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Abstract

Scientists validate hypotheses by building mathematical models of the real world. They make

inferences by checking if their models are supported by data. Often, the models are hand-crafted

and do not accurately reflect real processes. This often leads to low power in making scientific

discoveries or even false discoveries.

Machine learning can solve these issues in several ways. By allowing data to inform the

construction of models, scientists can use machine learning to create more powerful statistical

hypothesis testing procedures, or build more realistic models of underlying processes.

This thesis details techniques to address both of these approaches. First we address the cre-

ation of machine learning-based statistical discovery procedures for scientific discovery. Specifi-

cally, we discuss how machine learning can be used to construct conditional independence tests,

which are used to identify causal links in data. We detail how suchmethods can be used to control

the false discovery rate when testing multiple hypotheses. We then apply these techniques to two

important problems in healthcare. We solve a timely problem in medical informatics: identifying

a small set of variables that are highly informative of whether an ICU patient with Covid will ex-

perience an adverse event. At the height of Covid in 2020, NYU doctors used a deployed version

of this tool to quickly identify patients to discharge and free up beds in the ICU. We also apply

our methods to a problem in cancer genomics, where the goal is to identify a set of gene muta-

tions that are most predictive of tumor metastasis. In the near future, we expect tools like ours to

lead to targeted gene therapies that tailor treatments to the mutations present in an individual’s

v



tumor.

Next we detail the construction of an interpretable machine learning model that helps un-

derstand an important step in the creation of proteins. Specifically, we build a model to under-

stand RNA splicing. Our model accurately predicts splicing outcomes across a large dataset of

sequences, but more importantly leads to several biologically validated insights. We use the in-

terpretable nature of our model to infer that most splicing decisions are a function of a small

set of short sequence features. We further learn that certain pre-mRNA secondary structures

strongly inhibit the inclusion of an exon in the final mRNA transcript. Finally, we validate these

model-driven findings by carefully designing experiments for the wet lab.
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1 | Introduction

Progress is made in scientific disciplines by formulating and validating hypothesis with data.

The validation procedure often involves building a model of the world, then using this model to

report a finding about the data. For example, if geneticists seek to identify genes that are most

likely responsible for height, they might collect the genotype of many individuals and test the

correlation between the presence of each gene and the heights of these individuals. If any of these

genes correlate highly with height, they are deemed important predictors. While researchers in

this example may not explicitly construct a model of the world, they are doing so implicitly via

assumptions about their data. By using correlation as a measure of dependence, they assume that

genes impact height in a linear way.

Sometimes, these assumptions are wrong and lead to false scientific discoveries. To lessen

the dependence on strong assumptions, data can be used inform the construction of models. In

recent years, data-dependent models have increasingly been adopted.

In this thesis, we cover instances of two broad techniques that use machine learning to build

data-drivenmodels for scientific discovery. The first technique is based on causal discovery: when

a scientist wishes to find the causal links between a set of predictors and a response. We discuss

how and when machine learning can help achieve this goal. The second technique involves

constructing an interpretable machine learning model of the real world, then using this model to

make inferences about underlying processes. We discuss this technique in the context of a novel

model for an important biological process - RNA splicing.
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The remainder of this thesis is structured as follows. Chapter 2 discusses several founda-

tional papers for two types of scientific discovery. In the first part of chapter 2, we introduce the

problem of conditional independence testing. We discuss the two main classes of conditional in-

dependence tests and discuss their advantages and disadvantages. We dive deeper into the latter

of these ways to test conditional independence – Model-X methods – and discuss the founda-

tional paper that inspired much subsequent work. In the second part of chapter 2 we introduce

interpretable machine learning as a tool for scientific discovery. We discuss why a practitioner

might want to use an interpretable model or an interpretability technique to explain a black-box

model.

In chapter 3 we introduce deep direct likelihood knockoffs (ddlk), a deep generativemodel for

use in controlled variable selection procedures. Given a set of inputs x1, . . . ,xd and a response

y, scientists often seek to identify the variables in the Markov blanket of y | x1, . . . ,xd. This

involves testing the conditional independence: y ⊥⊥ xj | x−j , where x−j represents all inputs

but the jth one. To simultaneously test the conditional independence of each variable xj with y

given the remaining variables x−j , Candes et al. [2018] introduce a framework termed Model-X

“knockoffs.” This framework guarantees that if there exists a set of variables x̃1, . . . , x̃d that is

exchangeable with x1, . . . ,xd and is sampled independent of y, then the rate at which inputs

not in the Markov blanket of y are selected (this is called the false discovery rate (fdr)) can be

controlled at a user-specified level. The quality of the knockoff variables x̃1, . . . , x̃d determines

the accuracy with which a user can control the fdr. Generating knockoffs, especially in high

dimensions, is a challenging problem because the joint distribution of x1, . . . ,xd must be known

or learned from data. We demonstrate that ddlk outperforms several baselines at generating high

quality knockoff variables for a variety of data distributions.

In chapter 4 we introduce contrarian randomization test (contra), a method that addresses

a common issue in conditional randomization tests (crts). Crts test the independence of y and

x given z, written as y ⊥⊥ x | z, and require modeling p(x | z) well to control the fdr. They
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compute a test statistic, some function T of a dataset of (x,y, z) samples, then compare the T ’s

value to its empirical null distribution. If the probability that the test statistic came from the null

distribution is very low, then the null hypothesis of conditional independence is rejected. Often

the p(x | z) distribution is not modeled well, and many popular test statistics will erroneously

reject the null hypothesis: resulting in fdr violations. Contra is a test statistic designed specif-

ically for such scenarios. The contra test statistic computes a mixture of two functions: one

using samples of the real data (x,y, z), and the other using samples of (x̃,y, z)where x̃ is drawn

from the estimated p(x | z) distribution. We demonstrate that contra yields a noticeable im-

provement in the ability to control fdr compared to several baselines while still yielding a high

probability of correctly rejecting the null hypothesis.

In chapter 5 we introduce decoupled independence test (diet), a type of crt that leverages

marginal dependence measures to test conditional independence. The power of a crt, or the

probability that the null hypothesis is correctly rejected, depends on how well the test statistic T

measures the additional information that x contains about y having already observed z. This is a

challenging problem as test statistics must make tradeoffs between computational efficiency and

power. For example, somemethods to achieve computational efficiency have to use a subset of the

available data to compute T , which reduces their ability to detect conditional dependence. Other

methods use all the available data but make restrictive assumptions about the data generating

process or rely on heuristics. Diet is similar in spirit to the latter but relies on a different set of

assumptions that yield better empirical performance. Diet computes the marginal dependence

between two random variables that are independence if and only if x ⊥⊥ y | z. We prove that for

a class of data distributions diet is the most powerful conditionally valid crt.

In chapters 6 and 7 we discuss applications of crts to two important problems in healthcare.

In chapter 6 we address a timely problem faced by doctors at NYU Langone during the height of

the Covid-19 pandemic in March 2020. ICU beds were filling up and doctors needed a tool to help

them identify patients that could be safely discharged, making room for the patients most in need
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of urgent care. With over 60 different variables in a patient’s chart and no official guidance on

how to treat patients, doctors sought a data-driven tool that could help them better understand

a patient’s risk of an adverse event. Using crts, we identified a subset of just over a dozen

variables that were sufficient to accurately predict whether or not a patient would experience an

adverse event in the next 96 hours. Using the subset of important variables, we built and deployed

an interpretable machine learning model that helped doctors better understand the underlying

mechanism behind a patient’s risk of an adverse event. It would output a risk score every time an

ICU patient was given a complete blood count. In just a few months of deployment, our model

was used to make over a half a million predictions across NYU hospitals.

In chapter 7 we detail an ongoing effort byMemorial Sloan Kettering Cancer Center (MSKCC)

to identify cancer patients that are likely to benefit from gene therapy. To achieve this, the first

step is to identify which tumor mutations likely cause metastasis. Patients can then be screened

using only this subset of mutations. The goal is to identify as many patients as possible while con-

trolling the rate at which they are brought in without any causal mutations. Using a large dataset

of tumor mutations across various sites, we outline a proof-of-concept tool that uses crts devel-

oped in this thesis to identify a set of causal mutations for metastasis. We observe in challenging

simulations that this tool outperforms popular baselines at selecting causal mutations. In the near

future, we expect to see such a tool be deployed for screening purposes at MSKCC.

In chapter 8 we build an interpretable machine learning model to understand a fundamen-

tal process in biology: RNA splicing. Splicing involves the removal of introns from precursor

messenger RNA (pre-mRNA) and the joining of exons to form mature messenger RNA (mRNA).

mRNA is used further downstream to create useful molecules like proteins. Much like a film

editor cuts out irrelevant material, the spliceosome cuts out intronic regions. However, its be-

havior is currently not well understood. We construct a machine learning model to accurately

predict the behavior of the spliceosome given a sequence, and understand the intermediate steps

involved in determining a splicing outcome. We use this model to derive several biological in-
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sights. For example, splicing decisions are mostly determined by a small set of short sequence

features called motifs, and secondary structures formed by the pre-mRNA prevent exonic regions

from being identified as such. We validate these findings with carefully constructed biological

experiments.
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2 | Select topics in machine learning

for scientific discovery: a brief

review

Here we discuss several foundational papers for two types of scientific discovery. First we in-

troduce the problem of conditional independence testing. We discuss the two main classes of

conditional independence tests and discuss the advantages and disadvantages of each. We dive

deeper into the latter of these ways to test conditional independence – Model-X methods – and

discuss the foundational paper that inspired much subsequent work.

In the second part of this chapter we introduce interpretable machine learning as a tool for

scientific discovery. We discuss why a practitioner might want to use an interpretable model or

an interpretability technique to explain a black-box model. Since this topic is very broad, we limit

the scope of the discussion to recent methods most relevant to this thesis.

2.1 Conditional independence testing

Conditional independence testing plays a key role in causal modeling. A causal graph is a graph-

ical way to represent the conditional independences that exist in a data generating distribution.

Conditional independence tests are often used to build causal graphs from data [Spirtes et al.
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2000; Silverstein et al. 2000; Tsamardinos et al. 2003]. Conditional independence also provides a

framework to reason about invariant prediction, which aims to identify a subset xs of variables

x1, . . . ,xd for a target y such that y is conditionally independent of an environment variable u

given xs [Peters et al. 2016; Heinze-Deml et al. 2018].

Conditional independence is often tested using a statistical hypothesis testing framework.

Doing so allows scientists to explicitly control the type-1 error rate: the rate at which the null

hypothesis of conditional independence is erroneously rejected. If a scientist is testing multiple

hypotheses, a hypothesis testing framework also allows them to control the false discovery rate

(fdr):

fdr =
# of false rejections

# number of total rejections .

While a hypothesis testing framework allows for error control, it does not necessarily guarantee

any power to reject the null hypothesis even with a countably infinite dataset. Shah and Peters

[2020] prove that without restrictions on the set of possible null distributions or on the set of

alternate distributions, power is not guaranteed. Specifically, they show that for a test where the

probability of rejecting the null hypothesis using a set ofN samples of (x,y, z) is α, it is possible

to construct a null distribution where samples from the null are arbitrarily close in ℓ∞-norm to

samples from the true distribution. This means the type-1 error rate would also be greater than

α.

One way to achieve power then is to restrict the class of null distributions so such construc-

tions are not possible. This restriction is achieved by making assumptions about the data gener-

ating process or about the set of null distributions. Next we describe two classes of conditional

independence tests and the assumptions they make to control the type-1 error rate and achieve

power.
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Model-Y methods We term the first class of conditional independence tests “Model-Y” meth-

ods. The typical setup is to assume a parametric form of y | x, z like a linear model with standard

Gaussian noise. This includes procedures that test for edges in Bayesian networks [Koller and

Friedman 2009; Spirtes et al. 2000; Cheng et al. 1998; De Campos and Huete 2000]. There are other

methods that don’t assume a parametric form, but make other assumptions like smoothness or

assume a point null distribution [Fukumizu et al. 2007; Zhang et al. 2012; Gretton et al. 2012; Do-

ran et al. 2014; Lee and Honavar 2017]. In practice, these approaches do not strictly require their

assumptions to be met to be useful. However there are common instances where an alternate set

of assumptions might be better suited for controlling error rates. We discuss these assumptions

next.

2.1.1 Model-X methods

Model-Xmethods [Candes et al. 2018] assume the ability to sample from the covariate distribution

p(x | z) to control the type-1 error rate. They do not need to assume anything about the y |

x, z distribution. This is often advantageous in domains like biology and healthcare for several

reasons. First, the covariate distribution is often knownwell. For example, in genomics, modeling

the distribution of single nucleotide polymorphisms (SNPs) is a well studied problem. However,

how these SNPs relate to a biologically complex phenotype is not yet well understood. Second,

a large amount of unsupervised data is often available. Collecting a patient’s genotype is fairly

cheap these days but collecting phenotypic information is more expensive as it requires followups

or other expensive measurements. Similarly in healthcare, a hospital may have the vital signs

and blood test results of many people, but perhaps only a few of these people have a rare type

of cancer. In such cases, the large unsupervised data can be leveraged to build a good model for

p(x | z) and the quality of the y | x, zmodel doesn’t affect the type-1 error rate. Next we discuss

two model-X methods: knockoffs, and conditional randomization tests.
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2.1.2 Model-X knockoffs

In this section we first provide an overview of the problem model-X methods were designed to

solve: controlled variable selection, then describe formally what model-X knockoffs are. Given

a set of variables x1, . . . ,xd and a response y, the goal of controlled variable selection is to test

the conditional independence of each variable xj with y having observed the other variables x−j .

Formally, it simultaneously tests the following null hypotheses:

H(1)
0 : x1 ⊥⊥ y | x2, . . . ,xd

...

H(d)
0 : x1 ⊥⊥ y | x1, . . . ,xd−1

while controlling the false discovery rate (fdr). Letting xs ⊆ {x1, . . . ,xd} be the set of variables

for which the corresponding null hypothesis is rejected, the fdr is defined as:

fdr = E
[
|{j : xj ∈ xs,xj ⊥⊥ y | x−j}|

max(1, |{j : xj ∈ xs}|)

]
.

Model-X knockoffs are a set of randomvariables x̃1, . . . , x̃d that are exchangeablewithx1, . . . ,xd

and are conditionally independent with y given x1, . . . ,xd. This means that given any set of in-

dices H ⊆ {1, . . . , d}, they must satisfy the following properties:

p([x1, . . . ,xd, x̃1, . . . , x̃d]) = p([x1, . . . ,xd, x̃1, . . . , x̃d]swap(H))

y ⊥⊥ [x̃1, . . . , x̃d] | [x1, . . . ,xd].

This means that the joint distribution of the covariates and knockoffs is invariant to a swapping

of any set of indices H between the covariates and knockoffs.

To perform controlled variable selection with knockoffs, [Candes et al. 2018] compute a scalar
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scoreWj – a function of the data and knockoffs – for each null hypothesisH(j)
0 called a “feature

statistic”:

Wj = wj([x1, . . . ,xd, x̃1, . . . , x̃d],y).

To control the fdr, these feature statistics must obey the following properties. Under the null

hypothesis H(j)
0 , the distribution of the feature statistic Wj should be symmetric around 0. If

the null hypothesis is to be rejected, the distribution of Wj should have a positive skew. Given

feature statistics that obey these properties, knockoffs then outline a simple procedure for testing

multiple null hypotheses. At a nominal fdr rate α, they return a set of features xs such that for

all xj ∈ xs,Wj is greater than a threshold τ chosen as follows:

τ = min

{
t > 0 :

|{j : Wj ≤ −t}|+ 1

|{j : Wj ≥ t}|
≤ α

}
.

The intuition behind the threshold τ is as follows. The fdp can be estimated by computing the

ratio of falsely rejected null hypotheses in xs to the size of xs. The denominator is exactly the size

of xs. Since we know that null feature statistics are symmetric around 0, the number of nullWj

that are greater than or equal to t should be equal in distribution to the number of nullWj that are

less than −t. This quantity is in the numerator. The +1 in the numerator makes the procedure

slightly more conservative. Choosing the smallest threshold τ that allows for fdr control at level

α yields the most number of null hypothesis rejections at α. This is important because choosing a

threshold τ that is too large will result in a procedure that fails to select even important variables.

While testing multiple hypotheses with knockoff feature statistics is very fast, generating

knockoffs is a difficult problem. There are many issues with generating high-dimensional random

variables. Apart from the computational challenges, if a practitioner is not careful, memorizing

the data could trivially satisfy the properties required of knockoffs, but will result in a procedure

that fails to select any variables. Further, it is not obvious how to design feature statistics that
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yield high power to reject null hypotheses.

To this end, there has been much follow-up work to the knockoffs paper to address both

the issue of generating knockoffs and choosing feature statistics [Romano et al. 2020; Sudarshan

et al. 2020; Barber et al. 2020; Bates et al. 2021; Bellot and van der Schaar 2019; Jordon et al. 2019;

Sudarshan et al. 2021; Sesia et al. 2019; Spector and Janson 2022]. This includes work presented in

chapter 3 of this thesis. One issue the knockoff framework cannot solve is testing a small number

or a single null hypothesis. In such cases the control a practitioner has over the fdr is very coarse.

For example with only a single feature statisticWj , it is impossible to reject the null hypothesis

at any α < 1, meaning fdr control is unavailable. To address this problem, Candes et al. [2018]

also introduce the conditional randomization test (crt).

2.1.3 Conditional randomization testing

The crt is another Model-X method for testing conditional independence. It uses many of the

same primitives as knockoffs but differs in a few key ways. In this section we provide a brief

overview of the crt framework. We focus on a single hypothesis test x ⊥⊥ y | z for most of the

discussion, then tie it back to the context of controlled variable selection at the end.

The crt computes a p-value for the null hypothesis, allowing for precise control of the type-1

error rate: the probability of erroneously rejecting the null. To control the type-1 error rate, crt

assumes the practitioner can sample values of x | z. Here is how the crt p-value is computed.

The crt computes a quantity called a “test statistic”: a function T of the datasetDx,y,z sampled

from p(x,y, z):

Dx,y,z = {(x(i),y(i), z(i))}Ni=1

T (Dx,y,z). (Test statistic)
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It then generatesM “null datasets” using Dx,y,z:

Dx̃,y,z
(1),Dx̃,y,z

(2), . . . ,Dx̃,y,z
(M).

Each null dataset is identical to Dx,y,z but values for x are replaced with a resampled value x̃ ∼

p(x | z). These x̃ variables are analogous to knockoff variables. For example, to generate the

ith sample of Dx̃,y,z
(m), the crt makes a copy of the ith sample of Dx,y,z, (x(i),y(i), z(i)), and

replaces x(i) with a draw from the conditional distribution p(x | z = z(i)). The crt then applies

the function T to each null dataset:

T (Dx̃,y,z
(1)), T (Dx̃,y,z

(2)), . . . , T (Dx̃,y,z
(M)).

Each of the terms in this sequence is called a “null statistic.” Finally, to compute a p-value for the

hypothesis test, the crt computes the relative rank of the test statistic among the null statistics:

p =
1

M + 1

(
1 +

M∑
m=1

1(T (Dx,y,z) ≤ T (Dx̃,y,z
(m)))

)
.

To test multiple null hypotheses, the crt procedure can be applied to compute multiple p-values.

For fdr control, any multiple testing correction procedure can be applied to the resulting set of

p-values [Tukey 1953; Benjamini and Hochberg 1995; Benjamini and Yekutieli 2001].

The crt allows for precise control of the type-1 error rate for a single hypothesis by varying

M . For example, to reject a hypothesis at the level 0.01, the smallest p-value achieved must be

less than 0.01. Solving forM , it is clear that the minimum number of null datasets to be sampled

is 100. The minimum p-value achieved here is 1
1+100

< 0.01.

While the crt has the advantage of precise error control over knockoffs, computing T many

times can be a computationally intensive process. Therefore, choosing T that balances compu-

tational efficiency and power is a challenging problem. Further, the distribution p(x | z) must
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often be inferred from data. To address these problems, there have been several recent proposals

[Sudarshan et al. 2021; Liu and Janson 2020; Tansey et al. 2018a,b]. This includes work presented

in chapters 4 and 5 of this thesis.

2.2 Machine learning interpretability

Broadly speaking, there are two schools of thought regarding interpretability. The first prioritizes

predictive accuracy over explainability, and seeks to explain only models that fit the data well.

The second believes that models used to understand underlying data generating processes must

be human-interpretable by construction. We highlight some common examples of techniques in

each school of thought, then discuss more generally when they should be used.

2.2.1 Interpretability methods

ML researchers and practitioners generally agree that understanding models is important. How-

ever, there is often a tradeoff between human interpretability and model complexity. For example

the most powerful machine learning methods used in practice contain billions of parameters and

follow decision logic that is too complicated for a human to understand. As a result, many be-

lieve that external tools must be built to explain the predictions of these “black-box” models.

Limiting the structure of powerful prediction models for human interpretability may limit their

performance.

To this end, there has been a large body of work on interpretability methods that seek to

explain the predictions of black boxes. There is much work on interpretability, so in the context

of this thesis, we focus on the largest subset of interpretability work: feature importancemethods.

Feature importance methods. Feature importance methods rank input features to a model.

The following are some examples. Hastie et al. [2009] permutes the inputs to a model and mea-
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sure changes in the output. Many recent methods focus on neural networks and inspect the

gradient of the output with respect to an input [Baehrens et al. 2010; Zeiler and Fergus 2014].

Other gradient-based methods include guided-backpropagation [Springenberg et al. 2014], which

assigns attributes to hidden unit activations within a neural network, and baseline attribution

methods [Sundararajan et al. 2017] which employ a baseline to use as a comparison to the inputs.

Beyond gradient-based methods, there are also surrogate model explainers, which are auxil-

iary models designed to output importance scores for each input feature. Examples include L2X

[Chen et al. 2018], INVASE [Yoon et al. 2019], and FastSHAP [Jethani et al. 2021]. There are also

many methods that estimate Shapley values [Lundberg and Lee 2017; Ribeiro et al. 2016; Covert

and Lee 2021]: a game-theoretic quantity that assigns a score to each input feature that repre-

sents the expected difference in model performance with and without the feature over all possible

feature subsets.

In general, feature importance methods are most useful to visualize a model’s preference for

inputs. This can help debug issues like spurious correlations [Geirhos et al. 2020], where a model

may be using an artifact in the data rather than a causal feature. No one technique is ideal for

all use cases. For example, gradient-based methods fail to correctly rank features in simulation

studies conducted by [Jethani et al. 2021]. While surrogate model explainers perform better, they

are expensive to train.

2.2.2 Interpretable machine learning models

We previously discussed a tradeoff between explainability and performance in the most power-

ful machine learning models. In many instances, machine learning models designed to be inter-

pretable achieve sufficiently high predictive performance. Proponents of the interpretable models

school of thought believe that as much as possible, the machine learning model must be param-

eterized such that its decision logic is easily understood by humans.

Examples of interpretable models include linear methods, which model a response y as an
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affine transformation of input features x1, . . . ,xd: y = β0 +
∑d

j=1 βjxj . The weights βj can be

used to rank input features (assuming all inputs are on the same scale), and inform the user about

how varying an input feature changes the prediction. Similarly, a generalized additive model

extends this concept by replacing linear transformations βjxj with more flexible parameterized

functions fβj
(xj). This allows an input feature to have a nonlinear relationship with the pre-

diction. Decision trees provide an alternative route to explaining predictions and work well for

categorical data.

Unless there is a large gap between the best interpretable model and black-box model in terms

of prediction, using an interpretable model is the preferred tool for scientific discovery. Often this

gap is nontrivial and practitioners must choose between explainability and performance. How-

ever, with careful model architecture design elements of powerful ML models like convolutional

networks or transformers can be used to create an interpretable model. In chapter 8, we discuss

the construction of an interpretable convolutional network for an RNA sequence-based predic-

tion task. From this network we derive several biologically relevant insights.
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3 | Deep direct likelihood knockoffs

Predictive modeling often uses black box machine learning methods, such as deep neural net-

works, to achieve state-of-the-art performance. In scientific domains, the scientist often wishes

to discover which features are actually important for making the predictions. These discoveries

may lead to costly follow-up experiments and as such it is important that the error rate on dis-

coveries is not too high. Model-X knockoffs [Candes et al. 2018] enable important features to

be discovered with control of the fdr. However, knockoffs require rich generative models capa-

ble of accurately modeling the knockoff features while ensuring they obey the so-called “swap”

property. In this chapter, we develop Deep Direct Likelihood Knockoffs (ddlk), which directly

minimizes theKL divergence implied by the knockoff swap property. ddlk consists of two stages:

it first maximizes the explicit likelihood of the features, then minimizes the KL divergence be-

tween the joint distribution of features and knockoffs and any swap between them. To ensure

that the generated knockoffs are valid under any possible swap, ddlk uses the Gumbel-Softmax

trick to optimize the knockoff generator under the worst-case swap. We find ddlk has higher

power than baselines while controlling the false discovery rate on a variety of synthetic and real

benchmarks including a task involving a large dataset from one of the epicenters of COVID-19.
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3.1 Motivation for ddlk

We motivate ddlk with the following observation. As discussed in section 2.1.2, the swap prop-

erty

[x, x̃]
d
= [x, x̃]swap(H) (3.1)

is required of any valid knockoff variables x̃. That is, the joint distribution of data and knockoffs

[x, x̃] should be invariant to swapping a set of coordinates H between x x̃. One way to check if

the swap property is satisfied is to check if theKL divergence between the original and swapped

distributions is zero. Formally, letH be a set of indices to swap, and z = [x, x̃],w = [x, x̃]swap(H).

Then under any such H ⊆ [d]:

KL(qz ∥ qw) = Eqz(z)

[
log

qz(z)

qw(z)

]
= 0. (3.2)

A natural algorithm for generating valid knockoffs might be to parameterize each distribution

above and solve for the parameters by minimizing the LHS of eq. (3.2). However, modeling qw for

every possible swap is difficult and computationally infeasible in high dimensions. Theorem 3.1.1

provides a useful solution to this problem.

Theorem 3.1.1. Let µ be a probability measure defined on a measurable space. Let fH be a swap

function using indices H ⊆ [d]. If v is a sample from µ, the probability law of fH(v) is µ ◦ fH .

Proof. The swap operation fH on [x, x̃] swaps coordinates in the following manner: for each

j ∈ H , the jth and (j + d)th coordinates are swapped. Let (E, E) be a measurable space, where

elements of E are 2d-dimensional vectors, and E is a σ-algebra on E. Let (F,F) also be a mea-

surable space where each element of F is an element of E but with the jth coordinate swapped

with the (j + d)th coordinate for each j ∈ H . Similarly, let F be constructed by applying the

17



same swap transformations to each element of E . F is a σ-algebra as swaps are one-to-one trans-

formations, and E is a σ-algebra.

We first show that fH is a measurable function with respect to E and F . This is true by

construction of the measurable space (F,F). For every element B ∈ F , f−1
H (B) ∈ E . We can

now construct a mapping µ ◦ f−1
H (B) for all B ∈ F . This is the pushforward measure of µ under

transformation fH , and is well defined because fH is measurable. Using the fact that a swap

applied twice is the identity, we get fH = f−1
H . With this, we see that the probability measure on

(F,F) is µ ◦ f−1
H = µ ◦ fH .

Implication of theorem 3.1.1: an example. While theorem 3.1.1 is written generally, it may

help to understand its implication for a concrete example. In the continuous case where qz and

qw are the densities of z andw respectively, qw evaluated at a sample v is simply qz evaluated at

the swap of v. To understand why, note that a swap operation on z is an affine transformation

w = Az, whereA is a permutation matrix. Using this property, we get:

qw(z) =

∣∣∣∣det(∂A−1w

∂w

)∣∣∣∣ · qz(A−1z) = qz(A
−1z) = qz(Az) = qz(w).

The first step is achieved by using a change of variables, noting that A is invertible, and z =

A−1w. The determinant of the Jacobian here is just the determinant ofA−1. A−1 is a permutation

matrix whose parity is even, meaning its determinant is 1, and thatA−1 = A. I.e. the density of

the swapped variables evaluated at z is equal to the original density evaluated at w.
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3.2 Deriving ddlk

A useful consequence of theorem 3.1.1 is that ddlk needs to only model qz, instead of qz and

every possible swap distribution qw. To derive the ddlk algorithm, we first expand eq. (3.2):

Eqz(z)

[
log

qz(z)

qw(z)

]
= Eq(x)Eq(x̃|x)

[
log

q(x)q(x̃ | x)
q(u)q(ũ | u)

]
, (3.3)

where [u, ũ] = [x, x̃]swap(H). Ddlk models the RHS by parameterizing q(x) and q(x̃ | x) with

q̂joint(x; θ) and q̂knockoff(x̃ | x;ϕ) respectively. The parameters θ and ϕ can be optimized separately

in two stages.

Stage 1: Covariate distribution estimation. Wemodel the distribution ofx using q̂joint(x; θ).

The parameters of the model θ are learned by maximizing Ex∼DN
[log q̂joint(x; θ)] over a dataset

DN := {x(i)}Ni=1 of N samples.

Stage 2: Knockoff generation. For any fixed swapH , minimizing the KL divergence between

the following distributions ensures the swap property required of knockoffs:

KL(q̂joint(x; θ)q̂knockoff(x̃ | x;ϕ) ∥ q̂joint(u; θ)q̂knockoff(ũ | u;ϕ)). (3.4)

Fitting the knockoff generator q̂knockoff(x̃ | x;ϕ) involves minimizing this KL divergence for all

possible swapsH . To make this problem tractable, we use several building blocks that help us (a)

sample swaps with the highest values of this KL and (b) prevent q̂knockoff from memorizing x to

trivially satisfy the swap property.
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3.3 Sampling swap subsets

In the previous section we derived an optimization procedure for ddlk, but one problem still

remains. The optimization implies the KL-term in eq. (3.4) to be minimized for all possible swap

subsetsH ⊆ [d]. We show next using lemma 3.3.1 that satisfying the swap property for an expo-

nential number of swaps is not necessary. It suffices to satisfy the swap property for a collection

of sets where any singletonH can be represented as the symmetric difference of members of the

collection.

Lemma 3.3.1. Sufficient swaps: Let A = {A1, . . . , AK} where Ak ⊆ [d]. For each j ∈ [d], if

there exists some subset of A whose symmetric difference is equal to {j}, then satisfying the swap

property for all sets in A is equivalent to satisfying the swap property for all possible subsets of [d].

Proof. One approach to check if knockoffs are valid is to verify the swap property for all singleton

sets {j} ⊂ [d] [Romano et al. 2018; Jordon et al. 2019]. To check if the swap property eq. (3.1) holds

under any H = {j1, . . . , jk}, it suffices to check if eq. (3.1) holds under each of {j1}, . . . , {jk}.

We can generalize this approach to check the validity of knockoffs under other collections of

indices besides singleton sets using the following property. Let H1, H2 ⊆ [d] and

[x, x̃]
d
= [x, x̃]swap(H1)

[x, x̃]
d
= [x, x̃]swap(H2).

Then,

[x, x̃]swap(H1∆H2)
d
=
[
[x, x̃]swap(H1)

]
swap(H2)

d
= [x, x̃]swap(H2)

d
= [x, x̃]

where H1∆H2 is the symmetric difference of H1 and H2. Swapping the indices in H1∆H2 is

equivalent to swapping the indices inH1, then the indices inH2. If ∃j ∈ H1 ∧ j ∈ H2, swapping
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j twice will negate the effect of the swap.

