae

E. coli
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Figure 7.65: Coverages (gene-wise) from the E. coli — V. cholerae pairing.
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S. typhimurium V. cholerae
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Figure 7.66: Coverages (gene-wise) from the S. typhimurium — V. cholerae pairing.

7.2.2.5 Overlap (element-wise)
In each of the plots shown below are the distributions of the overlaps (matrix element-
wise) from all methods considered by this study for a given pairing. Explanations of

the method name abbreviations can be found in Table 3.1.
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7.2.2.5.1 Figures for the Gram-positive triplet

B. anthracis

B. subtilis

(%) depang x|neN uojssaidx3

a1igno
IW00-ad
W00-03
Woss-ad
Woss-03
RER B
e
H-vsIsn
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13-WIsSK-03
Hs-lMsng
HS-IMSI
d-VSISW
HS-WDSW-ad
HS-WOSW-03

jlj=[gle]
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Figure 7.67: Overlaps (matrix element-wise) from the B. subtilis — B. anthracis pairing.
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Figure 7.68: Overlaps (matrix element-wise) from the B. subtilis — L. monocytogenes pairing.
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L. monocytogenes

B. anthracis
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Figure 7.69: Overlaps (matrix element-wise) from the B. anthracis — L. monocytogenes pairing.

7.2.2.5.2 Figures for the Gram-negative triplet

S. typhimurium

E. coli
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Figure 7.70: Overlaps (matrix element-wise) from the E. coli — S. typhimurium pairing.
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V. cholerae
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Figure 7.71: Overlaps (matrix element-wise) from the E. coli — V. cholerae pairing.
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S. typhimurium V. cholerae
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Figure 7.72: Overlaps (matrix element-wise) from the S. typhimurium — V. cholerae pairing.

7.2.2.6 Overlap (gene-wise)
In each of the plots shown below are the distributions of the Overlaps (gene-wise)
from all methods considered by this study for the B. subtilis- B. anthracis pairing.

Explanations of the method name abbreviations can be found in Table 3.1.
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7.2.2.6.1 Figures for the Gram-positive triplet

B. anthracis

B. subtilis
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Figure 7.73: Overlaps (gene-wise) from the B. subtilis — B. anthracis pairing.
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Figure 7.74: Overlaps (gene-wise) from the B. subtilis — L. monocytogenes pairing.
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L. monocytogenes

B. anthracis
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Figure 7.75: Overlaps (gene-wise) from the B. anthracis — L. monocytogenes pairing.
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7.2.2.6.2 Figures for the Gram-negative triplet

S. typhimurium

E. coli
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Figure 7.76: Overlaps (gene-wise) from the E. coli — S. typhimurium pairing.
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V. cholerae
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Figure 7.77: Overlaps (gene-wise) from the E. coli — V. cholerae pairing.
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S. typhimurium

V. cholerae

Figure 7.78: Overlaps (gene-wise) from the S. typhimurium — V. cholerae pairing.

7.2.3 Comparison of the (bi)cluster coherence metrics
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7.2.3.1 Comparisons with FD-MScM

7.2.3.1.1 Residuals

In the tables below, we present a comparison of the residuals of the results
from MScM (full data) with all other relevant methods for all 3 pairings of a given
triplet that’s examined.

In the comparisons, we compare both MScM steps to the

other methods. Displayed are the means for each method and/or step compared, as
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well as the Wilcoxon’s non-parametric rank test (2-sided) comparing their
distributions. We use ‘dist.” as an abbreviation for distribution, and the “distl vs.
dist2” column to represent both the distributions being compared and their order in the
table. Therefore, for example, the FD-MScM-SH vs. FD-SSCM row displays the
comparison of the distributions of residuals from the shared MS cMonkey results with
those from the SS cMonkey, for the appropriate organism, with the FD-MScM-SH as
distl (and FD-SSCM as dist2). In addition, we color-code the Wilcoxon’s 2-sided
column for a given organism to indicate whether the test indicated the distributions
were the same or different, and if different, the distribution with the better overall
score, as determined by the metric (Residuals). In this scheme, we use green to
indicate distl had a statistically better score, red if dist2, and yellow to indicate a tie.
Therefore, as the MScM results are always the distl in these comparisons, this color
scheme allows one to quickly and easily determine the overall frequency with which
MScM did as well or better than the other methods. In the case of the Gram-positive
triplet, these results illustrate that in 71 of the 92 comparisons (77.2%) MScM step did
as well or better than its competitors. Similarly, in 47 of the 92 comparisons (51%)

for the Gram-negative triplet, MScM did as well or better than its competitors.

7.2.3.1.1.1 Grame-positive triplet

Table 7.25: Comparison of bicluster residuals from the full data methods considered by this study
for all pairings of B. subtilis, B. anthracis and L. monocytogenes.

B. subtilis - B. anthracis pairing
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distl vs. dist2

FD-MScM-SH vs.

FD-SSCM

FD-MScM-SH vs.

QUBIC

FD-MScM-SH vs.

FD-COAL

FD-MScM-EL vs.

FD-SSCM

FD-MScM-EL vs.

QUBIC

FD-MScM-EL vs.

FD-COAL

FD-MScM-SH vs.

MSISA-P

FD-MScM-SH vs.

MSISA-R

FD-MScM-SH vs.

MSKM-SH

FD-MScM-SH vs.

MSKM-EL

FD-MScM-SH vs.

BMSKM-SH

B. subtilis

distl mean W.ilcoxon's dist2 mean

2-sided

(green) (red)

0.51+0.08 0.49+0.13

0.51+0.08

0.87+0.21

0.51+0.08 0.80+0.25

0.49+0.09 0.273 0.49+0.13

0.49+0.09

0.87+0.21

0.49 £ 0.09

0.80+£0.25

0.51+0.08

0.98+0.39

0.51+0.08

1.11+041

0.51+0.08

0.41 +0.07

0.51+0.08

0.42 +0.06

0.51+0.08 0.45 £ 0.07

416

B. anthracis
distl mean  Wilcoxon's dist2 mean
(green) 2-sided (red)
0.30 £0.09 0.456 0.31+0.12
0.30 +0.09 1.51+0.29
0.30 +0.09 0.58 £0.17
0.32+0.09 0.31+0.12
0.32+0.09 1.51+0.29
0.32+0.09 0.58 +£0.17
0.30+0.09 1.97 £0.94
0.30+0.09 1.58+0.38
0.30 £0.09 0.53+0.12
0.30 +0.09 0.48+0.11
0.30+0.09 0.38 £ 0.07




FD-MScM-SH vs.
0.51 +0.08
BMSKM-EL

FD-MScM-EL vs.
0.49 +0.09
MSISA-P

FD-MScM-EL vs.
0.49 £0.09
MSISA-R

FD-MScM-EL vs.
0.49 £ 0.09
MSKM-SH

FD-MScM-EL vs.
0.49 +0.09
MSKM-EL

FD-MScM-EL vs.
0.49 £0.09
BMSKM-SH

FD-MScM-EL vs.

0.49 £ 0.09
BMSKM-EL

B. subtilis - L. monocytogenes pairing

B. subtilis

distl mean Wilcoxon's

distl vs. dist2

(green) 2-sided

FD-MScM-SH vs.
0.52 +0.08
FD-SSCM

FD-MScM-SH vs.
0.52 +0.08
QuBIC

0.45+0.06

0.98 +0.39

1.11+£0.41

0.41 +0.07

0.42 +0.06

0.45 £ 0.07

0.45+0.06

dist2 mean

(red)

0.49+0.13

0.87+0.21

417

0.30 £ 0.09 0.39 £ 0.07

0.32+0.09

1.97+0.94

0.32+0.09

1.58 £ 0.38

0.32£0.09

0.53+0.12

0.32+0.09

048 +0.11

0.32+0.09

0.38 +0.07

0.32£0.09 0.39 £ 0.07

L. monocytogenes

distl mean Wilcoxon's 2- dist2 mean

(green) sided (red)

0.34+0.12 0.40+0.18

0.34+£0.12 1.81+0.85




FD-MScM-SH vs.

FD-COAL

FD-MScM-EL vs.

FD-SSCM

FD-MScM-EL vs.

QUBIC

FD-MScM-EL vs.

FD-COAL

FD-MScM-SH vs.

MSISA-P

FD-MScM-SH vs.

MSISA-R

FD-MScM-SH vs.

MSKM-SH

FD-MScM-SH vs.

MSKM-EL

FD-MScM-SH vs.

BMSKM-SH

FD-MScM-SH vs.

BMSKM-EL

FD-MScM-EL vs.

MSISA-P

FD-MScM-EL vs.

MSISA-R

0.52 +£0.08 0.80+£0.25

0.50 £0.10 0.088 0.49+0.13

0.50+0.10

0.87+0.21

0.50 +£0.10

0.80+£0.25

0.52 +0.08

0.87+0.34

0.52+0.08

1.11+0.42

0.52 +£0.08

0.40 £ 0.07

0.52 +0.08

0.42 +0.06

0.52+0.08

0.43 +0.07

0.52 +£0.08

0.44 £ 0.06

0.50+0.10

0.87+0.34

0.50£0.10 1.11+0.42
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0.34+£0.12 1.70+3.24

0.34+0.12

0.40+0.18

0.34+0.12

1.81+0.85

0.34+£0.12

1.70+3.24

0.34+0.12

1.59+0.52

0.34+0.12

1.31+0.34

0.34+£0.12

0.50 £0.12

0.34+0.12

048 +0.11

0.34+0.12

0.42 +0.09

0.34+0.12

0.42 +£0.09

0.34+0.12

1.59+0.52

0.34+£0.12 1.31+0.34




FD-MScM-EL vs.
0.50£0.10 0.40 £ 0.07

MSKM-SH

FD-MScM-EL vs.
0.50 +0.10 0.42 +0.06

MSKM-EL

FD-MScM-EL vs.
0.50£0.10 0.43 £0.07

BMSKM-SH

FD-MScM-EL vs.
0.50 +£0.10 0.44 £ 0.06

BMSKM-EL

B. anthracis - L. monocytogenes pairing

B. anthracis

distl mean Wilcoxon's dist2 mean
distl vs. dist2
(green) 2-sided (red)

FD-MScM-SH vs.
0.33+0.10 0.31+0.12

FD-SSCM

FD-MScM-SH vs.
0.33+0.10 1.51+£0.29

QUBIC

FD-MScM-SH vs.
0.33+0.10 0.58 £0.17

FD-COAL

FD-MScM-EL vs.
0.36 +0.11 0.31+0.12

FD-SSCM

FD-MScM-EL vs.
0.36 +£0.11 1.51+£0.29

QUBIC

419

0.34+£0.12 0.50 £0.12

0.34+0.12

048 +0.11

0.34+0.12

0.42 +0.09

0.34+£0.12 0.42 +£0.09

L. monocytogenes

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)

0.36 +0.14 0.40+0.18

0.36 £0.14 1.81+0.85
0.36 £0.14 1.70+3.24
0.36 +0.13

0.40+0.18

0.36 +0.13 1.81+0.85




FD-MScM-EL vs.

FD-COAL

FD-MScM-SH vs.

MSKM-SH

FD-MScM-SH vs.

MSKM-EL

FD-MScM-EL vs.

MSKM-SH

FD-MScM-EL vs.

MSKM-EL

0.36 £0.11

0.33+0.10

0.33+0.10

0.36 £0.11

0.36 +0.11

0.58 £0.17

0.40+0.08

0.39+0.07

0.40 £ 0.08

0.39 +0.07

7.2.3.1.1.2 Gram-negative triplet

0.36 £0.13

0.36 +0.14

0.36+0.14

0.36 £ 0.13

0.36 +0.13

1.70+3.24

0.43 +0.08

0.43+0.08

0.43 £ 0.08

0.43 +0.08

Table 7.26: Comparison of bicluster residuals from the full data methods considered by this study

for all pairings of E. coli, S. typhimurium and V. cholerae.

E. coli —S. typhimurium pairing

distl vs. dist2

FD-MScM-SH vs.
FD-SSCM
FD-MScM-SH vs.
QUBIC
FD-MScM-SH vs.

FD-COAL

E. coli

distl mean Wilcoxon’s dist2 mean

(green) 2-sided (red)
0.45+0.09 0.50 + 0.10
0.45+0.09 EUMI=VKl 0.29 +0.13
0.45+0.09 0.61+0.34

420

S. typhimurium

distl mean Wilcoxon’s dist2 mean

(green) 2-sided (red)

0.57 £ 0.07

ReZI=SVRl 0.46 + 0.09

0.57 £ 0.07 PEEE]=IorAs 0.58 + 0.54

0.57 £0.07 puEZE]=SPA 0.67 £ 0.15



FD-MScM-EL vs.

FD-SSCM

FD-MScM-EL vs.

QUBIC

FD-MScM-EL vs.

FD-COAL

FD-MScM-SH vs.

MSISA-P

FD-MScM-SH vs.

MSISA-R

FD-MScM-SH vs.

MSKM-SH

FD-MScM-SH vs.

MSKM-EL

FD-MScM-SH vs.

BMSKM-SH

FD-MScM-SH vs.

BMSKM-EL

FD-MScM-EL vs.

MSISA-P

FD-MScM-EL vs.

MSISA-R

FD-MScM-EL vs.

MSKM-SH

0.47 + 0.10 B7AGEI=H02

0.47+0.10

2.73E-26

0.47+0.10

0.45+0.09

9.12E-18

0.45 £ 0.09 el =rt

0.45+0.09 0.93
0.45+0.09 0.27
0.45+0.09 0.01

0.45+0.09

0.47+0.10

9.45E-17

0.47+0.10

0.47+0.10

0.50+£0.10

0.29+0.13

0.61+0.34

0.78 £0.30

0.95+0.34

0.45+0.07

0.46 £ 0.07

0.47 +0.07

0.48 +0.07

0.78 £0.30

0.95+0.34

0.45+0.07
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0.60 + 0.08

0.60 +0.08

0.60+0.08

0.57 £ 0.07

0.57 +0.07

0.57 +0.07

0.57 £ 0.07

0.57 +0.07

0.57 £ 0.07

0.60 + 0.08

0.60 +0.08

0.60 +0.08

2.38E-30

1.82E-08

6.90E-09

8.53E-19

8.20E-03

0.10

1.90E-04

6.50E-05

3.93E-06

6.56E-03

0.46 +£0.09

0.58 +0.54

0.67+£0.15

0.71+0.20

0.83+0.36

0.58 +0.05

0.57 £0.05

0.54 +0.04

0.54 £0.04

0.71+0.20

0.83+0.36

0.58 +0.05



FD-MScM-EL vs.

MSKM-EL 0.47 £0.10 0.55
FD-MScM-EL vs.
BMSKM-SH 0.47 £0.10 0.36
FD-MScM-EL vs.
BMSKM-EL 0.47+£0.10 0.34
E. coli - V. cholerae pairing

E. coli

distl mean Wilcoxon’s

distl vs. dist2

(green) 2-sided
FD-MScM-SH vs.
FD-SSCM 0.44 £0.08
FD-MScM-SH vs.
QUBIC 0.44 £ 0.08 iRl =Evi]
FD-MScM-SH vs.
FD-COAL 0.44 +0.08
FD-MScM-EL vs.
FD-SSCM 0.47 + 0.09 BN =o!
FD-MScM-EL vs.
QUBIC 0.47 £ 0.09 Qi =tvys
FD-MScM-EL vs.
FD-COAL 0.47 £0.09
FD-MScM-SH vs.
MSISA-P 0.44 + 0.08 PR =SNE

0.46 £ 0.07

0.47 +0.07

0.48 +0.07

dist2 mean

(red)

0.50+0.10

0.29+0.13

0.61+0.34

0.50+0.10

0.29+0.13

0.61+0.34

0.76 £ 0.30

422

0.60 + 0.08

0.60 +0.08

0.60+0.08

3.84E-04

1.91E-15

V. cholerae

0.57 £0.05

0.54 +0.04

0.54 £0.04

distl mean Wilcoxon’s dist2 mean

(green)

0.58 +0.08

0.58 +0.08

0.58 +0.08

0.60 £ 0.09

0.60 +0.09

0.60+0.09

0.58 + 0.08

2-sided

1.97E-21

7.06E-33

5.10E-27

1.01E-34

3.30E-07

(red)

0.50+0.29

0.33+0.19

0.73+0.35

0.50 £ 0.29

0.33+0.19

0.73+0.35

0.75+0.28



FD-MScM-SH vs.

MSISA-R

FD-MScM-SH vs.

MSKM-SH

FD-MScM-SH vs.

MSKM-EL

FD-MScM-EL vs.

MSISA-P

FD-MScM-EL vs.

MSISA-R

FD-MScM-EL vs.

MSKM-SH

FD-MScM-EL vs.

MSKM-EL

0.44 +0.08

0.44 +0.08

0.44 +0.08

0.47 +£0.09

0.47 +0.09

1.31E-20

8.13E-03

1.97E-04

3.16E-09

5.45E-20

S. typhimurium - V. cholerae pairing

distl vs. dist2

FD-MScM-SH vs.
FD-SSCM
FD-MScM-SH vs.

QUBIC

0.96 £0.35

0.45+0.09

0.47 +0.08

0.76 £ 0.30

0.96 +0.35

0.47 +£0.09 0.52 0.45 +0.09
0.47 +0.09 0.70 0.47 £0.08
S. typhimurium

(green)

2-sided

distl mean Wilcoxon’s dist2 mean

(red)

0.57 £ 0.06 EeReHA=¥Z M 0.46 + 0.09

0.57 £ 0.06 BEZZI=SFA 0.58 + 0.54

423

0.58 + 0.08

0.58 +0.08

0.58 +0.08

0.60 £ 0.09

0.60 +0.09

0.60+0.09

0.60 £ 0.09

1.51E-18

9.43E-12

2.59E-05

3.60E-18

5.67E-20

1.07E-19

V. cholerae

1.06 £0.19

0.50 +0.09

0.50+0.08

0.75+0.28

1.06 £0.19

0.50+0.09

0.50 £ 0.08

distl mean Wilcoxon’s dist2 mean

(green)

2-sided

(red)

0.60+0.09 pASI=¥Il 0.50 +0.29

0.60+0.09 NeReRi=SxXiW 0.33 +0.19




FD-MScM-SH vs.

FD-COAL

FD-MScM-EL vs.

FD-SSCM

FD-MScM-EL vs.

QuUBIC

FD-MScM-EL vs.

FD-COAL

FD-MScM-SH vs.

MSKM-SH

FD-MScM-SH vs.

MSKM-EL

FD-MScM-SH vs.

BMSKM-SH

FD-MScM-SH vs.

BMSKM-EL

FD-MScM-EL vs.

MSKM-SH

FD-MScM-EL vs.

MSKM-EL

FD-MScM-EL vs.

BMSKM-SH

FD-MScM-EL vs.

