
Scalable Distributed Payment Systems with Minimal Trust

Assumptions

by

Assimakis Agamemnon Kattis

A dissertation submitted in partial fulfillment

of the reqirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September, 2022

Assistant Professor Joseph Bonneau

© Assimakis Agamemnon Kattis

all rights reserved, 2022

Dedication

To my parents.

iii

Acknowledgements

I would like to thank my advisor Joe, without whom I would have never had the opportunity to

work on such exciting, difficult and rewarding problems.

I am extremely grateful to all my friends. Michali, Ari, Dionysi, Alex, Achillea, Giorgo and Fabian,

thank you for your support and for continuing to put up with me.

Thank you to Memo, for keeping me in check, and to Loukia, for always being there.

Thank you Ana, without you this would have never happened.

iv

Abstract

Over the last decade, the security and resilience of Bitcoin as a stable payment network has mo-

tivated substantial study of the viability of distributed payment protocols as alternatives to cen-

tralized payment processing. We investigate the design of scalable distributed payment systems

in the permissionless setting, where no actors in the protocol can be trusted or identified with

out-of-band information. Scalability is identified with two desirable properties: high transaction

processing rate (or throughput) and low confirmation latency (or settlement times). We ana-

lyze the trade-offs inherent to distributed protocols that prevent naive optimization of the above

parameters and study techniques from verifiable computation as potential tools for overcoming

these bottlenecks.

One technique to increase throughput in distributed payment systems involves the use of

Succinct Non-interactive ARguments of Knowledge (SNARKs, or SNARK proofs) to verify the

integrity of transactions. Transaction rollups are one such solution, using SNARK computations

to achieve scalability. Many instantiations of rollups leveraging SNARKs show encouraging ev-

idence that this technique could achieve commercial-capacity throughput rates if implemented

on top of current distributed payment systems, even in the smart-contract setting. Although

promising, all rollup approaches require the resolution of an additional yet crucial question. For

protocols operating in the permissionless setting, we need to ensure that a system relying on

proof generation to scale also incentivizes actors to compute proofs cheaply and quickly. This

is a governance problem, as the protocol needs to decide on how participants will be chosen to

v

perform these (expensive) computations. We pose the question of who will compute the proofs,

identify it as a consensus problem and provide a technical proposal towards its resolution.

Our main contributions are twofold: in Part I, we design a permissionless consensus protocol

that solves the problem of state verification for resource-limited clients in an incentive-compatible

way. We show formal proofs of security and achieveminimal resource requirements for full ledger

verification. This protocol showcases our key contribution: the design of a proof-of-work (PoW)

process that computes SNARK proofs as valid outputs. Suitably choosing the statement whose

proof is generated through PoW provides an incentive-compatible way to enforce the computa-

tion required by proof-based scaling techniques. In Part II, we look at one of the key components

of SNARK-based throughput optimization: the non-interactive proof itself. We design a novel

proof system which provides security guarantees in the trustless setting, while still being small

and efficiently computable. This proof system (a transparent SNARK, or STARK) can be used

directly for scaling throughput in distributed payments through transaction rollups. In conjunc-

tion with an incentivized PoW process, it also demonstrates a way for participants in consensus

to quickly generate the rollup proofs in a permissionless way.

vi

Contents

Dedication iii

Acknowledgments iv

Abstract v

List of Figures xii

List of Tables xiii

1 Introduction 1

1.1 Throughput & Settlement Time . 2

1.2 Protocol Governance . 4

1.3 Overview of Contributions . 6

2 Fault Tolerance & Sybil Resistance 11

2.1 Byzantine Agreement . 11

2.2 Nakamoto Consensus . 12

2.2.1 The Bitcoin Protocol . 13

2.2.2 Related Work . 14

2.3 Moderately Hard Puzzles . 15

2.3.1 Useful Proof-of-Work . 17

vii

3 Distributed Payment Systems 18

3.1 Preliminaries . 18

3.2 Maximizing Throughput . 21

3.2.1 Segregated Witness . 22

3.2.2 Transaction Rollups . 23

3.2.3 Other Scaling Approaches . 25

3.3 Light Client Verification . 26

4 Verifiable Computation 28

4.1 Zero Knowledge Proofs . 28

4.2 Transparency . 30

4.3 Universality . 32

4.4 Incrementally Verifiable Computation . 33

4.5 Polynomial Commitments . 33

I Proof of Necessary Work 36

5 Contributions 37

5.1 Incentivized State Compression . 39

5.2 Optimal Light Clients . 40

6 Succinct Verification 42

6.1 Preliminaries . 42

6.2 State Transition Semantics . 44

6.3 State Transition as an NP statement . 45

6.3.1 DPS Specification . 46

viii

7 Proof of Necessary Work 47

7.1 Definitions . 47

7.1.1 An Initial Approach . 48

7.1.2 Amortization Resistance . 49

7.1.3 Prover Computational Costs . 50

7.1.4 Amortization of Multiexponentiation . 50

7.2 Amortization Resistance & Efficiency . 53

7.2.1 Committing to State . 54

7.2.2 Masking the Computation . 55

7.3 Consensus Security . 55

7.3.1 Quantization Effects . 56

7.3.2 Stubborn Mining and Collisions . 56

8 Design & Instantiation 58

8.1 Proof System & Predicate . 58

8.2 Circuit Requirements . 59

8.2.1 Pedersen Hashes . 59

8.2.2 Signature Scheme . 59

8.3 Randomizing the Pedersen Hash . 60

8.4 Security . 62

8.4.1 Unique Witness Extraction . 62

8.4.2 Single Witness Hardness . 63

8.5 Performance . 65

9 Open Questions 67

9.1 Waste in Nakamoto Consensus . 67

9.2 Trusted Setup & Quantum Resistance . 67

ix

9.3 Privacy & Complex Transactions: . 68

9.4 Other Consensus Protocols . 69

9.5 Hardware Acceleration & Parallelism . 69

II RedShift 70

10 Contributions 71

10.1 Compilation of IOPs with LPCs . 72

10.2 RedShift . 72

11 Overview 74

11.1 Definitions . 77

11.2 Reed-Solomon codes . 78

11.3 Interactive Oracle Proofs . 79

11.4 FRI: Fast Reed-Solomon IOP of Proximity . 83

12 List Polynomial Commitment 84

12.1 Specification . 84

12.2 Instantiation . 85

12.3 Polynomial Commitments from LPCs . 86

13 RedShift 90

13.1 Constraint System . 90

13.2 IOP Protocol . 93

13.3 Soundness Parameters . 97

13.4 Benchmarks . 99

14 Open Questions 103

x

14.1 Extensions . 103

14.1.1 Batching Multiple FRI Instances . 103

14.1.2 Binary Fields . 103

14.1.3 Recursive Proofs . 104

14.1.4 Different Constraint Systems . 104

14.2 Discussion . 105

A Appendix 106

A.1 Multiexponentiation Bounds & Theorem Proofs 106

A.2 DPS Transaction Semantics . 111

A.2.1 Security Properties . 112

A.2.2 Basic Data Structures . 117

A.2.3 Transaction Semantics . 118

A.2.4 Digital Signature Schemes . 119

A.2.5 DPS Transition Functions . 120

A.3 Constraint System Equivalence . 120

A.4 FRI Overview . 123

A.5 Supplementary Proofs . 125

A.6 RedShift Security Analysis . 127

A.6.1 Completeness . 128

A.6.2 Knowledge Soundness . 128

A.6.3 Zero-Knowledge . 133

A.7 FRI parameters . 140

A.8 Proof Size Optimizations . 140

A.9 Batched FRI . 142

Bibliography 145

xi

List of Figures

8.1 Left: The TwoBitGroupAddition and SymmetricGroupAddition circuits from top

to bottom respectively. Right: Layout of a single Merkle authentication path cir-

cuit, with𝑀 = 3 evaluations ofH on an 𝑛 = 4-bit Pedersen hash. 𝐺𝑖 = (𝐺𝑥𝑖 ,𝐺
𝑦

𝑖
) =

𝐺𝑖 +𝐺𝑖 + 𝐻𝑖 andH
′ (𝜌) = ∏4

𝑖=1𝐺
1−2𝜌𝑖
𝑖

and 𝑒 the identity. 60

13.1 Benchmark for RedShift with 𝜌 = 1/16. Top: Proof Generation Time (seconds).

Center: Verification Time (ms). Bottom: Proof Size (kB). 102

A.1 FRI Transcript. Bold lines separate the adjacent levels of FRI, green blocks illus-

trate the values that are taken uniformly at random, yellow blocks represent the

values that are uniquely determined by the coset of the previous layer, while red

blocks have no impact on the construction of ⟨𝑆⟩. 137

xii

List of Tables

5.1 Client verification times and memory requirements for 𝑡 transactions in ℎ blocks. 41

8.1 Prototype Times andKey Sizes for Predicates verifying different numbers of trans-

actions: Average running times for setup G, prover P and verifier V over 10

iterations are shown alongside proving/verification key and proof sizes. 66

13.1 LPC Instantiation Comparisons. 99

13.2 Projected Proof Sizes. 101

xiii

1 | Introduction

We are interested in investigating how trust assumptions influence the design of payment sys-

tems. When building effective payment protocols, a primary concern is the safe and timely set-

tlement of transactions between two end-users who don’t necessarily trust each other. Such pro-

tocols usually also account for third parties: for example banks or clearing houses that settle the

transaction on the end-users’ behalf. In practice, payment systems enable commercial interac-

tions between untrusted parties through trusted intermediaries: agents that both parties trust to

perform the requisite verification and update the state of the participants’ accounts. In this work,

we focus on payment systems that require minimal trust assumptions by participants: this means

that in order to guarantee secure and efficient settlement, the networking protocol should only

require the honesty of the end-user and the majority of network participants, without relying on

assurances (or prior-knowledge) about any other participant’s behaviour.

We focus on designs with access to a universal ledger: payment networks in which every

end-user has access to a distributed ledger of all account/balance pairs. The first question to re-

solve is how payments can be implemented without any requirements for trusted intermediation.

Apart from preventing invalid transactions (or‘double-spending’), the protocol needs to ideally

satisfy two additional security properties: liveness, or that all valid transactions will eventually

process, and (eventual) finality, or that a valid transaction cannot be reverted (with high proba-

bility) after it has been processed. The first protocol to achieve security in this setting is Bitcoin

[Nakamoto 2008], which utilizes advances in cryptography and distributed systems to build a

1

single-asset settlement network. All parties have access to a universal ledger and utilize a peer-

to-peer messaging layer to transact. This architecture has been developed further in Ethereum

[Buterin 2014], where parties have the ability to encode arbitrary computation in transactions to

decide how final balances are settled. We denote such systems as decentralized if they provide

consensus guarantees over the state of the underlying ledger in the pseudonymous setting, where

any party can leave or join the network at will in the presence of (a minority of) adversarial

actors. As we will see, the notion of a pseudonymous network, in which each participant can

label peers only locally without any (assumed) knowledge about them, is equivalent to a setting

of minimal trust. This is because not having access to the ‘actual’ identities of peers means that

no a priori knowledge assumptions can be made about their behaviour. We interchangeably refer

to such protocols as having minimal trust assumptions, or as being secure in the permissionless

threat model.

1.1 Throughput & Settlement Time

One crucial property that payment systems need to possess is a sustained capacity for high set-

tlement rates. If the transaction processing rate (or throughput) is too low, then applicability

of such systems to practically-relevant settings remains limited. Low transaction confirmation

(settlement) times are also critical [Bech et al. 2017], and require strong liveness and finality guar-

antees. The first substantial improvements over daily settlement times for central bank transac-

tions were achieved through Real-Time Gross Settlement (RTGS) [Allsopp et al. 2009] with the

development of FedWire in 1970, permitting real-time settlement of transactions between US

Federal Reserve banks. By the 1980s, similar systems were adopted in other countries, such as

the Clearing House Automated Payments System (CHAPS) in the UK or SAGITTAIRE in France.

Although secure, high-throughput and with instant settlement, RTGS has been heterogeneously

implemented by central banks of different countries, usually in accordance with domestic ap-

2

proaches and regulations. In practice, it is used for large inter-bank transactions and only indi-

rectly benefits end-users, who are still beholden to the legacy infrastructure operated by their

(trusted) banking partners. RTGS is fundamentally different from traditional ‘net settlement’

systems such as Automated Clearing House (ACH) in the US or BACS in the UK, in which banks

aggregate intra-day transactions and settle them all at end-of-day (and are thus necessarily re-

stricted to daily settlement times). Efforts to expand the usage of RTGS systems and standardize

their interactions are many and ongoing, due to their improved security, efficiency and simplicity.

RTGS does, however, remain a means of conducting large transactions over central banks, and

so its effects on smaller retail payments remain indirect. Upgrading the infrastructure of retail

payment providers is an ongoing but orthogonal effort, substantially more challenging due to the

many different actors involved and the heterogeneity of their banking infrastructure and assets.

Although efficient, these systems all rely on trusted intermediation for transaction process-

ing. We investigate how to achieve comparable throughput and security guarantees in decen-

tralized payment solutions that do not impose trust assumptions on participants. Following prior

work, we focus on the application of succinct non-interactive proofs of (computational) validity

to distributed payments, with the aim of leveraging their security and efficiency properties to im-

prove the throughput of both payment-only networks such as Bitcoin and arbitrary-computation

(‘smart-contract’) platforms such as Ethereum.

The access to a universal ledger and unified transaction semantics (i.e. all transactions have

the same structure) means that such protocols have uniform average liveness and finality guar-

antees, albeit with subtle trade-offs. For example, transactions on Bitcoin and Ethereum usually

process in minutes/hours, while using a clearing-house to settle a stock purchase usually takes

1 to 3 days. Liveness also follows, as any valid transaction will eventually be processed since it

does not depend on (potentially erroneous) rejection by trusted intermediaries. Unfortunately,

throughput is the main factor currently influencing such systems’ adoption [BIS 2018]. Although

Bitcoin and Ethereum currently reach ∼ 10 transactions per second (tps), this is at least an order-

3

of-magnitude behind commercial payment solutions (∼ 500 tps), and many orders-of-magnitude

behind the maximal supported throughput (∼ 3, 500 tps) of existing settlement networks. We

investigate the inherent trade-offs in security and throughput/settlement times of decentralized

networks and propose consensus-layer modifications that can achieve better throughput while

retaining the same security and decentralization guarantees.

1.2 Protocol Governance

A second crucial question in the design of distributed payment systems is the type of privilege

that different actors should have in modifying the common ledger. This question can be resolved

in multiple ways, depending on the type of network that is required. If actors have a priori

knowledge of other network participants, this defines a permissioned system and there exists a

large body of work studying the optimal ways to achieve consensus in such settings (cf. Section

2.1). Although distinct from node honesty/compliance, requiring knowledge about specific nodes

to be available to all translates, in practice, to the existence of trusted intermediaries perform-

ing specific functions that behave honestly. In the context of monetary policy, a network which

confers such a power to a central monetary authority would necessitate restrictions on the types

of actors that can modify the ledger: this is the starting point for Central Bank Digital Currency

(CBDC) initiatives [Auer and Böhme 2020; Auer et al. 2021]. We should note that any efforts in

optimizing the transaction settlement times and protocol throughput are still applicable in this

context, i.e. the above is a claim about governance and can still leverage the full toolkit of effi-

ciency improvements that we develop. Indeed, this more restricted threat model can be leveraged

for throughput gains not only in the transaction layer, but also the consensus process. Since we

are not bound to the pseudonymous setting (in which prior knowledge about participants is not

provided), we can assign identities to participants and use these to perform consensus with im-

proved throughput and settlement times. Such a systemwould be distributed and efficient, but its

4

ultimate security would rest on nodes being able to correctly identify honest participants, which

is not a realistic assumption for large-scale trustless networks .

If we want to retain the threat model of minimizing trust in the system, we are thus forced

to work in a fully permissionless system: a pseudonymous setting in which every participant

has the opportunity to update the ledger with valid transactions. This means that we cannot

expect to be able to assign identities to any participants in the system, i.e. like expecting honest

behaviour from specific parties. In this world, governance rights iterate over all actors involved

in transaction processing and ensure (eventual) finality if some proportion of participants acts

honestly. Note that the generality of the threat model necessitates a severe restriction in the

type of consensus algorithm that can be used: Nakamoto Consensus (NC) [Nakamoto 2008] and

iterations over its basic premise offer the only suitable approaches through which security can

be attained in this setting.

This observation leads us to a fundamental question: how can we retain these minimal trust

assumptions in a protocol that is capable of processing transactions at commercially viable levels?

Such a designwould have to be permissionless, butwith the necessary transaction layer semantics

and economic incentives to ensure high throughput and fast settlement times between untrusted

parties. Currently, the way in which leader-election is performed in permissionless distributed

payment systems adds substantial inefficiencies to protocol throughput: since we operate trust-

lessly, every honest node needs to verify the integrity of all transactions it processes, leading to

a large amount of replicated computation and bandwidth consumption. This added complexity

means that permissionless networks impose an increased resource burden on both the underly-

ing network and its honest participants, bounding attainable improvements in throughput and

settlement times for a given security level. In our approach, this issue is tackled at the consensus

layer using verifiable computation.

An independently relevant property of permissionless consensus is that it is inherently waste-

ful; pseudonymous participants are assigned ledger modification rights through expending large

5

amounts of iterated and unstructured computation, which is not useful in any other context. This

property is critical for Sybil-resistance guarantees, or the ability of the network to withstand large

volumes of malicious traffic. Since participants are not trusted, such a measure is necessary for

system liveness and eventual finality guarantees. We thus look at this feature as an integral re-

quirement for permissionless consensus, opting to leverage it for the performance of incentivized

computation instead of removing it from the protocol and changing the threat model.

1.3 Overview of Contributions

In this work, we study the proposition that scaling throughput in decentralized payment systems

can happen through the use of Succinct Non-interactive ARguments of Knowledge (SNARKs,

c.f. Chapter 4). As described in Section 3.2, there exist approaches that enable substantially

higher transaction settlement rates in decentralized payment systems by leveraging the security

and efficiency properties of SNARKs at the transaction layer. We conduct an overview of the

scaling solutions currently being considered and implemented, specify their trade-offs, and con-

clude that ZK-Rollups (c.f. Section 3.2.2) are the most secure approach to increase transaction

throughput, mainly due to concomitant data-availability and security guarantees. Although this

position is not new, we pose an unaddressed general problem facing all current solutions, such

as ZK-Rollups, that utilize SNARKs as part of their protocol. Namely, which protocol actors are

responsible for performing all the expensive computations for the generation of these proofs, and

how do they interact (if at all) with the underlying system and its efficiency? Indeed, although

many high-throughput (more than 500 tps) approaches have focused almost exclusively on pro-

viding transaction layer semantics for efficiently computable proofs that also achieve settlement

times that make sense (within a minute), the total amount of proof computation required is so

large that participants cannot be presumed to always be incentivized to provide it at consistent

levels. Moreover, in all current ZK-Rollup approaches this issue is not addressed, meaning that

6

the computational costs of producing proofs are not factored in (i.e. proofs are presumed to be

‘free’) when reasoning about system performance. Unless we opt for trusted proving, this is

fundamentally a governance problem about incentives and therefore needs to be resolved at the

consensus level.

Thus, even though high throughput rates have already been attained experimentally for proof-

based transaction layers, the governance question still remains: who will compute the proofs?

In a completely specified distributed payment system, any proof-based scaling solution comes

with the question of which actors will be expected, according to honest behaviour, to produce

the requisite proofs. If actors are not correctly or adequately incentivized, the protocol cannot

provide efficiency guarantees. Moreover, in the trust-minimized pseudonymous network model,

this process becomes even more restrictive. We review this in Chapter 2, and identify related

works (Section 2.2.2) that extend the NC protocol to fully optimize its use of the network layer

to maximize throughput with respect to latency and bandwidth.

In Section 2.3, we discuss the key underlying primitive that forms the basis of our work:

moderately hard or proof-of-work (PoW) puzzles. Our key contribution is a protocol secure in

the trust-minimized setting that provides large amounts of valid proofs as a useful byproduct of

consensus. This is done by designing the underlying computation performed for leader election

(which is a PoW puzzle) to generate valid proofs for some relevant statement. This process re-

quires specific security properties to be satisfied, but is otherwise modular with respect to any

consensus protocol utilizing moderately hard puzzles as an underlying primitive. Since Sybil-

resistance is necessary, we view PoW as an integral part of any payment system within such a

threat model and focus on leveraging it to incentivize computation that can increase throughput.

In Part I, we construct a consensus protocol in which each valid PoW leadership ticket is also

a proof of state validity. This means that instead of providing arbitrary computation for leader

election, participants in the network are iteratively generating a SNARK testifying to the validity

of their set of transactions to be processed (and on which previous state to do so) if they win.

7

This design has two main advantages:

1. Providing proofs of state validity is both useful and expensive, so doing this ‘for free’

through the wasteful PoW consensus process resolves the question of who will compute

the state validity proof while retaining consensus-critical incentive compatibility.

2. We ensure that participants are also incentivized to produce faster andmore power-efficient

(hardware) solutions for proof computation. As these are modular processes for which

specialized hardware can be constructed, such an effort would have positive vertical effects

on all proof-based protocols since efficient proof-generation solutions, designed by actors

seeking leadership tickets, could become available to the ecosystem as a whole.

The specification in Chapter 6 is designed with an orthogonal problem in mind: succinct state

verification for entities who do not have access to the full ledger. In practice, this is important for

light-clients (c.f. Section 3.3) and our approach provides a fully-specified system resolving this

issuewith optimal light-client computational requirements. The differencewith other approaches

is its incentive-compatibility: we know exactly who computes the proofs and the incentive to do

so (quickly) always exists.

This protocol, however, is just a specific construction showcasing the feasibility and power

of embedding proof computations into the leadership election process through PoW. Indeed, the

techniques we develop (c.f. Chapters 7, 8) are broadly applicable and general, usable for the in-

stantiation of other proof statements as PoW puzzles. An immediate corollary of this work is

that it is possible to incentivize the creation of ZK-Rollup proofs of batched transaction valid-

ity (rollup proofs) by enforcing their generation at the consensus layer as the underlying PoW

puzzle. In such a model, miners would be able to mine for the next block as they do in Bit-

coin, but with the difference that a valid PoW solution is also a valid ZK-Rollup proof for the

transactions to be processed. We can then design the transaction semantics of the PoW puz-

zle to commit a minimal witness on-chain (to maximize throughput, c.f. Section 3.2.1) and thus

8

achieve incentive-compatible scaling. Note that NC consensus improvements from the literature

can be switched-in modularly to better leverage the underlying network without affecting the

incentives of proof production. In this setting, the system is operating as a ‘PoW-Rollup’: set-

tling transactions using (1) the ZK-Rollup architecture to achieve high throughput guarantees,

and (2) an always-incentivized set of actors (the miners) that quickly compute the rollup proofs

through the PoW process. This could provide a potential avenue for scaling that transcends ex-

isting decentralization-efficiency-security trade-offs.

In Part II, we look more deeply at what properties the underlying proof systems need to sat-

isfy in order to achieve throughput increases (by computing rollup proofs) without introducing

additional trust assumptions. We provide a new SNARK construction that concurrently satisfies

a variety of properties (c.f. Sections 4.2, 4.3) necessary for trustless computation. In this pro-

cess, we identify primitives relevant to efficient proof generation and provide an analysis of their

security. Key to our approach is the observation (also noted in concurrent work [Chiesa et al.

2019b]) that SNARKs can be compiled using two modular objects: Interactive Oracle Proofs and

Polynomial Commitments (c.f. Sections 11.3,4.5). We show secure compilation of SNARKs with a

more general notion of Polynomial Commitments (which we call List Polynomial Commitments,

see Chapter 12) that allows us to retain small proof sizes, which are the main bottleneck for

higher throughput, and fast proving times, which correspondingly decrease the time to settle-

ment. The two main design challenges here involve the security model and functionality of the

proofs: we require no trusted intermediaries in the process of generating proofs (or their public

inputs), while also requiring that all truth-statements can be trustlessly verified using the same

set of initial public parameters.

We can use the contributions from Parts I and II to design trustless protocols for the verifi-

cation of system state. This is done by modularly replacing the trusted proof system used in the

design of the consensus protocol in Part I with a trustless proof system like the one designed in

Part II. This is important since such a proof system would not require additional trust assump-

9

tions while remaining efficient. Even though a different design and security analysis of the PoW

process is required due to such a change, the provided formalization framework and related se-

curity definitions offer a starting point for its investigation. The proof system designed in Part II

is also extremely useful for throughput optimizations at the transaction layer alone. More specif-

ically, the potential for fast recursion (as exemplified in subsequent work iterating on our model)

is especially well-suited for efficient transaction rollups. This is very promising, and could imply

that a fully trustless transaction rollup may be practical enough to scale the throughput capacity

of decentralized systems. Bootstrapping such a distributed payment system with a PoW process

computing the required rollup proof would then incentivize the perpetual functioning of the ZK-

Rollup as a critical part of consensus. Note the two distinct aspects of this proposal: (1) at the

transaction layer, operate a rollup using a trustless proving system, and (2) at the consensus layer,

make the PoW process require the generation of rollup proofs. The second property is critical in

enforcing the first, as it provides the incentives for participants to compute the proofs. In essence,

this constructs a market for proof computation between miners and end-users.

10

2 | Fault Tolerance & Sybil Resistance

2.1 Byzantine Agreement

We work in a setting where participating actors cannot be assumed to be trusted. The most gen-

eral problem in fault-tolerant distributed systems that captures this property is that of Byzantine

agreement [Pease et al. 1980; Shostak et al. 1982], where 𝑛 participating nodes have to arrive

at consensus over some common value in the presence of 𝑡 arbitrary (or Byzantine) adversarial

nodes. It has been shown that if 𝑛 ≤ 3𝑡 or there are less than 𝑡 + 1 rounds of interaction, no such

protocol exists [Pease et al. 1980; Fischer and Lynch 1981]. These properties are respectively

known as resilience and early stopping. Prior works [Garay and Moses 1998; Dolev and Strong

1982] have successfully designed protocols with both optimal resilience and early stopping with

polynomial message and computational overheads, while more recent work [Abraham and Dolev

2015] has focused on minimizing message complexity.

In our context, the above model will be too restrictive to be of use. This is because we are

interested in designing a large-scale network where participants are not expected to know each

other, and can enter or leave the network as they please. This means that nodes can’t be expected

to know their index in a total enumeration of all active nodes, which is a critical property onwhich

the above results rest. This is a strictly weaker model of computation, which does not assume

authenticated channels between participants. Since it is easy for adversarial nodes to control

multiple pseudonymous identities in this context, we are also interested in Sybil-resistance, or

11

that an adversary will not be able to overwhelm the network even if they indirectly control a

sufficiently large number of nodes.

2.2 Nakamoto Consensus

In order to achieve Byzantine agreement with Sybil-resistance guarantees, the Bitcoin protocol

uses moderately hard puzzles as a key underlying primitive. This allows participating nodes

to contribute computing power to the network (by solving the puzzles) in order to claim their

identity, prohibiting a computationally bounded adversary from obtaining too many identities

and thus corrupting the system. This insight requires the usage of a puzzle in the form of a

non-interactive proof, which we equivalently denote as a proof-of-work (PoW) puzzle. The key

security property it satisfies is formalized in the following section, but informally requires that

(1) the difficulty of the puzzle can be set so that a solution arrives on average every _ timesteps,

(2) verifying that a solution is correct is substantially faster than finding the solution to begin

with, and (3) no marginal computational gains can be obtained by batching multiple puzzles in

one computation. Equipped with such a primitive, Nakamoto Consensus (NC) can be defined

as a protocol between 𝑛 total and 𝑡 Byzantine nodes with each having equivalent computational

power, where consensus is obtained when 𝑛 ≥ 2𝑡 + 1. It has been shown [Miller and LaViola Jr

2014] that this resilience is optimal for protocols based on random oracles, regardless of the choice

of PoW puzzle.

Each honest node in NC serially checks solutions to the underlying PoW puzzle until a valid

solution is obtained, at which point it broadcasts the solution to the network where it is veri-

fied by other nodes. Using this puzzle solution, the node votes for its preferred consensus value

(which it commits to before computing the PoW). The security guarantee is that, if the majority of

the computation for PoW puzzle solutions is done by honest nodes (2𝑡 +1 ≤ 𝑛), the protocol has a

negligible chance of not achieving consensus over the underlying value: instead of requiring per-

12

fect consensus, disagreement on which input value is chosen happens with negligible probability

over a consensus security parameter.

2.2.1 The Bitcoin Protocol

In Bitcoin, participating nodes are known as miners, as they serially compute solutions to the

underlying PoW puzzle in order to cast votes on the correct state of the system. The state is

given by a sequence of blocks, each containing a set of transactions in a specified order. Every

time a miner begins to compute a new PoW solution, they have to pick the block they want to

vote for (or ‘build on’), choosing which ledger state they believe to be the correct one. They

also pick the set of transactions to process into the state defined by this block. A miner issues

a valid block if they can find a PoW solution, broadcast it to the network, and have a majority

of miners accept it as the next update to system state. This happens because, when a new valid

block is found, all participants reset their PoW puzzles to commit to it with a (new) set of valid

transactions and begin mining again.

Honest nodes accept new blocks if (1) the PoW puzzle solution is valid, (2) the set of transac-

tions to be processed is valid with respect to the provided block, and (3) the block builds on top

of the honest node’s canon chain. Honest nodes will be able to pick which chain they consider

canon by looking at the quality score of the chain’s latest block. Each block’s quality score is ob-

tained as the sum of the total number of valid PoW solutions in the block’s ancestral chain, and is

a measure of computational power used to generate this sequence of blocks. By picking the chain

with the highest quality score, honest miners will always pick to extend the block for which the

maximal amount of computation has been performed. The consensus security parameter 𝑞 here

is the number of valid blocks in the chain (or its quality), with splits between the consensus states

of honest nodes happening with probability negligible in 𝑞. This holds only when more than half

of the computational power is honest, as each subsequent block has probability 𝑝 < 1/2 of being

added by a Byzantine attacker. As 𝑞 increases, the probability that an attacker will provide more

13

PoW solutions than the valid chain decays exponentially to zero. We refer to this as the ‘longest’

(or ‘heaviest’) chain quality-update rule.

Finally, the difficulty of the PoW puzzle is also modified every fixed number of blocks in order

to ensure a fixed block frequency over time. This is done by time-stamping blocks and altering the

difficulty level proportionally to ensure fixed block times. More specifically, every 2016 blocks,

the average time between blocks is calculated and, based on this value, the difficulty 𝑑 of finding

a PoW solution is scaled proportionately to ensure that the system maintains a fixed 10-minute

block time. This process works because the rate at which PoW solutions are found scales with 2𝑑 ,

and so if blocks are becoming more frequent (which means more miners are joining the network),

the difficulty parameter will increase until block frequency returns to its previous value.

2.2.2 Related Work

Formalizations of NC have been studied in a variety of contexts, identifying and optimizing trade-

offs between the system’s parameters and security properties. Prior work [Miller and LaViola Jr

2014] has provided a computational model in which the fundamental properties of NC are char-

acterized, demonstrating that it achieves optimal resilience in the Random Oracle (RO) model for

any moderately hard puzzle. This also formalizes the idea that a scalable consensus protocol has

time and memory complexity requirements that are independent of the network’s size.

Studies of NC’s robustness against different adversarial mining strategies have also been per-

formed. [Nakamoto 2008] mentions that miners are incentivized to behave honestly, through

incentive compatibility with the design of the protocol. [Kroll et al. 2013] show that the Bitcoin

reference implementation is a Nash equilibrium with respect to honest miner incentives in the

setting of perfect information, although different equilibria are also shown to exist. For adver-

sarial miners controlling more than a third of computational resources, [Bahack 2013; Eyal and

Sirer 2014] present block withholding attacks, where the adversary withholds blocks they find

and attempts to force a change of the canon chain by building faster on their private fork.

14

Extensions and improvements to NC have also been explored, with the works of [Sompolin-

sky et al. 2016; Sompolinsky and Zohar 2018] providing better throughput-security trade-offs by

changing the way honest nodes represent previous transactions and choose which canon chain

to follow. The work of [Eyal et al. 2016] proposes a higher-throughput ‘batched’ version of NC,

wherein PoW solutions are required only every 𝑘 blocks. Although it comes with specific at-

tacks and a decrease in consensus security, this model was built upon by later works [Kogias

et al. 2016; Pass and Shi 2016] aiming to decouple consensus from transaction processing. Recent

works [Bagaria et al. 2019; Wang et al. 2020] have demonstrated that optimal consensus protocols

satisfying the properties of NC can be constructed with respect to network capacity𝐶 and prop-

agation delay Δ. In [Bagaria et al. 2019], the authors use the existence of a PoW puzzle to design

a consensus algorithm which has optimal resilience 2𝑡 + 1, optimal throughput up to capacity

𝐶 , latency that scales with delay Δ, and which enforces an eventual ordering of all processed

transactions with high probability.

2.3 Moderately Hard Puzzles

The PoWprocess in Bitcoin andmost modern cryptocurrencies is based onHashCash [Back 2002]

and involves solving a hard puzzle for which the difficulty can be adaptively set according to the

number of participants. Hardness here is taken to mean that no adversary can compute solutions

to the puzzle faster than randomly guessing. An important property of such systems is that they

are memoryless, or that the probability of winning does not depend on time spent computing a

solution. It is important to ensure that the PoW process is fair, meaning that a miner’s hashrate

(or puzzle-solving rate) is directly proportional to their computational power and hence that large

miners do not enjoy algorithmic efficiency gains with growth. This is necessary to ensure that the

network remains decentralized; without this property there would be an algorithmic incentive

for miners to consolidate. Of course, there may be economic and logistic incentives for miner

15

consolidation (e.g. reduced administrative overhead) but we consider these out-of-scope.

Formally, a moderately hard (or, equivalently, PoW) puzzle is defined as a tuple PoW satisfying

a set of efficiency and security properties. The definition below is adapted from [Ball et al. 2017a]:

Definition 2.1. The tuple PoW := (Gen, Solve,Verify) is a moderately hard puzzle if it satisfies

all the following properties:

1. Computational Efficiency:

• Gen(1_) runs in time 𝑂 (_),

• For any 𝑐 ← Gen(1_), Solve(𝑐) runs in time 𝑡 (_) = 𝜔 (_) ∈ poly(_),

• For any 𝑐 ← Gen(1_) and 𝜋 , Verify(𝑐, 𝜋) runs in time 𝑂 (_).

2. Completeness: For any 𝑐 ← Gen(1_) and 𝜋 ← Solve(𝑐, 𝜋), Pr [Verify(𝑐, 𝜋) = 1] = 1.

3. Amortization Resistance: For any polynomial ℓ (·), constant 𝜖 > 0 and adversary A

running in time ℓ (_) · 𝑡 (_)1−𝜖 , the following is negligible in _:

Pr

 ∀𝑖 ∈ [ℓ (_)],Verify(𝑐𝑖, 𝜋𝑖) = 1
{𝑐𝑖}ℓ (_)𝑖=1 ← Gen(1_)

{𝜋𝑖}ℓ (_)𝑖=1 ← A(1_, {𝑐𝑖}
ℓ (_)
𝑖=1)

 .
In the Bitcoin protocol, the PoW process is defined with respect to a random oracle O instan-

tiated by the SHA-256 hash function. A valid solution to some puzzle 𝑐 is a proof 𝜋 for which the

iterated output out := O(O(𝑐, 𝜋)) has 𝑑 leading zeroes. Since we are working in the RO model,

this process can only find solutions with repeated queries of (𝑐, 𝜋∗) to O, thus ensuring hardness.

Moreover, the random variable 𝐵 ∈ {0, 1} representing whether an unchecked pair (𝑐, 𝜋) is a valid

PoW solution has success probability 𝑝 := 2−𝑑 , and therefore the probability that we get 𝑋 valid

solutions out of 𝑛 := ℓ (_) different pairs (𝑐𝑖, 𝜋𝑖) is Binomially distributed as 𝑋 ∼ B(𝑛, 𝑝). As the

number of miners 𝑛 solving the PoW puzzle increases, the difficulty update mechanism increases

16

𝑑 (thus decreasing 𝑝) so that 𝑛𝑝 converges to some constant `. This is equivalent to requiring

fixed block times on average, as a valid solution here corresponds to a new valid block. In the

limit of 𝑛 → ∞, the update rule implies that 𝑝 → 0, 𝑛𝑝 → `, and by the Poisson limit theorem,

𝑋 ∼ Po(`). We can thus approximate the Bitcoin PoW process by a Poisson random variable of

rate `, given that the number of miners and difficulty are sufficiently high.

2.3.1 Useful Proof-of-Work

It has long been an open challenge to design a PoW puzzle that is both suitable for NC and also

useful for some independent purpose [Bonneau et al. 2015]. In addition to being memoryless, the

puzzle must satisfy several other properties, such as derivation from public parameters and sup-

port for fine-tuned difficulty adjustments. Early candidates for useful PoW puzzles were highly

structured problems, such as finding long Cunningham chains of related prime numbers [King

2013] or tables of relations for solving discrete log computations [Hastings et al. 2018]. Other

PoW schemes have also focused on altering the task performed or rewards received [Król et al.

2019], each demonstrating different ways to utilize the underlying computational task for some-

thing useful: such as proofs-of-space or file retrievability [Miller et al. 2014; Sengupta et al. 2016;

Zhang et al. 2017] or proofs-of-replication [Fisch 2019]. Trusted Execution Environments (TEE)

such as Intel’s Proof-of-Elapsed-Time (PoET) [Chen et al. 2017] have been developed to simulate

the PoW procedure for efficiency gains, while others [Daian et al. 2017] propose a design that

allows miners to reuse computation by controlling how much work is delegated to workers.

The work of [Bitansky et al. 2016] shows how PoW puzzles can be developed from crypto-

graphic assumptions, namely worst-case hard non-amortizable problems with succinct random-

ized encodings. In [Ball et al. 2017a], the authors develop a framework to define PoW using

worst-case fine-grained hardness assumptions. The work of [Ball et al. 2017b] builds on this by

embedding specific NP−hard problems as PoW puzzles, showing non-amortizability results for

certain languages.

17

3 | Distributed Payment Systems

3.1 Preliminaries

We model the processing of payments using a state machine. A state machine is defined by an

initial state, a set of possible states, and a state transition function which governs the transition

from one state to another given some information as input. Moreover, we work under the as-

sumption that this is a replicated state machine (RSM), with local copies of the state machine in

each node so as to achieve fault tolerance.