We can extend this property to K sets and define sufficient conditions to check if the swap

property holds. Let {Ak}Kk=1 be a sequence of sets where each Ak ⊆ [d]. Let

A∗
1 = A1

∀k ∈ [K], A∗
k = Ak∆A

∗
k−1

A∗
K = {j}.

Checking the swap property eq. (3.1) under a sequence of swaps {Ak}Kk=1 is equivalent to checking

eq. (3.1) under the singleton set {j}. Therefore, the swap property must also hold under the

singleton set {j}.

If collection of sets of swap indices A contains a sub-sequence {Am}Mm=1 such that their se-

quential symmetric difference is the singleton {j} for each j ∈ [d], then a set of knockoffs that

satisfies the swap property under each Ak ∈ A, will also satisfy the swap property under each

singleton set, which is sufficient to generate valid knockoffs.

Sampling swaps. Swapping d coordinates can be expensive in high dimensions, so existing

methods resort to randomly sampling swaps [Romano et al. 2018; Jordon et al. 2019] during opti-

mization. Rather than sample each coordinate uniformly at random, we propose parameterizing

the sampling process for swap indices H so that swaps sampled from this process yields large

values of the KL objective in eq. (3.4). We do so because of the following property of swaps.

Lemma 3.3.2. Worst case swaps: Let q(H; β) be the worst case swap distribution. That is, the

distribution over swap indices that maximizes

EH∼q(H;β)KL(q̂joint(x; θ)q̂knockoff(x̃ | x;ϕ) ∥ q̂joint(u; θ)q̂knockoff(ũ | u;ϕ)) (3.5)
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with respect to β. If eq. (3.5) is minimized with respect to ϕ, knockoffs sampled from q̂knockoff will

satisfy the swap property in eq. (3.1) for any swap H in the power set of [d].

Proof. If eq. (3.5) is minimized with respect to ϕ but maximized with respect to β, then for any

other distribution q(H; β′), eq. (3.5) will be lesser. Minimizing eq. (3.5), which is non-negative,

with respect to ϕ implies that for any swap H sampled from q(H; β) and for any knockoff x̃

sampled from q̂knockoff, the swap property will be satisfied. As eq. (3.5) is also maximized with

respect to β, swaps H ′ drawn from all other distributions q(H ′; β′) will only result in lower

values of eq. (3.5). Therefore, the joint distribution [x, x̃] will be invariant under any swap H ′ in

the power set of [d].

Randomly sampling swaps can be thought of as sampling from d Bernoulli random variables

{bj}dj=1 with parameters β = {βj}dj=1 respectively, where each bj indicates whether the jth

coordinate is to be swapped. A set of indices H can be generated by letting H = {j : bj = 1}.

To learn a sampling process that helps maximize eq. (3.5), we optimize the values of β. However,

since score function gradients for the parameters of Bernoulli random variables can have high

variance, ddlk uses a continuous relaxation instead. For each coordinate j ∈ d, ddlk learns the

parameters for a Gumbel-Softmax [Jang et al. 2016; Maddison et al. 2016] distribution q̂gumbel(βj).

3.4 Entropy regularization

Minimizing the the KL objective in eq. (3.5) over the worst case swap distribution will generate

knockoffs that satisfy the swap property eq. (3.1). However, a potential solution in the opti-

mization of q̂knockoff(x̃ | x) is to memorize the covariates x, which reduces the power to select

important variables.

To solve this problem, ddlk introduces a regularizer based on the conditional entropy, to push

x̃ to not be a copy of x. This regularizer takes the form −λE[− log q̂knockoff(x̃ | x;ϕ)], where λ is

a hyperparameter.
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Algorithm 3.1 ddlk
Input: DN := {x(i)}Ni=1, dataset of covariates; λ, regularization parameter; αϕ, learning rate for

q̂knockoff; αβ , learning rate for q̂gumbel
Output: θ, parameter for q̂joint, q̂knockoff, parameter for q̂knockoff
θ = argmaxθ

1
N

∑N
i=1 log q̂joint(x

(i); θ)
while q̂knockoff not converged do

Sample {x̃(i)}Ni=1, where x̃(i) ∼ q̂knockoff(x̃ | x(i);ϕ)
Sample swap H ∼ q̂gumbel(β)
Create {(u(i), ũ(i))}Ni=1, where [u(i), ũ(i)] = [x(i), x̃(i)]swap(H)

Let A(ϕ) = 1
N

∑N
i=1 log q̂joint(x

(i); θ) + (1 + λ) log q̂knockoff(x̃
(i) | x(i);ϕ)

Let B(ϕ, β) = 1
N

∑N
i=1 log q̂joint(u

(i); θ) + log q̂knockoff(ũ
(i) | u(i);ϕ)

ϕ← ϕ− αϕ∇ϕ(A(ϕ)− B(ϕ, β))
β ← β + αβ∇β(A(ϕ)− B(ϕ, β))

end

return θ, ϕ, β

Including the regularizer on conditional entropy, and Gumbel-Softmax sampling of swap in-

dices, the final optimization objective for ddlk is as follows, where [u, ũ] = [x, x̃]swap(H):

min
ϕ

max
β

EH∼q̂gumbel(β)Ex∼DN
Ex̃∼q̂knockoff(x̃|x;ϕ) log

q̂joint(x; θ)q̂knockoff(x̃ | x;ϕ)1+λ

q̂joint(u; θ)q̂knockoff(ũ | u;ϕ)
. (3.6)

We show the full ddlk algorithm in algorithm 3.1. Ddlk fits q̂joint bymaximizing the likelihood

of the data. It then fits q̂knockoff by optimizing eq. (3.6) with noisy gradients. To do this, ddlk first

samples knockoffs conditioned on the covariates and a set of swap coordinates, then computes

Monte-Carlo gradients of the ddlk objective in eq. (3.6) with respect to parameters ϕ and β. In

practice ddlk can use stochastic gradient estimates like the score function or reparameterization

gradients for this step. The q̂joint and q̂knockoff models can be implemented with flexible models like

MADE [Germain et al. 2015] or mixture density networks [Bishop 1994a].
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3.5 Related work

Existing knockoff generation methods can be broadly classified as either model-specific or flex-

ible. Model-specific methods such as hidden markov models (hmms) [Sesia et al. 2017] or Auto-

Encoding Knockoffs [Liu and Zheng 2018] make assumptions about the covariate distribution,

which can be problematic if the data does not satisfy these assumptions. Hmms assume the joint

distribution of the covariates can be factorized into a markov chain. Auto-Encoding Knockoffs

use variational auto-encoders (vaes) to model x and sample knockoffs x̃. Vaes assume x lies near

a low dimensional manifold, whose dimension is controlled by a latent variable. Covariates that

violate this low-dimensional assumption can be better modeled by increasing the dimension of

the latent variable, but risk retaining more information about x, which can reduce the power to

select important variables.

Flexible methods for generating knockoffs such as KnockoffGAN [Jordon et al. 2019] or Deep

Knockoffs [Romano et al. 2018] focus on likelihood-free generative models. KnockoffGAN uses

generative adversarial network (gan)-based generative models, which can be difficult to estimate

[Mescheder et al. 2018] and sensitive to hyperparameters [Salimans et al. 2016; Gulrajani et al.

2017; Mescheder et al. 2017]. Deep Knockoffs employ maximum mean discrepancys (mmds), the

effectiveness of which often depends on the choice of a kernel which can involve selecting a

bandwidth hyperparameter. Ramdas et al. [2015] show that in several cases, across many choices

of bandwidth, mmd approaches 0 as dimensionality increases while KL divergence remains non-

zero, suggesting mmds may not reliably generate high-dimensional knockoffs. Deep Knockoffs

also prevent the knockoff generator from memorizing the covariates by explicitly controlling the

correlation between the knockoffs and covariates. This is specific to second order moments, and

may ignore higher order ones present in the data.
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3.6 Experiments

We study the performance of ddlk on several synthetic, semi-synthetic, and real-world datasets.

We compareddlkwith several non-Gaussian knockoff generationmethods: Auto-EncodingKnock-

offs (AEK) [Liu and Zheng 2018], KnockoffGAN [Jordon et al. 2019], andDeepKnockoffs [Romano

et al. 2018].

3.6.1 Baseline method implementation

For all comparison methods, we downloaded the publicly available implementations of the code

(if available) and used the appropriate configurations and hyperparameters recommended by the

authors. For Deep Knockoffs and KnockoffGAN, we use code from each respective repository:

https://github.com/msesia/deepknockoffs

https://bitbucket.org/mvdschaar/mlforhealthlabpub/

and use the recommended hyperparameter settings.

At the time of writing this thesis, there was no publicly available implementation for Auto-

Encoding Knockoffs. We implemented Auto-Encoding Knockoffs with a vae with a gaussian

posterior

q(z | x) ≈ N (z;µz(x), σz(x))

and likelihood

p(x | z) ≈ N (x;µx(z), σx(z)).
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Each of µz, σz, µx.σx is a 2-layer neural network with 400 units in the first hidden layer, 500

units in the second, and ReLU activations. The outputs of networks σz, σx are exponentiated to

ensure variances are non-negative. The outputs of network µz and σz are of dimension dz, and

the outputs of µx and σx are of dimension d, the covariate dimension. For each dataset, we choose

the dimension dz of latent variable z that maximizes the estimate of the ELBO on a validation

dataset. In our experiments, we search for dz over the set {dz : 10 ≤ dz ≤ 200, dz mod 10 = 0}.

For each dataset, we use the following dz:

1. gaussian: 20 2. mixture: 140 3. gene: 30 4. covid-19: 60.

The neural networks are trained using Adam [Kingma and Ba 2014], with a learning rate

of 1 × 10−4 for a maximum of 150 epochs. To avoid very large gradients, we standardize the

data using the mean and standard deviation of the training set. To generate knockoffs x̃, we use

the same approach prescribed by Liu and Zheng [2018]. We first sample the latent variable z

conditioned on the covariates using the posterior distribution:

z ∼ N (z;µz(x), σz(x)) .

This sample of z is then used to sample a knockoff x̃ using the likelihood distribution:

x̃ ∼ N (x;µx(z), σx(z)) .

Since these x̃ are standardized, we re-scale them by the the training mean and standard deviation.

3.6.2 Experimental setup

Each experiment involves three stages. First, we fit a knockoff generator using a dataset of co-

variates {x(i)}Ni=1. Next, we fit a response model q̂response(y | x; γ), and use its performance on

a held-out set to create a knockoff statistic wj for each feature xj . Finally, we apply a knockoff
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filter to the statistics {wj}dj=1 to select features at a nominal fdr level p, and measure the ability

of each knockoff method to select relevant features while maintaining fdr at p. For the synthetic

and semi-synthetic tasks, we repeat these three stages 30 times to obtain interval estimates of

each performance metric.

3.6.2.1 Fitting a knockoff generator

In our experiments, we assume x to be real-valued with continuous support and decompose the

models q̂joint and q̂knockoff via the chain rule:

q(x | ·) = q(x1 | ·)
d∏

j=2

q(xj | ·,x1, · · · ,xj−1).

We model each conditional q(xj | ·) using mixture density networks [Bishop 1994a] which take

the form

q(xj | ·) =
K∑
k=1

πk(·;ψk)N (µk(·; ηk), σ2
k(·;ωk))

where functions {πk}Kk=1, {µk}Kk=1, and {σk}Kk=1 characterize a univariate gaussianmixture. These

parameters of these functions are [ψ1, . . . , ψK , ν1, . . . , νK , ω1, . . . , ωK ].

Fitting q̂joint. Let θ, the parameters of q̂joint contain parameters for every conditional q(xj |

x1, . . . ,xj−1). The optimization of θ is straightforward:

θ = argmax
θ

L(θ) = argmax
θ

1

N

N∑
i=1

log q̂joint(x
(i); θ)

only requires taking the derivative of L(θ).
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Fitting q̂knockoff. Let ϕ, the parameters of q̂knockoff contain parameters for every conditional

q(x̃j | x1, . . . ,xd, x̃1, . . . , x̃j−1). Recall the loss function L(ϕ, β)

L(ϕ, β) = EH∼q̂gumbel(β)Ex∼DN
Ex̃∼q̂knockoff(x̃|x;ϕ) log

q̂joint(x; θ)q̂knockoff(x̃ | x;ϕ)1+λ

q̂joint(u; θ)q̂knockoff(ũ | u;ϕ)
.

The optimization of ϕ requires ∇ϕL(ϕ, β), which involves the derivative of an expectation with

respect to to q̂knockoff(x̃ | x;ϕ). We use implicit reparameterization [Figurnov et al. 2018]. The

advantage of implicit reparameterization over explicit reparameterization [Kingma et al. 2015] is

that an inverse standardization function S−1
ϕ –which transforms random noise into samples from

a distribution parameterized by ϕ – is not needed. Using implicit reparameterization, gradients

of some objective Eq(z;ϕ)[f(z)] can be rewritten as

Eq(z;ϕ)[∇ϕf(z)] = Eq(z;ϕ)[∇zf(z)∇ϕz]

= Eq(z;ϕ)[−∇zf(z)(∇zSϕ(z))
−1∇ϕSϕ(z)].

We use this useful property to reparameterize gaussian mixture models. Let q(z;ϕ) be a

gaussian mixture model:

q(z;ϕ) =
K∑
k=1

πkN (z;µk, σ
2
k)

where ϕ = [π1, . . . , πK , µ1, . . . , µK , σ1, . . . , σK ]. Let the standardization function Sϕ be the CDF

of q(z;ϕ):

Sϕ(z) =
K∑
k=1

πkΦ

(
z− µk

σk

)

where Φ is the standard normal gaussian CDF. We use this to compute the gradient of z with
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respect to each parameter:

∇πk
z = −

Φ(z−µk

σk
)

q(z;ϕ)

∇µk
z =

πk · N (z;µk, σ
2
k)

q(z;ϕ)

∇σk
z =

πk ·
(

z−µk

σk

)
· N (z;µk, σ

2
k)

q(z;ϕ)
.

Putting it all together, we use the implicit reparameterization trick to implement each condi-

tional distribution in q̂joint and q̂knockoff.

3.6.2.2 Hyperparameter settings

Each mixture density network is a 3-layer neural network with 50 parameters in each layer and

a residual skip connection from the input to the last layer. Each network outputs the parameters

for a univariate gaussian mixture with 5 components. We initialize the network such that the

modes are evenly spaced within the support of training data.

Using q̂gumbel, we sample binary swap matrices of the same dimension as the data. As we

require discrete samples from the Gumbel-Softmax distribution, we implement a straight-through

estimator [Jang et al. 2016]. The straight-through estimator facilitates sampling discrete indices,

but uses a continuous approximation during backpropagation.

The q̂joint model is optimized using Adam [Kingma and Ba 2014], with a learning rate of 5 ×

10−4 for a maximum of 50 epochs. The q̂knockoff model is optimized using Adam, with a learning

rate of 1× 10−3 for ϕ and 1× 10−2 for β for a maximum of 250 epochs. We also implement early

stopping using validation loss using the PyTorch Lightning framework [Falcon 2019]. Our code

can be found online by installing:

pip install -i https://test.pypi.org/simple/ddlk==0.2
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Across each benchmark involving ddlk, we vary only the λ entropy regularization parameter

based on the amount of dependence among covariates. The number of parameters, learning rate,

and all other hyperparameters are kept constant. To sample swapsH , we sample using a straight-

through Gumbel-Softmax estimator [Jang et al. 2016]. This allows us to sample binary values for

each swap, but use gradients of a continuous approximation during optimization.

3.6.2.3 Robust model-based knockoff statistics

The goal of any knockoff method is to help compute test statistics for a conditional indepen-

dence test. We employ a variant of hrts [Tansey et al. 2018a] to compute test statistics wj for

each feature xj . We split dataset DN := {(x(i),y(i))}Ni=1 into train and test sets D(tr)
N , and D(te)

N

respectively, then sample knockoff datasets D̃(tr)
N and D̃(te)

N conditioned on each. Next, a model

q̂response is fit with D(tr)
N .

To compute knockoff statisticswith q̂response, we use ameasure of performanceW(q̂response,D(te)
N )

on the test set. For real-valued y,W is the mean squared-error, and for categorical y,W is ex-

pected log-probability of y | x. A knockoff statistic wj := W(q̂response,D(te)
N )−W(q̂response, D̃(te)

j,N)

is recorded for each feature xj , where D̃(te)
j,N is D(te)

N but with the jth feature swapped with D̃(te)
N .

In practice, we use use flexible models like neural networks or boosted trees for q̂response. While

themodel-based statistic abovewill satisfy the properties detailed in section 2.1.2 and control fdr,

its ability to do so is hindered by imperfect knockoffs. In such cases, we observe that knockoff

statistics for null features are centered around some ζ > 0, violating a condition required for

empirical fdr control. This happens because if the covariates and knockoffs are not equal in

distribution, models trained on the covariates will fit the covariates better than the knockoffs and

inflate the value of test statistic wj . This can lead to an increase in the false discovery rate as

conditionally independent features may be selected if their statistic is larger than the selection

threshold. To combat this, we propose a mixture statistic that trades off power for fdr-control.

The mixture statistic involves fitting a q̂response model for each feature xj using an equal mix-
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ture of data in D(tr)
N and D̃(tr)

j,N , then computing W as above. Such a q̂response achieves lower per-

formance on D(te)
N , but higher performance on D̃(te)

j,N , yielding values of wj with modes closer to

0, enabling finite sample fdr control. However, this fdr-control comes at the cost of power as

the method’s ability to identify conditionally dependent features is reduced. We revisit this issue

from a theoretical perspective in chapter 4.

3.6.3 Synthetic benchmarks

Our tests on synthetic data seek to highlight differences in power and fdr between each knockoff

generation method. Each dataset in this section consists of N = 2000 samples, 100 features, 20

of which are used to generate the response y. Testing the global null (0 important features) can

also help understand the performance of a knockoff method, as fdr control equates to control of

the family-wise error rate: a stricter notion of false discovery control. However, we found our

results in global null experiments to be no more instructive about the differences between each

method than with 20 important features. We split the data into a training set (70%) to fit each

knockoff method, a validation set (15%) used to tune the hyperparameters of each method, and

a test set (15%) for evaluating knockoff statistics.

[gaussian]: We first replicate the multivariate normal benchmark of Romano et al. [2018].

We sample x ∼ N (0,Σ), where Σ is a d-dimensional covariance matrix whose entries Σi,j =

ρ|i−j|. This autoregressive Gaussian data exhibits strong correlations between adjacent features,

and lower correlations between features that are further apart. We generate y | x ∼ N (⟨x, α⟩, 1),

where coefficients for the important features are drawn as αj ∼ 100√
N
· Rademacher(0.5). In our

experiments, we set ρ = 0.6. We let the ddlk entropy regularization parameter λ = 0.1. Our

model q̂response for y | x is a 1-layer neural network with 200 parameters.

[mixture]: To compare each method on its ability to generate non-Gaussian knockoffs, we

use a mixture of autoregressive Gaussians. This is a more challenging benchmark as each co-

variate is multi-modal, and highly correlated with others. We sample x ∼
∑K

k=1 πkN (µk,Σk),
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Figure 3.1: Ddlk closelymodels themodes, covariances, andmixture proportions of the mixture
dataset. Auto-Encoding Knockoffs also capture every mode, but does so by overfitting to the covariates.

Deep Knockoffs are able to match the first two moments, but fail to capture every mode. KnockoffGAN

suffers from mode collapse and fails to capture every mode.

where each Σk is a d-dimensional covariance matrix whose (i, j)th entry is ρ|i−j|
k . We gener-

ate y | x ∼ N (⟨x, α⟩, 1), where coefficients for the important features are drawn as αj ∼
100√
N
·Rademacher(0.5). In our experiments, we setK = 3, and (ρ1, ρ2, ρ3) = (0.6, 0.4, 0.2). Clus-

ter centers are set to (µ1, µ2, µ3) = (0, 20, 40), and mixture proportions are set to (π1, π2, π3) =

(0.4, 0.2, 0.4). We let the ddlk entropy regularization parameter λ = 0.001. Figure 3.1 visualizes

two randomly selected dimensions of this data.

Results. Figure 3.2 compares the average fdp and power (percentage of important features

selected) of each knockoff generating method. The average fdp is an empirical estimate of the

fdr. In the case of the gaussian dataset, all methods control fdr at or below the the nominal

level, while achieving 100% power to select important features. The main difference between

each method is in the calibration of null statistics. Recall that a knockoff filter assumes a null

statistic to be positive or negative with equal probability, and features with negative statistics

below a threshold are used to control the number of false discoveries when features with positive

statistics above the same threshold are selected. Ddlk produces the most well calibrated null

statistics as evidenced by the closeness of its fdp curve to the dotted diagonal line.

Figure 3.2 also demonstrates the effectiveness of ddlk in modeling non-Gaussian covariates.

In the case of the mixture dataset, ddlk achieves significantly higher power than the baseline

methods, while controlling the fdr at nominal levels. To understand why this may be the case, we
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Figure 3.2: ddlk controls fdr at the nominal rate and achieves highest power on a variety of

benchmarks. For each benchmark, we show the fdp and power of each knockoff method.

plot the joint distribution of two randomly selected features in fig. 3.1. Ddlk and Auto-Encoding

Knockoffs both seem to capture all three modes in the data. However, Auto-Encoding Knockoffs

tend to produce knockoffs that are very similar to the original features, and yield lower power

when selecting variables, shown in fig. 3.2. Deep Knockoffs manage to capture the first two

moments of the data – likely due to an explicit second-order term in the objective function –

but tend to over-smooth and fail to properly estimate the knockoff distribution. KnockoffGAN

suffers from mode collapse, and fails to capture even the first two moments of the data. This

yields knockoffs that not only have low power, but also fail to control fdr at nominal levels.

Robustness of ddlk to entropy regularization. To provide guidance on how to set the

entropy regularization parameter, we explore the effect of λ on both fdr control and power.

Intuitively, lower values of λ will yield solutions of q̂knockoff that may satisfy eq. (3.1) and control

fdrwell, but may also memorize the covariates and yield low power. Higher values of λmay help

improve power, but at the cost of fdr control. In this experiment, we again use the gaussian

dataset, but vary λ and the correlation parameter ρ. Figure 3.3 highlights the performance of

ddlk over various settings of λ and ρ. We show a heatmap where each cell represents the RMSE

between the nominal fdr and mean fdp curves over 30 simulations. In each of these settings

ddlk achieves a power of 1, so we only visualize fdp. We observe that the fdp of ddlk is very

close to its expected value for most settings where λ ≤ 0.1. This is true over a wide range of ρ
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Figure 3.3: ddlk is robust to choices of entropy regularization parameter λ. For most choices of

λ ≤ 0.1, ddlk achieves fdp very close to that of the nominal fdr rate. This figure shows the RMSE

between the expected and actual fdp curves.

explored, demonstrating that ddlk is not very sensitive to the choice of this hyperparameter. We

also notice that data with weaker correlations see a smaller increase in fdp with larger values of

λ. In general, checking the fdp on synthetic responses generated conditional on real covariates

can aid in selecting λ.

3.6.4 Semi-synthetic benchmark

[gene]: In order to evaluate the fdr and power of each knockoff method using covariates found

in a genomics context, we create a semi-synthetic dataset. We use RNA expression data of 963

cancer cell lines from the Genomics of Drug Sensitivity in Cancer study [Yang et al. 2012]. Each

cell line has expression levels for 20K genes, of which we sample 100 such that every feature is

highly correlated with at least one other feature. We create 30 independent replications of this

experiment by repeating the following process. We first sample a gene x1 uniformly at random,

adding it to the setX . For xj , j > 1, we sample xk uniformly at random fromX and compute the

set of 50 genes not in X with the highest correlation with xk. From this set of 50, we uniformly

sample a gene xj and add it to the feature set. We repeat this process for j = 2, . . . , 100, yielding

100 genes in total.

We generate y | x using a nonlinear response function adapted from a study on feature
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Figure 3.4: ddlk learns the marginals of COVID-19 data better than competing baselines. We

plot the marginal distribution of a feature in a COVID-19 dataset, and the corresponding marginal of

samples from each knockoff method.

selection in neural network models of gene-drug interactions [Liang et al. 2018]. The response

consists of two first-order terms, a second-order term, and an additional nonlinearity in the form

of a tanh:

k ∈ [m/4]

φ
(1)
k , φ

(2)
k ∼ N (1, 1)

φ
(3)
k , φ

(4)
k , φ

(5)
k , φ

(6)
k ∼ N (2, 1)

y | x = ϵ+

m/4∑
k=1

φ
(1)
k x4k−3 + φ

(3)
k x4k−2 + φ

(4)
k x4k−3x4k−2 + φ

(5)
k tanh(φ

(2)
k x4k−1 + φ

(6)
k x4k)

where m is the number of important features. In our experiments, we set m = 20. This means

that the first 20 features are important, while the remaining 80 are unimportant. We let ddlk

entropy regularization parameter λ = 0.001.

Results. Figure 3.2 (rightmost) highlights the empirical fdp and power of each knockoff gen-

erating method in the context of gene. All methods control the fdr below the nominal level, but

the average fdp of ddlk at fdr thresholds below 0.3 is closer to its expected value. This range of

thresholds is especially important as nominal levels of fdr below 0.3 are most used in practice.

In this range, ddlk achieves power on par with Deep Knockoffs at levels below 0.1, and higher

power everywhere else. Auto-Encoding Knockoffs and KnockoffGAN achieve noticeably lower

power across all thresholds. Deep Knockoffs perform well here likely due to a lack of strong third
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Feature DDLK Deep Knockoffs AEK KnockoffGAN Validated
Eosinophils count ✓ ✗ ✗ ✗ ✓

Eosinophils percent ✓ ✓ ✗ ✗ ✗

Blood urea nitrogen ✓ ✗ ✗ ✗ ✓

Ferritin ✓ ✗ ✗ ✗ ✗

O2 Saturation ✓ ✗ ✗ ✗ ✓

Heart rate ✓ ✗ ✗ ✗ ✓

Respiratory rate ✓ ✓ ✗ ✗ ✓

O2 Rate ✓ ✓ ✓ ✓ ✓

On room air ✓ ✓ ✓ ✓ ✓

High O2 support ✓ ✓ ✓ ✓ ✓

Age ✗ ✗ ✓ ✓ ✗

Table 3.1: Ddlk selects 10/37 features, 8 of which were found to be meaningful by doctors at a

large metropolitan hospital. Here we show the union of covid-19 features selected by each knockoff

method at a nominal fdr of 0.2. Deep Knockoffs, Auto-Encoding Knockoffs, and KnockoffGAN exhibit

lower power to select important features.

or higher moments of dependence between features. We attribute the success of ddlk and Deep

Knockoffs to their ability to model highly correlated data.

3.6.5 COVID-19 adverse events

[covid-19]: The widespread impact of COVID-19 has led to the deployment of machine learning

models to guide triage. Data for COVID-19 is messy because of both the large volume of patients

and the changing practice for patient care. Establishing trust in models for COVID-19 involves

vetting the training data to ensure it does not contain artifacts that models can exploit. Condi-

tional independence tests help achieve this goal in twoways: (a) they highlight which features are

most important to the response, and (b) they prune the feature set for a deployed model, reducing

the risk of overfitting to processes in a particular hospital. We apply each knockoff method to a

large dataset from one of the epicenters of COVID-19 to understand the features most predictive

of adverse events.

We use electronic health record data on COVID-positive patients from a large metropolitan

health network. Our covariates include demographics, vitals, and lab test results from every com-
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plete blood count (cbc) taken for each patient. The response y | x is a binary label indicating

whether or not a patient had an adverse event (intubation, mortality, ICU transfer, hospice dis-

charge, emergency department representation, O2 support in excess of nasal cannula at 6 L/min)

within 96 hours of their cbc. There are 17K samples of 37 covariates in the training dataset, 5K in

a validation set, and 6K in a held-out test set. We let the ddlk entropy regularization parameter

λ = 0.1. In this experiment, we use gradient boosted regression trees [Friedman 2002; Ke et al.

2017] as our q̂response(y | x; γ) model, and expected log-likelihood as a knockoff statistic. We also

standardize the data in the case of Deep Knockoffs since mmds that use the radial basis function

(rbf) kernel with a single bandwidth parameter work better when features are on the same scale.

Results. At the time of writing this thesis COVID-19 is a recently identified disease, and there

is no ground truth set of important features for this dataset. We therefore use each knockoff

method to help discover a set of features at a nominal fdr threshold of 0.2, and validate each

feature by manual review with doctors at a large metropolitan hospital. Table 3.1 shows a list

of features returned by each knockoff method, and indicates whether or not a team of doctors

thought the feature should have clinical relevance.

We note that ddlk achieves highest power to select features, identifying 10 features, com-

pared to 5 by DeepKnockoffs, and 4 each by Auto-Encoding Knockoffs and KnockoffGAN. To

understand why, we visualize the marginal distributions of each covariate in, and the respective

marginal distribution of samples from each knockoff method, in fig. 3.4.

We notice two main differences between ddlk and the baselines. First, ddlk is able to fit

asymmetric distributions better than the baselines. Second, despite the fact that the implementa-

tion of ddlk using mixture density networks is misspecified for discrete variables, ddlk is able

to model them better than existing baselines. This implementation uses continuous models for x,

but is still able approximate discrete distributions well. The components of each mixture appear

centered around a discrete value, and have very low variance as shown in fig. 3.5. This yields a
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Figure 3.5: Themarginal distributions of knockoff samples from ddlk look very similar to those

from the data. Despite this implementation of ddlk using mixture density networks, the modes of each

marginal line up with discrete values in the data.

close approximation to the true discrete marginal. We show the marginals of every feature for

each knockoff method in figs. 3.5 to 3.8.

3.7 Discussion

Ddlk is a generative model for sampling knockoffs that directly minimizes a KL divergence

implied by the knockoff swap property. The optimization for ddlk involves first maximizing

the explicit likelihood of the covariates, then minimizing the KL divergence between the joint

distribution of covariates and knockoffs and any swap between them. To ensure ddlk satisfies
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Figure 3.6: The marginals distributions of samples from KnockoffGAN match the data only when the

feature xj is univariate, and has roughly equal mass on either side of the mode.

the swap property under any swap indices, we use the Gumbel-Softmax trick to learn swaps

that maximize the KL divergence. To generate knockoffs that satisfy the swap property while

maintaining high power to select variables, ddlk includes a regularization term that encourages

high conditional entropy of the knockoffs given the covariates. We find ddlk to outperform

various baselines on several synthetic and real benchmarks including a task involving a large

dataset from one of the epicenters of COVID-19.
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Figure 3.7: The marginals distributions of samples from Deep Knockoffs match the data only when the

feature xj is univariate and has fat tails.
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Figure 3.8: Auto-Encoding Knockoffs tend to learn underdispersed distributions for the covariates. Fur-

ther, all of the marginal distributions learned are univariate and exhibit variance much smaller than that

of the data.

41



4 | Contrarian randomization test

(contra)

The holdout randomization test (hrt) discovers a set of covariates most predictive of a response.

Given the distribution of covariates x, hrts can explicitly control the false discovery rate (fdr).

However, if this distribution is unknown and must be estimated from data, hrts can inflate the

fdr. To alleviate the inflation of fdr, we propose the contrarian randomization test (contra),

which is designed explicitly for scenarios where the covariate distributionmust be estimated from

data and may even be misspecified. Our key insight is to use an equal mixture of two “contrarian”

probabilistic models in determining the importance of a covariate. One model is fit with the real

data, while the other is fit using the same data, but with the covariate being tested replaced with

samples from an estimate of the covariate distribution. Contra is flexible enough to achieve a

power of 1 asymptotically, can reduce the fdr compared to state-of-the-art cvs methods when

the covariate distribution is misspecified, and is computationally efficient in high dimensions and

large sample sizes. We further demonstrate the effectiveness of contra on numerous synthetic

benchmarks, and highlight its capabilities on a genetic dataset.