BMSKM-EL

0.57 +0.06

0.60 +0.07

0.60 +0.07

0.60 £+ 0.07

0.57 +0.06

0.57 £ 0.06

0.57 £ 0.06

0.57 +0.06

0.60 £ 0.07

0.60 + 0.07

0.60 +0.07

0.60 £ 0.07

3.27E-12

1.77E-31

1.12E-05

0.20

1.89E-02

5.35E-11

6.33E-09

2.55E-08

1.56E-10

4.93E-23

1.62E-20

0.67 +0.15

0.46 +0.09

0.58 £ 0.54

0.67£0.15

0.56 +0.05

0.55+0.05

0.52 £ 0.04

0.53 +0.04

0.56 £ 0.05

0.55+0.05

0.52+0.04

0.53+0.04

424

0.60 +0.09

0.62 +0.08

0.62 +0.08

0.62 +0.08

0.60 +0.09

0.60 £ 0.09

0.60 £ 0.09

0.60 +0.09

0.62 £ 0.08

0.62 + 0.08

0.62 +0.08

0.62 £ 0.08

3.22E-05

8.65E-30

8.74E-04

6.76E-30

1.97E-23

7.93E-22

1.66E-19

2.60E-34

5.31E-29

3.92E-27

5.33E-25

0.73+0.35

0.50+0.29

0.33+0.19

0.73+0.35

0.47 +0.07

0.49 £ 0.07

0.50 £ 0.07

0.51 +0.06

0.47 £0.07

0.49 £ 0.07

0.50 +0.07

0.51 £ 0.06



7.2.3.1.2 Mean correlations

A comparison of the mean correlations of the results from MScM (full data) with all
other relevant methods for all 3 pairings of a given triplet that’s examined. In the
comparisons, we compare both MScM steps to the other methods. Displayed are the
means for each method and/or step compared, as well as the Wilcoxon’s non-
parametric rank test (2-sided) comparing their distributions. We direct the reader to
the description for section 7.2.3.1.1 for instructions on how to interpret the table. In
this case, these results illustrate that in 92 of the 92 comparisons (100%) for the Gram-
positive triplet MScM step did as well or better than its competitors. Similarly, in 65
of the 92 comparisons (70.7%) for the Gram-negative triplet, MScM did as well or

better than its competitors.

7.2.3.1.2.1 Gram-positive triplet

Table 7.27: Comparison of bicluster mean correlations from the full data methods considered by
this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes.

B. subtilis - B. anthracis pairing

B. subtilis B. anthracis
distl mean Wilcoxon's dist2 mean distl mean Wilcoxon's dist2 mean
distl vs. dist2 (green) 2-sided (red) (green) 2-sided (red)
FD-MScM-SH
vs. FD-SSCM 0.59 +0.11 0.56 + 0.14 0.85+0.09 0.351 0.82+0.15

FD-MScM-SH

vs. QUBIC 0.59+0.11 0.36 £ 0.19 0.85+0.09 0.49 £0.05

425



FD-MScM-SH
vs. FD-COAL
FD-MScM-EL
vs. FD-SSCM
FD-MScM-EL
vs. QUBIC
FD-MScM-EL
vs. FD-COAL
FD-MScM-SH
vs. MSISA-P
FD-MScM-SH
vs. MSISA-R
FD-MScM-SH
vs. MSKM-SH
FD-MScM-SH
vs. MSKM-EL
FD-MScM-SH
vs. BMSKM-SH
FD-MScM-SH
vs. BMSKM-EL
FD-MScM-EL
vs. MSISA-P
FD-MScM-EL

vs. MSISA-R

0.59+0.11

0.446

0.59 £ 0.15

0.61+0.11

0.56 +0.14

0.61+0.11 0.36+0.19

0.61+0.11 0.067 0.59 £ 0.15

0.59+£0.11 0.963 0.60 £0.14

0.59+0.11 0.55+0.13

0.59+0.11 0.340 0.58 £0.11

059+0.11

0.56 +0.11

0.59+0.11

0.49+0.13

0.59+0.11 0.50 £0.12

0.61+0.11 0.500 0.60+0.14

0.61+0.11 0.55+£0.13

426

0.85 £ 0.09 0.62 +£0.13
0.84 £ 0.09 0.760 1 0.82+0.15
0.84 £0.09 0.49 £0.05
0.84 £ 0.09 0.62 £0.13
0.85+0.09 0.56 +0.07
0.85+0.09 0.51£0.03
0.85 % 0.09 0.52+0.14
0.85+0.09 0.58 £0.15
0.85+0.09 0.72+0.10
0.85 % 0.09 0.71+0.10
0.84 £0.09 0.56 £ 0.07
0.84 £0.09 0.51+£0.03



FD-MScM-EL
vs. MSKM-SH  0.61+0.11 0.58 £0.11
FD-MScM-EL
vs. MSKM-EL  0.61+0.11 0.56 +0.11
FD-MScM-EL
vs. BMSKM-SH 0.61+0.11 0.49 £0.13
FD-MScM-EL

vs. BMSKM-EL 0.61+0.11 0.50 £0.12

B. subtilis - L. monocytogenes pairing

B. subtilis

distl mean W.ilcoxon's dist2 mean

distl vs. dist2 (green) 2-sided (red)
FD-MScM-SH

vs. FD-SSCM 0.59+0.11 0.56+£0.14
FD-MScM-SH

vs. QUBIC 0.59+0.11 0.36 £0.19
FD-MScM-SH

vs. FD-COAL 0.59+0.11 0.481 0.59 £ 0.15

FD-MScM-EL
vs. FD-SSCM 0.61+0.10 0.56 £0.14
FD-MScM-EL
vs. QUBIC 0.61+0.10 0.36 £0.19

427

0.84 +0.09 0.52+£0.14

0.84 +0.09 0.58 +0.15
0.84 £0.09 0.72+0.10
0.71+0.10

0.84 £ 0.09

L. monocytogenes

distl mean Wilcoxon's dist2 mean
(green) 2-sided (red)
0.80+0.13

0.71+0.20

0.80+0.13 0.45+0.27

0.80 £0.13 0.999 0.80+0.12

0.71+0.20

0.81+£0.11

0.81+0.11 0.45+0.27




FD-MScM-EL

vs. FD-COAL

FD-MScM-SH

vs. MSISA-P

FD-MScM-SH

vs. MSISA-R

FD-MScM-SH

vs. MSKM-SH

FD-MScM-SH

vs. MSKM-EL

FD-MScM-SH

vs. BMSKM-SH

FD-MScM-SH

vs. BMSKM-EL

FD-MScM-EL

vs. MSISA-P

FD-MScM-EL

vs. MSISA-R

FD-MScM-EL

vs. MSKM-SH

FD-MScM-EL

vs. MSKM-EL

FD-MScM-EL

vs. BMSKM-SH

0.61+0.10 0.59 £ 0.15

0.59+0.11 0.639 0.60 £ 0.20

0.59+0.11 0.55+£0.12

0.59+0.11 0.716 0.59£0.11

0.56 +0.11

059+0.11

0.52+0.14

0.59+0.11

0.59+0.11 0.53+£0.12

0.61+0.10 0.440 0.60 £ 0.20

0.61+0.10 0.55+£0.12

0.61+0.10 0.347 0.59+£0.11

0.56 £0.11

0.61+0.10

0.61+0.10 0.52+0.14

428

0.81+0.11

0.80+0.13

0.80+0.13

0.80 £0.13

0.80+0.13

0.80+0.13

0.80 £0.13

0.81+0.11

0.81+0.11

0.81+0.11

0.81+£0.11

0.81+0.11

0.674

0.80+£0.12

0.47 +0.23

0.50+0.27

0.51+0.17

0.55+0.16

0.63+0.15

0.64+0.14

0.47+0.23

0.50+0.27

0.51+0.17

0.55+0.16

0.63+0.15



FD-MScM-EL

vs. BMSKM-EL 0.61+0.10

0.53£0.12

B. anthracis - L. monocytogenes pairing

distl vs. dist2
FD-MScM-SH
vs. FD-SSCM
FD-MScM-SH
vs. QUBIC
FD-MScM-SH
vs. FD-COAL
FD-MScM-EL
vs. FD-SSCM
FD-MScM-EL
vs. QUBIC
FD-MScM-EL
vs. FD-COAL
FD-MScM-SH
vs. MSKM-SH
FD-MScM-SH

vs. MSKM-EL

B. anthracis

distl mean W.ilcoxon's dist2 mean

(green) 2-sided (red)
0.82+0.11 0.227 0.82 £0.15
0.82+0.11 0.49 +0.05
0.82+0.11 0.62+£0.13
0.80+0.11 0.82 £0.15
0.80+0.11 0.49 +0.05
0.80+0.11 0.62+£0.13
0.82+0.11 0.69 £ 0.12
0.82+0.11 0.70+0.10

429

0.81+0.11 0.64+0.14

L. monocytogenes

distl mean W.ilcoxon's dist2 mean

(green) 2-sided  (red)
0.77+0.14 0.71+0.20
0.77+0.14 0.45+0.27
0.77+0.14 0.344 0.80+0.12
0.78+0.13 0.71+0.20
0.78£0.13 0.45+0.27
0.78 £0.13 0.532 0.80+0.12
0.77+0.14 0.60+0.14
0.77+0.14 0.63+0.13



FD-MScM-EL

vs. MSKM-SH

FD-MScM-EL

vs. MSKM-EL

0.80+0.11

0.80+0.11

0.69 £0.12

0.70 +0.10

7.2.3.1.2.2 Gram-negative triplet

0.78 £0.13

0.78 +£0.13

0.60 £0.14

0.63+0.13

Table 7.28: Comparison of bicluster mean correlations from the full data methods considered by

this study for all pairings of E. coli, S. typhimurium and V. cholerae.

E. coli - S. typhim

urium pairing

distl vs. dist2

FD-MScM-SH vs.

FD-SSCM

FD-MScM-SH vs.

QUBIC

FD-MScM-SH vs.

FD-COAL

FD-MScM-EL vs.

FD-SSCM

FD-MScM-EL vs.

QUBIC

distl mean

(green)

0.68+0.12

0.68 £0.12

0.68+0.12

0.66+0.13

0.66 £ 0.13

FD-MScM-EL vs.

FD-COAL

0.66 +0.13

E. coli

Wilcoxon’s dist2 mean

2-sided (red)
0.59+0.17
(WAJ=EXi*Ba 0.91 + 0.08
0.63+0.16
0.59+0.17
HONN=CY A 0.91 + 0.08
0.08 0.63+0.16

430

S. typhimurium
distl mean Wilcoxon’s dist2 mean
2-sided

(green) (red)

0.55+0.11

1.55E-04

0.58 +0.18

0.55 % 0.11 pepiti=ex{om 0.86 + 0.12

0.55+0.11 095 057+0.15

0.50 + 0.11 EENA=MN 0.58 + 0.18
0.50 +0.11

1.34E-39 ‘ 0.86 +0.12

0.50 £ 0.11 geRiyd=colsm 0.57 + 0.15



FD-MScM-SH vs.

MSISA-P

FD-MScM-SH vs.

MSISA-R

FD-MScM-SH vs.

MSKM-SH

FD-MScM-SH vs.

MSKM-EL

FD-MScM-SH vs.

BMSKM-SH

FD-MScM-SH vs.

BMSKM-EL

FD-MScM-EL vs.

MSISA-P

FD-MScM-EL vs.

MSISA-R

FD-MScM-EL vs.

MSKM-SH

FD-MScM-EL vs.

MSKM-EL

FD-MScM-EL vs.

BMSKM-SH

FD-MScM-EL vs.

BMSKM-EL

4.60E-06

2.03E-09

2.18E-13

8.03E-19

8.43E-19

1.09E-04

5.42E-08

5.95E-09

0.56 = 0.20

0.52+0.18

0.59+0.12

0.57 £0.12

0.54 +0.12

0.54+0.12

0.56 = 0.20

0.52 £0.18

0.59+0.12

0.57 £0.12

0.54 £0.12

0.54 £0.12

431

0.55+0.11 0.14 0.60+0.26

0.55 +0.11 Befehi=HorA 0.46 + 0.23

0.55+0.11 0.29 +0.08
0.55 +0.11 SZI=VES 0.31 + 0.08
0.55 + 0.11 BAlki=s<l 0.37 + 0.09
0.55 +0.11 kI =EelN 0.38 + 0.09
050+0.11  0.02 0.60%0.26
0.50 + 0.11 FRls=R00 0.46 + 0.23
0.50 +0.11 0.29 +0.08
0.50 +0.11 WENEE =R ‘ 0.31+0.08
0.50 +0.11 [AVI=2FA 0.37 + 0.09

0.50 £ 0.11 puEPPI=skes 0.38 + 0.09



E. coli - V. cholerae pairing

distl mean

distl vs. dist2
(green)

FD-MScM-SH vs.
FD-SSCM 0.70+0.11
FD-MScM-SH vs.
QUBIC 0.70+0.11
FD-MScM-SH vs.
FD-COAL 0.70£0.11
FD-MScM-EL vs.
FD-SSCM 0.66 £0.12
FD-MScM-EL vs.
QUBIC 0.66 £0.12
FD-MScM-EL vs.
FD-COAL 0.66 £0.12
FD-MScM-SH vs.
MSISA-P
FD-MScM-SH vs.
MSISA-R
FD-MScM-SH vs.
MSKM-SH
FD-MScM-SH vs.

MSKM-EL

E. coli

Wilcoxon’s

2-sided

3.32E-39

9.05E-06

2.68E-04

7.46E-42

0.07

3.73E-09

dist2 mean

(red)

0.59 £0.17

0.91 £ 0.08

0.63+0.16

0.59+0.17

0.91 £ 0.08

0.63+0.16

0.56+0.21

0.51+0.18

0.56 £0.15

0.55+0.14

432

V. cholerae

distl mean Wilcoxon’s dist2 mean

2-sided

(green) (red)

0.55£0.15 0.60 £0.19

0.55 % 0.15 gepaZi=ricm 0.92 + 0.06

0.55+0.15 0.03 0.59+0.17

0.50 + 0.15 EPXelo=2orM 0.60 + 0.19
0.50 £ 0.15 [EIE:]=Rle) ‘ 0.92 +0.06
0.50 + 0.15 EERLI=R/:W 0.50 + 0.17
0.55+0.15 JeXNol]==/:l 0.69 + 0.19
0.55 +0.15 [ENEFI=E0k] ‘ 0.48 +0.12
0.55 +0.15

A==k 0.43 + 0.16

0.55 £ 0.15 BeRels|=miloN 0.44 + 0.15



FD-MScM-EL vs.

MSISA-P 0.66 + 0.12 SSEGE]=E0EAN 0.56 + 0.21
FD-MScM-EL vs.
MSISA-R 0.66 £0.12 0.51+0.18
FD-MScM-EL vs.
MSKM-SH 0.66 +0.12 0.56 £ 0.15
S. typhimurium - V. cholerae pairing
S. typhimurium

distl mean Wilcoxon’s dist2 mean

distl vs. dist2
(green) 2-sided (red)

FD-MScM-SH vs.
FD-SSCM 0.55 + 0.11 GRS 0.58 + 0.18
FD-MScM-SH vs.
QUBIC 0.55 £ 0.11 jpmimcici=E (oM 0.86 + 0.12
FD-MScM-SH vs.
FD-COAL 0.55+0.11 0.90 0.57 £ 0.15
FD-MScM-EL vs.
FD-SSCM V=S (0NN 0.58 + 0.18
FD-MScM-EL vs.
QUBIC GRS =C7 ()R 0.86 + 0.12
FD-MScM-EL vs.
FD-COAL UWRISE 7B 0.57 + 0.15
FD-MScM-SH vs.
MSKM-SH P SVEES 0.31 + 0.09

433

0.50 £ 0.15 geNec]=S0lsq 0.69 + 0.19

0.50 +0.15 046 0.48+0.12

0.50 £ 0.15 pHEZER=E0EN 0.43 + 0.16

V. cholerae
distl mean Wilcoxon’s dist2 mean
2-sided

(green) (red)

0.51 +0.17 JER=2W 0.60 + 0.19
0.51 +0.17 JENS=21B 0.92 + 0.06
0.51+0.17 [WRE]=20W 0.59 + 0.17
0.48 +0.17 [EEWI==\N 0.60 + 0.19
0.48 +0.17 [AIA=EB 0.92 + 0.06
0.48 +0.17

RRZI=SON 0.59 + 0.17

0.51+0.17 0.16 0.49%0.13



FD-MScM-SH vs.

MSKM-EL

FD-MScM-SH vs.

BMSKM-SH

FD-MScM-SH vs.

BMSKM-EL

FD-MScM-EL vs.

MSKM-SH

FD-MScM-EL vs.

MSKM-EL

FD-MScM-EL vs.

BMSKM-SH

FD-MScM-EL vs.

BMSKM-EL

6.12E-35

3.48E-28

3.17E-34

5.78E-24

1.87E-15

5.57E-12

0.35+0.10

0.39+0.10

0.41+0.09

0.31£0.09

0.35+0.10

0.39+0.10

0.41 £0.09

7.2.3.1.3 Network Association p-values

0.51 £0.17 BEEets]=okl 0.47 + 0.13

0.51 +0.17 FuER]=H0LE 0.43 + 0.13

0.51£0.17 0.44£0.12

0.48 +£0.17 066 0.49%0.13

0.48 +0.17 0.39

0.47 +0.13

0.48 +0.17 BeEAEI=R0EM 0.43 +0.13

0.48 +£0.17 002 044+0.12

A comparison of the association p-values (-log10) from MScM (full data) with all

other relevant methods for all 3 pairings of a given triplet that’s examined. In the

comparisons, we compare both MScM steps to the other methods. Displayed are the

means for each method and/or step compared, as well as the Wilcoxon’s non-

parametric rank test (2-sided) comparing their distributions. We direct the reader to

7.2.3.1.1 for instructions on how to interpret the table. For example, these results

indicate that in 77 of the 92 comparisons (83.7%) for the Gram-positive triplet MScM
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does as well or better than its competitors. Similarly, in all of the 92 comparisons

(100%) for the Gram-negative triplet, MScM did as well or better than its competitors.