We define our payment system state machine as follows: we have a set of participants who

share a broadcast communication channel, and who may join or leave the system at will. There

are two types of nodes we concern ourselves with here: miners and light clients.

Miners: A mining (or full) node has access to the current state S𝑖 ∈ S at timestep 𝑖 , performing

any consensus-specific computation and verifying state transitions.

Light Clients: Light clients (or end-users) can issue transactions 𝑡 ∈ T and verify their inclu-

sion, but do not need to keep mutable state.

We investigate how the system transitions from S𝑖 to S𝑖+1 while retaining consensus over state.

Transitions between states happen through the processing of transactions by a model-specific

18

transition function NewState. We also require a transition validation function VerifyState that

ensures the state update was done correctly. By defining the notion of validity between state

transitions, we differentiate between legitimate and illegitimate transactions and only permit

processing of the former. Moreover, we require that such tuples are also internally consistent,

namely that all new states are correctly validated. For example, the Bitcoin and Ethereum proto-

cols both define their own transition functions between blocks (states) and each one is based on

its own notion of transaction validity.

Definition 3.1. A tuple of efficiently computable algorithms (VerifyState,NewState) is consid-

ered a transition tuple if the following conditions hold:

• VerifyState : 2T × S × S × {0, 1}∗ →Yes/No

• NewState : 2T × S × {0, 1}∗ → S

and moreover we consider such a tuple consistent if ∀S𝑖,S𝑖+1 ∈ S, t ∈ 2T :

∃𝑧𝑖 s.t. VerifyState(t,S𝑖,S𝑖+1, 𝑧𝑖) = Yes⇔ NewState(t,S𝑖) = S𝑖+1.

Σ𝑛 = (S𝑖, t𝑖, 𝑧𝑖)𝑛𝑖=1 is valid with respect to (VerifyState,NewState) if VerifyState(t𝑖,S𝑖,S𝑖+1, 𝑧𝑖+1) =

Yes, or equivalently NewState(t𝑖,S𝑖) = S𝑖+1, ∀𝑖 ∈ [𝑛].

The above notion can be used to define the minimal semantics for a model DPS, where 2T

refers to the power set of T . Note that the above does not imply deterministic state transitions.

In addition, we associate the monetary value 𝑐 ∈ N of each account with user address values

𝑧 ∈ Z, of which there can be multiple in a given state. This provides us with all the ingredients

needed to define the fundamental system.

We require a theoretical model for a distributed payment system (DPS), defined as a tuple

of algorithms necessary for minimal payment functionality. Many subsequent and concurrent

19

works have focused on developing various DPS architectures, each depending on a different set

of trade-offs and desirable protocol properties. For us, the structure of the DPS is not the main

goal, so we opt for working with a minimal design. We restrict ourselves to a simple construction

based on a standard approach, which we fully specify in Appendix A.2. In terms of security, the

system needs to provide both completeness and correctness guarantees. This requires that the

protocol should guarantee that state transitions considered correct by VerifyState will not be

rejected by compliant nodes. Similarly, satisfying correctness requires that transactions and state

transitions that are invalid should not be accepted by compliant nodes. These definitions are

constructed in the usual way in the auxiliary supportive materials.

Our model can easily be adapted to describe existing blockchain-based payment systems. We

illustrate this informally for Bitcoin (in its original form) to provide intuition for what the essen-

tial components of a distributed payment system are.

Bitcoin: The Bitcoin protocol is a UTXO-based payment clearing system, for which a valid block

update includes a set of valid ordered transactions and specific block header information. The

components of the RSM are illustrated below:

• State: The list of all UTXOs.

• Witness: Not required; validation happens by inspection of the ledger.

• NewState: Generation of a new block.

• VerifyState: Validity of a block transition requires:

– Verifying all UTXOs exist in state.

– Verifying that the header is well formed.

– Checking the nonce satisfies proof-of-work.

– Ensuring all transactions are valid.

20

A similar treatment would allow us to characterize Ethereum using the same basic compo-

nents. This paradigm also makes obvious that, in order to verify the state of the whole system

without any external information, we would need to iteratively validate each state transition. We

use the witness 𝑧𝑖 to provide ‘hints’ to the validation function, which we will demonstrate later

allows us to construct protocols tailored for much more efficient state verification.

3.2 Maximizing Throughput

Given the set of constraints surrounding the design of a DPS, one of the most pressing con-

cerns preventing large-scale commercial applications is the need for consistently high transac-

tion throughput rates. More specifically, the number of transactions processed per unit of time

is orders-of-magnitude below what is currently attained by retail payment solutions. This is-

sue is critical for adoption, since a robust settlement layer would need to withstand seasonal

adjustments to transaction processing demand while keeping transaction fees low enough to be

competitive. However, an increase in transaction throughput comes with design trade-offs that

prevent this from being achievable through protocol reparametrization.

A natural attempt at optimizing transaction throughput in this way is to increase either the

number of transactions per block or the block issuance frequency. Both values are linearly cor-

related to transaction throughput, so any substantial increases would resolve the above problem.

However, increasing the number of transactions per block implies a proportional increase in block

size, which would need to be disseminated through the gossip network at the same rate. This adds

a bandwidth burden to the network, and comes with an increased probability of chain forks, and

thus a corresponding decrease in the security of the system’s consensus.

To specify the exact trade-off between these two variables, it suffices to note that the under-

lying gossip network has an inherent latency that cannot be removed. This means that when a

new block is issued there exists some minimal time parameter Δ which lower bounds the time

21

until all nodes receive the new block. As Δ gets larger, the probability that two different block

sequences building on the same parent (a fork) grows. This is because the increased bandwidth

costs due to the larger block size correspond to a larger probability a new block will be found

before the previous one was disseminated to the whole network. It is easy to see that this issue

still exists if we instead opt for increasing block frequency.

This constraint was formally analyzed in [Sompolinsky and Zohar 2015], where the authors

use the empirical analysis of [Decker andWattenhofer 2013] to notice thatΔ(𝑏) = Δ0+𝑏·Δ𝑏 , where

𝑏 the size (in bits) of the block being propagated and Δ0,Δ𝑏 the propagation delay (in seconds)

and bandwidth capacity (in seconds per bit) of the underlying gossip protocol respectively. If

there exists some honest sub-network in the topology of all participating nodes that solves PoW

puzzles at a rate of 𝛼 · _ with delay Δ(𝑏), then for any 𝑃 ∈ (0, 𝐾/Δ𝑏), the protocol can achieve a

throughput of 𝑃 transactions per second at a security threshold of at least 𝛼 ′ := 𝛼 ·
(
1 − 𝑃 · 𝐷𝑏

𝐾

)
for appropriate choices of _,𝑏. This means that, in the best case, an adversary would require an

𝛼
′
< 𝛼 portion of total computing power to grow the chain faster than the honest nodes and

break consensus. The trade-off between throughput 𝑃 and security 𝛼 ′ here is exactly due to the

aforementioned effects of increasing block frequency/size in the presence of network latency.

3.2.1 Segregated Witness

The constraint identified above means that in order to increase throughput without a tradeoff

with security, we need to increase the amount of transactions per block without increasing block

size. Therefore, succinct representations of the transaction set t that still contain the minimal

amount of information needed to verify the state transition S𝑖 → S𝑖+1 would provide corre-

sponding increases in throughput. This optimization was proposed and implemented in Bitcoin

through BIP 141, and on a technical level decoupled the transaction set t = (𝑡1, ..., 𝑡𝑛) into state-

ment witness pairs 𝑡𝑖 = (𝜙𝑖,𝑤𝑖), where 𝜙𝑖 the list of inputs to the transaction and 𝑤𝑖 the witness

elements required to prove its validity. This change, along with modifications to how transaction

22

weight was counted towards block capacity (which in practice led to a slight increase in block

size), provided increases in transaction throughput.

However, this approach reaches a practical limit at a minimal representation of t for which

the aggregation of all 𝜙𝑖,𝑤𝑖 cannot be done in less space without affecting transaction validation

times. Indeed, a very succinct representation (𝜙,𝑤) for some transaction would require the full

node to perform substantial computation in order to ensure block validity, burdening the network

with an increase in the latency Δ due to the heavier computational burden of verifying incoming

transactions. One promising approach to minimize this problem involves verifiable computation,

in which the computationally intensive procedure of providing a proof of validity 𝜋 can be per-

formed once by a ‘prover’ and the subsequently validated quickly by everyone else. This means

that each block could provide a minimally sized witness element for the whole block alongside a

proof of state validity for the given state transition.

3.2.2 Transaction Rollups

If we extend themodel to include transactions that encode arbitrary compute (or ‘smart contracts’

enforcing a specific computation), then new options for scaling become feasible. Returning to

the above setting, we can encode each transaction as a minimally-sized statement witness pair

𝑡𝑖 = (𝜙𝑖,𝑤𝑖) in order to reach the theoretically maximal transaction throughput possible at the

given security level (fixed by block time). If we can cheaply verify that each transaction is correct

using a small-enough proof 𝜋𝑖 , then a smart contract verifying 𝜋𝑖 with access to (𝜙𝑖,𝑤𝑖) is enough

to ensure soundness. Moreover, if we can batch the validity verification of multiple transactions

into one equally-sized proof 𝜋 , then verifying a block on-chain would only require access to

𝜋 and each of the included 𝑡𝑖 = (𝜙𝑖,𝑤𝑖). This is because we can perform the verification of

𝜋 using a smart-contract on-chain if it has access the above data. This process is known as

a roll-up architecture, since the proofs of validity of multiple transactions are ‘rolled up’ into

one proof. Note that, modulo the security assumptions of the proof system used to implement

23

the construction of 𝜋 , this approach retains the same soundness guarantees as the DPS threat

model. Critical to this is the availability of all witness information, so that all parties are able

to reconstruct the full transcript of state transitions from the same trust assumptions. Although

this fact lower-bounds the total number of transactions per unit of memory we can achieve with

rollups that have full data availability, it does not preclude order-of-magnitude improvements to

throughput in comparison to current architectures. Of great importance is the choice of model

through which the proofs 𝜋 are generated.

Instead of attempting to change the properties of the consensus protocol and chain parame-

ters, a more general approach is to build a second protocol operating on top of the base layer, but

which has different properties that permit larger transaction throughput. These are denoted by

Layer 2 (L2) solutions. We identify two approaches to resolving the above problem on L2: Opti-

mistic Rollups (OR) [Adler and Quintyne-Collins 2019] rely on fraud proofs, which are generated

by nodes when they spot an invalid transaction being processed in the rollup. This is because all

transactions are presumed valid unless such a proof can be provided, relying on miner incentives

to generate the fraud proofs. Although capable of achieving extremely high throughput values

at low cost, this model differs fundamentally from our model, mainly due to incentive alignment

being necessary for transaction validity.

A second approach [Buterin V.] involves leveraging verifiable computation, and more specif-

ically succinct non-interactive proofs, in constructing 𝜋 . These are known as ‘zero-knowledge

rollups’ or ZK-Rollups and, although more complex on a design level, rely only on the security of

the proof system used to create 𝜋 . Note that ‘zero-knowledge’ here is a misnomer, since the proofs

only require non-interactivity and succinctness to be suitable. Multiple approaches to realizing

this on Ethereum are currently underway, with implementations differing around the choices of

proof system, transaction semantics, and verifiable computation to be performed. Some efforts

have focused on building Virtual Machines (VMs) for more ‘proof friendly’ state transition func-

tions, while others have attempted to realize the full Ethereum VM (EVM) in their proof imple-

24

mentations. Although all approaches focus on resolving the underlying throughput optimization

problem we identify above, there are many design choices when adapting such a system to an

already existing DPS implementation that can affect its performance and fault-tolerance guar-

antees. Note that although the rollup approaches cited above are L2 solutions, the optimization

itself can also be applied directly on Ethereum’s semantics if we can provide proofs for EVM

computations. This, however, would require a hard-fork.

3.2.3 Other Scaling Approaches

The Lightning Network (LN) [Poon and Dryja 2015] is the largest deployed L2 on Bitcoin to-

date. LN relies on the creation of channels between participants, which allow them to perform

large amounts of computation off-chain. The main differences rely on the need for some amount

of interactivity between users, along with the need to ‘lock up’ coins in order to use the service.

Another idea to leverage off-chain compute in the smart-contract setting is state channels [Dziem-

bowski et al. 2018], in which Bob puts some amount of coin in a smart contract, and proceeds to

pay Alice off-chain from this deposit by signing spend messages with his public key. When Alice

wants to get paid, she will sign and publish the latest such message, which will be verified by the

smart contract that disburses the money. This works if Bob is able to initiate a withdrawal after a

specified time period, in the case that Alice is malicious or suffers a fault during computation. Al-

though state channels are powerful, there are limits to their feasibility. For example, they cannot

be used where one represented party is a smart contract, nor can they be deployed in large scale

applications without a substantial amount of locked-up capital. A similar idea was proposed in

[Poon and Buterin 2017] for the Ethereum protocol, wherein a ‘blockchain tree’ would be kept

that differentiated ‘child’ from ‘parent’ chains such that child-chain transactions are substantially

faster. We should note that all these approaches require additional trust assumptions, and that

the ZK-Rollup approach is the only one which does not while having the promise of practicality.

25

3.3 Light Client Verification

The idea of providing portions of the blockchain to light clients for verification began with Bit-

coin, where Simple Payment Verification (SPV) clients download only block headers and Merkle

inclusion proofs for specific transactions to be convinced of their validity. While this approach

forgoes downloading the whole blockchain, clients must trust that the downloaded blocks con-

tain only valid transactions due to incentives provided to miners which discouragemining invalid

blocks. This approach also still requires a linear amount of memory with respect to chain length.

For Bitcoin downloading only block headers requires about 10 kB per day in bandwidth, which is

reasonable for up-to-date clients but non-trivial for new clients which must download the entire

chain of headers (currently about 40 MB and growing). For Ethereum this is much worse, with

daily bandwidth requirements reaching 5 to 8 GB to download the block headers alone.

Sublinear memory complexity in SPV clients through skip-lists was first formally analyzed

in [Kiayias et al. 2016, 2017; Karantias et al. 2019], where the authors propose keeping pointers

to multiple previous blocks at every step to allow for fast verification. This allows the protocol

to check for high-difficulty previous blocks (or ‘superblocks’), of which verifying a logarithmic

number suffices to ensure security for the whole chain. This approach, however, is only feasible

in the regime of fixed difficulty and thus cannot be implemented as is.

Flyclient [Bünz et al. 2019c] also guarantees logarithmic complexity for transaction and proof-

of-work verification, and is secure with high probability under variable difficulty even if fractions

of the network are adversarially controlled. This is achieved by using Merkle Mountain Range

Commitments to achieve memory improvements, and a random block sampling protocol to en-

sure security. However, Flyclient still requires resources linear with respect to each new trans-

action, and storage requirements still grow with blockchain size. Neither the work of Kiayias et

al. or Flyclient enable efficient verification of transaction validity, both relying on the same argu-

ment from Bitcoin that economic incentives discourage mining a long chain of blocks containing

26

incorrect transactions.

By contrast, while Mimblewimble [Poelstra 2016] does not provide sublinear verification

guarantees with respect to block header size ℎ, it contributes an innovative framework for trans-

action verification. By compressing state in a ‘UTXO set’ of𝑢 ≤ 𝑡 transactions that adaptively up-

dates with each block, it provides asymptotically better transaction verification. In Mimblewim-

ble, history verification is linear only in the number of currently unspent coins, not the total

number of transactions. While we could theoretically adapt these techniques in our work to de-

crease proving costs, we choose not to given practical observations that the number of unspent

coins is not much smaller than the total number of transactions. The more complex predicate to

verify state in MimbleWimble would likely negate any gains in proving time from compressing

some transaction history.

The above constructions can all be characterized as ‘Ultralight’ clients, for which verification

costs are sublinear with respect to the underlying statement. In this work, we will use verifiable

computation (c.f. Chapter 4) to construct an asymptotically optimal Ultralight client. This ap-

proach was subsequently generalized [Chen et al. 2020] for arbitrary transition functions. Further

work [Gabizon et al. 2020] has also provided a performant Ultralight client for the Celo [Kamvar

et al. 2019] blockchain that utilizes the same insights. As will be discussed in Section 5.2, this ap-

proach has also been adopted by the Mina protocol [Bonneau et al. 2020], although with changes

to the consensus protocol. Finally, Vault [Leung et al. 2018] uses an alternative consensus mech-

anism and decouples recent transaction storage from account state in order to achieve similar

light-client verification guarantees without the use of verifiable computation.

27

4 | Verifiable Computation

4.1 Zero Knowledge Proofs

Zero-knowledge proofs [Goldwasser et al. 1989] have recently received increased amounts of

attention for providing efficient verification while maintaining small proof sizes, even in the case

of complex predicates. Initially limited to theoretical considerations, such proof systems have

lately come to encompass the underlying technology in a wide variety of practical and industrial

applications with delicate trade-offs between privacy and system security [Boneh et al. 2018;

Chaidos et al. 2016; Setty et al. 2018]. In this work, we are interested in applications for which

there is limited space availability in the underlying system, and thus for which minimal proof

size is an important property. Moreover, we ideally want to focus on applications for which there

exist no trusted parties at any point of the computation, and thus hope to achieve proof size

minimization without compromising the trust model of the system.

The above motivation is most closely associated with applications of zero-knowledge proofs

to cryptocurrency systems, such as Ethereum [Wood et al. 2014] or ZCash [Miers et al. 2013],

in which participants have to verify state (or transaction) validity to ensure system soundness

but for which there is limited space available in which to do so. Bridging the gap between these

two requirements will allow for not only efficient but also trustless verification of state transition

in such systems. This has the potential for scaling improvements, such as increased transaction

throughput or better privacy guarantees.

28

The most widely used proof systems for such an application are preprocessing Succinct Non-

interactive ARguments of Knowledge (zk-SNARKs) [Groth 2016; Micali 2000; Gentry and Wichs

2011], for which proof size and verification time are polylogarithmic in the size of the circuit

being verified. ‘Preprocessing’ here denotes that such systems rely on a one-time (often expen-

sive) setup procedure to produce a proving/verification key-pair (𝑝𝑘, 𝑣𝑘) (known as a Structured

Reference String or SRS) that is used in all subsequent computation. The most efficient such con-

struction is due to [Groth 2016] and achieves constant proof size consisting of 3 group elements,

with state-of-the-art proving time.

A SNARK for relation generator R_ (from which relation 𝑅 is sampled) is comprised of the

following four algorithms:

1. Setup: G(R) → (𝜏, SRS := (𝑝𝑘, 𝑣𝑘)). Key generation takes as input a relation R and a

security parameter _, outputting proving and verification keys as the SRS and trapdoor 𝜏 .

2. Prover: P(𝑝𝑘,R, (𝑥,𝑤)) → 𝜋 . The prover takes as input the proving key 𝑝𝑘 , relation R

and a statement-witness pair (𝑥,𝑤), outputting proof 𝜋 that R(𝑥,𝑤) = 1.

3. Verifier: V(𝑣𝑘,R, 𝑥, 𝜋) → Yes/No. When given as input the verification key 𝑣𝑘 , relation

R, a proof 𝜋 and statement 𝑥 the verifier outputs Yes if 𝜋 is a valid proof that 𝑥 is valid,

outputting No otherwise with high probability.

4. Simulator: S(R, 𝜏, 𝑥) → 𝜋 The simulator takes as input the relation R, trapdoor 𝜏 and

statement 𝑥 , outputting a proof 𝜋 that 𝑥 is valid.

The main security properties that SNARKs satisfy are completeness, knowledge soundness

and zero-knowledge and are defined below. For some relation R, the set of statements with a

witness such that R(𝑥,𝑤) = 1 is known as the language L := L(R) defined by R.

1. Perfect Completeness: An honest prover always convinces an honest verifier. For all

29

(𝑥,𝑤) such that R(𝑥,𝑦) = 1 for R ← R_ and all _ ∈ N+:

Pr (V(𝑣𝑘,R, 𝑥, 𝜋) = 1;𝜋 ← P(𝑝𝑘,R, (𝑥,𝑤)), (𝑝𝑘, 𝑣𝑘) ← G(R)) = 1.

2. Perfect Zero-Knowledge: For all sampled (R, 𝑧) ← R_ , all _ ∈ N+ and valid statement-

witness pairs (𝑥,𝑤), for all adversaries A:

Pr (A(SRS, 𝜏,R, 𝑧, 𝜋) = 1;𝜋 ← P(𝑝𝑘,R, (𝑥,𝑤)), (SRS, 𝜏) ← G(R)) =

Pr (A(SRS, 𝜏,R, 𝑧, 𝜋) = 1;𝜋 ← S(R, 𝜏, 𝑥), (SRS, 𝜏) ← G(R)) .

3. Computational Knowledge Soundness: For all non-uniform polynomial time (PT) ad-

versaries A, there exists a PT extractor E with access to the random coins and state of A

for which the following is approximately zero:

Pr (R(𝑥,𝑤) ≠ 1 andV(𝑣𝑘,R, 𝑥, 𝜋) = 1; (𝑥,𝑤, 𝜋) ← E(SRS,R, 𝑧), SRS← G(R), (R, 𝑧) ← R_) .

In the following sections, the above security properties will be used and extended as required.

We note that the notion of a predicate, relation and circuit all refer to the same concept: that of

encoding a statement-witness pair as an arithmetic circuit in order to check whether it satisfies

a given statement. We will be using these notions interchangeably.

4.2 Transparency

Most designs in the literature [Gennaro et al. 2013; Setty et al. 2013; Ben-Sasson et al. 2014] rely

on a trusted setup, or a trusted G that generates a trapdoor (known as ‘toxic waste’) that should

be destroyed in order for the system to retain its security guarantees. Such a security lapse would

30

be grave for all aforementioned applications. For example, in a cryptocurrency system such as

ZCash an adversary possessing such waste would be able to spend non-existent tokens without

being found. An adopted approach to mitigating this issue involves Multi-Party Computation,

in which a single participant needs to destroy their parameters for security to hold [Bowe et al.

2017]. However, scaling such an approach to many participants comes with its own challenges,

and can never reach be completely trustless.

The trust issue inherent in the above approach stems from the requirements for the generation

of the SRS of the proof at the preprocessing stage. This is done once at the beginning of the

protocol, encoding information that is used in the subsequent proof generation of any input

arguments. More specifically, in most SNARKs (such as [Maller et al. 2019]) the trusted part of

SRS generation stems from the usage of a polynomial commitment scheme that needs to sample

(secret) randomness in order to provide commitments to some low-degree polynomial that in

turn encodes the circuit in question. That information is then used by the prover to efficiently

convince the verifier that a given value is indeed the evaluation of this polynomial, thus proving

knowledge of the statement. Such systems use the polynomial commitment scheme of [Kate et al.

2010], from which the above trust model is derived.

In attempting to retain a trustless (or ‘transparent’) threat model, the main design challenge

lies in the efficiency of the underlying protocol. Various threads of work in this domain have

achieved different efficiency trade-offs. The work of [Goldwasser et al. 2015] produces proofs

with size scaling as 𝑂 (𝑑 log𝑇), while the proofs in [Wahby et al. 2018] scale with 𝑂 (𝑑 log𝐺)

where 𝑇 , 𝑑 and 𝐺 the size, depth and width of the circuit respectively. Succinct Transparent

ARguments of Knowledge (zk-STARKs) [Ben-Sasson et al. 2019a] achieve 𝑂 (log2𝑇) proof sizes

for uniform (layered) circuits. However, in the context of universal SNARKs (arbitrary circuits),

existing proof systems suffer from performance overheads with respect to preprocessing SNARKs

such as [Groth 2016]. Some also require non-trivial circuit designs, similar to what is described in

[Evgenya 2017]. Nevertheless, we should note that for the class of problems that can be efficiently

31

expressed as layered circuits, these proof systemsmay bemore optimal than universal ones. Since

we are also interested in verifier succinctness, transparent approaches such as [Bünz et al. 2018]

do not suffice here due to the linear dependence between verification time and predicate size.

Below we informally describe the properties that an ‘ideal’ proof system should possess for

satisfiability of a given circuit𝐶 , where |𝐶 | denotes its size. The first three properties define what

is known as a ‘fully succinct’ zk-SNARK:

• Succinctness: Verifier time and proof size are polylogarithmic in |𝐶 |.

• Prover Efficiency: Proving time is quasi-linear in |𝐶 |.

• Transparent: No trust assumptions are required.

• Plausibly Quantum Resistant: Not based on quantum-falsifiable assumptions.

4.3 Universality

A new approach to the above problem relies on creating a ‘universal’ SRS at the preprocessing

phase, which can then be used in tandem with any possible predicate (or circuit). This has been

the focus of many recent contributions (see [Maller et al. 2019; Xie et al. 2019; Setty 2020]) and

most recently [Gabizon et al. 2019] that are also fully succinct zk-SNARKs in the above sense. The

approach in such schemes relies on two main ingredients: (1) encoding the circuit satisfaction

problem of the predicate in question as a property of some (low-degree) polynomial 𝑓 , and then

(2) committing to 𝑓 using a polynomial commitment scheme. In all the above approaches, the

polynomial commitment scheme in [Kate et al. 2010] is used due to its constant size complexity

and efficient implementation. However, this is the only part in the protocol that introduces the

trusted setup, as the setup phase in the scheme requires a trusted actor to create (and then destroy)

a secret value that is only used in generating commitments.

32

4.4 Incrementally Verifiable Computation

We now briefly introduce Incrementally Verifiable Computation (IVC) [Valiant 2008], an efficient

primitive instantiated using (preprocessing) SNARKs. Consider a set of system states S with

initial state S0 ∈ S. We denote the system’s state transition function by UpdateState and

construct a predicate Π𝑆 that evaluates to 1 on input state S𝑖+1 (or a commitment to it) if and

only if there exists a valid transition from some S𝑖 to S𝑖+1. A prover repeatedly applies state

transitions on the initial state to acquire S𝑛 .

An IVC system allows a verifier that only sees (a commitment to) the last state S𝑛 and a short

proof 𝜋𝑛 to be convinced that S𝑛 is a valid system state, i.e. a state that can be derived from S0 by

applying valid state transitions for all 𝑖 in the chain. An IVC system is comprised of the following

three algorithms:

1. Setup: G(Π𝑆 , 1_) → (𝑝𝑘, 𝑣𝑘). Key generation takes as input a predicate Π𝑆 , outputting

proving and verification keys.

2. Prover: P(𝑝𝑘,S𝑖+1,T ,S𝑖, 𝜋𝑖,𝑤) → 𝜋𝑖+1. The prover takes as input the proving key 𝑝𝑘 ,

state S𝑖 , a proof 𝜋𝑖 that S𝑖 is a valid state and a set of transactions t ∈ 2T , outputting a

proof 𝜋𝑖+1 that S𝑖 → S𝑖+1 is a valid state transition.

3. Verifier: V(𝑣𝑘, 𝐵𝑖, 𝜋𝑖) → Yes/No. When given as input the verification key 𝑣𝑘 , a proof 𝜋𝑖

and a commitment 𝐵𝑖 to state S𝑖 , the verifier outputs Yes if 𝜋𝑖 is a valid proof that state S𝑖

is valid, outputting No otherwise with high probability.

4.5 Polynomial Commitments

Polynomial commitment schemes allow for the efficient verification of the evaluations of some

polynomial 𝑓 ∈ F𝑝 [𝑋] at an arbitrary point in its domain. We start with the basic requirement for

33

a commitment scheme to commit to elements of a given polynomial. This will be provided as an

oracle and we assume it’s binding i.e. that the adversary will be able to forge commitments with

negligible probability over the schemes security. A commitment scheme Σ = (Gen,Com,Open)

is defined as follows:

• Gen(1_) → pp generates public parameters,

• Com : F<𝑑 [𝑋] → C generates commitment 𝑐 to some 𝑓 ,

• Open : C × F<𝑑 [𝑋] → {0, 1} checks validity of some commitment 𝑐 with access to 𝑓 .

We say that the tuple (Gen,Com) is 𝜖-binding if there exists an Open function for which:

Pr
[
Open(Com(𝑓)) = 1|pp← Gen(1_)

]
= 1,

and for all PPT adversaries A:

Pr

𝑓 ≠ 𝑔,Open(𝑐, 𝑓) = 1 (𝑓 , 𝑔, 𝑐) ← A(pp)

Open(𝑐, 𝑔) = 1 pp← Gen(1_)

 ≤ 𝜖 (_).
Since the introduction of polynomial commitment schemes in [Kate et al. 2010], the first trans-

parent such scheme was introduced in [Wahby et al. 2018] for multivariate polynomials, with

𝑂 (
√
𝑑) commitment size and verification complexity. Subsequent work in [Bünz et al. 2019b] in-

troduces a scheme with 𝑂 (` log𝑑) size and verification complexity, where ` the number of vari-

ables of the polynomial in question and 𝑑 the polynomial’s degree. Even though the asymptotics

of the approach in [Bünz et al. 2019b] suffice for the above motivation, the practical implementa-

tion of their system relies on cryptographic operations that are substantiallymore resource-heavy

than previous approaches. This stems from the reliance of their system’s security on class groups

of unknown order. Although the proof sizes achieved are sufficiently succinct, this dependence

could make practical deployment difficult at reasonable security levels when proof generation

34

time needs to also be substantially efficient. Moreover, the assumptions on which their construc-

tion rests are not quantum-resistant.

35

Part I

Proof of Necessary Work

36

5 | Contributions

In this work, our goal is to design a payment system supporting efficient verification of the sys-

tem’s entire history by any participant without trusting any third parties. Participants can join

the system at any time and need only to obtain some fixed public parameters from a trusted

source (e.g. the genesis block and the system’s rules). Current systems such as Bitcoin require

participants to process the entire system history to verify that the current state (the most recent

block in the chain) is correct. This requirement makes joining the system prohibitively expensive

for most clients, as downloading and verifying over 400 GB of system history (as of December

2020) takes days on an ordinary laptop. In practice, most clients instead rely on a trusted third

party to assert the current state of the system.

We address this problem using succinct proofs of state validity. These enable clients to ver-

ify any snapshot of the system using minimal bandwidth and time, even if they have no other

information except the genesis state and transaction validity rules. For any block in the system,

these proofs demonstrate both that there exists a sequence of valid transactions from the genesis

state S0 to the state committed in the current block, and that the block’s branch (the sequence

of predecessor blocks) is of quality 𝑞 according to the consensus protocol. In this work we focus

on aggregate PoW difficulty as the measure of branch quality, as used in Bitcoin consensus. Cur-

rently, systems such as Bitcoin or Ethereum require𝑂 (𝑡 +ℎ) work to completely verify a branch

containing 𝑡 transactions and ℎ blocks. We are able to achieve optimal asymptotic performance

of 𝑂 (1) verification costs for a client joining the system at an arbitrary point in its history.

37

Our techniques cannot help a client that is separated (or eclipsed) from the genuine system

by a network partition. We assume a client can reach at least one node which will provide the

most recent block and a proof. The client may also communicate with arbitrarily many attacker-

controlled nodes; efficient verification means the client can quickly tell which block is canonical

in the system.

Another major issue facing Bitcoin and related cryptocurrencies is energy usage. These sys-

tems employ PoW, which provides system security by publicly verifying energy consumption.

This energy consumption, while necessary for the consensus protocol, is not used for anything

else and hence is often described as wasted. We design a PoW puzzle which produces correct-

ness proofs for each block as a useful byproduct, thus recycling some of the energy expended in

achieving consensus. This requires carefully designing the proof-of-work to replicate the proper-

ties of Bitcoin’s non-useful puzzle. Our main technical contribution is a method to deeply embed

a nonce into the proof computation process, making it suitable as a (progress-free) PoW puzzle.

We formalize this intuition by introducing the notion of 𝜖-amortization resistance, and propose

a protocol design based on this.

1. We design and prove the correctness and security of a protocol enabling succinct state veri-

fication. This ensures negligible computational requirements for any observer to verify the

current system state.

2. We propose a variant of Nakamoto Consensus, which we call Proof of Necessary Work.

This enforces computation of proofs of block/transaction validity as part of the consensus

process, creating some useful work from the energy usage. We show security and in the

process provide:

(a) an upper bound for the honest prover based on its language’s complexity, and

(b) matching lower-bounds for a natural restriction to ‘randomizable’ languages.

38

Our results are based on the average-case hardness of multiexponentiation in the Generic

Group Model (GGM) [Shoup 1997].

3. We implement the proof system in (1) with the consensus protocol variant in (2) at an 80-bit

security level, benchmark its performance and establish feasibility. Our system:

(a) produces block headers of size < 500 bytes for any number of txs/block,

(b) allows stateless clients to verify a block in < 20ms, and

(c) achieves throughput of 50 tx/block.

In terms of throughput and block header size, our prototype is about an order of magnitude

worse than Bitcoin. Bitcoin block headers are 80 bytes and throughput is about 1,000 transactions

per block. However, our system allows a stateless client to rapidly verify a block (and thus its

complete history) in milliseconds with 500 bytes of data downloaded. In Bitcoin, a comparable

full verification of a block requires many hours of computation time and downloading hundreds

of gigabytes of data. The efficient block verification provided by our system does assist miners

in quickly validating new blocks broadcast on the network, which may reduce the risk of block

collisions and enable faster block frequency.

5.1 Incentivized State Compression

We identify a new approach to useful PoW by proposing that the work aid in the verification of

the system itself. We denote this as Proof of Necessary Work and show how it can be used within a

succinct blockchain architecture as a suitable PoW puzzle. A synergistic benefit of this approach

is providing a direct incentive for hardware acceleration of zero-knowledge proofs, which could

encourage the development of FPGA and ASIC designs for proof generation. This is relevant for

many distributed payment systems whose underlying architecture depends on the generation of

zero-knowledge proofs for the processing of transactions, such as [Bowe et al. 2018a; Bünz et al.

39

2019a; Fisch et al. 2018; Kamvar et al. 2019]. In all these systems, proof generation time is a critical

bottleneck limiting transaction throughput and/or latency.

Improved proof generation times could yield order-of-magnitude improvements in not only

latency and throughput but also energy cost per unit proof. Indeed, recent industry developments

[Aleo 2022] based on our work have yielded interest in dedicating resources toward an industry-

wide effort to maximize the performance of zero-knowledge proof systems. We believe this to be

beneficial not only for distributed payments, but also for any application where high-throughput,

low-latency and low-energy zero-knowledge proof generation is required.

5.2 Optimal Light Clients

Since we are interested in working with RSMs that facilitate state verification, we will also define

the notion of “succinct verifiability”. This restricts RSMs to be succinctly verifiable if the com-

putational and memory resources they require to perform verification of the RSM’s current state

are small. Since in practice the size of the state of some RSM is extremely large (and grows with

the number of processed transactions and blocks), any sufficiently efficient verification algorithm

will need to take as input a “succinct representation” of the current state transition, while still be-

ing able to verify it. Otherwise, verification would require parsing S𝑖,S𝑖+1, which is prohibitively

expensive. This is modelled as a function 𝜓 : 2T × S × S → C, which provides a commitment

𝑐 ∈ C that suffices for verification.

Definition 5.1. An RSM Σ𝑛 with 𝑛 state transitions is a tuple Σ𝑛 = (S𝑖, t𝑖, 𝑧𝑖)𝑛𝑖=1 of states S𝑖 ∈ S,

sets of transactions t𝑖 ∈ 2T (whereT is the set of possible transactions), andwitnesses 𝑧𝑖 ∈ {0, 1}∗.

We denote S𝑛 as the current state of Σ𝑛 and S0 as its genesis state. Moreover, a valid RSM Σ𝑛 =

(S𝑖, t𝑖, 𝑧𝑖)𝑛𝑖=1 with respect to a consistent transition tuple (VerifyState,NewState) is considered

succinctly verifiable if there exist𝜓 : 2T × S × S → C and SuccinctVerify : C × {0, 1}∗ →Yes/No

40

Technique Transaction Verif. PoW Verif. Memory Req.

Bitcoin/Ethereum Θ(𝑡) Θ(ℎ) Θ(ℎ + 𝑡)
Mimblewimble Θ(𝑢) = 𝑂 (𝑡) Θ(ℎ) 𝑂 (log4(ℎ))
NIPoPoW Θ(𝑡) polylog (ℎ) logℎ · (log 𝑡 + log logℎ)
FlyClient Θ(𝑡) 𝑂 (log2 ℎ) 𝑂 (log2 ℎ)
This work 𝑂 (1) 𝑂 (1) 𝑂 (1)

Table 5.1: Client verification times and memory requirements for 𝑡 transactions in ℎ blocks.

such that SuccinctVerify has 𝑂 (1) time and size complexity over 𝑛, |S𝑖 |, |𝑧𝑖 | and:

Pr (SuccinctVerify(𝜓 (t,S𝑖,S𝑖+1), 𝑧𝑖) ≠ VerifyState(t,S𝑖,S𝑖+1, 𝑧𝑖)) ≈ 0,

over the random coins of SuccinctVerify and𝜓 .

In Table 1, we provide a comparison of the asymptotic time and memory requirements of

existing SPV protocols implementing transaction and/or proof-of-work verification. Given that

transaction volume and chain length both grow linearly over time, we can ideally provide verifi-

cation that is constant with respect to both. The only other work we are aware of with this goal

is the Mina Protocol framework [Bonneau et al. 2020]. Mina takes a similar high-level approach

as our work, encoding state transitions in a recursive proof system to asymptotically optimal

verification time.

The two approaches are independent and vary in a number of technical details around pred-

icate structure, with Mina choosing a different design for transaction proof aggregation. Most

importantly, the main conceptual differences lie in our choice of consensus protocol. Mina im-

plements a proof-of-stake [King and Nadal 2012] system, which must be carefully adapted for

the succinct proof setting. By contrast, we implement a PoW system, which requires tackling an

orthogonal set of design challenges to adapt to the succinct proof setting.

41

6 | Succinct Verification

Here we demonstrate a specific instantiation of a DPS for which we define a transition function

tailored to fast state verification by stateless clients. To achieve this, we leverage the capabilities

of IVC systems and construct a succinct proof of state validity to represent each state transition.

Since we will be basing our implementation of the proofs on SNARKs, we design the transition

function so as to minimize SNARK proof sizes. This is critical for efficiency and feasibility.

Following the longest chain quality update rule defined in Section 2.2.1, our system updates

the quality 𝑞 of solving a PoW puzzle according to the depth of the chain. We are thus required

to include (and commit to) 𝑞𝑖 and 𝑛𝑖 with every proof, where 𝑞𝑖 is the quality of state S𝑖 and 𝑛𝑖

the associated nonce. This is because these quantities are needed by miners in order to follow

the longest chain and achieve consensus.