4.1 Motivation for contra

Here we introduce review the working of an hrt and discuss some of its empirical issues.
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Let x ∈ Rd be a vector of covariates, y ∈ R be a response, and q(x,y) be the generating

distribution over x and y. Let (X,Y) := {(x(i),y(i))}ntrain
i=1 be a training set of size ntrain, and

(X′,Y′) be a test set of size ntest. Each sample (x(i),y(i)) in these datasets is drawn iid from

q(x,y). Given samples of (x,y) data, the hrt tests the following hypothesis:

H0 : xj ⊥ y | x−j vsH1 : xj ̸⊥ y | x−j. (4.1)

It does so by first fitting a model q̂model(y | x) using (X,Y), then computing a statistic that

uses q̂model’s empirical loss L on test set (X′,Y′). Conditioned on the test set, the hrt samples

M “null” datasets {X̃′(m)}Mm=1. Each dataset X̃′(m) consists of ntest samples where where the jth

component of a sample x̃(i), x̃(i)
j , is drawn from the conditional q(xj | x−j). A set ofM statistics

{L(U(m)
j ,Y′)}Mm=1 is computed where U(m)

j is a copy of X′, but with the jth column swapped

with that of X̃′(m). Finally, the importance of each xj is assessed using the following p-value

computation:

1

M + 1

(
1 +

M∑
m=1

1

{
L(X′,Y′) ≥ L(U(m)

j ,Y′)
})

. (4.2)

Under the null hypothesis for xj , the swap property eq. (3.1) is satisfied by definition for the

set {j}. As a result, the sequence:

T := {L(U(1)
j ,Y′), . . . ,L(U(M)

j ,Y′),L(X′,Y′)}

is exchangeable, so p-values computed using eq. (4.2) stochastically will dominate a Uniform(0,1)

distribution [Tansey et al. 2018a]. Such p-values are sufficient to control the fdr at a nominal

rate using standard multiple testing corrections like Benjamini and Yekutieli [2001] (these are

summarized in appendix B of [Sudarshan et al. 2021]).

Under the alternate hypothesis, if L(X′,Y′) is typically smaller than L(U(m)
j ,Y′), the hrt
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will yield low p-values. The advantage of this property is that the power (the probability of

selecting non-null covariates) depends entirely on how well q̂model models q(y | x). Using a

flexible model class can yield hrts that have an asymptotic power of 1, meaning the important

covariates are never missed.

Empirical issues with hrts. In practice, a few challenges exist with the hrt. First, the choice

of performance metric can affect the power of the test to select important covariates. Second,

the population distribution q(xj | x−j) is likely unknown and must be estimated from data. If

null variables are sampled from estimated distributions, they may not satisfy the swap property

(3.1) exactly. As a result, L(X′,Y′) may be consistently lower than L(U(m)
j ,Y′), especially if

q̂model exhibits spurious dependence on a null covariate: a likely occurrence as shown by Efron

[2012]. When q̂model is evaluated on an out-of-distribution set (U(m)
j ,Y′), it will likely exhibit

higher loss, regardless of whether or not the null hypothesis is true. In these situations, the hrt

will artificially deflate the p-values computed using eq. (4.2). So, the hrt procedure will inflate

fdr unless either q̂model(y | x) = q(y | x), or q̂cc(xj | x−j) = q(xj | x−j).

In attempt to circumvent this issue, Tansey et al. [2018a] introduce calibrated hrts, which

reweight terms in the p-value computation. These weights are learned by fitting B conditional

distribution estimators {q̂(b)cc (xj | x−j)}Bb=1, each using a different bootstrap of the data. Using

these estimators, the authors weight themth term in the p-value computation by

w(m) =


q̂
(l)
cc (xj |x−j)

q̂
(1)
cc (xj |x−j)

if L(x,y) < L(x̃(m)
j ,x−j,y)

q̂
(u)
cc (xj |x−j)

q̂
(1)
cc (xj |x−j)

otherwise

where q̂(l)cc and q̂(u)cc are the lower and upper quantiles of theB estimators respectively. Intuitively,

this reweighting of the p-value computation aims to make null p-values larger and the non-null

p-values smaller. However, the effectiveness of this method is diminished as the sample size
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increases. This is because the bootstrapped interval shrinks as sample size increases, and the

lower and upper quantile estimators q̂(l)cc and q̂(u)cc will be closer to q̂(1)cc , meaning w(m) is close

to 1 and has no impact on eq. (4.2). So, if the q̂cc models are misspecified, the ability of this

technique to sufficiently calibrate p-values is reduced. Further, the number of estimators B is

often large: Tansey et al. [2018b] set B = 100 in their experiments. This makes calibrated hrts

computationally expensive in high dimensions.

The issues discussed so far suggest a set of desiderata for any new cvs procedure. (1) It must

be flexible enough to achieve a power of 1 asymptotically. (2) It must yield higher p-values than

an hrt when the swap property in eq. (3.1) is violated. (3) It must be computationally efficient

when performing cvs in high dimensions and large sample sizes.

4.2 Contrarian statistics

The primary goal of this section is to detail a procedure that is able to achieve a power of 1

asymptotically, while better controlling the fdr than hrts when null variables must be estimated

from data. We motivate our solution with the following intuition. The fundamental issue with

hrts is that null covariates drawn from estimated distributions can cause the loss L(X′,Y′) to

be lower than L(U(m)
j ,Y′) even if the jth covariate is not important to y. This is because q̂model

performs worse on the dataset (U(m)
j ,Y′), which is not equal in distribution to (X′,Y′). One

solution to this problem is to bring the true and null losses closer together. By using a “contrarian”

model q̂mix – one that performs better than q̂model on (U
(m)
j ,Y′) but worse on (X′,Y′) – p-values

computed using eq. (4.2) can be made higher. Multiple testing correction procedures will then

select fewer covariates, thus lowering the fdr.

In the next few sections, we will introduce contra, a procedure to build such contrarian

models, then discuss its useful theoretical and empirical properties.

45



4.2.1 Building a contrarian test

Let (X,Y) be a training set of size ntrain, and (X′,Y′) be a test set of size ntest. Each sample

(x(i),y(i)) in these datasets is drawn iid from q(x,y). Contra first fits a probabilistic model

q̂model(y | x) to (X,Y), and a set of conditional distribution estimators {q̂(j)cc (xj | x−j)}dj=1 using

X. Then, contra generates M + 1 null datasets. One to train models: X̃, and M to compute

p-values: {X̃′(m)}Mm=1. The jth coordinate of each element x̃(i) in X̃ is drawn from the estimated

q̂
(j)
cc (xj | x−j = x(i)) conditional on the ith training sample in X. Each X̃′(m) is generated the

same way, but conditioned on the test setX′ instead.

The next step in contra is to fit a set of d probabilistic models {q̂(j)null(y | x̃j,x−j)}dj=1. Each

model q̂(j)null is fit using the data (Uj,Y), where Uj is identical to X, but with the jth column of

X replaced with the jth column of X̃. These models will serve as the basis for our contrarian

models {q̂(j)mix}dj=1, where

q̂
(j)
mix(y | x) :=

1

2

(
q̂model(y | x) + q̂

(j)
null(y | x)

)
.

Each q̂(j)mix is a mixture of the model fit to the true data q̂model, and the model fit to the null data

q̂null for the jth covariate.

To test the conditional independence of each covariate xj with y conditioned on x−j , contra

first computes the following test statistic using the test set:

ℓ(j)(X′,Y′) =
ntest∑
i=1

− log q̂
(j)
mix(y = y(i) | x = x(i)).

Finally, a computation similar to eq. (4.2) is used to compute p-values for each covariate:

1

M + 1

(
1 +

M∑
m=1

1

{
ℓ(j)(X′,Y′) ≥ ℓ(j)(U

(m)
j ,Y′)

})
(4.3)
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where U(m)
j is a copy of X′, but with the jth column swapped with that of X̃′(m).

Intuitively, the use of q̂(j)mix over q̂modelwill decrease the gap between ℓ(j)(X′,Y′) and ℓ(j)(U(m)
j ,Y′).

This is because the mixture of q̂model and q̂(j)null will perform worse on the set (X′,Y′), but better

on (U
(m)
j ,Y′). At first glance, this seems to mitigate the fdr control issue of hrts but at the cost

of power to select non-null covariates.

In the next few sections, we show that contra retains themost important property of thehrt:

finite sample fdr control when the null variables satisfy the swap property in eq. (3.1). Despite

using contrarian models, contra achieves power 1 asymptotically when the model distributions

q̂model and q̂(j)null converge in probability to q(y | x) and q(y | x−j).

4.2.2 contra controls fdr and achieves power 1

To prove properties about contra’s fdr and power, we discuss the p-values produced by contra.

Finite sample fdr. Procedures that control the fdr require null p-values to exhibit stochastic

dominance over a Uniform(0,1) random variable [Benjamini and Hochberg 1995; Benjamini and

Yekutieli 2001].

Proposition 4.2.1. Null p-values pj produced by Contra on a test dataset (X′,Y′) will stochas-

tically dominate u ∼ Uniform(0, 1) for any covariate xj that is independent of response y having

observed the other covariates x−j .

The proof of prop. 4.2.1 can be seen from the fact that contra is a variant of the crt. Before

giving the full proof, we outline a sketch here. We note that for each null covariate xj , (X′,Y′)

is equal in distribution to any null dataset (U(m)
j ,Y′). As a result, ℓ(j)(X′,Y′) is equal in distri-

bution to ℓ(j)(U(m)
j ,Y′). Since the distribution functions of the test and null statistics are equal,

they share the same cumulative distribution function (cdf). We can then show that the p-value

computation in eq. (4.3) will yield a random variable whose cdf is always less than or equal to

the cdf of a uniform random variable: the definition of stochastic dominance.
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Proof. First, we will show that the datasets X′ and U
(m)
j are equal in distributions. Under the

null, xj is independent of y given x−j . Using [Candes et al. 2018], this means the swap property

mentioned earlier in eq. (3.1) is satisfied:

[xj,x−j]
d
= [x̃j,x−j].

Since the samples inX′ andU(m)
j are iid, the datasetsX′ andU(m)

j will also be equal in distribu-

tion.

Recall that the components of q̂(j)mix, q̂model and q̂(j)null are fit using the training set, and are there-

fore independent of (X′,Y′). Therefore, the statistics ℓ(j)(X′,Y′) and ℓ(j)(U(m)
j ,Y′) are also

equal in distribution.

Next, we define F (j)
ntest(t) to be the empirical cdf of ℓ(j)(X′,Y′) where ntest is the number of

samples in the test set. Note that the equality in distribution between U
(m)
j and X′ implies that

ℓ(j)(U
(m)
j ,Y′) has the same cdf. We also define F−1

ntest(t) = inf{u ∈ R : F
(j)
ntest(u) ≥ t}: the

generalized inverse cdf.

Using the empirical cdf, we can represent the null p-values in a more convenient form. In

the limit ofM , the number of null datasets sampled, the jth contra p-value is simply:

pj = P
{
ℓ(j)(X′,Y′) ≥ ℓ(j)(U

(m)
j ,Y′)

}
= F (j)

ntest(ℓ
(j)(U

(m)
j ,Y′)).

With this representation of the p-value, we see that

P{pj ≤ α} = P{F (j)
ntest(ℓ

(j)(U
(m)
j ,Y′)) ≤ α}

= P{ℓ(j)(U(m)
j ,Y′) ≤ F−1

ntest(α)}

= F (j)
ntest(F

−1
ntest(α)) = α.

In the first line, we use the alternative representation of the null p-value. In the second line, we

48



apply the generalized inverse cdf to both sides. Finally, we use the definition of the cdf. Thus,

the cdf of the null p-value is equal to that of a uniform random variable. In finite samples, adding

1 to the sum ofM indicator functions, then dividing by (M+1) ensures that pj will stochastically

dominate a Uniform(0,1) random variable since the minimum p-value is then 1/(M + 1).

Asymptotic power of 1. The power of a cvs procedure is the probability that an important

covariate xj is selected. An important covariate xj is selected only when its p-value is below a

certain threshold. Intuitively then, the lower the p-value, the more likely xj is to be selected.

Proposition 4.2.2. If q̂model and q̂
(j)
null

converge in probability to distributions q(y | x) and q(y | x−j)

respectively, the contra p-value for an important covariate xj will converge in probability to 0 in

the limit of the sample size, thus yielding a method with power 1.

The proof sketch is as follows. We know that q̂(j)null converges in probability to q(y | x−j) since

x̃j is generated specifically to be independent ofy | x−j . We then analyze the difference of the two

inner terms of the p-value computation in eq. (4.3) by showing that ℓ(j)(X′,Y′)−ℓ(j)(U(m)
j ,Y′) <

0. We show that an upper bound for this difference is the sum of two negative kl terms, which

will be strictly negative when the null hypothesis is not true.

Proof. Let (X,Y) be a training set consisting of ntrain samples (x(i),y(i)). Let X̃ be a set of null

data where the jth coordinate of its ith sample, x̃(i)
j , is sampled from q̂

(j)
cc (xj | x−j = x

(i)
−j). Let

(Uj,Y) be identical to (X,Y), but with the jth coordinate swapped out for the jth coordinate

of X̃. Now let q̂model(y | x) be fit using (X,Y), and q̂(j)null be fit using (Uj,Y).

To formalize the assumptions in prop. 4.2.2, we use the average kl between each population

distribution and its respective model distribution:

lim
ntrain→∞

Eq(x)Eq(y|x) log
q(y | x)

q̂model(y | x)
= 0

lim
ntrain→∞

Eq(x−j)Eq̂cc(xj |x−j)Eq(y|x−j) log
q(y | x−j)

q̂
(j)
null(y | x̃j,x−j)

= 0 ∀j ∈ {1, . . . , d}.
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Recall that q̂(j)null is fit using (Uj,Y), where the jth covariate is designed to have no dependence

on y. So q̂(j)null, which has no dependence on xj , converges to q(y | x−j) in kl.

Now, we use a result from Tsybakov [2008] that helps bound the squared Hellinger distance

between two distributions using the kl between them:

∫ (√
q(y | x)−

√
q̂model(y | x)

)2
dy ≤ KL(q(y | x) ∥ q̂model(y | x))∫ (√

q(y | x−j)−
√
q̂
(j)
null(y | x̃j,x−j)

)2

dy ≤ KL(q(y | x−j) ∥ q̂(j)null(y | x̃j,x−j))

This means that the log densities of the model and population distributions must be equal almost

surely when (x,y) ∼ q(x)q(y | x) and x̃j ∼ q(xj | x−j):

lim
ntrain→∞

log
q(y | x)

q̂model(y | x)
= 0

lim
ntrain→∞

log
q(y | x−j)

q̂
(j)
null(y | x̃j,x−j)

= 0.

Otherwise, the Hellinger distance will be positive, implying a positive kl between the model and

population distributions.

Now, let (X′,Y′) be a test set of covariates consisting of ntest samples. Let X̃′(m) be a null set

sampled in the same way as X̃, but conditioned on samples from X′, instead of X. Let U(m)
j be

constructed the same way as Uj , but using X′ and X̃′(m) instead. In the limit of ntrain, ntest, we

want to show that

ℓ(j)(X′,Y′) < ℓ(j)(U
(m)
j ,Y′).

If this inequality is true as (ntrain, ntest)→ (∞,∞), then the indicator inside the p-value compu-

tation is always 0, leading to a p-value of 0.

Recall in the limit of ntest, ℓ(j)(X′,Y′) is equal to Eq(x,y) log q̂mix(y | x). A similar limit exists
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for ℓ(j)(U(m)
j ,Y′). Using this fact, we can expand ℓ(j)(X′,Y′):

lim
(ntrain,ntest)→(∞,∞)

ℓ(j)(X′,Y′)

= −Eq(x,y) log 0.5 (q(y | x) + q(y | x−j))

= −Eq(y,x−j)Eq(xj |y,x−j) log 0.5(q(y | x) + q(y | x−j))

= −Eq(y,x−j)Eq(xj |y,x−j) log 0.5

(
q(y | x−j)q(xj | x−j,y)

q(xj | x−j)
+ q(y | x−j)

)
= −Eq(y,x−j)Eq(xj |y,x−j) log 0.5q(y | x−j)

(
q(xj | x−j,y)

q(xj | x−j)
+ 1

)
= −Eq(y,x−j)Eq(xj |y,x−j) log q(y | x−j) + log 0.5

(
q(xj | x−j,y)

q(xj | x−j)
+ 1

)
= −Eq(y,x−j) log q(y | x−j)− Eq(y,x−j)Eq(xj |y,x−j) log 0.5

(
q(xj | x−j,y)

q(xj | x−j)
+ 1

)
.

We now use the fact that the geometric mean is less than the arithmetic mean to upper bound

ℓ(j)(X′,Y′):

ℓ(j)(X′,Y′) ≤ −Eq(y,x−j) log q(y | x−j)− Eq(y,x−j)Eq(xj |y,x−j) log

√
q(xj | x−j,y)

q(xj | x−j)

= −Eq(y,x−j) log q(y | x−j)− 0.5 · Eq(y,x−j)Eq(xj |y,x−j) log
q(xj | x−j,y)

q(xj | x−j)

= −Eq(y,x−j) log q(y | x−j)− 0.5 · Eq(y,x−j)KL(q(xj | x−j,y) ∥ q(xj | x−j)).

Using similar arithmetic, we now expand ℓ(j)(U(m)
j ,Y′):

lim
(ntrain,ntest)→(∞,∞)

ℓ(j)(U
(m)
j ,Y′)

= −Eq(y,x−j)Eq(xj |x−j) log 0.5(q(y | x) + q(y | x−j))

= −Eq(y,x−j)Eq(xj |x−j) log q(y | x−j) + log 0.5

(
q(xj | x−j,y)

q(xj | x−j)
+ 1

)
= −Eq(y,x−j)Eq(xj |x−j) log q(y | x−j) + log

(
0.5q(xj | x−j,y) + 0.5q(xj | x−j)

q(xj | x−j)

)
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= −Eq(y,x−j) log q(y | x−j)− Eq(xj |x−j) log

(
0.5q(xj | x−j,y) + 0.5q(xj | x−j)

q(xj | x−j)

)
= −Eq(y,x−j) log q(y | x−j) + KL(q(xj | x−j) ∥ 0.5q(xj | x−j,y) + 0.5q(xj | x−j)).

Putting it all together:

lim
(ntrain,ntest)→(∞,∞)

ℓ(j)(U
(m)
j ,Y′)− ℓ(j)(X′,Y′)

≥Eq(y,x−j) log q(y | x−j) + 0.5 · Eq(y,x−j)KL(q(xj | x−j,y) ∥ q(xj | x−j))

−
(
Eq(y,x−j) log q(y | x−j)− KL(q(xj | x−j) ∥ 0.5q(xj | x−j,y) + 0.5q(xj | x−j))

)
=0.5 · Eq(y,x−j)KL(q(xj | x−j,y) ∥ q(xj | x−j))

+ KL(q(xj | x−j) ∥ 0.5q(xj | x−j,y) + 0.5q(xj | x−j))

>0.

The key takeaway here is that the difference between ℓ(j)(U(m)
j ,Y′) and ℓ(j)(X′,Y′) is lower

bounded by the sum of two Kullback–Leibler divergence (kl) terms, both of which are strictly

positive in the case of a non-null covariate. Thus, we have shown that in the limit of ntest, p-

values produced by contra will be 0 in distribution. This also implies the p-values converge to

0 in probability since 0 is a constant.

Prop. 4.2.2 highlights a noteworthy property of contra. Despite using q̂(j)mix, which is designed

intentionally to exhibit higher loss than q̂model on the test set, the asymptotic guarantees of con-

tra are just as strong as those of any hrt. While it is theoretically possible for hrts to enjoy

higher power in small sample sizes, we will soon show empirically that this difference in power

is negligible.
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4.2.3 contra prevents fdr inflation

We have thus far seen that contra preserves the useful attributes of hrts: finite sample fdr

control when q̂(j)cc (xj | x−j) = q(xj | x−j) and an asymptotic power of 1. In this section, we will

discuss the primary advantages of contra over thehrt thatmake it a useful empirical procedure:

(a) its null p-values are higher than those of the hrt when the swap property is violated, and (b)

it is still computationally efficient with respect to hrts.

Higher null p-values. To highlight the main pitfall of hrts in practice, consider the following

scenario. Let xk and xj be two covariates that have high mutual information, but only xk is in the

Markov blanket of the response y. In finite samples, q̂model can exhibit spurious dependence on

xj [Efron 2012]. As a result, if the estimated q̂(j)cc ̸= q(xj | x−j), the loss of q̂model on (X′,Y′) will

typically be less than its loss on (U(m)
j ,Y′), even when xj is not important to y. This is because the

performance of q̂model will suffer when it is evaluated on a distribution other than the one being

trained, as studied in the domain adaption literature [Crammer et al. 2008; Daumé III 2009]. In

these situations, the resulting p-values will be deflated, leading to a violation of fdr control.

Contrarian models prevent deflated p-values. To understand how contra does so, con-

sider the loss of q̂(j)mix on each of (X′,Y′) and (U
(m)
j ,Y′). The mixture q̂(j)mix contains q̂

(j)
null, which

is explicitly fit to data containing samples from q̂
(j)
cc , and thus performs better than q̂model on

(U
(m)
j ,Y′). Additionally, the inclusion of q̂(j)null in q̂

(j)
mix will also result in worse performance than

q̂model on (X′,Y′). Consequently, the indicator function in the contra p-value computation (4.3)

will be 1 with greater probability than the inner term of the hrt p-value (4.2) across datasets

(X′,Y′,U
(m)
j ).

A further advantage of using q̂(j)mix over q̂model in practice is observed when the supports of q̂(j)cc

and q(xj | x−j) do not match. In such cases, the log-likelihood of q̂model is not well-defined, while

the log-likelihood of q̂(j)mix is well-defined. This means contra restricts the amount p-values can

be deflated and leads to better fdr in practice, as we show in our experiments. This relates to the
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theoretical analysis of Barber et al. [2020], who show that the empirical kl between q(xj | x−j)

and q̂(j)cc bounds the fdr in the case of knockoffs. We discuss this analysis next in section 4.2.4.

4.2.4 Bounding fdr with kl

Reqirements for fdr in the case of knockoffs. The knockoff filter requires that the null

variables X̃ are exact. That is, the jth column of the ith sample x̃
(i)
j must be drawn from the

population distribution q(xj | x−j = x
(i)
−j), where x

(i)
−j is from the ith sample of X. This is

required to ensure that under the null hypothesis, Zj(X,Y) and Zj(Uj,Y) will have the same

distribution, meaning Wj is symmetric around 0. This property of Wj is termed the “flip-sign”

property. Candes et al. [2018] show that when Wj satisfies the flip-sign property, the knockoff

filter can control the fdr.

Issues with knockoffs in practice. Barber et al. [2020] acknowledge that practitioners sel-

dom have access to the population distribution q(xj | x−j), and must resort to estimators q̂(j)cc (xj |

x−j). If the population and estimated distributions are not the same, the knockoff filter may in-

flate the fdr beyond nominal levels. The authors show that the level to which the knockoff

filter inflates the fdr is bounded by the maximum empirical kl between each q̂(j)cc (xj | x−j) and

q(xj | x−j). They do so by relating the empirical kl to the flip-sign property. LetEj be the empir-

ical kl between q̂(j)cc (xj | x−j) and q(xj | x−j). Then for any covariate xj whose null hypothesis

is true,

P(Wj > 0, Ej ≤ ϵ | |Wj|,W−j)

P(Wj < 0 | |Wj|,W−j)
≤ exp(ϵ) ∀ϵ ≥ 0. (4.4)

We refer the reader to Barber et al. [2020] for a detailed derivation and discussion of this equation.

The main takeaway is that as Ej approaches 0, the probability thatWj is positive is equal to the

probability that it is negative, thus satisfying the flip-sign property required to control the fdr.
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Relation of flip-sign result to crts. We can show how the flip-sign result of Barber et al.

[2020] relates to crts by using the fact thatWj being symmetric around 0 implies that Zj(X,Y)

and Zj(Uj,Y) have the same distribution. A p-value using Zj(X,Y) and Zj(Uj,Y) by per-

forming the following computation. Letting eachU
(m)
j be drawn independently the same way as

Uj ,

pj =
1

M + 1

(
1 +

M∑
m=1

1(Zj(X,Y) ≥ Zj(U
(m)
j ,Y))

)
.

Note that for the choice of Zj = L, the empirical risk of a model, this p-value computation is

exactly the p-value computation from eq. (4.2). Recall our proof of uniform null p-values for

contra from prop. 4.2.1. If Zj(X,Y) and Zj(Uj,Y) are equal in distribution, pj will be uniform

under the null. Thus, the closerWj is to satisfying the flip-sign property, the closer null p-values

are to being uniformly distributed.

If the empirical kl terms Ej are greater than 0, then the left hand side of eq. (4.4) will not

be bounded, meaningWj could have a positive or negative bias. As we discuss in the main text,

when using the empirical risk of a model as Zj , the bias ofWj tends to be negative, as the models

exhibit higher losses on out-of-distribution data. A negative bias leads to deflated p-values, and

ultimately inflated fdr.

Support mismatch between q(xj | x−j) and q̂(j)cc . When q(xj | x−j) and q̂(j)cc havemismatched

supports, Ej used in the Barber et al. [2020] proof above can be ∞ if q̂(j)cc puts no mass where

q(xj | x−j) puts non-zero mass. This means that the bound in eq. (4.4) can be vacuous and lead

to highly non-uniform p-values. We will illustrate an example where hrts realize this bound and

yield low p-values even in the case of null covariates.

Consider the case of hrts that use the most powerful test statistic, as shown by Katsevich and

Ramdas [2020]: the log-likelihood of q̂model(y | x). Let xj be a null covariate. Themodel q̂model is fit
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to the data (X,Y) and its log-likelihood is well-defined; log q̂model(y = y(i) | x = x(i)) will be in

(−∞, 0] if x(i) ∼ q(x) and y(i) ∼ q(y | x = x(i)). Assume that there is high dependence between

xj and some non-null xk, so q̂model exhibits spurious dependence on xj . If q̂model is evaluated on

a sample (x̃
(i)
j ,x

(i)
−j,y

(i)) where x̃
(i)
j ∼ q̂

(j)
cc is not in the support of q(xj | x−j = x

(i)
−j), then

q̂model(y = y(i) | xj = x̃
(i)
j ,x−j = x

(i)
−j) can be arbitrarily small. This means that L(U(m)

j ,Y) can

be arbitrarily large if even a single sample (x̃(i)
j ,x

(i)
−j,y

(i)) ∈ U
(m)
j contains coordinate x̃(i)

j that is

out of support for q(xj | x−j = x
(i)
−j). The more likely it is to draw a sample from q̂

(j)
cc that results

in such an L(U(m)
j ,Y), the more like the p-value will be 0. A realistic example of such cases is

when q̂(j)cc captures only a single mode of q(xj | x−j). This leads to null features being selected,

inflating the fdr.

Contrast this scenario with contra instead of an hrt. Recall that the log-likelihood of q̂(j)mix,

which consists of an equal mixture of q̂(j)null and q̂model, is always well-defined. Then L(X,Y) will

be no greater than

ntest∑
i=1

log
1

2
q̂model(y = y(i) | x = x(i)),

and L(U(m)
j ,Y) will be no less than

ntest∑
i=1

log
1

2
q̂
(j)
null(y = y(i) | xj = x̃

(i)
j ,x−j = x

(i)
−j).

This is because even if q̂model(y = y(i) | xj = x̃
(i)
j ,x−j = x

(i)
−j) = 0, the term q̂

(j)
null(y = y(i) | xj =

x̃
(i)
j ,x−j = x

(i)
−j)will not be 0 as q̂

(j)
null is fit to samples from q̂

(j)
cc . This means that the log-probability

of the mixture will be in (−∞, 0] and is therefore well-defined.

A consequence of the behavior of hrts and contra in these scenarios is that hrts can ar-

bitrarily deflate p-values. Contra alleviates this issue as it restricts the amount p-values can be

deflated. As we show in our experiments, this leads to better fdr in practice.
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4.2.5 Computational efficiency

Contra requires an estimator q̂model(y | x) for q(y | x) fit using training data (X,Y). For

each covariate xj , it also requires a conditional model q̂(j)cc (xj | x−j), and a single null model

q̂
(j)
null(y | x̃j,x−j) fit using (Uj,Y), where Uj is a copy of X, but with the jth column replaced

with samples from q̂
(j)
cc . This means there are 2d+ 1 models fit in total.

To compute p-values using these models and a test set (X′,Y′),M null datasets {X̃′(m)}Mm=1

must be sampled. For each covariate, q̂mix must be evaluated on the test sets to compute loss ℓ(j).

This results in a total of 2d ·M model evaluations, as there are M null replications for each of

the d covariates, and q̂(j)mix consists of both q̂model and q̂(j)null. It is worthy to note, in addition, that

the computations required for the jth covariate are independent of those required for all other

covariates, making contra embarrassingly parallel.

In comparison to contra, hrts still need to fit d + 1 models (q̂model and {q̂(j)cc }dj=1), and also

sampleM null datasets. However, since the hrt loss only involves q̂model, a total of d ·M model

evaluations on the test sets are required.

Thus, contra is able to lessen the fdr compared to hrts when q̂(j)cc ̸= q(xj | x−j) at the cost

of only a constant factor increase in the number of models fit and evaluated. This makes contra

a compelling method in practice.

4.3 Experiments

We analyze the performance of contra on several synthetic and real datasets and compare it to

several well-studied cvs baselines.

Baselines. We compare contra to popular crt-based cvsmethods. Recall that the q̂model-based

crt statistic discussed by Liu and Janson [2020] requiresO(M)models to be fit for every covariate

[Tansey et al. 2018a]. This makes it highly impractical to use with model-based test statistics as

57



discussed in this chapter. As a result, we use crts with the computationally efficient marginal

correlation statistic, which involves a p-value computation eq. (4.2) using

L(X′,Y′) =
ntest∑
i=1

(x
(i)
j − x̄j)(y

(i) − ȳ),

where x̄j and ȳ are the sample averages of xj and y respectively computed from the training set

(X,Y). We term this the corr-crt. For hrts, we use two different model-based statistics:

L1(X
′,Y′) =

ntest∑
i=1

− log q̂model(y = y(i) | x = x(i))

L2(X
′,Y′) =

1

ntest

ntest∑
i=1

1{y(i) ̸= ŷ(i))}

ŷ(i) ∼ q̂model(y | x = x(i))

The statistic L1, termed the ll-hrt, is the negative log-likelihood of the test set using q̂model. The

statistic L2, termed the 01-hrt, measures the misclassification rate of q̂model on the test set when

y is a discrete random variable. We exclude comparisons to calibrated hrts, as they take many

times as long to run. Fitting at least 100 q̂cc models for every covariate, as suggested by code from

Tansey et al. [2018b], proved to be significantly slower than other cvs methods for the synthetic

experiments, and computationally infeasible for a high-dimensional genomics task.

4.3.1 Synthetic data experiments

Each experiment involving a synthetic dataset uses the following setup. First, we generate the

training dataset (X,Y) of ntrain samples and a held-out test set (X′,Y′) of ntest samples from data

distribution q(x,y). Each sample of covariates x(i) ∈ Rd, and the responses y(i) ∈ {0, 1}.