7.2.3.1.3.1 Gram-positive triplet

Table 7.29: Comparison of bicluster network association p-values from the full data methods

considered by this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes

B. subtilis - B. anthracis pairing

distl vs. dist2
FD-MScM-SH
vs. FD-SSCM
FD-MScM-SH
vs. QUBIC
FD-MScM-SH
vs. FD-COAL
FD-MScM-EL
vs. FD-SSCM
FD-MScM-EL
vs. QUBIC
FD-MScM-EL
vs. FD-COAL
FD-MScM-SH

vs. MSISA-P

B. subtilis

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)
7.82+£8.76 9.78 £9.76
7.82+£8.76 252+4.78
7.82+£8.76 7.57+£9.16
7.79£9.05 9.78 £9.76
7.79+9.05 2.52+4.78
7.79 £9.05 0.114 7.57+£9.16
7.82£8.76 0.300 5.56 + 5.86
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B. anthracis

distl mean W.ilcoxon's dist2 mean

(green) 2-sided (red)
6.16 £ 7.23 0.935 5.44 +5.38
6.16 £7.23 0.658 6.73+7.52
6.16 £7.23 0.132 6.50 £ 8.74
6.38+7.19 0.753 544 +5.38
6.38 + 7.19 0.853 6.73+7.52
6.38+7.19 0.098 6.50 +8.74
6.16 £7.23 0.834 5.61+7.17



FD-MScM-SH
vs. MSISA-R 7.82+8.76
FD-MScM-SH
vs. MSKM-SH  7.82 +8.76
FD-MScM-SH
vs. MSKM-EL  7.82 £8.76
FD-MScM-SH
vs. BMSKM-SH 7.82 +8.76
FD-MScM-SH
vs. BMSKM-EL 7.82 +8.76
FD-MScM-EL
vs. MSISA-P 7.79+£9.05
FD-MScM-EL
vs. MSISA-R 7.79£9.05
FD-MScM-EL
vs. MSKM-SH  7.79 +9.05
FD-MScM-EL
vs. MSKM-EL  7.79 £9.05
FD-MScM-EL
vs. BMSKM-SH 7.79 £ 9.05
FD-MScM-EL

vs. BMSKM-EL 7.79 £9.05

0.416

0.505

0.527

0.128

0.539

0.742

0.867

0.871

0.296

B. subtilis - L. monocytogenes pairing

9.69 +9.37

7.87 +9.35

8.15 £ 9.65

7.27£8.25

6.93+8.19

5.56 £5.86

9.69 £ 9.37

7.87 +9.35

8.15+£9.65

7.27 +£8.25

6.93+8.19

436

6.16 +7.23

6.16 +7.23

6.16 +7.23

6.16 +£7.23

6.16 +7.23

6.38+7.19

6.38+7.19

6.38 +7.19

6.38+7.19

6.38+7.19

6.38+7.19

0.186

0.084

0.591

0.987

0.241

0.093

0.005

0.700

0.018

9.66 +9.95

438 +5.10

4.06 +5.32

5.54 £ 6.48

4.56 + 5.86

5.61+7.17

9.66 £ 9.95

438 +5.10

4.06 £5.32

5.54 £ 6.48

4.56 £5.86



distl vs. dist2
FD-MScM-SH
vs. FD-SSCM
FD-MScM-SH
vs. QUBIC
FD-MScM-SH
vs. FD-COAL
FD-MScM-EL
vs. FD-SSCM
FD-MScM-EL
vs. QUBIC
FD-MScM-EL
vs. FD-COAL
FD-MScM-SH
vs. MSISA-P
FD-MScM-SH
vs. MSISA-R
FD-MScM-SH
vs. MSKM-SH
FD-MScM-SH
vs. MSKM-EL

FD-MScM-SH

vs. BMSKM-SH 7.70 +£8.79

B. subtilis

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)
7.70+8.79 9.78 +9.76
7.70 £8.79 2.52+4.78
7.70 £8.79 0.165 7.57+9.16
7.68 +9.27 9.78 +9.76
7.68 £9.27 2.52+4.78
7.68 £9.27 0.636 7.57+9.16
7.70 £8.79 0.185 9.05 +8.89
7.70 £8.79 9.61+£9.29

9.76 +

7.70£8.79 0.088 10.54
7.70 £8.79 0.364 7.68 £9.47

9.23+

0.392 10.39
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L. monocytogenes

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)
5.84+7.26 6.90 +7.75
5.84 £7.26 9.95+10.82
5.84 £7.26 0.146 5.93+8.27
5.69 + 6.92 6.90 +7.75
5.69 + 6.92 9.95+10.82
5.69 £6.92 0.138 5.93+8.27
5.84+7.26 0.948 3.70+1.79
5.84 +7.26 0.257 6.20 + 6.65
5.84 +£7.26 0.165 7.88 £9.56
5.84+7.26 0.152 491 +6.44
5.84+7.26 0.874 7.10+9.45



FD-MScM-SH
vs. BMSKM-EL 7.70 +£8.79
FD-MScM-EL
vs. MSISA-P 7.68 +9.27
FD-MScM-EL
vs. MSISA-R 7.68 £9.27
FD-MScM-EL
vs. MSKM-SH  7.68 +9.27
FD-MScM-EL
vs. MSKM-EL  7.68 +9.27
FD-MScM-EL
vs. BMSKM-SH 7.68 +9.27
FD-MScM-EL

vs. BMSKM-EL 7.68 +9.27

0.137

0.005

0.018

0.878

0.127

0.146

B. anthracis - L. monocytogenes pairing

B. anthracis

6.79 +8.75

9.05 +8.89

9.61+9.29

9.76 +

10.54

7.68 +9.47

9.23+

10.39

6.79 £8.75

distl mean Wilcoxon's dist2 mean

distl vs. dist2 (green)
FD-MScM-SH

vs. FD-SSCM 6.80 £ 8.19
FD-MScM-SH

vs. QUBIC 6.80 + 8.19

2-sided

0.944

0.679

(red)

547 £5.39

6.73+7.52

438

584 +7.26

5.69 +6.92

5.69 +6.92

5.69 £6.92

5.69 +6.92

5.69 £6.92

5.69 £6.92

0.179

0.941

0.218

0.152

0.138

0.854

0.147

4.86 +6.39

3.70+1.79

6.20 + 6.65

7.88 £9.56

491 +6.44

7.10+£9.45

4.86 +6.39

L. monocytogenes

distl mean

(green)

5.35£6.97

5.35+6.97

Wilcoxon's dist2 mean

2-sided

(red)

6.90£7.75

9.95+10.82



FD-MScM-SH
vs. FD-COAL
FD-MScM-EL
vs. FD-SSCM
FD-MScM-EL
vs. QUBIC
FD-MScM-EL
vs. FD-COAL
FD-MScM-SH
vs. MSKM-SH
FD-MScM-SH
vs. MSKM-EL
FD-MScM-EL
vs. MSKM-SH
FD-MScM-EL

vs. MSKM-EL

6.80 +8.19

6.70 +7.99

6.70 £7.99

6.70 £7.99

6.80 +8.19

6.80 £8.19

6.70 £7.99

6.70 +7.99

0.226

0.869

0.838

0.095

0.930

0.778

0.011

7.2.3.1.3.2 Gram-negative triplet

6.50 + 8.74

5.47 +5.39

6.73+£7.52

6.50 £ 8.74

5.67+7.00

3.86 £4.13

5.67+7.00

3.86 +4.13

5.35+6.97

0.281

5.03+6.91

5.03+6.91

5.03+6.91 0.567
5.35+6.97 0.418
5.35+6.97 0.334
5.03+6.91 0.186
5.03+6.91 0.687

5.93 +8.27

6.90 +7.75

9.95+10.82

5.93 +8.27

6.83 + 8.86

494 +£6.73

6.83 +8.86

4,94 +6.73

Table 7.30: Comparison of bicluster network association p-values from the full data methods

considered by this study for all pairings of E. coli, S. typhimurium and V. cholerae.

E. coli - S. typhimurium pairing

distl vs. dist2

E. coli

distl mean Wilcoxon’s dist2 mean

(green)

2-sided

(red)
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S. typhimurium

distl mean Wilcoxon’s

(green)

2-sided

dist2 mean

(red)



FD-MScM-SH
vs. FD-SSCM
FD-MScM-SH
vs. QUBIC
FD-MScM-SH
vs. FD-COAL
FD-MScM-EL
vs. FD-SSCM
FD-MScM-EL
vs. QUBIC
FD-MScM-EL
vs. FD-COAL
FD-MScM-SH
vs. MSISA-P
FD-MScM-SH
vs. MSISA-R
FD-MScM-SH
vs. MSKM-SH
FD-MScM-SH
vs. MSKM-EL
FD-MScM-SH
vs. BMSKM-SH
FD-MScM-SH

vs. BMSKM-EL

17.22 £10.39

17.22 +10.39

17.22 +10.39

23.06 £ 9.27

23.06 £9.27

23.06 +9.27

17.22 +£10.39

17.22 +10.39

17.22 +10.39

17.22 +£10.39

17.22 +10.39

17.22 +10.39

0.45

0.07

4.88E-22

2.77E-19

2.89E-06

5.82E-17

5.26E-42

9.58E-50

17.95+10.94

15.63 + 10.47

10.91 £ 10.78

17.95+10.94

15.63 + 10.47

10.91 £ 10.78

9.62 £ 7.69

10.12 +10.22

7.37+£8.70

7.78 +£8.98

6.02+8.14

6.37 + 8.28
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16.55 + 10.70 FHEZAN =R}

16.55 + 10.70

9.77E-05

16.55+ 10.70

20.69 +£10.28

2.29E-60

20.69 +10.28

8.25E-07

20.69 +10.28

16.55 + 10.70

7.25E-06

16.55 + 10.70

6.61E-56

16.55+ 10.70

16.55+ 10.70

7.24E-45

16.55 + 10.70 Seppl =2t

16.55+ 10.70

6.57 £9.02

9.12+11.64

3.85+7.07

6.57 £9.02

9.12+11.64

Rl =Rilss  3.85 + 7.07

8.54 £ 7.50

3.79+5.04

6.81 +8.49

6.05+8.05

5.34+7.28

4.98 +7.05



FD-MScM-EL

vs. MSISA-P

FD-MScM-EL

vs. MSISA-R

FD-MScM-EL

vs. MSKM-SH

FD-MScM-EL

vs. MSKM-EL

FD-MScM-EL

vs. BMSKM-SH

FD-MScM-EL

vs. BMSKM-EL

23.06 = 9.27 B =A 9.62 + 7.69

23.06 £ 9.27 BuER=ER 10.12 + 10.22

23.06 +9.27

7.37+£8.70

23.06 £ 9.27 BeRCEI=EN  7.78 + 8.98

23.06 £9.27

7.35E-87

6.02+8.14

23.06 +9.27 6.37 +8.28

E. coli - V. cholerae pairing

distl vs. dist2

FD-MScM-SH
vs. FD-SSCM
FD-MScM-SH
vs. QUBIC
FD-MScM-SH
vs. FD-COAL
FD-MScM-EL

vs. FD-SSCM

E. coli
distl mean Wilcoxon’s dist2 mean
2-sided

(green) (red)

18.38 +£10.17

0.43

17.95+10.94

18.38 + 10.17FZAWA=R0EN 15.63 = 10.47

18.38 + 10.17 BByl =k

10.91+10.78

22.53 £ 9.47 BRCH=FA 17.95 + 10.94
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20.69 + 10.28 FHE0Z =5k

20.69 +10.28

3.89E-78

20.69 +10.28

20.69 +£10.28

1.59E-70

20.69 +10.28

2.04E-67

20.69 +10.28

V. cholerae

distl mean Wilcoxon’s

2-sided

(green)

17.92 + 10.12 Qe =)ss

17.92 £10.12

0.43

17.92 + 10.12 Byord =]

21.35+9.62 [eRele] =K

8.54 £7.50

3.79+5.04

6.81 +8.49

6.05+8.05

534 +7.28

4,98 £7.05

dist2 mean

(red)

9.66 + 10.28

16.69 +12.25

6.92 +9.00

9.66 + 10.28



FD-MScM-EL
vs. QUBIC
FD-MScM-EL
vs. FD-COAL
FD-MScM-SH
vs. MSISA-P
FD-MScM-SH
vs. MSISA-R
FD-MScM-SH
vs. MSKM-SH
FD-MScM-SH
vs. MSKM-EL
FD-MScM-EL
vs. MSISA-P
FD-MScM-EL
vs. MSISA-R
FD-MScM-EL
vs. MSKM-SH
FD-MScM-EL

vs. MSKM-EL

22.53 £9.47

2253 +£947

18.38 £ 10.17

18.38 +£10.17

18.38 +10.17

18.38 £ 10.17

22.53 £9.47

2253 +947

22.53 £9.47

22.53 £9.47

2.30E-16

4.42E-76

1.16E-12

3.95E-31

8.90E-47

1.09E-09

2.79E-26

2.74E-82

S. typhimurium - V. cholerae pairing

distl vs. dist2

15.63 £ 10.47

10.91 +10.78

11.12 +£10.80

11.22 +10.86

8.92 +9.93

7.99+9.13

11.12+10.80

11.22 +10.86

8.92+9.93

7.99£9.13

S. typhimurium

distl mean Wilcoxon’s dist2 mean

(green)

2-sided

(red)
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21.35+9.62

21.35+£9.62

17.92 £10.12

17.92 +10.12

17.92 +10.12

17.92 £10.12

21.35+9.62

21.35+9.62

21.35+9.62

21.35+9.62

distl mean Wilcoxon’s

(green)

1.22E-02

9.71E-95

4.15E-04

9.51E-33

3.67E-06

3.56E-13

4.41E-62

V. cholerae

2-sided

16.69 £12.25

6.92 +9.00

12.19 £12.04

14.88 +£10.17

8.04 +10.11

7.33+£9.49

12,19+ 12.04

14.88 + 10.17

8.04 £10.11

7.33+£9.49

dist2 mean

(red)



FD-MScM-SH

15.10 £ 10.15FN M=l  6.57 + 9.02
vs. FD-SSCM
FD-MScM-SH

15.10 + 10.150PH0E =808 9.12 + 11.64
vs. QUBIC
FD-MScM-SH

15.10 £ 10.15 3.85+7.07
vs. FD-COAL
FD-MScM-EL

19.84 + 10.08Bey =261 6.57 + 9.02
vs. FD-SSCM
FD-MScM-EL

19.84 + 10.08 10 =508 9.12 + 11.64
vs. QUBIC
FD-MScM-EL

19.84 +£ 10.08 3.85+7.07
vs. FD-COAL
FD-MScM-SH

15.10 + 10.15F =58 6.75 + 9.30
vs. MSKM-SH
FD-MScM-SH

15.10 + 10. 15068 =R 4,57 + 7.03
vs. MSKM-EL
FD-MScM-SH

15.10 £ 10.15 5.51+8.19
vs. BMSKM-SH
FD-MScM-SH

15.10 + 10.15PNE =265 3.76 + 6.26
vs. BMSKM-EL
FD-MScM-EL

19.84 + 10.08 EGEI=V 5 6.75 + 9.30
vs. MSKM-SH
FD-MScM-EL

19.84 £ 10.08 457 +7.03
vs. MSKM-EL
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15.61 +10.24

15.61 +10.24

15.61 + 10.24

21.63 £9.52

21.63 £9.52

21.63 +9.52

15.61 +10.24

15.61 +10.24

15.61 +10.24

15.61 +10.24

21.63 £9.52

21.63 +9.52

2.47E-22

0.75

6.04E-62

1.10E-02

7.59E-33

2.29E-36

1.57E-41

3.35E-56

9.66 +10.28

16.69 + 12.25

6.92 +9.00

9.66 +10.28

16.69 + 12.25

6.92 +9.00

6.43 £9.17

6.69 £9.35

5.57+£8.59

6.02 + 8.86

6.43 £9.17

6.69 +9.35



FD-MScM-EL

19.84 + 10.08FeRZI=El 551 +8.19 21.63 £9.52 BPISESYE  5.57 + 8.59

vs. BMSKM-SH

FD-MScM-EL

19.84 + 10.08BHA=FEN 3.76 + 6.26 21.63 £9.52 BeAl=y(N 6.02 + 8.86

vs. BMSKM-EL

7.2.3.1.4 Motif E-values

A comparison of the motif E-values (-log10) from MScM (full data) with all other
relevant methods for all 3 pairings of a given triplet that’s examined. In the
comparisons, we compare both MScM steps to the other methods. Displayed are the
means for each method and/or step compared, as well as the Wilcoxon’s non-
parametric rank test (2-sided) comparing their distributions. We direct the reader to
7.2.3.1.1 for instructions on how to interpret the table. For example, these results
indicate that in 69 of the 92 of the comparisons for the Gram-positive triplet (75%)
MScM does as well or better than its competitors. Similarly, in 85 of the 92
comparisons (92.4%) for the Gram-negative triplet, MScM did as well or better than

its competitors.

7.2.3.1.4.1 Gram-positive triplet
Table 7.31: Comparison of bicluster motif E-values(-log10) from the full data methods considered
by this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes.

B. subtilis - B. anthracis pairing

B. subtilis B. anthracis
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distl vs. dist2

FD-MScM-SH
vs. FD-SSCM
FD-MScM-SH
vs. QUBIC
FD-MScM-SH
vs. FD-COAL
FD-MScM-EL
vs. FD-SSCM
FD-MScM-EL
vs. QUBIC
FD-MScM-EL
vs. FD-COAL
FD-MScM-SH
vs. MSISA-P
FD-MScM-SH
vs. MSISA-R
FD-MScM-SH
vs. MSKM-SH
FD-MScM-SH
vs. MSKM-EL
FD-MScM-SH

vs. BMSKM-SH

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)
2.17 +£10.07 7.03+18.81
2.17 £ 10.07 1.41+3.94
2.17 £10.07 0.172 2.72+£7.30
3.34£8.22 7.03+18.81
3.34£8.22 0.802 1.41+3.94
3.34+£8.22 0.464 2.72+£7.30
2.17 +£10.07 -1.12+2.03
2.17 +10.07 9.40+9.19
2.17 £10.07 -1.18+2.62
2.17 +£10.07 0.19 +£4.26
2.17 +10.07 -1.09 + 2.68
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distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)
2.46 £ 8.08 498 +10.63
2.46 +8.08 13.72 £14.49
246+8.08 0.618 3.85+8.83
3.74+10.70  0.427 498 +10.63
3.74 £ 10.70 13.72 + 14.49
3.74+10.70  0.685 3.85+8.83
2.46 £ 8.08 0.226 0.46 £3.43
2.46+8.08 2.34+11.56
2.46 £ 8.08 -0.22 £ 2.96
2.46 £ 8.08 2.74 £5.66
2.46+8.08 -0.39 +2.87




FD-MScM-SH

2.17+10.07  0.378

vs. BMSKM-EL
FD-MScM-EL

3.34+8.22
vs. MSISA-P
FD-MScM-EL

3.34+8.22
vs. MSISA-R
FD-MScM-EL

3.34+8.22
vs. MSKM-SH
FD-MScM-EL

3.34+8.22
vs. MSKM-EL
FD-MScM-EL

3.34+8.22
vs. BMSKM-SH
FD-MScM-EL

3.34+8.22
vs. BMSKM-EL

B. subtilis - L. monocytogenes pairing

B. subtilis

distl mean Wilcoxon's dist2 mean

distl vs. dist2

(green) 2-sided

FD-MScM-SH

0.43 £5.96
vs. FD-SSCM
FD-MScM-SH

0.43 £5.96
vs. QUBIC

0.44 £ 4.06

-1.12+2.03

9.40+9.19

-1.18 £2.62

0.19+4.26

-1.09 £ 2.68

0.44 £ 4.06

(red)

7.03 +18.81

1.41+3.94
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2.46 +8.08 3.07+5.44

3.74+10.70 0.059 0.46 +3.43

3.74£10.70 2.34 £11.56

3.74+£10.70 -0.22 +2.96
3.74+£10.70  0.495 2.74 £5.66
3.74£10.70 -0.39 £2.87
3.74+10.70  0.101 3.07+£5.44