6.1 Preliminaries

Each participant in our system has a public and secret key that they generate when they first

join the network. The participants use these keys to digitally sign transactions and verify other

participants’ signatures. The stateS𝑖 contains the distribution of money between the participants

(stored as a tree), state quality and a nonce corresponding to the most recent proof-of-work. We

also distinguish between the 𝑖-th block, which in our case will be represented by a proof 𝜋𝑖 that

the 𝑖-th state transition is valid along with the set of transactions t𝑖 corresponding to the transi-

42

tion, and commitments to state, which we denote by 𝐵𝑖 and use for client verification. We require

an account-based system (like Ethereum but not Bitcoin) and keep track of state with an ‘Account

Tree’ of all account-value pairs. These building blocks are:

Account Tree: We use a Merkle tree construction with a compressible Collision Resistant (CRT)

hash functionH : {0, 1}2_ → {0, 1}_ . We assume a fixed size tree 𝑇 with height ℎ throughout.

State: We denote 𝑆𝑖 the state after the 𝑖-th update:

• Account tree 𝑇 𝑖 with leaves the lexicographically-ordered (by address) accounts in state.

• The block number 𝑖 , quality 𝑞𝑖 , and nonce 𝑛𝑖 .

State Commitment: Set 𝐵𝑖 as the commitment to 𝑆𝑖 :

• The root 𝑟𝑡𝑖 of the Account tree 𝑇 𝑖 in S𝑖 .

• The block number 𝑖 , quality 𝑞𝑖 , and nonce 𝑛𝑖 .

Protocol Initialization: Initially all accounts in the Account tree are set to null. In every tran-

sition, the tree allows the following modifications:

• Account Initialization: Set the public key to a non-null value and initialize the balance and

the nonce. An account with a non-null public key is considered initialized. An account can

be initialized only once. Uninitialized accounts have null public key.

• Balance Update: Modify account balance 𝑏𝑎𝑙 , ensuring money conservation.

• Nonce Update: Modify account nonce 𝑛 to that of the current block.

We denote the initial state of the system (or “genesis state”) by S0; this is agreed to by an out-

of-band process. For example, a systemmight start with all addresses having a balance of zero or it

might pre-populate some accounts with non-zero balance (colloquially known as “pre-mining”).

43

Note that in the initial state, the Account tree is a full tree and contains one leaf/account for

every address that can exist in the state. The genesis state can contain initialized and uninitialized

accounts. All preliminary data structures have been included in the auxiliary supportive material.

6.2 State Transition Semantics

Below we define our semantics used for transaction and state transition validity.

Verifying Transactions: VerifyTx(𝑡,𝑇 𝑖) →Yes/No takes as input a transaction 𝑡 and an Ac-

count tree 𝑇 𝑖 , outputting Yes/No (1 or 0). A transaction is considered valid if:

1. Sender and receiver are legitimate accounts in 𝑇 𝑖 .

2. Amount transferred is not more than sender’s balance.

3. Signature authenticates over the sender’s public key.

4. Sender and receiver accounts in the Account tree are updated correctly.

5. Recipient and Account public keys match, or the address is uninitialized.

Updating System State: UpdateState(S𝑖, t, 𝑛) → S𝑖+1 is a procedure that takes as input a state

S𝑖 , am ordered set of transactions t with |t| = 𝑁 and a nonce 𝑛. It outputs the next state S𝑖+1 and

a witness𝑤 of objects proving the update was done correctly. A transition is valid if:

1. All transactions in T are valid.

2. The previous state has performed proof-of-work.

3. Only last transaction 𝑡𝑁 is of coinbase type.

4. Each transaction builds on top of the previous one; the first builds on the previous root.

44

6.3 State Transition as an NP statement

In order to instantiate a DPS that is capable of verifying a given state transition function, we en-

code the transition function ValidState as a compliance predicate Π𝑆 . With every state transition,

we include a proof that the transition was Π𝑆 compliant. This is done by verifying the transition

from the previous state and producing an attesting witness 𝑤 in the process. In this context, we

are interested in verifying the transition between two states of the Account tree by processing

transactions between them into the system. This is achieved by tracking changes to the root 𝑟𝑡𝑖

of the Account tree after the input of each transaction.

We capture all requirements for transaction, proof-of-work and state validity in an NP lan-

guage that only accepts commitments of the form 𝐵𝑖 = (𝑟𝑡 𝑖, 𝑖, 𝑞𝑖, 𝑛𝑖) that build ‘correctly’ on top

of a previous state. At a high level, the elements of this language are state commitments that,

given some previous state’s root, have only processed valid transactions.

6.3.0.1 Compliance Predicate

Given input 𝐵𝑖+1 = (𝑟𝑡𝑖+1, 𝑖 + 1, 𝑞𝑖+1, 𝑛𝑖+1), the compliance predicate ΠS evaluates to 1 if and only

if all of the following are satisfied:

1. Exists state S𝑖 satisfying proof-of-work with nonce 𝑛𝑖 and quality 𝑞𝑖 .

2. Exists a tuple of ordered transactions t with |t| = 𝑁 . These transactions need to be sequen-

tially valid with respect to S𝑖 .

3. UpdateState(S𝑖,T , 𝑛𝑖) = S𝑖+1.

We use the compliance predicateΠS to design an IVC system consisting of algorithms (G,P,V),

where each message 𝑧𝑖 is commitment 𝐵𝑖 .

45

6.3.1 DPS Specification

Here we define how the system transitions from S𝑖 → S𝑖+1. Algorithm 1 generates a new state

and associated proof of compliance, along with a nonce certifying that the system performed

proof-of-work. When validating, we check that the new state S𝑖+1 is a valid next state for the

system by being (a) ΠS compliant and (b) providing proof-of-work. Note that the validation only

requires the root of the Account tree corresponding to S𝑖 , thus making it efficient enough for

light clients. A detailed specification alongside security definitions and proofs can be found in

the attached auxiliary supportive material.

Algorithm 1 NewState
Require: 𝑝𝑝,T ,S𝑖, 𝜋𝑖
Ensure: S𝑖+1, 𝜋𝑖+1
1: procedure NewState(𝑝𝑝,T ,S𝑖, 𝜋𝑖)
2: if V(𝑣𝑘,S𝑖, 𝜋𝑖) = 0 then return 0
3: end if

4: whileH(𝜋𝑖+1) > 𝑑 do

5: Pick 𝑛𝑖+1 uniformly at random
6: (S𝑖+1,𝑤) ← UpdateState(S𝑖,T , 𝑛𝑖+1)
7: 𝜋𝑖+1 ← P(𝑝𝑘,S𝑖+1,T ,S𝑖, 𝜋𝑖,𝑤)
8: end while

9: return (S𝑖+1, 𝜋𝑖+1)
10: end procedure

When updating the state of the system, each participating miner receives 𝜋𝑖+1 and t𝑖+1. This

allows them to update their own state to S𝑖+1 and begin mining again. In Table 1, we provide a

comparison of the asymptotic time and memory requirements of existing SPV protocols imple-

menting transaction and/or proof-of-work verification. Given that transaction volume and chain

length both grow linearly over time, we can ideally provide verification that is constant with

respect to both.

46

7 | Proof of Necessary Work

To allow proof generation to serve as a proof-of-work puzzle, we require (a) a proof 𝜋𝑖 whose

generation algorithm P is moderately difficult to compute and (b) a proof-of-work puzzle PH ,𝑑
𝑉

that requires the miner to fully recompute P to test a potential solution. The second property

is necessary for the puzzle to be progress-free for fairness to miners of differing size. Indeed,

if generating unique proofs 𝜋𝑖 based on randomly sampled nonces 𝑛𝑖 is sufficiently ‘hard’, then

using P
H ,𝑑
𝑉

instead of a generic puzzle (such as computing the double SHA256 digest in Bitcoin)

would allow us to not only perform proof-of-work with the same theoretical guarantees, but also

compute a valid proof 𝜋𝑖 in the process.

We do not formally analyze any consensus properties, since our goal is not to design a new

consensus protocol but to retain that used by Bitcoin (and similar systems) and inherit its prop-

erties. However, we would like the work done to be useful by producing proofs of each block’s

validity. We introduce the notion of performing proof-of-work by proving the validity system

state, denoted by Proof of Necessary Work (PoNW).

7.1 Definitions

We formalize this definition below, and provide the relevant security model.

Definition 7.1 (Proof of Necessary Work). Given a pseudorandom functionH and a proof 𝜋𝑖 ∈

Z in some RSM with transition tuple (NewState,VerifyState), we define the verification puzzle

47

P
H ,𝑑
𝑉

: S × S ×Z → {0, 1} with difficulty 𝑑 as the solution to the following function:

P
H
𝑉 (S𝑖,S𝑖+1, 𝜋𝑖+1) = 1

VerifyState(S𝑖,S𝑖+1, 𝜋𝑖+1) = 1

H(𝜋𝑖+1) < 𝑑

 ,
where 1[·] is the indicator function.

By having access to a proof generating algorithm P(t,S𝑖,S𝑖+1, 𝑛𝑖) → 𝜋𝑖+1 that generates

unique (yet valid) 𝜋𝑖+1 for each 𝑛𝑖 , we can generate 𝜋𝑖+1 for S𝑖+1 = NewState(t,S𝑖, 𝜋𝑖) using a

uniformly randomly sampled 𝑛𝑖 until the puzzle condition is satisfied:

P
H
𝑉 (S𝑖,S𝑖+1,P(t,S𝑖,S𝑖+1, 𝑛𝑖)) = 1.

Then 𝜋𝑖+1 suffices for public verification that proof-of-work has been performed. This is because

our prover will always fail with constant probability (whenH(𝜋𝑖+1) ≥ 𝑑), so iteratively sampling

new proofs (by sampling new 𝑛𝑖) until a valid one is found can be shown, under the assumption

that P is the most efficient way to find such an 𝑛𝑖 , to be a memoryless exponential process and

hence fair. Note that, by construction, we also guarantee that 𝜋𝑖+1 is a valid witness for the RSM.

The number of transactions verified is always fixed (with empty transactions still ‘added’) as

otherwise miners would be incentivized to mine puzzles with the smallest blocks.

7.1.1 An Initial Approach

A natural thought would be to require the generation of proofs untilH(𝜋) < 𝑑 , as is proposed in

the previous section. In the case that the proof is unique to the state and witness input, we can

ensure that by adding a nonce in the input we will always get a different hash for 𝜋 . However,

this can lead to unfair outcomes. When computing 𝜋 , the adversary can retain the parts of 𝜋 that

don’t change between nonces and therefore substantially decrease proof generation time with

48

respect to other provers. This means the process is not memoryless, and so the fairness of the

system is compromised.

7.1.2 Amortization Resistance

Like Nakamoto consensus, our puzzle needs the property that solutions are equally hard to test

even after testing an arbitrary number of previous solutions. In other words, a miner should not

be able to amortize costs while testing multiple potential solutions. This property is defined more

formally below based on the `-Incompressibility of [Miller et al. 2015], although we work in the

bounded-size precomputation model. We model PoNW as a function 𝑓 O with limited access to

some oracle O that performs a hard computation in an encoding of some group G.

Definition 7.2 (𝜖-Amortization Resistance). For inputs of length _ and ouputs 𝑞 ∈ poly(_),

function 𝑓 O = {𝑓 O (𝑛)}𝑛∈N is 𝜖-amortization resistant on average with respect to a sampler S if

for all adversaries A = (AO1 ,AO2) with A performing less than (1 − 𝜖)𝑞𝑁 queries to the oracle

O on average, where 𝑁 number of queries required for one evaluation of 𝑓 O (𝑛) on average, the

following is negligible in _:

Pr

{𝑛𝑖}𝑞𝑖=1 ← 𝑛, (𝑛, aux) ← S(1_)

∀𝑖 ∈ [𝑞], 𝜋𝑖 = 𝑓 O (𝑛𝑖) precomp← AO1 (1_, aux)

{𝜋𝑖}𝑞𝑖=1 ← AO2 (1_, 𝑛, precomp)

.

This definition captures the fact that computing multiple proofs does not come with marginal

gains: indeed, provers cannot use larger computational resources to batch process proofs and

achieve disproportionate performance improvements. By preventing large miners from achiev-

ing algorithmic returns-to-scale, this property is crucial in ensuring fairness. With the above

objectives in mind, we now look at how to adapt our implementation to realize such a system.

49

7.1.3 Prover Computational Costs

Before we look at designing an amortization resistant PoNW system, we summarize the compu-

tationally expensive components of proof generation in the Quadratic Arithmetic Program (QAP)

Non-Interactive Proof (NIPs) of [Parno et al. 2013] compiled with [Kate et al. 2010]. For an ℓ-size

statement with 𝑚 internal variables and 𝑛 constraints, the prover P needs to (1) update inputs

and witnesses, and (2) perform 9𝑚 + 𝑛 exponentiations in G using elements from the proving

key as bases. Since updating variable assignments is orders-of-magnitude faster, amortization

resistance requires P to recompute (almost) all exponentiations for each new nonce. We provide

the formal definition of QAP instances below for completeness.

Definition 7.3. AQAP𝑄 over field F contains three sets of𝑚+1 polynomialsV = {𝑣𝑘 (𝑋)},W =

{𝑤𝑘 (𝑋)},Y = {𝑦𝑘 (𝑋)}, for 𝑘 ∈ {0, ...,𝑚} and a target polynomial 𝑡 (𝑋) of degree 𝑛. Suppose 𝐹 is a

function that takes as input ℓ1 elements and outputs ℓ2 elements for a total of ℓ = ℓ1 + ℓ2 elements.

We say that 𝑄 computes 𝐹 if: (𝑎1, ..., 𝑎ℓ) ∈ Fℓ is a valid assignment of 𝐹 ’s inputs and outputs iff

there exist (𝑎ℓ+1, ..., 𝑎𝑚) for which 𝑡 (𝑋) divides 𝑝 (𝑋) where

𝑝 (𝑋) :=
(
𝑣0(𝑋) +

𝑚∑︁
𝑖=1

𝑣𝑖 (𝑋)
)
·
(
𝑤0(𝑋) +

𝑚∑︁
𝑖=1

𝑤𝑖 (𝑋)
)
−

(
𝑦0(𝑋) +

𝑚∑︁
𝑖=1

𝑦𝑖 (𝑋)
)
.

7.1.4 Amortization of Multiexponentiation

Multiexponentiation is inherently amortizable [Gordon 1998; Henry 2010] given enoughmemory,

although space requirements scale exponentially with the number of computed elements. This is

because we can precompute the exponents of specific basis elements and perform look-ups that

can be used by multiple evaluations at once. We make precise the relationship between size and

amortization gain to demonstrate that non-negligible amortization gains require an infeasibly

large amount of space. Since we are interested in average-case guarantees, all input elements

50

to the multiexponentiation algorithm (i.e. the enumerated exponents, or puzzle instances) are

sampled uniformly randomly from some S.

We consider amortization in Shoup’s Generic Group Model (GGM) [Shoup 1997],1 in which

the adversary can only compute products based on existing group elements (with non-negligible

probability), or directly query the exponentiation of some index. The adversary has access to a

multiplication oracle O : G × G → G, which returns the multiplication of the input elements

over some random encoding 𝜎 : Z𝑝 → G. This oracle computes O(𝜎 (𝑖), 𝜎 (𝑗)) = 𝜎 (𝑖 + 𝑗). The

adversary may also use a polynomially-sized precomputation string. Since they don’t have access

to the exponents of the bases that are beingmultiplied together (so as to perform a direct look-up),

computing some 𝜎 (𝑘) requires the generation of an addition chain ending with 𝜎 (𝑘).

However, this is the only assumption underlying the lower-bound results which prove the

optimality of (the generalized) Pippenger’s algorithm [Henry 2010], as they obtain lower-bounds

on the length of the minimal addition chain needed to compute some element. In short, our main

formal contribution relies on adapting the packing lower-bound ideas of [Erdös 1960; Pippenger

1980] to formalize the relationship between amortization of multiexponentiation of random in-

dices and the amount of space available to the adversary. We do this by making explicit the

average-case lower bounds for multiexponentiation, which were only stated (but not proven) in

[Erdös 1960; Pippenger 1980] to be a constant term away from the worst-case lower bounds.

Note that the notion of average-case hardness requires an underlying probability distribution

over which the input indices are sampled. Obviously, the distribution of the sampled puzzle

instances can affect the average-case bounds if, for example, the sampler provides structured

output with high probability. Therefore, all results have to be takenwith respect to the underlying

distribution of the inputs, which is in turn specified by the choice of sampling algorithm S. Where

this S is taken to be uniform (as in this work), the notion of average-case hardness defaults to the

traditional average-case lower bound results referenced in the literature.
1Maurer proposed a slightly different GGM definition [Maurer 2005], for a comparison see [Zhandry 2022].

51

In order to make formal statements about the amortization resistance of computing multi-

ple NIPs, we need to show that there exists some sampling algorithm S𝑁𝐼𝑃 outputting instance-

witness pairs (𝜙,𝑤) so that, on average over its public coins, these output puzzle instances require

a minimum number of oracle calls each for computation of their corresponding proof 𝜋 . The first

step towards this is to construct the equivalent multiexponentiation problem that the above will

reduce to. In the following, we restrict ourselves to the NIP of [Parno et al. 2013], in which the

valid output proof consists of 9 group elements of the form
∑^
𝑘=1𝑤𝑘𝐺

𝑖
𝑘
for 𝑖 ∈ [9],𝑤𝑘 ∈ [𝑁] and

an additional element
∑`

𝑚=1 𝑔(𝑤1, ...,𝑤^)𝑚𝐻𝑚 , where 𝑔 an𝑚-dimensional 𝑛-variable polynomial

encoding the instance’s witness and 𝐺𝑖, 𝐻𝑚 ∈ G.

Since the hardness of the above computation depends on the structure of𝑤 and 𝑔, it becomes

apparent that we need to restrict the types of predicates that we are looking at. In subsequent

sections, we make precise the following construction: a circuit with an efficient sampler S such

that (1) accepting witness elements 𝑤1, ...,𝑤^ ∈ [𝑁] are randomly distributed, (2) for each valid

instance𝜙 there exists only one valid𝑤 , and (3) for each valid𝑤 , there exists a unique valid𝑔. Note

that (1) and (2) are properties of the predicate, while (3) requires a stronger result on the NIP’s

knowledge guarantees. We will show that predicates satisfying (1) and (2) are enough to reduce

the computation of a NIP from [Parno et al. 2013] (which satisfies (3)) to a multiexponentiation

problem (Definition 7.4) whose amortization we can bound.

Definition 7.4. The (^, `)-length MultiExp function 𝑓 : [𝑁]^ → Ga of dimension a for bases

{𝐺 (1)
𝑖
, ...,𝐺

(a−1)
𝑖
}^𝑖=1, {𝐺

(a)
𝑖
}`
𝑖=1, and function 𝑔 : [𝑁]^ → 𝐾 ⊆ [𝑁]` is

𝑓 (𝑥1, ..., 𝑥^) :=
(∑̂︁
𝑖=1

𝑥𝑖𝐺
(1)
𝑖
, ...,

∑̂︁
𝑖=1

𝑥𝑖𝐺
(a−1)
𝑖

,
∑̀︁
𝑖=1

𝑔(𝑥)𝑖𝐺 (a)𝑖

)
,

where the 𝑥𝑖 are given by sampler S, based on its random coins.

In order to provide a reduction that exactly captures the average-case hardness of the above

problem, the structure of 𝑔 becomes important. This requires a more technical treatment, so

52

here we work in the case where 𝑔 is a weakly collision-resistant map from the witness elements

𝑥 = (𝑥1, ..., 𝑥^) to the values (𝑔(𝑥)1, ..., 𝑔(𝑥)`) ∈ 𝐾 ⊆ [𝑁]` . This defines a computationally

unique correspondence between witness elements and representations of `-degree polynomials

with coefficients in [𝑁]. We specifically require the mapping 𝑔 : [𝑁]^ → 𝐾 ⊆ [𝑁]` to be

collision-resistant in each of its output coordinates, or that the following probability is negligible

for all PPT adversaries A:

Pr [∃𝑖 s.t. 𝑔(A(𝑧))𝑖 = 𝑧𝑖 ; 𝑧 ← 𝑔(𝑥), 𝑥 ←𝑅 [𝑁]^] ≈ 0,

where 𝑧𝑖 denotes the 𝑖-th coordinate of 𝑧. This is enough to provide multiexponentiation amor-

tization bounds, which are given below for the case when ^ = `. Note that the general case for

` > ^ can also be calculated in the exact same way, but has been omitted for simplicity.

Theorem 7.5. The (^, ^)-length MultiExp function (c.f. Definition 7.4) of dimension a over index

size _ := log (𝑁), group G with |G| = 2_ , and storage size 𝑞 is 𝜖-amortization resistant with respect

to the uniform sampler for all collision-resistant 𝑔, and for large enough ^, _, a, 𝑞 satisfies:

𝜖 ≤ log (𝑞) + 𝑜 (1)
log (𝑞) + log (^) + log (a) + log (_) .

We prove Theorem 7.5 in Appendix A.1. This amortization gain is unavoidable for NIPs that

reduce to multiexponentiation; such as by compilation with [Kate et al. 2010].

7.2 Amortization Resistance & Efficiency

We modify the DPS predicate Π to ensure that most of the proof variables change unpredictably

with modifications of the nonce or state. This gives amortization resistance in exchange for

increasing the number of variables and constraints in the predicate. The performance overhead

originates from the need to commit to state and ‘mask’ the computation, which can be expensive

53

for large predicates.

The naive approach would be to isolate each of the different circuits in the system and show

that they can bemodified to change unpredictably based on some seed. The design challenge here

is how to make this happen while conserving the proof’s correctness guarantees. For this, we

ideally want to leverage a property specific to our predicate in order to ‘mask’ the computations

and treat the proving system as a black box. We leverage the Pedersen hash function to transform

our predicate Π to an amortization resistant version in Section 8.3.

7.2.1 Committing to State

Given some nonce 𝑛, the prover might only change a part of the input in order to (re)check diffi-

culty. This is an issue if the same nonce can be used with many inputs (in our case, transactions),

as an adversarial prover would compute a proof and then only switch out a single transaction

(or bit!), rechecking difficulty with no expensive recomputation. Define 𝜌 := PRF𝑛 (state) that

commits to state where PRF a pseudorandom function family. We need to commit to all block

transactions, ensuring that changing one transaction changes 𝜌 . This can be expensive if we ex-

ploit no information about the underlying predicate, since PRF would have to commit to every

single original variable.

Fortunately, for our predicate the input to PRF is small: we use 𝜌 = PRF𝑛 (𝑟𝑡) where 𝑟𝑡 the

root of the new state and 𝑛 the given nonce. Since this input will anyways be computed as part

of the protocol, we don’t actually suffer any overhead apart from having to verify the above

computation. Note that this is actually constant in predicate size. In the GGM, we can replace

the PRF by a collision resistant hash function CRT instead, since the randomness of the group

encoding is sufficient for the witness elements to look random to an adversary.

54

7.2.2 Masking the Computation

We can force unique changes to the Merkle path updating the account if we require 𝑛 to be part

of the leaf: since a change in the block (or nonce) would lead to a new 𝑛, all update paths need

to be recomputed if any transaction is changed. However, we also need to enforce change to the

old Merkle path checking account existence. This technique is thus not ideal, since these paths

do not depend on the current nonce (or state) at all, meaning that around half our variables will

remain the same, giving 𝜖 ≈ 1/2.

To get around this, we opt for a different approach. We ‘mask’ the input variables to H by

interaction with 𝜌 (which also commits to 𝑛) and transform the constraints of the hash function

subcircuit𝐶H into a new circuit that retains the original Proof of Knowledge (PoK) guarantees by

verifying the same underlying computation. By the unpredictability of 𝜌 and randomness of 𝑛,

we hope to achieve upper bounds for amortization resistance based on the security of theCRT. In

this case, the sampler would need to provide valid witnesses for𝐶H of the form𝑤 = (𝑤1, ...,𝑤𝑚)

whose encodings are indistinguishable from random, given 𝑛 sampled uniformly randomly and

access to a multiplication oracle O for a randomized encoding of some G.

7.3 Consensus Security

Our proposal introduces two novel effects to the consensus protocol due to the fact that checking

even one proof-of-work solution (on the order of tens of seconds to minutes) can take a non-

negligible fraction of the average block frequency (ten minutes in the case of Bitcoin). We can

measure these effects assuming a single puzzle solution takes time 𝜏 to check (with the mean

block arrival time normalized to 1).

55

7.3.1 Quantization Effects

When 𝜏 becomes a significant fraction of the average block generation time (𝜏 ∼ 1), miners face a

loss of efficiency as they will often be forced to discard a partially-checked puzzle solution when

a block is broadcast while checking previous solutions. We prove the scale of this efficiency loss

in a short theorem:

Theorem 7.6. A miner in a proof-of-work protocol with puzzle checking time 𝜏 will discard a frac-

tion 1 − 𝜏
𝑒𝜏−1 of their work due to newly broadcast solutions.

Note that as 𝜏 → 0 (fast puzzle checking time relative to block interval), the fraction of wasted

work drops to 0. This is why this effect has never been considered in prior work. In the reverse

direction, as 𝜏 → ∞ the fraction of wasted work approaches 1. For 𝜏 = 1 (solutions take as long

to check as the mean block interval), the fraction of wasted work is 𝑒−2
𝑒−1 ≈ 0.42, suggesting that

we should aim to keep the time (even for slow miners) to get a solution significantly shorter than

the mean block time.

7.3.2 Stubborn Mining and Collisions

Slow puzzle checking time also introduces a concern that miners might refuse to stop working

on a partially-checked solution (and hence discard partial work) even if a valid solution is found

and broadcast. These stubbornminers might cause collisions in the blockchain (two blocks being

found at the same height in the chain). We can analyse a worst-case scenario in which all miners

are synchronized with identical proving time, in effect making all miners stubborn and maxi-

mizing the probability of simultaneous solutions. If miners aren’t synchronized, they may opt to

finish their current effort after a block is found, but even if all miners do so this reduces to the

above case where all miners finish checking a solution simultaneously. We call each synchronized

period in which all miners check a solution a round.

56

Theorem 7.7. The expected number of solutions in a synchronized mining round is defined by a

Poisson distribution with _ = 𝜏 . The proportion of rounds with multiple solutions (of rounds with

any solution) is upper bounded by 𝜏/2.

By Theorem 7.7, an unoptimized 100 second proving time (and 10 minute block time) has

collisions for fewer than 1
12 of blocks in the worst case.

57

8 | Design & Instantiation

8.1 Proof System & Predicate

Since we’ll be broadcasting each proof 𝜋𝑖 to the network, we would like them to be quite small

(ideally < 1kB). We also require that the size of 𝜋𝑖 does not increase with 𝑖 , ideally staying the

same size after every state transition. With these design choices in mind, we prototype our sys-

tem using libsnark[SCIPRLab 2017], a C++ library implementing the IVC system in [Ben-Sasson

et al. 2017] using the construction from [Parno et al. 2013]. This is done using Succinct Non-

Interactive Arguments of Knowledge (SNARKs) [Ben-Sasson et al. 2014], non-interactive proofs

of knowledge with the additional property of succinctness: producing constant-sized proofs that

can be instantly verified. We can equivalently consider Π𝑆 as an arithmetic circuit𝐶Π, evaluating

to 1 on some input 𝐵𝑖 if and only if 𝐵𝑖 is a valid commitment to the output of UpdateState given

some transaction set t and S𝑖−1. In our implementation, 𝐶Π is expressed as a QAP.

The circuit is encoded over elliptic curve elements through vectors in F𝑝 , where the number

of gates increases with the size of 𝜋𝑖 and the time required to generate it. By manually designing a

circuit𝐶Π, we minimize the number of gates used and provide a deployable implementation. Note

that the system need also allow for recursive proof composition, or the capability of new proofs to

check the validity of previous proofs efficiently. Since this construction depends on SNARKs over

pairs of elliptic curves that form IVC-friendly cycles, we use the same pair of non-supersingular

curves of prime order as [Ben-Sasson et al. 2017] with 80 bits of security and field size log𝑝 ≈ 298.

58

8.2 Circuit Reqirements

A tree depth of 32 for our implementation allows for 4.2 billion accounts. We compare this to 32

million unique used wallets on the Bitcoin blockchain after 10 years of operation. This requires

32 · 4 = 128 hash checks for each transaction. We use the circuits in libsnark to verify such proofs

of inclusion and modification.

8.2.1 Pedersen Hashes

Since it is desirable for H to be efficiently represented with a low gate count, we opt for using

Pedersen hashes [Damgård et al. 1993]. We modify the Pedersen hash to compute
∏𝐷
𝑖=1𝐺

1−2𝑥𝑖
𝑖

where {𝑥𝑖}𝐷𝑖=1 is the bit representation of the input 𝑥 and {𝐺𝑖}𝐷𝑖=1 is a set of primitive roots for an

elliptic curve group 𝐸 (F𝑝). We encode each root as two field elements and, based on the sign of

each input 𝑥𝑖 , performmultiplication of an intermediate field variable 𝑐 by each𝐺𝑖 to arrive at the

digest if the corresponding 𝑥𝑖 = 1. We use the same underlying elliptic curve for the SNARK with

|𝑝 | = 2298, which reduces in security to the elliptic curve discrete-logarithm problem (ECDLP) at

a security of 80 bits.

8.2.2 Signature Scheme

We use Schnorr signatures [Schnorr 1989] over an elliptic curve (EC), based on the hardness of

DLP. This choice is motivated by our desire to minimize the size of the verifying circuit, since this

has to be built inside 𝐶Π. The Schnorr verification circuit only requires two exponentiations, a

hash computation, and a comparison between scalars. The same curve from the IVC construction

is also used here, offering a security of 80 bits. Schnorr signatures use elliptic curve elements as

public keys, resulting in key sizes of 596 bits, or 298+1 = 299 bits with point compression. Secret

keys are sampled as random 298-bit strings.

59

Figure 8.1: Left : The TwoBitGroupAddition and SymmetricGroupAddition circuits from top to bottom

respectively. Right : Layout of a single Merkle authentication path circuit, with 𝑀 = 3 evaluations of H
on an 𝑛 = 4-bit Pedersen hash. 𝐺𝑖 = (𝐺𝑥

𝑖 ,𝐺
𝑦

𝑖
) = 𝐺𝑖 +𝐺𝑖 + 𝐻𝑖 andH

′ (𝜌) = ∏4
𝑖=1𝐺

1−2𝜌𝑖
𝑖

and 𝑒 the identity.

8.3 Randomizing the Pedersen Hash

In addition to some input 𝑥 of length 𝑛 bits, our evaluation requires a pseudorandom seed 𝜌 ∈

{0, 1}𝑛 . Consider the following modification, which can be thought of as masking the underlying

evaluation by using two sets of input variables: H𝐺 (𝜌)2 · H𝐻 (𝜌) and 𝑥𝑖 for 𝑖 ∈ [𝑛], whereH𝐺 (·)

the evaluation of the Pedersen functionH𝐺 (𝑥) =
∏𝑛
𝑖=1𝐺

1−2𝑥𝑖
𝑖

.

The variable ℎ0 = H𝐺 (𝜌)2 · H𝐻 (𝜌) forms the ‘starting point’ of the evaluation. In the begin-

ning, the prover will have access to generator constants {𝐻𝑖, 𝐻−1𝑖 ,𝐺−2𝑖 𝐻
−1
𝑖 ,𝐺2

𝑖 𝐻𝑖} for the specific

instance of the problem. It would then perform a 2-bit lookup based on 𝑥𝑖 and 𝜌𝑖 , multiplying

the intermediate variable 𝑐𝑖 by one of the above. By carefully choosing these 𝑞𝑖 , we can design

the circuit in such a way that unpredictability based on the seed is retained by all intermediate

variables except the output 𝑦, which we ensure equalsH𝐺 (𝑥).

Correctness follows from the following observation: at step 0, the variable 𝑐0 = H𝐻 (𝜌) ·

60

Algorithm 2 MaskedPedersen
Require: 𝑥, 𝜌 ∈ {0, 1}𝑛,𝐺, 𝐻 ∈ G𝑛
Ensure: 𝑦 ∈ G
1: procedure CacheGenerators(𝜌,𝐺, 𝐻)
2: Parse {𝜌𝑖}𝑛𝑖=1 ← 𝜌

3: Compute ℎ ←H(𝜌,𝐺), ℎ2 ←H(𝜌, 𝐻), ℎ0 = ℎ2 · ℎ2
4: return ℎ0, ℎ

5: end procedure

6: procedureMaskedHash(𝑥, 𝜌, ℎ0, ℎ)
7: Parse {𝑥𝑖}𝑛𝑖=1 ← 𝑥 , {𝜌𝑖}𝑛𝑖=1 ← 𝜌

8: Define 𝑞 = {𝑞𝑖}𝑛𝑖=1, 𝑐 = {𝑐𝑖}𝑛𝑖=0 and set 𝑐0 = ℎ0
9: for 𝑖 ≤ 𝑛 do

10: if 𝜌𝑖 = 0, 𝑥𝑖 = 0 then 𝑞𝑖 = 𝐻−1𝑖
11: else if 𝜌𝑖 = 0, 𝑥𝑖 = 1 then 𝑞𝑖 = 𝐺−2𝑖 · 𝐻−1𝑖
12: else if 𝜌𝑖 = 1, 𝑥𝑖 = 0 then 𝑞𝑖 = 𝐺2

𝑖 · 𝐻𝑖
13: else if 𝜌𝑖 = 1, 𝑥𝑖 = 1 then 𝑞𝑖 = 𝐻𝑖
14: end if

15: 𝑐𝑖 = 𝑐𝑖−1 · 𝑞𝑖
16: end for

17: 𝑦 = 𝑐𝑛 · ℎ−1
18: return 𝑦

19: end procedure

H𝐺 (𝜌)2 = H𝐺 (𝜌) ·
∏𝑛
𝑖=1𝐺

1−2𝜌𝑖
𝑖

· 𝐻 1−2𝜌𝑖
𝑖

is initialized as the hash of the seed. For all intermediate

steps 𝑗 < 𝑛, we have that 𝑐 𝑗 = H𝐺 (𝜌) ·
(∏ 𝑗

𝑖=1𝐺
1−2𝑥𝑖
𝑖

)
·
(∏𝑛

𝑖= 𝑗+1𝐺
1−2𝜌𝑖
𝑖

𝐻
1−2𝜌𝑖
𝑖

)
. Finally, after the

𝑛-th bit has been processed the final intermediate variable 𝑐𝑛 is equal to the Pedersen hash of

the original input 𝑥 multiplied by (the unpredictable)H𝐺 (𝜌). By multiplying withH𝐺 (𝜌)−1, we

get H𝐺 (𝑥). This follows easily from the fact that at every step we are performing the following

operation: 𝑐𝑖 = 𝑐𝑖−1 · (𝐻𝑖 · 1[𝜌𝑖, 𝑥𝑖 = 1] + 𝐻−1𝑖 · 1[𝜌𝑖, 𝑥𝑖 = 0] +𝐺−2𝑖 𝐻−1𝑖 · 1[𝜌𝑖 = 0, 𝑥𝑖 = 1] +𝐺2
𝑖 𝐻𝑖 ·

1[𝜌𝑖 = 1, 𝑥𝑖 = 0]). It can be quickly checked that this computation ensures the previous recursive

property when initialized with 𝑐0 = H𝐻 (𝜌) · H𝐺 (𝜌)2. By induction, this implies that after the

𝑛-th bit, only H𝐺 (𝜌) and the exponentiations due to the bits of 𝑥 remain in the output variable

i.e. 𝑐𝑛 = H𝐺 (𝜌) ·
∏𝑛
𝑖=1𝐺

1−2𝑥𝑖
𝑖

.

We observe that in all cases where we know that the variable 𝑎𝑖 has small support (when,

61

for example, it is boolean 𝑎𝑖 ∈ {0, 1}), the prover can always precompute once and use the same

answers without performing exponentiations. However, this is not a problem since all miners

would know what the precomputed answers are from the very beginning and can incorporate

them with a small memory cost.

The problem with creating variables that become more and more ‘deterministic’ is that at

some point their support becomes so small that an adversary will be able to precompute some

oracle queries. However, since the end value of the sequence of variables {𝑐𝑖}𝑛𝑖=1 isℎ ·H𝐺 (𝑥) which

is also unpredictable due to ℎ, it is not feasible to predict any index 𝑖 ∈ [𝑛] without violating the

security of the operation H𝐺 (𝜌) = ℎ even if H𝐺 (𝑥) is previously known. Note that ℎ can be

‘offset’ by a random element 𝐼 as ℎ′𝑖 = ℎ + 𝐼𝑖 for each path 𝑖 ∈ [𝑁]. This provides independence

between authentication paths using the same nonce.

8.4 Security

8.4.1 Uniqe Witness Extraction

We must restrict the proof systems used because certain constructions are inherently insecure:

Groth16 [Groth 2016] can easily be rerandomized, for example, with a couple additional group

multiplications. We thus need a notion of non-malleability, or that we cannot construct proofs

given access to previous valid proofs. To this end, we show that Pinocchio [Parno et al. 2013]

satisfies unique witness extractability. This property requires the proof system to output proofs

with unique encodings for each distinct statement-witness pair.

Definition 8.1. Let (Setup, Prove,Verify, Simulate) denote a NIP for relation R. Define the PPT

62

algorithm A with extractor 𝜒A , Adv𝑢𝑤𝑒BG,𝑅,A,𝜒A (_) = Pr[G𝑢𝑤𝑒BG,𝑅,A,𝜒A (_)], and G
𝑢𝑤𝑒
BG,𝑅,A,𝜒A (_) as:

Main G𝑢𝑤𝑒BG,𝑅,A,𝜒A (_)

(𝑝,G1,G2,G𝑇 , 𝑒, 𝑔) ← BG(1_)

(crs, 𝜏) ← Setup(R)

(𝜙, 𝜋1, 𝜋2) ← AO (crs)

(𝑤1,𝑤2) ← 𝜒A (trA)

𝑏1 ← (𝑤1 = 𝑤2) ∪ (R(𝜙,𝑤1) ≠ 1) ∪ (R(𝜙,𝑤2) ≠ 1)

𝑏2 ← Verify(crs, 𝜙, 𝜋1) ∩ Verify(crs, 𝜙, 𝜋2) ∩ ((𝜙, 𝜋1) ∉ 𝑄) ∩ ((𝜙, 𝜋1) ∉ 𝑄) ∩ (𝜋1 ≠ 𝜋2)

Return 𝑏1 ∩ 𝑏2

O(𝜙)

𝜋 ← Simulate(crs, 𝜏, 𝜙)

𝑄 = (𝜙, 𝜋) ∪𝑄

Return 𝜋

The NIP is unique witness extractable if for all PPTA ∃𝜒A such that Adv𝑢𝑤𝑒BG,𝑅,A,𝜒A (_) ∈ 𝑛𝑒𝑔𝑙 (_).