Next, we create d conditional models: one q̂(j)cc (xj | x−j) for each j ∈ {1, . . . , d}. Since we

need to be able to sample from each q̂(j)cc , we implement neural histogram estimators [Miscouridou
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et al. 2018], which are flexible approximations to conditional densities. Each q̂(j)cc is a two-layer

fully connected networks with 32 units in each layer, and a softmax output withK classes. To fit

q̂
(j)
cc , we first bin the jth column ofX by value intoK bins, then fit the neural network to predict

the bin of x(i)
j given x

(i)
−j . Each neural network is trained with the cross-entropy loss using sgd.

In our experiments, we use K = 20. 18 of the bins in q̂(j)cc are uniformly spaced between the

5th and 95th quantiles of each xj . The remaining two bins represent any samples below the 5th

quantile, or above the 95th quantile. To generate samples from q̂
(j)
cc , we use the median value of

training samples in the bin that corresponds to the network’s prediction given x(i)
−j . These models

are used to generateM + 1 null datasets X̃ and {X̃′(m)}Mm=1, where X̃ is generated conditional

on X, and each X̃′(m) is generated conditional on X′. In each of our synthetic experiments, we

setM to 100, unless otherwise specified.

For each of q̂model and q̂null, we use random forests with 100 trees fit to the training set. In gen-

eral, we suggest using the model, parametric or nonparametric, that performs best on a validation

split of (X,Y) for high power.

Finally, we compute p-values for each of contra, corr-crt, ll-hrt, and 01-hrt. A p-value

threshold is obtained using the Benjamini and Hochberg [1995] procedure to select important co-

variates at a pre-specified fdr. We run each experiment on a 16-core CPU with 64GB of memory.

Benchmark datasets. Our tests on four different synthetic datasets highlight differences be-

tween each cvs approach. Datasets in this section consists of N = 2000 samples, and d = 20

covariates, unless otherwise specified. We use 70% of the data as a training set to fit each q̂(j)cc ,

q̂model, and q̂(j)null. We use the remaining 30% to compute p-values.

[orng, orng-c]: As a first example, we test the case where y is a nonlinear function of x,

we use the orng and orng-c datasets [Chen et al. 2018]. The data is generated in the following
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manner:

x ∼ N (0,Σ)

y =


1 if exp

(∑ℓ
j=1 x

2
j − ℓ

)
> 0.5

0 otherwise

where Σ is the 20-dimensional identity in the case of orng. For orng-c, we set all off-diagonals

to 0.2, and set diagonal values to 1. The variable ℓ controls the number of important covariates,

which we set to 4 for both of these experiments.

[xor, xor-c]: The choice of test statistic can impact power when covariates on their own

are not informative but together provide information. To explore this, we design the xor and

xor-c datasets. For xor and xor-c, we first sample x in the same way as orng and orng-c

respectively. An affine transformation is then applied to each sample, and y is generated in the

following manner:

s1, s2 ∼ 4 · Rademacher(0.5)

(x1,x2)← (x1 + s1,x2 + s2)

y =


0 if s1s2 < 0

1 if s1s2 > 0

.

Only the first two covariates x1 and x2 are in the Markov blanket of y.

Selection results. For each synthetic benchmark and cvs method, we run 100 experiments

as described earlier to obtain p-values for each covariate. In order to concisely summarize the

performance of each cvs method, we compute the fcauc [Yu 2012], which compute the area

under a receiver operating characteristic (roc) curve, but only up to a realistic nominal fdr.
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Dataset orng orng-c xor xor-c

contra 0.95 1.00 0.97 0.95

01-hrt 0.94 0.94 0.95 0.92
ll-hrt 0.95 0.95 0.95 0.93

corr-crt 0.22 0.35 0.45 0.38

Table 4.1: Contra achieves highest fcauc ratios on synthetic data benchmarks. (Scores closer to

1 are better). While both contra and the hrts achieve similar power, the hrts achieve worse fdp, yielding

lower fcauc ratios.

False positive rate
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Figure 4.1: Fcauc ratio: ratio of dark blue area to all blue areas.

For example, practitioners are unlikely to be interested in controlling fdr at rates greater than

50%. To compute an fcauc score, we first measure the true positive rate (tpr) (also known as

power) and false positive rate (fpr) at every p-value threshold to compute a roc curve. We then

identify a nominal p-value threshold τ that corresponds to an fdr of 10% using the Benjamini

and Hochberg [1995] procedure. Using the roc curve, we compute two quantities: (A) the area

under this curve from 0 to fpr(τ) (the fcauc), and (B) the area of the rectangle defined by (0, 0)

and (fpr(τ), 1), where fpr(τ) is the fpr corresponding to threshold τ (see fig. 4.1 for illustration).

The score we assign to each cvs method is the ratio of (A) to (B): the fcauc ratio. Intuitively, the

closer this score is to 1, the higher the performance of a cvsmethod. Table 4.1 shows the average

of this score for every cvs method and dataset across each of the 100 runs. Standard errors are

omitted from table 4.1 as they are each fewer than four decimal places.

Contra achieves a higher fcauc ratio than competing baselines. At a nominal fdr rate of
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Figure 4.2: The loss in power due to the use of contarianmodels is reduced as sample size

increases. Apart from very low sample sizes, contra achieves power on par with both hrts.

10%, the hrt methods tend to exhibit fdps1 of 15% or more, while contra maintains the fdp at

or below 10%. It is worth noting that this difference in fdp is the main driver of contra’s higher

performance in table 4.1. Both the hrt methods achieve power equal to that of contra.

We further observe that the corr-crt performs noticeably worse than the other methods.

This is likely due to its inability to model interactions between covariates when computing the

test statistic, resulting in low power.

Table 4.1 shows promising results, as it suggests that despite using contrarian model q̂(j)mix,

contra suffers no loss in power compared to the baselines on these four benchmarks.

To understand the power lost due to contrarian models, we repeat the orng experiment at

different sample sizes. We only compare contra to each of the hrts, as the power of corr-crt

is much lower even at large sample sizes, as discussed in the experiments section. Figure 4.2 plots

the average fcauc for each method over all 100 replicates as a function of training sample size.

The test set is equal to the training set in size. Error bars are omitted due to very small standard

error.

We note there is a noticeable gap in fcauc by contra at low sample sizes (≤ 200), butminimal

difference otherwise. The loss in power due to contrarian models is minimized as sample size

increases. At just 500 samples, the power of contra is almost equal to that of the hrts.
1Another term for empirical fdr.
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Figure 4.3: Contra exhibits null p-values that are well calibrated.

Having observed that the main difference between contra and the baselines is primarily the

control of fdr, we next explore questions that help further understand the useful fdr properties

of contra.

How does the choice of cvs method affect p-value calibration? The effectiveness of cvs

methods to control the fdr is greatly reduced when null p-values are not super-uniform Ben-

jamini and Hochberg [1995]; Benjamini and Yekutieli [2001]. For fdr to be controlled effectively,

null p-values must stochastically dominate a Uniform(0,1) random variable. In this experiment,

we specifically look at how well p-values produced by each cvs method satisfy this requirement

for fdr control. We again use orng-c, but with one modification: we increase the number of null

covariates from 16 to 100. We then perform a Kolmogorov-Smirnov hypothesis test using the set

of null p-values from each cvs method. This quantifies how uniform the null p-values are.

Figure 4.3 shows a quantile-quantile plot of the null p-values of each method. The closer the

points match the dotted black diagonal, the closer the null p-values are to Uniform(0, 1). We

first notice that both contra and corr-crt are well calibrated with Kolmogorov-Smirnov p-

values of 0.183 and 0.526 respectively. However, ll-hrt and 01-hrt yield Kolmogorov-Smirnov

p-values of 0.009 and 0.005 respectively. At a type-1 error threshold of 1%, both hrts appear

to yield significantly non-uniform p-values, suggesting that hrt procedures may not control the

fdr well using standard multiple correction techniques. Upon closer inspection, we observe this
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Figure 4.4: Despite null variable misspecification, contramaintains fdr control.

issue as q̂model tends to exhibit dependence on null covariates, and each q̂(j)cc is not exactly equal to

the corresponding q(xj | x−j). As a result, hrt test statistics tend to overestimate the importance

of the null covariates, and underestimate null p-values. This is seen in fig. 4.3, as the observed

quantiles are below the theoretical quantiles, highlighting the deflationary behavior of the null

p-values. Using contrarian models protects against this behavior, as does not using a model at all

in the case of corr-crt.

What if q̂cc is modeled incorrectly? In this section, we investigate the effect of modeling the

null variables incorrectly on null p-values. To generate covariates, we use amixture of autoregres-

sive Gaussians. This provides a more challenging benchmark as each covariate is multi-modal

and highly correlated with several others, encouraging q̂model to learn spurious dependencies.

We sample x ∼
∑K

k=1 πkN (µk · 1,Σk), where each Σk is a 104-dimensional covariance ma-

trix whose (i, j)th entry is ρ|i−j|
k , and 1 is a 104-dimensional 1’s vector. We set K = 3, and

(ρ1, ρ2, ρ3) = (0.6, 0.4, 0.2). Cluster centers are set to (µ1, µ2, µ3) = (0, 5, 10), and mixture pro-

portions are set to (π1, π2, π3) = (0.4, 0.2, 0.4). We model all q̂(j)cc jointly with a multivariate

normal (mvn) distribution. For visualization, we show two adjacent dimensions of the data and

the maximum likelihood estimation (mle) solution for the mvn in fig. 4.5.

We sample y in the same way as orng, using only the first four covariates as non-null. For

this experiment, we set the number of null resamplesM to 200.
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Figure 4.5: Data distribution: mixture of correlated Gaussians (left); Model distribution: mle solution for

multivariate Gaussian fit to data (right). Covariates x1 and x2 are visualized.

We run each cvs method on the data, and perform Kolmogorov-Smirnov hypothesis tests on

the null p-values. We do not discuss the power of each method in this section, as all cvs meth-

ods other than corr-crt exhibit power 1 for any nominal fdr threshold above 5%. Figure 4.4

visualizes the null p-values for each cvs method. We observe that contra and corr-crt both

produce null p-values that appear uniform (Kolmogorov-Smirnov p-values of 0.684 and 0.399

respectively). The ll-hrt and 01-hrt produce p-values that appear to be stochastically domi-

nated by a Uniform(0, 1) random variable (Kolmogorov-Smirnov p-values of 1.059 × 10−5 and

9.342× 10−6 respectively).

We further notice that in the range [0, 0.15] on the x-axis, the hrt methods yield several p-

values of 1/201, the minimum possible given our setup. Upon closer investigation, we report

the following observations that explain why this p-value deflation occurs. First, q̂model is found to

exhibit spurious dependence on null covariates that correlate highly with one of {xi}4i=1. Second,

the mixture distribution has low support on covariates in the neighborhood around (5, 5), while

the q̂(j)cc models place considerable mass around this point. As a result, q̂model is evaluated on

data out of its support, and consistently exhibits higher losses on the null data (U(m)
j ,Y′) than

on the test set (X′,Y′), even when computing null p-values. Thus, the null p-values tend to be

stochastically dominated by a Uniform(0, 1) random variable and lead to the inflation of fdr.
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# Selected Precision Recall Time (s)
contra 12 66.67% 20% 9207
01-hrt 15 53.33% 20% 8871
ll-hrt 14 57.14% 20% 8912

corr-crt 118 5.08% 15% 1512

Table 4.2: Contra achieves power on par with state-of-the-art cvs methods while achieving

higher precision. Here we compare cvs methods on their ability to identify biologically relevant snps

for Celiac disease.

4.3.2 Celiac disease experiment

Abnormalities in the genome of an individual have been found to associate with Celiac disease

[Dubois et al. 2010]. To understand how well cvs methods are able to replicate the results of

biological studies in a purely computational procedure, we study a large genetics dataset. We

apply each cvs method to a large (cases = 3.7K, controls = 8.2K) Celiac disease dataset [Dubois

et al. 2010].

In our dataset, the covariates xj ∈ {0, 1, 2} represent snps, which measure the genetic vari-

ance for each individual with respect to a reference genome. The response y is a binary label

indicating the presence of Celiac disease. We preprocess the data as suggested by Bush and

Moore [2012]. First, the set of snps is preprocessed using linkage-disequilibrium pruning [Calus

and Vandenplas 2018], a commonly used procedure in genomics to filter out redundant snps us-

ing pairwise correlation. The total number of snps after filtering is 1759. Then, genetic principal

components are added as covariates2 to q̂model (and q̂null) to correct for population biases [Price

et al. 2006]. To model q̂cc, we use the same approach as Candes et al. [2018], which uses q̂(j)cc mod-

els that condition only on a subset of snps in a neighborhood around xj , rather than all other

snps. For exact implementation details, we refer the reader to section 7 of Candes et al. [2018].

Finally, we use L1-penalized logistic regression for q̂model and q̂null, and set the number of null

replicatesM to 500.
2These covariates are not tested or modeled using q̂cc.
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Selection results. After running each cvs procedure on the data, we select important snps

using a 5% fdr threshold. Using the list of snps returned by each method, we compare each

one to the genetics literature. Specifically, we determine which snps have been shown to map to

immunological pathways responsible for the development of Celiac disease Dubois et al. [2010];

Sollid [2002]; Adamovic et al. [2008]; Hunt et al. [2008]. If an identified snp has been mentioned

by one of these studies, we deem it important.

Table 4.2 shows that while contra and the hrts achieve the same recall, contra achieves a

higher precision (which is 1 - fdr). Corr-crt fails to account for dependence between snps and

tends to overestimate the variance of a single covariate, which leads to many false discoveries.

Finally, we time contra and the hrts and note that despite the high dimensionality of the

problem and largeM , contra is only 5 minutes slower due to the fitting of q̂null models (shown

in table 4.2).

4.4 Discussion

Cvs procedures like the hrt are popular for their ability to control the fdr. However, they can

deflate p-values when the covariate distribution is unknown, thus violating fdr control. Contra

is designed specifically for situations where the covariate distribution must be estimated from

data. Contra is able to control fdr in finite samples, and remarkably, achieves power 1 in the

limit of data despite the use of contrarian models that yield more conservative p-values than

hrts. Contra exhibits state-of-the-art power on several synthetic and real benchmarks, while

maintaining fdr at levels closer to the nominal rate than competing baselines.
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5 | Decoupled independence tests

Crts assess whether a variable x is predictive of another variable y, having observed covariates

z. Crts require fitting a large number of predictive models, which is often computationally in-

tractable. Existing solutions to reduce the cost of crts typically split the dataset into a train and

test portion, or rely on heuristics for interactions, both of which lead to a loss in power. We pro-

pose the diet, an algorithm that avoids both of these issues by leveraging marginal independence

statistics to test conditional independence relationships. Diet tests the marginal independence of

two random variables: F (x | z) and F (y | z)where F (· | z) is a conditional cdf. These variables

are termed “information residuals.” We give sufficient conditions for diet to achieve finite sam-

ple type-1 error control and power greater than the type-1 error rate. We then prove that when

using the mutual information between the information residuals as a test statistic, diet yields the

most powerful conditionally valid test. Finally, we show diet achieves higher power than other

tractable crts on several synthetic and real benchmarks.

5.1 Motivation for diet

A key question in many scientific disciplines is whether a variable x causes some outcome y

[Lauritzen 1996; Pearl 2009]. In genetics for example, scientists test whether a particular gene

causes cancer to design targeted therapies [Zhu et al. 2018]. When there are confounders z that

may affect both x and y, assessing the causal link between x and y corresponds to testing the
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conditional independence (ci) between x and y given z:

null hypothesisH0 : x ⊥⊥ y | z vs alternate hypothesisH1 : x ̸⊥⊥ y | z. (5.1)

The advantage of using a hypothesis test for understanding such relationships is the ability to ex-

plicitly control the type-1 error rate: the probability of erroneously rejecting the null hypothesis

where x is independent of y conditioned on z. Consequently, constructing conditional inde-

pendence hypothesis tests has become increasingly popular in the machine learning literature

[Zhang et al. 2012; Doran et al. 2014; Sen et al. 2017; Runge 2018; Bellot and van der Schaar 2019].

Many existing tests however, have been shown to lose power when the dimensionality of z

is high due to a reliance on kernels [Bellot and van der Schaar 2019] or fail to control the type-1

error rate when strong parametric assumptions about p(y | x, z) are violated [Candes et al. 2018].

To test for conditional independence when z is high-dimensional and without making as-

sumptions on the form of p(y | x, z), Candes et al. [2018] proposed the conditional randomiza-

tion test (crt). The crt calculates a p-value for eq. (5.1) by repeatedly comparing a scalar-valued

test statistic T (Dx,y,z) with draws from the null distribution T (Dx̃,y,z
(m)):

1

M + 1

(
1 +

M∑
m=1

1(T (Dx,y,z) ≤ T (Dx̃,y,z
(m)))

)
, (5.2)

where Dx,y,z is a set of N iid samples drawn from p(x, y, z). Null samples Dx̃,y,z
(m) are drawn

from the distribution p(z,y)p(x | z), where x̃ ∼ p(x | z) is by construction conditionally inde-

pendent of y given z. If the null hypothesis is true, then T (Dx,y,z)will have the same distribution

as each T (Dx̃,y,z
(m)).

In contrast with other conditional independence testing methods, the crt assumes the ability

to sample p(x | z) but makes no assumptions on the form of p(y | x, z) or the test statistic T

to control the type-1 error. This flexibility enables the use of powerful predictive models and
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empirical risk test statistics [Tansey et al. 2018a; Liu and Janson 2020; Sudarshan et al. 2021] that

lead to higher power and better type-1 error rates than classical methods.

However, crts are computationally expensive. For each null sample, the test statistic must

be recomputed. When using predictive models in empirical risk test statistics, these models must

correspondingly be refit for every null sample Dx̃,y,z
(m). When the predictive models are com-

putationally expensive to train, such as deep neural networks, the burden of running a crt can

become prohibitive.

5.2 Related work

Recent work in the Model-X space focuses on creating powerful but tractable crt test statistics.

Liu and Janson [2020] propose a pair of methods called distilled conditional randomization tests

(dcrts). The first method, the d0-crt constructs a crt where the test statistic is the marginal

dependence between (y− E[y | z]) and (x− E[x | z]). However, Liu and Janson [2020] demon-

strate empirically that the d0-crt achieves low power when y is a function of some non-linear

interaction between x and z. To account for this issue, the authors also introduce the dI-crt.

The dI-crt first uses a heuristic to select a small subset of z to explicitly construct a set of inter-

action terms with x. It then fits a model q̂dI to estimate the conditional expectation of y given

(x− E[x | z]),E[y | z], and each of the interaction terms. The dI-crt test statistic is some mea-

sure of feature importance of x− E[x | z] in q̂dI . If the heuristic pre-selection step fails to select

the interactions that occur in the data, the dI-crt can fail to achieve power due to its reliance on

conditional expectations.

The hrt [Tansey et al. 2018a] is another tractable yet flexible crt. It splits samples of data

into train and test sets, fits a predictive model on the train set, then uses this model to run a crt

only on the test set. While the hrt does not require heuristics for nonlinear interactions between

x and z, it often loses power compared to dcrts in practice due to sample splitting between the
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training and test set [Liu and Janson 2020].

5.3 Decoupled independence test (diet)

Here we introduce a novel approach to distillation to create a tractable and powerful crt. This

section details the construction of the test statistic T (Dx,y,z), which measures the marginal de-

pendence between F (x | z) and F (y | z). It then details the computation of each null statistic

T (Dx̃,y,z
(m)). Using the test and null statistics, diet computes a p-value for testing x ⊥⊥ y | z.

Fitting conditional cdf estimators. Diet tests the marginal independence between the

conditional cdfs F (x | z) and F (y | z). As a first step, diet estimates these conditional cdfs

with two estimators: Q̂cdf(x | z; θ) and Q̂cdf(y | z; η). Any conditional cdf estimation technique

can be used. Flexible examples include kernel-based methods [Bhattacharya and Gangopadhyay

1990], nonparametric estimators, [Li and Racine 2008], and mdns [Bishop 1994b]. Diet uses

mdns.

An mdn learns a neural network function g : z 7→ {πη(z)[k], µη(z)[k], ση(z)[k]}Kk=1 to map

values of z to the parameters of a gaussian mixture with K mixture components:

Q̂cdf(y | z; η) =
K∑
k=1

πη(z)[k]Φ

(
y − µη(z)[k]

ση(z)[k]

)
.

The parameters η of Q̂cdf(y | z; η) are learned via maximum likelihood estimation by optimizing

over (y, z) pairs in dataset Dx,y,z:

argmax
η

1

N

N∑
i=1

log q̂pdf(y = y(i) | z = z(i); η), (5.3)

where q̂pdf is the conditional density implied by Q̂cdf. Mdns are useful as both the conditional

cdf and density can be computed easily.
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Algorithm 5.1 The decoupled independence test (diet)
Input: Labeled dataset Dx,y,z, marginal dependence statistic ρ
Output: p-value p̂
Generate null dataset Dx̃,y,z by replacing each x in Dx,y,z with a sample from p(x | z) Fit
Q̂cdf(x | z; θ) and Q̂cdf(y | z; η) using (x, z) pairs and (y, z) pairs from Dx̃,y,z Generate null
datasets {Dx̃,y,z

(m)}Mm=1

Create information residual dataset Dϵ̂,δ̂ by evaluating both Q̂cdf models on Dx,y,z for m ∈
{1, . . . ,M} do

Create null information residual dataset D(m)
ϵ̂,δ̂ by evaluating both Q̂cdf models on Dx̃,y,z

(m)

end

p̂← 1
M+1

(
1 +

∑M
m=1 1

[
ρ(Dϵ̂,δ̂) ≥ ρ(D(m)

ϵ̂,δ̂ )
])

A model for F (x | z), Q̂cdf(x | z; θ), is fit similarly but instead of using pairs of (x, z) from

Dx,y,z, diet uses only z fromDx,y,z and draw samples of x̃ ∼ p(x | z) for each z data point. Note

that the distribution of (x̃, z) is equal to that of (x, z), so evaluating Q̂cdf(x | z; θ) on samples of

(x, z) from Dx,y,z will still be in-distribution.

Computing the test statistic T (Dx,y,z). The diet test statistic measures the marginal de-

pendence between two quantities ϵ̂ and δ̂ using a dataset of paired samples Dϵ̂,δ̂ . The variables ϵ̂

and δ̂, termed “information residuals” represent the residual information contained in x | z and

y | z. They are computed as follows. A sample of ϵ̂ is generated by evaluating the conditional

cdf Q̂cdf(x | z; θ) at a sample (x, z). Similarly, δ̂ ← Q̂cdf(y | z; η). To generate the dataset Dϵ̂,δ̂ ,

a pair of (ϵ̂, δ̂) samples are computed for each (x,y, z) sample in Dx,y,z using the respective

conditional cdfs.

Using the dataset of information residuals Dϵ̂,δ̂ , diet measures the marginal dependence be-

tween ϵ̂ and δ̂ using the estimator of mutual information from Vinh et al. [2009]. In practice, any

measure of dependence ρ : (R× R)N → R can be used.

Computing null statistics T (Dx̃,y,z
(m)). Computing each null statistic is very similar to com-

puting the test statistic. First, a null datasetDx̃,y,z
(m) is sampled by copyingDx,y,z, then replacing
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the x values with x̃ ∼ p(x | z). The same Q̂cdf models are used to generate information residuals

using the null data, after which their mutual information is estimated. This process is repeated

M times to generateM null statistics.

Computing a p-value. Using the test statistic T (Dx,y,z) and each null statistic T (Dx̃,y,z
(m)),

diet computes a p-value using eq. (5.2). The full algorithm is summarized in algorithm 5.1.

While the diet algorithm is relatively straightforward, it is not obvious why diet should

control the type-1 error rate, or achieve power. In the next section, we explore the theoretical

properties of diet and provide an example where diet achieves power where a baseline method

provably cannot.

5.4 Theoretical analysis of diet

Here we show that diet achieves type-1 error control regardless of the data distribution. We

then discuss when diet can provably achieve power and characterize distributions where diet

is the most powerful test one can perform. The final part of this section provides a more general

perspective on when distillation of a conditional randomization test into a marginal one is possi-

ble. We discuss how assumptions on the data generating process are always needed to guarantee

power in a distillation procedure.

5.4.1 When can diet control the type-1 error rate?

The type-1 error rate is the probability that the null hypothesis H0 is erroneously rejected: i.e.

it is rejected when in reality x ⊥⊥ y | z. To control this error rate at a user-specified level, the

p-value under H0 must either be distributed uniformly over [0, 1] or stochastically dominate1 a

Uniform(0, 1) random variable (see appendix A.1 of Sudarshan et al. [2021] for a proof of this fact).
1A random variable a stochastically dominates a random variable b if the following partial ordering exists on the

cdfs of a and b: ∀x : Fa(x) ≤ Fb(x).
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Prop. 5.4.1 shows that diet p-values computed using algorithm 5.1 will stochastically dominate

a Uniform(0, 1) random variable.

Proposition 5.4.1. Let (x,y, z) be drawn from any distribution p(x,y, z) and Dx,y,z consist of

N iid samples from this distribution. If x ⊥⊥ y | z, then for any measure of marginal dependence

ρ : (R × R)N → R the diet p-value computed using algorithm 5.1 will stochastically dominate a

Uniform(0, 1) random variable.

We detail the full proof next, but provide a sketch here. UnderH0, the test statistic T (Dx,y,z)

is exchangeable with each of the null statistics T (Dx̃,y,z
(m)). As a result, the p-value p̂ com-

puted using eq. (5.2) will be uniformly distributed over the set { 1
M+1

, 2
M+1

, . . . , 1}. Such a p-value

stochastically dominates a Uniform(0, 1) random variable. Prop. 5.4.1 ensures that if the practi-

tioner rejects the null hypothesis when p̂ ≤ α, the probability of an erroneous rejection is no

greater than the significance level α.

Proof. Recall the diet p-value introduced in algorithm 5.1:

p̂ =
1

M + 1

(
1 +

M∑
m=1

1
[
ρ(Dϵ̂,δ̂) ≥ ρ(D(m)

ϵ̂,δ̂ )
])

.

We will prove that if a q̂ estimator is trained on data Dx̃,y,z, the above p-value will be super-

uniform. Using the technique from Candes et al. [2018], it suffices to show that the following

sequence is exchangeable under the null, conditional on samples of (z,y):

ρ(Dϵ̂,δ̂), ρ(D(1)
ϵ̂,δ̂), . . . , ρ(D(M)

ϵ̂,δ̂ ).

Note that Dϵ̂,δ̂ , and {(D(m)
ϵ̂,δ̂ )}Mm=1 are datasets of information residuals. As such, the above

sequence can be rewritten as:

ρ({δ̂(i), ϵ̂(i)}Ni=1), ρ({δ̂(i,1), ϵ̂(i,1)}Ni=1), . . . , ρ({δ̂(i,M), ϵ̂(i,M)}Ni=1)
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where (δ̂(i), ϵ̂(i)) is the ith sample of Dϵ̂,δ̂ and (δ̂(i,m), ϵ̂(i,m)) is the ith sample of dataset D(m)
ϵ̂,δ̂ . As

ρ is deterministic, it suffices to show that the following sequence is exchangeable conditional on

{(y(i), z(i))}Ni=1:

{δ̂(i), ϵ̂(i)}Ni=1, {δ̂(i,1), ϵ̂(i,1)}Ni=1, . . . , {δ̂(i,M), ϵ̂(i,M)}Ni=1

Note that δ̂(i), ϵ̂(i) ∼ q̂(ϵ̂, δ̂ | x(i),y(i), z(i)). This means that the estimated information residu-

als can be written as δ̂(i), ϵ̂(i) = h(α(i),x(i),y(i), z(i)), where h is a deterministic function (see

appendix A of Trivedi and Zimmer [2007]). Rewriting the sampling process as a function of in-

dependent noise is similar in spirit to the reparameterization trick used in variational inference

[Kingma et al. 2015].

In this alternative representation, α(i) is a sample of exogenous variable α that represents

the noise in q̂. Without loss of generality, we can assume α is independent of each subset of

{x,y, z}. Using the same notation, δ̂(i,m), ϵ̂(i,m) = h(α(i,m), x̃(i,m),y(i), z(i)), where x̃(i,m) is the

ith sample of the mth null dataset X̃(m) and α(i,m) is another independent sample of α. This

means the above sequence can be written as:

{h(α(i),x(i),y(i), z(i))}Ni=1,

{h(α(i,1), x̃(i,1),y(i), z(i))}Ni=1,

...

{h(α(i,M), x̃(i,M),y(i), z(i))}Ni=1.

Since h is deterministic, exchangeability of the set of random variables above reduces to ex-

changeability of the following:

{{α(i),x(i),y(i), z(i)}Ni=1, {α(i,1), x̃(i,1),y(i), z(i)}Ni=1, . . . {α(i,M), x̃(i,M),y(i), z(i)}Ni=1,
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Under the null hypothesis H0, p(x | z) = p(x | z,y). This means that the distribution of

x(i) is equal to the distribution of x̃(i,m) given {(y(i), z(i))}Ni=1 which together with the fact that

{(y(i), z(i))}Ni=1 is constant across each element of the sequence means the joint distribution of

(x(i),y(i), z(i)) is the same. Using the fact that α is independent of each subset of {x,y, z}, the

above sequence is exchangeable.

5.4.2 When can diet provably achieve power?

A crt achieves power when the distribution of T (Dx,y,z) is distinguishable from the distribution

of each of the null statistics T (Dx̃,y,z
(m)). Here we provide assumptions on the data distribution

that will ensure that diet is able to distinguish between the distribution of the test statistic versus

the null statistics.

Theorem 5.4.1. Let ϵ̂ = F (x | z) and δ̂ = F (y | z) be random variables defined over (x, z)

and (y, z) respectively. Let F (· | z) denote the conditional cdf. Assume F is invertible in the first

argument and (ϵ̂, δ̂) ⊥⊥ z. If there exists amarginal independence testψ : (R×R)N×[0, 1]→ {0, 1}

that uses a measure of dependence ρ and achieves power greater than α ∈ [0, 1], then diet equipped

with ρ and the conditional cdfs F (· | z) is a conditional independence test with power greater than

α for data drawn from p(x,y, z).

The core assumption here is that ϵ̂ and δ̂ are jointly independent of the conditioning set of

covariates z. The conditional cdfs being invertible is a common assumption: e.g. when x ∼

N (z1, σ
2) or other continuous distributions.

We prove theorem 5.4.1 next: we show that given these conditions, dietwill provably be able

to distinguish between the test and null statistics and achieve power to reject the null hypothesis.

The proof establishes that when x ̸⊥⊥ y | z, random variables ϵ̂ and δ̂ will be dependent. It also

shows that under the null hypothesis H0, ϵ̂ ⊥⊥ δ̂. Therefore, the test statistic, which measures

the dependence of ϵ̂ and δ̂ will have a different distribution than the null statistics.

76



Proof. To test the conditional independence relationship x ⊥⊥ y | z, diet tests the marginal

independence between ϵ̂ and δ̂. The aim of this proof is to show that ϵ̂ ⊥⊥ δ̂ if and only if

x ⊥⊥ y | z. If this reduction holds, then under the alternate hypothesis H1 where x ⊥̸⊥ y | z,

the distribution of the test statistic T (Dx,y,z) will be different from the distribution of each of

the null statistics T (Dx̃,y,z
(m)). Then, given any marginal independence test that achieves power

> α with statistic ρ, diet with the same statistic is a conditional independence test with power

> α.