L. monocytogenes

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)

1.65+5.96 0.46 +4.73

1.65+5.96 = 0.352 9.57 +13.54



FD-MScM-SH
vs. FD-COAL
FD-MScM-EL
vs. FD-SSCM
FD-MScM-EL
vs. QUBIC
FD-MScM-EL
vs. FD-COAL
FD-MScM-SH
vs. MSISA-P
FD-MScM-SH
vs. MSISA-R
FD-MScM-SH
vs. MSKM-SH
FD-MScM-SH
vs. MSKM-EL
FD-MScM-SH
vs. BMSKM-SH
FD-MScM-SH
vs. BMSKM-EL
FD-MScM-EL
vs. MSISA-P
FD-MScM-EL

vs. MSISA-R

0.43+£5.96 2.72+7.30
212 +7.86 7.03 +18.81
2.12+7.86 0.127 1.41+£3.94
2.12+7.86 0.370 2.72+7.30
0.43 +5.96 -2.63+1.00
0.43+£5.96 10.37 £ 8.84
0.43 £5.96 -1.91+1.56
0.43 £5.96 0.985 0.52 £5.33
0.43+£5.96 -1.97+1.58
0.43 +£5.96 0.992 0.02+3.81
212 +7.86 -2.63+1.00
2.12+7.86 10.37 £ 8.84
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1.65+5.96

0.325

3.32+9.98

3.32+9.98

0.573

3.32+£9.98

0.917

1.65+5.96

1.65+5.96

1.65+5.96

1.65+5.96

0.169

1.65+£5.96

1.65+5.96

0.177

3.32+9.98

3.32+9.98

3.66 £ 7.60

0.46 +4.73

9.57 £13.54

3.66 = 7.60

-1.56 +1.40

9.06+7.74

-0.83+1.64

0.36 + 2.68

-0.89 + 1.69

0.43 +£3.17

-1.56 +1.40

9.06+7.74



FD-MScM-EL

2.12+7.86 -1.91+1.56
vs. MSKM-SH
FD-MScM-EL

2.12 +7.86 0.52 +5.33
vs. MSKM-EL
FD-MScM-EL

2.12 +7.86 -1.97 +1.58
vs. BMSKM-SH
FD-MScM-EL

2.12+7.86 0.02 +3.81
vs. BMSKM-EL

B. anthracis - L. monocytogenes pairing

B. anthracis

distl mean Wilcoxon's dist2 mean
distl vs. dist2

(green) 2-sided (red)
FD-MScM-SH
0.02 £+ 3.66 5.21+10.80
vs. FD-SSCM
FD-MScM-SH 13.72 +
0.02 £ 3.66
vs. QUBIC 14.49
FD-MScM-SH
0.02 £ 3.66 3.85+8.83
vs. FD-COAL
FD-MScM-EL
1.68 +6.38 5.21+10.80
vs. FD-SSCM
FD-MScM-EL 13.72 +
1.68 £ 6.38
vs. QUBIC 14.49

448

3.32+£9.98 -0.83+1.64
3.32+9.98 0.36 + 2.68
3.32+£9.98 -0.89 £1.69
3.32+£9.98 0.43 +£3.17

L. monocytogenes

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)
1.69+521 0.46 £4.73
169+521 0326  9.57+1354
1.69+521 0.337 3.66 + 7.60
3.17+8.21 0.46 £4.73
3.17+821 0686 9.57+1354



FD-MScM-EL

vs. FD-COAL

FD-MScM-SH

vs. MSKM-SH

FD-MScM-SH

vs. MSKM-EL

FD-MScM-EL

vs. MSKM-SH

FD-MScM-EL

vs. MSKM-EL

1.68 +6.38 0.213 3.85+8.83
0.02 + 3.66 -1.58 £1.60
0.02 + 3.66 2.52 £6.60
1.68 +6.38 -1.58 + 1.60
1.68 +6.38 0.099 2.52 £6.60

7.2.3.1.4.2 Gram-negative triplet

3.17+821

0.999

3.66 £ 7.60

1.69+5.21 -0.67 £ 1.69
1.69+521 0.118 0.44 +3.00
3.17+821 -0.67 +1.69
3.17+8.21 0.44 +3.00

Table 7.32: Comparison of bicluster motif E-values from the full data methods considered by this

study for all pairings of E. coli, S. typhimurium and V. cholerae.

E. coli - S. typhimurium pairing

distl vs. dist2

FD-MScM-SH
vs. FD-SSCM
FD-MScM-SH
vs. QUBIC

FD-MScM-SH

vs. FD-COAL

E. coli
distl mean Wilcoxon’s dist2 mean
(green) 2-sided (red)

5.03 £ 34.70 FRsHle]=0)°) 3.37 +25.14

5.03+34.70

2.31E-19

-3.15+1.19

5.03 +34.70 0.03 1.00 £6.43

449

S. typhimurium

distl mean Wilcoxon’s dist2 mean

(green) 2-sided (red)
7.25 + 38.52 0.90 0.38 +3.97
7.25 + 38.52 BLIEE=SEAS -2.53 + 1.10
7.25+38.52 0.12 151 +5.76



FD-MScM-EL
vs. FD-SSCM
FD-MScM-EL
vs. QUBIC
FD-MScM-EL
vs. FD-COAL
FD-MScM-SH
vs. MSISA-P
FD-MScM-SH
vs. MSISA-R
FD-MScM-SH
vs. MSKM-SH
FD-MScM-SH
vs. MSKM-EL
FD-MScM-SH
vs. BMSKM-SH
FD-MScM-SH
vs. BMSKM-EL
FD-MScM-EL
vs. MSISA-P
FD-MScM-EL
vs. MSISA-R
FD-MScM-EL

vs. MSKM-SH

6.82 + 40.87 0.51 3.37+25.14

6.82 +40.87

1.39E-29

-3.15+£1.19

6.82 + 40.87 0.12 1.00 £ 6.43

5.03 £ 34.70 BERZAN=ROAN -2.45 + 1.71

5.03 + 34.70 BGRste] =20l 2.35 + 6.98

5.03+34.70 0.58 -1.35+3.16

5.03 £ 34.70 BAZZI=HOERS 0.36 + 4.76

5.03 +34.70 0.77 -1.36 £2.31

5.03 £ 34.70 BeRZI=REA -0.17 + 3.41

6.82 +40.87 BEBOA=SEES -2 .45 + 1.71

6.82 +40.87 0.21 2.35+6.98

6.82 + 40.87 -1.35+3.16

450

9.91+43.33

5.71E-04

0.38 +£3.97

9.91 + 43.33 BRI =PARS -2.53 + 1.10

9.91 +43.33 0.04 1.51+5.76

7.25+ 38.52 BATA=SIN -2.39 + 1.66

7.25 + 38.52 0.44 +7.23

5.16E-04

7.25+38.52 0.67 -0.27 £3.92
7.25+ 38.52 0.52 0.20+4.25
7.25+ 38.52 0.47 -0.56 + 2.60
7.25+ 38.52 0.62 -0.13+2.88

9.91+43.33 -2.39+1.66

8.48E-14

9.91 +43.33 BHeE] =206 0.44 +7.23

9.91 +43.33 -0.27 £3.92



FD-MScM-EL

6.82 + 40.87 0.33 0.36 +4.76
vs. MSKM-EL
FD-MScM-EL

6.82 +40.87 PRV =S -1.36 + 2.31
vs. BMSKM-SH
FD-MScM-EL

6.82 + 40.87 0.19 -0.17 £ 341
vs. BMSKM-EL

E. coli - V. cholerae pairing

E. coli

distl mean Wilcoxon’s dist2 mean
distl vs. dist2

(green) 2-sided (red)

FD-MScM-SH

-0.92 + 3.47 PEERSI=EOlIN 3.37 + 25.14
vs. FD-SSCM
FD-MScM-SH

-0.92 + 3.47 BUEVISVER -3.15 + 1.19
vs. QUBIC
FD-MScM-SH

-0.92 +3.47 0.07 1.00 +6.43
vs. FD-COAL
FD-MScM-EL

1.42 +5.48 0.15 3.37+£25.14
vs. FD-SSCM
FD-MScM-EL

1.42 +5.48 PNAFA=RER -3.15 + 1.19
vs. QUBIC
FD-MScM-EL

1.42 +5.48 BReHKI=NEIN 1.00 + 6.43
vs. FD-COAL
FD-MScM-SH

-0.92 + 3.47 BVAVZSHGE -2.64 + 1.48
vs. MSISA-P

451

9.91 + 43.33 BVAZI=SZE 0.20 + 4.25

9.91 + 43.33 B =SrAs -0.56 + 2.60

9.91 + 43.33 Jeas] =Ll -0.13 + 2.88

V. cholerae
distl mean Wilcoxon’s dist2 mean
(green) 2-sided (red)
-0.18 +8.74 8.65 + 31.60
-0.18 + 8.74 WEiGRI=SNEN -1.97 + 3.33
11.28 +
-0.18 + 8.74 ERII=N0)
35.97
6.09 + 31.78 0.04 8.65 + 31.60
6.09 + 31.78 PREEI=HIC -1.97 + 3.33
11.28 +
6.09 + 31.78 0.87
35.97
-0.18 +8.74 -2.57 +1.63




FD-MScM-SH

vs. MSISA-R

FD-MScM-SH

vs. MSKM-SH

FD-MScM-SH

vs. MSKM-EL

FD-MScM-EL

vs. MSISA-P

FD-MScM-EL

vs. MSISA-R

FD-MScM-EL

vs. MSKM-SH

FD-MScM-EL

vs. MSKM-EL

S. typhimurium - V. cholerae pairing

distl vs. dist2

FD-MScM-SH
vs. FD-SSCM
FD-MScM-SH
vs. QUBIC
FD-MScM-SH

vs. FD-COAL

-0.92 + 3.47 WA=k 2.63 + 7.50
-0.92 + 3.47 BRecRI=REiN -1.94 +1.74
-0.92 +3.47 0.18 -0.01+4.79
1.42 +5.48 BWAEI=0IEES -2 64 + 1.48
142 +5.48 0.92 2.63+7.50
1.42 £5.48 BRI -1.94 + 1.74
1.42 +5.48 BeRyA=EIZES -0.01 + 4.79
S. typhimurium

distl mean Wilcoxon’s dist2 mean

(green) 2-sided (red)
1.97 £13.19 0.35 0.38 £3.97
1.97 +13.19 PREEISSE -2.53 + 1.10
1.97 £13.19 0.28 1.51+5.76

452

-0.65 +

-0.18 + 8.74 Fefels| =ik

11.66
-0.18 + 8.74 BRREI=S0REN -1.87 + 2.01
-0.18 £8.74 0.43 2.71£29.53
6.09 + 31.78 eRZU=Sl -2.57 + 1.63

-0.65 %
6.09 + 31.78 Fspel0 =]

11.66
6.09 £ 31.78 -1.87+2.01
6.00 + 31.78 BWAIVASHIZEY 2.71 + 29.53

V. cholerae

distl mean Wilcoxon’s dist2 mean

2-sided

(green) (red)

-0.63 +9.18 wAVeI=EMN 8.65 + 31.60

-0.63 £ 9.18 FReREI=S0AN -1.97 + 3.33
11.28 +
-0.63 £ 9.18 EEWZI=EG
35.97



FD-MScM-EL
vs. FD-SSCM
FD-MScM-EL
vs. QUBIC
FD-MScM-EL
vs. FD-COAL
FD-MScM-SH
vs. MSKM-SH
FD-MScM-SH
vs. MSKM-EL
FD-MScM-SH
vs. BMSKM-SH
FD-MScM-SH
vs. BMSKM-EL
FD-MScM-EL
vs. MSKM-SH
FD-MScM-EL
vs. MSKM-EL
FD-MScM-EL
vs. BMSKM-SH
FD-MScM-EL

vs. BMSKM-EL

10.63 + 33.85 BRECEH=S0[6 0.38 + 3.97

10.63 + 33.85

1.39E-26

-253+1.10

10.63 + 33.85 el =R0Z 1.51 +£5.76

1.97 + 13.19 BESYA=E0lAN -1.46 + 1.83

1.97+13.19 0.53 -0.24 £3.27

1.97 + 13.19 BEBEHI=R0lA -1.52 + 1.75

1.97 +13.19

0.28

-0.21 +3.35

10.63 + 33.85 B = AS -1.46 + 1.83

10.63 + 33.85 BEVAI=SEE -0.24 + 3.27

10.63 + 33.85 eyl =ikel -1.52 + 1.75

10.63 + 33.85 BBl =R -0.21 + 3.35

453

6.57 £ 32.51

6.57 +32.51

6.57 £ 3251

-0.63+9.18

-0.63+9.18

-0.63+£9.18

-0.63+9.18

6.57 +32.51

6.57 £ 3251

6.57 £ 32.51

6.57 +32.51

1.37E-03

1.15E-15

0.27

0.04

0.70

0.06

0.27

3.05E-09

4.65E-04

7.13E-09

1.99E-03

8.65 + 31.60

-1.97+£3.33

11.28 +

35.97

-1.94 £2.27

0.38 +12.80

-2.03+1.65

0.35+15.26

-1.94 £2.27

0.38+12.80

-2.03+1.65

0.35+15.26



7.2.3.1.5 Sequence p-values

A comparison of the sequence p-values (-log10) from MScM (full data) with all other

relevant methods for all 3 pairings of the three organisms examined.

In the

comparisons, we compare both MScM steps to the other methods. Displayed are the

means for each method and/or step compared, as well as the Wilcoxon’s non-

parametric rank test (2-sided) comparing their distributions. We direct the reader to the

description for section 7.2.3.1.1 for instructions on how to interpret the table. As the

table indicates, in 72 of the 92 of the comparisons (78.3%) MScM does as well or

better than its competitors. In contrast, in only 38 of the 92 comparisons (41.3%) for

the Gram-negative triplet, MScM did as well or better than its competitors.

7.2.3.1.5.1 Grame-positive triplet

Table 7.33: Comparison of bicluster sequence p-values (-log10) from the full data methods

considered by this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes.

B. subtilis - B. anthracis pairing

distl vs. dist2

FD-MScM-SH
vs. FD-SSCM
FD-MScM-SH
vs. QUBIC

FD-MScM-SH

vs. FD-COAL

B. subtilis

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)
3.86+1.39 6.73+3.35
3.86+1.39 2.06 £ 0.50
3.86+1.39 247+1.12

454

B. anthracis

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)
349+131 0.303 3.90+2.62
3.49+131 1.77 £ 0.26
3.49+1.31 2.32+£157




FD-MScM-EL
vs. FD-SSCM
FD-MScM-EL
vs. QUBIC
FD-MScM-EL
vs. FD-COAL
FD-MScM-SH
vs. MSISA-P
FD-MScM-SH
vs. MSISA-R
FD-MScM-SH
vs. MSKM-SH
FD-MScM-SH
vs. MSKM-EL
FD-MScM-SH
vs. BMSKM-SH
FD-MScM-SH
vs. BMSKM-EL
FD-MScM-EL
vs. MSISA-P
FD-MScM-EL
vs. MSISA-R
FD-MScM-EL

vs. MSKM-SH

347+1.31 6.73+3.35

3.47+131

2.06 +0.50

347+1.31

247+1.12

3.86 £1.39

0.164

3.65+1.74

3.86 +1.39 2.02 +0.52

3.86+1.39 3.97+181

0.879

3.86 £1.39 3.24+1.58

3.86 +1.39

0.806

4.05 +1.86

3.86+1.39 3.06 +1.30

347+1.31

0.915

3.65+1.74

3.47+131 2.02+0.52

347+131 397+181

455

3.24+122

0.721

3.90 £ 2.62

3.24+1.22

1.77 +0.26

3.24+£1.22 232157

3.49+131 0.345 3.34+1.33

349+131 1.79+0.27

3.49+1.31 0.985 3.59+1.53

3.49+131 2.66 +£1.03

3.49+131 0.577 3.42+1.33

3.49+131 2.57+0.88

3.24+1.22 0.890 3.34+1.33

3.24+1.22 1.79+0.27

3.24+1.22

0.077

3.59+1.53



FD-MScM-EL

3.47+1.31 3.24+1.58
vs. MSKM-EL
FD-MScM-EL

3.47+1.31 4.05+1.86
vs. BMSKM-SH
FD-MScM-EL

3.47+1.31 3.06 +1.30
vs. BMSKM-EL

B. subtilis - L. monocytogenes pairing

B. subtilis

distl mean Wilcoxon's dist2 mean

distl vs. dist2
(green) 2-sided (red)

FD-MScM-SH

431+194 6.74E-15 6.73+3.35
vs. FD-SSCM
FD-MScM-SH

431+1.94 2.06 +0.50
vs. QUBIC
FD-MScM-SH

431+1.94 247+1.12
vs. FD-COAL
FD-MScM-EL

3.85+1.82 6.73+3.35
vs. FD-SSCM
FD-MScM-EL

3.85+1.82 2.06 +0.50
vs. QUBIC
FD-MScM-EL

3.85+1.82 247+1.12
vs. FD-COAL

456

3.24+122 2.66 £1.03

3.24+1.22 0.238 3.42+1.33

3.24+1.22 2.57+0.88

L. monocytogenes

distl mean W.ilcoxon's dist2 mean

(green) 2-sided (red)

4.82+1.63 0.245 524 +235

4.82 +1.63 2.36 +0.37
4.82+1.63 3.51+151
4.55 +1.60 524+235
4.55 +1.60

2.36 +0.37

4.55 +1.60 351+151




FD-MScM-SH

vs. MSISA-P

FD-MScM-SH

vs. MSISA-R

FD-MScM-SH

vs. MSKM-SH

FD-MScM-SH

vs. MSKM-EL

FD-MScM-SH

vs. BMSKM-SH

FD-MScM-SH

vs. BMSKM-EL

FD-MScM-EL

vs. MSISA-P

FD-MScM-EL

vs. MSISA-R

FD-MScM-EL

vs. MSKM-SH

FD-MScM-EL

vs. MSKM-EL

FD-MScM-EL

vs. BMSKM-SH

FD-MScM-EL

vs. BMSKM-EL

431+1.94

0.054

5.06 +£2.38

431+194 1.99+0.50

431+£1.94

479175

431+1.94

3.45+1.88

431+194

0.161

4.61+2.13

431+£1.94 3.19+£1.39

3.85+1.82 5.06 +£2.38
3.85+1.82 1.99+0.50
3.85+1.82 479175
3.85+1.82 3.45+1.88
3.85+1.82

4.61+2.13

3.85+1.82 3.19+1.39

457

4.82+1.63 577+1091

4.82 +1.63

242 +0.56

4.82+1.63

549+1.73

4.82+1.63 4.35+1.67

4.82+1.63 0.320 502+1.71

482 +1.63

443 +1.62

4.55 +1.60

577+191

4.55 +1.60

242 +0.56

4.55 +1.60 549+1.73

4.55 +1.60 0.145 4.35+1.67

4.55 +1.60 502+171

4.55 +1.60

0.244

443 +£1.62



B. anthracis - L. monocytogenes pairing

distl vs. dist2

FD-MScM-SH
vs. FD-SSCM
FD-MScM-SH
vs. QUBIC
FD-MScM-SH
vs. FD-COAL
FD-MScM-EL
vs. FD-SSCM
FD-MScM-EL
vs. QUBIC
FD-MScM-EL
vs. FD-COAL
FD-MScM-SH
vs. MSKM-SH
FD-MScM-SH
vs. MSKM-EL
FD-MScM-EL
vs. MSKM-SH
FD-MScM-EL

vs. MSKM-EL

B. anthracis

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)
3.80+1.49 3.83+2.57
3.80+£1.49 1.77 £0.26
3.80+1.49 2.32+1.57
3.38+1.31 0.662 3.83+2.57
3.38+£1.31 1.77£0.26
3.38+1.31 232 +1.57
3.80+1.49 0.303 3.94 +1.46
3.80+£1.49 2.61+1.04
3.38+1.31 3.94 +1.46
3.38+1.31 261+1.04

458

L. monocytogenes

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)
498 +1.73 0.673 5.24 +2.35
498+1.73 2.36 £0.37
498 +1.73 351+151
4.66+1.73 5.24 +2.35
466+1.73 2.36 £0.37
4.66+1.73 351+151
498+1.73 5.61+1.74
498+1.73 437+151
4.66+1.73 5.61+1.74
466 +1.73 0.191 437+151



7.2.3.1.5.2 Gram-negative triplet

Table 7.34: Comparison of bicluster sequence p-values from the full data methods considered by

this study for all pairings of E. coli, S. typhimurium and V. cholerae.