Theorem8.2. Assume the𝑞-PDH, 2𝑞-SDH and𝑑-PKE assumptions hold for𝑞 ≥ max (2𝑑 − 1, 𝑑 + 2).

The Pinocchio NIP [Parno et al. 2013] satisfies unique witness extractability.

8.4.2 Single Witness Hardness

The ability to resample witnesses for a provided statement-witness pair can also be advantageous

to an adversary, since an ‘easy’ witness could be found by repeated sampling. We follow the def-

inition of 2-hard instances in [Dahari and Lindell 2020] and define single witness hard languages,

for which it is hard to find a new witness given an existing one.

Definition 8.3. Let 𝑅𝐿 be a relation, and L = {𝜙 |∃𝑤 s.t. 𝑅𝐿 (𝜙,𝑤) = 1} an NP language. L is a

hard single-witness language if:

63

1. Efficient Sampling: There exists a PPT sampler S(1_) outputting a statement-witness pair

⟨S𝑥 , S𝑤 ⟩ with S
𝑥 ∈ {0, 1}_ and (S𝑥 , S𝑤) ∈ 𝑅𝐿 .

2. Witness Intractability: For every PPTA there exists a negligible function ` (·) such that:

Pr
[(
S
𝑥 (1_),A(S(1_), 1_)

)
∈ 𝑅L,A(S(1_), 1_) ≠ S

𝑤 (1_)
]
≤ ` (_) .

A relation whose statements are outputs of a CRT hash function H defines a hard single-

witness language. We show this for L(H𝑃) = {𝜙 : ∃𝑤 s.t. H𝐺
𝑃,|𝑤 | (𝑤) = 𝜙} where H

𝐺
𝑃,𝑛

a weakly

collision-resistant hash function.

We show that computing a [Parno et al. 2013] proof for the evaluation of MaskedHash (and

our DPS predicate) will take on average a similar number of queries as a suitably parametrized

MultiExp instance. We restrict to the case of outputs from a sampler S which samples a 𝜌 ran-

domly and generates valid witnesses. Since we are working in the GGM, the witness variables of

the MaskedHash instance have an encoding that is indistinguishable from random. Therefore,

the amortization bounds of Theorem 7.5 apply.

Theorem 8.4. There exists a sampler S and QAP 𝑅 evaluating 𝑁 parallel instances of 𝑘-bit inputs

ofMaskedHash for which the [Parno et al. 2013] prover and the (4𝑁 (𝑘 + 1), 8𝑁 (𝑘 + 1) + 2𝑘)-length

MultiExp problem of dimension 10 are equivalent up to constant terms with respect to multiplicative

hardness.

The vast majority of the constraints and variables in the predicate of the designed system are

hash evaluations, so Theorem 8.4 can be used to show that there exists a proof system verifying

state transitions for the DPS with bounded amortization-resistance guarantees. This is because

the DPS predicate spends the vast majority of its time computing a proof whose hardness can

be bounded by Theorem 8.4, since it is a sequence of iterated Pedersen hashes over a unique

simulation extractable NIP.

64

Corollary 8.5. The DPS in Section 6.3.1 with block size𝑇 , state tree depth 𝑑 , and index size _ admits

a Proof of NecessaryWork that is 𝜖-amortization resistant w.r.t. a multiplication oracle and for which:

𝜖 ⪅
log (𝑞)

log (𝑞) + log (𝑑𝑇_) + log (_) ,

where 𝑞 is memory size measured in proof elements.

8.5 Performance

We construct the DPS based on the above specifications and investigate its running time and

memory consumption. Results are displayed in Table 2. Our benchmark machine was an Ama-

zon Web Services (AWS) c5.24xlarge instance, with 96 vCPUs and 192GiB of RAM. The security

properties of the DPS are based on the guarantee of Π-compliance provided by IVC. It is apparent

that setup and proving times dominate both the running time and memory consumption in the

protocol. Setup takes place once by a trusted third-party and hence is less critical for day-to-day

system performance.

The prover is run by the miners, or full nodes. These generate proof-of-work solutions re-

peatedly and would compute proof instances for many input nonces. Thus, larger storage re-

quirements (∼ 5.42GB key sizes) could be easily met by these nodes, as could the need for more

parallelism and better computing power to bring down the proving rate.

We normalize the block time to achieve 𝜏 = 1/3 in the sense of Theorem 7.6 for a proof

including 30 transactions. This gives us that a miner will discard in expectation 15.59% of their

work for an efficiency of ∼ 84% if all miners operated based on the above benchmarks. Theorem

7.7 then gives an upper bound on the block orphan rate (or likelihood of block collisions) of

16.65%. Since we are keeping block times constant at 10minutes, we note that any improvements

in SNARK proof generation times will correspondingly decrease the amount of wasted work

65

Txs Constraints Generator Prover Verifier Size

Avg (s) Avg (s) Avg (ms) 𝑝𝑘 (GB) 𝑣𝑘 (kB) 𝜋 (B)
3 3658281 53.99 24.57

16.0

0.74

0.76 373

10 10071527 161.24 88.14 1.96
20 19233307 268.93 185.10 3.74
30 28395087 354.83 198.61 5.61
40 37556867 485.52 286.50 7.15
50 46718647 570.09 358.95 9.01

Table 8.1: Prototype Times and Key Sizes for Predicates verifying different numbers of transactions:

Average running times for setup G, prover P and verifierV over 10 iterations are shown alongside prov-

ing/verification key and proof sizes.

and orphan rate. Moreover, this does not depend on the way that the proofs are generated:

distributed techniques among many participants (such as [Wu et al. 2018]) would also benefit

efficiency through the corresponding decrease of average proof time.

66

9 | OpenQuestions

9.1 Waste in Nakamoto Consensus

It should be noted that the wastefulness of the puzzle is proportional to 𝑁 the number of miners:

we take this as inherent to Nakamoto consensus while maximizing useful computation. However,

a portion of the wasted work can be recovered by relaxing the protocol to accept chains of 𝑘

proofs if the last proof satisfies difficulty and all proofs have committed to the same nonce (we

present the case of 𝑘 = 1 in this paper), preventing miners from discarding proofs that don’t

satisfy difficulty. This would provide an𝑂 (𝑘) efficiency improvement, where 𝑘 would in practice

depend on memory considerations. If 𝑘 is large enough, we can improve the above trade-off. We

do not analyze this here, as the associated efficiency analysis for the choice of 𝑘 is quite complex.

9.2 Trusted Setup &Quantum Resistance

Using SNARKs as a building block in our system introduces the issue of the one-time trusted

setup. Like in other cryptocurrency systems built using SNARKs [Sasson et al. 2014], an adversary

with knowledge of the secret parameters would be allowed to forge proofs. One approach is a cer-

emony with many participants through a multiparty protocol [Bowe et al. 2017, 2018b], in which

only one is honest. We also use SNARKs based on elliptic-curve hardness assumptions which are

not quantum-resistant. Recent work on practical instantiations of SNARK constructions based on

67

lattice assumptions [Gennaro et al. 2018] or point-based PCPS and IOPs [Ben-Sasson et al. 2018b],

may offer an option for quantum-resistant SNARKs. Recent work has sought to construct SNARK

systems which require limited or no trusted setup. SONIC [Maller et al. 2019] uses an adaptively

changing structured reference string (the proving/verification keys). More recent advances such

as Marlin [Chiesa et al. 2019a] and Fractal [Chiesa et al. 2019b] provide structured reference

strings for all predicates trustlessly.

9.3 Privacy & Complex Transactions:

We did not consider transaction privacy, focusing instead on a simple distributed payment ledger

closely matching the properties of Bitcoin. However, while we use SNARKs for their succinct-

ness properties, the constructions here readily extend to provide zero-knowledge succinct argu-

ments as well (zk-SNARKs). It should be straightforward to adapt to a zk-SNARK-based privacy-

preserving transaction format (such as Zerocash [Sasson et al. 2014]) and provide no additional

overhead for chain verification. The main cost is that users compute SNARK proofs to post trans-

actions, imposing a heavier burden for the system. It would also require careful thought to achieve

amortization resistance when users are computing proofs of transaction validity.

Bitcoin supports more complex payment scripts, enabling applications like atomic cross-chain

swaps and off-chain payment channels that our system does not. Ethereum supports fully pro-

grammable smart contracts to control payment. In principle, a programmable state machine like

Ethereum’s can be supported on our architecture using “universal” SNARK techniques such as

TinyRAM [Ben-Sasson et al. 2013]. Recent work on achieving privacy in smart contract platforms

using SNARKs [Bünz et al. 2019a; Bowe et al. 2018a] can potentially be adapted to our setting to

enable a more powerful programming model with efficient verification.

68

9.4 Other Consensus Protocols

We adapted Bitcoin’s relatively simple linear longest-chain rule. More complex DAG-based pro-

posals exist which improve on Bitcoin’s consensus protocol. They involve different formulas for

computing the quality of a specific block in the chain. Our approach does not preclude the use

of more complex predicates for consensus. By setting the quality accordingly and correctness of

𝜋𝑖 , any consensus protocol can be used in this way.

9.5 Hardware Acceleration & Parallelism

The design of Field Programmable Gate Arrays (FPGAs) or Application Specific Integrated Cir-

cuits (ASICs) would lead to order-of-magnitude improvements in proving time and thus substan-

tially minimize quantization effects (c.f. Section 7.3). Such hardware would also provide a barrier

to entry for some miners due to the upfront costs for its design. This can impact the fairness of

the system. Our construction uses naive parallelism. Recent advances [Wu et al. 2018] construct

larger proofs using parallel workers, a model that adapts readily to cryptocurrencies which typi-

cally feature large mining pools. Exploring this is an important avenue for future work, especially

given the order-of-magnitude improvements in the size of computable predicates.

69

Part II

RedShift

70

10 | Contributions

The works of [Ben-Sasson et al. 2018a] and [Ben-Sasson et al. 2019b] introduced the Fast Reed

Solomon IOP of Proximity (FRI IOPP) - a novel protocol for efficient proximity testing, or checking

if a given function is close to any low degree polynomial. Such a proximity tester may be naively

turned into a transparent PCS, which provides commitments of size𝑂 (log2 𝑑) for polynomials of

degree 𝑑 . However, the soundness error of such a commitment scheme is rather large, and the

protocol should be iterated many times to reach a sufficient security level. This results in large

proof sizes and computational burden. The reason for the large soundness error hides in the low

sensitivity of FRI: when the Hamming distance between two different polynomials is smaller than

some predefined constant, it is impossible for FRI to efficiently distinguish them.

In this work, we generalize the PCS in the sense that we construct a commitment to a list

of proximate polynomials. We introduce a new cryptographic primitive for fast verification of

polynomial evaluations we call a list polynomial commitment (LPC). At a high level, this scheme

retains the necessary security guarantees that are required for polynomial-based proof systems

such as [Gabizon et al. 2019] and [Maller et al. 2019] to compile into zk-SNARKs. In the language

of IOP formalization, this primitive can be thought of as an alternative compiler for public-coin

IOP protocols.

71

10.1 Compilation of IOPs with LPCs

The above contribution implicitly provides a general framework that demonstrates how the LPC

can be used to compile any polynomial IOP into a preprocessing zk-SNARK. As previously men-

tioned, this follows the approach in [Chiesa et al. 2019a] and [Bünz et al. 2019b] with the main

difference being that we do not require a PCS in their (more restrictive) sense.

10.2 RedShift

We demonstrate the security and practicality of this approach by compiling PLONK [Gabizon

et al. 2019] using the framework above. By fitting an implementation of the list commitment

scheme on PLONK with suitable adaptations and optimizations, we remove all trusted compu-

tation while retaining efficiency in both proof size and generation time. We call this new proof

system RedShift, and provide:

1. formal proofs of correctness and security,

2. a proof-of-concept implementation, along with benchmarks establishing feasibility.

At an 80-bit security level and for circuits of size 220, RedShift provides proofs of size ∼ 515

KB with a proof generation time of about half a minute. Overall, RedShift is an efficient instan-

tiation of a plausibly post-quantum transparent preprocessing zk-SNARK suitable for practical

deployment at high security.

Prior work on transparent zk-SNARKs has explored a variety of trade-offs and different design

choices in order to achieve efficiency gains. We briefly discuss concurrent and previous efforts in

building efficient and transparent proof systems and compare with our approach. The works of

[Ben-Sasson et al. 2018c] and [Chiesa et al. 2019b] design IOPs for the Rank-1 Constraint System

(R1CS) arithmetization, providing a compilation framework equivalent to our methods. They

72

require a holographic lincheck argument/IOP of Proximity respectively in order to construct their

IOP for R1CS, which our approach avoids by using a suitable transformation of the proof system

in [Gabizon et al. 2019] instead. The works of [Zhang et al. 2020] (and [Xie et al. 2019], although

not transparent) use a similar approach but with the IOP from [Goldwasser et al. 1989]. This

makes our approach easier to formalize.

The authors of [Ben-Sasson et al. 2019a] and [Ben-Sasson et al. 2018a] use FRI implicitly as a

PCS and design the ALI-IOP for compilation. Our results are directly applicable and generalize

their approach. In [Boneh et al. 2020], the authors define a restricted version of PCS that are

‘additive’ (with homomorphic properties), benchmarking with Bulletproofs [Bünz et al. 2018] for

fast recursion. While an additive PCS is too restrictive to include FRI, batching efficiency gains

are possible if this definition is relaxed. The batch evaluation problem in Section 4 of [Boneh

et al. 2020] is equivalent to a multivariate commitment, and the LCS is a relaxation of that notion

that we selectively apply to proof witnesses. By relaxing the binding property of PCS, our LCS

replaces [Kate et al. 2010] for multivariate commitments to witness polynomials more generally.

Subsequent work [Zero 2021] has built on these ideas, looking at how two modular modifica-

tions to the proof system affect performance by using a smaller field for faster modular operations

and implementing a leaner PLONK-derived IOP called turboPLONK [Gabizon and Williamson

2020] instead. The authors explore an additional avenue for optimization of proof efficiency by

counterbalancing any soundness loss due to the smaller field by applying the tight parallel repe-

tition theorem to the IOP in order to boost soundness and performing FRI in a suitable extension

field. This is then shown to lend itself to efficient recursive proving times, providing a promising

avenue for transparent recursive proof computations at scale.

73

11 | Overview

PLONK [Gabizon et al. 2019] is based on polynomial commitments: the prover’s (secret) witness

is encoded as a set of univariate polynomials, while the verifier wishes to ensure this encoding

satisfies some polynomial relations. The prover commits to her witness polynomials and later

the verifier queries their values at a set of randomly selected points, checking if all relations

are indeed satisfied. As the points were randomly sampled, it is highly likely that the given

polynomial relations hold identically.

The state-of-the-art PCS used in the construction of zk-SNARKs is the Kate commitment

[Kate et al. 2010], which is based on pairings of points of elliptic curves. The security of this

scheme reduces to the Discrete Logarithm assumption, while in the case of a perfectly hiding

commitment the 𝑡-Strong Diffie Hellman assumption is required. The main drawback of Kate

commitments is that some secret value is sampled during the parameter generation process. For

security to hold, this value should never be revealed to the prover and verifier. Such a require-

ment is very strong, as it means that every proof system using Katewill require a ‘trusted’ setup

process. We denote proof systems without this requirement as transparent. In fact, the only

reason PLONK requires a trusted setup is due to Kate. In this work we aim to investigate a suit-

able replacement for Kate, turning PLONK (and similar systems) into zero-knowledge Succinct

Transparent ARguments of Knowledge, i.e. zk-STARKs.

We utilize the FRI protocol, which is a key component of STARKs such as [Ben-Sasson et al.

2019a] and [Ben-Sasson et al. 2018c]. FRI is focused on solving the following proximity problem:

74

the verifier is given oracle access to an evaluation of some function 𝑓 on a fixed domain 𝐷 ⊂

F. The prover wants to convince the verifier that this function 𝑓 is close (in some metric) to a

polynomial of (predefined) degree 𝑑 . If the verifier queries 𝑓 on all of 𝐷 and then computes the

interpolation polynomial herself, she can verify the degree bound 𝑑 . However, this requires𝑂 (𝑑)

complexity. FRI solves this problem by requiring only a polylogarithmic number of queries in 𝑑 .

We now describe a naive way to design a PCS using FRI:

1. The prover commits to the evaluations of 𝑓 on some predefined domain 𝐷 .

2. The prover and verifier engage in FRI for 𝑓 with respect to some degree 𝑑 . If the prover

passes the check, the verifier is convinced with high probability that 𝑓 is close to a polyno-

mial of degree less than 𝑑 .

3. The verifier wants to retrieve the value of 𝑓 at point 𝑖 ∉ 𝐷 . The prover sends the corre-

sponding opening 𝑧 = 𝑓 (𝑖) and both parties conduct an instance of FRI with respect to a

quotient function 𝑞(𝑋) = (𝑓 (𝑋) − 𝑧)/(𝑋 − 𝑖) and degree 𝑑 − 1. Note that the verifier has

oracle access to 𝑞 via oracle access to 𝑓 and also knows 𝑖 and 𝑧. If the prover passes the last

instance of FRI then 𝑞(𝑋) is in fact a polynomial function of degree less than 𝑑 − 1.

4. This implies that 𝑓 (𝑖) = 𝑧 which follows from Bézout’s theorem stating that ℎ(𝑋) has value

𝑦 at point 𝑡 iff ℎ(𝑋) − 𝑦 is divisible by 𝑋 − 𝑡 in the ring F[𝑋].

In reality, this simplified protocol doesn’t suffice. There are several reasons for that, among

which are the following:

1. FRI has a sensitivity bound: it is incapable of distinguishing between precise polynomials

and functions sufficiently close to them in some predefined metric (which in our case is the

relative Hamming distance).

2. For implementation coherency, we want the same domain for both FRI instances. However,

FRI has an interdependence between the degree 𝑑 and the size of the domain |𝐷 | measured

75

in terms of its rate 𝜌 = 𝑑/|𝐷 |. The structure of FRI requires the rate to be “2-adic”, i.e. of

the form 2−𝑅 for some 𝑅 ∈ N. However, this property cannot simultaneously hold for two

adjacent degrees 𝑑 and 𝑑 − 1 without protocol modification.

The first problemmeans that the scheme needs to correctly process the casewhen the function

is not a polynomial, but close to one; a property not naturally supported by existing commitment

schemes. Even more so, allowing the oracle 𝑓 to not be strictly polynomial and to take as the

prover’s commitment the polynomial 𝑓 ′ lying in a small 𝛿-ball around 𝑓 (where 𝛿 is taken ac-

cording to the sensitivity of FRI) then we cannot guarantee a priori that this polynomial 𝑓 ′ is

unique in the chosen neighborhood of 𝑓 . The set of polynomials {𝑓 ′1 , 𝑓 ′2 , . . . , 𝑓 ′𝑛 } lying in the 𝛿-

neighborhood of 𝑓 is the 𝛿-list of 𝑓 , which we denote by 𝐿𝛿 := 𝐿𝛿 (𝑓). For small values of 𝛿 , the

list 𝐿𝛿 contains only one polynomial: 𝛿 lies in the unique-decoding radius. Unfortunately such

values of 𝛿 require larger proof sizes for the same soundness guarantees. Thus, increasing 𝛿 to

reduce proof sizes would lead to the size 𝐿𝛿 being greater than 1.

To solve this, we consider a relaxed treatment of commitment schemes, where the commit-

ment opens to a polynomial in the 𝛿-list 𝐿𝛿 . When the prover is asked for an evaluation at point

𝑖 , they respond with some value 𝑓 ′(𝑖), where 𝑓 ′ ∈ 𝐿𝛿 . In subsequent sections we show that this

scheme is sufficient for the compilation of holographic IOPs. During the execution of PLONK,

the prover and verifier need to evaluate a set of initial ‘constraint’ (or setup) polynomials 𝑐 (𝑋)

encoding the constraint system itself. In order to achieve succinctness, the verifier never calcu-

lates the value 𝑐 (𝑖) at point 𝑖 by herself. PLONK instead relies on Kate: the prover and verifier

run Kate with the commitment to 𝑐 and value 𝑖 as inputs. By its binding property, the verifier is

convinced that the prover actually sends the evaluation 𝑐 (𝑖) of the polynomial 𝑐 (𝑋) in question.

Since our relaxation commits to a whole neighborhood 𝐿𝛿 (𝑐) of 𝑐 (𝑋) instead of only 𝑐 (𝑋) itself,

we lose uniqueness. This means we can’t use such a ‘relaxed’ scheme as is. However, we show

that with minor changes our LPC can be turned into a PCS.We call this construction a polynomial

evaluation scheme and it constitutes the second key sub-protocol of the paper.

76

With the list polynomial commitments and polynomial evaluation schemes, we can modify

PLONK to achieve full transparency. We call the modified version RedShift and prove its cor-

rectness in the IOP model. A large portion of our approach remains the same as in [Gabizon et al.

2019]: our modification doesn’t modify the completeness property of the system. However, the

FRI-based protocol doesn’t possess the hiding capabilities of Kate. This means that we need to

take additional measures to achieve zero-knowledge for our system. We also need to change the

security model as the original PLONK protocol was proven secure in the Algebraic Group Model

(AGM) [Fuchsbauer et al. 2018]. The dependence of our scheme on FRI means that we need to

conduct our security analysis in the IOP model, affecting the soundness proof as well as the proof

of knowledge approaches.

11.1 Definitions

In this section, we lay out the building blocks that are necessary to describe our constructions.

We use the following notation throughout:

• F𝑞 is a prime field with modulus 𝑞

• 𝐷 ⊂ F evaluation domain for Reed Solomon codes

• 𝑓 |𝐷 is a restriction of function 𝑓 to domain 𝐷

• For function pair 𝑓 , 𝑔, the relative Hamming distance with respect to some domain 𝐷 is

given by:

Δ(𝑓 , 𝑔) = |{𝑥 ∈ 𝐷 : 𝑓 (𝑥) ≠ 𝑔(𝑥)}|
|𝐷 | .

77

11.2 Reed-Solomon codes

Most of the information covered in this section can be found in most standard on algebraic codes

(e.g. [Huffman and Pless 2003]).

Definition 11.1 (Reed-Solomon Codes). For a subset of some field 𝐷 ⊆ F and a rate parameter

𝜌 ∈ (0, 1], we denote by RS[F, 𝐷, 𝜌] the set of all functions 𝑓 : 𝐷 → F for which there exists

𝑓 ∈ F<𝜌 |𝐷 | [𝑋] agreeing with 𝑓 on 𝐷 . A prime field RS code family is a code family RS[F, 𝐷, 𝜌] for

which F = F𝑞 for 𝑞 prime. In this case, 𝐷 is a multiplicative subgroup of F∗𝑞 .

Definition 11.2 (List Decoding). Let 𝑉 = RS[F, 𝐷, 𝜌] ⊂ F𝐷 be an RS code family. Set a distance

parameter 𝛿 ∈ [0, 1]. For 𝑢 ∈ F𝐷 , we define 𝐿(𝑢,𝑉 , 𝛿) to be the set of elements in 𝑉 that are at

most 𝛿-far from 𝑢 in relative Hamming distance. The code𝑉 is said to be (𝛿, 𝑁)-list-decodable if

|𝐿(𝑢,𝑉 , 𝛿) | ≤ 𝑁 for all 𝑢 ∈ F𝐷𝑞 . Let 𝐿max

𝛿
= 𝐿(F, 𝐷, 𝑑, 𝛿) be the maximum size of 𝐿(𝑢,𝑉 , 𝛿) taken

over all 𝑢 ∈ F𝐷 for 𝑉 = RS[F, 𝐷, 𝜌 = 𝑑/|𝐷 |].

Theorem 11.3 (Johnson Bound). For every 𝜌 > 0, there exists a constant 𝐶𝜌 such that the code

family RS[F, 𝐷, 𝜌] is list-decodable from a 1 − √𝜌 − 𝜖 fraction of errors with the following list size:

𝐿(F, 𝐷, 𝜌 |𝐷 |, 1 − √𝜌 − 𝜖) ≤
𝐶𝜌

𝜖
√
𝜌
:= 𝐽𝜌,𝜖,

for every 𝜖 ∈ (0, 1 − √𝜌).

We also provide a (strong) conjecture that substantially improves on the above bound, which

appears in [Ben-Sasson et al. 2019b].

Conjecture 11.4 (List Decodability up to Capacity). For every 𝜌 > 0, there exists a constant 𝐶𝜌

such that the code family RS[F, 𝐷, 𝜌] is list-decodable from a 1 − 𝜌 − 𝜖 fraction of errors with the

following list size:

𝐿(F, 𝐷, 𝜌 |𝐷 |, 1 − 𝜌 − 𝜖) ≤
(
|𝐷 |
𝜖

)𝐶𝜌

,

78

for every 𝜖 ∈ (0, 1 − 𝜌).

We now look at which distance parameters 𝛿 provide unique decodability. To this end, we

provide some standard results on the unique decodability of RS codes.

Definition 11.5. We call 𝛿0 the unique decoding radius (UDR) for code family𝐶 if it is the maxi-

mum 𝛿0 for which 𝐿max

𝛿0
≤ 1. We denote all 𝛿 < 𝛿0 as being within the unique decoding radius.

Theorem 11.6. The UDR for RS[F, 𝐷, 𝜌] is 𝛿0 = (1 − 𝜌)/2.

The decoding problem for the Reed-Solomon code 𝑉 = RS[F, 𝐷, 𝜌] is the problem of finding

a codeword 𝑢 ∈ 𝑉 that is within Hamming distance 𝛿 of a given word 𝑣 ∈ F𝐷 . There exists

a standard polynomial-time solution known as the Guruswami-Sudan [Guruswami and Sudan

1999] algorithm. Its output includes all codewords lying in the 𝛿-ball of 𝑣 .

Theorem 11.7 (Guruswami-Sudan). For all 𝛿 ≤ 1 − √𝜌 , the code 𝑉 = RS[F, 𝐷, 𝜌] can be list-

decoded in time 𝑂 (|𝐷 |15). If 𝛿 < 1 − √𝜌 , this reduces to 𝑂 (|𝐷 |3).

11.3 Interactive Oracle Proofs

Given some relation R ⊆ 𝑆 × 𝑇 , we denote by L(R) ⊆ 𝑆 the set of 𝑠 ∈ 𝑆 such that there exists

𝑡 ∈ 𝑇 with (𝑠, 𝑡) ∈ R (also known as the language defined by R). We also denote by R|𝑠 ⊆ 𝑇 the

set {𝑡 ∈ 𝑇 : (𝑠, 𝑡) ∈ R}. For pairs (𝑥,𝑤) ∈ R, we call 𝑥 the instance and𝑤 the witness.

The security analysis in this section will be conducted in the Interactive Oracle Proof (IOP)

model [Ben-Sasson et al. 2016] which is a generalization of Interactive Proofs and Probabilisti-

cally Checkable Proofs. More specifically, wewill be looking at holographic IOPs, or IOPs inwhich

(preprocessed) indices are provided to the participating parties through oracles. The model con-

sists of a prover/verifier tuple (𝑃,𝑉) of two probabilistic interactive algorithms. The number of

interactive rounds, denoted 𝑘 = 𝑟 (𝑥), is called the round complexity of the system. During a

79

single round, the prover 𝑃 sends a message 𝑎𝑖 (which may depend on prior interaction) to which

the verifier 𝑉 provides some response𝑚𝑖 . The final output of 𝑉 after interacting with 𝑃 is either

accept or reject. We denote the result of this interaction by ⟨𝑃 (𝑥,𝑤) ↔ 𝑉 (𝑥)⟩, where the input

to 𝑉 is 𝑥 ∈ 𝑆 and the input to 𝑃 is (𝑥,𝑤) ∈ 𝑆 × 𝑇 . The proof length is the sum of lengths of all

messages sent by the prover, herein denoted 𝑙 (𝑥) = ∑𝑘
𝑖=1 𝑎𝑖 . The query complexity of the protocol,

denoted 𝑞(𝑥), is the total number of entries read by 𝑉 .

Definition 11.8. A pair of interactive PPT algorithms (𝑃,𝑉) is an interactive oracle proof system

for some language R ⊆ 𝑆 ×𝑇 with 𝜖 : {0, 1}∗ → [0, 1] soundness and 𝑘 : {0, 1}∗ → N rounds of

interaction if it satisfies the following properties:

1. Completeness:

𝑃𝑟 [⟨𝑃 (𝑥,𝑤) ↔ 𝑉 (𝑥)⟩ = Accept | (𝑥,𝑤) ∈ R] = 1

2. Soundness: For all computationally unbounded malicious provers 𝑃∗:

𝑃𝑟 [⟨𝑃∗(𝑥,𝑤) ↔ 𝑉 (𝑥)⟩ = Accept | (𝑥,𝑤) ∉ R] ≤ 𝜖 (𝑥).

Probabilities are over the randomness of 𝑃 and 𝑉 , which engage in at most 𝑘 (𝑥) rounds of

(adaptive) interaction.

Definition 11.9. Let 𝐴, 𝐵 be PPT algorithms, 𝑥,𝑦 ∈ {0, 1}∗ and View(𝐵(𝑥,𝑦), 𝐴(𝑥)) the view (or

transcript) of𝐴(𝑥) in an IOP with 𝐵(𝑥,𝑦). This is the random variable (𝑥, 𝑟, {𝑎𝑖,𝑚𝑖}𝑛𝑖=1) where 𝑥, 𝑟

are 𝐴’s input and randomness and 𝑎𝑖 is 𝐵’s (𝑖-th) answer to 𝐴’s query𝑚𝑖 .

State-Restoration Knowledge Soundness Strengthening the notion of soundness, we say the

IOP has knowledge soundness 𝑒 : {0, 1}∗ → [0, 1] if every prover 𝑃∗ who is capable of convincing

the verifier that 𝑥 ∈ L(R) actually knows some witness 𝑤 ∈ R|𝑥 . Put differently, the IOP

80

is knowledge sound if for all adversaries A there exists a (non-uniform) PPT extractor EA (𝑥)

which gets full access to the adversary’s transcript at any stage. However, this does not include

A’s random coins, auxiliary inputs and internal code. We say that (𝑃,𝑉) has proof of knowledge

𝜖 if there exists E s.t. for every 𝑥 ∈ 𝑆 and PPT A:

Pr
[
(𝑥, EA (𝑥)) ∈ R

]
≥ Pr [(A,𝑉) = 1] − 𝑒 (𝑥).

Since we are ultimately interested in compiling the IOP into a non-interactive proof, the

stronger notion of state-restoration IOP soundness error 𝜖sr(𝑟), where 𝑟 the maximal number of

rounds, is needed. This is because the protocol should be robust against state-restoration attacks,

in which the prover has the ability to move to a previous state of the protocol up to 𝑟 times. It was

shown in [Ben-Sasson et al. 2016] that this notion suffices in compiling proofs using Fiat-Shamir

in the random oracle model, while [Canetti et al. 2018] show this for correlation-intractable hash

functions as well. In order to prove state-restoration bounds, the idea of round-by-round sound-

ness error 𝜖rbr is leveraged. It can be shown that 𝜖sr ≤ 𝑟 ·𝜖rbr, which is sufficient for security if 𝑟 is

a polynomial number of rewinds/rounds. This holds since we can apply the round-by-round ex-

tractor to every partial transcript that comprises trsr and output the first valid witness. Since the

empty transcript is rejecting and trsr accepts, then some partial transcript moves from rejecting

to accepting. The round-by-round extractor fails with probability 𝜖rbr, so the result follows by a

union bound. We follow the approach in [Canetti et al. 2018] and provide the required definitions.

Definition 11.10 (Round-by-Round Soundness). An IOP (𝑃,𝑉) for language L(R) has round-

by-round knowledge soundness 𝜖rbr if there exists a function State from the set of transcripts to

{0, 1} and a polynomial-time extractor E such that for all (𝑥, tr) for which State(𝑥, tr) = 0, and all

messages a received from the prover, if Pr𝑚 [State(𝑥, tr|a|𝑚) = 1] > 𝜖rbr then (𝑥, E(𝑥, tr|a)) ∈ R .

Definition 11.11 (State-Restoration Soundness). An IOP (𝑃,𝑉) for language L(R) has state-

restoration knowledge soundness 𝜖sr if there exists a polynomial time extractor E such that for

81

all 𝑥 and every state-restoration prover 𝑃∗:

Pr
©«
trsr accepts trsr ← View(𝑃∗(𝑥),𝑉 (𝑥))

(𝑥,𝑤) ∉ R 𝑤 ← E(𝑥, trsr)

ª®®¬ ≤ 𝜖sr.
Definition 11.12 (Zero Knowledge). For a given relation R and some 𝑧 : {0, 1}∗ → [0, 1], ⟨𝑃,𝑉 ⟩

has 𝑧-statistical honest-verifier zero knowledge if there exists a PPT algorithm 𝑆 (the simulator)

s.t. ∀(𝜙,𝑤) ∈ R, 𝑆 (𝑥, 𝜙) and View(𝑃 (𝜙,𝑤),𝑉 (𝜙)) are 𝑧 (𝑥)-close.

An important subclass of IOP protocols is given below.

IOPP. An Interactive Oracle Proof of Proximity (IOPP) is an 𝑟 -round interactive IOP system for

the following problem. Given a field F, degree 𝑑 ∈ N, proximity parameter 𝛿 > 0 and domain

𝐷 ⊂ F, the prover is provided with the representation of some function 𝑓 and the verifier is given

oracle access to its evaluation on domain 𝐷 (i.e. an oracle 𝑓 (𝑥) to 𝑓 (𝑥) |𝐷). The prover then needs

to convince the verifier that 𝑓 |𝐷 is the evaluation of some degree 𝑑 polynomial on this domain.

Namely, that 𝑓 ∈ RS[F, 𝐷, 𝜌 = 𝑑/|𝐷 |]. We follow the formalization in [Ben-Sasson et al. 2018a]:

Definition 11.13 (IOPP). An 𝑟 -round IOP of Proximity (𝑃,𝑉) is an 𝑟 + 1-round IOP. (𝑃,𝑉) is

an IOPP for the error-correcting code 𝐶 = {𝑓 : 𝑆 → Σ} and soundness 𝜖 : [0, 1] → [0, 1] with

respect to some metric Δ if the following hold:

1. First message format: the first prover message is a purported code-word, i.e. 𝑓 0 ∈ 𝐶 ,

2. Completeness:

Pr[
〈
𝑃 (𝑓 0,𝐶) ↔ 𝑉 (𝐶)

〉
= Accept |Δ(𝑓 0,𝐶) = 0] = 1,

82

3. Soundness: For any 𝑃∗,

Pr[
〈
𝑃∗(𝑓 0,𝐶) ↔ 𝑉 (𝐶)

〉
= Reject |Δ(𝑓 ,𝐶) = 𝛿] ≥ 𝜖 (𝛿).

We note that the notions of proof and query complexity of IOPs translate naturally to the

context of IOPPs. In the rest of the sections, we use IOPP(𝑓 0,𝐶) → {0, 1} to denote an IOPP

protocol IOPP over error-correcting code family 𝐶 with purported code-word 𝑓 0 ∈ 𝐶 .

11.4 FRI: Fast Reed-Solomon IOP of Proximity

In our construction, we opt for using FRI [Ben-Sasson et al. 2018a,d]. We provide an overview of

its relevant properties below. For a given RS code family RS[F, 𝐷, 𝜌] for which |𝐷 | = 𝑛 = 2𝑘 and

rate 𝜌 = 2−𝑅 for 𝑘, 𝑅 ∈ N. This implies that the degree bound 𝑑 is 2𝑘−𝑅 . Fix 𝑟 ∈ [1, log𝑑 = 𝑘 − 𝑅]

to be the number of rounds in the protocol. For every [∈ (0, 1], let 𝐽[: [0, 1] → [0, 1] be the

Johnson function 𝐽[(𝑥) = 1 −
√︁
1 − 𝑥 (1 − [) . Given this parameter choice, FRI has the following

properties (asymptotics are in terms of field operations over F):

1. Prover Complexity: 𝑂 (𝑛)

2. Verifier Complexity: 𝑂 (log𝑛)

3. Completeness: If 𝑓 ∈ RS[F, 𝐷, 𝜌], for an honest prover the verifier always accepts.

4. Soundness: If Δ(𝑓 ,RS) = 𝛿 and 𝛿 ∈ (0, 𝐽 [3/2][(1− 𝜌)), then ∀[∈ (0, 1] the soundness error

𝜖 (𝛿) is bounded above by:

2 log |𝐷 |
[3 |F| +

(
1 −min

{
𝛿0, 𝛿

}
+ [log |𝐷 |

)𝑙
,

where 𝑙 the number of queries the verifier performs.

83

12 | List Polynomial Commitment

Following Section 4.5, we introduce the main ingredient underlying the transparency of our prov-

ing system, which we call a List Polynomial Commitment (LPC) scheme. This cryptographic

primitive most resembles a polynomial commitment scheme, with the main difference arising

from the need to show that 𝑔(𝑧) = 𝑦 where 𝑔 is a polynomial in a 𝛿 neighborhood around 𝑓 (in a

predefined metric Δ), rather than requiring the evaluation of 𝑓 itself. As before, we denote 𝐿𝛿 (𝑓)

as the 𝛿-list of 𝑓 or the set of all 𝑔 ∈ RS[F, 𝐷, 𝜌] such that Δ(𝑓 , 𝑔) < 𝛿 .

12.1 Specification

Here we define the generic primitive that formalizes the notion of a list commitment scheme. We

will build on this construction later to show that it admits (1) an efficient implementation, and

(2) modifications that provide stronger proof of knowledge guarantees.

Definition 12.1. An (𝜖, 𝑘)-list polynomial commitment scheme for some metric Δ : F[𝑋] ×

F[𝑋] → [0, 1] and all 𝛿 > 0 consists of the following:

• Gen(1_) → pp generates public parameters,

• Com : F<𝑑 [𝑋] → C generates commitment 𝑐 to some 𝑓 ,

84

• An IOP system (𝑃,𝑉) with 𝜖 (𝛿) soundness and 𝑘 (𝛿) rounds of interaction for the relation

R𝛿 (pp) :=
(
⟨(𝑑, 𝑁 , {𝑧𝑖, 𝑦𝑖}𝑁𝑖=1, 𝑐); 𝑓 ⟩

∃ 𝑔 ∈ F<𝑑 [𝑋], Δ(𝑓 , 𝑔) < 𝛿,
)

∀𝑖 ∈ [𝑁], 𝑔(𝑧𝑖) = 𝑦𝑖,Com(𝑔) = 𝑐

for which (𝑃,𝑉) are both provided with degree bound 𝑑 , and a set of point-evaluation

pairs {(𝑧𝑖, 𝑦𝑖)}𝑁𝑖=1 and commitment 𝑐 ∈ C, while 𝑃 is also provided with a representation of

𝑓 ∈ F[𝑋] . Both P and V have access to an oracle for Com(·).