The proof is structured in the following manner. First, we will show that using the null data

Dx̃,y,z
(m), the sampled values of ϵ̂ and δ̂ will be independent. Then, we will show that using the

true data Dx,y,z, the sampled values of ϵ̂ and δ̂ will be dependent. Finally, we discuss how the

existence of a marginal independence test with power > α implies that diet will also achieve

power > α using data Dx,y,z.

Prereqisites. We first outline some properties will be used in both the null statistics and the

test statistic section.

p(ϵ, z) =

∫
p(ϵ, δ, z)dδ by marginalization

=

∫
p(ϵ, δ)p(z)dδ by data distribution

= p(ϵ)p(z)

This means that ϵ ⊥⊥ z. Using the same logic: δ ⊥⊥ z. Since theorem 5.4.1 considers diet

equipped with the true conditional cdfs F (· | z), ϵ̂ = ϵ and δ̂ = δ. This means that the following

must hold:

ϵ̂ ⊥⊥ z (5.4)

δ̂ ⊥⊥ z. (5.5)
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Null statistics T (Dx̃,y,z
(m)). Recall that in each of the null datasets, the following factoriza-

tion of the data distribution p(x,y, z) holds by construction:

p(x,y, z) = p(x | z)p(y | z)p(z). (5.6)

We can use this property to make the following sequence of deductions. Letting p(ϵ̂, δ̂, z) be the

distribution implied by (ϵ̂, δ̂, z),

p(ϵ̂, δ̂, z) =

∫
p(ϵ̂, δ̂ | x,y, z)p(x,y, z)dxdy

=

∫
p(ϵ̂ | x, z)p(δ̂ | y, z)p(x,y, z)dxdy ϵ̂ and δ̂ are each

functions of z and either x or y

=

∫
p(ϵ̂ | x, z)p(δ̂ | y, z)p(x | z)p(y | z)p(z)dxdy by eq. (5.6)

=

∫
p(ϵ̂,x | z)p(δ̂,y | z)p(z)dxdy

= p(ϵ̂ | z)p(δ̂ | z)p(z)

p(ϵ̂, δ̂ | z) = p(ϵ̂ | z)p(δ̂ | z).

The distribution of (y, z) under the null is the same as distribution of (y, z) in the data. Then

since δ̂ ⊥⊥ z (eq. 5.5) holds in the data distribution, the independence of δ̂ and z also holds under

the null distribution eq. (5.6):

δ̂ ⊥⊥ z where (x,y, z) ∼ p(x | z)p(y | z)p(z); δ̂ = F (y | z).

Using the same logic, eq. (5.4) implies

ϵ̂ ⊥⊥ z where (x,y, z) ∼ p(x | z)p(y | z)p(z); ϵ̂ = F (x | z).
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Using the above facts,

p(ϵ̂, δ̂) =

∫
p(ϵ̂, δ̂ | z)p(z)dz by marginalization

=

∫
p(ϵ̂ | z)p(δ̂ | z)p(z)dz

=

∫
p(ϵ̂)p(δ̂)p(z)dz

= p(ϵ̂)p(δ̂).

Therefore, when using a null dataset Dx̃,y,z
(m), ϵ̂ ⊥⊥ δ̂.

Test statistic T (Dx,y,z). Under H1, x ̸⊥⊥ y | z. In such cases, the sampled values of ϵ̂ and δ̂

using Dx,y,z must be dependent. Specifically, the following sequence of implications must hold:

x ̸⊥⊥ y | z⇒ ϵ̂ ̸⊥⊥ δ̂ | z⇒ ϵ̂ ̸⊥⊥ δ̂.

The first implication follows because both F (x | z) and F (y | z) are invertible for any fixed

value of z. Next we prove the second implication. This is equivalent to:

δ̂ ⊥⊥ ϵ̂⇒ δ̂ ⊥⊥ ϵ̂ | z.

We know that p(ϵ̂, δ̂ | z) = p(ϵ̂, δ̂), since ϵ̂ = ϵ and δ̂ = δ and (ϵ, δ) ⊥⊥ z. It follows that

δ̂ ⊥⊥ ϵ̂⇒ δ̂ ⊥⊥ ϵ̂ | z:

p(ϵ̂, δ̂ | z) = p(ϵ̂, δ̂)

= p(ϵ̂)p(δ̂) since δ̂ ⊥⊥ ϵ̂

= p(ϵ̂ | z)p(δ̂ | z) by eqs. (5.4) and (5.5)
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We have thus far established that under H1, δ̂ ̸⊥⊥ ϵ̂, but under H0, δ̂ ⊥⊥ ϵ̂. Now, consider

ψ(Dϵ̂,δ̂, α) : (R × R)N × [0, 1] → {0, 1}, a marginal independence test that uses statistic ρ :

(R × R)N → R and has power greater than level α. This means that there exists a rejection

region Rα = {D ∈ (R× R)N : ψ(D, α) = 1} where PH1(Rα) ≥ PH0(Rα). In other words, for a

sample size of N and statistic ρ there is sufficient evidence to reject the null hypothesis.

Then, diet equipped with ρ, F (x, | z), and F (y, | z) is a conditional independence test

ζ(Dx,y,z, α) : (R × R × Rdz)N × [0, 1] → {0, 1} with rejection region Sα = {Dx,y,z ∈ (R ×

R × Rp)N : ζ(Dx,y,z, α) = 1} such that PH1(Sα) ≥ PH0(Sα). This follows directly from the

previous fact because diet uses the marginal dependence ϵ̂ and δ̂ to test the conditional inde-

pendence between x and y given z.

Thus, if there is a marginal test that achieves power greater than α, then diet under the

conditions of theorem 5.4.1 will also achieve power greater than α.

5.4.3 When is diet the most powerful conditionally valid crt?

Here we show that under the same conditions as theorem 5.4.1, diet equipped with a measure of

mutual information ρ is the most powerful conditionally valid crt [Katsevich and Ramdas 2020].

The set of valid crts Cα includes any crtwhere the type-1 error is less than α using a dataset

Dx,y,z. Given samples of (y, z), the set of conditionally valid crts at level α is a subset of Cα

where the samples of (y, z) in Dx,y,z are fixed. A conditionally valid crt is also a marginally

valid crt. The following proposition states that given access to the conditional cdfs F (x | z)

and F (y | z), diet is the most powerful conditionally valid crt. Thus, the power of diet is tied

directly to the quality of the estimation of these conditional cdfs.

Proposition 5.4.2. Let ϵ̂ = F (x | z) and δ̂ = F (y | z) . For data generating processes where

both F (· | z) functions are invertible in the first argument and (ϵ̂, δ̂) ⊥⊥ z, diet with the following
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mutual information-based marginal dependence measure ρ is the most powerful conditionally valid

test:

ρ(Dϵ̂,δ̂) =
1

N

N∑
i=1

log
p(δ̂(i), ϵ̂(i))

p(δ̂(i))p(ϵ̂(i))
.

We prove prop. 5.4.2 next by showing that the likelihood ratio in prop. 5.4.2 is equivalent to

the likelihood ratio of p(y | x, z) and p(y | z): the most powerful conditionally valid crt test

statistic.

Proof. Using the conditional cdfs F (x | z) and F (y | z), define the following terms for conve-

nience:

f̄z(x) := F (x | z)

ḡz(y) := F (y | z)

J =

 d
dx
f̄z(x)

d
dy
f̄z(x)

d
dx
ḡz(y)

d
dy
ḡz(y)


=

f̄ ′
z(x) 0

0 ḡ′z(y)

 .
The off-diagonals of J are 0 because f̄z(x) is not a function of y and ḡz(y) is not a function of x.

Then using change of variables, we can write:

p(x,y | z) = p(ϵ̂ = f̄z(x), δ̂ = ḡz(y) | z) · | det(J)|

= p(ϵ̂ = f̄z(x), δ̂ = ḡz(y) | z) · |f̄ ′
z(x) · ḡ′z(y)|

= p(ϵ̂ = f̄z(x), δ̂ = ḡz(y) | z) · f̄ ′
z(x) · ḡ′z(y)

= p(ϵ̂ = f̄z(x), δ̂ = ḡz(y)) · f̄ ′
z(x) · ḡ′z(y).
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The second last step follows because f̄z and ḡz are monotonically non-decreasing, meaning their

derivatives with respect to x or y for a fixed z are non-negative. The absolute value of the product

of two non-negative quantities is just the product of the two quantities. The last step uses the

assumption that (ϵ̂, δ̂) ⊥⊥ z. Using similar reasoning,

p(x | z) = p(ϵ̂ = f̄z(x) | z) · f̄ ′
z(x) = p(ϵ̂ = f̄z(x)) · f̄ ′

z(x)

p(y | z) = p(δ̂ = ḡz(y) | z) · ḡ′z(y) = p(δ̂ = ḡz(y)) · ḡ′z(y).

Using the above change of variable results, we canmanipulate the likelihood ratio statistic that

Katsevich and Ramdas [2020] prove is the conditionally most powerful against point alternatives.

1

N

N∑
i=1

log
p(y(i) | x(i), z(i))

p(y(i) | z(i))
=

1

N

N∑
i=1

log
p(x(i),y(i) | z(i))

p(x(i) | z(i))p(y(i) | z(i))

=
1

N

N∑
i=1

log
p(ϵ̂ = f̄z(i)(x

(i)), δ̂ = ḡz(i)(y
(i))) · f̄ ′

z(i)
(x(i)) · ḡ′

z(i)
(y(i))

p(ϵ̂ = f̄z(x)) · f̄ ′
z(x) · p(δ̂ = ḡz(y)) · ḡ′z(y)

=
1

N

N∑
i=1

log
p(ϵ̂ = f̄z(i)(x

(i)), δ̂ = ḡz(i)(y
(i)))

p(ϵ̂ = f̄z(x)) · p(δ̂ = ḡz(y))
.

Note that this final term on is exactly the mutual-information based marginal dependence

measure in the statement of prop. 5.4.2. Therefore, the optimal diet solution is the most powerful

conditionally valid test against point alternatives.

5.4.4 Multiple testing and variable selection

A common application of crts is controlled variable selection [Candes et al. 2018]. Let x =

{x1, . . . ,xd} be a set of covariates, and y be a response. Controlled variable selection methods

identify a subset of important covariates by testing the conditional independence of each covari-

ate xj and y given all other covariates x−j . If the hypothesis test for xj results in a rejection, that
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variable is “selected.” The goal of controlled variable selection is to select as many variables as

possible, while controlling for the fdr: an analog for type-1 error in multiple testing.

We apply the following procedure to use diet for cvs. To test xj ⊥⊥ y | x−j for each xj ,

we run algorithm 5.1 where z ← x−j , y ← y, and x ← xj . The resulting set of p-values is

used with standard fdr-controlling procedures [Benjamini and Hochberg 1995; Benjamini and

Yekutieli 2001] to select important covariates.

5.4.5 Can we further generalize the assumptions made by diet?

Here we explore the limits of distillation: is it possible to generalize the set of distributions for

which power is achievable beyond diet? We first outline a general way to distill a conditional

independence test into a marginal one. We then discuss how the existence of a distillation pro-

cedure does not necessarily imply a distilled crt that achieves power.

A general distillation procedure. Let L2
x,z denote the space of real-valued functions f of

(x, z), where E[f(x, z)2] <∞. Let L2
y,z be defined analogously. Then Daudin [1980] shows that,

for all functions f ∈ L2
x,z and g ∈ L2

y,z such that E[f(x, z) | z] = 0 and E[g(y, z) | z] = 0,

x ⊥⊥ y | z⇐⇒ E[f(x, z)g(y, z)] = 0.

This means that if y is conditionally dependent on x given z, then there must exist functions f

and g such that their correlation is non-zero. Rather than testing the marginal independence of

conditional cdfs F (x | z) and F (y | z), one could instead test the marginal independence of

f(x, z) and g(y, z) instead.

If f and g are known beforehand, testing this marginal independence will yield a conditional

independence test with power. However, in reality f and gmust be learned using data. Further, as

discussed in section 5.4.1, fdr control in computationally tractable crts that avoid sample split-
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ting requires f and g be inferred without using triples of (x,y, z). Only themarginal distributions

of (x, z) and (y, z) can be used.

This presents a problem because no distilled crt that learns f and g from these two marginals

without prior knowledge can discriminate between the following two data generating processes:

y = x+ z mod 1 x, z ∼ Uniform(0, 1) (conditional dependence)

y,x, z ∼ Uniform(0, 1), (conditional independence)

where a+ b mod 1 is defined as a+ b if a+ b < 1 and a+ b− 1 if a+ b ≥ 1. Note that the

marginals of (x, z) and (y, z) are the same across both processes. Therefore, without assumptions

on the data generating process, it is impossible to guarantee that a distilled crt will learn f and

g that can differentiate between these two data generating processes.

In the next section we provide sufficient conditions to achieve power with a distillation-based

crt. Theorem 5.4.2 provides assumptions on the data generating process and outlines a learning

procedure for the functions f and g such that power is provably achieved. In the context of

theorem 5.4.2 we also discuss assumptions the d0-crt must make to achieve power.

5.4.6 Sufficient conditions for power with a general

distillation-based crt

In this section we consider data generating processes of the following form:

z ∼ p(z) (ϵ, δ) ∼ p(ϵ, δ) x = f(ϵ, z) y = g(δ, z).

One way to interpret distillation procedures like diet or the d0-crt is as follows. First estimate ϵ

and δ from samples of (x,y, z), then test the marginal independence of these estimates: ϵ̂ ⊥⊥ δ̂.

Since ϵ and δ are unobserved, samples in Dx,y,z map to a distribution p(δ, ϵ | x,y, z) over the
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possible values of (ϵ, δ). The distribution p(ϵ, δ | x,y, z) is also unknown; it must be estimated

using an estimator q̂(ϵ̂, δ̂ | x,y, z).

However, not all ϵ̂, δ̂ ∼ q̂(ϵ̂, δ̂ | x,y, z) will yield power to reject the null hypothesis H0 :

x ⊥⊥ y | z. In some cases ϵ̂ ⊥⊥ δ̂ but x ⊥̸⊥ y | z. As an example reconsider the data generating

process in the previous sectionwherex = ϵ̂ andy = δ̂, let ϵ̂ ∼ Uniform(0, 1), δ̂ ∼ Uniform(0, 1),

and

z =


ϵ̂+ δ̂ if ϵ̂+ δ̂ ≤ 1

ϵ̂+ δ̂ − 1 otherwise
.

In this example, ϵ̂ and δ̂ are independent of each other, but x and y are clearly dependent given

z. The following theorem, theorem 5.4.2, gives sufficient conditions on q̂(ϵ̂, δ̂ | x,y, z) to ensure

that ϵ̂ ⊥⊥ δ̂ if and only if x ⊥⊥ y | z. We later show that the only way to satisfy the conditions in

theorem 5.4.2 are through assumptions on the data generating process.

Theorem 5.4.2. Let (ϵ̂, δ̂,x,y, z) ∼ q̂(ϵ̂, δ̂ | x,y, z)p(x,y, z). Further, let:

q̂(ϵ̂, δ̂ | x,y, z) = p(ϵ̂ | x, z)p(δ̂ | y, z), (factorization)

∃f̃ , g̃ s.t. x
a.s.

= f̃(ϵ̂, z), and y
a.s.

= g̃(δ̂, z), (reconstruction)

(δ, δ̂) ⊥⊥ z (ϵ, ϵ̂) ⊥⊥ z. (joint independence)

Let ψ(Dϵ̂,δ̂, α) : (R × R)N × [0, 1] → {0, 1} be a marginal independence test that uses statistic

ρ : (R × R)N → R and has power greater than α. Let Dϵ̂,δ̂ be a dataset of N samples of (ϵ̂, δ̂)

generated using q̂(ϵ̂, δ̂ | x,y, z) and Dx,y,z. Then, ψ using Dϵ̂,δ̂ and ρ is also a conditional test of

independence for x ⊥⊥ y | z with power greater than α.

Proof. The core of this proof is to show that if factorization, reconstruction, and joint indepen-
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dence are satisfied, then

x ⊥⊥ y | z⇔ ϵ̂ ⊥⊥ δ̂.

If this reduction is possible, then under H1, ϵ̂ ⊥̸⊥ δ̂, but under H0, ϵ̂ ⊥⊥ δ̂. This implies that the

distribution of the marginal dependence test statistic ρ(Dϵ̂,δ̂) is different from that of each null

statistic ρ(D(m)
ϵ̂,δ̂ ). Thus, the p-value computed by ψ will be close to 0:

p̂ =
1

M + 1

(
1 +

M∑
m=1

1(ρ(Dϵ̂,δ̂) ≤ ρ(D(m)
ϵ̂,δ̂ ))

)
.

Let p(δ, ϵ, ϵ̂, δ̂, z) be a distribution over variables δ, ϵ, ϵ̂, δ̂, z. The variables δ̂ and ϵ̂ are sam-

ples from q̂(ϵ̂, δ̂ | x,y, z). For simplicity, we show the proof of theorem 5.4.2 when all random

variables are continuous, but the same reasoning holds for discrete random variables.

Null statistics. For null statistics ρ(D(m)
ϵ̂,δ̂ ) computed using null data Dx̃,y,z

(m), δ̂, ϵ̂ ∼ q̂(δ̂, ϵ̂ |

x̃,y, z) must be independent. In the null data, x̃ ⊥⊥ y | z by construction, so the following must

hold:

x̃ ⊥⊥ y | z⇒ ϵ̂ ⊥⊥ δ̂. (5.7)

We show this fact by manipulating the distribution q̂(ϵ̂, δ̂ | x̃,y, z)p(x̃,y, z). In this proof, we

write q̂(ϵ̂, δ̂ | x̃,y, z) as p(ϵ̂, δ̂ | x̃,y, z) to simplify the notation:

p(ϵ̂, δ̂, z) =

∫
p(ϵ̂, δ̂ | x̃,y, z)p(x̃,y, z)dx̃dy

=

∫
p(ϵ̂ | x̃, z)p(δ̂ | y, z)p(x̃,y, z)dx̃dy By factorization

=

∫
p(ϵ̂ | x, z)p(δ̂ | y, z)p(x̃ | z)p(y | z)p(z)dx̃dy In Dx̃,y,z x̃ ⊥⊥ y | z

=

∫
p(ϵ̂, x̃ | z)p(δ̂,y | z)p(z)dx̃dy

= p(ϵ̂ | z)p(δ̂ | z)p(z)
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Consequently, p(ϵ̂, δ̂ | z) = p(δ̂ | z)p(δ̂ | z)⇔ ϵ̂ ⊥⊥ δ̂ | z. Here, if δ̂ ⊥⊥ z and ϵ̂ ⊥⊥ z, then

ϵ̂ ⊥⊥ δ̂ | z⇒ ϵ̂ ⊥⊥ (δ̂, z)⇒ ϵ̂ ⊥⊥ δ̂

Thus, if x̃ ⊥⊥ y | z, as is the case in the computation of each of the null statistics ρ(D(m)
ϵ̂,δ̂ ), then

for δ̂, ϵ̂ ∼ q̂(δ̂, ϵ̂ | x̃,y, z), δ̂ ⊥⊥ ϵ̂.

Test statistic underH1. For the test statistic ρ(Dϵ̂,δ̂) computed using the dataDx,y,z, δ̂ and ϵ̂

must be dependent. UnderH1, x ̸⊥⊥ y | z, so the following sequence of implications must hold:

x ̸⊥⊥ y | z⇒ f̃(ϵ̂, z) ̸⊥⊥ g̃(δ̂, z) | z⇒ ϵ̂ ̸⊥⊥ δ̂ | z⇒ ϵ̂ ̸⊥⊥ δ̂. (5.8)

The first implication follows directly from reconstruction, the second holds because ϵ̂ and

δ̂ are the only sources of variance when z is fixed. This last implication is equivalent to the

following statement, which we will subsequently prove:

δ̂ ⊥⊥ ϵ̂⇒ δ̂ ⊥⊥ ϵ̂ | z.

First, note the following properties. Using joint independence, we show that the distribution

p(δ̂, z) factorizes, implying that δ̂ and z are marginally independent:

p(δ̂, z) =

∫
p(δ, δ̂, z)dδ =

∫
p(δ, δ̂)p(z)dδ = p(δ̂)p(z), (5.9)

p(ϵ̂, z) =

∫
p(ϵ, ϵ̂, z)dδ =

∫
p(ϵ, ϵ̂)p(z)dϵ = p(ϵ̂)p(z). (5.10)

Further, joint independence implies the following:

p(δ̂, δ, z)

p(δ)
=
p(δ̂, δ)p(z)

p(δ)
= p(δ̂ | δ)p(z) = p(δ̂ | δ)p(z | δ) Since z ⊥⊥ δ by definition (5.11)
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p(ϵ̂, ϵ, z)

p(ϵ)
=
p(ϵ̂, ϵ)p(z)

p(ϵ)
= p(ϵ̂ | ϵ)p(z) = p(ϵ̂ | ϵ)p(z | ϵ) Since z ⊥⊥ ϵ by definition (5.12)

Next, note that factorization implies:

p(ϵ̂, δ̂ | z, ϵ, δ) = p(ϵ̂, δ̂ | x,y, z, ϵ, δ) x and y are fully determined by (z, δ, ϵ)

= p(ϵ̂, δ̂ | x,y, z) (ϵ̂, δ̂) are functions of only (x,y, z) and exogenous noise

= p(ϵ̂ | x, z)p(δ̂ | y, z) factorization assumption

= p(ϵ̂ | x, z, ϵ)p(δ̂ | y, z, δ) ϵ̂, δ̂ are functions of (x, z)

and (y, z) respectively and exogenous noise

= p(ϵ̂ | ϵ, z)p(δ̂ | δ, z) x = f(ϵ, z), y = g(δ, z). (5.13)

Using the above facts, we then show that p(ϵ̂, δ̂ | z) = p(ϵ̂, δ̂):

p(ϵ̂, δ̂ | z) =
∫
p(ϵ̂, δ̂, ϵ, δ | z)dϵdδ By marginalization

=

∫
p(ϵ̂, δ̂ | z, ϵ, δ)p(ϵ, δ | z)dϵdδ

=

∫
p(ϵ̂, δ̂ | z, ϵ, δ)p(ϵ, δ)dϵdδ By definition of the data generating process

=

∫
p(ϵ̂ | z, ϵ)p(δ̂ | z, δ)p(ϵ, δ)dϵdδ By eq. (5.13)

=

∫
p(ϵ̂ | ϵ)p(δ̂ | δ)p(ϵ, δ)dϵdδ By eqs. (5.11) and (5.12)

p(ϵ̂, δ̂) =

∫
p(ϵ̂, δ̂ | z, ϵ, δ)p(z, ϵ, δ)dzdϵdδ By marginalization

=

∫
p(ϵ̂ | z, ϵ)p(δ̂ | z, δ)p(z, ϵ, δ)dzdϵdδ By eq. (5.13)

=

∫
p(ϵ̂ | ϵ)p(δ̂ | δ)p(z, ϵ, δ)dzdϵdδ By eqs. (5.11) and (5.12)

=

∫
p(ϵ̂ | ϵ)p(δ̂ | δ)p(ϵ, δ | z)p(z)dzdϵdδ
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=

∫
p(ϵ̂ | ϵ)p(δ̂ | δ)p(ϵ, δ)p(z)dzdϵdδ By definition of the data generating process

=

∫
p(ϵ̂ | ϵ)p(δ̂ | δ)p(ϵ, δ)

(∫
p(z)dz

)
dϵdδ

=

∫
p(ϵ̂ | ϵ)p(δ̂ | δ)p(ϵ, δ)dϵdδ

Using all of the above facts, it follows that δ̂ ⊥⊥ ϵ̂⇒ δ̂ ⊥⊥ ϵ̂ | z:

p(ϵ̂, δ̂ | z) = p(ϵ̂, δ̂)

= p(ϵ̂)p(δ̂) Since δ̂ ⊥⊥ ϵ̂

= p(ϵ̂ | z)p(δ̂ | z) By eqs. (5.9) and (5.10),

thus satisfying the sequence of implications in eq. (5.8).

We have thus far established that under H1, δ̂ ̸⊥⊥ ϵ̂, but under H0, δ̂ ⊥⊥ ϵ̂. Therefore, given

a marginal independence test ψ(Dϵ̂,δ̂, α) : (R × R)N × [0, 1] → {0, 1} that is known to achieve

power greater than level α, using ψ with a dataset of samples from q̂(ϵ̂, δ̂ | x,y, z) will result in

a conditional test with power greater than α.

5.5 Experiments

We analyze the performance of diet on several synthetic and real datasets and compare it to

well-studied methods designed to make crts tractable. First we detail the setup of both diet and

each baseline crt, then the setup of each experiment. Finally we explore each result in detail.

5.5.1 Crt setup

Here we detail the setup of diet and several baseline crts: the d0-crt, dI-crt, and the hrt.
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Diet setup. Each of Q̂cdf(y | z; θ) and Q̂cdf(x | z; η) is modeled using mdns. We give details

about modelling Q̂cdf(y | z; θ), but the model for Q̂cdf(x | z; η) is identical. The network consists

of six consecutive fully-connected layers each followed by batch normalization and ReLU acti-

vation. For each input z(i), the neural network outputs mixture parameters πθ, mean parameters

µθ, and variance parameters σθ, each consisting of K dimensions. Then, the log-likelihood of

y(i) | z(i) is computed as:

log
K∑
k=1

π
(k)
θ N (y(i);µ

(k)
θ , σ

(k)
θ ).

The training objective involves maximizing average of this quantity over all samples (z(i),y(i))

in the dataset with respect to the parameters θ := {πθ, µθ, σθ}. This is shown in eq. (5.3). Letting

Φ be the cdf of a standard normal random variable, the empirical cdf implied by parameters θ

evaluated at a point (z(i),y(i)) is:

Q̂cdf(y = y(i) | z = z(i); θ) =
K∑
k=1

π
(k)
θ Φ

(
y(i) − µ(k)

θ

σ
(k)
θ

)
.

We employ the Adam [Kingma and Ba 2014] optimizer with an initial learning rate of 1× 10−3.

In our experiments, we fix K = 10. Our choice of marginal dependence statistic ρ discretizes ϵ̂

and δ̂, then applies the adjusted mutual information estimator from Vinh et al. [2009].

d0-crt setup. Here we review the full p-value computation for d0-crts. We implement the

Lasso-based models prescribed by Liu and Janson [2020]. This involves first fitting two regres-

sions with ℓ1 regularization:

argmin
θ

N∑
i=1

(y(i) − z(i)θ)2 + λθ||θ||1, argmin
η

N∑
i=1

(x̃(i) − z(i)η)2 + λη||η||1.
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The regularization coefficients λθ and λη are found using 5-fold cross-validation. The test statis-

tics T (Dx,y,z) and T (Dx̃,y,z
(m)) are computed as follows:

T (Dx,y,z) =

(∑N
i=1(y

(i) − z(i)θ)(x(i) − z(i)η)∑N
i=1(x

(i) − z(i)η)2

)2

T (Dx̃,y,z
(m)) =

(∑N
i=1(y

(i) − z(i)θ)(x̃(i,m) − z(i)η)∑N
i=1(x̃

(i,m) − z(i)η)2

)2

,

where x̃(i,m) is the ith sample of x̃ in Dx̃,y,z. Finally, the p-value for the d0-crt is computed as:

1

M + 1

(
1 +

M∑
m=1

1(T (Dx,y,z) ≤ T (Dx̃,y,z
(m)))

)
.

dI-crt setup. Here we review the full p-value computation for dI-crts. We implement the

method used in Liu and Janson [2020]. First, the following regressions are fit:

argmin
θ

N∑
i=1

(y(i) − z(i)θ)2 + λθ||θ||1, argmin
η

N∑
i=1

(x̃(i) − z(i)η)2 + λη||η||1.

The regularization coefficients λθ and λη are found using 5-fold cross-validation.

The test statistic T (Dx,y,z) is computed in the following manner. First, the “top k” dimensions

in z are selected using a Lasso heuristic. Let the set of the top k dimensions be called Sk. The

dimensions of z in Sk are those with the highest corresponding |θj|, where θj is the jth coordinate

of θ. The dI-crt then fits a model from (x− dx, dy, ztop(k)) to y. To explicitly involve first-order

interactions, the dI-crt we implement includes interaction terms between (x − dx) and each

zj ∈ ztop(k). Using these interaction terms, the following regression is fit:

argmin
β,{βj}j∈Sk

N∑
i=1

(
(y(i) − z(i)θ)− β(x(i) − z(i)η)−

∑
j∈Sk

βjz
(i)
j (x(i) − z(i)η)

)2

.

Finally, T (Dx,y,z) := β2+ 1
k

∑
j∈Sk

β2
j . This second regression is fit during each evaluation of the
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test statistic on dataset Dx,y,z.

The test statistic T (Dx̃,y,z
(m)) is computed identically, but with samples from Dx̃,y,z

(m) in-

stead. The p-value is computed in the same way as the d0-crt. Since the Lasso heuristic requires

a choice of hyperparameter k, we use k = 2 log dz, where dz is the number of coordinates in z,

as recommended by Liu and Janson [2020].

Hrt setup. Finally we review the full p-value computation for the hrts used in our experi-

ments. We use the cross-validated hrt from Tansey et al. [2018a], who show it achieves higher

power than the standard hrt. First, the dataset Dx,y,z is split in half into a train and test set:

Dx,y,z
(train) and Dx,y,z

(test). The null datasets {Dx̃,y,z
(m,train)}Mm=1 are correspondingly split into

sets {Dx̃,y,z
(m,train)}Mm=1 and {Dx̃,y,z

(m,test)}Mm=1. Then, the model q̂model(y | x, z), a neural net-

work in this case, is fit using Dx,y,z
(train). We use the same training setup as with the mdns in

diet. P -values are then computed using only the test sets.

To compute T (Dx,y,z
(test)), we let:

T (Dx,y,z
(test)) =

1

N/2

N∑
i=1

L(q̂model,y
(i)
test,x

(i)
test, z

(i)
test),

where L is a loss function evaluated using q̂model and a sample from Dx,y,z
(test). When response y

is a continuous random variable:

L(q̂model,y
(i)
test,x

(i)
test, z

(i)
test) = (y(i) − ŷ(i))2,

where ŷ(i) is the predicted value of q̂model(y | x = x
(i)
test, z = z

(i)
test). If y is discrete, the loss function

is the log-probability of observing y given x and z:

L(q̂model,y
(i)
test,x

(i)
test, z

(i)
test) = log q̂model(y = y

(i)
test | x = x

(i)
test, z = z

(i)
test).
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The null statistic T (Dx̃,y,z
(test)) is computed in a similar way with the same q̂model.

Next, a p-value, p̂1, of the hrt is computed by

1

M + 1

(
1 +

M∑
m=1

1(T (Dx,y,z
(test)) ≥ T (Dx̃,y,z

(m,test)))

)
.

Finally, to compute a cross-validated p-value using thehrt, we repeat all the steps above to obtain

another p-value p̂2, but exchanging the roles of the train and test sets. These two p-values p̂1 and

p̂2 are combined by taking min(1, 2 ·min(p̂1, p̂2)).

5.5.2 Experimental setup.

Single hypotheses. Each synthetic experiment follows the same basic structure for a single

run, unless specified otherwise. First, a dataset Dx,y,z is sampled. Then, each method is used to

test the hypothesis x ⊥⊥ y | z and a p-value is computed using M = 100 null datasets. We

perform 100 runs of each synthetic experiment and report aggregate results.