E. coli - S. typhimurium pairing

distl vs. dist2

FD-MScM-SH
vs. FD-SSCM
FD-MScM-SH
vs. QUBIC
FD-MScM-SH
vs. FD-COAL
FD-MScM-EL
vs. FD-SSCM
FD-MScM-EL
vs. QUBIC
FD-MScM-EL
vs. FD-COAL
FD-MScM-SH
vs. MSISA-P
FD-MScM-SH
vs. MSISA-R
FD-MScM-SH

vs. MSKM-SH

E. coli
distl mean Wilcoxon’s dist2 mean
(green) 2-sided (red)

3.31 + 2. 19 WA =LV 8.24 + 4.43
3.31 + 2.19 R VA= WA 7.36 + 4.69
3.31 £ 2. 19 G FA=C0yaN 4. 75 + 3.19
5.24 + 2.08 B WAL=SAEIN 8.24 + 4.43
5.24 + 2.08 BEECHICI=E0Z I 7.36 + 4.69
524 +2098 0.01 4.75%+3.19

3.31 + 2.19 el =S I 6.59 + 3.53

3.31 + 2.19 IS =0 4. .32 + 2.19

3.31 £ 2. 10 iNeS1 =Sy 4.56 + 2.71

459

distl mean Wilcoxon’s 2- dist2 mean

(green) sided (red)
3.29 + 1.47 XL SO 4.67 + 3.36
3.20 £ 1.47 RN R=C7I00 5.98 + 2.47
3.29+1.47 2.84+131
454+194 0.03 4.67 +3.36
4.54 + 1.94 VAyA=COFANN 5.98 + 2.47
454 +1.94 284 +£131
3.29 £ 1.47 R =SV 5.66 + 2.66
3.29 £ 1.47 BRGHRN =R 2,28 + 0.57
3.29 £ 1.47 R =H0LS) 451+224



FD-MScM-SH

vs. MSKM-EL

FD-MScM-SH

vs. BMSKM-SH

FD-MScM-SH

vs. BMSKM-EL

FD-MScM-EL

vs. MSISA-P

FD-MScM-EL

vs. MSISA-R

FD-MScM-EL

vs. MSKM-SH

FD-MScM-EL

vs. MSKM-EL

FD-MScM-EL

vs. BMSKM-SH

FD-MScM-EL

vs. BMSKM-EL

3.31 + 2.19 CW(CI=C0 SR 4.37 + 2.67

3.31 + 2.19 WIS =S0l: I 4.39 + 2.52

3.31 £ 2. 19 CIGI =S I 4.12 + 2.59

5.24 + 2.08 IECECRI=E0X I 6.59 + 3.53

5.24 +2.98

0.05

432+2.19

524 +2.98

0.02

456271

5.24 + 2.98 0] =0k] 4.37 +2.67

5.24 + 2.98 BRGIAZIEREEN 4,39 + 2.52

5.24 + 2.98 B =055 4.12 +2.59

E. coli - V. cholerae pairing

distl vs. dist2

FD-MScM-SH

vs. FD-SSCM

E. coli
distl mean Wilcoxon’s dist2 mean
(green) 2-sided (red)

3.50 + 1.31 NGIeI =V YA 8.24 + 4.43

460

3.29 + 1.47 Y {=C0Z 3 4.07 + 2.07

3.29 + 1.47 pavZi=SV sl 4.32 + 1.90

3.29+£1.47

3.83+1.97

4.54 + 1.94 BN PI=ICIIN 5.66 + 2.66

454 +1.94

2.28 +0.57

454 +£1.94

0.52

451 %224

4.54 + 1.94 BT =IER 4.07 + 2.07

454 +1.94 4.32+1.90

0.36

3.83+1.97

V. cholerae

distl mean Wilcoxon’s 2- dist2 mean

sided

(green) (red)

3.25 + 1.24 i ] =tV 9.14 + 6.57



FD-MScM-SH
vs. QUBIC
FD-MScM-SH
vs. FD-COAL
FD-MScM-EL
vs. FD-SSCM
FD-MScM-EL
vs. QUBIC
FD-MScM-EL
vs. FD-COAL
FD-MScM-SH
vs. MSISA-P
FD-MScM-SH
vs. MSISA-R
FD-MScM-SH
vs. MSKM-SH
FD-MScM-SH
vs. MSKM-EL
FD-MScM-EL
vs. MSISA-P
FD-MScM-EL
vs. MSISA-R
FD-MScM-EL

vs. MSKM-SH

7.36 £4.69

4.75+3.19

8.24 £4.43

7.36 £4.69

4.75+3.19

7.05+351

4.06 = 2.05

5.28 +3.32

438+3.11

528 £3.32
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FD-MScM-EL

vs. MSKM-EL

5.43 + 2.66 BNBEI=E0EY 4,38 + 3.11

S. typhimurium - V. cholerae pairing

distl vs. dist2

FD-MScM-SH
vs. FD-SSCM
FD-MScM-SH
vs. QUBIC
FD-MScM-EL
vs. FD-SSCM
FD-MScM-EL
vs. QUBIC
FD-MScM-EL
vs. FD-COAL
FD-MScM-SH
vs. MSKM-SH
FD-MScM-SH
vs. MSKM-EL

FD-MScM-SH

vs. BMSKM-SH

FD-MScM-EL

vs. MSKM-SH

S. typhimurium
distl mean Wilcoxon’s dist2 mean
(green) 2-sided (red)

3.26 + 1.25 RKI=SVSI 4.67 + 3.36

3.26 + 1.25 IR =EA B 5.08 + 2.47

5.10 + 2.06 BRI =S 4.67 + 3.36

5.10 £ 2.06 vAPI=CX I 5.98 + 2.47

5.10 + 2.06 BB =R 2.84 + 1.31

3.26 £ 1.25 WV =SNCAN 5.17 + 2.34

3.26 + 1.25 R =SS I 3.84 + 1.93

3.26 + 1.25 Raclo) =N ICRm 5.03 + 2.17

5.10+2.06

0.86

517+2.34
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5.02 + 2.42 BRI LRI 4.42 + 2.69

V. cholerae

distl mean Wilcoxon’s 2- dist2 mean

(green) sided (red)
2.98 £ 1.28 R [0I=EXyANN 9.14 + 6.57
2.98 £ 1.28 R =Lviclal 0.18 + 6.74
4.85+2.25 9.14 + 6.57
4.85 + 2.25 BN =S (VAN 9.18 + 6.74
4.85 + 2.25 BN =HRE 4.77 + 3.84
2.98 + 1.28 RIS 5.06 + 2.61
2.98 £ 1.28 AN =EO0raN 4.32 + 2.55
2.98 £ 1.28 RCII=0 Vi 4.89 + 2.53
4.85+2.25 0.62 5.06 + 2.61



FD-MScM-EL
5.10 + 2.06 0.56 5.03+2.17 485+225 0.95 4,89 +2.53
vs. BMSKM-SH

FD-MScM-EL

5.10 £ 2.06 BRI =HNEEN 3.78 + 1.96  4.85 + 2.25 BNGIRI=SI08S 3.89 + 2,22
vs. BMSKM-EL

7.2.3.2 Comparisons with EO-MScM
In the comparisons below, we only show results from the Gram-positive triplet, as the
expression only results from the Gram-negative triplet were largely uninformative.

We direct the reader to section 3.1.3.1 for a further explanation.

7.2.3.2.1 Residuals

Table 7.35: Comparison of bicluster residuals from the expression only methods considered by
this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes. A comparison of the
residuals of the results from MScM (expression only) with all other relevant methods for all 3 pairings
of the three organisms examined. In the comparisons, we compare both MScM steps to the other
methods. Displayed are the means for each method and/or step compared, as well as the Wilcoxon’s
non-parametric rank test (2-sided) comparing their distributions. We direct the reader to section
7.2.3.1.1 for instructions on how to interpret the table. In this case, these results illustrate that in 61 of
the 116 comparisons (52.6%) MScM step did as well or better than its competitors.

B. subtilis - B. anthracis pairing

B. subtilis B. anthracis
distl mean Wilcoxon's dist2 mean distl mean W.ilcoxon's dist2 mean

distl vs. dist2
(green) 2-sided (red) (green) 2-sided (red)

463



EO-MScM-SH vs.

EO-SSCM

EO-MScM-SH vs.

FD-SSCM

EO-MScM-SH vs.

QUBIC

EO-MScM-SH vs.

EO-COAL

EO-MScM-SH vs.

FD-COAL

EO-MScM-EL vs.

EO-SSCM

EO-MScM-EL vs.

FD-SSCM

EO-MScM-EL vs.

QUBIC

EO-MScM-EL vs.

EO-COAL

EO-MScM-EL vs.

FD-COAL

EO-MScM-SH vs.

MSISA-P

EO-MScM-SH vs.

MSISA-R

0.52 +£0.09 0.44+£0.20

0.52 +0.09

0.49+0.13

0.52+0.09

0.87+0.21

0.52 +£0.09

0.78+0.23

0.52 +0.09

0.80+0.25

0.52+0.10

0.44+0.20

0.52+0.10

0.49+0.13

0.52+0.10

0.87+0.21

0.52+0.10

0.78 +0.23

0.52+0.10

0.80+0.25

0.52 +0.09

0.98 +0.39

0.52 £0.09 1.11+041
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0.50£0.20 0.23+0.06

0.50+0.20

0.31+0.12

0.50+0.20

151+0.29

0.50£0.20

0.58 £0.17

0.50+0.20

0.58 +0.17

0.49+0.20

0.23+0.06

0.49+£0.20

0.31+0.12

0.49+0.20

1.51+0.29

0.49+0.20

0.58 £0.17

0.49+0.20

0.58 £0.17

0.50+0.20

1.97+0.94

0.50+0.20 1.58 +0.38




EO-MScM-SH vs.
0.52 +£0.09
MSKM-SH

EO-MScM-SH vs.
0.52 +0.09
MSKM-EL

EO-MScM-SH vs.
0.52 +0.09
BMSKM-SH

EO-MScM-SH vs.
0.52 +£0.09
BMSKM-EL

EO-MScM-EL vs.
0.52 £0.10
MSISA-P

EO-MScM-EL vs.
0.52 +0.10
MSISA-R

EO-MScM-EL vs.
0.52+0.10
MSKM-SH

EO-MScM-EL vs.
0.52 £0.10
MSKM-EL

EO-MScM-EL vs.
0.52 +0.10
BMSKM-SH

EO-MScM-EL vs.

0.52+0.10
BMSKM-EL

B. subtilis - L. monocytogenes pairing

B. subtilis

0.41 £ 0.07

0.42 +0.06

0.45 £ 0.07

0.45+0.06

0.98 +0.39

1.11+£041

0.41 +0.07

0.42 +0.06

0.45 £ 0.07

0.45+0.06
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0.50£0.20 0.107 0.53+0.12

0.50+0.20 0.455

048 +0.11

0.50+0.20

0.38 £ 0.07

0.50£0.20

0.39 £ 0.07

0.49+0.20

1.97+0.94

0.49+0.20

1.58 +£0.38

0.49+£0.20 0.53+0.12

0.49+£0.20 0.703 0.48+0.11

0.49+0.20

0.38 £0.07

0.49+0.20 0.39 £ 0.07

L. monocytogenes




distl vs. dist2

EO-MScM-SH vs.

EO-SSCM

EO-MScM-SH vs.

FD-SSCM

EO-MScM-SH vs.

QUBIC

EO-MScM-SH vs.

EO-COAL

EO-MScM-SH vs.

FD-COAL

EO-MScM-EL vs.

EO-SSCM

EO-MScM-EL vs.

FD-SSCM

EO-MScM-EL vs.

QUBIC

EO-MScM-EL vs.

EO-COAL

EO-MScM-EL vs.

FD-COAL

EO-MScM-SH vs.

MSISA-P

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)
0.52 £0.08 0.44+0.20
0.52+0.08 0.49+0.13
0.52 +0.08 0.87£0.21
0.52 £0.08 0.78+0.23
0.52+0.08 0.80+0.25
0.50 + 0.09 0.44 £0.20
0.50 £0.09 0.055 0.49+0.13
0.50 + 0.09 0.87+0.21
0.50 + 0.09 0.78+0.23
0.50 £0.09 0.80£0.25
0.52+0.08 0.87+0.34

466

distl mean Wilcoxon's dist2 mean
(green) 2-sided (red)
0.49+0.17 0.29+0.10
0.49+0.17 0.40+0.18
0.49+0.17 1.81+0.85
0.49+0.17 0.657 1.63 + 3.07
0.49+0.17 0.617 1.70+3.24
0.48 £0.17 0.29+0.10
0.48+£0.17 0.40+0.18
0.48+0.17 1.81+0.85
0.48+0.17 0.755 1.63 +3.07
0.48+£0.17 0.734 1.70+3.24
0.49+0.17 1.59 +0.52




EO-MScM-SH vs.

MSISA-R

EO-MScM-SH vs.

MSKM-SH

EO-MScM-SH vs.

MSKM-EL

EO-MScM-SH vs.

BMSKM-SH

EO-MScM-SH vs.

BMSKM-EL

EO-MScM-EL vs.

MSISA-P

EO-MScM-EL vs.

MSISA-R

EO-MScM-EL vs.

MSKM-SH

EO-MScM-EL vs.

MSKM-EL

EO-MScM-EL vs.

BMSKM-SH

EO-MScM-EL vs.

BMSKM-EL

0.52 +£0.08 1.11+0.42

0.52 +0.08

0.40 +0.07

0.52+0.08

0.42 +0.06

0.52 +£0.08

0.43 +£0.07

0.52 +0.08

0.44 +0.06

0.50+0.09

0.87+£0.34

1.11+0.42

0.50 £ 0.09

0.50 +0.09

0.40 +0.07

0.50+0.09

0.42 +0.06

0.50 £ 0.09

0.43 +£0.07

0.50 +0.09 0.44 +0.06

B. anthracis - L. monocytogenes pairing

467

0.49£0.17 1.31+0.34

0.49 £0.17 0.358 0.50+£0.12

0.49+0.17 0.683 0.48+0.11

0.49 £0.17

0.42 +£0.09

049+0.17

0.42 +0.09

0.48 £0.17

159 +0.52

0.48 £0.17 1.31+0.34

0.48 £0.17 0.190 0.50+0.12

0.48 +0.17 0.972 0.48+0.11

0.48 £0.17

0.42 +£0.09

048 +0.17 0.42 +0.09




distl vs. dist2

EO-MScM-SH vs.

EO-SSCM

EO-MScM-SH vs.

FD-SSCM

EO-MScM-SH vs.

QUBIC

EO-MScM-SH vs.

EO-COAL

EO-MScM-SH vs.

FD-COAL

EO-MScM-EL vs.

EO-SSCM

EO-MScM-EL vs.

FD-SSCM

EO-MScM-EL vs.

QUBIC

EO-MScM-EL vs.

EO-COAL

EO-MScM-EL vs.

FD-COAL

EO-MScM-SH vs.

MSKM-SH

B. anthracis

distl mean Wilcoxon's dist2 mean

2-sided

(green) (red)

0.52 +0.17 0.23 +0.06

0.52£0.17 0.31+0.12
0.52 +£0.17 1.51+0.29
0.52£0.17 0.58 £0.17
0.52£0.17 0.58 £0.17
0.50 £ 0.17 0.23+0.06
0.50 £ 0.17 0.31+£0.12
0.50 £ 0.17 1.51+0.29
0.50+0.17 0.58 +0.17
0.50 £ 0.17

0.58 £0.17

0.52+0.17 0.40 +0.08
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L. monocytogenes

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)
0.50+0.18 0.29+0.10
0.50+0.18 0.40+0.18
0.50+0.18 1.81+0.85
0.50£0.18 0.568 1.63 + 3.07
0.50+£0.18 0.532 1.70 £ 3.24
0.50+0.19 0.29+£0.10
0.50+0.19 0.40+0.18
0.50+0.19 1.81+0.85
0.50+0.19 0.810 1.63 + 3.07
0.50+0.19 0.753 1.70+3.24
0.50+0.18 0.43+0.08




EO-MScM-SH vs.
0.52 +£0.17 0.39 £ 0.07

MSKM-EL

EO-MScM-EL vs.
0.50 +0.17 0.40 +0.08

MSKM-SH

EO-MScM-EL vs.
0.50 +0.17 0.39 +0.07

MSKM-EL

7.2.3.2.2 Mean correlations

0.50+0.18 0.43 +£0.08

0.50+0.19

0.43 +0.08

0.50+0.19 0.43+0.08

Table 7.36: Comparison of bicluster mean correlations from the expression only methods

considered by this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes. A

comparison of the mean correlations of the results from MScM (expression only) with all other relevant

methods for all 3 pairings of the three organisms examined. In the comparisons, we compare both

MScM steps to the other methods. Displayed are the means for each method and/or step compared, as

well as the Wilcoxon’s non-parametric rank test (2-sided) comparing their distributions. We direct the

reader to section 7.2.3.1.1 for instructions on how to interpret the table. In this case, these results

illustrate that in 65 of the 116 comparisons (56%) MScM step did as well or better than its competitors.

B. subtilis - B. anthracis pairing

B. subtilis

distl mean Wilcoxon's dist2 mean
distl vs. dist2
(green) 2-sided (red)
EO-MScM-SH vs.
0.52+0.12 0.70+0.11

EO-SSCM

469

B. anthracis
distl mean Wilcoxon's dist2 mean
2-sided

(green) (red)

0.69 +£0.17 0.91+0.05



EO-MScM-SH vs.