12.2 Instantiation

We assume existence of an IOPP protocol FRI in the sense of Definition 11.13, and specify the LPC

routine below. More specifically, since we are concerned with polynomial commitment schemes,

we present the scheme based on the existence of FRI (Theorem 2 in [Ben-Sasson et al. 2018a])

for the prime field RS code family 𝐶 = RS[F, 𝐷, 𝜌], where 𝜌 = 2−R for some R ∈ N, R > 2 and

𝜌 · |𝐷 | > 16. Note that we model theCom function as an oracle, so we do not deal with its security

here. In this case, we set the public parameters to be pp = (F, 𝐷):

Algorithm 3 LPC Routine
1: procedure LPC(pp, 𝑑, 𝑁 , {𝑧𝑖 , 𝑦𝑖}𝑁𝑖=1, 𝑐; 𝑓)
2: P and V define the interpolation polynomial𝑈 (𝑋) s.t.

∀𝑖 ∈ [𝑁],𝑈 (𝑧𝑖) = 𝑦𝑖 .

3: P and V define the quotient polynomial

𝑞(𝑋) = 𝑓 (𝑋) −𝑈 (𝑋)
Π𝑁
𝑖=1(𝑋 − 𝑧𝑖)

.

4: P and V return FRI(𝑞,RS(F, 𝐷, (𝑑 − 𝑁)/|𝐷 |)).
5: end procedure

The oracle provided here is to 𝑓 |𝐷 , which allows both parties to simulate FRI over the coset

domain 𝐷 by calculating the values of 𝑞 |𝐷 . This is since both parties explicitly construct the

85

interpolation polynomials and have access to 𝑓 |𝐷 . Hence, the verifier is above to check that 𝑐 =

Com(𝑞) using oracle calls to 𝑓 |𝐷 in order to simulate 𝑞 |𝐷 . That the above satisfies the definition

of an LPC scheme is immediate from the security properties of FRI.

Theorem 12.2. The prime field RS[F, 𝐷, 𝜌] code family with rate 𝜌 = 2−R,R ≥ 2,R ∈ N and

|𝐷 | = 𝑛 has an (𝜖, 𝑘)-LPC over the Hamming distance Δ with 𝜖 = 𝜖FRI(𝛿) soundness and 𝑘 = 𝑘FRI(𝛿)

rounds of interaction for all a ∈ (0, 1−√𝜌), 𝛿 ∈ (0, 𝐽 [3/2]a (1− 𝜌)), 𝑁 , 𝑑 ∈ N for which log (𝑛) − R =

log (𝑑 − 𝑁) and 𝑑 − 𝑁 > 16. The LPC IOP admits inputs of size 𝑛 for which:

• Prover Complexity: 𝑝FRI(𝑛) +𝑂 (𝑁 log3 𝑁),

• Verifier Complexity: 𝑣FRI(𝑛) +𝑂 (𝑁 log3 𝑁),

where 𝑝FRI(𝑛), 𝑣FRI(𝑛) the FRI prover and verifier complexities on input size 𝑛.

Remark 1: We note that the above scheme retains verifier succinctness when 𝑁 = 𝑂 (log𝑑).

12.3 Polynomial Commitments from LPCs

The scheme introduced above works when dealing with “witness" polynomials𝑤 (𝑋) within our

proof system, since we only require the existence (and not uniqueness) of such a polynomial.

However, extra care should be taken outside of this regime, when working with “setup" polyno-

mials 𝑐 (𝑋) encoding the constraint system itself. In this case, wewant to ensure that the openings

provided by the prover are indeed the evaluations of the polynomial 𝑐 (𝑋) itself and not of some

polynomial 𝑔 ∈ 𝐿𝛿 (𝑐). The verifier can evaluate setup polynomial values themselves. However,

this doesn’t retain succinctness as evaluations require 𝑂 (𝑑) computations.

We leverage the fact that for a given setup polynomial 𝑐 (𝑋) the list 𝐿𝛿 (𝑐) is computable by

both the prover and verifier. They can hence find a distinguishing point 𝑖 at which 𝑐 (𝑖) differs

from the evaluations of all other polynomials 𝑔 ∈ 𝐿𝛿 (𝑐). This is naively achieved by using a

86

list-decoding algorithm at the beginning to find all 𝑔 ∈ 𝐿𝛿 (𝑐) and then pick 𝑖 ∈ F at random until

𝑐 (𝑖) ≠ 𝑔(𝑖) ∀ 𝑔 ∈ 𝐿𝛿 (𝑐). This, however, has overhead polynomial in |𝐷 |.

The key to our approach is that the procedure of enumerating all such elements and picking

a suitable candidate is (1) fully transparent, and (2) executed and verified only once for every

circuit. We thus add an offline phase that is performed only once during Gen. The task of the

offline phase is to search for such a distinguishing point 𝑖 . This allows us to strengthen the proof

of knowledge guarantee for the LPC to imply that all evaluations come from the specific poly-

nomial 𝑐 (𝑋). Note that this is equivalent to the general proof of knowledge guarantee provided

by polynomial commitment schemes. We equivalently call this the preprocessing phase, which is

analogous to the work of the indexer in [Chiesa et al. 2019a].

Definition 12.3. A PPT algorithm D : F[𝑋] → (F × F)` is called a `-dimensional 𝜖-list distin-

guisher for some metric Δ : F[𝑋] × F[𝑋] → [0, 1] if ∀𝑓 ∈ F[𝑋], 𝛿 > 0 the following hold with

probability 1 − 𝜖 (𝛿) over the randomness of D:

∃𝑖 ∈ [`],∀𝑔 ∈ 𝐿𝛿 (𝑓)\{𝑓 }, 𝑓 (D(𝑓)𝑖,1) ≠ 𝑔(D(𝑓)𝑖,1),

∀𝑖 ∈ [`], 𝑓 (D(𝑓)𝑖,1) = D(𝑓)𝑖,2,

where D(𝑓)𝑖, 𝑗 the (𝑖, 𝑗)-th output element, 𝑖 ∈ [`], 𝑗 ∈ {1, 2}.

Definition 12.4. An (𝜖, 𝑘, [)-polynomial evaluation scheme for some metric Δ is a tuple Π =

(D, Σ) where Σ = (𝑃,𝑉) an (𝜖, 𝑘)-LPC scheme and D an [-list distinguisher.

Theorem 12.5. For every 𝛿 > 0, an (𝜖, 𝑘, [)-polynomial evaluation scheme admits an IOP with

soundness 𝜖 (𝛿) + [(𝛿) and 𝑘 (𝛿) rounds of interaction for the relation

R := {⟨(𝑑, 𝑁 , {𝑧𝑖, 𝑦𝑖}𝑁𝑖=1), 𝑐; 𝑓 ⟩|∀𝑖 ∈ [𝑁], 𝑓 (𝑧𝑖) = 𝑦𝑖,Com(𝑓) = 𝑐}.

The above theorem relies on a simple observation: if we have access to some distinguishing

87

point-evaluation pair (𝑥, 𝑓 (𝑥)) such that 𝑓 (𝑥) ≠ 𝑔(𝑥) for all 𝑔 ∈ 𝐿𝛿\{𝑓 }, then adding (𝑥, 𝑓 (𝑥))

to the openings performed by the LPC means that only 𝑓 is a valid witness. This process is done

once during the setup of the LPC scheme and each instantiation of an LPC that requires binding

security can then retrieve these points from the proving key.

12.3.0.1 Instantiation

We now provide two instantiations of the PES based on different list distinguisher choices, and

discuss the trade-offs between the two.

List Decodability: The most obvious way to construct a distinguisher D is by using a list-

decoding algorithm for the given code to enumerate all 𝑔 ∈ 𝐿𝛿 (𝑓). By sampling random values

𝑟 ∈ F and checking the required relation, this algorithm can be used to construct D with no

soundness error but high time complexity. Indeed, for 𝛿 < 1 − (𝑑 − 𝑁 − `)/|𝐷 | the algorithm

takes 𝑂 (|𝐷 |3) time, while in the case of equality between the two this can go up to 𝑂 (|𝐷 |15)!

Random Sampling: Due to the above inefficiency considerations, we opt to add some sound-

ness error to the distinguisher in exchange for a large increase in the efficiency of the protocol.

We construct the distinguisher by sampling ` random points and simply returning them along

with their evaluations. Due to the Schwartz-Zippel lemma, there is a high chance that the ran-

dom points will indeed separate 𝑓 from its corresponding 𝛿-list. This takes time 𝑂 (` · 𝑑) which,

although linear with respect to 𝑑 , is substantially faster than list-decoding when 𝑑 ∼ |𝐷 |.

Claim 12.6. The random sampling algorithm defines an [-list distinguisherD taking time𝑂 (` ·𝑑)

with soundness error:

[(𝛿) =
(
𝑑 · (|𝐿𝛿 | − 1)

|F|

)`
.

88

We can use the LPC scheme constructed in the previous section along with the distinguisher

defined above to put everything together in the following theorem.

Theorem 12.7. The prime field RS[F, 𝐷, 𝜌] code family with rate 𝜌 = 2−R,R ≥ 2,R ∈ N and

|𝐷 | = 𝑛 has an (𝜖, 𝑘, [)-PES Π = (D, Σ) over the Hamming distance Δ.

Σ is an (𝜖, 𝑘)-LPC scheme with 𝜖 = 𝜖FRI(𝛿) soundness and 𝑘 = 𝑘FRI(𝛿) rounds of interaction for

a ∈ (0, 1 − √𝜌), 𝛿 ∈ (0, 𝐽 [3/2]a (1 − 𝜌)), 𝑁 , 𝑑, ` ∈ N for which log (𝑛) − R = log (𝑑 − 𝑁 − `) and

𝑑 − 𝑁 − ` > 16. Σ also admits inputs of size 𝑛 for which:

• Prover Complexity: 𝑝FRI(𝑛) +𝑂 ((𝑁 + `) log3 (𝑁 + `)),

• Verifier Complexity: 𝑣FRI(𝑛) +𝑂 ((𝑁 + `) log3 (𝑁 + `)),

where 𝑝FRI(𝑛), 𝑣FRI(𝑛) the FRI prover and verifier complexities on input size 𝑛.

D is a `-dimensional [-list distinguiser for the RS[F, 𝐷, 𝜌] code family taking 𝑂 (` · 𝑑) and

soundness error:

[(𝛿) =
(
𝑑

|F| · (𝐽𝜌,a − 1)
)`
.

This provides the proof of knowledge guarantees needed for setup polynomials through direct

application of Theorem 12.5.

89

13 | RedShift

13.1 Constraint System

We follow the language and notation of PLONK [Gabizon et al. 2019].

Definition 13.1 (PLONK Constraint System). L = (V,Q) is a constraint system with 𝑛 gates

and𝑚 wires for which 𝑛 ≤ 𝑚 ≤ 2𝑛 and where:

• V is of the formV = (a, b, c), where a, b, c ∈ [𝑚]𝑛,

• Q is of the form

Q = (qL, qR, qO, qM, qC) ∈ (F𝑛)5,

where qL, qR, qO, qM, qC are the “selector" vectors.

Moreover, x ∈ F𝑚 is said to satisfy L if ∀𝑖 ∈ [𝑛]:

(qL)𝑖 · xa𝑖 + (qR)𝑖 · xb𝑖 + (qO)𝑖 · xc𝑖+

+(qM)𝑖 · (xa𝑖 · xb𝑖) + (qC)𝑖 = 0.

To define a relation based on L, we extend it to include a positive integer 𝑙 ≤ 𝑚, and subset

𝐼 = [𝑙] ⊆ [𝑚] of “public inputs”. We can naturally set RL as the set of pairs (𝑥, 𝜔) with 𝑥 ∈

90

F𝑙 , 𝜔 ∈ F𝑚−𝑙 such that x := (𝑥,𝜔) satisfies L. We say L is ‘prepared’ for 𝑙 public inputs if ∀𝑖 ∈ [𝑙]:

ai = 𝑖, (qL)𝑖 = 1, (qM)𝑖 = (qR)𝑖 = (qO)𝑖 = (qC)𝑖 = 0.

From here on, we will assume that the constraint system is given in prepared form.

In order to reformulate this constraint system in polynomial terms, we require some additional

ingredients. Let 𝑔 ∈ F∗ be an element of order 𝑛 + 1, 𝐷 = ⟨𝑔⟩ ⊆ F∗ the cyclic subgroup generated

by 𝑔, and 𝐷∗ := 𝐷/{𝑒} where 𝑒 = 𝑔0 the identity. For 𝑖 ∈ [𝑛 + 1], denote by 𝐿𝑖 (𝑋) the element

of F≤𝑛 [𝑋] with 𝐿𝑖 (𝑔𝑖) = 1 and 𝐿𝑖 (𝑎) = 0 for all 𝑎 ∈ 𝐷 different to 𝑔𝑖 . By construction, {𝐿𝑖 (𝑋)}𝑛+1𝑖=1

form a Lagrange basis for 𝐷 . Finally, we set 𝑍 (𝑋) := ∏
𝑎∈𝐷∗ (𝑋 − 𝑎) ∈ F≤𝑛 [𝑋] to be a domain

polynomial for 𝐷∗, i.e. zero only on 𝐷∗.

Definition 13.2 (Domain Permutations). For sets of 𝑘 polynomials {𝑓𝑖}𝑘𝑖=1, {ℎ𝑖}𝑘𝑖=1 for which

ℎ𝑖, 𝑓𝑖 ∈ F[𝑋] and permutation 𝜎 : [𝑘𝑛] → [𝑘𝑛], we say that the set (ℎ1, ..., ℎ𝑘) = 𝜎 (𝑓1, ..., 𝑓𝑘)

if, for all 𝑙 ∈ [𝑘𝑛], the sequences
(
𝑓(1), . . . , 𝑓(𝑘𝑛)

)
,
(
ℎ(1), . . . , ℎ(𝑘𝑛)

)
∈ F𝑘𝑛 , defined as:

𝑓((𝑗−1)·𝑛+𝑖) := 𝑓 𝑗 (𝑔𝑖), ℎ((𝑗−1)·𝑛+𝑖) := ℎ 𝑗 (𝑔𝑖),

for each 𝑗 ∈ [𝑘], 𝑖 ∈ [𝑛], satisfy ℎ(𝑙) = 𝑓(𝜎 (𝑙)) .

Definition 13.3. Let T = {𝑇𝑖}𝑠𝑖=1 be a partition of [𝑘𝑛] into 𝑠 disjoint blocks, where 𝑘, 𝑛, 𝑠 ∈ N.

We say that {𝑓𝑖}𝑘𝑖=1 ∈ F[𝑋] copy-satisfies T if, when defining (𝑓(1), . . . , 𝑓(𝑘𝑛)) ∈ F𝑘𝑛 as above, we

have 𝑓(𝑙) = 𝑓(𝑙 ′) whenever ∃𝑖 s.t. 𝑙, 𝑙′ ∈ 𝑇𝑖 .

We define a permutation 𝜎 (T) on [𝑘𝑛] such that for each block 𝑇𝑖 of T , 𝜎 (T) contains

a cycle only going over all the elements of 𝑇𝑖 . Many possibilities exist: for example, we can

rearrange elements in the cycles corresponding to𝑇𝑖 , or 𝜎 (T) can be chosen arbitrarily from the

set of all valid permutations. It is simple to check that (𝑓1, . . . , 𝑓𝑘) copy-satisfies T if and only if

(𝑓1, . . . , 𝑓𝑘) = 𝜎 (𝑓1, . . . , 𝑓𝑘). We can thus equivalently say that (𝑓1, . . . , 𝑓𝑘) copy-satisfy 𝜎 .

91

Definition 13.4. Fix domain 𝐷∗ and size parameter 𝑛 ∈ N. The constraint system L′ is defined

as follows:

L′ := (qL, qR, qO, qM, qC, 𝜎, 𝑛),

where:

• qL, qR, qO, qM, qC ∈ F[𝑋] the selector polynomials,

• 𝜎 : [3𝑛] → [3𝑛] a permutation over 3𝑛 elements.

The relation RL ′ for L′ is defined as the set

(𝑥, 𝜔) := (PI(𝑋), ⟨fL(𝑋), fR(𝑋), fO(𝑋)⟩) ∈ F[𝑋] × (F[𝑋])3,

with the following properties:

1. fL(𝑋), fR(𝑋), fO(𝑋) copy-satisfy 𝜎 .

2. ∀𝑎 ∈ 𝐷∗ it holds that:

qL · fL + qR · fR + qO · fO + qM · fL · fR + (qC + PI) = 0.

For completeness we also provide a formal statement of the equivalence between the two con-

straint systems, whose proof can be found in the appendix. PI(𝑋) is the public input polynomial

and encodes public data that is used to define the predicate of choice, while fL(𝑋), fR(𝑋), fO(𝑋)

are the left, right and output wire polynomials respectively and encode prover-only private data.

Lemma 13.5. The constraint systems proposed in Definition 13.1 and Definition 13.4 are equivalent.

Remark: Note that the degrees of fL, fR, fC are 𝑛 − 1, where 𝑛 is the size of L. However in

RedShift this is relaxed to some degree 𝑘 > 𝑛 to attain zero-knowledge.

92

13.2 IOP Protocol

Let L′ = (qL, qR, qO, qM, qC, 𝜎, 𝑛) be the constraint system in question. Define 𝑘1, 𝑘2, 𝑘3 ∈ F∗ to be

representations of different cosets in F∗\𝐷 , with 𝑘1 = 𝑒 set as the identity. Let 𝜏 be the bijection

between the sets 𝑃1 = [3𝑛] and 𝑃2 = 𝐷∗ ∪ 𝑘2𝐷∗ ∪ 𝑘3𝐷∗ defined by:

𝜏 [𝑛 · (𝑗 − 1) + 𝑖] = 𝑘 𝑗𝑔𝑖, 𝑖 ∈ [𝑛], 𝑗 ∈ [3] .

Since𝜎 is a permutation on 𝑃1, 𝜎′ = 𝜏◦𝜎◦𝜏−1 is a permutation on 𝑃2. Define {𝑆𝑖𝑑𝑖 (𝑋)}3𝑖=1, {𝑆𝜎 𝑗 (𝑋)}3𝑗=1
each of degree at most 𝑛 as the set of permutation polynomials as follows:

1. 𝑆𝑖𝑑 𝑗 (𝑋) = 𝑘 𝑗𝑋 for 𝑗 ∈ [3],

2. 𝑆𝜎 𝑗 (𝑔𝑖) = 𝜎′(𝑘 𝑗𝑔𝑖) for 𝑖 ∈ [𝑛], 𝑗 ∈ [3] .

These will be used as part of the setup polynomials to define the problem instance.

Setup & Witness Polynomials: We can now draw the link between the “setup” and “witness”

polynomials of the previous sections with their concrete definitions in the instantiation of Red-

Shift. The selector polynomials qL, qR, qO, qM, qC, permutation polynomials {𝑆𝑖𝑑𝑖 }𝑖∈[3] , {𝑆𝜎 𝑗 } 𝑗∈[3]

and Lagrange-basis polynomials {𝐿𝑖}𝑖∈[𝑛+1] play the role of “setup" polynomials. Moreover, the

wire polynomials fL, fR, fO form the set of “witness” polynomials. This choice makes intuitive

sense: the former fully specify the relation in question and hence need to be unique in order to

prevent malleability in the proof of knowledge guarantees. The latter (which tend to be much

larger in most practical deployments) however, do not require uniqueness guarantees.

We are now ready to specify the RedShift protocol. At the interactive level, it is most similar

to the DEEP-ALI protocol, but for the PLONK constraint system. We instantiate the distinguisher

oracle OD queries as evaluations by an indexer algorithm I that receives a low-degree polyno-

93

mial input 𝑓 and outputs ` separation points along with their evaluations {𝑥𝑖, 𝑓 (𝑥𝑖)}`𝑖=1. We can

implement the random sampling distinguisher in the non-interactive setting using𝑛𝑐 ·` ·𝑛 queries

(where 𝑛𝑐 the number of constraint polynomials), and provide the set of points as input to the

IOP for the PLONK proof system (c.f. Section 7 in [Gabizon et al. 2019]).

In the interests of modularity and ease of exposition, we make use of an (𝜖, 𝑘)-list poly-

nomial commitment scheme 𝐿𝑃𝐶 while simulating an (𝜖, 𝑘, [)-polynomial evaluation scheme

𝑃𝐸𝑆 = (D, 𝐿𝑃𝐶) with access to a `-dimensional [-distinguisher D. The idea is to replace all

instances of commitment to some low-degree polynomial, which is required for the knowledge

soundness guarantees of the proof system, to commitment using the LPC and PES schemes above.

These will be implemented using the FRI protocol, but at the maximal levels of 𝛿 in order to

achieve improvements in proof size. We identify two types of polynomials with differing knowl-

edge guarantee requirements. These are the witness and setup polynomials mentioned above. In

the first, we only require the existence of some low degree polynomial to exist, while in the latter

the prover needs to know the specific polynomial they are providing commitments to.

In the construction below, we assume that {𝑆𝑖𝑑𝑖 }𝑖∈[3], {𝑆𝜎 𝑗 } 𝑗∈[3], {𝐿𝑖}𝑖∈[𝑛+1], qL, qR, qO, qM, qC ∈

pp have been precomputed over 𝐷∗ and can be accessed through commitments provided by an

oracle, along with a representation of the public input polynomial PI(𝑋) given to the verifier. To

highlight the above difference, we explicitly instantiate the commitments that need to be sent at

each step and show how these are used in the PES and LPC schemes. In the IOP formalism, this

is equivalent to sending the respective polynomials to a trusted intermediary I.

Completeness holds because for honest provers the 𝐹𝑖 are identically zero on domain 𝐷∗,

which means that all the 𝐹𝑖 (𝑋) are divisible by 𝑍 (𝑋) in the ring F[𝑋], hence so is their linear

combination 𝐹 (𝑋) = ∑6
𝑖=1 𝑎𝑖𝐹𝑖 (𝑋). Note that the {𝐹𝑖}𝑖∈[5] are responsible for checking the copy-

satisfiability of the witness polynomials. This is directly equivalent to the completeness argument

in PLONK and a full proof can be found in Appendix A.6.

94

Algorithm 4 RedShift Routine
1: procedure RedShift(pp, PI, 𝑛, 𝑘, 𝑁 ; fL, fR, fO)
2: P chooses masking polynomials ℎ1, ℎ2, ℎ3 ∈𝑅 F<𝑘 [𝑋].
3: P defines masking witness polynomials and sends commitments cm𝑖 , 𝑖 ∈ [3] for them to V:

𝑓1(𝑋) := fL(𝑋) + ℎ1(𝑋)𝑍 (𝑋), 𝑓2(𝑋) := fR (𝑋) + ℎ2(𝑋)𝑍 (𝑋), 𝑓3(𝑋) := fO(𝑋) + ℎ3(𝑋)𝑍 (𝑋) .

4: V sends random 𝛽,𝛾 ∈ F to P. For 𝑗 ∈ [3], P computes

𝑝 𝑗 := 𝑓𝑗 + 𝛽 · 𝑆𝑖𝑑 𝑗
+ 𝛾, 𝑞 𝑗 = 𝑓𝑗 + 𝛽 · 𝑆𝜎 𝑗

+ 𝛾, 𝑝 ′(𝑋) :=
∏
𝑗 ∈[3]

𝑝 𝑗 (𝑋), 𝑞′(𝑋) :=
∏
𝑗 ∈[3]

𝑞 𝑗 (𝑋) .

5: P computes 𝑃,𝑄 ∈ F<𝑛+1 [𝑋] such that 𝑃 (𝑔) = 𝑄 (𝑔) = 1 and for 𝑖 ∈ [𝑛 + 1]\{1}:

𝑃 (𝑔𝑖) =
∏
1≤ 𝑗<𝑖

𝑝 ′(𝑔 𝑗), 𝑄 (𝑔𝑖) =
∏
1≤ 𝑗<𝑖

𝑞′(𝑔 𝑗) .

6: V sends random 𝑎1, . . . , 𝑎6 ∈ F to P. P defines the following polynomials:

• 𝐹1(𝑋) = 𝐿1(𝑋) (𝑃 (𝑋) − 1) and 𝐹2(𝑋) = 𝐿1(𝑋) (𝑄 (𝑋) − 1)
• 𝐹3(𝑋) = 𝑃 (𝑋)𝑝 ′(𝑋) − 𝑃 (𝑋 · 𝑔) and 𝐹4(𝑋) = 𝑄 (𝑋)𝑞′(𝑋) −𝑄 (𝑋 · 𝑔)
• 𝐹5(𝑋) = 𝐿𝑛 (𝑋) (𝑃 (𝑋 · 𝑔) −𝑄 (𝑋 · 𝑔))
• 𝐹6(𝑋) = qL(𝑋) 𝑓𝐿 (𝑋) + qR (𝑋) 𝑓𝑅 (𝑋) + qO(𝑋) 𝑓𝑂 (𝑋) + qM(𝑋) 𝑓𝐿 (𝑋) 𝑓𝑅 (𝑋) + (qC(𝑋) + PI(𝑋))

7: P defines 𝐹 =
∑6

𝑖=1 𝑎𝑖𝐹𝑖 and computes 𝑇 (𝑋) = 𝐹 (𝑋)/𝑍 (𝑋), sending V a commitment cm6 to 𝑇 .
8: V sends P a random evaluation point 𝑦𝑚 ∈ F\𝐷,𝑚 ∈ [𝑁] .
9: P responds with 𝑁 sets of points, where𝑚 ∈ [𝑁], j ∈ {L,R,O,M,C} := J:

𝑇 (𝑦𝑚), 𝑃 (𝑦𝑚), 𝑄 (𝑦𝑚), {𝑓𝑖 (𝑦𝑚)}3𝑖=1, {𝑆𝑖𝑑𝑖 (𝑦𝑚)}3𝑖=1, {𝑆𝜎𝑖 (𝑦𝑚)}3𝑖=1, {qj(𝑦𝑚)}j∈J.

10: P and V engage in sub-protocols, outputting 0 if any fail:

PES(pp, 𝑛 + 1, 𝑁 , {(𝑦𝑚, qj(𝑦𝑚))}𝑚∈[𝑁], cmqj ; qj), j ∈ J,

PES(pp, 𝑛 + 1, 𝑁 , {(𝑦𝑚, 𝑆𝑖𝑑 𝑗
(𝑦𝑚))}𝑚∈[𝑁], cmidj

; 𝑆𝑖𝑑 𝑗
), 𝑗 ∈ [3],

PES(pp, 𝑛 + 1, 𝑁 , {(𝑦𝑚, 𝑆𝜎 𝑗
(𝑦𝑚))}𝑙 ∈[𝑁], cm𝜎j ; 𝑆𝜎 𝑗

), 𝑗 ∈ [3],

LPC(pp, 𝑛 + 1, 𝑁 , {(𝑦𝑚, 𝑓𝑖 (𝑦𝑚))}𝑚∈[𝑁], cmi; 𝑓𝑖), 𝑖 ∈ [3],

LPC(pp, 𝑛 + 1, 2𝑁, {(𝑦𝑚, 𝑃 (𝑦𝑚)), (𝑦𝑚 · 𝑔, 𝑃 (𝑦𝑚 · 𝑔))}𝑚∈[𝑁], cm4; 𝑃),

LPC(pp, 𝑛 + 1, 2𝑁, {(𝑦𝑚, 𝑄 (𝑦𝑚)), (𝑦𝑚 · 𝑔,𝑄 (𝑦𝑚 · 𝑔)}𝑚∈[𝑁], cm5;𝑄),

LPC(pp, 3𝑛 + 1, 𝑁 , {(𝑦𝑚,𝑇 (𝑦𝑚))}𝑚∈[𝑁], cm6;𝑇) .

11: ∀𝑚 ∈ [𝑁] V computes {𝐹𝑖 (𝑦𝑚)}𝑖∈[6] , outputting 1 if the following holds:

6∑︁
𝑖=1

𝑎𝑖𝐹𝑖 (𝑦𝑚) = 𝑍 (𝑦𝑚)𝑇 (𝑦𝑚).

12: end procedure

95

We also briefly explain the intuition behind the 𝑆𝑖𝑑 𝑗 and 𝑆𝜎 𝑗 polynomials: 𝑆𝑖𝑑 𝑗 is only required

to map𝐷 to the disjoint sets 𝑃1, 𝑃2, 𝑃3. 𝑆𝜎 𝑗 should then map to the same set 𝑃 = 𝑃1∪𝑃2∪𝑃3 but in a

“permuted” fashion. We construct a map 𝜏 for permutation 𝜎 from domain [𝑛] to 𝑃 . The simplest

way to define 𝑆𝑖𝑑𝑘 is to map [𝑛] to [1, ..., 𝑛], [𝑛 + 1, ..., 2𝑛], [2𝑛 + 1, ..., 3𝑛] respectively, in this case

there is no need to apply the map 𝜏 as then there is no need for domain translation (𝑃 = [𝑛]).

The problem is that all of the 𝑆𝑖𝑑 𝑗 polynomials will be of degree 𝑛 in general. We construct 𝑆𝑖𝑑 𝑗

so as to be of minimal possible degree 1, so it is easy for the verifier to calculate evaluations of

those polynomials by themselves without requiring the usage of the (more expensive) evaluation

procedures. This optimization is taken from [Gabizon et al. 2019].

We opt for sampling 𝑦 outside of the domain 𝐷 in order to achieve perfect-zero knowledge

guarantees instead of statistical. 𝑁 here denotes the number of random challenge points sampled

and is set to 𝑁 = 1 for our implementation. Finally, due to the restrictions on the degree it may

be necessary to split 𝑇 into separate polynomials {𝑇0,𝑇1,𝑇2} and commit to them independently,

since its degree is 3𝑛 we can ensure each of the𝑇𝑖 has degree at most 𝑛. This and other optimiza-

tions are further discussed in Appendices A.8 and A.9, while the formal analysis of the security

and zero-knowledge properties of the protocol can be found in Appendix A.6. We end with a

theorem capturing the security properties of RedShift.

Theorem 13.6. The prime field RS[F, 𝐷, 𝜌] code family with rate 𝜌 = 2−R,R ≥ 2,R ∈ N and

𝜌 |𝐷 | = 𝑛 + 1 admits an IOP for the constraint system S described in Definition 13.1, where 𝑛 the

size of the instance in S and 𝑁 a repetition parameter. This IOP achieves perfect completeness,

perfect zero-knowledge, and ∀a ∈ (0, 1 − √𝜌), 𝛿 ∈ (0, 𝐽 [3/2]a (1 − 𝜌)) has round-by-round knowledge

soundness:

𝜖𝜋 (𝛿) ≤ max
(
𝜖FRI(𝛿), 𝜖𝑁IOP,

1
|F|

)
, where 𝜖IOP := (𝐽𝜌,a)6 ·

4𝑛
|F\𝐷 | .

The above IOP is instantiated as a Non-Interactive Random Oracle Proof (NIROP) using the

“CS-proof” technique [Micali 2000] to compile the oracles to the constraint functions. More

96

specifically, this assumes the existence of a RandomOracle (RO) for the hash functionH : F×F→

F [Ben-Sasson et al. 2016] and constructs Com(𝑓) as the root 𝑐 of a Merkle tree where the leaves

form the evaluations of 𝑓 on 𝐷 . The RO is not required, as correlation-intractable hash functions

have been shown to suffice (see [Canetti et al. 2018]). In the non-interactive setting, the prover

will provide the verifier with a Merkle authentication path to some 𝑓 (𝑖) upon a query for 𝑖 ∈ 𝐷

to the oracle for 𝑓 . Note that this adds log |𝐷 | overhead to the protocol for each query.

13.3 Soundness Parameters

The various components of RedShift can now be put together in order to arrive at security

guarantees of a functional implementation. By modularity of the above approach, it is possible to

analyze the security guarantees of the system based on different choices for the rate, distinguisher,

and LPC scheme. The starting point for this is the soundness bound of Theorem 13.6. Since

this depends on the list decodability of the RS codes, the analysis can be split into two axes:

based on Theorem 11.3 and on Conjecture 11.4, each of which gives different bounds on protocol

soundness. We analyze the above based on a changing rate parameter 𝜌 at a given security level,

and look the total number of queries that need to be executed by the FRI protocol to achieve this.

In the analysis below, we work with a field of size log |F| = 256 bits and aim for 80 bit security.

First we focus on the contribution from the list-decoding bound: 𝐽 8𝜌,a 4𝑛
|F/𝐷 | : note the exponent of 8

instead of 6 due to splitting𝑇 into 3 smaller polynomials. In the syntax of Theorem 11.3, a choice

of a = |F|−1/20 provides a list size of 1
2 |F|

1/20𝜌−1/2. For our choice of field size, this yields an error

contribution on the order of 2−128. Now we focus on how such a choice of a ≠ 0 will affect the

soundness of FRI. By picking 𝜌 = 1/16 we get the following contribution to the FRI soundness

error for 𝛿 < 𝐽
[3/2]
a (1 − 𝜌):

𝑝 (a, 𝜌) =
(
1 −min

{
𝛿0, 𝐽

[3/2]
a (1 − 𝜌)

}
+ a log |𝐷 |

)
.

97

A smaller such value allows for fewer queries for a given level of soundness, shrinking proof size

in the non-interactive setting. In the case of a = 0, we have 𝑝 (0, 1/16) = 1/2. For domain size

|𝐷 | = 232 (which equates to a degree bound𝑑 = 𝜌 |𝐷 | = 𝑛+1 = 228) we have that 𝑝 (|F|−1/20, 1/16) ∼

0.504. For comparison purposes, if we instead use 𝜌 = 1/32 we get 𝑝 (0, 1/32) ∼ 0.421 and

𝑝 (|F|−1/20, 1/32) ∼ 0.425.

We are now ready to look at the effect of changing 𝛿 on the total number of queries required

to achieve a constant security level for the overall protocol. We fix a rate of 𝜌 = 1/64 with a = 0

for simplicity and provide the total query number required to achieve an 80 bit security level for

three regimes for 𝛿 : (1) unique decoding radius 𝛿 = 𝛿0, (2) 𝛿 within the ‘one-and-a-half’ Johnson

bound (used in FRI [Ben-Sasson et al. 2018d]), and (3) 𝛿 within the Johnson bound (used in DEEP-

FRI [Ben-Sasson et al. 2019b]). Note that (1) denotes the worst-case error and is provided as a

reference for the relative efficiency of the two LPC instantiations. We note a 51% reduction in

the query number at this security level in using FRI, while DEEP-FRI achieves a 67% reduction

at rate 𝜌 = 1/64. As rate increases, this improvement is less pronounced; however, we still get

a 32% and 55% improvement in query complexity for the two respective instantiations even at

𝜌 = 1/16. This demonstrates concrete efficiency improvements to the underlying proof even

with small rate deviations.

Subsequent work [Ben-Sasson et al. 2020] has demonstrated that for FRI instances over large

fields we can do strictly better. If 𝑞 > |𝐷 |2, the maximal 𝛿 for which FRI is sound is actually

equal to the Johnson bound 𝐽a (1 − 𝜌) instead of 𝐽 [3/2]a (1 − 𝜌). In practice, this gives us the same

soundness error for FRI and DEEP-FRI since the number of queries performed dominates the error

contribution. Finally, by assuming Conjecture 11.4 we can do even better: 𝛿 is pushed beyond

the Johnson bound to 1 − 𝜌 and, due to the constant list size assumption, the soundness of FRI

and DEEP-FRI persists in this larger range. Note, however, that going beyond the Johnson bound

comes with a loss of knowledge security: we cannot use the Sudan list-decoding algorithm to

extract a witness, so any knowledge claim would have to be non-extractable in this setting.

98

Table 13.1: LPC Instantiation Comparisons.

Method 𝛿 Bound 𝑝 Bound
(a = 0)

Query Number

1/64 1/32 1/16
Unique Decoding (1 − 𝜌)/2 (1 + 𝜌)/2 82 84 88
FRI [Ben-Sasson et al. 2018d] 𝐽

[3/2]
a (1 − 𝜌) 3

√
𝜌 40 48 60

FRI with 𝑞 > |𝐷 |2 [Ben-Sasson et al. 2020] 𝐽a (1 − 𝜌)
√
𝜌 27 32 40

DEEP-FRI [Ben-Sasson et al. 2019b] 𝐽a (1 − 𝜌)
√
𝜌 27 32 40

FRI with Conjecture 11.4 1 − 𝜌 𝜌 14 16 20

13.4 Benchmarks

We instantiate RedShiftwith 𝑟 = 576460752303423505, 𝑞 = 𝑟 ·2192+1which is a Proth prime and

use 𝜌 = 1/16. Oracles were instantiated as Merkle trees using the Blake2s hashing algorithm. The

PES was instantiated using the random sampling approach, where a random point was sampled

using Fiat-Shamir: i.e. by placing all individual root hashes of the oracles to the setup polyno-

mials into the transcript. Circuit sizes were chosen so as to set 𝑛 + 1 = 2𝑘 which, in the case of

RedShift, implies a degree bound 𝑑 = 𝑛 + 1 for FRI. All implementations use a certain degree of

precomputation: we precompute the low degree extensions of setup polynomials and the Merkle

trees of the setup polynomial oracles.

The soundness error due to FRI depends on the total number of queries performed. This does

not change the proof generation time and only affects proof size and verification. We follow the

approach in Section 13.3 in order to set these parameters, targeting an 80-bit security level. We

note that the final soundness error is dominated by the FRI error, while the size contribution is

dominated by the total number of queries performed. We used an Apple MacBook Pro 18.2 with

anM1Max 10-core processor and 64 GB RAM to record proof generation times, verification times

and proof sizes for different predicate sizes presented in Fig. 13.1

The verification times and proof sizes provided rely on Conjecture 11.4. If we remove this

assumption, we need to double the proof sizes (and verification times) but the proof generation

99

times would remain unchanged. This is because FRI operates over a large enough field that

soundness holds for 𝛿 ≤ 𝐽a (1 − 𝜌). Table 13.2 includes calculations for projected proof sizes at

different security levels and rates. We present expected numbers for three different scenarios: (1)

the current implementation, (2) the implementation after optimization (see Appendix A.8), and

(3) the optimized proof system assuming Conjecture 11.4 also holds.