The power of each method at a specific rejection threshold α is estimated by computing the

percentage of times a hypothesis is rejected, over the 100 runs. A hypothesis is rejected if the

p-value p̂ ≤ α.

Multiple hypotheses. For controlled variable selection experiments, we test the hypothesis

xj ⊥⊥ y | x−j for each dimension j of the covariate vector x. We then apply the Benjamini-

Hochberg procedure [Benjamini and Hochberg 1995] to account for multiple testing while con-

trolling the fdr.

Given a set of d covariates x = {x1, . . . ,xd} and a response y, we test the conditional inde-

pendence of each coordinate xj with y having observed all other coordinates of x−j . For sim-

plicity, we focus on the ci test for only a single coordinate xj in this section. The procedure for

the other coordinates is identical. For consistency with previous sections we refer to xj as x and
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x−j as z.

Every crtmethod assumes the ability to sample from p(x | z) but in some of our experiments

we do not allow access to this distribution. Diet with mdns can directly model p(x | z), so its

approximation can be used to sample null datasets Dx̃,y,z. However, neither the dcrts nor the

hrt have this facility. For these models, we use deep generative models to sample from p(x | z)

[Romano et al. 2020; Sudarshan et al. 2020; Jordon et al. 2018].

Romano et al. [2020] train a generativemodel q̂knockoff(x̃, z̃ | x, z) from samples of (x, z), which

models (x̃, z̃) | (x, z), where x̃ and z̃ are random variables that satisfy the following property:

[x̃, z̃,x, z]
d
= [x, z̃, x̃, z]

d
= [x̃, z,x, z̃]

d
= [x, z, x̃, z̃]. (swap property)

The model q̂knockoff can then be used to generate a null dataset Dx̃,y,z. The ith sample of x̃ in

Dx̃,y,z is sampled by drawing x̃(i), z̃(i) from q̂knockoff(x̃, z̃ | x = x(i), z = z(i)), then discarding z̃(i).

Due to the swap property, the sample x̃(i) | z(i) d
= x(i) | z(i), but is conditionally independent of

y(i) | z(i). This makes x̃(i) drawn from q̂knockoff a valid null sample when used in each Model-X

method’s p-value computation. The null datasets {Dx̃,y,z
(m)}Mm=1 can be drawn the same way.

It is critical to note that if type-1 error is to be controlled using the conditions laid out by

prop. 5.4.1, sample splitting is required. Since the proof of prop. 5.4.1 requires that the same

functionW be applied to the sequence

W (Dx,y,z),W (Dx̃,y,z
(1)), . . . ,W (Dx̃,y,z

(M)),

any estimator for p(x | z)must be fit using a separate dataset. As such, we split the datasetDx,y,z

into a train set Dx,y,z
(train) and a test set Dx,y,z

(test). We fit models for p(x | z) and the hrt model

q̂model using the training set, then compute p-values using the test set. Each synthetic variable

selection experiment is run 100 times. We setM = 2000.
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Figure 5.1: Diet achieves high power across numerous synthetic benchmarks. In this figure, we

show the power of each method as a function of nominal type-1 error rate α or fdr in the case of variable

selection.

5.5.3 Synthetic experiments

Here we describe the benchmarks used to compare diet to each of the baselines.

5.5.3.1 Univariate Gaussian data

This experiment is designed mainly to confirm that each method performs as intended. The data

is drawn as follows: z ∼ N (0, 0.1), x | z ∼ N (z, 0.1), and y | x, z ∼ N (x+z, 0.1). The training

dataset consists of 500 samples.

Results: As expected, the estimated power of each method is 1 for α ∈ (0, 0.3]. We do not

explore largerα, as a practitioner would realistically set their nominal error rate within this range.

As a graph is unnecessary to visualize this result, we omit it.

Non-Gaussian and multiplicative data. These experiments are designed primarily to un-

derstand the effect of violating an additivity assumption in the data generating process. Using

noise ε ∼ N (0, 0.025) and coefficients β ∈ R100 where βj ∼ N (0, 0.025),

z ∼ N (0, 0.025 · I100),x | z ∼ N
(∑10

j=1 zj, 1
)

y | x, z, ε = (x+ ε+
∑100

j=5 zjβj)
3 (Non-Gaussian)
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z ∼ N (0, 0.1 · I100),x ∼ N (0, 0.1)

y | z,x ∼ N (z1x, 0.025) (Multiplicative)

Both datasets consist of 1000 samples.

Results: Weobserve that each crtmanages to control the type-1 error rate at or below nominal

levels. In terms of power, most methods perform well on the non-Gaussian dataset, as shown in

the first column of fig. 5.1. All but the d0-crt are able to achieve full power for almost every

α ∈ (0, 0.3].

In the case of multiplicative data, there is a clear deterioration in the performance of the dI-

crt, as shown in the second column of fig. 5.1. The dI-crt achieves marginally higher power,

but is still quite far from diet or hrt. Upon investigation, we observed that the heuristic used

to choose dimensions in z in dI-crt only selects z1 at random. Since dcrts forbid using samples

of the triple (x,y, z) during training, it is difficult to choose a robust heuristic. Next we explore

why diet achieves higher power using a toy example.

Shortcomings of the dI-crt: a worked example. Consider the following example:

x ∼ N (x; 0, σ2
x)

zj ∼ N (zj; 0, 1)∀j ∈ {1, . . . , d}

y | x, z ∼ N (y; β1xz1 +
d∑

j=2

βjzj, 1)

β1, . . . , βd ∈ R, |β1| < · · · < |βd|.

Since this example extends the motivating example for dI-crts from Liu and Janson [2020],

we focus only on the behavior of the dI-crt here. Recall the dI-crt test statistic computation:

1. The dI-crt first identifies a subset of k variables in z with which to explicitly compute
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interaction terms. This is done by fitting a regression from z to y, then using some measure

of feature importance to select the top k most important features, ztop(k)

2. The distillation function dy = E[y | z] is computed

3. Then, the distillation function dx = E[x | z] is computed

4. Next, a model from (x− dx, dy, ztop(k)) to y is fit

5. Finally, a measure of feature importance for x − dx in this model is used to compute the

test statistic T

To compute each null statistic, steps 3-5 are repeated using the null datasets. Given the set

of M null statistics and the test statistic T , a p-value is computed as shown in the crt p-value

computation eq. (5.2). Now, observe the behavior of the dI-crt in this example.

First, a model is fit from z to y. This is equivalent to estimating the function E[y | z]. To see

the functional form of this quantity let’s first evaluate the density f(y | z):

f(y | z) =
∫ ∞

−∞
f(y | x, z)f(x | z)dx

=

∫ ∞

−∞
f(y | x, z)f(x)dx

=

∫ ∞

−∞

e
−
(−β1z1x−

∑d
j=2 βjzj+y)

2

2
− x2

2σx2

√
4π2σx2

dx

=

∫ ∞

−∞

e
− (−M1x+My)

2

2
− x2

2σx2

√
4π2σx2

dx {lettingM1 = β1z1,My = y −
d∑

j=2

βjzj}

=

∫ ∞

−∞

e
−

M2
1x2−2MyM1x+M2

y
2

− x2

2σx2

√
4π2σx2

dx

=
e−M2

y/2

√
4π2σx2

∫ ∞

−∞
e
−M2

1x2−2MyM1x

2
− x2

2σx2 dx

=
e−M2

y/2

√
4π2σx2

∫ ∞

−∞
e
− 1

2

x2
(
M2

1+
1

σx2

)
−2MyM1x+

M2
yM2

1(
M2

1+ 1
σx2

)−
M2

yM2
1(

M2
1+ 1

σx2

)

dx
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=
e−M2

y/2

√
4π2σx2

∫ ∞

−∞
e

− 1
2

x
(
M2

1+
1

σx2

)1/2
− MyM1(

M2
1+ 1

σx2

)1/2


2

+
M2

yM2
1(

M2
1+ 1

σx2

)
dx

=
e
−M2

y/2+
M2

yM2
1

2

(
M2

1+ 1
σx2

)
√
4π2σx2

∫ ∞

−∞
e
−

(
M2

1+ 1
σx2

)
2

x− MyM1(
M2

1+ 1
σx2

)
2

dx

=
e

−M2
y

 1
2
− 1

2

1+ 1

M2
1σx

2




√
4π2σx2

∫ ∞

−∞
e
−

(
M2

1+ 1
σx2

)
2

x− MyM1(
M2

1+ 1
σx2

)
2

dx

=
e

−M2
y

 1
2
− 1

2

1+ 1

M2
1σx

2




√
4π2σx2

√√√√ 2π(
M2

1 + 1
σx

2

)

=
e

−M2
y


1+ 1

M2
1σx

2

−1

2

1+ 1

M2
1σx

2




√

2π (σx2M2
1 + 1)

=
e
−

M2
y

2(σx2M2
1+1)√

2π (σx2M2
1 + 1)

=
e
−
(y−∑d

j=2 βjzj)
2

2(σx2M2
1+1)√

2π (σx2M2
1 + 1)

= N (y;
d∑

j=2

βjzj, 1 + β2
1σ

2
xz

2
1).

This is a Gaussian distribution with mean E[y | z] =
∑d

j=2 βjzj , which is not a function of

z1. Therefore, ztop(k) will not include z1 for any k < d. To compute dx = E[x | z], note that x

and z are independent, and E[x] = 0.

Next, let’s consider a model from (x − dx, dy, ztop(k)) to y. Again, this is equivalent to esti-

mating E[y | x−dx, dy, ztop(k)] = E[y | x,
∑d

j=2 βjzj, ztop(k)]. Since z1 is not in the conditioning

set of this expectation, it reduces to E[y |
∑d

j=2 βjzj, ztop(k)]; this follows from expanding the
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conditional expectation and noting E[z1] = 0. Thus any model from (x−dx, dy, ztop(k)) to y will

assign no feature importance to x− dx. Assuming that a feature importance score of 0 indicates

an unimportant feature, the score assigned to x− dx will be 0.

The same holds true when repeating the dI-crt steps 3-5 with the null datasets. Regardless

of what values of x are used in the model that estimates E[y |
∑d

j=2 βjzj, ztop(k)], the importance

score of x− dx will always be zero. Since the distribution of the test statistic is indistinguishable

from the distribution of the null statistics, the dI-crt will achieve power no greater than the size

of the test.

Next, consider the case of diet. Recall that its test statistic uses the dataset

Dx,y,z = {(x(i),y(i), z(i))}ni=1

to compute samples of δ̂ = Fy|z(y, z) and ϵ̂ = Fx|z(x, z) = Fx(x), then uses these samples

to estimate the marginal dependence between δ̂ and ϵ̂. We will now show that in the example

above, δ̂ and ϵ̂ will be dependent using the true dataDx,y,z, but will be independent when using

the null data Dx̃,y,z, yielding power > 0.

First note the following equivalences:

Fy|z(y, z) = Φ

(
y −

∑d
j=2 zj√

1 + β2
1σ

2
xz

2
1

)

Fx(x) = Φ

(
x

σx

)
y = β1xz1 +

d∑
j=2

βjzj + ηy

where Φ is the cdf of a standard gaussian and ηy ∼ N (0, 1). To show that δ̂ and ϵ̂ are

dependent, we must show that

P(δ̂ ≤ a | ϵ̂ = b) = P(δ̂ ≤ a).
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When using the true data Dx,y,z, the following must hold:

P(δ̂ ≤ a | ϵ̂ = b) = P

(
Φ

(
y −

∑d
j=2 βjzj√

1 + β2
1σ

2
xz

2
1

)
≤ a | Φ

(
x

σx

)
= b

)

= P

(
y −

∑d
j=2 βjzj√

1 + β2
1σ

2
xz

2
1

≤ Φ−1(a) | x = σxΦ
−1(b)

)

= P

(
β1xz1 + ηy√
1 + β2

1σ
2
xz

2
1

≤ Φ−1(a) | x = σxΦ
−1(b)

)

= P

(
β1z1σxΦ

−1(b) + ηy√
1 + β2

1σ
2
xz

2
1

≤ Φ−1(a)

)
.

The first equation uses the definitions of δ̂ and ϵ̂. The second equation uses the invertibility of

the Gaussian CDF. The third equation holds because y can be rewritten as a function of x, z, and

noise ηy. Finally, the last equation uses the value of x as a function of b and that rvx is jointly

independent of z1 and ηy. Clearly, the conditional probability P(δ̂ ≤ a | ϵ̂ = b) cannot be written

as P(δ̂ ≤ a) using the true data Dx,y,z. This means that δ̂ and ϵ̂ will be dependent.

When computing the dependence of δ̂ and ϵ̂ using null datasets:

P(δ̂ ≤ a | ϵ̂ = b) = P

(
Φ

(
y −

∑d
j=2 βjzj√

1 + β2
1σ

2
xz

2
1

)
≤ a | Φ

(
x̃

σx

)
= b

)

= P

(
y −

∑d
j=2 βjzj√

1 + β2
1σ

2
xz

2
1

≤ Φ−1(a) | x̃ = σxΦ
−1(b)

)

= P

(
β1xz1 + ηy√
1 + β2

1σ
2
xz

2
1

≤ Φ−1(a) | x̃ = σxΦ
−1(b)

)

= P

(
β1xz1 + ηy√
1 + β2

1σ
2
xz

2
1

≤ Φ−1(a)

)

= P (δ̂ ≤ a) .

The first 3 equations follow from earlier. The 4th and 5th steps hold because y is not a function

of x̃ and x̃ is jointly independent of all other random variables. Therefore, when computing each
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Figure 5.2: Synthetic cvs dataset

null statistic using null data Dx̃,y,z, δ̂ and ϵ̂ will be independent.

Since diet will identify dependence between δ̂ and ϵ̂ when using the true data, and no de-

pendence when using the null data, the distribution of the test statistic will not be equal to that

of each null statistic. Thus, it follows that diet can achieve power > 0.

Then, to understand the cost of sample splitting, we reduced the sample size of the multi-

plicative data to 200 and re-ran our experiments. The third column of fig. 5.1 shows that the hrt

suffers the greatest loss in power. This is likely due to the hrt splitting the sample and using

only 100 samples during training.

5.5.3.2 Controlled variable selection

This experiment evaluates each crt on its ability to perform controlled variable selection while

using an estimated p(x | z) distribution. The x data is a 100-dimensional mixture of autore-

gressive Gaussians and is sampled as follows: x ∼
∑4

k=1 πkN (µk · 1,Σk). Each Σk is a 100-

dimensional covariance matrix whose (i, j)th entry is ρ|i−j|
k . We set

(ρ1, ρ2, ρ3, ρ4) = (0.7, 0.6, 0.5, 0.4)

(π1, π2, π3, π4) = (0.4, 0.3, 0.2, 0.1)

(µ1, µ2, µ3, µ4) = (0, 20, 40, 60).
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Figure 5.2 visualizes the first two dimensions of this data. The response y | x is drawn from

N (⟨x, β⟩, 1), where β is a coefficient vector. Each non-zero element of β is drawn from 3 ·

Rademacher(0.5); there are 20 non-zero elements chosen randomly in each run. These non-zero

elements represent the important variables each method aims to recover. The dataset consists of

1000 samples.

Results: We evaluate the average power and the fdp across runs for each method in the fourth

column of fig. 5.1 and fig. 5.3 respectively. The average fdp is an empirical estimate of the fdr.

We notice that most methods are able to keep the average fdp below the nominal fdr rate α

for α > 0.2. However, when α ≤ 0.1, the dI-crt and the hrt inflate the fdp, suggesting they

are sensitive to poor estimations of the p(xj | x−j) distributions, as shown by Sudarshan et al.

[2021]. We also observe that loss of power in the hrt is mainly due to sample splitting. Using

3000 samples instead helped increase the power of the hrt closer to that of diet.

5.5.4 Semi-synthetic genetics experiment

A common application area of Model-X methods is biology [Candes et al. 2018; Bates et al. 2020;

Sudarshan et al. 2020; Sesia et al. 2019]. We evaluate each crt using a setup similar to that of

Sudarshan et al. [2020], which uses RNA expression data of 963 cancer cell lines and 20K genes

per cell line from Yang et al. [2012]. The datasets Dx,y,z ∈ R963×100 are generated as follows.

100 genes are sampled sequentially from the set of 20K such that the resulting set contains

genes with strong pairwise correlations. We use a synthetic y | x response function from Tansey

et al. [2018a]. Specifically, to generate each dataset Dx,y,z ∈ R963×100, we first sample a set of

100 genes {xj}100j=1 from a set of 20K. Let O be the running set of genes, and S be the full set of

20K genes. The first gene x1 is sampled uniformly from S and added to O, and removed from S.

For each j > 1, we apply the following procedure. A gene xk is drawn uniformly from O. The

correlation between xj and each gene in S is computed and the top 50 strongest correlated genes

F are selected. The gene xj ∼ Uniform(F ), and is added toO and removed from S. This process
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is repeated until S contains 100 genes.

To sampley | x, we apply the following procedure defined by Liang et al. [2018]. The response

has four main parts: two first order terms, a second order term, and a final nonlinearity term.

k ∈ [m/4]

φ
(1)
k , φ

(2)
k ∼ N (1, 1)

φ
(3)
k , φ

(4)
k , φ

(5)
k , φ

(6)
k ∼ N (2, 1)

y | x = ϵ+

m/4∑
k=1

φ
(1)
k x4k−3 + φ

(3)
k x4k−2 + φ

(4)
k x4k−3x4k−2 + φ

(5)
k tanh(φ

(2)
k x4k−1 + φ

(6)
k x4k).

The variable m determines the number of important features. We set m to 20 in our experi-

ments.

We perform 30 replicates of this experiment; x1:20 are the important features in each one.

Results: We show the average power for each crt in the last column of fig. 5.1. All methods

are able to control the average fdp below the nominal level. Diet consistently achieves power

higher than the baselines. We also observe that the hrt achieves higher power than the dI-crt

at nominal fdr above 0.1. At lower nominal fdr, the hrt does not select many features as its

non-null p-values are generally higher than those of the dI-crt.

5.5.5 Electronic health records

Crts have found use in clinical model deployment pipelines as methods to prune a set of in-

put features [Razavian et al. 2020]. This pruning reduces the amount of auditing and engineer-

ing needed for model deployment. We perform controlled variable selection using an electronic

health record (ehr) dataset from a large metropolitan hospital to understand which variables are

most predictive of an adverse event within 96 hours for patients that tested positive for COVID-
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Figure 5.3: Fdp of each method on synthetic cvs data.

diet hrt d0-crt dI-crt
Selected 60% 40% 25% 55%

Table 5.1: Diet selects a larger portion of covariates previously identified by highly-cited med-

ical papers. See table 5.2 for a list of selections.

19.

The data contains 28K samples with 29 features on the results of a blood test, basic vital signs,

and demographics. A full list of variables is provided in table 5.2.

We run each crt method on the ehr dataset and apply the Benjamini and Hochberg [1995]

procedure, selecting covariates at a nominal fdr of 10%.

Results: To evaluate the effectiveness of the selections made by each crt, we compare selected

covariates to those reported by several papers related to adverse events in COVID-19 patients

from well-known medical journals [Petrilli et al. 2020; Sattar et al. 2020; Mei et al. 2020; Castro

et al. 2020; Zhang et al. 2020; Zhong and Peng 2021; Ruan et al. 2020; Zhou et al. 2020a].

To score each crt, we consider covariates found to be important by at least one of the above

papers. We compute the fraction of these covariates selected by each crt and report them in

table 5.1. We show the full list of selections in table 5.2.

Diet selects a larger percent of the important covariates, which indicates higher power. While

the dI-crt selects almost as many, upon closer inspection, it also selects redundant features. For
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example, the dI-crt selects both count and percentage of Eosinophils, and both High O2 support

and O2 device while diet only selects one of each.

5.6 Discussion

Existing methods to speed up model-based crts either make restrictive assumptions about the

data generating process, use heuristics to model interactions between x and y, or lose power due

to sample splitting. Diet provides a flexible way to avoid each of these issues and is applicable

to a wide range of data generating distributions. It uses conditional cdf estimators to reduce

high-dimensional model-based crts to tests of marginal independence.

We show theoretically that diet will achieve type-1 error control regardless of data distri-

bution p(x,y, z), then we characterize a class of data distributions for which diet can provably

achieve power. Future work in this area can study weaker assumptions on the data generating

process to provably achieve power in a distillation-based crt. This can lead to further insight

into when a conditional independence test can be reduced to a marginal one without sacrificing

power.
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Feature diet hrt d0-crt dI-crt Reference(s)
Age • • • • (a, b, c, d, e, f, g, h)
Sex • • • •
BMI • • (a, b)
Race
Weight • •
Temperature
Heart rate • (a)
Smoker
Lymphocytes count (g, h)
Lymphocytes percent
Days since admission • • • (g)
Respiratory rate • (h)
Neutrophils count (a)
Neutrophils percent
Eosinophils count • • • (d, g, h)
Eosinophils percent • • (d)
Blood urea nitrogen • • • • (c, d, g)
Troponin (a, c, d, g, h)
Ferritin • • (b, d, g, h)
Platelet volume • (b, f, h)
Platelet count (g, h)
Creatinine (c)
Lactate dehydrogenase (a, g, h)
D-dimer • • • (a, c, d, e, h)
C-reactive protein • • (a, b, d, g)
O2 Saturation • • • • (a, b)
O2 device • •
High O2 support • • • • (a, g)
On room air • •

Table 5.2: Diet with mdns selects many medically relevant variables in the health records task,

while omitting variables that provide similar but redundant information. This table shows which

variables eachmethod selects. We evaluate each crt by comparing to variables found inwell-citedmedical

articles: (a) [Petrilli et al. 2020], (b) [Sattar et al. 2020], (c) [Mei et al. 2020], (d) [Castro et al. 2020], (e)

[Zhang et al. 2020], (f) [Zhong and Peng 2021], (g) [Ruan et al. 2020], (h) [Zhou et al. 2020a].
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6 | A deployed model for predicting

adverse events in the ICU

Thus far we have seen three contributions to the controlled variable selection (cvs) literature.

Here we detail the application of cvs to a problem faced by doctors at NYU Langone during the

height of the Covid-19 pandemic in March 2020. Doctors needed to know which patients they

could safely discharge from the ICU to make room for patients in need of urgent care. After much

discussion with doctors about what tool might be most helpful, we decided to build a machine

learning model to estimate a patient’s probability of experiencing an adverse event. To foster

trust in the model’s predictions, we decided that the model should (1) be interpretable, and (2)

use as few features as possible so that its predictions could be easily explained. For the latter

consideration, we decided to employ cvs to identify a small set of highly predictive features for

the model. In this section, we provide a detailed motivation behind the problem, then discuss the

model that was built and deployed for doctors to view in real time.

6.1 Motivation

The COVID-19 pandemic has challenged front-line clinical decision-making, leading to numer-

ous published prognostic tools. However, as of May 2020, few models had been prospectively

validated and none reported implementation in practice. Here, we use 3,345 retrospective and
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474 prospective hospitalizations to develop and validate an interpretable model to identify pa-

tients with favorable outcomes within 96 hours of a prediction, based on real-time lab values,

vital signs, and oxygen support variables. In retrospective and prospective validation, the model

achieves high average precision (88.6% 95% CI: [88.4–88.7] and 90.8% [90.8–90.8]) and discrimina-

tion (95.1% [95.1–95.2] and 86.8% [86.8–86.9]) respectively. We implemented and integrated the

model into Epic Systems EHR software, achieving a positive predictive value of 93.3% with 41%

sensitivity. Our results show that clinicians adopted these scores into their clinical workflows.

6.2 Introduction

COVID-19 has created a public health crisis unseen in a century. As of June 12, 2020, worldwide

cases exceeded 7 million and deaths have surpassed 410,000, with over 110,000 deaths occur-

ring in the United States alone [COVID 19]. New York emerged as an early epicenter, and the

increase in case burden strained the healthcare system. Although New York’s daily case count

peaked in late March 2020, the number of infections continued to increase worldwide for months

[Ghebreyesus 2020]. The significant impact of COVID-19 is likely to persist until herd immunity

is achieved, effective therapies are developed, or a vaccine is broadly implemented. Faced with

a novel disease with complex multi-organ manifestations and an uncertain disease progression

course, frontline clinicians responded by sharing anecdotal management practices among peers.

However, collective expert opinion is suboptimal and susceptible to selection and cognitive bi-

ases. Epidemiologic studies partially address these challenges [Petrilli et al. 2020], but they do

not provide targeted information for individual patients at the point of care. Machine learning

methods are uniquely positioned to rapidly aggregate the collective experiences of thousands of

patients to generate tailored predictions for each patient. As a consequence, these methods have

great potential to augment COVID-19 care. To be effective, solutions involving machine learning

must 1) address a clearly defined use case that clinical leaders will champion and 2) motivate
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changes in clinical management based on model predictions [Drysdale et al. 2019; Kelly et al.

2019]. During the COVID-19 pandemic, the operational needs of frontline clinicians have rapidly

shifted. Early in the pandemic for example – with testing in short supply – predicting which

patients likely had COVID-19 before a test result had great importance to triage and cohorting.

As the availability and speed of testing progressed, this use case became obsolete. Similarly,

while predicting deterioration is clinically important, the NYU health system had already im-

plemented a general clinical deterioration predictive model and did not have an immediate use

case for a COVID-19-specific deterioration model [Epic 2020]. Further, since Intensive Care Unit

(ICU) beds were already limited to patients in immediate need of requiring higher levels of care,

predicting future needs would not dramatically change clinical management. After collaboration

with clinical leaders, we selected identification of patients at the lowest risk of adverse events

– i.e. those predicted to have favorable outcomes – as a primary focus. This prediction task

fulfills each of the requirements listed above, as handling the surge of COVID-19 patients with

a limited bed capacity was a critical challenge faced by many hospitals. Discharging patients

safely to free up beds for incoming patients is ideal as it does not require expanding human (e.g.

nursing/physician) or structural (beds/medical equipment) resources. Given clinical uncertainty

about patient trajectories in this novel disease, accurate predictions could help augment clinical

decision making at the time the prediction is made. Finally, clinical leaders overseeing inpatient

units committed to support the adoption of the prediction model. As of the time of writing, at

least 30 peer-reviewed papers describing prognostic COVID-19 models have been published [Bi

et al. 2020; Chen et al. 2020; Dong et al. 2020; Gong et al. 2020; Hong et al. 2020; Huang et al. 2020;

Ji et al. 2020a,b; Jiang et al. 2020; Li et al. 2020a,c; Liang et al. 2020; Liu et al. 2020a,b,b; McRae et al.

2020; Shang et al. 2020; Wang et al. 2020b; Xia et al. 2020; Yan et al. 2020; Yu et al. 2020; Zhang

et al. 2020; Zhou et al. 2020b; Cheng et al. 2020; Toussie et al. 2020; Al-Najjar and Al-Rousan 2020;

Borghesi et al. 2020; Burian et al. 2020; Cecconi et al. 2020; Galloway et al. 2020]. These models

use variables including patient demographics, clinical values, and radiographic images to predict
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adverse events, including severe pneumonia, intubation, transfer to ICU, and death. Most mod-

els use more than one variable and most models predict composite outcomes. Of the 30 models,

23 were trained on patients in China [Bi et al. 2020; Chen et al. 2020; Dong et al. 2020; Gong

et al. 2020; Hong et al. 2020; Huang et al. 2020; Ji et al. 2020a,b; Jiang et al. 2020; Li et al. 2020a,c;

Liang et al. 2020; Liu et al. 2020a,b; McRae et al. 2020; Shang et al. 2020; Wang et al. 2020b; Xia

et al. 2020; Yan et al. 2020; Yu et al. 2020; Zhang et al. 2020; Zhou et al. 2020b], 2 were trained

on patients in the United States [Cheng et al. 2020; Toussie et al. 2020], and 5 were trained on

patients in South Korea [Al-Najjar and Al-Rousan 2020] or Europe [Borghesi et al. 2020; Burian

et al. 2020; Cecconi et al. 2020; Galloway et al. 2020]. Only 8 of the models underwent validation

on either held-out or external datasets [Bi et al. 2020; Gong et al. 2020; Ji et al. 2020b; Liang et al.

2020; Liu et al. 2020b; Wang et al. 2020b; Yan et al. 2020; Galloway et al. 2020], and 1 underwent

prospective validation [Li et al. 2020c]. No model predicted favorable outcomes and no studies

reported clinical implementation. In this section, we describe how a collaboration among data sci-

entists, electronic health record (EHR) programmers (vendor- and health system-based), clinical

informaticians, frontline physicians and clinical leadership led to the development, prospective

validation, and implementation of a machine learning model for real-time prediction of favorable

outcomes within a 96 hour window among hospitalized COVID-19 patients. Our approach differs

from prior work in that we: 1) predict favorable outcomes (as opposed to adverse outcomes), 2)

use a large COVID-19 patient cohort admitted across our hospitals, 3) design a model that can

easily be extended to other institutions, 4) prospectively validate performance, and 5) integrate

our model in the EHR to provide a real-time clinical decision support tool. We followed the NYU

Langone School of Medicine IRB protocol, and completed the checklist for IRB requirements for

activities designated for quality improvement [Richardson et al. 2020]. This work met the NYU

Langone School of Medicine IRB criteria for quality improvement work and did not require IRB

review.
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6.3 Results

A retrospective cohort for model creation and validation included all COVID-19 positive adults

hospitalized at any of the four hospitals of our institution from March 3, 2020 through April

26, 2020. This cohort included a total of 3,317 unique patients and 3,345 admissions. These pa-

tients were largely White (44.6%) with an average age of 63.5 years: table 6.1. More men (61.6%)

than women were included, consistent with other studies Grasselli et al. [2020]; Li et al. [2020b];

Wang et al. [2020a]. We defined a favorable outcome as absence of adverse events: significant

oxygen support (including nasal cannula at flow rates >6 L/min, face mask or high-flow device,

or ventilator), admission to ICU, death (or discharge to hospice), or return to the hospital after

discharge within 96 hours of prediction. Patients could experience multiple adverse events dur-

ing the course of their admission, e.g. requiring significant oxygen support before admission to

the ICU and death. Almost half (45.6%) of patients required significant oxygen supporting devices

(beyond nasal cannula) at some point during their stay and one fifth (20.3%) spent time in an ICU.

The all time in-hospital mortality rate was 21.2% with another 3.1% of patients being discharged

to hospice. Consistent with published literature [Henry et al. 2020; Du et al. 2020; Zeng et al.

2020; Zheng et al. 2020; Yun et al. 2020; Lindsley et al. 2020], we find that patients’ admission

laboratory values differ between those who do and do not go on to experience an adverse event

during their hospitalization: lower lymphocyte percentage (12.6% among patients with adverse

event vs. 19.7% among patients without adverse event; table 6.1) and eosinophil percentage (0.28%

vs. 0.70%), with higher neutrophil percentage (79.3% vs. 70.0%), blood urea nitrogen (27.5 vs. 21.7

mg/dL), D-dimer (1573.6 vs. 987.0 ng/mL), C-reactive protein (149.0 vs. 97.0 mg/L), creatinine (1.6

vs. 1.4 mg/dL), ferritin (1609.4 vs. 1009.2 ng/mL), and troponin I (0.41 vs. 0.13 ng/mL). Similarly,

patients who had adverse events had higher maximum heart rate (96.5 vs. 90.8), respiratory rate

(25.8 vs. 21.6), and temperature (99.9 vs. 99.6 Fahrenheit), with lower minimum SpO2 rates (91.0%

vs 93.9%) in the first 12 hours after admission prior to their first complete blood count (CBC) test
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result.