FD-SSCM

EO-MScM-SH vs.

QUBIC

EO-MScM-SH vs.

EO-COAL

EO-MScM-SH vs.

FD-COAL

EO-MScM-EL vs.

EO-SSCM

EO-MScM-EL vs.

FD-SSCM

EO-MScM-EL vs.

QUBIC

EO-MScM-EL vs.

EO-COAL

EO-MScM-EL vs.

FD-COAL

EO-MScM-SH vs.

MSISA-P

EO-MScM-SH vs.

MSISA-R

EO-MScM-SH vs.

MSKM-SH

0.52+0.12 0.56 £0.14

0.52 +0.12

0.36 +0.19

0.52+0.12

0.58 £0.14

0.52+0.12

0.59+0.15

0.54 +0.12 0.70+0.11

0.54+0.12 0.098 0.56+0.14

0.54£0.12

0.36 £0.19

0.54+0.12

0.58 +0.14

0.54+£0.12

0.59+0.15

0.52+0.12 0.60+0.14

0.52+£0.12 0.304 0.55+0.13

0.52+0.12 0.58+0.11

470

0.69 £0.17

0.69 +0.17

0.69+0.17

0.69 £ 0.17

0.69+0.19

0.69+0.19

0.69 £0.19

0.69+0.19

0.69+0.19

0.69 £0.17

0.69 +0.17

0.69+0.17

0.82+0.15

0.49+0.05

0.64+0.13

0.62 +£0.13

0.91+0.05

0.82+0.15

0.49+£0.05

0.64 +0.13

0.62+0.13

0.56 £ 0.07

0.51 +0.03

0.52+0.14



EO-MScM-SH vs.
0.52+0.12
MSKM-EL

EO-MScM-SH vs.
0.52+0.12
BMSKM-SH

EO-MScM-SH vs.

0.52+0.12 0.107

BMSKM-EL
EO-MScM-EL vs.

0.54£0.12
MSISA-P

EO-MScM-EL vs.

0.54 +0.12 0.629

MSISA-R
EO-MScM-EL vs.

0.54£0.12
MSKM-SH

EO-MScM-EL vs.

0.54£0.12 0.057

MSKM-EL

EO-MScM-EL vs.
0.54 +0.12
BMSKM-SH

EO-MScM-EL vs.

0.54+£0.12
BMSKM-EL

B. subtilis - L. monocytogenes pairing

B. subtilis

0.56 £0.11

0.49+0.13

0.50+0.12

0.60 £0.14

0.55+0.13

0.58£0.11

0.56£0.11

0.49+0.13

0.50+0.12

distl mean Wilcoxon's dist2 mean

distl vs. dist2
(green)

2-sided

(red)

471

0.69 £0.17 0.58+0.15

0.69 £0.17 0.265 0.72+0.10

0.69+0.17 0.341

0.71+£0.10

0.69 £0.19

0.56 £ 0.07

0.69+0.19

0.51 +0.03

0.69+0.19

0.52+0.14

0.69 £0.19 0.58+0.15

0.69 £0.19 0.346 0.72+0.10

0.69+0.19 0.413 0.71+0.10

L. monocytogenes

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)



EO-MScM-SH vs.

EO-SSCM

EO-MScM-SH vs.

FD-SSCM

EO-MScM-SH vs.

QUBIC

EO-MScM-SH vs.

EO-COAL

EO-MScM-SH vs.

FD-COAL

EO-MScM-EL vs.

EO-SSCM

EO-MScM-EL vs.

FD-SSCM

EO-MScM-EL vs.

QUBIC

EO-MScM-EL vs.

EO-COAL

EO-MScM-EL vs.

FD-COAL

EO-MScM-SH vs.

MSISA-P

EO-MScM-SH vs.

MSISA-R

0.52+0.13 0.70+0.11

0.52+0.13

0.56 +0.14

0.52+0.13

0.36+0.19

0.52+0.13

0.58 £0.14

0.52+0.13

0.59+0.15

0.54£0.12 0.70+0.11

0.54£0.12 0.187 0.56 £0.14

0.54+0.12

0.36 +0.19

0.54+£0.12

0.58£0.14

0.54+£0.12 0.59+0.15

0.52+0.13

0.099

0.60+0.20

0.52+0.13 0.268 0.55+0.12

472

0.64 +£0.18 0.86 £ 0.08

0.64 +0.18

0.71+0.20

0.64+0.18

0.45+0.27

0.64 +£0.18

0.81+0.13

0.64 +0.18

0.80+0.12

0.64+0.18

0.86 +0.08

0.64 +£0.18

0.71+£0.20

0.64 +0.18

0.45+0.27

0.64+0.18

0.81+0.13

0.64 +£0.18

0.80+0.12

0.64 +0.18

0.47 +0.23

0.64+0.18 0.50+0.27




EO-MScM-SH vs.
0.52+0.13
MSKM-SH

EO-MScM-SH vs.
0.52 +0.13
MSKM-EL

EO-MScM-SH vs.

0.52+0.13 0.737

BMSKM-SH

EO-MScM-SH vs.

0.52+0.13 0.311

BMSKM-EL

EO-MScM-EL vs.

0.54 +0.12 0.324

MSISA-P

EO-MScM-EL vs.

0.54+0.12 0.874

MSISA-R
EO-MScM-EL vs.

0.54£0.12
MSKM-SH

EO-MScM-EL vs.

0.54+0.12 0.121

MSKM-EL

EO-MScM-EL vs.

0.54+0.12 0.298

BMSKM-SH

EO-MScM-EL vs.

0.54+£0.12 0.578

BMSKM-EL

B. anthracis - L. monocytogenes pairing

B. anthracis

0.59+0.11

0.56 +0.11

0.52+0.14

0.53+0.12

0.60+0.20

0.55+0.12

0.59+0.11

0.56 +0.11

0.52+0.14

0.53+0.12

473

0.64 £0.18 0.51+0.17

0.64 +0.18 0.55+0.16

0.64+0.18 0.403 0.63+0.15

0.64 +£0.18 0.883

0.64+0.14

0.64 +0.18

0.47 +0.23

0.64+0.18

0.50+0.27

0.64 +£0.18

0.51+0.17

0.64 +0.18 0.55+0.16

0.64+0.18 0.406 0.63+0.15

0.64 £0.18 0.852 0.64+0.14

L. monocytogenes




distl vs. dist2

EO-MScM-SH vs.

EO-SSCM

EO-MScM-SH vs.

FD-SSCM

EO-MScM-SH vs.

QUBIC

EO-MScM-SH vs.

EO-COAL

EO-MScM-SH vs.

FD-COAL

EO-MScM-EL vs.

EO-SSCM

EO-MScM-EL vs.

FD-SSCM

EO-MScM-EL vs.

QUBIC

EO-MScM-EL vs.

EO-COAL

EO-MScM-EL vs.

FD-COAL

EO-MScM-SH vs.

MSKM-SH

distl mean Wilcoxon's dist2 mean
(green) 2-sided (red)
0.63+0.16 0.91+£0.05
0.63+0.16 0.82+0.15
0.63+0.16 0.49 +0.05
0.63+0.16 0.824 0.64 £0.13
0.63+£0.16 0.341 0.62 £0.13
0.63£0.17 0.91+0.05
0.63+0.17 0.82+0.15
0.63+£0.17 0.49 £0.05
0.63+0.17 0.910 0.64+0.13
0.63+0.17 0.280 0.62+£0.13
0.63+£0.16 0.69£0.12

474

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)
0.63+£0.19 0.86 +£0.08
0.63+0.19 0.71+0.20
0.63+0.19 0.45+0.27
0.63+£0.19 0.81+£0.13
0.63+0.19 0.80+0.12
0.63+0.19 0.86 +0.08
0.63+£0.19 0.71+£0.20
0.63+0.19 0.45 £ 0.27
0.63+0.19 0.81+0.13
0.63+£0.19 0.80+£0.12
0.63+£0.19 0.250 0.60+0.14



EO-MScM-SH vs.
0.63+0.16 0.70+£0.10 0.63+0.19 0.892 0.63+0.13

MSKM-EL

EO-MScM-EL vs.
0.63 +0.17 0.69+0.12 0.63+0.19 0.224 0.60+0.14

MSKM-SH

EO-MScM-EL vs.
0.63+0.17 0.70+0.10 0.63+0.19 0.817 0.63+0.13

MSKM-EL

7.2.3.2.3 Network Association p-values

Table 7.37: Comparison of bicluster network association p-values from the expression only
methods considered by this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes.
A comparison of the residuals of the results from MScM (expression only) with all other relevant
methods for all 3 pairings of the three organisms examined. In the comparisons, we compare both
MScM steps to the other methods. Displayed are the means for each method and/or step compared, as
well as the Wilcoxon’s non-parametric rank test (2-sided) comparing their distributions. We direct the
reader to section 7.2.3.1.1 for instructions on how to interpret the table. In this case, these results
illustrate that in 103 of the 116 comparisons (88.8%) MScM step did as well or better than its
competitors.

B. subtilis - B. anthracis pairing

B. subtilis B. anthracis

distl mean Wilcoxon's dist2 mean distl mean Wilcoxon's dist2 mean
distl vs. dist2
(green) 2-sided (red) (green) 2-sided (red)

EO-MScM-SH vs.

6.24 £7.63 0.435 7.63+£9.05 6.45+7.29 0.416 5.39+£6.03
EO-SSCM

475



EO-MScM-SH vs.

FD-SSCM

EO-MScM-SH vs.

QUBIC

EO-MScM-SH vs.

EO-COAL

EO-MScM-SH vs.

FD-COAL

EO-MScM-EL vs.

EO-SSCM

EO-MScM-EL vs.

FD-SSCM

EO-MScM-EL vs.

QUBIC

EO-MScM-EL vs.

EO-COAL

EO-MScM-EL vs.

FD-COAL

EO-MScM-SH vs.

MSISA-P

EO-MScM-SH vs.

MSISA-R

EO-MScM-SH vs.

MSKM-SH

6.24 £7.63 9.78 £9.76

6.24 +7.63 252+4.78

6.24 +7.63 0.568 7.75+9.50
6.24 £7.63 0.451 7.57+£9.16
6.32£7.80 0.328 7.63+£9.05

6.32+7.80 9.78 £9.76

6.32+£7.80 2.52+4.78

6.32 £7.80 0.402 7.75+9.50
6.32£7.80 0.330 7.57+£9.16
6.24 £ 7.63 0.490 5.56 +£5.86

6.24 +7.63 9.69 +9.37

6.24 £7.63

0.190

7.87+£9.35

476

6.45+7.29

6.45+7.29

6.45+7.29

6.45+7.29

6.24 +7.31

6.24 £7.31

6.24+7.31

6.24 +7.31

6.24 +7.31

6.45+7.29

6.45+7.29

6.45+7.29

0.721

0.938

0.198

0.144

0.716

0.950

0.702

0.316

0.226

0.814

0.464

0.060

5.44 +£5.38

6.73 +7.52

6.18 +7.98

6.50 +8.74

5.39 +6.03

5.44 £5.38

6.73+7.52

6.18 +7.98

6.50+8.74

5.61+7.17

9.66 +9.95

4.38+5.10



EO-MScM-SH vs.
6.24 +7.63 8.15 + 9.65

MSKM-EL

EO-MScM-SH vs.
6.24 £ 7.63 7.27 £8.25

BMSKM-SH

EO-MScM-SH vs.
6.24 +7.63 6.93 +8.19

BMSKM-EL

EO-MScM-EL vs.
6.32 £ 7.80 5.56 +5.86

MSISA-P

EO-MScM-EL vs.
6.32 £ 7.80 9.69 +9.37

MSISA-R

EO-MScM-EL vs.
6.32+£7.80 7.87+£9.35

MSKM-SH

EO-MScM-EL vs.
6.32 £ 7.80 8.15 + 9.65

MSKM-EL

EO-MScM-EL vs.
6.32 £ 7.80 7.27 £8.25

BMSKM-SH

EO-MScM-EL vs.
6.32+£7.80 6.93+8.19

BMSKM-EL

B. subtilis - L. monocytogenes pairing

B. subtilis
distl mean W.ilcoxon's dist2 mean

distl vs. dist2
(green) 2-sided (red)

477

6.45+7.29 4.06 +5.32

6.45+7.29

5.54 +6.48

6.45+7.29

4.56 £5.86

6.24+£7.31

5.61+7.17

6.24+7.31

9.66 +9.95

6.24 £7.31

4.38+5.10

6.24+7.31

4.06 £5.32

6.24+7.31

5.54 +6.48

6.24+7.31 4.56 +5.86

L. monocytogenes

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)



EO-MScM-SH vs.

EO-SSCM

EO-MScM-SH vs.

FD-SSCM

EO-MScM-SH vs.

QUBIC

EO-MScM-SH vs.

EO-COAL

EO-MScM-SH vs.

FD-COAL

EO-MScM-EL vs.

EO-SSCM

EO-MScM-EL vs.

FD-SSCM

EO-MScM-EL vs.

QUBIC

EO-MScM-EL vs.

EO-COAL

EO-MScM-EL vs.

FD-COAL

EO-MScM-SH vs.

MSISA-P

EO-MScM-SH vs.

MSISA-R

9.11+10.61

9.11 +10.61

9.11+10.61

9.11+10.61

9.11 +10.61

8.50 £10.57

8.50 +10.57

8.50 + 10.57

8.50 £ 10.57

8.50 £ 10.57

9.11 +10.61

9.11 £ 10.61

0.419

0.058

0.279

0.334

0.852

0.002

0.999

0.894

0.317

0.126

7.63+9.05

9.78 +9.76

2.52+4.78

7.75+9.50

7.57+9.16

7.63+9.05

9.78 £9.76

252+4.78

7.75+£9.50

7.57+£9.16

9.05 +8.89

9.61+9.29

478

6.31+8.71 0.594 442 +6.01
6.31+8.71 6.90 +7.75
6.31+£8.71 9.95+10.82
6.31+8.71 0.422 5.24+741
6.31+£8.71 0.744 5.93+8.27
6.00 +8.15 0.546 4.42 +6.01
6.00 £8.15 6.90£7.75
6.00 +8.15 9.95+10.82
6.00 £8.15 0.440 5.24+741
6.00 +£8.15 0.751 5.93+8.27
6.31+8.71 0.533 3.70+£1.79
6.31+8.71 0.077 6.20 £ 6.65



EO-MScM-SH vs.
9.11+10.61 0.199 9.76 +£10.54
MSKM-SH

EO-MScM-SH vs.
9.11 £10.61 0.499 7.68 £9.47
MSKM-EL

EO-MScM-SH vs.
9.11 +£10.61 0.504 9.23+10.39
BMSKM-SH

EO-MScM-SH vs.
9.11+10.61 0.112 6.79 £8.75
BMSKM-EL

EO-MScM-EL vs.
8.50 + 10.57 0.139 9.05 + 8.89
MSISA-P

EO-MScM-EL vs.
8.50 + 10.57 9.61 +9.29

MSISA-R

EO-MScM-EL vs.
8.50 +10.57 9.76 +£10.54

MSKM-SH

EO-MScM-EL vs.
8.50 + 10.57 0.712 7.68 +9.47
MSKM-EL

EO-MScM-EL vs.
8.50 + 10.57 0.110 9.23 +10.39
BMSKM-SH

EO-MScM-EL vs.

8.50 £ 10.57 0.548 6.79 £8.75
BMSKM-EL

B. anthracis - L. monocytogenes pairing

B. anthracis

479

6.31+8.71 0.052 7.88 £9.56

6.31+£8.71 0.895 491 +6.44

6.31+£8.71 0.327 7.10+£9.45

6.31+8.71 0.960 4.86 +6.39

6.00 £8.15 0.603 3.70+£1.79

6.00 +8.15 0.061 6.20 + 6.65

6.00 £8.15 7.88 £9.56

6.00 £8.15 0.873 491 +6.44

6.00 £8.15 0.304 7.10+£9.45

6.00 +£8.15 0.932 4.86 +6.39

L. monocytogenes




distl vs. dist2

EO-MScM-SH vs.

EO-SSCM

EO-MScM-SH vs.

FD-SSCM

EO-MScM-SH vs.

QUBIC

EO-MScM-SH vs.

EO-COAL

EO-MScM-SH vs.

FD-COAL

EO-MScM-EL vs.

EO-SSCM

EO-MScM-EL vs.

FD-SSCM

EO-MScM-EL vs.

QUBIC

EO-MScM-EL vs.

EO-COAL

EO-MScM-EL vs.

FD-COAL

EO-MScM-SH vs.

MSKM-SH

distl mean Wilcoxon's dist2 mean

(green)

6.75 +9.09

6.75+9.09

6.75+£9.09

6.75 +9.09

6.75+9.09

6.82 + 8.86

6.82 + 8.86

6.82 £ 8.86

6.82 + 8.86

6.82 + 8.86

6.75+£9.09

2-sided

0.621

0.440

0.392

0.794

0.623

0.872

0.653

0.514

0.555

0.451

0.623

(red)

5.39+6.03

547 +5.39

6.73+£7.52

6.18 +7.98

6.50 £8.74

5.39£6.03

5.47 +5.39

6.73+7.52

6.18 +7.98

6.50 £ 8.74

5.67+7.00

480

distl mean Wilcoxon's dist2 mean
(green) 2-sided (red)
5.63+8.48 0.982 4.42 +6.01
5.63 +8.48 6.90+7.75
5.63 +8.48 9.95 +10.82
5.63+8.48 0.687 5.24+7.41
5.63 £ 8.48 0.929 5.93 £8.27
5.93+8.70 0.859 4.42 +£6.01
5.93+8.70 6.90 £ 7.75
5.93+8.70 9.95+10.82
5.93+8.70 0.533 524 +7.41
5.93+8.70 0.959 5.93+8.27
5.63 £ 8.48 0.087 6.83+8.86



EO-MScM-SH vs.

6.75+9.09 0.401 3.86 +4.13
MSKM-EL
EO-MScM-EL vs.

6.82 + 8.86 0.749 5.67 £7.00
MSKM-SH
EO-MScM-EL vs.

6.82 + 8.86 0.190 3.86+4.13

MSKM-EL

7.2.3.2.4 Motif E-values

5.63+8.48 0.693 494 +£6.73
5.93+8.70 0.118 6.83 £ 8.86
5.93+8.70 0.847 494 £6.73

Table 7.38: Comparison of bicluster motif E-values (-log10) from the expression only methods

considered by this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes. A

comparison of the motif E-values (-log10) from MScM (expression only) with all other relevant

methods for all 3 pairings of the three organisms examined. In the comparisons, we compare both

MScM steps to the other methods. Displayed are the means for each method and/or step compared, as

well as the Wilcoxon’s non-parametric rank test (2-sided) comparing their distributions. We direct the

reader to section 7.2.3.1.1 for instructions on how to interpret the table. As the table indicates, in 39 of

the 116 of the comparisons (33.7%) MScM does as well or better than its competitors. This is by far

the metric that EO-MScM does on.