Our empirical results cannot be directly compared to other transparent proof systems such

as [Chiesa et al. 2019a,b; Ben-Sasson et al. 2018c; Xie et al. 2019; Zhang et al. 2020], as the un-

derlying constraint systems differ (all use R1CS, except [Zhang et al. 2020]) and thus predicate

sizes (number of gates) don’t exactly capture the same complexity across prototypes. Unlike all

other approaches, the PLONK constraint system also allows for ‘custom’ gates, which means that

it can be further modified to be more efficient at expressing specific types of circuits by using

fewer circuit-specific gates. This makes a precise comparison between approaches difficult.

Even so, certain comparative observations can be made. Firstly, proof generation times are

competitive with state-of-the-art systems, such as Aurora and Fractal that achieve a perfor-

mance of ∼ 200 seconds on predicates of size 220 at 128-bit security. Note that for us proof

generation is only influenced by the rate parameter 𝜌 , which we fix at 𝜌 = 1/16 in Fig. 13.1 for

all considered security levels to achieve 35 second proving time for size 220 circuits. Our results

are most comparable with Virgo [Zhang et al. 2020] at ∼ 10 seconds.

Verification times for 80-bit security stay at around 3− 6ms for circuit sizes up to 220, clearly

outperformingAurora (∼ 4 seconds for the same). At 128-bit security, a linear scaling of verifica-

tion time (due to the linear increase in the number of queries) gives around ∼ 9ms. This matches

the performance of Fractal (< 10ms at 128-bit security) and Virgo (∼ 12ms at 100-bit security).

Note that verification time is proportional to proof size through the number of queries verified,

so any corresponding improvements to proof sizes will affect verification proportionately.

The data clearly shows a logarithmic relationship between proof and predicate sizes, which

is the biggest drawback of the current scheme. To this end, we propose optimizations (specified

100

in Appendix A.8) of how the Merkle tree represents data and query calls to decrease proof size

(and verification times) by about two orders of magnitude (∼ 4×). In this case, projected proof

sizes are still larger (∼ 300kB) than those of both Aurora and Fractal (∼ 150kB) for a circuit

of 220 gates at 128-bit security but comparable to Virgo (∼ 200kB) at 100-bit security. Note that

this issue is specific to transparent systems: trusted proof systems usually [Groth 2016] have size

< 1kB proofs for all circuits.

Table 13.2: Projected Proof Sizes.

Security
(Bits)

Rate
(-log 𝜌)

Circuit Size
(log |𝐶 |)

Proof Size (KB)

Unoptimized Optimized Conjectured

80

4
10 597 151 76
15 1052 264 133
20 1634 410 206

5

20

1308 328 165
6 1090 274 138
7 934 235 118
8 818 206 104

120 4
10 894 225 114
15 1576 396 199
20 2450 614 308

101

Figure 13.1: Benchmark for RedShift with 𝜌 = 1/16. Top: Proof Generation Time (seconds). Center:
Verification Time (ms). Bottom: Proof Size (kB).

102

14 | OpenQuestions

14.1 Extensions

14.1.1 Batching Multiple FRI Instances

Polynomial commitments and evaluations in RedShift reduce to the following check: whether

particular functions 𝑓1, . . . , 𝑓𝑘 represented as oracles are close to the space of degree𝑑 polynomials.

The batching approach is to replace all those separate and independent FRI queries by exactly

one instance of FRI w.r.t a linear combination of functions 𝑓𝑖 , where the coefficients of linear

dependence are provided by the verifier. This can be done, with details in Appendix A.9. Such

an optimization is important in the context of ZK-Rollups, as in practice the circuits that are

verified are large (in the order of 224 gates), and therefore being able to amortize the production

of FRI proofs results in significant gains. This optimization has been independently proposed in

a variety of proof systems using FRI and is critical to current implementations.

14.1.2 Binary Fields

Recall that PLONK is restricted to prime fields only. This is because [Kate et al. 2010] requires

embedding a field F into a group of points on some pairing-friendly elliptic curve. [Ben-Sasson

et al. 2018a] provides a version of the FRI protocol for binary fields which exploits additive and

vector space structure of the underlying field. The rest of PLONK is field agnostic and only the

103

permutation argumentwould requiremodification. Thismeans thatRedShift can be instantiated

for binary as well as prime fields and all constructions and proofs follow through by replacing

the multiplicative domain |𝐷 | by an affine subspace. The binary variant of PLONK is especially

effective for computations that require a lot of bit manipulations.

14.1.3 Recursive Proofs

RedShift verification subroutines can be expressed as circuits, where the dominating operation

will be the verification of Merkle paths or inclusion proofs in some other cryptographic accu-

mulator. All remaining arithmetic operations are performed over the same field that the original

circuit (for which the verifier is expressed) is defined, so there is no requirement for cycles over

pairing-friendly elliptic curves as in previous work. A hybrid approach exists that performs the

last step of recursion using a ‘pairing-based’ PLONK, e.g. the BLS12-381 curve has a main sub-

group of order |𝐺 | such that 232 | (|𝐺 | − 1). This allows for instantiating RedShift.

Table 13.2 shows that in the case of recursive constructions one could use a higher rate for

the “inner” and a lower one for the “outer” level of recursion that verify the nested proofs, since a

smaller inner circuit is much cheaper to verify. This has been subsequently explored as an avenue

to practical recursion in [Zero 2021].

14.1.4 Different Constraint Systems

The LPC and PES primitives can be applied to proof systems such as SONIC [Maller et al. 2019]

and Marlin [Chiesa et al. 2019a] that use univariate polynomial commitments. Of interest here

are the proximity testing parameters e.g. testing inclusion in RS[F𝑞, 𝐷, (𝑑−1)/|𝐷 |], where (in the

case of Marlin) 𝑑 = 2𝑘 . Aurora contains a description of such a subroutine. Moreover, Virgo

uses a different proof system with FRI in a functionally equivalent way, further demonstrating

the modularity and applicability of our approach.

104

14.2 Discussion

We have constructed a zk-STARK capable of acting as the underlying primitive for a ZK-Rollup.

We succeeded in minimizing proof generation and verification times, achieving encouraging re-

sults both with respect to decreasing latency and achieving high throughput. The main obser-

vation behind our methods was that the FRI protocol can be modularly composed with any IOP

to generate a zk-SNARK, choosing a design which maximizes the efficiency of our proof system.

One important focus for future work involves decreasing the size of the proofs. This will decrease

the total cost of publishing transactions on-chain, thus contributing an increase in throughput.

We also believe that there exists substantial promise in the development of hardware accel-

eration methods for proof systems like RedShift. Indeed, an order-of-magnitude improvement

in proof generation times would mean that scalable ZK-Rollups with extremely low latency and

high throughput can be designed. If the entities computing the rollup proofs are doing so on

dedicated hardware, the potential for cost-efficient mass transaction settlement is much greater.

Indeed, using highly specialized but low-power hardware to quickly compute proofs would mean

not only that proof generation times would be low, but also that the total cost per proof is also

small. Driving down the energy cost of generating such proofs is thus an extremely important

yet orthogonal research direction, as high-cost proof generation would inevitably drive up trans-

action fees in any implementation.

Finally, creating a PoW process out of a transparent SNARK is another intriguing open prob-

lem. Unfortunately, we can easily show that RedShift (or any FRI-based SNARK) is not suitable

for such a purpose. This is because we can easily rerandomize witnesses using mask polynomi-

als, meaning that the proof system is not unique witness extractable. Looking more closely at the

knowledge soundness guarantees of transparent proof systems would be an important first step

to understanding how we can design efficient PoW processes out of them.

105

A | Appendix

A.1 Multiexponentiation Bounds & Theorem Proofs

We borrow notation from [Pippenger 1980] and parametrize with 𝑞 input indices, 𝑝 outputs and

maximum index size 2_ . Where not specified, 𝐻 = 𝑝𝑞_. Let 𝐿(y) be the minimum number of

multiplications to compute y = (𝑦1, ..., 𝑦𝑝) with 𝑦𝑖 ∈ [2_]𝑞 and [2_] = {1, ..., 2_ − 1} from the

inputs and unit vectors and 𝐿(𝑝, 𝑞, 2_) be the maximum over all of them.

Lemma A.1. For any value of 𝑐 ≤ 𝐿(𝑝, 𝑞, 𝑁), there are at most:

(
𝐻 2

𝑐

)𝑐
2𝑞+1𝑒𝑐 (𝑞 + 1)2𝑂 (1),

addition chains of length at most 𝑐.

Lemma A.2. Define 𝐻 := ^𝑞a_, 𝜙 (𝑞, ^, a, _) :=

𝑞^a log (𝑞^a) + ^ log (𝐻) + 𝑞 + log (𝑞 + 1) + 1,

and fix ` := 𝛿𝐻 , corresponding to:

𝑐𝛿 :=
(1 − 𝛿)𝐻 − 𝜙 (𝑞, ^, a, _)

log (𝐻) − log (𝑒) + log (`) + log (1/𝛿) .

106

For the (^, ^)-length MultiExp function of dimension a for collision resistant 𝑔:

Pr
x∈𝑅 [2_]^×𝑞,G∈𝑅G^×a

[
𝐿(𝑓 (𝑥1), ..., 𝑓 (𝑥𝑞)) ≤ 𝑐𝛿

]
≤

(
1
2

)`
.

Proof. Write 𝐺 (𝑗)
𝑘

= 𝑟 𝑗𝑘𝐺 . As the 𝑥𝑖 ∈ [2_]^ and 𝑟 𝑗𝑘 ∈ [2_] are sampled randomly, the values

𝑥𝑖𝑘𝐺
(𝑗)
𝑘

= 𝑥𝑖𝑘𝑟 𝑗𝑘𝐺 for 𝑖 ∈ [𝑞], 𝑗 ∈ [a−1], 𝑘 ∈ [^] will be distinct w.h.p. The ^ ·𝑞 values 𝑔(𝑥𝑖)𝑘 ·𝑟a𝑘𝐺

will also be distinct w.h.p. as 𝑔 is collision resistant in each of its ^ output coordinates.

Let 𝑀 be the 𝑞 × (^a) sized matrix with these values as entries. As each entry is an element

in [2_], the number of matrices𝑀 with 𝑞^a distinct elements is:

(
2_

𝑞^a

)
≥ 2_𝑞^a

(𝑞^a)𝑞^a ,

and to each 𝑀 there corresponds a unique matrix 𝐹 = (𝑓 (𝑥1), ..., 𝑓 (𝑥𝑞)) with dimension 𝑞 × a ,

where the ^ products over random bases for each 𝑥𝑖 have been computed. Note that 𝐿(𝐹) =

𝐿(𝑀) + ^ − 1.

We can thus upper bound the minimal addition chain size 𝐿(𝐹) using 𝐿(𝑀) and the number

of matrices𝑀 :

Pr
x∈𝑅 [2_]^×𝑞,G∈𝑅G^×a

[𝐿(𝐹) ≤ 𝑐] ≤ |{z : 𝐿(z) ≤ 𝑐}|
2𝐻−𝑞^a log (𝑞^a)

.

The numerator is upper bounded by Lemma A.1 and the fact that a single chain corresponds to

at most 𝐻^ matrices, giving:

Pr
x∈𝑅 [2_]^×𝑞,G∈𝑅G^×a

[𝐿(𝐹) ≤ 𝑐] ≤
(
1
2

)𝐻−𝜓 (𝑐)
,

where𝜓 (𝑐) := 𝑐 (2 log𝐻 + log 𝑒) + 𝜙 (𝑞, ^, a, _) − 𝑐 log (𝑐).

Suffices to show that for 𝑐 ≤ 𝑐𝛿 ,𝜓 (𝑐) ≤ (1− 𝛿)𝐻. Since𝜓 (𝑐) is increasing for 𝑐 ≤ 𝐿(^, a𝑞, 2_),

107

required to show that 𝜌 ≥ 𝑐𝛿 for𝜓 (𝜌) = (1 − 𝛿)𝐻 :

𝜌 (2 log𝐻 + log 𝑒) + 𝜙 (𝑞, ^, a, _) ≥ (1 − 𝛿) · 𝐻,

log 𝜌 ≥ log ((1 − 𝛿) · 𝐻 − 𝜙 (𝑞, ^, a, _)) − log (2 log𝐻 − log (𝑒)),

∴ 𝜌 ≥ (1 − 𝛿)𝐻 − 𝜙 (𝑞, ^, a, _)
log𝐻 − log (𝑒) + log (`) + log (1/𝛿) ,

since ` = 𝛿𝐻 .

□

Corollary A.3. Fix 𝛿 > 0 and let𝜓 (𝜌𝛿) − (1 − 𝛿) · 𝐻 = 0.

E[𝐿(𝑓 (𝑥1), ..., 𝑓 (𝑥𝑞))] ≥ 𝜌𝛿 · (1 − 2−𝛿𝐻).

Proof. By Markov’s inequality:

Pr[𝐿(𝑓 (𝑥1), ..., 𝑓 (𝑥𝑞)) ≥ 𝜌𝛿] · 𝜌𝛿 ≤ E[𝐿(x)],

(1 − Pr[𝐿(𝑓 (𝑥1), ..., 𝑓 (𝑥𝑞)) < 𝜌𝛿]) · 𝜌𝛿 ≤ E[𝐿(𝑓 (𝑥1), ..., 𝑓 (𝑥𝑞))] .

□

Proof of Theorem 7.5. Required to compute 𝑞 iterations of the MultiExp function. Each iteration

includes a multiproducts over random bases, with the indices also sampled from [2_].

Using 𝑐 oracle queries to do this corresponds to knowledge of an addition chain of length

𝑐 containing all of 𝐹 = (𝑓 (𝑥1), ..., 𝑓 (𝑥𝑞)) with 𝑥𝑖 ∈ [2_]^ . Therefore, the probability that we

compute 𝐹 for x ∈𝑅 [2_]^×𝑞 with less than 𝑐 queries is upper bounded by the probability that

𝐿(𝐹) ≤ 𝑐 .

Fix 𝛿 > 0. Lemma A.2 states that ∃𝑐𝛿 s.t. this probability is negligible in ` := 𝛿^a𝑞_ for 𝑐 ≤ 𝑐𝛿 .

108

One function computation of dimension a with ^ inputs has an upper bound on the expected

number of multiplications of:

min (^, a) · _ + ^a_

log (^a_) · (1 + 𝑜 (1)) .

Corollary A.3 implies that:

𝜖 ≤ 1 − 𝑞−1 ·
(
min (^, a) · _ + ^a_

log (^a_) · (1 + 𝑜 (1))
)−1
· (1 − 2−𝛿^a𝑞_) · 𝑐𝛿

≤ log (𝑞) + 𝛿 log(^a_) + 𝑜 (1)
log (^a𝑞_) ≤ log (𝑞) + 𝑜 (1)

log (^a𝑞_) ,

where we have taken 𝛿 ≤ 1/log (^a_). □

Proof of Theorem 8.2. We know that the NIP has a PKE extractor from its security proof and so

A can extract two witnesses almost surely using extractor 𝜒𝑃𝐾𝐸A . If the polynomials are distinct,

so are their witnesses. This follows directly from the fact that, since 𝜋1 ≠ 𝜋2, either (1) one of

𝑢𝑖 (𝑋), 𝑣𝑖 (𝑋),𝑤𝑖 (𝑋) differs in one of the proofs, or (2) the extracted witnesses differ. Since the

predicate is the same, it follows that the witnesses must differ. □

Lemma A.4. Let H𝑃 = {H𝐺
𝑃,_
}_∈N+ be a family of efficiently computable functions for which each

H𝐺
𝑃,_

: {0, 1}_ → G is weakly collision-resistant. L(H𝑃) is hard single-witness.

Proof of Lemma A.4. Define S in the natural way: fix _ ∈ N+ and define S to randomly sample an

element 𝑥 ∈ {0, 1}_ , outputting (H𝑃,_ (𝑥), 𝑥). The sampler is efficient by the efficiency ofH𝑃,_ (𝑥),

and (H𝑃,_ (𝑥), 𝑥) ∈ 𝑅L(H𝑃,_)} by definition. Witness intractability (WI) follows from the collision

resistance of H𝑃,_ on constant-size inputs. If some A exists that violates WI, then running S on

1_ and then A on S(1_) and 1_ , we non-negligibly find a collision inH𝐺
𝑃,_

. □

Proof of Theorem 8.4. The MaskedHash QAP has 4𝑁 (𝑘 + 1) intermediate witness variables (and

109

8𝑁 (𝑘+1)+2𝑘 constraints) which admits witnesses from a sampler Swhere the seed 𝜌 is uniformly

random and so all witness variables (with full support) also look random by the randomness of the

group encoding. This is as the intermediate values are distinct powers of a group element that is

random due to 𝜌 and the independence of the 𝐼 𝑗 index elements. By unique witness extractability

and single witness hardness of CRT functions, all valid witnesses have a unique encoding and

hence a unique witness polynomial ℎ.

We start with ℓ instances of 𝑁 𝑘-bit hash evaluations from S, and require ℓ valid proofs. We

reduce to the 4𝑁 (𝑘 + 1)-length MultiExp problem for ℓ instances and 𝑔 equal to the function

evaluating the representation of ℎ given the witness elements. We provide ℓ of the 4𝑁 (𝑘 + 1)

intermediate witness variables and the corresponding 9 sets of bases to the MultiExp function.

The representation of ℎ will be unique w.r.t. the witness (since the instance is single witness

hard) and thus look random due to the inputs. Note that ` = 8𝑁 (𝑘 + 1) + 2𝑘 . We finally perform a

linear in ℓ number of multiplications to add any witness variables that were not included (i.e. not

randomly distributed). Since the MultiExp index distributions are also random, a proof verifies

iff the MultiExp solution is valid.

Conversely, given ℓ (4𝑁 (𝑘 + 1), 8𝑁 (𝑘 + 1) + 2𝑘)-length MultiExp instances of dimension 10

with inputs and bases sampled from the QAP’s sampler and proving key respectively, we reduce

to computing ℓ proofs for 𝑁 𝑘-bit hash evaluations. This is because the unassigned witness

variables can be discerned from the auxiliary input to 𝑔, which comes from the QAP sampler. By

the uniqueness of the proof’s encoding, the set of ℓ valid proofs will have to equal the MultiExp

instances after a linear in ℓ number of operations to ‘undo’ products by any of the additional

variables. □

110

A.2 DPS Transaction Semantics

In the definitions below, we denote the supplementary information string by ∗, but make no

assumptions about the type of information provided. This is done to ensure that information

required by an (arbitrary) transition function is encompassed by our definition.

Definition A.5. Given a consistent RSM Σ, a Distributed Payment System (DPS) is a tuple Δ(Σ)

consisting of:

Setup : 1_ → 𝑝𝑝

• Inputs: Security parameter _

• Outputs: Public parameters 𝑝𝑝

NewCoinbase : 𝑆 × 𝑧𝑎 × 𝑐 × (𝑝𝑘, 𝑠𝑘)𝑎 × ∗ → 𝑡

• Inputs: Subset of current state 𝑆 ⊆ S𝑖 , 𝑧𝑎 address of sender 𝑎, 𝑐 value transferred, public-

private key pair (𝑝𝑘, 𝑠𝑘)𝑎

• Outputs: Transaction 𝑡

NewTransaction : 𝑆 × 𝑧{𝑎,𝑏} × 𝑐{𝑎,𝑏} × (𝑝𝑘, 𝑠𝑘)𝑎 × 𝑝𝑘𝑅 × ∗ → 𝑡

• Inputs: Subset of current state 𝑆 ⊆ S𝑖 , 𝑧𝑎,𝑏 addresses of sender/receiver, 𝑐{𝑎,𝑏} value trans-

ferred, public-private key pair (𝑝𝑘, 𝑠𝑘)𝑎 , public key 𝑝𝑘𝑅

• Outputs: Transaction 𝑡

VerifyTransaction : 𝑡 × 𝑆 × ∗ → Yes/No

• Inputs: Subset of current state 𝑆 ⊆ S𝑖 , transaction 𝑡

• Outputs: Yes/No

111

NewState : 𝑆 × t × ∗ → S𝑖+1

• Inputs: Subset of current state 𝑆 ⊆ S𝑖 , list of ordered transactions t ∈ 2T

• Outputs: State S𝑖+1

VerifyState : t × 𝑆1 × 𝑆2 × ∗ → Yes/No

• Inputs: Subsets of current and next state 𝑆1 ⊆ S𝑖, 𝑆2 ⊆ S𝑖+1, list of ordered transactions

t ∈ 2T

• Outputs: Yes/No

CreateAddress : 𝑝𝑝𝑆 → (𝑝𝑘, 𝑠𝑘)

• Inputs: Public parameters 𝑝𝑝𝑆

• Outputs: New public/private keys 𝑝𝑘, 𝑠𝑘 ∈ {0, 1}∗

GetBalance : 𝑆 × 𝑝𝑘 × ∗ → 𝑐

• Inputs: Subset of current state 𝑆 ⊆ S𝑖 , 𝑝𝑘 a CreateAddress output

• Outputs: Balance 𝑐 corresponding to 𝑝𝑘

GetQuality : 𝑆 → 𝑞

• Inputs: Subset of current state 𝑆 ⊆ S𝑖

• Outputs: Quality 𝑞 of state S𝑖

A.2.1 Security Properties

A.2.1.1 Completeness:

Definition A.6. A DPS Π is complete if, for all poly(_)-size algorithms A and large enough _:

𝑃𝑟 [INCOMP(A,Π, _) = 1] ≤ 𝑛𝑒𝑔𝑙 (_)

112

INCOMP(Π, _,A):

1. C samples 𝑝𝑝 ← Setup(1_), sending 𝑝𝑝 to A

2. A sends C the following:

(a) A state S𝑖

(b) Three addresses 𝑧𝑎 , 𝑧𝑏 , 𝑧𝐶𝐵

(c) Positive integer values 𝑐𝑠 , 𝑐 𝑓 , 𝑐𝑚

(d) A key pair (PK, SK) corresponding to address a

(e) A public key PK𝐵

(f) A key pair (PK𝐶𝐵 ,SK𝐶𝐵)

(g) Two signatures 𝜎 , 𝜎𝐶𝐵

(h) Information strings info𝑆 , info𝜎 , info𝜎2

3. C checks that the following hold, outputting 0 if any test fails:

(a) Check that the key pairs are well formed

(b) Check that all addresses are different

(c) Check that

VS(PK, 𝑧𝑎∥𝑧𝑏 ∥𝑐𝑠 ∥𝑐 𝑓 ∥info𝜎 , 𝜎) = 1

(d) Check that

VS(PK𝐶𝐵, 𝑧𝐶𝐵 ∥𝑐𝑚∥info𝜎2, 𝜎𝐶𝐵) = 1

(e) VerifyState(𝑝𝑝,S𝑖, info𝑆) = 1

(f) Account a with a.addr = 𝑧𝑎 exists in S𝑖 and is non-null with public key PK

(g) If account b with b.addr = 𝑧𝑏 is initialized, check that it has public key PK𝐵

(h) GetBalance(𝑝𝑝,S𝑖, PK) ≥ 𝑐𝑠 + 𝑐 𝑓

113

(i) 𝑐 𝑓 ≤ 𝑐𝑚

4. C constructs a send transaction 𝑡 with the given parameters:

NewTransaction(𝑝𝑝, 𝑧𝑎, 𝑧𝑏, 𝑐𝑠, 𝑐 𝑓 , (PK, SK), PK𝐵)

5. C constructs a coinbase transaction 𝑡𝐶𝐵 with the given parameters:

NewCoinbase(𝑝𝑝, 𝑧𝐶𝐵, 𝑐𝑚, (PK𝐶𝐵, SK𝐶𝐵))

6. C checks that the following hold, outputting 0 if any test fails:

(a) VerifyTransaction(𝑝𝑝, 𝑡,S𝑖) = 1

(b) VerifyTransaction(𝑝𝑝, 𝑡𝐶𝐵,S𝑖) = 1

7. Compute the state transition:

(S𝑖+1, info𝑆2) = NewState(𝑝𝑝, {𝑡, 𝑡𝐶𝐵},S𝑖, info𝑆)

8. Output 1 if any of the following hold:

(a) 𝑡 ≠ (𝑧𝑎, 𝑧𝑏, 𝑐𝑠, 𝑐 𝑓 , PK, 𝜎, PK𝑅)

(b) 𝑡𝐶𝐵 ≠ (𝑧𝐶𝐵, 𝑐𝑚, PK𝐶𝐵, 𝜎𝐶𝐵)

(c) GetBalance(PK𝐵,S𝑖+1) ≠ GetBalance(PK𝐵,S𝑖) + 𝑐𝑠

(d) GetBalance(PK𝐶𝐵,S𝑖+1) ≠ GetBalance(PK𝐶𝐵,S𝑖) + 𝑐𝑚

(e) GetBalance(PK,S𝑖) ≠ GetBalance(PK,S𝑖+1) + 𝑐𝑠 + 𝑐 𝑓

(f) VerifyState(𝑝𝑝,S𝑖+1, info𝑆2) = 0

114

A.2.1.2 Correctness:

Define oracle O that initializes the DPS based on public parameters 𝑝𝑝 , keeps system state S𝑖

and string info𝑆 , keeps counters𝐶, 𝐷, 𝐸 initialized to zero and an (initially empty) set ADDR. The

oracle allows the following queries:

CreateAddress:

1. Generate (PK, SK) ← CA(𝑝𝑝𝑠𝑖𝑔)

2. Add (PK, SK) to ADDR

3. Return PK

LookupAddress:(𝑧𝑎)

1. Find the public key PK for account 𝑧𝑎

2. If PK is not in ADDR, return zero

3. Return GetBalance(PK,S)

RequestTransactions:

(𝑧𝑎, 𝑧𝑏, 𝑐𝑠, 𝑐 𝑓 , PK, PK𝐵, 𝑧𝐶𝐵, 𝑐𝑚, PK𝐶𝐵)

1. Check that PK, PK𝐶𝐵 ∈ ADDR

2. Retrieve SK and SK𝐶𝐵 and obtain 𝜎, 𝜎𝐶𝐵

3. 𝑡 ← (𝑧𝑎, 𝑧𝑏, 𝑐𝑠, 𝑐 𝑓 , PK, 𝜎, PK𝐵)

4. 𝑡𝐶𝐵 ← (𝑧𝐶𝐵, 𝑐𝑚, PK𝐶𝐵, 𝜎𝐶𝐵)

5. Check that VerifyTransaction(𝑝𝑝, 𝑡,S) = 1

6. Check that VerifyTransaction(𝑝𝑝, 𝑡𝐶𝐵,S) = 1

7. 𝐸0 = GetBalance(PK𝐵,S)

115

8. Update the state and information string:

(S2, info𝑆2) ← NewState(𝑝𝑝, {𝑡, 𝑡𝐶𝐵},S, info𝑆)

9. If VerifyState(𝑝𝑝,S2, info𝑆2) = 1, set

S = S2, info𝑆 = info𝑆2

10. Check that 𝑐𝑠 = GetBalance(PK𝐵,S) − 𝐸0

11. If PK𝐵 ∉ ADDR, set 𝐸 = 𝐸 + 𝑐𝑠 .

AddTransactions:(𝑡, 𝑡𝐶𝐵)

1. (𝑧𝑎, 𝑧𝑏, 𝑐𝑠, 𝑐 𝑓 , PK, 𝜎, PK𝐵) ← 𝑡

2. (𝑧𝐶𝐵, 𝑐𝑚, PK𝐶𝐵, 𝜎𝐶𝐵) ← 𝑡𝐶𝐵

3. Check that VerifyTransaction(𝑝𝑝, 𝑡,S) = 1

4. Check that VerifyTransaction(𝑝𝑝, 𝑡𝐶𝐵,S) = 1

5. 𝐶0 = LookupAddress(𝑧𝑏)

6. 𝐷0 = GetBalance(PK𝐶𝐵,S)

7. Update the state and information string:

(S2, info𝑆2) ← NewState(𝑝𝑝, {𝑡, 𝑡𝐶𝐵},S, info𝑆)

8. Check that 𝑐𝑚 = GetBalance(PK𝐶𝐵,S) − 𝐷0

9. If PK𝐵 ∈ ADDR, check that

𝑐𝑠 = LookupAddress(𝑧𝑏) −𝐶0

116

10. If VerifyState(𝑝𝑝,S2, info𝑆2) = 1, set

S = S2, info𝑆 = info𝑆2

11. Set 𝐶 = 𝐶 + LookupAddress(𝑧𝑏) −𝐶0

12. Set 𝐷 = 𝐷 + 𝑐𝑚

Definition A.7. A DPS Π is correct if, for all poly(_)-size adversariesA and large enough _, the

adversary wins INCOR with at most negligible probability:

𝑃𝑟 [INCOR(S,Π, _) = 1] ≤ 𝑛𝑒𝑔𝑙 (_)

INCOR(Π, _,A):

1. C samples 𝑝𝑝 ← Setup(1_), sending 𝑝𝑝 to A

2. C instantiates an oracle O based on Π

3. A issues queries to O

4. A sends a set of addresses {𝑧𝑖}𝐾𝑖=1 to C

5. C adds together in a variable 𝑣 all the balances of the addresses PK𝑖 corresponding to 𝑧𝑖 for

which PK𝑖 ∉ ADDR

6. C outputs 1 if 𝑣 +𝐶 > 𝐷 + 𝐸

A.2.2 Basic Data Structures

Account: An account a is a tuple (addr, PK, 𝑏𝑎𝑙, 𝑛) where:

1. addr is the address of a.

2. PK is the public key of a.

117

3. 𝑏𝑎𝑙 the balance of the account (non-negative).

4. 𝑛 the nonce of the block that contains the transaction that last modified a.

Note: Each PK does not have to have a unique address.

Transactions: There are two types of transactions:

1. Coinbase:

𝑡𝑐 = (addr, 𝑣, PK, 𝜎)

(a) addr: the address of the recipient

(b) 𝑣 : the value it receives

(c) 𝜎 : The digital signature of the transaction

2. Standard

𝑡 = (addr𝑠, addr𝑟 , 𝑣, 𝑓 , PK, 𝜎, PK𝑅)

(a) addr𝑠, addr𝑟 : the addresses of the sender and the receiver respectively

(b) 𝑣 the value to be transferred from the sender to the receiver (it is a positive integer)

(c) 𝑓 : Total mining fee provided

(d) 𝜎 : The signature of the transaction

(e) PK: the public key that validates 𝜎

(f) PK𝑅 : the public key of the recipient

A.2.3 Transaction Semantics

Setup: This algorithm is run once by a trusted third party to initialize the parameters of the IVC

and signature schemes.

NewTransaction & NewCoinbase: See specification above.

118

Algorithm 5 NewTransaction & NewCoinbase
Require: 𝑝𝑝, addr𝑠, addr𝑟 , 𝑣, 𝑓 , PK, SK, PK𝑅

procedure NewTx(𝑝𝑝, addr{𝑠,𝑟 }, 𝑣, 𝑓 , PK,SK, PK𝑅)
𝜎 ← Sign(SK, addr𝑠 ∥addr𝑟 ∥𝑣 ∥ 𝑓 ∥addr𝑠 .𝑛)
return (addr𝑠, addr𝑟 , 𝑣, 𝑓 , PK,𝜎, PK𝑅)

end procedure

Require: 𝑝𝑝, addr𝑟 , 𝑣, PK, SK
procedure CoinbaseTx(𝑝𝑝, addr𝑟 , 𝑣, PK,SK)

𝜎 ← Sign(𝑆𝐾, addr𝑟 ∥𝑣 ∥addr𝑟 .𝑛)
return (addr𝑟 , 𝑣, PK,𝜎)

end procedure

CreateAddress: CreateAddress(𝑝𝑝𝑠𝑖𝑔) → (PK, SK)

GetQuality: GetQuality(S𝑖) → 𝑞𝑖

GetBalance: GetBalance(PK,S𝑖) → a.𝑣, a the leaf in S𝑖 with a.PK = PK.

A.2.4 Digital Signature Schemes

• SC-Setup(1`) → 𝑝𝑝𝑠𝑖𝑔

• CA(𝑝𝑝𝑠𝑖𝑔) → (PK, SK)

• Sign(𝑆𝐾,𝑚) → 𝜎

• VS(PK,𝑚, 𝜎) → Yes/No

Completeness: VS(PK,𝑚, Sign(SK,𝑚)) = 1.

Security: For all non-uniform PPT A, the following is negligible in `:

Pr

𝜎 ∉ 𝑄 𝑝𝑝𝑠𝑖𝑔 ← SC-Setup(1`)

VS(PK,𝑚, 𝜎) = 1 (PK, SK) ← CA(𝑝𝑝𝑠𝑖𝑔)

(𝑚,𝜎) ← ASign(SK,·) (PK, 1`)

.

A has access to Sign(SK, ·), 𝑄 set of queries by A toSign, which knows PK and `. A cannot

query𝑚.

119

A.2.5 DPS Transition Functions

Algorithm 6 VerifyTx
Require: (𝑡 , 𝑇 𝑖)
1: procedure VerifyTx(𝑡,𝑇 𝑖)
2: if 𝑡 = (addr𝑠, addr𝑟 , 𝑣, 𝑓 , PK, 𝜎, PK𝑅) then
3: if 𝑣 < 0 then return 0
4: end if

5: Let a𝑠 the account in 𝑇 𝑖 s.t. a𝑠 .addr = addr𝑠
6: if a𝑠 .PK ≠ PK then return 0
7: end if

8: if a𝑟 .PK ≠ nil and a𝑟 .PK ≠ PK𝑅 then return 0
9: end if

10: 𝑚 ← addr𝑠 ∥addr𝑟 ∥𝑣 ∥ 𝑓 ∥a𝑟 .𝑛
11: if VS(PK,𝑚, 𝜎) = 0 then return 0
12: end if

13: if a𝑠 .𝑏𝑎𝑙 < 𝑣 + 𝑓 then return 0
14: end if

15: else if 𝑡𝑥 = (addr, 𝑣, PK, 𝜎) then
16: if VS(PK, addr∥𝑣 ∥addr.𝑛, 𝜎) = 0 then return 0
17: end if

18: Let a the account in 𝑇 𝑖 s.t. a.addr = addr
19: if a.PK ≠ nil and a.PK ≠ PK then return 0
20: end if

21: else return 0
22: end if

23: return 1
24: end procedure

A.3 Constraint System Eqivalence

Proof. Suffices to show a polynomial time transition betwee the two constraint systems.

Suppose V = (a, b, c); think of V as a vector in [𝑚]3𝑛 . For 𝑖 ∈ [𝑚], let 𝑇𝑖 ⊂ [3𝑛] be the set

of indices 𝑗 ∈ [3𝑛] such that V𝑗 = 𝑖 . Now define 𝑇L := {𝑇𝑖}𝑖∈[𝑚] - partition of [3𝑛] into non-

intersecting chunks. Define a permutation 𝜎 (𝑇L) on [3𝑛] in the following way: for each block𝑇𝑖

of 𝑇L , 𝜎 (𝑇L) contains a cycle going over all elements of 𝑇𝑖 . For simplicity we write 𝜎 = 𝜎 (𝑇L)

120

Algorithm 7 UpdateState
Require: (S𝑖, t, 𝑛)
Ensure: (S𝑖+1)
1: procedure UpdateState(S𝑖, t, 𝑛)
2: Parse S𝑖 ← (𝑇 𝑖, 𝑖, 𝑞𝑖, 𝑛𝑖), return 0 if this fails
3: 𝑁 ← |T |, 𝑇 𝑖0 ← 𝑇 𝑖 , 𝑣𝑇 𝑓 𝑒𝑒 ← 0
4: for 𝑗 ← 1, . . . , 𝑁 − 1 do
5: 𝑡 𝑗 ← (addr𝑠, addr𝑟 , 𝑣, 𝑓 , PK, 𝜎, PK𝑅)
6: if VerifyTx(𝑡 𝑗 ,𝑇 𝑖𝑗−1) = 0 then return 0
7: end if

8: 𝑇 𝑖𝑗 ← 𝑇 𝑖𝑗−1 // Initialize 𝑇
𝑖
𝑗

9: Define a𝑠 as leaf of 𝑇 𝑖𝑗−1 s.t. a𝑠 .addr = addr𝑠
10: Update 𝑇 𝑖𝑗 :
11: Set a𝑠 .𝑏𝑎𝑙 ← a𝑠 .𝑏𝑎𝑙 − 𝑡𝑥 𝑗 .𝑣 − 𝑡𝑥 𝑗 .𝑓 , a𝑠 .𝑛 ← 𝑛

12: Define a𝑟 as leaf of 𝑇 𝑖𝑗−1 s.t. a𝑟 .addr = addr𝑟
13: Update 𝑇 𝑖𝑗 :
14: Set a𝑟 .𝑏𝑎𝑙 ← a𝑟 .𝑏𝑎𝑙 + 𝑡𝑥 𝑗 .𝑣 , a𝑟 .𝑛 ← 𝑛

15: If a𝑟 .PK = nil, set a𝑟 .PK ← PK𝑅
16: 𝑣𝑇 𝑓 𝑒𝑒 = 𝑣𝑇 𝑓 𝑒𝑒 + 𝑡𝑥 𝑗 .𝑓
17: end for

18: 𝑡𝑁 ← (addr, 𝑣,PK, 𝜎)
19: if VerifyTx(𝑡𝑁 ,𝑇 𝑖𝑁−1) = 0 then return 0
20: end if

21: if 𝑣 ≠ 𝑣𝑚𝑖𝑛𝑡 + 𝑣𝑇 𝑓 𝑒𝑒 then return 0
22: end if

23: 𝑇 𝑖
𝑁
← 𝑇 𝑖

𝑁−1, a𝑚 leaf of 𝑇 𝑖
𝑁−1 s.t. a𝑚 .addr = addr𝑚

24: Update 𝑇 𝑖
𝑁
:

25: Set a𝑚 .𝑏𝑎𝑙 ← a𝑚 .𝑏𝑎𝑙 + 𝑣 , a𝑚 .𝑛 ← 𝑛

26: If a𝑚 .PK = nil, set a𝑚 .PK ← PK
27: 𝑞𝑖+1 ← 𝑞𝑖 + 1, S𝑖+1 = (𝑇 𝑖𝑁 , 𝑖 + 1, 𝑞𝑖+1, 𝑛)
28: return S𝑖+1
29: end procedure

121

Algorithm 8 VerifyState
Require: 𝑝𝑝, 𝐵𝑖, 𝜋𝑖, 𝐵𝑖+1, 𝜋𝑖+1
Ensure: {0, 1}
1: procedure VerifyState(𝑝𝑝, 𝐵𝑖, 𝜋𝑖, 𝐵𝑖+1, 𝜋𝑖+1)
2: if V(𝑣𝑘, 𝐵{𝑖,𝑖+1}, 𝜋{𝑖,𝑖+1}) = 0 then return 0
3: end if

4: if H(𝜋𝑖+1) > 𝑑 then return 0
5: end if

6: return 1
7: end procedure

Overloading notation, set the selector polynomials qL, qR, qO, qM, qC ∈ F[𝑋] defined for each

𝑖 ∈ [𝑛] by

qL(𝑔𝑖) := (qL)𝑖, qR(𝑔𝑖) := (qR)𝑖, qO(𝑔𝑖) := (qO)𝑖,

qM(𝑔𝑖) := (qM)𝑖, qC(𝑔𝑖) := (qC)𝑖 .