6.4 Model development

Stage 1: Black-box model. Four models (a Logistic Regression, a Random Forest, LightGBM

[Ke et al. 2017], and an ensemble of these three models) were trained with all 65 variables (de-

mographics, vital signs, laboratory results, O2 utilization variables, and length-of-stay) from all

prediction instances (each time a CBC result becomes available) on a training set (60% of retro-

spective cohort, 1,990 unique patients, contributing 17,614 prediction instances). After tuning

the hyperparameters for each model via grid search and comparing each model, the best perfor-

mance on the validation set (20% of retrospective cohort, 663 unique patients, contributing 4,903

prediction instances) was achieved by a LightGBM model with the following hyperparameters:

500 decision trees, learning rate of 0.02, max of 5 leaves in one tree, 0.5 sampling rate for fea-

tures, max depth of 4 per tree, 1.0 L1 regularization and 2.0 L2 regularization, the minimal gain

to perform split set to 0.05, and minimal sum of Hessian in one leaf set to 5.0.

Stage 2: Parsimonious Model. We set up a crt [Candes et al. 2018] using the black-box model

from Stage 1. For a review of crts, see section 2.1.3. Here is the procedure we used to compute the

test statistic. We fit the black-box model to predict adverse events given all 65 input variables.

We then evaluated the model’s performance on the training dataset. The null statistics were

computed similarly, but null data was sampled from a model for p(x | z) where x is the variable

being tested, and z is the set of all other input variables. We employed the conditional histogram

estimator from Miscouridou et al. [2018] to model p(x | z).

Using the crt, we obtained p-values for each variable, shown in table 6.2. Using a p-value

significance threshold of 0.2, 16 features were selected. These features were combined into a final

“parsimonious” model as a logistic regression after quantile normalization of each variable. The
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magnitude of each final model coefficient is proportional to its contribution to the final score.

Positive coefficients were associated with a favorable outcome, while negative coefficients were

associated with a decreased likelihood of a favorable outcome. We then performed an ablation

analysis to remove features in the linearmodel that did not improve its performance. This analysis

led to the removal of age, BMI, and maximum oxygen saturation (in the last 12 hours). Of the

13 features included in the linear model, the maximum value of nasal cannula oxygen flow rate

(in the last 12 hours) feature had a non-linear, U-shaped individual conditional expectation plot

with a maximum at a value of 3 L/min, and was therefore split into three binary indicators with

cutoffs at 0 and 3.

6.5 Model Retrospective Validation

Model performance was measured by discrimination (area under the receiver operating charac-

teristic curve; AUROC) and average precision (area under the precision-recall curve; AUPRC),

assessed on a held-out set (independent from training or validation sets) including 20% of the

retrospective cohort: 664 unique patients, contributing 5,914 prediction instances overall. The

black box and parsimonious models achieved AUPRC of 90.3% (95% bootstrapped confidence in-

terval [CI]: 90.2–90.5) and 88.6% (95% CI: 88.4–88.7) respectively, while maintaining an AUROC

of 95–96% (fig. 6.1a,b). Both black box and parsimonious models maintained high AUPRC (90.8%,

95% CI: [90.7–91.0] and 89.5%, [89.3–89.6], respectively) for prediction times when patients were

not receiving significant oxygen support (any device beyond nasal cannula with 6 L/min) but

AUROC decreased for this subgroup (80.0% [79.9–80.2] and 78.1% [77.9–78.3]; fig. 6.1c,d). Sim-

ilarly, both models maintained high performance when applied to a subset of predictions made

after the patient was transferred out of the ICU (AUPRC [95% CI] of 90.7% [90.3–91.2] and 85.7%

[85.1–86.3] for black box and parsimonious, respectively; AUROC [95% CI] of 95.4% [95.2–95.6]

and 94.2% [93.9–94.4], respectively; fig. 6.1e,f).
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6.6 Model Deployment

The final parsimonious model was implemented into NYU’s EHR to make predictions every 30

minutes for each eligible patient.

6.6.1 Communicating Risk with Color

Predictions were split into three color-coded groups. The lowest risk, green-colored group were

those with a score above a threshold selected at 90% positive predictive value (PPV), 53% sensi-

tivity within the held-out set (threshold = 0.817). The moderate risk, orange-colored group were

those patients with a score lower than green but above a second threshold corresponding to 80%

PPV, 85% sensitivity (threshold = 0.583). The highest risk, red-colored group were all remaining

predictions. In the held-out set, these two thresholds separated all predictions into three groups

where favorable outcomes within 96 hours are observed in 90.0% of green, 67.3% of orange and

7.9% of red patients.

6.6.2 Assessing Face Validity with Chart Review

Prior to displaying the model predictions to clinicians, a team of medical students and practicing

physicians assessed the face validity, timing, and clinical utility of predictions. A variety of patient

types were reviewed including 30 patients who had a green score, 8 of whom had left the ICU

and 22 who had not. Overall, 76.7% (23 of 30) of the green predictions were labeled clinically

valid where the primary clinical team acknowledged the patient as low-risk or were beginning to

consider discharge. Timing of those green predictions either aligned with actions by the primary

clinical team or preceded those actions by one or two days (a total of 34 days earlier, an average

of 1.13 days). Invalid green predictions typically had other active conditions unrelated to their

COVID-19 disease (e.g. untreated dental abscess), while those patients discharged as orange or red
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typically had pre-hospitalization oxygen requirements (e.g. BIPAP for obstructive sleep apnea).

6.6.3 Timing of Green Predictions

For all patients in the held-out set discharged alive, 77.8% of patients (361 of 464) had at least one

green score, and their first green score occurred a median 3.2 (interquartile range: [1.4–5.4]) days

before discharge. The vast majority of green patients who were discharged alive never received

care in an ICU (91.4%; 330 of 361). Those that did receive ICU care had much longer length of

stay before their first green score (fig. 6.2a) but once green, they had similar remaining length of

stay before discharge (fig. 6.2b).

6.6.4 Electronic Health Record Integration and Visualization

The resulting scores, colors, and contributions populated both a patient list column viewable by

clinicians and a patient-specific COVID-19 summary report, which aggregates data important for

care including specific vitals, biomarkers, medications. The core component of the visualization

was a colored oval containing that patient’s risk score (fig. 6.3). The column hover-bubble and

report section displayed a visualization containing the colored score, a trendline of recent scores,

and variables with their values and contributions (fig. 6.3).

6.6.5 Prospective Validation

The model was integrated into the EHR and its real-time predictions were displayed to clinicians

starting May 15, 2020. Prospective performance was assessed using data collected from May 15

to May 28, 2020 (predictions until May 24 with 96 hour follow-up). In those ten days, 109,913

predictions were generated for 445 patients and 474 admissions. Among these prospectively

scored patients, 35.1% (156) required significant oxygen support, 5.4% (24) required more than 6

L/min of oxygen while on nasal cannula, 7.2% (32) died, 2.2% (10) were discharged to hospice care,
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19.8% (88) were transferred to the ICU, and 1.8% (8) were discharged and readmitted within 96

hours. Overall, 44.0% (196 patients) experienced an adverse event within 96 hours of a prediction

instance, which is lower than the rate observed in our retrospective cohort (51.6%, 1712 of 3317,

p = 0.003 by two-tailed Fisher’s exact test), consistent with prior reports from our institution

showing a temporal improvement in outcomes3. Prospective evaluation of the model achieved

an AUPRC of 90.8% (95% CI: 90.8–90.8; fig. 6.4a) and AUROC of 86.8% (95% CI: 86.8–86.9; fig. 6.4b),

similar to retrospective performance (AUPRC: 88.6%, and AUROC: 95.1%). Using the predefined

green threshold, the real-time model identified 41.0% of predictions as green with 93.3% PPV and

67.8% sensitivity (compared to 90% PPV and 53% sensitivity in the retrospective held-out set), and

favorable outcomes are observed in 93.3%, 72.4%, and 23.5% of green, orange, and red predictions,

respectively, consistently higher than the retrospective held-out set (90.0%, 67.3%, and 7.9%).

6.6.6 Adoption into Clinical Practice

Since integration into the EHR, we monitored two high-level metrics to assess score adoption

into clinical practice. The model predictions are visible in two places: multiple patients shown

in a patient list column (fig. 6.3) and a single patient shown in a COVID-19 Summary report. A

patient list column metric counts the number of times the model scores are shown in patient lists

(not counting each patient displayed). A summary report metric counts the number of times a

provider navigated to the COVID-19 Summary report to review data on a single patient. More

specifically, during the three weeks May 16 to June 5, 2020 (omitting the partial day of May 15),

scores are shown in a total of 1,122 patient lists and 3,374 COVID-19 reports. Temporal trends

in these metrics suggest an increasing trend in the rate of patient lists per day but a decreasing

trend in COVID-19 reports (fig. 6.5). Together, these metrics describe an adoption of users adding

the patient list column, a result of outreach and communication to users, and a decline in the

number of COVID-19 reports accessed, which may be explained by a decline in the number of

hospitalized COVID-19 patients. Future work will assess the impact of these scores on physician
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perspectives and decision-making.

6.7 Discussion

The COVID-19 pandemic energized an existing inter-disciplinary collaboration at our institution

to successfully develop a predictive model that was accurate and relevant for clinical care, could

be rapidly deployed within our EHR, and could be readily disseminated to other institutions. The

final parsimonious model exhibited strong model performance for the clinical task (fig. 6.1) and

could be maintained with only 14 of the original 65 variables combined in a logistic regression

that is transparently explainable (fig. 6.3). Yet model accuracy is not sufficient to ensure measur-

able success; the prediction must be clinically applicable at the time of prediction. We determined

that our model predicts patients at high probability of favorable outcomes a median of 3.2 days

before discharge (fig. 6.2b), providing sufficient lead time to commence and prepare for earlier

and safer discharges. Our chart review results suggest the green transition occurs, in many cases,

before any discharge planning is documented. By identifying patients at low risk of an adverse

event with high precision, this system could support clinicians in prioritizing patients who could

safely transition to lower levels of care or be discharged. By contrast, using published models that

predict occurrence of adverse events to guide discharge decisions may not be as effective. The

distinction between identification of patients at low-risk of experiencing an adverse event rather

than those at high-risk is key. Although the binary outcome of an adverse event or none is re-

ciprocal, the methodology of tuning model hyperparameters to identify the best model and then

selecting a threshold based on PPV is not. If the target outcome is reversed, we would expect our

methodology to discover a different parsimonious model. The key strengths of our approach are

twofold. First, a reduced variable set helps prevent overfitting by making it less likely that a ma-

chine learning model will learn site-specific details48. Second, our approach is easily integrated

into third-party EHR systems. Collaborating with our clinical decision support (CDS) experts, we

117



incorporated our intervention directly into standard clinical workflows (fig. 6.5): 1) the patient

lists clinicians used when reviewing and prioritizing their patients, and 2) the standard report

clinicians rely on to summarize COVID-19 aspects of care. By incorporating the prediction at

the appropriate time and place in the EHR for the users responsible for discharge decisions, we

expect to maximize the impact of this intervention in the care of COVID-19 patients [Qin et al.

2020]. Although integration into an EHR system maximizes its impact and simplifies dissemina-

tion to other institutions, it also adds several significant constraints institutions must consider.

Potentially useful data available on retrospective data queries may not be reliably accessible in

real-time to make a prediction. For example, codified comorbidities and prior medications may be

incomplete at the time of prediction, particularly for new patients who have never received care

within the health system. Therefore, only data collected during admission are suitable for gener-

alizable modeling. Extraction of complex features such as means are infeasible within the current

EHR’s cognitive computing platform. These data access challenges inside the EHR are part of the

rationale behind our two-step model development that produces a parsimonious model reliant

on a small number of inputs. Despite the above constraints, the two-step methodology applied

to construct the parsimonious model did reveal previously described [Petrilli et al. 2020] prog-

nostic indicators of adverse events in COVID-19 patients including vital signs such as hypoxia,

C-reactive protein and lactate dehydrogenase (table 6.2). Yet many features commonly associated

with worsening prognosis, such as age, gender, lymphocyte count, and D-dimer ultimately did

not contribute to the final model. There are a variety of potential explanations for this appar-

ent discrepancy. Differences between patients with and without adverse events were observed

for both neutrophil percent and lymphocyte percent (and their absolute counts; Table 1) but the

parsimonious model used only eosinophil percent, as the alternatives were not found to provide

further information over eosinophils (table 6.2), reflecting probable redundancy between white

blood cell biomarkers. Both eosinophils percent and platelet count have positive coefficients (ta-

ble 6.2) suggesting a positive association between immune characteristics [Gao et al. 2016] and
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thrombocytosis with fewer adverse outcomes. Similar redundancy might also explain why lac-

tate dehydrogenase and C-reactive protein contributed to the ultimate model while D-dimer and

troponin did not. While age and sex are marginally associated with adverse outcomes, neither

contibute to the final model, suggesting other variables account for variance in these demograph-

ics such that they no longer aid prediction. The reasoning for why these variables do not directly

contribute is unclear. Epidemiologic studies have been critical in helping clinicians understand

this evolving disease entity and expedite predictive model development. Yet the volume of clini-

cal features associated with adverse events precludes easy assimilation by clinicians at the point

of care. At our institution, a COVID-19 specific summary report for each patient trends over 17

variables. The ability of machine learning to synthesize and weigh multiple data inputs facilitates

more accurate application of the data to directly impact care. Another advantage of our approach

is that model explanations were made available to the clinicians along with real-time predictions.

Our parsimonious model, being linear, enabled a seamless computation of contributing factors.

Providing insight into contributing factors helps improve trust in the model and we believe will

improve its incorporation into clinician decision making. These explanations also helped miti-

gate some inherent limitations of real-time models. For example, clinicians could discount the

model’s predictions if they found that some of the inputs, like respiratory rate, were documented

inaccurately. Similarly, the model could not discriminate between patients receiving BIPAP for

chronic obstructive sleep apnea versus for acute respiratory failure. A clinician would have this

background and could consider the model’s score in that context. Front-line clinicians continued

to evolve their care for patients with COVID-19 in response to research findings. Particularly

during the retrospective study period, March and April 2020, there were rapid changes in testing

and treatment practices. The data collected about a COVID-19 patient in March is likely very

different from a similar patient seen in the prospective cohort in late May 2020. For example, the

volume of D-dimer values for patients increased dramatically from early March to April as clini-

cians incorporated D-dimer screening into their care plans. These expected differences in model
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variables and outcomes challenge the generalizability of any predictive model, which empha-

sized the importance of prospective validation. Using oxygen therapy as both an input variable

and an outcome measure led the model to learn that patients on O2 devices are likely going to

continue to remain on O2 devices in the near future. Consequently, the model coefficient for

significant oxygen support overshadowed other variables and patients on significant O2 devices

uniformly had very low favorable outcome scores. In consultation with our clinical leads, this

model behavior was acceptable given that these patients on significant oxygen devices were clin-

ically unlikely to be safe for discharge. Furthermore, when excluding significant O2 support as an

input variable or omitting periods of significant O2 support, the model performed worse overall

and among patients not using O2 devices. Thus, we retained this variable and analyzed the sub-

set of patients without O2 devices separately, which demonstrated excellent performance (Figs.

6.1c,d). Construction of the parsimonious model as a linear model also impacted how each vari-

able’s contribution was explained to the clinician. This constraint resulted in some explanations

that were clinically concerning, like hypothermic temperatures displaying as a mildly protective

feature (Table 1). This phenomenon occurs because a linear model fits a linear slope to each

variable and misses U-shaped risk curves. In summary, our model’s predictions were accurate,

clinically relevant, and presented in real time within the clinician’s workflow. These features all

enhance the likelihood that the model will be clinically successful. To assess our model’s impact

on clinically important outcomes, a randomized controlled trial is underway examining knowl-

edge of favorable outcome prediction on patient length of stay. With clinical value confirmed,

future work in this area should can involve further collaboration with the vendor community to

rapidly disseminate models such as ours to customers.
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Patient Characteristics

All Cohort With Adverse Without Adverse P-value*

(% of n=3,317) (% of n=1,712) (% of n=1,605)
Demographics

Age, mean (sd) 63.5 (16.5) 65.3 (15.8) 61.5 (17.0) <0.0001
Sex, n (%) <0.0001
Female 1275 (38.4%) 571 (33.4%) 704 (43.9%)
Male 2042 (61.6%) 1141 (66.6%) 901 (56.1%)
Race, n (%) <0.0001
White 1481 (44.6%) 794 (46.4%) 687 (42.8%)
Black 508 (15.3%) 204 (11.9%) 304 (18.9%)
Asian 246 (7.4%) 141 (8.2%) 105 (6.5%)
Other Race 916 (27.6%) 478 (27.9%) 438 (27.3%)
Unknown 164 (4.9%) 84 (4.9%) 80 (5.0%)
Adverse Event Outcomes, n (%)

Mortality (For all time) 702 (21.2%)
Hospice Discharge 102 (3.1%)
ICU Admission 673 (20.3%)
O2 Support Devices Beyond Nasal Cannula 1513 (45.6%)
O2 Flow Rate >6 L/min on Nasal Cannula 365 (11.0%)
Readmission within 96 hours of discharge 20 (0.60%)
Biomarkers, first value measured, mean (sd)

Neutrophils Count (103/uL) 6.2 (5.4) 7.3 (6.7) 4.9 (3.0) <0.0001
Neutrophils Percent 74.8 (12.8) 79.3 (11.2) 70.0 (12.8) <0.0001
Lymphocytes Count (103/uL) 1.1 (1.7) 1.1 (2.3) 1.2 (0.74) 0.014
Lymphocytes Percent 16.0 (10.4) 12.6 (8.7) 19.7 (10.8) <0.0001
Eosinophils Count (103/uL) 0.03 (0.12) 0.02 (0.11) 0.05 (0.12) <0.0001
Eosinophils Percent 0.49 (1.2) 0.28 (1.0) 0.70 (1.4) <0.0001
Platelet Count (103/uL) 225.9 (98.45) 222.0 (95.6) 230.1 (101.2) 0.017
Blood Urea Nitrogen (mg/dL) 24.7 (22.8) 27.5 (23.8) 21.7 (21.2) <0.0001
Creatinine (mg/dL) 1.5 (1.8) 1.6 (1.7) 1.4 (1.9) 0.027
C-Reactive Protein (mg/L) 124.4 (86.3) 149.0 (87.8) 97.0 (75.8) <0.0001
D-Dimer (ng/mL DDU) 1295.7 (3582.4) 1573.6 (4101.2) 987.0 (2869.9) <0.0001
Ferritin (ng/mL) 1324.0 (2315.4) 1609.4 (2767.8) 1009.2 (1624.3) <0.0001
Lactate Dehydrogenase (U/L) 399.3 (243.9) 457.0 (279.5) 337.0 (178.8) <0.0001
Troponin I (ng/mL) 0.28 (2.7) 0.41 (3.5) 0.13 (1.3) 0.0032
Vital signs, first 12 hour, mean (sd)

HR max 93.7 (17.9) 96.5 (19.4) 90.8 (15.7) <0.0001
Resp max 23.8 (7.1) 25.8 (8.3) 21.6 (4.7) <0.0001
SpO2 max (%) 96.3 (2.4) 96.0 (2.6) 96.6 (2.1) <0.0001
Temp max (F) 99.8 (1.5) 99.9 (1.6) 99.6 (1.4) <0.0001
HR min 80.2 (14.2) 80.9 (14.8) 79.5 (13.5) 0.0045
Resp min 18.9 (3.6) 19.3 (4.2) 18.5 (2.6) <0.0001
SpO2 min (%) 92.4 (4.9) 91.0 (5.8) 93.9 (2.9) <0.0001
Temp min (F) 98.4 (0.97) 98.5 (1.0) 98.4 (0.88) 0.12

Table 6.1: Demographics, outcomes, biomarkers, and vital signs of retrospective cohort.
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Variable Explanation Conditional Independence p-value Used in Final Model

Final Model Coefficient

(+ toward a favorable outcome)

Model Intercept 1.43
1 Age 0.016 ✗

2 Oxygen support device greater than nasal can-
nula

0.016 ✓ -7.31

3 Respiratory rate, maximum in last 12 hours 0.016 ✓ -1.23
4 Oxygen saturation, maximum in last 12 hours 0.016 ✗ 0
5 Oxygen support device of nasal cannula 0.016 ✓ -0.816
6 Nasal cannula oxygen flow rate, maximum

value in last 12 hours
0.016 ✓ 0 if flow >3L/min

7 Oxygen saturation, minimum value in last 12 hours 0.016 ✓

+1.12 if 0 <flow <= 3L/min
+0.424 if flow = 0
1.52

8 Temperature, maximum value in last 12 hours 0.016 ✓ -0.439
9 Lactate dehydrogenase, most recent value 0.016 ✓ -0.168
10 Platelet count, most recent value 0.016 ✓ 0.755
11 Blood urea nitrogen, most recent value 0.016 ✓ -1.3
12 C-reactive protein, most recent value 0.016 ✓ -0.558
13 Heart rate, minimum value in last 12 hours 0.033 ✓ -0.437
14 Respiratory rate, minimum value in last 12

hours
0.033 ✓ -0.407

15 Eosinophils percent, most recent value 0.148 ✓ 0.916
16 Body mass index, maximum value in last 12

hours
0.148 ✗

17 No oxygen support device (i.e. room air) 0.803 ✗

18 Heart rate, maximum value in last 12 hours 0.967 ✗

19 Neutrophil count, most recent value 0.967 ✗

20 Temperature, minimum value in last 12 hours 0.984 ✗

21 Eosinophil count, most recent value 0.984 ✗

22 Weight, maximum value in last 12 hours 0.984 ✗

23 Mean platelet volume, most recent value 0.984 ✗

24 Categorical variable of historical smoking be-
havior: e.g. non-smoker or smoker

1 ✗

25 Lymphocyte count, most recent value 1 ✗

26 Female sex 1 ✗

27 Number of days since admission 1 ✗

28 Lymphocytes percent, most recent value 1 ✗

29 Categorical variable of current smoking behav-
ior: e.g. never, former, current smoker

1 ✗

30 Troponin I, most recent value 1 ✗

31 Neutrophils percent, most recent value 1 ✗

32 Body mass index, minimum value in last 12
hours

1 ✗

33 Creatinine, most recent value 1 ✗

34 D-dimer, most recent value 1 ✗

35 Ferritin, most recent value 1 ✗

36 Weight, minimum value in last 12 hours 1 ✗

37 Categorical variable of patient race and ethnic-
ity

1 ✗

Table 6.2: Distillation of a parsimonious model as a combination of conditionally independent variables
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Figure 6.1: Predictive performance of the black box and parsimonious models on retrospective

held-out set. Model performance in an unseen 20% sample of data including 664 unique patients and

a total of 5,914 prediction instances. Panel a shows precision recall curve (PRC) for all patients. Panel b

shows the receiver operating characteristic (ROC) curve for all patients. Panel c shows PRC for patients

at times when patient does not need O2 support beyond nasal cannula at 6 L/min. Panel d shows the

ROC curve for patients at times when patient does not need O2 support beyond nasal cannula of 6 L/min.

Panel e shows PRC for patients transferred out of ICU, and panel f shows the ROC curve for patients

transferred out of ICU. The shaded areas around each curve depict the empirical bounds of one standard

deviation computed with a bootstrap procedure with 100 iterations where, in each iteration, 50% of the

held-out set is sampled with replacement.
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Figure 6.2: Timing of the first “green” prediction for patients discharged alive from the retro-

spective held-out set. Panel a shows the the time from admission to the first green score, while panel

b shows the time from the first green score to discharge. This analysis includes all held-out set patients

with at least one green score who were discharged alive (n=361) and stratifies that group into patients

that received some of their care in an ICU (n=31) and those who received no ICU care (n=330).
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Figure 6.3: Electronic Health Record integration and visualization of predictions. Provider-facing

view showing: (1) a patient list column, (2) displaying model scores for a clinician’s list of patients. Hov-

ering over the score triggers a dialog box (3) displaying model scores along with (4) an explanation of

contributing factors and (5) a trend line of recent scores. To reduce potential for confusion by clinicians,

we display the inverse of the model prediction raw score (i.e 1 - score) and scale the score from 0–100.

Consequently, lower scores represent patients at lower risk of adverse outcomes. Negative feature contri-

butions are protective. Note, in the first prediction, the variable “Nasal cannula O2 flow rate Max in last

12 hrs” has a value of “N/A” because their O2 device is greater than Nasal cannula.
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Figure 6.4: Prospective deployment and evaluation on real-time predictions. A total of 109,913

predictions were generated on 30-minute intervals for 445 patients and 474 admissions. Panel a shows the

precision recall curve. Panel b shows the receiver operating characteristic curve. The shaded areas around

each curve depict the empirical bounds of one standard deviation computed with a bootstrap procedure

with 100 iterations, where in each iteration, 50% of the held-out set is sampled with replacement. Note:

the shaded standard deviation of fig. 6.4 are present but very small as the many predictions made at a

30-minute frequency decreases variance.

Figure 6.5: Display of model scores to users within the EHR. Model scores can be shown to users

in two different displays that correspond to alternative clinical workflows. Panel a shows a patient list

(fig. 6.3) display report, which indicates the number of times users navigated to a patient list that includes

our model scores. Panel b shows the COVID-19 report, which describes the number of times a user nav-

igated to a summary report that contained various COVID-19 specific components including our model

scores.
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7 | Building crt tools for cancer

genomics

In this chapter we detail another application of crts to a cancer genomics problem. We first

motivate the problem, then describe the specifics of a crt designed specifically for this task.

Finally, we explore results on semi-synthetic simulations.

7.1 Motivation

Memorial Sloan Kettering (MSK) recently introduced a test called the integrated mutation profil-

ing of actionable cancer targets (IMPACT). The goal of the test is to identify whether a patient’s

tumor has mutations that make their cancer vulnerable to particular drugs [Cheng et al. 2015].

MSK thenmatches patients with suchmutations to available therapies or to ongoing clinical trials

that will benefit them the most.

The MSK-IMPACT test involves collecting two DNA samples from each individual: one from

tumor tissue and another from normal tissue. The normal tissue is often a sample of the indi-

vidual’s blood. IMPACT then compares the genome of the tumor to that of the normal tissue to

identify mutations that are specific to the tumor and not generally present in the patient. The

set of genes tracked by IMPACT is standardized across studies. For example, different scientists

studying different phenotypes may collect the mutation profiles of the same set of genes. This
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data is illustrated in fig. 7.1. While the phenotypes collected may differ across studies, the set of

tumor mutations is the same.

In
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Tumor mutations Phenotypes

Studies
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Pancreas

Figure 7.1: MSK-IMPACT dataset. The x data is shown as a matrix where each row is an individual and

each column is a particular tumor mutation. If the mutation is present, the cell is filled in. Phenotypes

are collected only for a particular study. For example, scientists may collect metastasis information at

three different sites: Lung, Prostate, and Pancreas. The values of the Lung phenotypes for patients in the

Prostate and Pancreas study are not collected.

To identify patients that will benefit from existing drugs, MSK requires a tool to first identify

causal mutations. The set of causal mutations depends on the phenotype a scientist wishes to

study. Not all mutations cause metastasis for example.

Error control is another objective of scientists at MSK. The false discovery of a non-causal

cancer mutation can result in patients being flagged for treatment when their tumor mutations

don’t have any effect on the phenotype. In the best case, this is a waste of money and time, and in

theworst case the patient could receive unnecessarymedication. Scientistsmust carefully balance

the objective of error control with the objective to identifying as many patients as possible.

The objective of error control and the structure of the data collected suggest that crts can be

useful. As mentioned in earlier chapters, crts can enable precise control of false discovery rates

when the covariate distribution is modeled well. This may be possible due to the way scientists

collect data for studies at MSK. While each study may collect phenotype information about a

small group of individuals, the covariate data – the mutation profiles – contains the same genes

across studies. Since the same tumor mutations are collected across different studies, a good

model for the covariate distribution can be constructed.
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In the next few sections of this chapter, we describe a challenging semi-synthetic experiment

that compares crts to conventional methods employed by scientists to identify causal tumor

mutations.

7.2 Experiments

We first describe the covariate data x, then outline a synthetic phenotype generating process

y | x. We then detail the crt we employ to select causal mutations, followed by two commonly

used baseline methods.

7.2.1 Covariate data

The covariate data x consists of over 22K samples of 458 gene mutations. The jth gene mutation

xj is 1 if a mutation is present, and 0 otherwise. We perform several preprocessing steps to clean

the data.

Some studies do not sequence the full set ofMSK-IMPACT genes, which results inmissingness

in the dataset. First, we drop genes with missingness greater than 30%. This reduces the number

of genes by roughly 17%, yielding 385 genes with lowmissingness. We further reduce the number

of genes by dropping those with standard deviation below 0.025. The resulting set of genes has

285 elements. Finally, we drop samples with any missing values in the remaining 285 genes. This

reduces the total sample size by 2K. The final x dataset contains 285 genes with roughly 20K

samples.

To generate the y | x data, we design a process that makes it difficult to correctly identify

important genes. We first compute a gene correlation matrixC ∈ [−1, 1]285×285. We then identify

60 highly correlated genes using the following greedy algorithm. Let set S = ∅. We identify the

gene xj that has the highest average absolute correlation with all other genes and add it to the

set S. We then add to S the gene that has the highest average absolute correlation with the
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genes in S (that is not already in S). This process is repeated until |S| = 60. From this set of

correlated genes S, we pick 30 uniformly at random and deem them the “causal” genes. Using

only the causal genes, we generate a random 2 layer neural network with ReLU activations after

each layer. This y | x generation process is repeated 10 times by reselecting the set of causal

genes each time. Each of these 10 phenotypes is termed a “replicate” of this experiment.

7.2.2 Crts

We run separate crts for each study. The data contains 20 different studies, each containing

samples from different cancer sites. These cancer sites include: Lung, Pancreas, Breast, Prostate,

Colon, Ovary, Uterus, Rectum, Bladder, Skin, Sigmoid Colon, Liver, Stomach, Thyroid, Kidney,

Esophagus, Unknown, Ascending Colon, Testis, and Cecum. While the crt test statistic is com-

puted using data specific to a study, the covariate distribution model is fit using data across stud-

ies.

Modeling the covariate distribution. We use a logistic factor model to model the joint

distribution of the mutation data. Under this model, the distribution of the covariates given some

latent factor z can be written as:

p(x1, . . . ,x285 | z) =
285∏
j=1

p(xj | z).

We take advantage of the following property to run crts:

y ⊥⊥ xj | x−j ⇔ y ⊥⊥ xj | z.

Testing the conditional independence of a covariate xj with y given x−j is equivalent to testing

the conditional independence of xj with y given the latent factor z instead. This means that

null data for the crt test statistic can be generated by sampling from p(xj | z) instead of from
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p(xj | x−j). This is convenient because the factor model learns all the p(xj | z) distributions

jointly. In our experiments, we use the factor model from Ranganath and Perotte [2018] trained

on the entire dataset of 20K samples. This model has the form of an autoencoder, where the latent

factor z is a function of the covariates x.

Crt test statistic. The crt test statistic we explore here is contra, as detailed in chapter 4.

To recap, the test statistic T is computed as follows. Given (x,y) samples, we split the data in

half. A “true model” is fit to y | x using one half of the data. Using that same half of data, a

null dataset is generated by replacing values of xj with samples from p(xj | z). A “null model” is

fit to predict y using the null dataset. The contra test statistic here is the average of the losses

achieved by the true and null models on the held-out half of the data. Similarly, the contra null

statistic is the same function applied to a null dataset. We explore two choices of regression for

the true and null models: random forest regressors, and a cross-validated lasso model.