B. subtilis - B. anthracis pairing

B. subtilis

distl mean Wilcoxon's dist2 mean
distl vs. dist2

(green) 2-sided (red)

EO-MScM-SH vs.
-0.90 £3.44 0.71 +5.69

EO-SSCM

481

B. anthracis
distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)

0.09 +4.65 2.17 +5.38




EO-MScM-SH vs.

FD-SSCM

EO-MScM-SH vs.

QUBIC

EO-MScM-SH vs.

EO-COAL

EO-MScM-SH vs.

FD-COAL

EO-MScM-EL vs.

EO-SSCM

EO-MScM-EL vs.

FD-SSCM

EO-MScM-EL vs.

QUBIC

EO-MScM-EL vs.

EO-COAL

EO-MScM-EL vs.

FD-COAL

EO-MScM-SH vs.

MSISA-P

EO-MScM-SH vs.

MSISA-R

EO-MScM-SH vs.

MSKM-SH

-0.90 +3.44 7.03+18.81

-0.90+3.44

1.41+3.94

-0.90 £ 3.44

2.40+7.33

-0.90 +3.44

2.72+7.30

-0.20 + 4.56

0.157

0.71 +5.69

-0.20 + 4.56 7.03+18.81

-0.20 + 4.56

1.41+3.94

-0.20 + 4.56

240+7.33

-0.20 + 4.56 2.72+7.30

-0.90+3.44 0295 -1.12+2.03
-0.90+3.44 9.40+09.19
-090+3.44 0915 -1.18+2.62

482

0.09 £4.65 4.98 +10.63
0.09 +4.65 13.72 + 14.49
0.09 £4.65 3.94+£8.70
0.09 +£4.65 3.85+8.83
1.02+6.11 2.17 +5.38
1.02+6.11 4.98 +£10.63
1.02+6.11 13.72 +£14.49
1.02+6.11 3.94+8.70
1.02+6.11 3.85+8.83
0.09 +£4.65 0.120 0.46 +£3.43
0.09 +4.65 2.34 +11.56
0.09 £4.65 0.294 -0.22 +2.96



EO-MScM-SH vs.

MSKM-EL

EO-MScM-SH vs.

BMSKM-SH

EO-MScM-SH vs.

BMSKM-EL

EO-MScM-EL vs.

MSISA-P

EO-MScM-EL vs.

MSISA-R

EO-MScM-EL vs.

MSKM-SH

EO-MScM-EL vs.

MSKM-EL

EO-MScM-EL vs.

BMSKM-SH

EO-MScM-EL vs.

BMSKM-EL

-0.90 +3.44 0.19+4.26

-0.90+3.44  0.620  -1.09 +2.68
-0.90 £ 3.44 0.44 £ 4.06
-0.20+456  0.701  -1.12+2.03
-0.20 + 4.56 9.40+09.19
-0.20+4.56  0.353 -1.18+2.62
-0.20 + 4.56 0.19+4.26
-0.20+456  0.663  -1.09 +2.68
-0.20 + 4.56 0.44 £ 4.06

B. subtilis - L. monocytogenes pairing

distl vs. dist2

B. subtilis
distl mean Wilcoxon's dist2 mean
2-sided

(green) (red)
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0.09 £4.65 2.74 £5.66
0.09 +£4.65 0.639 -0.39 +2.87
0.09 £4.65 3.07+£5.44
1.02+6.11 0.434 0.46 +3.43
1.02+6.11 - 2.34 +11.56
1.02+6.11 0.957 -0.22 +2.96
1.02+6.11 2.74 +£5.66
1.02+6.11 0.518 -0.39 +2.87
1.02+6.11 3.07+£5.44

L. monocytogenes

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)



EO-MScM-SH vs.

EO-SSCM

EO-MScM-SH vs.

FD-SSCM

EO-MScM-SH vs.

QuUBIC

EO-MScM-SH vs.

EO-COAL

EO-MScM-SH vs.

FD-COAL

EO-MScM-EL vs.

EO-SSCM

EO-MScM-EL vs.

FD-SSCM

EO-MScM-EL vs.

QUBIC

EO-MScM-EL vs.

EO-COAL

EO-MScM-EL vs.

FD-COAL

EO-MScM-SH vs.

MSISA-P

EO-MScM-SH vs.

MSISA-R

-1.56 + 3.27 0.71£5.69

-1.56 £ 3.27 7.03 +18.81
-1.56 £ 3.27 1.41+3.94
-1.56 + 3.27 2.40 £ 7.33
-1.56 + 3.27 2.72+7.30
-0.95 +4.01 0.71£5.69
-0.95 +4.01 7.03+18.81
-0.95+4.01 1.41+3.94
-0.95 +4.01 240 £7.33
-0.95 +4.01 2.72+7.30
-1.56 +3.27

-2.63+1.00

-1.56 £ 3.27 10.37 + 8.84

484

0.29 £5.09

0.29 +5.09

0.162

0.29+5.09

0.302

0.29 £5.09

0.29 +5.09

0.34 +5.08

0.34 £5.08

0.121

0.34 +5.08

0.269

0.34 £5.08

0.34 £5.08

0.29 +5.09

0.29 £5.09

2.04+£451

0.46 +4.73

9.57 £13.54

2.92+6.80

3.66 +7.60

2.04£451

0.46 £4.73

9.57 +13.54

2.92+6.80

3.66 £ 7.60

-1.56 +£1.40

9.06 +7.74



EO-MScM-SH vs.

MSKM-SH

EO-MScM-SH vs.

MSKM-EL

EO-MScM-SH vs.

BMSKM-SH

EO-MScM-SH vs.

BMSKM-EL

EO-MScM-EL vs.

MSISA-P

EO-MScM-EL vs.

MSISA-R

EO-MScM-EL vs.

MSKM-SH

EO-MScM-EL vs.

MSKM-EL

EO-MScM-EL vs.

BMSKM-SH

EO-MScM-EL vs.

BMSKM-EL

-1.56 +3.27 0592  -1.91+1.56
-1.56 £ 3.27 0.52 +5.33
-1.56 £3.27 0.913  -1.97+1.58
-1.56 + 3.27 0.02+3.81
-0.95+4.01 -2.63+1.00
-0.95 +4.01 10.37 £ 8.84
-0.95+4.01 0292 -1.91+1.56
-0.95+4.01 0.52 +5.33
-095+4.01 0143 -197+1.58
-0.95 +4.01 0.02+3.81

B. anthracis - L. monocytogenes pairing

B. anthracis

485

0.29 £5.09

0.29 +5.09

0.29+5.09

0.29 £5.09

0.34 +5.08

0.34 +5.08

0.34 £5.08

0.34 +5.08

0.34 £5.08

0.34 £5.08

0.617

0.284

0.459

0.196

-0.83+1.64

0.36 + 2.68

-0.89 + 1.69

0.43 +£3.17

-1.56 +£1.40

9.06+£7.74

-0.83 +1.64

0.36 + 2.68

-0.89 +1.69

0.43 +£3.17

L. monocytogenes




distl vs. dist2

EO-MScM-SH vs.

EO-SSCM

EO-MScM-SH vs.

FD-SSCM

EO-MScM-SH vs.

QUBIC

EO-MScM-SH vs.

EO-COAL

EO-MScM-SH vs.

FD-COAL

EO-MScM-EL vs.

EO-SSCM

EO-MScM-EL vs.

FD-SSCM

EO-MScM-EL vs.

QUBIC

EO-MScM-EL vs.

EO-COAL

EO-MScM-EL vs.

FD-COAL

EO-MScM-SH vs.

MSKM-SH

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)
-0.81+£3.42 2.17 +5.38
-0.81+£3.42 5.21+10.80

13.72
-0.81 +3.42
14.49
-0.81+£3.42 3.94+8.70
-0.81+£3.42 3.85+8.83
-0.42 £3.90 2.17+5.38
-0.42 £ 3.90 5.21+10.80
13.72 +
-0.42 £3.90
14.49
-0.42 £3.90 3.94+8.70
-0.42 £ 3.90 3.85+8.83
-081+3.42 0595 -158+1.60

486

distl mean Wilcoxon's dist2 mean
(green) 2-sided (red)
0.50 £5.37 2.04+£451
0.50 +5.37 0.161 0.46 +4.73
0.50+5.37 = 0.333 9.57 + 13.54
0.50 £5.37 2.92 +£6.80
0.50 +5.37 3.66 + 7.60
0.99 + 6.39 2.04+£451
0.99 +£6.39 0.46+4.73
099+6.39  0.398 9.57 + 13.54
0.99 + 6.39 2.92+6.80
0.99 +£6.39 3.66 £ 7.60
0.50+5.37 = 0.940 -0.67 £ 1.69



EO-MScM-SH vs.

-0.81 +3.42 2.52£6.60 0.50 £5.37 0.44 +3.00

MSKM-EL

EO-MScM-EL vs.
-0.42+3.90 0.201 -1.58 £1.60 0.99 +6.39 0.271 -0.67 £1.69
MSKM-SH

EO-MScM-EL vs.

-0.42 +£3.90 2.52 +6.60 0.99+6.39  0.108 0.44 +3.00

MSKM-EL

7.2.3.2.5 Sequence p-values

Table 7.39: Comparison of bicluster sequence p-values (-log10) from the expression only methods
considered by this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes. A
comparison of the sequence p-values (-log10) from MScM (expression only) with all other relevant
methods for all 3 pairings of the three organisms examined. In the comparisons, we compare both
MScM steps to the other methods. Displayed are the means for each method and/or step compared, as
well as the Wilcoxon’s non-parametric rank test (2-sided) comparing their distributions. We direct the
reader to section 7.2.3.1.1 for instructions on how to interpret the table. As the table indicates, in 72 of
the 92 of the comparisons (78.3%) MScM does as well or better than its competitors.

B. subtilis - B. anthracis pairing

B. subtilis B. anthracis

distl mean Wilcoxon's dist2 mean  distl mean Wilcoxon's dist2 mean
distl vs. dist2

(green) 2-sided (red) (green) 2-sided (red)

EO-MScM-SH vs.
411 +2.04 3.68+1.88 3.77+1.69 292 +1.17

EO-SSCM

EO-MScM-SH vs.
411 +2.04 6.73+£3.35 3.77+1.69 0.097 3.90+2.62

FD-SSCM
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EO-MScM-SH vs.

QUBIC

EO-MScM-SH vs.

EO-COAL

EO-MScM-SH vs.

FD-COAL

EO-MScM-EL vs.

EO-SSCM

EO-MScM-EL vs.

FD-SSCM

EO-MScM-EL vs.

QUBIC

EO-MScM-EL vs.

EO-COAL

EO-MScM-EL vs.

FD-COAL

EO-MScM-SH vs.

MSISA-P

EO-MScM-SH vs.

MSISA-R

EO-MScM-SH vs.

MSKM-SH

EO-MScM-SH vs.

MSKM-EL

EO-MScM-SH vs.

411+2.04 2.06 £0.50
411 +2.04 2.50+1.30
411+204 247+£1.12
3.86 +£1.82 0235 3.68+1.88
3.86 +1.82 6.73 +3.35
3.86 £1.82 2.06 £0.50
3.86 +£1.82 2.50+1.30
3.86 +1.82 247+1.12
411+204 0.166 3.65+1.74
411+2.04 2.02£0.52
4.11+2.04 0.742 397+181
411+204 - 3.24 £1.58
411+2.04 0.944 4.05+1.86
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3.77+1.69 1.77+£0.26
3.77+1.69 2.36+1.16
3.77+£1.69 2.32+£157
3.55+1.73 292 +1.17
3.55+1.73 0.831 3.90 £ 2.62
3.55+£1.73 1.77£0.26
3.55+1.73 2.36+1.16
3.55+1.73 232 +1.57
3.77+£1.69 0.152 3.34+£1.33
3.77+1.69 1.79+0.27
3.77+1.69 0.442 3.59+1.53
3.77+£1.69 2.66 £1.03
3.77+1.69 0.175 3.42+1.33




BMSKM-SH

EO-MScM-SH vs.

BMSKM-EL

EO-MScM-EL vs.

MSISA-P

EO-MScM-EL vs.

MSISA-R

EO-MScM-EL vs.

MSKM-SH

EO-MScM-EL vs.

MSKM-EL

EO-MScM-EL vs.

BMSKM-SH

EO-MScM-EL vs.

BMSKM-EL

4.11+2.04 - 3.06 £1.30
3.86 £1.82 0480 3.65%1.74
3.86+1.82 - 2.02 +0.52
3.86 +£1.82 0421 397+181
3.86+1.82 - 3.24+1.58
3.86+1.82 0240 4.05+1.86
3.86 +£1.82 3.06 £1.30

B. subtilis - L. monocytogenes pairing

distl vs. dist2

EO-MScM-SH vs.

EO-SSCM

EO-MScM-SH vs.

FD-SSCM

B. subtilis

distl mean Wilcoxon's dist2 mean

(green) 2-sided (red)
431+1.90 3.68+1.88
431+1.90 6.73+3.35

489

3.77+£1.69 - 2.57+0.88
3.55+1.73 0.663 3.34+1.33
3.55+1.73 - 1.79+£0.27
3.55+1.73 0.502 3.59+1.53
3.55+1.73 - 2.66 +1.03
3.55+1.73 0.891 3.42+1.33
3.55+1.73 2.57+0.88

L. monocytogenes

distl mean W.ilcoxon's dist2 mean
(green) 2-sided (red)

5.07 £2.00 3.62+1.26

5.07 +2.00 0.692 5.24 +2.35



EO-MScM-SH vs.

QUBIC

EO-MScM-SH vs.

EO-COAL

EO-MScM-SH vs.

FD-COAL

EO-MScM-EL vs.

EO-SSCM

EO-MScM-EL vs.

FD-SSCM

EO-MScM-EL vs.

QUBIC

EO-MScM-EL vs.

EO-COAL

EO-MScM-EL vs.

FD-COAL

EO-MScM-SH vs.

MSISA-P

EO-MScM-SH vs.

MSISA-R

EO-MScM-SH vs.

MSKM-SH

EO-MScM-SH vs.

MSKM-EL

EO-MScM-SH vs.

431+1.90 2.06 £0.50
431+1.90 2.50+1.30
431+£1.90 247+£1.12
3.99+1.82 0.050 3.68+1.88
3.99 +1.82 6.73 +3.35
3.99+1.82 2.06 £0.50
3.99+1.82 2.50+1.30
3.99+1.82 247+1.12
4.31+1.90 0.069 5.06+2.38
431+1.90 1.99+0.50
431+1.90 479+ 175
431+1.90 3.45+1.88
431+1.90 0.263  4.61+2.13
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5.07£2.00 2.36 £ 0.37

5.07+2.00

3.74 +1.68

5.07 +2.00

351+£151

5.08 £2.02 3.62+1.26

5.08 +2.02 0.722 524 +£2.35

5.08 +2.02

2.36+0.37

5.08 £2.02

3.74 +£1.68

5.08 +2.02

351+151

5.07 +2.00

577+1091

5.07+2.00

2.42 +0.56

5.07+2.00

549+ 173

5.07+2.00 4.35+1.67

5.07+2.00

0.965

502+1.71



BMSKM-SH

EO-MScM-SH vs.
4.31+1.90
BMSKM-EL

EO-MScM-EL vs.
3.99+1.82
MSISA-P

EO-MScM-EL vs.
3.99+1.82
MSISA-R

EO-MScM-EL vs.
3.99+1.82
MSKM-SH

EO-MScM-EL vs.
3.99+1.82
MSKM-EL

EO-MScM-EL vs.
3.99+1.82
BMSKM-SH

EO-MScM-EL vs.

3.99+1.82
BMSKM-EL

B. anthracis - L. monocytogenes pairing

B. anthracis

distl mean Wilcoxon's dist2 mean

distl vs. dist2

(green) 2-sided

EO-MScM-SH vs.
3.88 +1.80
EO-SSCM

EO-MScM-SH vs.
3.88+1.80
FD-SSCM

3.19+1.39

5.06 +2.38

1.99 +£0.50

479+1.75

3.45+1.88

461+213

3.19+1.39

(red)

292117

3.83+257
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5.07 £2.00 443 +£1.62

5.08 £ 2.02 0.057 577+1091

5.08 +2.02 2.42 +0.56
5.08 £2.02 549+1.73
5.08 +2.02 435+ 1.67

5.08 +2.02 0.979 502+1.71

5.08 £2.02 443 +1.62

L. monocytogenes

distl mean W.ilcoxon's dist2 mean

(green) 2-sided (red)

5.02+221 3.62+1.26

502+221 0.414 524+235



EO-MScM-SH vs.

QUBIC

EO-MScM-SH vs.

EO-COAL

EO-MScM-SH vs.

FD-COAL

EO-MScM-EL vs.

EO-SSCM

EO-MScM-EL vs.

FD-SSCM

EO-MScM-EL vs.

QUBIC

EO-MScM-EL vs.

EO-COAL

EO-MScM-EL vs.

FD-COAL

EO-MScM-SH vs.

MSKM-SH

EO-MScM-SH vs.

MSKM-EL

EO-MScM-EL vs.

MSKM-SH

EO-MScM-EL vs.

MSKM-EL

3.88+1.80 1.77+0.26
3.88 +1.80 236 +1.16
3.88+£1.80 2.32+£157
3.80+1.80 292 +1.17
3.80+1.80 0.118  3.83 %257
3.80+1.80 1.77£0.26
3.80+1.80 2.36£1.16
3.80+1.80 2.32 +1.57
3.88+1.80 0.333  3.94+1.46
3.88+1.80 2.61+1.04
3.80+1.80 0.149 3.94+1.46
3.80+1.80 2.61+1.04
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502+221 2.36 £ 0.37

502+221

3.74 +1.68

5.02+221

351+£151

4.90+2.13 3.62+1.26

4.90+2.13 0.203 5.24 +2.35

490+2.13

2.36+0.37

4.90+2.13

3.74 +£1.68

4.90+2.13

351+151

502+221

561+1.74

502+221

4.37+151

4.90+2.13 561+1.74

490+2.13

0.067

437+151



7.2.3.3 Comparisons with Randomized tests

In the comparisons below, we only show results from the Gram-positive triple. They

were not generated for the Gram-negative triple as the initial results for the Gram-

positive triple - displayed below - indicate that they are largely uninformative.

7.2.3.3.1 Residuals

Table 7.40: Comparison of bicluster residuals with randomized tests for all methods considered

by this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes. A comparison of the

residuals of the results from all methods considered for all 3 pairings of the three organisms examined,

where each method is compared with its equivalent randomized test. Displayed are the means for each

method and/or step compared, as well as the Wilcoxon’s non-parametric rank test (2-sided) comparing

their distributions. We direct the reader to section 7.2.3.1.1 for instructions on how to interpret the

table. In this case, MSISA and Qubic always reported results worse than random, most likely due their

identification of inversely correlated biclusters. Coalesce was worse than random for B. subtilis and L.

monocytogenes, but better for B. anthracis.