If (𝑥, 𝜔) is a relation L prepared for 𝑙 public inputs, then (𝑥′𝜔′) is a relation for L′ computed in

the following way:

1. PI(X) := ∑
𝑖∈[𝑙] −𝑥𝑖 · 𝐿𝑖 (𝑋)

2. fL, fR, fO ∈ F[𝑋] are defined by the following condition: ∀𝑖 ∈ [𝑛]

fL(𝑖) = xa𝑖, fR(𝑖) = xb𝑖, fO(𝑖) = xc𝑖 .

It is easy to check that such a transition can be reversed, which yields the proof. □

Remark 1: Note that calculation of 𝑥′ requires only the access to statement 𝑥 and no access to

secret witness 𝜔 .

Remark 2: Note that permutation 𝜎 was chosen in such a way that 𝜔 is a valid witness for L|𝑥

iff fL, fR, fO constructed as described before from a valid witness for L′|𝑥 ′ .

122

A.4 FRI Overview

Definition A.8. For a function 𝑓 : 𝑆 → F, let interpolant𝑓 be the unique degree < |𝑆 | polynomial

that satisfies interpolant𝑓 (𝑠) = 𝑓 (𝑠) for all 𝑠 ∈ 𝑆 . This polynomial can be constructed by Lagrange

interpolation.

Setup phase. In the setup phase, the prover and verifier agree on the following parameters

◦ A prime field F.

◦ A positive integer 𝑅 ∈ Z>0 and the rate 𝜌 = 2−𝑅 .

◦ A multiplicative domain 𝐷 = 𝐷 (0) = {𝜔,𝜔2, . . . , 𝜔𝑛} generated by an element 𝜔 = 𝜔0 ∈ F∗

of order 𝑛 = 2𝑘 for some 𝑘 ∈ N. For chosen 𝜌 = 2−𝑅 and 𝑛 = 2𝑘 the protocol will check if 𝑓

is of degree < 𝜌𝑛 = 2𝑘−𝑅 .

◦ The prover and verifier agree on a number of rounds 𝑟 < 𝑘 −𝑅 ∈ N and a sequence of sub-

domains 𝐷 (0), 𝐷 (1), 𝐷 (2), . . . , 𝐷 (𝑟) , constructed inductively as follows: suppose 𝐷 (𝑖) was al-

ready defined and generated (as a cyclic group) by𝜔𝑖 . Let 𝑞(𝑋) : F→ F be the map defined

by the rule: 𝑞(𝑋) = 𝑋 2. Then define 𝐷 (𝑖+1) = 𝑞(𝐷 (𝑖)). Note that 𝐷 (𝑖+1) is cyclic subgroup of

F∗ generated by 𝜔𝑖+1 = 𝜔2
𝑖 . Note that |𝐷 (𝑖) | = |𝐷 (0) |/2𝑖 and that ∀𝑖 ∈ {0, 1, . . . , 𝑟 − 1},

𝐷 (𝑖) can be split into cosets
⋃
𝑗 𝑠𝑖 𝑗𝐻

(𝑖) where 𝐻 (𝑖) is the kernel of the homomorphism

𝑞(𝑋) |𝐷 (𝑖) : 𝐷 (𝑖) → 𝐷 (𝑖+1) . Note that all cosets have equal size |𝐷 (𝑖) |/|𝐷 (𝑖+1) | = 2 and

the number of cosets 𝑗 = |𝐷 (𝑖) |/2𝑖+1.

When we say that prover commits to function 𝑓 on domain 𝐷 this means prover sends an

oracle containing 𝑓 |𝐷 i.e. all evaluations of function 𝑓 on domain 𝐷 .

Commit phase. In the commitment phase, the prover inductively constructs and commits to

a sequence of functions 𝑓 (0), . . . , 𝑓 (𝑟−1) and a sequence of coefficients 𝑎0, . . . , 𝑎𝑑 with which the

123

verifier will construct the final function 𝑓 (𝑟) .

◦ Input: a purported low degree polynomial 𝑓 (0) := 𝑓 ∈ RS[F, 𝐷 (0), 𝜌]. The prover commits

to 𝑓 (0) on 𝐷 (0) .

◦ For 0 ≤ 𝑖 < 𝑟 , given that 𝑓 (𝑖) was already defined (and committed to), the prover constructs

𝑓 (𝑖+1) : 𝐷 (𝑖+1) → F in the following way:

• The verifier sends a random 𝑥 (𝑖) ∈ F.

• For 𝑦 ∈ 𝐷 (𝑖+1) , let 𝑆𝑦 = {𝑥 ∈ 𝐷 (𝑖) : 𝑞(𝑥) = 𝑦} be the coset of 𝐷 (𝑖) mapped to 𝑦.

• Using interpolation, the prover constructs the polynomial

𝑝
(𝑖)
𝑦 (𝑋) := interpolant

𝑓 (𝑖) |𝑆𝑦 (𝑋),

and defines

𝑓 (𝑖+1) (𝑦) := 𝑝 (𝑖)𝑦 (𝑥 (𝑖)).

◦ If 𝑖 < 𝑟 − 1, the prover commits to the values of 𝑓 (𝑖+1) on 𝐷 (𝑖+1) . If 𝑖 = 𝑟 − 1 then 𝑓 (𝑟)

is a purported polynomial of degree < 𝜌 |𝐷 (𝑟) |, in which case the prover commits to its

coefficients 𝑎0, . . . , 𝑎𝑑 .

Query phase. In the query phase, the verifier (probabilistically) validates the proof sent by the

prover.

◦ Input: a sequence of oracles 𝑓 (0), . . . , 𝑓 (𝑟−1) , and coefficients 𝑎0, . . . , 𝑎𝑑 , with which the ver-

ifier constructs 𝑓 (𝑟) , by

𝑓 (𝑟) (𝑋) :=
𝑑∑︁
𝑘=0

𝑎𝑘𝑋
𝑘 ∈ RS[F, 𝐷 (𝑟), 𝜌] .

◦ Verifier generates a random 𝑠 (0) ∈ 𝐷 (0) and for all 0 ≤ 𝑖 < 𝑟 lets

124

1. 𝑠 (𝑖+1) := 𝑞(𝑠 (𝑖))

2. 𝑆 (𝑖) be the coset of 𝐻 (𝑖) in 𝐷 (𝑖) containing 𝑠 (𝑖) .

◦ For 0 ≤ 𝑖 < 𝑟 − 1 the verifier checks that given 𝑓 (𝑖) , the function 𝑓 (𝑖+1) was constructed

according to the protocol:

• She queries 𝑓 (𝑖) on all of 𝑆 (𝑖) , and

• computes 𝑝 (𝑖) = interpolant
𝑓 (𝑖) |

𝑆 (𝑖) , and

• performs a “round consistency" check:

𝑓 (𝑖+1) (𝑠 (𝑖+1)) = 𝑝 (𝑖) (𝑥 (𝑖)).

Note that in the last check, the function considered is 𝑓 (𝑟) which is in RS[F, 𝐷 (𝑟), 𝜌] by

construction. If all tests pass, the verifier accepts the proof. Otherwise, she rejects.

Remark: Instead of taking a family of nested sub-domains to be multiplicative subgroups it

is also possible to take the cosets of them. To be more precise, consider any shift 𝑔 ∈ F∗\𝐷 .

There is a modification to the FRI protocol operating over the domains 𝐷 (0) ′ = 𝑔𝐷 (0), 𝐷 (1)
′
=

𝑔𝐷 (1), . . . , 𝐷 (𝑟)
′
= 𝑔𝐷 (𝑟) The function mapping 𝐷 (𝑖) ′ to 𝐷 (𝑖+1) ′ is 𝑞′(𝑋) = 𝑞−1𝑋 2. The modified

version of FRI has the same security guarantees as the original one.

A.5 Supplementary Proofs

Proof of Theorem 12.2. It is immediate from the completeness of the FRI protocol that Algorithm 1

satisfies the completeness property for the given relation, which is verified directly by inspection.

We also assume the existence of a (Gen,Com) binding commitment tuple andmodel it as an oracle

to the IOP on domain 𝐷 .

125

For the soundness bound, it suffices to show that the only source of soundness error comes

from the FRI protocol. We concern ourselves with the situation when 𝑞(𝑋) passes the FRI check

and the verifier is convinced that 𝑞(𝑋) is 𝛿-close to some polynomial ℎ(𝑋) with deg (ℎ) < 𝑑 − 𝑙 .

This implies that, except at a 𝛿-fraction of points on domain 𝐷 , the following relation holds:

𝑓 (𝑋) = 𝑈 (𝑋) + ℎ(𝑋)
𝑙∏
𝑖=1
(𝑋 − 𝑧𝑖).

Note that 𝑡 (𝑋) = 𝑈 (𝑋) + ℎ(𝑋)∏𝑙
𝑖=1(𝑋 − 𝑧𝑖) is a polynomial of degree less than 𝑑 . From the

second equation we get that this polynomial is 𝛿-close to 𝑓 (𝑋) or that Δ(𝑓 , 𝑡) < 𝛿 . Moreover,

we have that ∀𝑖 ∈ [𝑙], 𝑡 (𝑧𝑖) = 𝑈 (𝑧𝑖) = 𝑦𝑖 by the definition of 𝑈 (𝑋). This means 𝑡 (𝑋) satisfies all

the requirements for the candidate polynomial 𝑔 in the definition of R𝛿 (pp). Prover and verifier

complexity results follow immediately by inspection of the IOP and the fact that the construction

of an interpolation polynomial of degree 𝑘 can be achieved with 𝑂 (𝑘 log3 𝑘) field operations.

□

Proof of Theorem 12.5. We construct the given IOP by using the LPC scheme equipped with an

additional oracle OD providing access toD for both parties. Initially, the prover P queries OD (𝑓)

and appends the output {𝑥𝑖,𝑤𝑖}`𝑖=1 to its initial message to the verifier V. Subsequently, P and V

simulate the LPC IOP for the input set 𝑆 = {𝑥𝑖,𝑤𝑖}`𝑖=1 ∪ {𝑧𝑖, 𝑦𝑖}𝑙𝑖=1 of ` + 𝑙 pairs. This is possible

as both parties have access to 𝑆 as the {𝑧𝑖, 𝑦𝑖}𝑙𝑖=1 were provided as public input. By the security

properties of the LPC scheme, except with probability 𝜖 (𝛿) the prover can convince the verifier

of the existence of some 𝑔 for which 𝑑𝑒𝑔(𝑔) < 𝑑 , Δ(𝑓 , 𝑔) < 𝛿 and ∀𝑖 ∈ [𝑙], 𝑗 ∈ [`] we have that

𝑔(𝑧𝑖) = 𝑦𝑖 and 𝑔(𝑥 𝑗) = 𝑤 𝑗 .

Suffices to argue that 𝑓 = 𝑔. We know by the properties of the distinguisher that with proba-

bility 1−[(𝛿), ∃𝑘 ∈ [`] for which ∀𝑔 ∈ 𝐿𝛿 (𝑓)\{𝑓 }, 𝑔(𝑥𝑘) ≠ 𝑓 (𝑥𝑘). However, from the knowledge

claim above we know that ∀𝑗 ∈ [`], 𝑔(𝑥 𝑗) = 𝑤 𝑗 where 𝑤 𝑗 = 𝑓 (𝑥 𝑗) (since it was an oracle query

response). This means that 𝑔(𝑥𝑘) = 𝑓 (𝑥𝑘) and, since Δ(𝑓 , 𝑔) < 𝛿 , we have that 𝑓 = 𝑔. □

126

Proof of Claim 12.6. We begin with the case that ` = 1. If at the setup step the choice of 𝑥 ∈ Fwas

random, by the Schwartz-Zippel lemma the probability that any degree 𝑑 polynomial 𝑔 ∈ 𝐿𝛿 (𝑓)

satisfies 𝑔(𝑥) = 𝑓 (𝑥) is:

Pr
𝑥
[𝑔(𝑥) − 𝑓 (𝑥) = 0] ≤ deg (𝑔(𝑋) − 𝑓 (𝑋))

|F| ≤ 𝑑

|F| .

Enumerating over all 𝑔 𝑗 ∈ 𝐿𝛿 (𝑓)\{𝑓 } with a union bound:

Pr
𝑥

⋃

𝑗∈|𝐿𝛿 |−1
𝑔 𝑗 (𝑥) − 𝑓 (𝑥) = 0

 ≤
𝑑

|F| · (|𝐿𝛿 | − 1).

For the multivariate case, the distinguisher needs to find at least one such point out of ` i.i.d

random samples. This will only fail if all ` random values are not separation points. The result

follows from the independence of the random samples, while the time complexity bound follows

from the fact that one evaluation of 𝑓 takes 𝑂 (𝑑) time. □

Proof of Theorem 12.7. The random sampling distinguisher alongside the FRI-based LPC scheme

define a PES that satisfies the above claim. The statement follows directly from Theorem 12.2 and

Claim 12.6, while the upper bound on the soundness of [is obtained using Theorem 11.3. □

A.6 RedShift Security Analysis

Below we provide a proof of Theorem 13.6. For clarity, we consider the completeness and knowl-

edge soundness cases separately. More specifically, the protocol satisfying the theorem statement

is RedShift(pp, PI, 𝑛,⊥, 𝑁 ; fL, fR, fO). For simplicity, we assume that any polynomial that uses the

IOPP schemes can be decomposed into parts that each have at most degree 𝑛, thus allowing us to

only require one RS code family for 𝑛. Note that here we ignore the mask polynomials by setting

a null value for 𝑘 .

127

A.6.1 Completeness

Assume P possesses a valid witness consisting of polynomials fL, fR, fO. which copy-satisfy 𝜎 .

Note that the addition of masking polynomials doesn’t change the values of fL, fR, fO on 𝐷 . It is

straightforward to check that 𝐹6(𝑋) is identically zero on 𝐷∗ by the definition of witness poly-

nomials, 𝐹1(𝑋), 𝐹2(𝑋), 𝐹3(𝑋), 𝐹4(𝑋) will be zero on 𝐷∗ by construction of 𝑃 (𝑋) and 𝑄 (𝑋). To

prove completeness of the protocol it is then enough to check that 𝐹5(𝑋) is identically zero on

𝐷∗. Using the properties of the Lagrange basis, this is equivalent for 𝑃 (𝑔𝑛+1) = 𝑄 (𝑔𝑛+1).

By definition of 𝑃 (𝑋) and 𝑄 (𝑋), the above becomes:

𝑛∏
𝑖=1

3∏
𝑗=1

(
𝑓 𝑗 (𝑔𝑖) + 𝛽 · 𝑘 𝑗𝑔𝑖 + 𝛾

)
=

𝑛∏
𝑖=1

3∏
𝑗=1

(
𝑓 𝑗 (𝑔𝑖) + 𝛽 · 𝜎′(𝑘 𝑗𝑔𝑖) + 𝛾

)
.

Since 𝜎′ = 𝜏 ◦ 𝜎 ◦ 𝜏−1, we rewrite this as follows:

𝑛∏
𝑖=1

3∏
𝑗=1

(
𝑓(𝑗−1)𝑛+𝑖 + 𝛽 · 𝜏

(
(𝑗 − 1)𝑛 + 𝑖

)
+ 𝛾

)
=

𝑛∏
𝑖=1

3∏
𝑗=1

(
𝑓(𝑗−1)𝑛+𝑖 + 𝛽 · 𝜏 ◦ 𝜎

(
(𝑗 − 1)𝑛 + 𝑖

)
+ 𝛾

)
.

Now we use the fact that 𝑓1, 𝑓2, 𝑓3 copy-satisfy 𝜎 : 𝑓(𝑗−1)𝑛+𝑖 = 𝑓𝜎 ((𝑗−1)𝑛+𝑖) . Enumerating products

on both sides proves equality, and hence completeness.

A.6.2 Knowledge Soundness

We require two auxiliary lemmas, proved in [Gabizon et al. 2019].

LemmaA.9. Let 𝑘 ∈ N. Fix 𝐹1, . . . , 𝐹𝑘 ∈ F[𝑋] and𝑍 ∈ F[𝑋]. Suppose that for some 𝑖 ∈ [𝑘], 𝑍 ∤ 𝐹𝑖 .

Then, except with probability 1
|F| over uniformly random 𝑎1, . . . , 𝑎𝑘 ∈ F, 𝑍 ∤ 𝐹 , where 𝐹 :=

∑𝑘
𝑖=1 𝑎𝑖𝐹𝑖 .

Lemma A.10. Let 𝑛 ∈ N. Fix a permutation 𝜎 of [𝑛], and 𝑎1, . . . , 𝑎𝑛 , 𝑏1, . . . , 𝑏𝑛 ∈ F. Suppose that

128

for some 𝑖 ∈ [𝑛] 𝑏𝑖 ≠ 𝑎𝜎 (𝑖) . Then except with probability 𝑛
|F| over random 𝛽,𝛾 ∈ F:

𝑛∏
𝑖=1
(𝑎𝑖 + 𝛽𝑖 + 𝛾) =

𝑛∏
𝑖=1
(𝑏𝑖 + 𝛽𝜎 (𝑖) + 𝛾) .

Let 𝑡1 and 𝑡2 denote the number of PES and LPC instances.

1. The PES is used on 𝑆𝜎1, 𝑆𝜎2, 𝑆𝜎3, qL, qR, qM, qO, qC at point 𝑦 ∈ F\𝐷 sent by V, hence 𝑡1 = 8.

Although technically required, we do not evaluate the PES on 𝐿1, 𝐿𝑛, 𝑍, 𝑆𝑖𝑑1, 𝑆𝑖𝑑2, 𝑆𝑖𝑑3 as these

polynomials are in reduced form and can be evaluated by V without any help from P. More

precisely, polynomials 𝑆𝑖𝑑 𝑗 for 𝑗 ∈ [3] are linear, 𝐿𝑖 (𝑋) for 𝑖 ∈ [𝑛 + 1] are of the form:

𝐿(𝑋) =
𝑐𝑖 (𝑋𝑛+1 − 1)
𝑋 − 𝑔𝑖

for some constant 𝑐𝑖 and 𝑍 (𝑋) is of the form:

𝑍 (𝑋) =
∏
𝑎∈𝐻 ∗
(𝑋 − 𝑎) = 𝑋𝑛 − 1

𝑋 − 1 .

2. LPC instances forwitness polynomials 𝑓1(𝑋) = fL(𝑋), 𝑓2(𝑋) = fR(𝑋), 𝑓3(𝑋) = fO(𝑋),𝑇0(𝑋),

𝑇1(𝑋),𝑇2(𝑋) (for𝑇 = 𝑇0 +𝑋𝑛𝑇1 +𝑋 2𝑛𝑇2) are evaluated at point 𝑦. For polynomials 𝑃 (𝑋) and

𝑄 (𝑋) they are evaluated at points 𝑦 and 𝑦 ·𝑔 (within one instance), giving 𝑡2 = 8. Note that

𝑡2 = 6 if we have 𝑇 instead of the optimized 𝑇0,𝑇1,𝑇2.

We begin by showing round-by-round soundness error. Suffices to construct a State function

using the transcript of the proof, which is of the following form:

tr := (𝑓1, 𝑓2, 𝑓3, 𝛽, 𝛾, 𝑃,𝑄, a,𝑇 , y, g · y,𝑤, tr𝐿𝑃𝐶)

129

where a = (𝑎1, ..., 𝑎6) and y, g · y ∈ F𝑁 while for 𝑗 ∈ [3],𝑤 :=

𝑇 (y), 𝑃 (y), 𝑃 (g · y), 𝑄 (y), 𝑄 (g · y), 𝑓 𝑗 (y), 𝑆𝑖𝑑 𝑗 (y), 𝑆𝜎 𝑗 (y)

the openings of each evaluated polynomial at y, g · y and tr𝐿𝑃𝐶 = (tr1
𝐿𝑃𝐶

, ..., tr
𝑡1+𝑡2
𝐿𝑃𝐶
) the transcript

of the LPC evaluation routines, where tr𝑖
𝐿𝑃𝐶

the transcript of the 𝑖-th LPC routine. Note that the

LPC routines have round-by-round soundness error 𝜖FRI and therefore admit a set of functions

State
𝑖
𝐿𝑃𝐶

for 𝑖 ∈ [𝑡1 + 𝑡2].

State(𝑝𝑝, PI, 𝑛,⊥, 𝑁 , tr)

1. If 𝑓1, 𝑓2, 𝑓3, 𝑃,𝑄,𝑇 𝛿-close to codewords 𝑓1, 𝑓2, 𝑓3, 𝑃, �̂�,𝑇 :

(a) If 𝑓1, 𝑓2, 𝑓3 copy-satisfy 𝜎 and 𝑞C + PI + 𝑞L𝑓1 + 𝑞R 𝑓2 + 𝑞O𝑓3 + 𝑞M𝑓1𝑓2‘ = 0, accept

(b) If 𝑍 (𝑋) |𝐹𝑖 (𝑋) for all 𝑖 ∈ [6], accept

(c) If any element of a is empty, reject

(d) If 𝑍 (𝑋) |∑6
𝑖=1 𝑎𝑖𝐹𝑖 (𝑋), accept

(e) If any element of y is empty, reject

(f) If ∀𝑚 ∈ [𝑁],∑6
𝑖=1 𝑎𝑖𝐹𝑖 (𝑦𝑚) = 𝑇 (𝑦𝑚) · 𝑍 (𝑦𝑚), accept

(g) Reject

2. If tn𝑖
𝐿𝑃𝐶

=⊥ for some 𝑖 ∈ [𝑡1 + 𝑡2], reject.

3. Return ∩𝑡1+𝑡2
𝑖=1 State

𝑖
𝐿𝑃𝐶
(𝑝𝑝, PI, 𝑛, 𝑁 , tr𝑖

𝐿𝑃𝐶
).

Note that tr =⊥, State(𝑝𝑝, PI, 𝑛,⊥, 𝑁 ,⊥) = 0. We begin with Step 1, when the (partial) tran-

script provided contains a set of functions 𝛿-close to codewords. Suppose that we have a non-

satisfying assignment. By definition of the constraint system argument, this is a set of codewords

𝑓1, 𝑓2, 𝑓3 that either (1) don’t copy-satisfy 𝜎 , or (2) don’t satisfy the equality 𝑞C + PI +𝑞L𝑓1 +𝑞R 𝑓2 +

130

𝑞O𝑓3 +𝑞M𝑓1𝑓2‘ = 0 on 𝐷∗. In this case, part (a) never holds. Part (b) outputs accept if 𝑍 (𝑋) divides

all of the provided 𝐹𝑖 , which can be inferred from the transcript using 𝑓1, 𝑓2, 𝑓3, 𝛽, 𝛾, 𝑃, �̂� . This

however means that it divides 𝐹6, and therefore that the second condition in part (a) is satisfied.

Thus the only way for part (b) to output success is if the 𝑓1, 𝑓2, 𝑓3 don’t copy-satisfy 𝜎 and all 𝐹𝑖

are divisible by 𝑍 . This happens with probability at most 1/|F|. This is because by the proof of

completeness property:

𝑞∏
𝑖=1

3∏
𝑗=1

(
𝑓(𝑗−1)𝑞+𝑖 + 𝛽 · 𝜏

(
(𝑗 − 1)𝑞 + 𝑖

)
+ 𝛾

)
=

𝑞∏
𝑖=1

3∏
𝑗=1

(
𝑓(𝑗−1)𝑞+𝑖 + 𝛽 · 𝜏 ◦ 𝜎

(
(𝑗 − 1)𝑞 + 𝑖

)
+ 𝛾

)
. (•)

However, P doesn’t posses a valid witness (else part (a) would succeed) and, since 𝑞 = 1 here,

Lemma A.10 gives:

Pr(• holds | 𝑓1, 𝑓2, 𝑓3 don’t copy-satisfy 𝜎) ≤
1
|F| .

The probability of moving to accept in (d) is also upper bounded by 1/|F|, since a is randomly

distributed (and some 𝐹𝑖 is not divisible by 𝑍 , else (b) would accept); the result follows from

Lemma 2. Part (f) moves to accept only in the case where no𝑇 exists for which the given equality

holds identically, else part (d) would have accepted. Since the evaluations are at a random point

y ∈ F, the probability that they coincide for two different polynomials is bounded above as

4𝑛/|F\𝐷 |, since the degrees of ∑6
𝑖=1 𝑎𝑖𝐹𝑖,𝑇 · 𝑍 are at most 4𝑛 and thus the polynomials can only

agree on up to 4𝑛 points without being identically equal. Using the Schwartz-Zippel lemma and

taking a union bound over all possible tuples (note that the Johnson bound 𝐽𝜌,a upper bounds the

list size) yields an error term of 𝜖IOP := 𝐽
𝑡2
𝜌,a · 4𝑛/|F\𝐷 |. To succeed for 𝑁 independently random

points, this yields an error term of 𝜖𝑁
IOP

. This gives a round-by-round error-contribution term of

131

𝜖1 = max
(
1/|F|, 𝜖𝑁

IOP

)
in the case when the input polynomials are 𝛿-close to codewords.

If the transcript terminates within the first step, then we have that the error is at most 𝜖1 by

the above analysis. In the case that the transcript ends after this, it must hold that there exists at

least one of the prover provided oracles that is not 𝛿-close to a codeword. We evaluate State𝑖
𝐿𝑃𝐶

∀𝑖 ∈ [𝑡1 + 𝑡2] and an accepting output happens only if all transcripts tr𝑖
𝐿𝑃𝐶

for 𝑖 ≤ 𝑡1 + 𝑡2 lead to

accepting states. However, at least one function is not 𝛿-close to a codeword, which would add

𝜖FRI soundness error. Let the corresponding transcript of this function be tn𝑖
𝐿𝑃𝐶

, and notice that

by the soundness of the LPC scheme, Pr(State𝑖
𝐿𝑃𝐶
(𝑝𝑝, PI, 𝑛, 𝑁 , tr𝑖

𝐿𝑃𝐶
) = 1) ≤ 𝜖FRI. By the Frechet

inequality, the probability over a conjunction of events is upper bounded by the minimum of the

probabilities of the individual events. We thus get that Step 3 has round-by-round soundness

upper bounded by 𝜖FRI.

Remains to show that if State outputs 0, then so will the verifier. There are two situations in

which State rejects a full transcript: if none of parts (a), (b), (d), (f) accept, or if some State𝑖
𝐿𝑃𝐶

rejects. In the former, the verifier will output 0 since the final step in verification will fail as

otherwise step (f) would have passed. In the latter, rejection by State
𝑖
𝐿𝑃𝐶

means that the verifier

for the LPC will also fail. However, this means that the verifier for the whole IOP fails, as the

second last step in verification is to check that all LPC/PES instances verify.

The extractor E(𝑝𝑝, PI, 𝑛,⊥, 𝑁 , tr) with access to the first three functions as the transcript

runs the Guruswami-Sudan list-decoding algorithm and returns the codewords 𝑓1, 𝑓2, 𝑓3 𝛿-close

to 𝑓1, 𝑓2, 𝑓3. If State moves to accept with probability greater than max (𝜖1, 𝜖FRI), then 𝑓1, 𝑓2, 𝑓3 all

copy-satisfy 𝜎 and identically satisfy 𝑞C + PI + 𝑞L𝑓1 + 𝑞R 𝑓2 + 𝑞O𝑓3 + 𝑞M𝑓1𝑓2‘ = 0, as part (a) has

to accept in step 1 of State. This is by the round-by-round soundness analysis above, which

bounds the probability of moving to an accepting state from an invalid starting witness to less

than max (𝜖1, 𝜖FRI).

132

A.6.3 Zero-Knowledge

Suffices to show that there exists a simulator 𝑆 not possessing a valid witness for L such that 𝑆

is able to generate a transcript ⟨𝑆⟩ which is indistinguishable from the view of an honest prover-

verifier interaction up to 𝑧. Since we need perfect zero knowledge, we will show that 𝑧 = 0. For

simplicity we denote the transcript in this context as the random variables ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩, where

𝑎𝑖 represents either the verifier’s messages/queries or the prover’s responses to the corresponding

queries. Note that the transcript doesn’t capture any information about the oracles themselves:

we treat all oracles as ideal and hence as exposing no data except for the elements sent in response

to the verifier’s queries (which are encoded inside 𝑎𝑖). This is a public-coin protocol in which all

of the verifier’s queries are randomly distributed field elements.

We are going to construct the simulator 𝑆 and transcript ⟨𝑆⟩ in the following way: we will

set as many variables of the transcript as possible to be uniformly and randomly distributed. All

remaining values will be uniquely fixed by the choice of the previous random variables. We will

then show that such an approach finally results in the requirement for the witness polynomials

𝑓𝑖 to have uniformly and randomly distributed values over some domains 𝐾𝑖 (𝐾𝑖 are in general

different for eachwitness polynomial). Thenwewill show that adding to eachwitness polynomial

a masking polynomial 𝐻𝑖 (𝑋) of degree at least |𝐾𝑖 | is enough to achieve the required uniform

distribution of values over 𝐾𝑖 , which suffices for the proof. More specifically, to retain soundness

we will add masking polynomials of the form 𝑍 (𝑋)𝐻𝑖 (𝑋), as we don’t want to change the values

of 𝑓𝑖 (𝑋) on the domain 𝐷∗ defined by 𝑍 (𝑋).

We can rewrite the transcript of RedShift in the following form:

⟨𝛽,𝛾, 𝑧,T ⟨𝑓1⟩,T ⟨𝑓2⟩,T ⟨𝑓3⟩,T ⟨𝑇 ⟩,T ⟨𝑃⟩,T ⟨𝑄⟩⟩,

where T ⟨𝑓 ⟩ denotes the part of the transcript corresponding to the LPC with respect to the

witness oracle 𝑓 . Note that we do not list the transcripts corresponding to the instances of the

133

elements that are precomputed as part of the public parameters.

Let 𝛽,𝛾 to be uniformly randomly distributed over F and 𝑦 to be uniformly and randomly

distributed over F\𝐻 . As those values are also taken at random on exactly the same domains by

a honest verifier during the actual interaction with the prover, this part of the transcript in ⟨𝑆⟩

and ⟨𝑃,𝑉 ⟩ is equidistributed. For ⟨𝑆⟩ we also take the openings of each witness function except

for 𝑇 (𝑋), 𝑃 (𝑋), 𝑄 (𝑋) to be uniformly randomly distributed over F. The evaluation of 𝑇 (𝑋) at

𝑦 is uniquely determined for any true transcript ⟨𝑃,𝑉 ⟩ and hence the same relation between

variables should hold for the simulator’s transcript ⟨𝑆⟩ for them to be indistinguishable. Note, we

have used the fact that 𝑦 ∉ 𝐻 here: in this case 𝑍 (𝑦) ≠ 0 and so we can obtain a unique value for

the RHS of (1) that will satisfy (1) for any random choice of evaluations on LHS. Similarly for the

values of 𝑃 (𝑋) and 𝑄 (𝑋): by construction, these values are uniquely specified based on 𝑓1, 𝑓2, 𝑓3.

At any point when we sample a random element for the value of a witness polynomial 𝑓𝑖 (𝑔 𝑗) for

𝑔 𝑗 ∈ 𝐻 ∗ (which we have not sampled before), we make sure that the values of𝑇 (𝑔 𝑗), 𝑃 (𝑔 𝑗), 𝑄 (𝑔 𝑗)

are updated so as to satisfy the above constraints. Note that this means we also need to sample

𝑓𝑘 (𝑔 𝑗), 𝑘 ∈ [3]\{𝑖} as this is needed for 𝑃,𝑄,𝑇 . We keep track of all such oracle calls and return

the provided value in the case of repeated queries, retaining consistency. In the analysis below,

we implicitly do this check (and update) whenever it is stated that we randomly sample a new

element as the evaluation of some function of a witness polynomial.

We now analyze the transcript T (𝑓) for a given witness polynomial where the LPC is instan-

tiated with FRI. In the actual interaction between the prover and verifier the transcript T ⟨𝑓 ⟩ is

of the following form:

134

𝑖1, 𝑖2, . . . , 𝑖𝑘

𝑧1, 𝑧2, . . . , 𝑧𝑘

𝑥 (0), 𝑥 (1), . . . , 𝑥 (𝑟−1)

𝑎0, 𝑠
(0)

𝑞 (0) (𝑠 (0)), 𝑞 (0) (𝑡 (0)), . . . , 𝑞 (𝑟−1) (𝑠 (𝑟−1)), 𝑞 (𝑟−1) (𝑡 (𝑟−1))

where:

1. 𝑖1, 𝑖2, . . . , 𝑖𝑘 ∈ F are the points at which the verifier asks to open oracle 𝑓 . 𝑘 = 1 for a single-

point evaluation (conducted for witness polynomials 𝑓1, 𝑓2, 𝑓3,𝑇 at 𝑦) and 𝑘 = 2 for double

evaluation (conducted for 𝑃 and 𝑄 at the points 𝑦 and 𝑔 · 𝑦).

2. 𝑧1, 𝑧2, . . . , 𝑧𝑘 are the corresponding prover-sent openings.

3. 𝑥 (0), 𝑥 (1), . . . , 𝑥 (𝑟−1) are random elements of F sent by the verifier during the FRI COMMIT

phase, which is conducted with respect to the quotient function:

𝑞(𝑋) = 𝑞 (0) (𝑋) = 𝑓 (𝑋) −𝑈 (𝑋)∏𝑘
𝑙=1(𝑋 − 𝑖𝑙)

.

4. 𝑎0 is the coefficient of 𝑓 (𝑟) ∈ F sent by the prover at the end of the FRICOMMIT phase. Note

that according to the remark at the end of the FRI section we assume all our instantiations

of FRI are fully unrolled and hence that 𝑓 (𝑟) (𝑥) is constant. The proof for the general case

deg(𝑓 (𝑟)) > 0 is only a little more involved and is handled in a similar fashion.

5. 𝑠 (0) ∈ 𝐷 is the value chosen by the verifier at the beginning of the FRI QUERY phase.

6. Every 𝑠 (𝑖+1) = 𝑞(𝑠 (𝑖)) (for the definition of 𝑞(𝑥) refer to FRI section). 𝑠 (𝑖), 𝑡 (𝑖) is the coset of

135

𝑠 (𝑖+1) .

The simulated transcript ⟨𝑆⟩ of FRI on 𝑓 is constructed in the following way:

1. The point 𝑖 (or two points (𝑖1, 𝑖2)) are already fixed by the previous history of ⟨𝑆⟩: i.e. 𝑖 = 𝑦

or (𝑖1, 𝑖2) = (𝑦,𝑔 · 𝑦).

2. Similarly for the corresponding evaluations 𝑧1 (or (𝑧1, 𝑧2)): recall that they are either chosen

at random (for witness polynomials 𝑓1, 𝑓2, 𝑓3) or defined uniquely by all the previous values

(for 𝑇,𝑄, 𝑃).

3. The values 𝑥 (𝑖) are distributed uniformly over F for an honest verifier𝑉 . We take the same

approach in the simulator 𝑆 : in ⟨𝑆⟩ every 𝑥 (𝑖) is chosen uniformly at random from F.

4. For ⟨𝑆⟩ we take 𝑠 (0) to be uniformly random over 𝐷 = 𝐷 (0) .

5. In ⟨𝑆⟩ the values of 𝑞 (0) (𝑠0) and 𝑞 (0) (𝑡 (0)) are also taken uniformly at random over F.

6. Recall that in the FRI protocol we have:

𝑞 (𝑖+1) (𝑠 (𝑖+1)) = 𝑝 (𝑖)
𝑠 (𝑖+1)
(𝑥 (𝑖))

where:

𝑝
(𝑖)
𝑠 (𝑖)
(𝑋) := interpolant

𝑞 (𝑖) | {𝑠 (𝑖) ,𝑡 (𝑖) } (𝑋),

hence the value of every 𝑞 (𝑖+1) (𝑠 (𝑖)) is uniquely determined by the values of 𝑞 (𝑖) (𝑠 (𝑖)) and

𝑞 (𝑖) (𝑡 (𝑖)) that were chosen at the previous iteration. In the simulator transcript, this relation

between 𝑞 (𝑖) (𝑠 (𝑖)), 𝑞 (𝑖) (𝑡 (𝑖)), 𝑞 (𝑖+1) (𝑠 (𝑖+1)) should remain unchanged. Since we have fixed the

values of 𝑞 (0) (𝑠 (0)), 𝑞 (0) (𝑡 (0)) above, 𝑞 (1) (𝑠 (1)) in ⟨𝑆⟩ is then uniquely determined.

7. We proceed by induction: to fix the value 𝑞 (𝑖) (𝑠 (𝑖)) we choose the value 𝑞 (𝑖) (𝑡 (𝑖)) to be

uniformly randomly distributed over F and compute 𝑞 (𝑖+1) (𝑠 (𝑖+1)) for 𝑖 ∈ [𝑟 − 2]\{1}.

136

Figure A.1: FRI Transcript. Bold lines separate the adjacent levels of FRI, green blocks illustrate the values
that are taken uniformly at random, yellow blocks represent the values that are uniquely determined by

the coset of the previous layer, while red blocks have no impact on the construction of ⟨𝑆⟩.