7.2.3 Baselines

We compare crts to two popular feature selection baselines: random forest feature importance

scores, and lasso model coefficients.

Random forests. The score for each feature xj is computed as follows. A score is assigned to

each feature xj in each tree of the random forest, then these scores are averaged across trees.

The importance score within each tree relies on a quantity called the “weighted decrease

in mean squared error (MSE).” Here’s how it is computed. For illustration consider fig. 7.2. At

some branching point P , the random forest chooses the feature TP53 to split the data on. All

the samples with a TP53 mutation go into the left node L, and the rest go into the right bin R.

The MSE achieved by the tree at point P is MSEP . The same notation follows for L and R. The
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Figure 7.2: Decision tree branching point.

weighted decrease in MSE at a point P is then written as:

wP = nP ×MSEP − nL ×MSEL − nR ×MSER.

The importance score for a particular feature like the gene TP53 is sum of all wP where the

branching point P uses TP53 divided by the number of samples at the root node of the tree. If a

feature is never used to split the data, it receives a score of 0.

Finally, to compute feature importance scores across the random forest, the mean score for

each feature across trees is computed. These scores provide a way to rank the inputs to the y | x

model by importance.

Lasso model. Extracting feature importance scores from the Lasso model is fairly straightfor-

ward. First a linear regression with ℓ1 regularization is fit. The strength of the regularization is

determined via cross-validation on a held-out portion of the training data. The importance scores

assigned to each feature are the absolute values of the corresponding regression coefficient.

7.3 Results

The goal of the following experiments is to rank covariates in such a way that the important

covariates rank higher than unimportant ones. Recall that in our semi-synthetic simulations, the

important covariates are those that are used to generate y from the x data. To compare covariate
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rankings between methods, we plot precision-recall curves and measure the average precision of

each ranking. Error bars are shown by averaging precision-recall curves over replicates.

To compute a ranking of covariates with baseline methods, we used the corresponding impor-

tance score. We use the inverse of the p-value to rank covariates using each version of contra.

In the following plots, we compare using the feature importance scores of a baseline directly to

using the same y | xmodel inside a crt test statistic. In fig. 7.3, we compare the Lasso coefficients

to contra with a Lasso model. We plot precision-recall curves for three different studies: Lung,

Pancreas, and Prostate. There is a clear difference in both the average precision of each method

and in the precision recall curves. Upon switching to a more powerful y | x model, the random

forest, this performance gap decreases, but the crts are generally better. We see this result in

fig. 7.4.

Figure 7.3: Contra + Lasso achieves noticeably higher average precision than the Lasso feature impor-

tance scores.

We also show 17 further results on other studies done at MSK in figs. 7.5 and 7.6. The studies

are ordered in order of decreasing sample size. We make the following observations. When y | x

is not modeled well, the crts do a much better job at ensuring that unimportant covariates do not

achieve a higher rank than important ones. When y | x is modeled well, the difference between

a non-crt method and a crt method is smaller. It is important to note that the crts are never

significantly worse than the baselines in any of our results.
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Figure 7.4: Contra + Random forest achieves performance on par with random forest feature importance

scores.

Figure 7.5
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Figure 7.6
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8 | Interpretable models for RNA

splicing

Molecular biology is an area where machine learning can lead to scientific discovery. Genomes

encode information about life throughmultiple complex and partly overlapping codes. A classical

example is the genetic code, describing how proteins are encoded in DNA, through the use of

three DNA bases to encode each amino acid. Being sufficiently simple, the key ingredients of the

genetic code were discovered in the 1960s without the use of machine learning models. However,

most other biological codes appear to be more complex, and have so far been recalcitrant to

attempts to deciphering them. Recent work has demonstrated accurate predictions of biological

codes [Jaganathan et al. 2019], but often uses black box models which are unable to explain the

underlying codes. Prediction alone is insufficient to yield generalizable discoveries that apply to

other biological contexts. This limits the application of such recent work to the identification of

molecular mechanisms, or the development of therapeutic interventions.

Here we present an explainable neural network model that provides novel insights into bio-

logical codes. In addition to achieving predictive performance on par with the state of the art, the

model’s decision making process is highly interpretable, leading to several biologically-verifiable

hypotheses. The neural network is trained using data from a high-throughput targeted experi-

ment.

The structure of this work is as follows. First we provide an overview of the splicing code.
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We then outline a dataset that can help a machine learning model learn the determinants of the

splicing code. Next we present the main findings about the splicing code that were generated by

our model. Finally, we describe in detail the construction of the interpretable machine learning

model.

8.1 The splicing code

RNA processing plays critical roles in the fundamental transfer of information from DNA to

functional RNA and protein products. One key RNA processing step is splicing. During splicing,

parts of an RNA transcript known as introns are removed, and the remaining parts, known as

exons, are jointed together to form the mature RNA transcript. The determination of which parts

of the transcript are exons depends on a complex code known as the splicing code. While some

canonical sequence features are necessary for defining exons (splice sites delimiting the exons

and branch points), the sequence of the exon itself is known to play a critical role in determining

exon definition [Kashima and Manley 2003; Cheung et al. 2019]. It is still not fully understood

how the sequence of an exon determines whether it would be included or skipped.

Many short sequence features have been reported to contribute to exon definition. These se-

quences are known to be identified by RNA binding proteins involved in splicing. However, their

quantitative contribution and how they combine to form exon definition decisions has remained

unclear. It is also unclear whether there are additional, yet-unidentified, sequence features that

strongly contribute to exon definition. Finally, the effect of RNA folding (secondary structure) on

splicing decision is ambiguous. In summary, while some components of the splicing code were

identified, understanding the splicing code as a whole remains a significant challenge. In partic-

ular, it is difficult to take a random exon sequence and understand the logic leading to its splicing

decision.
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Skipped

Included

(a) Alternative splicing. The mature RNA transcript from a given sequence is not deterministic: there

are multiple possible events. The rectangles represent exons, the lines represent introns. The middle exon,

shown in blue is either included or skipped from the mature RNA transcript. The probability that a given

RNA transcript results in inclusion of the middle exon is termed “PSI.”

...
30%

42%

69%

12%

92%
(b) An assay is generated by uniformly sampling the middle exon. These sequences are transfected into

cells, then their PSI is observed.

Figure 8.1: Reporter assay: generating training/validation data for our machine learning model.
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Figure 8.2: The majority of splicing products correspond to exon inclusion or exon skipping.

8.2 Dataset for machine learning

To address the challenge of understanding RNA splicing, we create a massive dataset containing

over 200K exon sequences, each being a random 70 nucleotide sequence. This dataset contains

observations of the following process: an RNA transcript consists of three exons separated by

introns. The mature RNA transcript sometimes contains the middle exon, and sometimes does

not. This is a specific instance of a phenomenon called alternative splicing, illustrated in fig. 8.1(a).

Each RNA transcript is labeled by the measured “percent spliced in” (PSI) value, which represents

the percentage of events where the middle exon is included in the mature RNA transcript.

To generate this dataset, we use a synthetic reporter assay, shown in fig. 8.1(b). The assay al-

lows for massively parallel, high-throughput, quantitative PSI measurements across all reporters

in a single experiment. All reporters in the assay share the same three-exon design, with the

same minimum elements required for expression and splicing (promoter, splice sites, branch-

points, and introns). The reporters vary in their middle exon, which contains a different random

70 nucleotide-long sequence. Each random exon sequence is paired with a unique barcode at the

end of the third exon so that exon identity can be inferred in exon skipping products.

PSI for each reporter aremeasured after transfection into humanHeLa cells. The vastmajority

of splicing products correspond to exon inclusion or exon skipping products as shown in fig. 8.2.
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Method KL RMSE

GRU 0.084 0.165
Transformer 0.102 0.183

Ours 0.100 0.180

Table 8.1: Interpretablemachine learningmodel achieves performance on par with state-of-the-

art.

We filtered our data to exclude spurious splicing products, generating paired input-output data

where each middle exon is associated with a measured PSI value. Also shown in fig. 8.2, three

biological replicates of the assay showed excellent agreement, and their results were merged for

all downstream analysis: the total number of inclusion events and skipping events were summed

across replicates for each exon.

8.3 Neural network explanations of splicing logic

State-of-the-art deep learningmodels trained on our dataset achieve excellent prediction accuracy

on a held-out test set as shown in table 8.1. However, it is difficult to extract biological insight

from thesemodels because they are not explainable. We therefore propose a novel neural network

with an easily interpretable structure. The predictive accuracy of our network is comparable to

that of the state-of-the-art black box models. This suggests that explainability need not come at

the expense of accuracy.

To achieve explainability, the network was designed in a modular fashion as shown in fig. 8.3.

Each module can be explained and visualized, and the various modules are combined using a sim-

ple mathematical rule. Specifically, one-dimensional convolutional filters are applied to the input

RNA sequence to identify short sequence features of up to six nucleotides. Half are designated as

contributing to exon inclusion, and the remaining are for exon skipping. An additional bank of

longer filters is applied to secondary structure from a physics-based program that estimates the

minimum free energy structure [Lorenz et al. 2011].
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Next, to account for possible differences in the contribution of sequence filters along the exon,

the output of each of these filters is adjusted linearly based on position along the exon. Finally, the

position-adjusted output is passed through a Softplus non-linearity, which serves as a threshold-

like function with values below the a threshold zeroed out. We refer to the resulting values as

the “forces” contributed by each sequence feature. Since the combination of 1D convolution,

followed by a position-specific bias, followed by a Softplus activation is used in several locations,

we refer to the sequential application of these three functions as a single module termed “force

computation unit” (FCU).

To reach the final prediction, we compute the total inclusion force minus the total skipping

force. This difference in total force is then used to compute the predicted PSI through a learned

link function. To aid in explainability and eliminate training artifacts, we employ regularization

on the model-predicted forces: we encourage the network to minimize the predicted forces as

much as possible while still maintaining high predictive accuracy. We also employ a custom

training schedule to ensure that the patterns learned by the short convolutional filters do not

overlap with those of the longer filters.

Figure 8.4 shows how our model works. In step 1 of fig. 8.4(a), the network computes the

force of various sequence and structure features along the length of an exon. These sequence

features are shown in fig. 8.4(b), along with their position-specific force modifier. Remarkably,

many of these sequence elements agree with well-characterized RNA binding proteins involved

in splicing, and known to affect exon inclusion in the same way. Structural elements resulting

from RNA folding that contribute to exon skipping are also identified. In addition to previously

characterized sequence elements, the network also identified novel sequence elements not pre-

viously reported in the literature, notably a G-poor element that strongly contributed to exon

skipping, which we discuss in a later section.

In step 2, the model adds the total force for inclusion and the total force for skipping. Next,

the model computes the difference between the total inclusion force and skipping force. Finally, it

141



ACG···CGA

·((···))·

PSI

1D
C
on
vo
lu
ti
on

Po
si
ti
on

bi
as

S
of
tp
lu
s

1······70

Learned
link

function

Sequence
inclusion
Sequence
inclusion
Sequence
inclusion

Structure
inclusion
Structure
inclusion
Structure
inclusion

Sequence
skipping
Sequence
skipping
Sequence
skipping

Structure
skipping
Structure
skipping
Structure
skipping

Figure 8.3: Interpretable machine learning model to predict exon inclusion. There are two force com-

putation units (FCUs) for inclusion and two for skipping: one for sequence features and the other for

secondary structure features.

uses a learned function – called the Tuner in fig. 8.3 – to map the difference in force to a predicted

PSI.

8.3.1 Using interpretable machine learning for scientific discoveries

Our model yields several insights into its predictions. Here we provide specific discoveries that

the model enabled. In the subsequent section, we provide details about how we validated these

model-driven discoveries.

Only a few seqence features are reqired to determine splicing outcomes. We find

that our model achieves predictive performance on par with state-of-the-art black box models

despite having a relatively small number of convolutional filters. As shown in fig. 8.4(b), there

are only a handful of distinct sequence motifs that determine splicing. Many of the convolutional

filters learn similar sequence motifs, so we cluster similar ones together. We detail this process

in section 8.5.4. Motifs contribute exclusively towards one of inclusion or skipping of the middle
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(a) From sequence to PSI: under the hood of our interpretable model of splicing.
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Figure 8.4: Interpretable splicing model: discovered sequence features and model prediction logic.

143



exon in the reporter. We observe that increasing the number of learnable filters had no impact

on model performance. Further, note that none of the sequence motifs even need 6 nucleotides:

they are primarily four nucleotides long or shorter.

Splicing logic is additive. The model’s FCUs compute the total force towards inclusion and

skipping. The predicted PSI is a monotonic function of the difference between the total inclusion

and total skipping force. Thus, given any sequence, the model can pinpoint the driving factors

behind the predicted PSI.

Secondary structure contributes strongly to splicing. The model identifies secondary

structures that contribute the overall splicing decision. These structures primarily consist of

stem-loops of various lengths. Some examples are shown in fig. 8.5. The stems of these hairpin

loop structures are strong drivers of forces for exon skipping, as evidenced by the coloring. The

deepest red nucleotides in the stem contribute between 4 and 8 units of force to the splicing

decision, which is a significant amount given the scale of the forces. See fig. 8.4(a) for perspective.

Secondary structure contributes only to exon skipping. We notice that the model does

not learn any secondary structure features in its inclusion FCUs. This is a consistent trend across

various bootstraps and random seeds.

Long G-poor regions seqences contribute to exon skipping. Using its longer convolu-

tional filters, our model also identifies long G-poor regions in many exons without any particular

secondary structure, visualized in fig. 8.6 These regions contribute to forces for exon skipping.

This filter is less specific than others, and is very sensitive to the mutation of a G to a C. Even a

single mutation can significantly affect the skipping force generated by the convolutional filter

corresponding to the poor-G region.

As a result of this interpretable structure, once trained, the network’s weights explicitly iden-

144



A 

A 

G 

C 

G 

G 

C 

C 

A 
U 

A 

C 

G 

C 

C 

G 

C 

U 

A 
A 

C 

G 

U 

G 

C 

C 
U 

C 
C 

G 

U 

G 

G 

C 

A 

C 

G 

A C G 

C 

C 

C 

G 

G 

G 
A 

C 
A 

C 

A 

U 

C 

C 

G 

G 

G 

C 
C C 

G 

G 

A 

A 

C 

C 

G 

C 

C 
U 

G 

U 
C 

G 

G 

U 

U 

C 

C 
C 

Figure 8.5: Secondary structures identified by splicing prediction model. Colorbar indicates the force

contribution of each nucleotide. The redder colors contribute more to exon skipping, the blue colors

contribute more to exon inclusion.

Figure 8.6: Porg
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tify RNA features contributing to exon inclusion or skipping, their quantitative contribution,

and how these contributions combine to determine whether an exon is included or skipped, and

predicts PSI scores. The network determines whether a given exon is included or skipped by

comparing the sum total of exon inclusion forces and exon skipping forces. The greater sum of

forces determines PSI directionality: if the sum of exon inclusion forces is greater then the sum

of exon skipping forces, then the exon is predicted to be included Importantly, the logic behind

the network’s PSI prediction can be examined locally for any given exon.

8.4 Experimental validation of novel seqence features

To rule out training artifacts as the source of model-driven discoveries, we conduct experiments

to validate the contribution of features learned by our model.

We start by exploring the contributions of structure elements to splicing decisions. We ran-

domly pick exons (base exons) from our library that demonstrate high stem loop force. In all these

selected base exons, the hairpin structure does not involve either the 3’ or 5’ splice site flanking

the exon, ruling out the possibility that the specific secondary structure contributes to exon skip-

ping by occluding spliceosome assembly on the splice site. For each base exon, we generate three

additional exons. The first has a single nucleotide mutation in the upstream arm of the stem

that abolishes the secondary structure force. The second exon similarly has a single nucleotide

mutation in the downstream arm. Importantly, the mutations are chosen so that when both are

present, as in the third exon we generated, the secondary structure forms again. Notably, all mu-

tations were chosen so that changes in forces of other motifs are minimal, ensuring that changes

in prediction are truly due to changes in secondary structure, and not due to the introduction or

disruption of other sequence motifs.

We tested three such exon quadruples. All three exhibited the same clear pattern, matching

our predictions fig. 8.7. In both single nucleotide mutated exons (upstream and downstream), the
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measured PSI increased dramatically, in agreement with the predicted lack of stem loop force.

However, when both compensatory mutations are present simultaneously, the measured PSI re-

turns to low levels, similar to that of the base exon. Together, these experiments show that RNA

structure, rather than sequence, strongly contributes to individual exon skipping decisions.

The network also identifies a G-poor element as a major contributor to exon skipping. To

validate this novel element, we randomly picked four exons from our library that are predicted

to contain that element. In each such exon, we introduced a single nucleotide mutation that is

predicted to reduce the skipping force contributed by that element. As before, we ensured that

predicted forces of other motifs are only minimally affected. Remarkably, all four exon pairs

exhibited the expected pattern of increase PSI upon disruption of the G-poor element: fig. 8.8.

Collectively, these validation experiments demonstrate that the structure and sequence elements

identified by the network are part of the cellular splicing logic.

8.5 Methods

Here we describe in detail the construction of our interpretable splicing model. First we outline

the data preprocessing steps we took to train the model. Then we discuss the model architecture

and training procedure. We then provide exact details on how to visualize sequence and structure

motifs. Finally, we give a description of how we created biological validation experiments to

verify hypotheses generated by our model.

8.5.1 Data preprocessing

In the data preprocessing stage, we coupled barcodes to exons. We iterated over reads from the

DNA sequencing of our assay to identify all exons that were coupled to a particular barcode. We

filtered out barcodes associated with more than a single exon, but allowed for some ambiguous

reads: the barcode could be kept if its second most coupled exon occurred no more than once.
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(a) Secondary structure validation sequence 1.

(b) Secondary structure validation sequence 2.

(c) Secondary structure validation sequence 3.

Figure 8.7: Model predictions for secondary structure are validated biologically. The left column

shows a breakdown of our model’s forces. Red forces are towards exon skipping, blue forces are towards

exon inclusion. For simplicity we omit labels for non-structure related forces. Structure is highlighted in

deep red. Each force plot in the first column consists of four exons: the original (O), one with a down-

stream mutation (D), one with an upstream mutation (U), and one with both mutations (B). The middle

column shows the difference in force between inclusion and skipping, and the model’s predicted PSI. The

third column shows biological validation. The higher the bars, the higher the PSI. Note the high level of

agreement with model predictions.
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(a)

(b)

(c)

(d)

Figure 8.8: Model-driven discovery of the poor-G is validated biologically. The left column shows

a breakdown of our model’s forces. Red forces are towards exon skipping, blue forces are towards exon

inclusion. For simplicity we omit labels for non-structure related forces. The force due to poor-G is high-

lighted in deep red. Each force plot in the first column consists of two exons: the original (O), and one

where a C is replaced with a (G). The middle column shows the difference in force between inclusion and

skipping, and the model’s predicted PSI. The third column shows biological validation. The higher the

bars, the higher the PSI. Note the high level of agreement with model predictions.
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We also filtered out barcodes with fewer than two reads in total. The output of this stage was a

list of (barcode, exon) tuples that consist of unique barcodes and their most commonly coupled

exon.

We computed splicing outcome statistics for the three replicates of our assay using their RNA

sequencing reads. For each replicate, each read was identified by barcode and was assigned a

splicing outcome label. The potential labels included: exon skipping, exon inclusion, intron re-

tention, splicing inside exon, or unknown splicing. The output of this stage was a set of three

tables. Each table contained a barcode, its corresponding exon, and the number of times each

splicing outcome label was measured for that exon.

Using unique molecular identifiers (UMIs) [König et al. 2010; Kivioja et al. 2012] we estimated

the fraction of duplicate reads in each replicate to be below 23%. We therefore expect that dupli-

cate reads would have a minimal impact on the downstream analysis.

We processed the splicing outcome tables from the previous stage into training data for our

machine learning model. The first step was to sum the count statistics for each (barcode, exon)

pair across replicates. For each (barcode, exon) pair, we computed the PSI:

PSI = ninclusion

nskipping + ninclusion
,

where ninclusion is the number of exon inclusion reads. The quantity nskipping is defined similarly.

We filtered out exons with fewer than 60 total reads, exons that contained an Esp3I restriction

site in either strand of the exon or its barcode, and exons where inclusion or skipping made up

less than 80% of all reads.

We included fixed flanking sequences to the ends of each exon. These flanking sequences

are the 10nt upstream and downstream of the exon and yielded a total input length of 90nt to

the model. We also provided our model with the secondary structure of each flanked exon. This

structure was predicted and encoded in dot-bracket notation using the RNAFold program in the
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Vienna RNA 2.4.17 package [Lorenz et al. 2011]. We used the default parameters for RNAFold.

We also provided the model with an indicator variable at each position along the flanked exon

to indicate whether a particular nucleotide is part of a non-Watson Crick base pair (G-U). While

this base-pairing information can be inferred from the other inputs to the model, providing it

explicitly allowed the model to use this information directly.

The exon sequence and structure were encoded as one-hot vectors of length 90 (70 random

nucleotides + 10nt flanking on either side). Finally, the training data was split randomly (with a

fixed seed for reproducibility) into a training set and a test set in an 80/20 split.

8.5.2 Model design

Let sequence inputs (xseq, xstruct, xwobble) of length d be defined as

xseq ∈ {A,C,G, U}d (sequence input)

xstruct ∈ {(, ., )}d (structure input)

xwobble ∈ {0, 1}d. (wobble pair input)

A Force-Computation Unit (FCU) is a neural net module f b
a (x;α

b
a, β

b
a ) defined as follows:

f b
a : x 7→ Sum(Softplus(Position-Bias(Convolution(x;αb

a); β
b
a ))) (FCU)

αb
a ∈ Rwb

a×cba×kba , βb
a ∈ R(d−wb

a+1)×kba

where x ∈ {[xseq], [xseq, xstruct, xwobble]}, a ∈ {incl, skip}, and b ∈ {seq, struct}. The 1D convo-

lutional layer Convolution(·;αb
a) consists of kba filters each of width wb

a . The number of input

channels cba is 4 if the input to the FCU is only [xseq], and 8 otherwise. The output of the Convo-

lution layer is a (d−wb
a + 1)× kba matrix z of “raw” forces. The Position-Bias layer maps inputs

z to z + βb
a . This allows each raw force to be adjusted based on its position along the exon. Each
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position-adjusted force passes through a Softplus activation. The output of the FCU f b
a is the sum

of all values in the output of the Softplus layer.

The splicing prediction model m(xseq, xstruct, xwobble; θ) can then be defined using FCUs as

follows:

m(xseq, xstruct, xwobble; θ) =Tuner
(
f
seq
incl([xseq]) + f struct

incl ([xseq, xstruct, xwobble])

− f seq
skip([xseq])− f

struct
skip ([xseq, xstruct, xwobble]); γ

)
.

This model computes the total force for inclusion and for skipping and uses their difference to

predict splicing outcomes. The function Tuner(·; γ) : R→ [0, 1] is a learned nonlinear activation

function that maps this difference to a splicing probability. It consists of a 3-layer fully connected

network with a residual connection from the input to the output layer, followed by a sigmoid

activation. The parameter set θ contains each parameter of each FCU and the parameter γ.

Recall from earlier that we used d = 90 for the model’s input length. Our model used 20

convolutional filters of width 6 for each sequence FCU, and 8 convolutional filters of width 30 for

each structure FCU.

8.5.3 Model training

We implemented our model in Python 3.8 [Van Rossum and Drake 2009] using Tensorflow 2.6

[Abadi et al. 2015] and Numpy 1.20 [Harris et al. 2020]. We used batched gradient descent to opti-

mize the model’s parameters using the Adam optimizer. Hyperparameters such as regularization

parameters were tuned with grid search. Training the model took 45 minutes on a single CPU

core with 16GB of RAM.

We created a custom training schedule to maximize the interpretability of our model. To

ensure that sequence motifs are not learned by structure FCUs, we trained the full model in

steps, progressively adding learnable parameters in each step. The first model we trained has the
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form:

σ(ν(f
seq
incl([xseq])− f

seq
skip([xseq])) + η)

ν, η ∈ R.

This model computes only sequence forces, applies a linear transformation via ν, η to the differ-

ence in sequence forces, then applies a sigmoid transformation σ. We then trained the following

model, initializing the sequence FCU weights to those from the previous model:

fincl = f
seq
incl([xseq]) + f struct

incl ([xseq, xstruct, xwobble])

fskip = f
seq
skip([xseq]) + f struct

skip ([xseq, xstruct, xwobble])

σ(ν(fincl − fskip) + η)

Finally, we replaced the transformation defined by ν, η and σ with the learned nonlinear activa-

tion function Tuner(·; γ):

Tuner(fincl − fskip; γ).

This final model’s FCU weights were initialized to those of the previous model.

To remove unnecessary motifs and to prevent the same motifs from being learned in both

inclusion and skipping FCUs, we employed activity regularization. This involved adding a term

to the loss function of the splicing model. This term computes the ℓ1 norm of the output of the

SoftPlus layer of each FCU and scales it by a hyperparameter λactivity.

To ensure that the FCUs’ Position-Bias layers are interpretable, we applied smoothness reg-

ularization to its weights. We added the ℓ2 norm between each pair of adjacent weights in the

Position-Bias layer, and weight this sum by a hyperparameter λsmoothness.

We optimized each hyperparameter on two criteria: held-out KL-divergence and sparsity of
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activations. In this context, sparsity means the minimum number of activations needed per exon

to achieve sufficiently low KL. Given a set of models that are sufficiently performant and sparse,

we chose the one with the highest smoothness regularization.

8.5.4 Visualizing seqence and structure motifs

We visualize the sequence motifs learned by the model by applying the following procedure to

the sequence FCUs. We identify 6-mers that highly activate each convolutional filter in the FCUs

and use these 6-mers to compute a sequence logo for each filter. To avoid reporting redundant

motifs, we apply a clustering procedure to group similar motifs.

For each pair of one-hot-encoded 6-mer and sequence convolutional filter we computed the

dot-product between the 6-mer and the filter’s weights. The resulting motif for the filter was

generated by computing a sequence logo [Schneider and Stephens 1990] using all 6-mers whose

dot-product is above zero.

To cluster redundant motifs, we computed the total activation of each convolutional filter

along the length of each exon. We then applied hierarchical clustering using Scipy [Virtanen

et al. 2020] to group similar convolutional filters.

We also visualized structure motifs learned by our model. Since the structure FCU’s convo-

lution filters are of length 30 and the set of 30-mers cannot be tractably enumerated, we chose

to randomly sample 30-mers from contiguous segments of exons in our dataset. Using roughly

60K 30-mers, we computed a “sequence” logo for structure in a manner similar to the sequence

motifs. We used an alphabet of dots and brackets instead of {A,C,G, U}. Stem-loop filters were

identified by manual inspection of the structure logos.
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8.5.5 Visualizing representative secondary structures

To understand which types of secondary structures yield strong activations within the model, we

designed a neural network saliency approach that visualizes the output of the network when a

single nucleotide is perturbed.

First, we defined a scalar-valued "response" function that computes the total structure acti-

vation across positions and filters in the structure filter group given a sequence. The response

function was applied to the sequence we sought to visualize to generate a “baseline” activation.

For each position in a sequence, we created three mutated sequences: these sequences contain

one of the remaining three mutations at that position. For example, if a sequence is CG, then

for position 1, we create the set {AG, UG, GG}. The response function was applied to each of

the mutated sequences for that position to create three mutated activations. Finally, the mean

absolute difference between each mutated activation and the baseline activation is defined to be

the saliency for a particular position.

We compute the saliency for all positions across an exon. For ease of interpretations, we nor-

malize the saliencies for a given sequence by dividing each position’s saliency by the maximum

for the sequence. Intuitively, if a mutation at a position causes structure to break, the saliency of

that position will be high.

Finally, we used this saliency computation to differentially color

8.5.6 Secondary structure validation

We selected candidate exons from our library that highly activate our model’s medium length

stem-loop filter. Themedium length filter activates most frequently among themodel’s stem-loop

filters. We did so by computing the total force attributed to this stem-loop filter for each exon,

then selecting exons whose total stem-loop force was above 20, or roughly the 99th percentile.

We counted the number of activations for each exon by computing a signal that measures a stem-
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loop filter’s activation at every location along the exon, then counting the number of peaks in this

signal that exceed a threshold. This threshold was set via visual inspection of a random sampling

of a few signals. The output of this stage is a list of 2384 exons.

We then counted the number of times each exon activates the model’s three stem-loop filter.

We filtered out exons where the total number of activations across the stem-loop filters is greater

than 1. This is done so any structure within the exonmay be broken easily with a single mutation.

For each of the remaining 418 exons, we subsequently used the model to localize the stem and

loop. Note that we did not use Vienna RNA and instead relied on the model’s own structure FCUs.

The output of this stage is a list of candidate exons that pass these filtering steps.

For each exon from the previous stage, we created a set of four constructs. The first con-

struct is the original exon. The second construct breaks the structure present in the original

exon. The upstream nucleotide of the base-pair in the middle of the stem formed by the original

exon is mutated to break the base-pairing. The third construct is created similarly by mutating

the downstream nucleotide in the base-pair instead. The final construct contains the mutations

of both the second and third constructs. We ensured that secondary structure was reintroduced

in this construct by choosing mutations that prevent base-pairing when only one mutation is

applied, but enable base-pairing when both mutations are applied. These mutations act as com-

pensatory mutations [Williamson et al. 1989] for the presence of secondary structure. The output

of this stage is a list of 4-tuples; each 4-tuple contains the set of constructs for a candidate exon.

8.5.7 Porg motif validation

One convolutional filter in a structure FCU of our model learns a long G-poor sequence motifs

called “Poor-in-Gs” (Porgs). This experiment asked whether the presence of Porgs in exons has

any impact on the ψ, or if Porgs are simply an artifact of our model. For exons that activate our

model’s Porg filter, we introduced a single mutation that breaks the Porg. We describe each stage

of this process next.
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We used our model to select candidate exons that highly activate the Porg filter exactly once

along the length of the exon and have a predicted PSI within [0.1, 0.8]. The output of this stage

is a list of candidate exons.

Using the list of filtered candidate exons, we mutated the nucleotide in the center of the

window where the Porg filter activates. We replaced the existing nucleotide with a G. To ensure

that adding this G did not accidentally create or destroy other sequence or structure motifs, we

filtered out exons where the non-Porg activations were different from those of their mutated

counterpart. This allowed us to observe the effect of the Porg while keeping the other parts of

the exon relatively unchanged.
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9 | Conclusion

In this thesis, we presented several ways machine learning can be used to generate scientific

discoveries in healthcare. We introduced several methodological contributions in the form of

conditional independence tests via ddlk, diet, and contra. We applied such tests to two im-

portant problems in healthcare. We identified a small subset of highly predictive variables for

adverse events in the ICU, and helped doctors quickly free up beds for patients in need at NYU

Langone. We built methods to help scientists at Memorial Sloan Kettering Cancer Center iden-

tify causal tumor mutations. With this knowledge, doctors can identify patients who have tumor

mutations that make their cancers more easily treatable.

Finally, we detailed an interpretable machine learning model designed to shed light on an

important biological process, RNA splicing. Using this model, we generated several novel insights

about this process and validated them in the wet lab.

We hope that the methods and results presented in this paper enrich the discovery toolkit of

scientists and inspire future work on this critical area.
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