B. subtilis - B. anthracis pairing

B. subtilis

derived Wilcoxon's  shuffle
Method
mean (green)  2-sided mean (red)

FD-MScM-SH 0.51+0.08 0.59 £ 0.04

FD-MScM-EL 0.49 +0.09 0.59 +0.03

FD-SSCM 0.49+0.13 0.58 £ 0.03
MSKM-SH 0.41 +0.07 0.56 £ 0.03
MSKM-EL 0.42 £ 0.06 0.57 £0.02

MSISA-P 0.98 £0.39 0.69+0.15
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B. anthracis
derived  Wilcoxon's  shuffle
mean (green)  2-sided mean (red)
0.30+0.09 0.78 + 0.06
0.32+£0.09 0.78 £0.05
0.31+0.12 0.79 £ 0.05
0.53+0.12 0.76 £ 0.05
0.48 £0.11 0.80 +0.03

1.97 +£0.94 0.76 £ 0.08




MSISA-R 1.11+041 0.66 £0.10

EO-MScM-SH  0.52 +0.09 0.58 £ 0.04

EO-MScM-EL  0.52+0.10 0.58 £ 0.04
EO-SSCM 0.44+£0.20 0.58 £ 0.03
QuUBIC 0.87+0.21 0.63 £ 0.06
EO-COAL 0.78 £0.23 0.65+0.11
FD-COAL 0.80+£0.25 0.65+0.10
BMSKM-SH 0.45 £ 0.07 0.56 +£0.03

BMSKM-EL 0.45+0.06 0.57 +0.02

B. subtilis - L. monocytogenes pairing

B. subtilis

derived Wilcoxon's  shuffle
Method
mean (green)  2-sided mean (red)

FD-MScM-SH 0.52£0.08 0.58 +0.04

FD-MScM-EL  0.50 +0.10 0.59 £0.03

FD-SSCM 0.49+0.13 0.58 £0.03
MSKM-SH 0.40 £ 0.07 0.55+0.03
MSKM-EL 0.42 £ 0.06 0.57 £0.02
MSISA-P 0.87+£0.34 0.68 +0.20
MSISA-R 1.11+0.42 0.66 £0.10
EO-MScM-SH  0.52 +0.08 0.57 £0.04
EO-MScM-EL  0.50 +0.09 0.58 £ 0.04

EO-SSCM 0.44+0.20 0.58 £ 0.03
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1.58 +0.38

0.50+£0.20

0.49+0.20

0.23 +0.06

1.51+0.29

0.58 £0.17

0.58+0.17

0.38 £ 0.07

0.39 +0.07

0.79 £ 0.03

0.76 £ 0.07

0.77 £ 0.06

0.80 +0.04

0.81+0.02

0.80+0.05

0.80+0.04

0.77 £ 0.05

0.80 +0.02

L. monocytogenes

derived

mean (green)

0.34+0.12

0.34+0.12

0.40+0.18

0.50£0.12

0.48+0.11

1.59+0.52

1.31+£0.34

0.49 £0.17

0.48 £0.17

0.29+0.10

Wilcoxon's  shuffle
2-sided  mean (red)
0.71+0.08
0.73+0.08
0.76 £ 0.08
0.68 + 0.09
0.74 £0.07
0.71+0.32
0.79 £ 0.09
0.70+0.10
0.70+£0.10

0.79 £ 0.05



QUBIC 0.87+0.21 0.63 £ 0.06

EO-COAL 0.78+£0.23 0.65+0.11

FD-COAL 0.80+£0.25 0.65+0.10
BMSKM-SH 0.43 £0.07 0.55+0.03

BMSKM-EL 0.44 £ 0.06 0.57 £0.02

B. anthracis - L. monocytogenes pairing

B. anthracis

derived Wilcoxon's  shuffle
Method
mean (green)  2-sided mean (red)

FD-MScM-SH 0.33+0.10 0.73+0.07

FD-MScM-EL  0.36 +0.11 0.75 £ 0.07

FD-SSCM 0.31+0.12 0.79 £0.05
MSKM-SH 0.40 £ 0.08 0.70 +0.07
MSKM-EL 0.39 £0.07 0.78 +0.04
EO-MScM-SH  0.52 +0.17 0.71£0.09
EO-MScM-EL  0.50 +0.17 0.72+0.09
EO-SSCM 0.23+0.06 0.80 £ 0.04
QUBIC 1.51+0.29 0.81+0.02
EO-COAL 0.58 £0.17 0.80+0.05

FD-COAL 0.58+0.17 0.80 £ 0.04
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1.81+0.85 0.82 +£0.03
1.63 +3.07 0.79 £ 0.08
1.70 £ 3.24 0.80 £ 0.07
0.42+0.09 0.68 +0.09
0.42 £0.09 0.74 £ 0.06

L. monocytogenes

derived Wilcoxon's  shuffle

mean (green)  2-sided  mean (red)

0.36£0.14 0.73+£0.08
0.36 £0.13 0.75+0.08
0.40+0.18 0.76 + 0.08
0.43+0.08 0.70 +0.08
0.43+0.08 0.75 +0.06
0.50+0.18 0.71+£0.10
0.50+0.19 0.72+0.10
0.29+0.10 0.79 £ 0.05
1.81+0.85 0.82 +£0.03
1.63 +3.07 0.79 +0.08
1.70 £3.24 0.80 £ 0.07




7.2.3.3.2 Mean correlations

Table 7.41: Comparison of bicluster mean correlations with randomized tests for all methods

considered by this study for all pairings of B. subtilis, B. anthracis and L. monocytogenes. A

comparison of the mean correlations of the results from all methods considered for all 3 pairings of the

three organisms examined, where each method is compared with its equivalent randomized test.

Displayed are the means for each method and/or step compared, as well as the Wilcoxon’s non-

parametric rank test (2-sided) comparing their distributions. We direct the reader to section 7.2.3.1.1

for instructions on how to interpret the table. In nearly all comparisons, the method was significantly

better than random. The sole exceptions were the biclusters produces by MSISA-R for L.

monocytogenes from the pairing of B. subtilis and L. monocytogenes.

B. subtilis - B. anthracis pairing

Method

FD-MScM-SH
FD-MScM-EL
FD-SSCM
MSKM-SH
MSKM-EL
MSISA-P
MSISA-R
EO-MScM-SH
EO-MScM-EL
EO-SSCM

QUBIC

derived

mean (green)

0.59+0.11

0.61+0.11

0.56 £0.14

0.58£0.11

0.56 £0.11

0.60+0.14

0.55+0.13

0.52+0.12

0.54£0.12

0.70+£0.11

0.36+0.19

B. subtilis

Wilcoxon's  shuffle

2-sided

mean (red)
0.27 £0.04
0.26 £0.04
0.25+0.04
0.25+0.04
0.25+0.03
0.44£0.10
0.42 +£0.08
0.27 £ 0.05
0.26 £ 0.05
0.25+0.04

0.32+0.04
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B. anthracis

derived
mean (green)
0.85 +0.09
0.84 £ 0.09
0.82+0.15
0.52+0.14
0.58 £ 0.15
0.56 + 0.07
0.51+0.03
0.69+£0.17
0.69 £ 0.19
0.91 £ 0.05

0.49 +0.05

Wilcoxon's

2-sided

shuffle
mean (red)
0.40 + 0.06
0.39 £0.05
0.37 £ 0.06
0.39+0.05
0.37+0.03
0.49 +0.08
0.47 £0.04
0.40 £0.07
0.40 + 0.06
0.37+0.04

0.41+0.03



EO-COAL

FD-COAL

BMSKM-SH

BMSKM-EL

0.58+£0.14

0.59+0.15

0.49 +£0.13

0.50+0.12

0.37+£0.10

0.38 £0.10

0.25 £ 0.04

0.25+0.03

B. subtilis - L. monocytogenes pairing

Method

FD-MScM-SH
FD-MScM-EL
FD-SSCM
MSKM-SH
MSKM-EL
MSISA-P
MSISA-R
EO-MScM-SH
EO-MScM-EL
EO-SSCM
QUBIC
EO-COAL
FD-COAL
BMSKM-SH

BMSKM-EL

derived

mean (green)

0.59+0.11

0.61+0.10

0.56+0.14

0.59+0.11

0.56 +0.11

0.60 +0.20

0.55%0.12

0.52+0.13

0.54£0.12

0.70+0.11

0.36 +0.19

0.58+£0.14

0.59£0.15

0.52+0.14

0.53+0.12

B. subtilis
Wilcoxon's  shuffle
2-sided  mean (red)
0.27 £ 0.05
0.26 + 0.04
0.25+0.04
0.26 £ 0.05
0.25+0.03
0.44+0.14
0.42 £ 0.08
0.27 £ 0.06
0.27 £0.06
0.25+0.04
0.32£0.04
0.37+£0.10
0.38+0.10
0.26 + 0.05

0.25+0.03
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0.64 £0.13 0.42 +£0.06
0.62 £0.13 0.41 £0.05
0.72+0.10 0.39 £0.05
0.71+0.10 0.37 +0.03

L. monocytogenes

derived Wilcoxon's  shuffle

mean (green) 2-sided mean (red)

0.80 £0.13 0.44 £0.09
0.81+0.11 0.43 £ 0.08
0.71+£0.20 0.42+£0.10
0.51 +£0.17 0.42+0.10
0.55+0.16 0.42 +0.07
0.47 +0.23 0.55+0.23
0.50 £0.27 0.51£0.17
0.64 £0.18 0.44+£0.11
0.64 £0.18 0.43+0.10
0.86 + 0.08 0.43 £ 0.07
0.45+0.27 0.45+0.03
0.81£0.13 0.51£0.10
0.80 £0.12 0.50 £ 0.08
0.63+0.15 0.42+0.10
0.64£0.14 0.42 +£0.07




B. anthracis - L.

monocytogenes pairing

Method

FD-MScM-SH
FD-MScM-EL
FD-SSCM
MSKM-SH
MSKM-EL
EO-MScM-SH
EO-MScM-EL
EO-SSCM
QUBIC
EO-COAL

FD-COAL

B. anthracis
derived  Wilcoxon's  shuffle

mean (green) 2-sided  mean (red)

0.82+0.11 0.40 £ 0.07
0.80+0.11 0.39 £ 0.06
0.82+0.15 0.37 £0.05
0.69+0.12 0.39 +0.07
0.70+0.10 0.37 +0.03
0.63+0.16 0.40 £ 0.08
0.63+0.17 0.40 £0.08
0.91+£0.05 0.37 £0.04
0.49 £ 0.05 0.41 £0.03
0.64 +0.13 0.42 +0.06
0.62 +0.13 0.41 +0.05

L. monocytogenes

derived

mean (green)

0.77+0.14

0.78+0.13

0.71+0.20

0.60 +0.14

0.63+0.13

0.63+0.19

0.63+0.19

0.86 +0.08

0.45 £ 0.27

0.81+0.13

0.80+0.12

Wilcoxon's  shuffle
2-sided mean (red)
0.44 +0.09
0.43+0.08
0.42 +£0.10
0.42+£0.10
0.42 £0.07
043+0.11
0.43+0.10
0.43 +0.07
0.45+0.03
0.51+0.10

0.50 +0.08

7.2.4 Additional GO term and KEGG pathway enrichment figures

GO term enrichments were initially introduced by Draghici et al (Draghici,

Khatri et al. 2003) as a measure of the functional coherence of a set of genes.

Effectively, GO term enrichments represent the probability, by chance, that a set of

genes share the same functional annotation, which is approximated using the

hypergeometric distribution:
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where by is the set of genes in bicluster k; G is the set of genes in the genome ; and T is
the set of genes having a particular GO term annotation. Similarly, KEGG pathway
enrichments were approximated with a hypergeometric distribution, where T was
instead the set of genes associated with a given KEGG pathway.

For all the pairings between B. subtilis, B. anthracis and L. monocytogenes,
there is a consistent increase from the shared to elaboration steps of all the multi-
species methods, with the percentage of FD-MScM-EL biclusters with significant GO
term enrichments consistently greater than the SSCM results. Similar behavior is
observed with the KEGG pathway enrichments. The higher percentages reported for
the MSISA and Qubic methods are a reflection of the high redundancy of the
biclusters identified by them.

Below, we show plots of the GO term and K pathway enrichments, where in
panel(A) GO Terms are displayed the percentage of biclusters with enriched GO
terms. In (B) KEGG Pathways, the percentage of biclusters with enriched KEGG
pathways are displayed. Explanations of the method name abbreviations can be found

in.
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7.2.4.1 Figures for the Gram-positive triplet
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Figure 7.79: Comparison of the fraction of biclusters with significant GO and KEGG annotation

enrichments from all methods considered by this study for the B. subtilis — B. anthracis pairing.
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Figure 7.80: Comparison of the fraction of biclusters with significant GO and KEGG annotation
enrichments for the multi-species cMonkey, multi-species k-means and single-species cMonkey

methods for the B. subtilis — L. monocytogenes pairing.
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Figure 7.81: Comparison of the fraction of biclusters with significant GO and KEGG annotation
enrichments for the multi-species cMonkey, multi-species k-means and single-species cMonkey

methods for the B. anthracis — L. monocytogenes pairing. (A) GO Terms.
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7.2.4.2 Figures for the Gram-negative triplet
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Figure 7.82: Comparison of the fraction of biclusters with significant GO and KEGG annotation

enrichments from all methods considered by this study for the E. coli — S. typhimurium pairing.
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Figure 7.83: Comparison of the fraction of biclusters with significant GO and KEGG annotation

enrichments from all methods considered by this study for the E. coli — V. cholerae pairing.
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7.3 Gene lists and bicluster images for biological highlights from the

human and mouse immune system cell data analysis

7.3.1 Full descriptions of highlighted biclusters
7.3.1.1 Bicluster 31 (Human and Mouse listed together)

7.3.1.1.1 Shared Bicluster

MOUSE_IMMUNE_GENE CHIP Cluster: 31 ; resid: 0.378 ; genes: 30 ; conds: 314; iter: 0

HUMAN_IMMUNE_GENECHIP Cluster: 31 ; resid: 0.435 ; genes: 30 ; conds: 274 ; iter: 0
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Figure 7.85: Shared Human-Mouse bicluster 32 image (pre-elaboration)

506



7.3.1.1.2 Gene list

Table 7.42: Human-Mouse Immune System bicluster 32 (Conserved Bicluster)

Mouse genes Human genes
KMO KMO
BCL11A BCL11A
BANK1 BANK1
DAPP1 DAPP1
CD180 CD180
MEF2C MEF2C
CD74 CD74
LY86 LY86
HLA-DMA H2-DMA
HLA-DQA1 H2-AA
HLA-DQB1 H2-AB1
HLA-DRB1 H2-EB1
LAT2 LAT2
BLK BLK
LYN LYN
CD72 CD72
SYK SYKB
BLNK BLNK
MS4A1 MS4A1
C130RF18 5031414D18RIK
CD19 CD19
CMTM3 CMTM3
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CBFA2T3 CBFA2T3

PLCG2 PLCG2
CD79B CD79B
TCF4 TCF4
CD22 CD22
CD79A CD79A
NFAM1 NFAM1
BTK BTK
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7.3.1.2 Bicluster 87 (Human and Mouse listed together)

7.3.1.2.1 Shared Bicluster

RNASE6
MOUSE_IMMUNE_GENECHIP Cluster: 87 ; resid: 0.221 ; genes: 8 ; conds: 422 ; iter: 0

H2-EB% D74

—— curated
inferred

H24DMB1 CYBBe
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B/Z-AA
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RNASE6
HUMAN_IMMUNE _GENECHIP Cluster: 87 ; resid: 0.319 ; genes: 8 ; cornds: 336 ; iter: 0

1
|
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TC
o]
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Figure 7.86: Shared Human-Mouse bicluster 87 image (pre-elaboration)

7.3.1.2.2 Gene list

Table 7.43: Human-Mouse Immune System bicluster 87 (Conserved Bicluster)

Mouse genes Human genes
CD74 CD74
HLA-DMA H2-DMA
HLA-DMB H2-DMB1
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HLA-DQA1 H2-AA

HLA-DQB1 H2-AB1

HLA-DRB1 H2-EB1

RNASE6 RNASE6
CYBB CYBB

7.3.1.3 Bicluster 2 (Human and Mouse listed together)

7.3.1.3.1 Shared Bicluster

MOUSE_IMMUNE_GENECHIP Cluster: 2 ; resid: 0.387 ; genes: 57 ; conds: 351 ; iter: 0
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Figure 7.87: Shared Human-Mouse bicluster 2 image (pre-elaboration)
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7.3.1.3.2 Gene list

Table 7.44: Human-Mouse Immune System bicluster 2 (Conserved Bicluster)

Mouse genes

CSF3R

CTSS

S100A8

NCF2

HLX

TLR5

SLC11Al

MYD88

PRKCD

TLR9

RBM47

TLR1

TLR6

TLR2

TICAM2

CD14

CSF1R

LY86

TREM1

SKAP2

Human genes

CSF3R

CTSS

S100A8

NCF2

HLX

TLRS

SLC11A1

MYD88

PRKCD

TLR9

RBM47

TLR1

TLR6

TLR2

TICAM2

CD14

CSF1R

LY86

TREM1

SKAP2
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PILRA

IRF5

ASAH1

LY96

TLR4

PSAP

SPI1

MPEG1

SLC15A3

UNC93B1

TIRAP

CLEC12A

CLEC7A

PLBD1

CLEC4A

IRAK4

IRAK3

SLC7A7

CTSH

IGSF6

LPCAT?2

CD68

GRN

CD300LF

RAB31

PILRA

IRF5

ASAH1

LY96

TLR4

PSAP

SFPI1

MPEG1

SLC15A3

UNC93B1

TIRAP

CLEC12A

CLEC7A

PLBD1

CLEC4A2

IRAK4

IRAK3

SLC7A7

CTSH

IGSF6

LPCAT2

CD68

GRN

CD300LF

RAB31

512



C5AR1

SIRPA

CST3

HCK

CTSz

CSF2RB

NFAM1

TLR7

TLR8

CYBB

IL13RA1

CSF2RA

C5AR1

SIRPA

CST3

HCK

CTSz

CSF2RB

NFAM1

TLR7

TLR8

CYBB

IL13RA1

CSF2RA
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7.3.1.4 Bicluster 480 (Human and Mouse listed together)

7.3.1.4.1 Shared Bicluster

TNIP1
MOUSE_IMMUNE_GENECHIP Cluster: 480 ; resid: 0.525 ; genes: 9 ; conds: 308 ; iter: 0
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Figure 7.88: Shared Human-Mouse bicluster 482 image (pre-elaboration)

7.3.1.4.2 Gene list

Table 7.45: Human-Mouse Immune System bicluster 480 (Conserved Bicluster)

Mouse genes Human genes
REL REL
NFKBIZ NFKBIZ
TNIP1 TNIP1
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NFKBIE
NFKB2
PDESA
SPAGY
BCL3

RELB

NFKBIE
NFKB2
PDESA
SPAG9
BCL3

RELB
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