8. Compute 𝑎0 based on 𝑞 (𝑟−1) (𝑠 (𝑟−1)) and 𝑞 (𝑟−1) (𝑡 (𝑟−1)).

Remains to show that this achieves the same distribution for transcripts in the honest prover-

verifier interaction ⟨𝑃,𝑉 ⟩. First, for all witness polynomials (except for 𝑇, 𝑃,𝑄) we want their

values at 𝑦 to look like randomly distributed values over F. Moreover, due to our construction of

⟨𝑆⟩ we want the values

𝑞 (0) (𝑠 (0)), 𝑞 (0) (𝑡 (0)), 𝑞 (1) (𝑡 (1)), 𝑞 (2) (𝑡 (2)), . . . , 𝑞 (𝑟−1) (𝑡 (𝑟−1))

to look uniformly random. In order to show this we need the following lemma:

Lemma A.11. Let 𝑓 (𝑋) denote the interpolation polynomial of 𝑍 = {𝑧1, 𝑧2, . . . , 𝑧𝑛} over domain

𝐼 = {𝑖1, . . . , 𝑖𝑛}. Let 𝑥 ∈ F be different from all 𝑖2, . . . 𝑖𝑛 . If 𝑧1 is uniformly random over F then 𝑓 (𝑥)

is also uniformly random over F.

Proof. Recall the Lagrange interpolation polynomial:

𝑓 (𝑋) =
𝑛∑︁
𝑗=1

∏
𝑘≠ 𝑗

𝑋 − 𝑖𝑘
𝑖 𝑗 − 𝑖𝑘

𝑧 𝑗 .

137

Fix 𝑥, 𝑖1, . . . , 𝑖𝑛 and 𝑧1, . . . , 𝑧𝑛 , 𝑓 (𝑥) as a function of 𝑧1 equals:

𝑓 (𝑥) = 𝑎𝑧1 + 𝑏.

where 𝑎, 𝑏 - constants ∈ F. Note that:

𝑎 =
∏
𝑘≠1

𝑥 − 𝑖𝑘
𝑖1 − 𝑖𝑘

≠ 0,

provided 𝑥 being different from all of 𝑖2, . . . 𝑖𝑛 . For a linear function, the claim follows by the

randomness of 𝑧1. □

Consider 𝑠 (01) and 𝑡 (01) (the coset of 𝑡 (1)). Indeed, at least one of 𝑠 (01) or 𝑡 (01) is unequal to

𝑥 (0) . Without loss of generality assume 𝑡 (01) ≠ 𝑥 (0) . We use Lemma A.11 for 𝐼 = {𝑠 (01), 𝑡 (01)},

𝑍 = {𝑞 (0) (𝑠 (01)), 𝑞 (0) (𝑡 (01))} and 𝑥 = 𝑥 (0) which implies that a uniform distribution of 𝑞 (0) (𝑡 (01))

results in a uniform distribution for 𝑞 (1) (𝑡 (1)), independent of the value of 𝑞 (0) (𝑠 (01)).

We proceed by induction through repeated use of Lemma A.11. To achieve a uniformly ran-

dom distribution for𝑞 (2) (𝑡 (2)) we need a uniformly random distribution for one of the values from

the previous level: 𝑞 (1) (𝑠 (12)) or 𝑞 (1) (𝑡 (12)). Assume that 𝑠 (12) ≠ 𝑥 (1) (hence satisfying the con-

ditions of Lemma A.11). The uniform distribution of 𝑞 (2) (𝑡 (2)) then follows from the uniformly

random distribution of one of 𝑞 (1) (𝑠 (12)) which in turn follows from the uniform distribution of

𝑞 (0) (𝑠 (02)). The same logic is then applied for all downstream layers of FRI. This is illustrated in

Fig. A.1.

Finally, to achieve the same distribution of variables in transcripts ⟨𝑃,𝑉 ⟩ and ⟨𝑆⟩ we need to

add more “degrees of freedom" for each witness polynomial 𝑓𝑖, 𝑖 ∈ [3]. More precisely, we want

138

the evaluation:

𝑞 (0) (𝑠 (0)), 𝑞 (0) (𝑡 (0)), 𝑞 (0) (𝑡 (01)),

𝑞 (0) (𝑠 (02)), . . . (𝑟𝑖 + 1 values in total)

over the set 𝐾 ′𝑖 = {𝑠 (0), 𝑡 (0), 𝑡 (01), 𝑠 (02), . . .} on the top level of FRI to be uniformly random for each

𝑖 ∈ [3]. Now, recall that:

𝑞 (0) (𝑋) = 𝑞(𝑋) = 𝑓 (𝑋) −𝑈 (𝑋)∏𝑘
𝑙=1(𝑋 − 𝑖𝑙)

. (∗∗)

In this case the sets {𝑖1, . . . , 𝑖𝑘} and𝐷 are disjoint. This in turn means that a uniformly random

distribution of values of 𝑞 (0) (𝑋) over 𝐾 ′𝑖 is exactly the same as the uniformly random distribution

of values of 𝑓𝑖 over the same domain (as all other terms in (∗∗) are now fixed by previous consid-

erations). Plugging in the the requirement for 𝑓𝑖 (𝑦) to be also uniformly randomly distributed we

arrive at the set 𝐾𝑖 = 𝐾
′
𝑖 ∪ 𝑦 with |𝐾𝑖 | = 𝑟𝑖 + 2 at which the values of 𝑓𝑖 should look like random

elements in F for 𝑖 ∈ [3].

Since𝑇, 𝑃,𝑄 are each fully specified by 𝑓1, 𝑓2, 𝑓3 on𝐷 , we need to add to𝐾𝑖 any potential oracle

queries in the FRI instances for 𝑇, 𝑃,𝑄 that sampled values for which the 𝑓𝑖 were not already

queried. Denote the number of these new calls by 𝑟𝑇 , 𝑟𝑃 , 𝑟𝑄 . Since for all of 𝑇, 𝑃,𝑄 queried at

a point 𝑔 ∈ 𝐷 the values of 𝑓𝑖 (𝑔) have to also be queried if they were not queried already, any

potential extra queries due to these variables are added to the respective degrees of all three

witness polynomials 𝑓𝑖 . To achieve this property, it is enough to replace 𝑓𝑖 (𝑋) by 𝑓
′
𝑖 (𝑋) = 𝑓 (𝑋) +

𝐻𝑖 (𝑋)𝑍 (𝑋) where 𝐻𝑖 (𝑥) is a random polynomial of degree 𝑟𝑖 + 𝑟𝑇 + 𝑟𝑃 + 𝑟𝑄 + 1.

139

A.7 FRI parameters

As described in the main text of the paper and in particular in Section 13.3, one has the freedom

to pick FRI parameters that also affect contributions into the soundness error of RedShift due to

the list size |𝐿 |. In general, smaller list sizes will lead to a smaller 𝛿 parameter (this is intuitively

expected, as a larger list size requires less sensitivity) that in turn reduces FRI soundness for a

chosen domain 𝐷 , parameter 𝜌 and number of queries. Alternatively, one can pick another limit

in the FRI soundness formula

𝑝 (𝜌, a) =
(
1 −𝑚𝑖𝑛

{
𝛿0, 𝐽a (𝐽a (1 − 𝜌))

}
+ a log |𝐷 |

)
and set 𝛿0 = (1 − 𝜌)/2 to be in the unique decoding radius. In this case list size |𝐿 | = 1, but

FRI has smaller soundness for the same number of queries. This means that one has to pay

particular attention to the final system soundness as described in Section 13.4: for in the case

where 𝜖1, 𝜖𝐹𝑅𝐼 ∼ 𝜖1 one should also consider the case of the limit 𝛿0 = (1 − 𝜌)/2 in the FRI

soundness term and can recalculate 𝜖1 and thus a final soundness in case of list size |𝐿 | = 1. Such

checks are also important if one would want to reduce the field size for a corresponding reduction

in proof size.

A.8 Proof Size Optimizations

There are various options that can reduce the proof size. Some of the are described in detail in

[Chiesa et al. 2019b]. There are two essential parts to check satisfiability at the random point 𝑦:

1. Consistency between polynomial openings at 𝑦. The prover sends the purported evalua-

tions to the verifier and these values are used for two subroutines:

(a) Check the equations from Section 13 at 𝑦.

140

(b) Simulate oracles to the quotient function 𝑞(𝑦).

2. Proximity testing performed by the invocation of FRI.

Merging Oracles: As described in [Chiesa et al. 2019b], the prover can join the evaluations of the

different polynomials over the domain 𝐷 into a single oracle by placing the corresponding values

into the same leaf of the Merkle tree. This reduces the total number of Merkle paths required for

authentication, which is a bottleneck for proof size. We can perform such a joining operation for

the following sets of polynomials:

1. Constraint polynomials: selectors𝑞𝐿, 𝑞𝑅, 𝑞𝑂 , 𝑞𝑀 , 𝑞𝐶 and permutation polynomials 𝑆𝑖𝑑1, 𝑆𝜎1, 𝑆𝜎2, 𝑆𝜎3 ,

as all those are independent and prepared at setup.

2. Witness polynomials: 𝑓𝐿, 𝑓𝑅, 𝑓𝑂 .

3. Grand product polynomials: 𝑃,𝑄 .

4. Polynomials 𝑇0,𝑇1,𝑇2 for which

𝑇 (𝑋) = 𝑋 2𝑛𝑇2(𝑋) + 𝑋𝑛𝑇1(𝑋) +𝑇0.

While we initially have to provide 17 independent Merkle paths for the authentication of

various oracle values, this optimization reduces their number to 4, directly reducing proof size

and verification time. This is due to the smaller number of prover-provided Merkle paths which

imply a smaller number of hash function invocations, which are the current verification time

bottleneck. Such an argument universally applies to all the optimization described below that

also reduce proof sizes.

Bitreversed Domain Element Enumeration as Merkle Tree Leaves: Another important op-

timizations for FRI is to use “bitreverse” enumeration when placing the claimed LDE values into

141

the Merkle tree. In this case, values that form the coset required for the FRI “folding” step are

always adjacent and can thus be placed in the same leaf (combined with the optimization below),

sharing a single Merkle path per FRI intermediate oracle query step. We do not use this optimiza-

tion in the prototype implementation.

Concatenating Merkle Tree Leaves: We can place more values into the leaves of every Merkle

tree used to instantiate the oracles. This optimization allows us to use a larger ‘localization pa-

rameter’ for FRI and thus reduce the number of intermediate oracles. In practice implementations

follow an adaptive strategy where the localization parameter is large (usually 8) for the initial FRI

stages when the Merkle path is “long” and decreases it when the tree becomes more shallow.

Other optimizations exist: e.g. performing proof-of-work on top of challenge values obtained

from the transcript to reduce the number of required FRI queries (as used in [StarkWare 2022])

and other estimates for the number of required queries. To the best of our knowledge, there is no

public analysis for such optimizations and we thus do not use them in our analysis.

For completeness we should also mention that for a substantial number of queries of Merkle

path elements that are close to the root are often duplicate between queries and thus it may be

beneficial to send them once, only later sending the values that are missing to complete the path

to the leafs. One can also perform a smaller number of FRI “folding” steps and output not just

a single coefficient of the claimed low degree polynomial, but settle on a larger degree based on

the expected number of queries.

A.9 Batched FRI

Consider the following theorem found in [Ben-Sasson et al. 2018a]. We can define 𝐽 [𝑘]a (_) :=

𝐽a (𝐽a (· · · (𝐽a (_)))), where there are 𝑘 iterations of the function 𝐽a . We also denote the relative

142

hamming distance of set 𝑆 ⊆ F𝑛 as

Δ(𝑆) = min{Δ(𝑤,𝑤0) |𝑤,𝑤0 ∈ 𝑆,𝑤 ≠ 𝑤0}.

Theorem A.12. Let 𝑉 ⊆ F𝑛 be a linear space over a finite field F with Δ(𝑉) = _. Let 𝑢∗ ∈ F𝑛 and

𝜖 > 0 satisfy 𝛿 < 𝐽
[𝑙+1]
𝜖 (_). For 𝑢1, 𝑢2, . . . , 𝑢𝑙 ∈ F𝑛 define

𝐴 =

{
𝛼 ∈ F∗

�����Δ(𝑢∗ + 𝑙∑︁
𝑖=1

𝛼𝑖𝑢𝑖,𝑉) < 𝛿
}
.

If |𝐴| > 𝑙 · (2/𝜖)𝑙+2, then ∀𝑗 ∈ [𝑙], ∃𝑣∗, 𝑣 𝑗 ∈ 𝑉 such that:�����
{
𝑖

����� (𝑢∗𝑖 = 𝑣∗𝑖) ∧
(
𝑙∧
𝑗=1
(𝑢 𝑗)𝑖 = (𝑣𝑙)𝑖

)}����� ≥ (1 − 𝛿 − 𝜖)𝑛,
where (𝑢 𝑗)𝑖 denotes the 𝑖-th coordinate of 𝑢 𝑗 and 𝑖 ∈ [𝑛].

In particular, Δ(𝑢∗, 𝑣∗) ≤ 𝛿 + 𝜖 and ∀𝑖 ∈ [𝑙] :

Δ(𝑢𝑖, 𝑣𝑖) ≤ 𝛿 + 𝜖.

Specifying this theorem for 𝑉 = RS[F, 𝐷, 𝜌] (for which _ = Δ(𝑉) = 1 − 𝜌), the contrapositive

yields the following corollary:

Corollary A.13. Let 𝑉 = RS[F, 𝐷, 𝜌] be the family of RS-codes. Let 𝜖 ∈ (0, 1), 𝛿 > 0 satisfy

𝛿 < 𝐽
[𝑙]
𝜖 (1 − 𝜌). Let 𝑙 ≥ 2 ∈ N and 𝑢1, 𝑢2, . . . , 𝑢𝑙 ∈ F𝑛 , such that there exists 𝑖 ∈ [𝑙] for which

Δ(𝑢𝑖,𝑉) > 𝛿 + 𝜖 . Then it holds that:

|𝐴| ≤ (𝑙 − 1)
(
2
𝜖

)𝑙+1
.

We sketch a batched FRI protocol, the correctness of which is a trivial consequence of the

143

previous corollary.

Batched FRI protocol:

1. P publishes oracles to 𝑓1, . . . , 𝑓𝑘 .

2. V selects random 𝛼 ∈ F∗ and sends it to P.

3. P and V perform FRI w.r.t 𝑓 =
∑𝑘
𝑖=1 𝛼

𝑖−1𝑓𝑖 .

4. V accepts if the previous step accepts.

144

Bibliography

Abraham, I. and Dolev, D. (2015). Byzantine agreement with optimal early stopping, optimal re-

silience and polynomial complexity. In Proceedings of the forty-seventh annual ACM symposium

on Theory of Computing, pages 605–614.

Adler, J. and Quintyne-Collins, M. (2019). Building scalable decentralized payment systems. arXiv

preprint arXiv:1904.06441.

Aleo (2022). Announcing the ZPrize Competition. https://www.aleo.org/post/

announcing-the-zprize-competition. Accessed: 2022-08-09.

Allsopp, P., Summers, B., and Veale, J. (2009). The evolution of real-time gross settlement. The

World Bank, Financial Infrastructure Series.

Auer, R. and Böhme, R. (2020). The technology of retail central bank digital currency. BIS Quarterly

Review, March.

Auer, R., Monnet, C., and Shin, H. S. (2021). Permissioned distributed ledgers and the governance

of money. Available at SSRN 3770075.

Back, A. (2002). Hashcash-a denial of service counter-measure.

Bagaria, V., Kannan, S., Tse, D., Fanti, G., and Viswanath, P. (2019). Prism: Deconstructing the

blockchain to approach physical limits. In Proceedings of the 2019 ACM SIGSAC Conference on

Computer and Communications Security, pages 585–602.

145

https://www.aleo.org/post/announcing-the-zprize-competition
https://www.aleo.org/post/announcing-the-zprize-competition

Bahack, L. (2013). Theoretical bitcoin attacks with less than half of the computational power

(draft). arXiv preprint arXiv:1312.7013.

Ball, M., Rosen, A., Sabin, M., and Vasudevan, P. N. (2017a). Average-case fine-grained hardness.

In ACM SIGACT Symposium on Theory of Computing.

Ball, M., Rosen, A., Sabin, M., and Vasudevan, P. N. (2017b). Proofs of useful work. IACR Cryp-

tology ePrint Archive, 2017:203.

Bech, M. L., Shimizu, Y., and Wong, P. (2017). The quest for speed in payments. BIS Quarterly

Review March.

Ben-Sasson, E., Bentov, I., Horesh, Y., and Riabzev, M. (2018a). Fast reed-solomon interactive

oracle proofs of proximity. In 45th International Colloquium on Automata, Languages, and

Programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Ben-Sasson, E., Bentov, I., Horesh, Y., and Riabzev, M. (2018b). Scalable, transparent, and post-

quantum secure computational integrity. Cryptology ePrint Archive, Paper 2018/046.

Ben-Sasson, E., Bentov, I., Horesh, Y., and Riabzev, M. (2019a). Scalable zero knowledge with no

trusted setup. In Annual International Cryptology Conference, pages 701–732. Springer.

Ben-Sasson, E., Carmon, D., Ishai, Y., Kopparty, S., and Saraf, S. (2020). Proximity gaps for reed–

solomon codes. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS),

pages 900–909. IEEE.

Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., and Virza, M. (2013). Snarks for c: Verifying

program executions succinctly and in zero knowledge. In CRYPTO.

Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., and Ward, N. P. (2018c). Aurora:

Transparent succinct arguments for r1cs. Cryptology ePrint Archive, Report 2018/828. https:

//eprint.iacr.org/2018/828.

146

https://eprint.iacr.org/2018/828
https://eprint.iacr.org/2018/828

Ben-Sasson, E., Chiesa, A., and Spooner, N. (2016). Interactive oracle proofs. In Theory of Cryp-

tography Conference, pages 31–60. Springer.

Ben-Sasson, E., Chiesa, A., Tromer, E., and Virza, M. (2014). Succinct non-interactive zero knowl-

edge for a von neumann architecture. In 23rd {USENIX} Security Symposium ({USENIX} Secu-

rity 14), pages 781–796.

Ben-Sasson, E., Chiesa, A., Tromer, E., and Virza, M. (2017). Scalable zero knowledge via cycles

of elliptic curves. Algorithmica, 79(4).

Ben-Sasson, E., Goldberg, L., Kopparty, S., and Saraf, S. (2019b). Deep-fri: Sampling outside the

box improves soundness. arXiv preprint arXiv:1903.12243.

Ben-Sasson, E., Kopparty, S., and Saraf, S. (2018d). Worst-case to average case reductions for the

distance to a code. In Proceedings of the 33rd Computational Complexity Conference, CCC ’18,

pages 24:1–24:23, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

BIS, C. (2018). Looking beyond the hype. Bank of International Settlement, Basel.

Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., andWaters, B. (2016). Time-

lock puzzles from randomized encodings. In ACM ITCS.

Boneh, D., Bonneau, J., Bünz, B., and Fisch, B. (2018). Verifiable delay functions. In Annual

International Cryptology Conference, pages 757–788. Springer.

Boneh, D., Drake, J., Fisch, B., and Gabizon, A. (2020). Halo infinite: Recursive zk-snarks from

any additive polynomial commitment scheme. Cryptology ePrint Archive.

Bonneau, J., Meckler, I., Rao, V., and Shapiro, E. (2020). Mina: Decentralized cryptocurrency

at scale. https://docs.minaprotocol.com/static/pdf/technicalWhitepaper.pdf. Ac-

cessed: 2022-08-09.

147

https://docs.minaprotocol.com/static/pdf/technicalWhitepaper.pdf

Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A., and Felten, E. W. (2015). Research

Perspectives and Challenges for Bitcoin and Cryptocurrencies. In IEEE Security and Privacy.

Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., and Wu, H. (2018a). Zexe: Enabling decen-

tralized private computation. Cryptology ePrint Archive, Report 2018/962.

Bowe, S., Gabizon, A., and Green, M. D. (2018b). A multi-party protocol for constructing the

public parameters of the Pinocchio zk-SNARK. In Financial Crypto.

Bowe, S., Gabizon, A., and Miers, I. (2017). Scalable multi-party computation for zk-snark param-

eters in the random beacon model. IACR Cryptology ePrint Archive, 2017:1050.

Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., and Maxwell, G. (2018). Bulletproofs: Short

proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and Privacy

(SP), pages 315–334. IEEE.

Buterin, V. (2014). Ethereum: A next-generation smart contract and decentralized application

platform. https://github.com/ethereum/wiki/wiki/White-Paper. Accessed: 2022-08-09.

Buterin, V. (2018). On-chain scaling to potentially 500

tx/sec through mass tx validation. https://ethresear.ch/t/

on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477.

Accessed: 2022-08-09.

Bünz, B., Agrawal, S., Zamani, M., and Boneh, D. (2019a). Zether: Towards privacy in a smart

contract world. Cryptology ePrint Archive, Report 2019/191.

Bünz, B., Fisch, B., and Szepieniec, A. (2019b). Transparent snarks from dark compilers. Cryptol-

ogy ePrint Archive, Report 2019/1229. https://eprint.iacr.org/2019/1229.

Bünz, B., Kiffer, L., Luu, L., and Zamani, M. (2019c). Flyclient: Super-light clients for cryptocur-

rencies. Cryptology ePrint Archive, Report 2019/226.

148

https://github.com/ethereum/wiki/wiki/White-Paper
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://ethresear.ch/t/on-chain-scaling-to-potentially-500-tx-sec-through-mass-tx-validation/3477
https://eprint.iacr.org/2019/1229

Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G. N., and Rothblum, R. D. (2018).

Fiat-shamir from simpler assumptions. Cryptology ePrint Archive.

Chaidos, P., Cortier, V., Fuchsbauer, G., and Galindo, D. (2016). Beleniosrf: A non-interactive

receipt-free electronic voting scheme. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, pages 1614–1625. ACM.

Chen, L., Xu, L., Shah, N., Gao, Z., Lu, Y., and Shi, W. (2017). On security analysis of proof-

of-elapsed-time (PoET). In International Symposium on Stabilization, Safety, and Security of

Distributed Systems.

Chen, W., Chiesa, A., Dauterman, E., and Ward, N. P. (2020). Reducing participation costs via

incremental verification for ledger systems. Cryptology ePrint Archive.

Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., and Ward, N. (2019a). Marlin: Preprocess-

ing zksnarks with universal and updatable srs. Cryptology ePrint Archive, Report 2019/1047.

https://eprint.iacr.org/2019/1047.

Chiesa, A., Ojha, D., and Spooner, N. (2019b). Fractal: Post-quantum and transparent recursive

proofs from holography. Cryptology ePrint Archive, Report 2019/1076. https://eprint.

iacr.org/2019/1076.

Dahari, H. and Lindell, Y. (2020). Deterministic-prover zero-knowledge proofs. Cryptology ePrint

Archive, Paper 2020/141.

Daian, P., Eyal, I., Juels, A., and Sirer, E. G. (2017). (Short paper) Piecework: Generalized out-

sourcing control for proofs of work. In Financial Crypto.

Damgård, I. B., Pedersen, T. P., and Pfitzmann, B. (1993). On the existence of statistically hiding bit

commitment schemes and fail-stop signatures. In Annual International Cryptology Conference,

pages 250–265. Springer.

149

https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1076
https://eprint.iacr.org/2019/1076

Decker, C. and Wattenhofer, R. (2013). Information propagation in the bitcoin network. In IEEE

P2P 2013 Proceedings, pages 1–10. IEEE.

Dolev, D. and Strong, H. R. (1982). Polynomial algorithms for multiple processor agreement. In

Proceedings of the fourteenth annual ACM symposium on Theory of computing, pages 401–407.

Dziembowski, S., Faust, S., and Hostáková, K. (2018). General state channel networks. In Pro-

ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pages

949–966.

Erdös, P. (1960). Remarks on number theory III. On addition chains. Acta Arithmetica, 6.

Evgenya, P. (2017). Algebraic ram. Master’s thesis, Technion.

Eyal, I., Gencer, A. E., Sirer, E. G., and Van Renesse, R. (2016). Bitcoin-ng: A scalable blockchain

protocol. In 13th {USENIX} Symposium on Networked Systems Design and Implementation

({NSDI} 16), pages 45–59.

Eyal, I. and Sirer, E. G. (2014). Majority is not enough: Bitcoin mining is vulnerable. In Interna-

tional conference on financial cryptography and data security, pages 436–454. Springer.

Fisch, B. (2019). Tight proofs of space and replication. In Eurocrypt.

Fisch, B., Bonneau, J., Greco, N., and Benet, J. (2018). Scaling proof-of-replication for Filecoin

mining. Technical report, Stanford University.

Fischer, M. J. and Lynch, N. A. (1981). A lower bound for the time to assure interactive consis-

tency. Technical report, Georgia Institute of Tech Atlanta School of Information and Computer

Science.

Fuchsbauer, G., Kiltz, E., and Loss, J. (2018). The algebraic group model and its applications. In

Annual International Cryptology Conference, pages 33–62. Springer.

150

Gabizon, A., Gurkan, K., Jovanovic, P., Konstantopoulos, G., Oines, A., Olszewski, M., Straka, M.,

Tromer, E., and Vesely, P. (2020). Plumo: towards scalable interoperable blockchains using

ultra light validation systems.

Gabizon, A. and Williamson, Z. J. (2020). Proposal: The turbo-plonk program syn-

tax for specifying snark programs. https://docs.zkproof.org/pages/standards/

accepted-workshop3/proposal-turbo_plonk.pdf. Accessed: 2022-08-09.

Gabizon, A., Williamson, Z. J., and Ciobotaru, O. (2019). Plonk: Permutations over lagrange-bases

for oecumenical noninteractive arguments of knowledge. Technical report, Cryptology ePrint

Archive, Report 2019/953.

Garay, J. A. and Moses, Y. (1998). Fully polynomial byzantine agreement for n> 3 t processors in

t+ 1 rounds. SIAM Journal on Computing, 27(1):247–290.

Gennaro, R., Gentry, C., Parno, B., and Raykova, M. (2013). Quadratic span programs and suc-

cinct nizks without pcps. In Annual International Conference on the Theory and Applications of

Cryptographic Techniques, pages 626–645. Springer.

Gennaro, R., Minelli, M., Nitulescu, A., and Orrù, M. (2018). Lattice-based zk-snarks from square

span programs. In ACM CCS.

Gentry, C. andWichs, D. (2011). Separating succinct non-interactive arguments from all falsifiable

assumptions. In Proceedings of the forty-third annual ACM symposium on Theory of computing,

pages 99–108. ACM.

Goldwasser, S., Kalai, Y. T., and Rothblum, G. N. (2015). Delegating computation: interactive

proofs for muggles. Journal of the ACM (JACM), 62(4):27.

Goldwasser, S., Micali, S., and Rackoff, C. (1989). The knowledge complexity of interactive proof

systems. SIAM Journal on computing, 18(1):186–208.

151

https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf

Gordon, D. M. (1998). A survey of fast exponentiation methods. Journal of Algorithms, 27(1).

Groth, J. (2016). On the size of pairing-based non-interactive arguments. In Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques, pages 305–326.

Springer.

Guruswami, V. and Sudan, M. (1999). Improved decoding of reed-solomon and algebraic-

geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767.

Hastings, M., Heninger, N., and Wustrow, E. (2018). The proof is in the pudding: Proofs of work

for solving discrete logarithms. Cryptology ePrint Archive, Report 2018/939.

Henry, R. (2010). Pippenger’s multiproduct and multiexponentiation algorithms. Technical re-

port, University of Waterloo.

Huffman, W. C. and Pless, V. (2003). Fundamentals of error-correcting codes. Cambridge Univ.

Press, Cambridge.

Kamvar, S., Olszewski, M., and Reinsberg, R. (2019). Celo: A multi-asset cryptographic protocol

for decentralized social payments.

Karantias, K., Kiayias, A., Leonardos, N., and Zindros, D. (2019). Compact Storage of Superblocks

for NIPoPoW Applications. Cryptology ePrint Archive, Report 2019/1444.

Kate, A., Zaverucha, G. M., and Goldberg, I. (2010). Constant-size commitments to polynomials

and their applications. In International Conference on the Theory and Application of Cryptology

and Information Security, pages 177–194. Springer.

Kiayias, A., Lamprou, N., and Stouka, A.-P. (2016). Proofs of proofs of work with sublinear com-

plexity. In Financial Crypto.

152

Kiayias, A., Miller, A., and Zindros, D. (2017). Non-interactive proofs of proof-of-work. IACR

Cryptology ePrint Archive, 2017:963.

King, S. (2013). Primecoin: Cryptocurrency with prime number proof-of-work. http://launch.

primecoin.org/static/primecoin-paper.pdf. Accessed: 2022-08-09.

King, S. and Nadal, S. (2012). Peercoin: Peer-to-peer crypto-currency with proof-of-stake. https:

//peercoin.net/whitepaper. Accessed: 2022-08-09.

Kogias, E. K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., and Ford, B. (2016). Enhancing bitcoin

security and performance with strong consistency via collective signing. In 25th usenix security

symposium (usenix security 16), pages 279–296.

Król, M., Sonnino, A., Al-Bassam, M., Tasiopoulos, A., and Psaras, I. (2019). Proof-of-prestige:

A useful work reward system for unverifiable tasks. In IEEE Conference on Blockchain and

Cryptocurrency (ICBC).

Kroll, J. A., Davey, I. C., and Felten, E. W. (2013). The economics of bitcoin mining, or bitcoin in

the presence of adversaries. In Proceedings of WEIS, volume 2013. Washington, DC.

Leung, D., Suhl, A., Gilad, Y., and Zeldovich, N. (2018). Vault: Fast bootstrapping for cryptocur-

rencies.

Maller, M., Bowe, S., Kohlweiss, M., and Meiklejohn, S. (2019). Sonic: Zero-knowledge snarks

from linear-size universal and updateable structured reference strings. IACR Cryptology ePrint

Archive, 2019:99.

Maurer, U. (2005). Abstract models of computation in cryptography. In IMA International Con-

ference on Cryptography and Coding.

Micali, S. (2000). Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298.

153

http://launch.primecoin.org/static/primecoin-paper.pdf
http://launch.primecoin.org/static/primecoin-paper.pdf
https://peercoin. net/whitepaper
https://peercoin. net/whitepaper

Miers, I., Garman, C., Green, M., and Rubin, A. D. (2013). Zerocoin: Anonymous distributed

e-cash from bitcoin. In 2013 IEEE Symposium on Security and Privacy, pages 397–411. IEEE.

Miller, A., Juels, A., Shi, E., Parno, B., and Katz, J. (2014). Permacoin: Repurposing bitcoin work

for data preservation. In IEEE Symposium on Security and Privacy.

Miller, A., Kosba, A., Katz, J., and Shi, E. (2015). Nonoutsourceable scratch-off puzzles to discour-

age bitcoin mining coalitions. In ACM CCS.

Miller, A. and LaViola Jr, J. J. (2014). Anonymous byzantine consensus frommoderately-hard puz-

zles: A model for bitcoin. Available on line: http://nakamotoinstitute. org/research/anonymous-

byzantine-consensus.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/

bitcoin.pdf. Accessed: 2022-08-09.

Parno, B., Gentry, C., Howell, J., and Raykova, M. (2013). Pinocchio: Nearly Practical Verifiable

Computation. Cryptology ePrint Archive, Report 2013/279.

Pass, R. and Shi, E. (2016). Hybrid consensus: Efficient consensus in the permissionless model.

Cryptology ePrint Archive.

Pease, M., Shostak, R., and Lamport, L. (1980). Reaching agreement in the presence of faults.

Journal of the ACM (JACM), 27(2):228–234.

Pippenger, N. (1980). On the evaluation of powers and monomials. SIAM Journal on Computing,

9(2).

Poelstra, A. (2016). Mimblewimble. https://download.wpsoftware.net/bitcoin/wizardry/

mimblewimble.pdf. Accessed: 2022-08-09.

154

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf

Poon, J. and Buterin, V. (2017). Plasma: Scalable autonomous smart contracts. Accessed: 2022-

08-09.

Poon, J. and Dryja, T. (2015). The bitcoin lightning network. Scalable on-chain instant payments.

Sasson, E. B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., and Virza, M. (2014). Ze-

rocash: Decentralized anonymous payments from bitcoin. In IEEE Symposium on Security and

Privacy.

Schnorr, C.-P. (1989). Efficient identification and signatures for smart cards. In Eurocrypt.

SCIPRLab (2017). libsnark: a c++ library for zksnark proofs. https://github.com/scipr-lab/

libsnark.

Sengupta, B., Bag, S., Ruj, S., and Sakurai, K. (2016). Retricoin: Bitcoin based on compact proofs

of retrievability. In ICDCN.

Setty, S. (2020). Spartan: Efficient and general-purpose zksnarks without trusted setup. In Annual

International Cryptology Conference, pages 704–737. Springer.

Setty, S., Angel, S., Gupta, T., and Lee, J. (2018). Proving the correct execution of concurrent

services in zero-knowledge. In 13th {USENIX} Symposium on Operating Systems Design and

Implementation ({OSDI} 18), pages 339–356.

Setty, S., Braun, B., Vu, V., Blumberg, A. J., Parno, B., and Walfish, M. (2013). Resolving the

conflict between generality and plausibility in verified computation. In Proceedings of the 8th

ACM European Conference on Computer Systems, pages 71–84. ACM.

Shostak, R., Pease, M., and Lamport, L. (1982). The byzantine generals problem. ACMTransactions

on Programming Languages and Systems, 4(3):382–401.

Shoup, V. (1997). Lower bounds for discrete logarithms and related problems. In Eurocrypt.

155

https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark

Sompolinsky, Y., Lewenberg, Y., and Zohar, A. (2016). Spectre: A fast and scalable cryptocurrency

protocol. Cryptology ePrint Archive.

Sompolinsky, Y. and Zohar, A. (2015). Secure high-rate transaction processing in bitcoin. In

International conference on financial cryptography and data security, pages 507–527. Springer.

Sompolinsky, Y. and Zohar, A. (2018). Phantom. IACR Cryptology ePrint Archive, Report 2018/104.

StarkWare (2022). Starkdex: Bringing starks to ethereum. https://blog.0xproject.com/

starkdex-bringing-starks-to-ethereum-6a03fffc0eb7. Accessed: 2022-08-09.

Valiant, P. (2008). Incrementally verifiable computation or proofs of knowledge imply time/space

efficiency. In Theory of Cryptography Conference, pages 1–18. Springer.

Wahby, R. S., Tzialla, I., Shelat, A., Thaler, J., and Walfish, M. (2018). Doubly-efficient zksnarks

without trusted setup. In 2018 IEEE Symposium on Security and Privacy (SP), pages 926–943.

IEEE.

Wang, G., Wang, S., Bagaria, V., Tse, D., and Viswanath, P. (2020). Prism removes consensus

bottleneck for smart contracts. In 2020 Crypto Valley Conference on Blockchain Technology

(CVCBT), pages 68–77. IEEE.

Wood, G. et al. (2014). Ethereum: A secure decentralised generalised transaction ledger. Accessed:

2022-08-09.

Wu, H., Zheng, W., Chiesa, A., Popa, R. A., and Stoica, I. (2018). DIZK: A Distributed Zero Knowl-

edge Proof System. In USENIX Security.

Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., and Song, D. (2019). Libra: Succinct zero-

knowledge proofs with optimal prover computation. IACR Cryptology ePrint Archive, 2019:317.

156

https://blog.0xproject.com/starkdex-bringing-starks-to-ethereum-6a03fffc0eb7
https://blog.0xproject.com/starkdex-bringing-starks-to-ethereum-6a03fffc0eb7

Zero, P. (2021). Plonky2: Fast recursive arguments with plonk and fri. https://github.com/

mir-protocol/plonky2/blob/main/plonky2/plonky2.pdf. Accessed: 2022-08-09.

Zhandry, M. (2022). To label, or not to label (in generic groups). Cryptology ePrint Archive, Paper

2022/226.

Zhang, F., Eyal, I., Escriva, R., Juels, A., and Van Renesse, R. (2017). REM: Resource-efficient

mining for blockchains. In USENIX Security.

Zhang, J., Xie, T., Zhang, Y., and Song, D. (2020). Transparent polynomial delegation and its

applications to zero knowledge proof. In 2020 IEEE Symposium on Security and Privacy (SP),

pages 859–876. IEEE.

157

https://github.com/mir-protocol/plonky2/blob/main/plonky2/plonky2.pdf
https://github.com/mir-protocol/plonky2/blob/main/plonky2/plonky2.pdf

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Throughput & Settlement Time
	Protocol Governance
	Overview of Contributions

	Fault Tolerance & Sybil Resistance
	Byzantine Agreement
	Nakamoto Consensus
	The Bitcoin Protocol
	Related Work

	Moderately Hard Puzzles
	Useful Proof-of-Work

	Distributed Payment Systems
	Preliminaries
	Maximizing Throughput
	Segregated Witness
	Transaction Rollups
	Other Scaling Approaches

	Light Client Verification

	Verifiable Computation
	Zero Knowledge Proofs
	Transparency
	Universality
	Incrementally Verifiable Computation
	Polynomial Commitments

	I Proof of Necessary Work
	Contributions
	Incentivized State Compression
	Optimal Light Clients

	Succinct Verification
	Preliminaries
	State Transition Semantics
	State Transition as an NP statement
	DPS Specification

	Proof of Necessary Work
	Definitions
	An Initial Approach
	Amortization Resistance
	Prover Computational Costs
	Amortization of Multiexponentiation

	Amortization Resistance & Efficiency
	Committing to State
	Masking the Computation

	Consensus Security
	Quantization Effects
	Stubborn Mining and Collisions

	Design & Instantiation
	Proof System & Predicate
	Circuit Requirements
	Pedersen Hashes
	Signature Scheme

	Randomizing the Pedersen Hash
	Security
	Unique Witness Extraction
	Single Witness Hardness

	Performance

	Open Questions
	Waste in Nakamoto Consensus
	Trusted Setup & Quantum Resistance
	Privacy & Complex Transactions:
	Other Consensus Protocols
	Hardware Acceleration & Parallelism

	II RedShift
	Contributions
	Compilation of IOPs with LPCs
	RedShift

	Overview
	Definitions
	Reed-Solomon codes
	Interactive Oracle Proofs
	FRI: Fast Reed-Solomon IOP of Proximity

	List Polynomial Commitment
	Specification
	Instantiation
	Polynomial Commitments from LPCs

	RedShift
	Constraint System
	IOP Protocol
	Soundness Parameters
	Benchmarks

	Open Questions
	Extensions
	Batching Multiple FRI Instances
	Binary Fields
	Recursive Proofs
	Different Constraint Systems

	Discussion

	Appendix
	Multiexponentiation Bounds & Theorem Proofs
	DPS Transaction Semantics
	Security Properties
	Basic Data Structures
	Transaction Semantics
	Digital Signature Schemes
	DPS Transition Functions

	Constraint System Equivalence
	FRI Overview
	Supplementary Proofs
	RedShift Security Analysis
	Completeness
	Knowledge Soundness
	Zero-Knowledge

	FRI parameters
	Proof Size Optimizations
	Batched FRI

	Bibliography

