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Abstract

Experimental and theoretical evidence suggests that blood flow can be well ap-

proximated by a model of a Newtonian fluid and deformable particles representing

the red blood cells. We use a well-established boundary integral formulation for

the problem as the foundation of our approach. This type of formulations, with a

high-order spatial discretization and an implicit and adaptive time discretization,

have been shown to be able to handle complex interactions between particles with

high accuracy. Yet, for dense suspensions, very small time-steps or expensive im-

plicit solves as well as a large number of discretization points are required to avoid

non-physical contact and intersections between particles, leading to infinite forces

and numerical instability. Given the importance of vesicle flows, in this thesis we

focus in efficient numerical methods for such problems: we present computation-

ally parallel-scalable algorithms for the simulation of dense deformable vesicles in

two and three dimensions both in unbounded and bounded domain.

Our method maintains the accuracy of previous methods at a significantly lower

cost for dense suspensions and the time step size is independent from the volume

fraction. The key idea is to ensure interference-free configuration by introducing

explicit contact constraints into the system. While such constraints are unneces-

sary in the formulation, in the discrete form of the problem, they make it possible

to eliminate catastrophic loss of accuracy by preventing contact explicitly.

Introducing contact constraints results in a significant increase in stable time-

step size for locally-implicit time-stepping, and a reduction in the number of points

adequate for stability. Our method permits simulations with high volume fractions;

we report results with up to 60% volume fraction. We demonstrated the parallel

scaling of the algorithms on up to 35K CPU cores.
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Chapter 1

Introduction

The ability to simulate particulate flows faithfully with deformable and rigid

particles suspended in viscous incompressible fluids has the potential to provide

insight into complicated physiological processes. The most important example

of which is blood flow simulation. Accurate blood flow simulation can be used to

study biological physics such as blood flow clogging and blood cells separation. We

model the blood flow as a particulate suspension of elastic membranes that resist

bending and tension and are filled with a Newtonian fluid. The type of particles

are generally known as vesicles. We use the terms vesicle and RBC interchangeably

referring to this elastic capsule representation in the rest of this thesis. Vesicles

are used to understand the properties of biomembranes [28, 63], and to simulate

the motion of blood cells, in which vesicles with moderate viscosity contrast are

used to model red blood cells and high viscosity contrast vesicles or rigid particles

are used to model white blood cells [9].

However, direct simulation of blood flow is an extremely challenging task. Even

simulating the blood flow in smaller vessels requires modeling millions of cells
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(one microliter of blood contains around five million RBCs) along with a complex

blood vessel. RBCs are highly deformable and cannot be well-approximated by

rigid particles. The volume fraction of cells in human blood flow reaches 45%,

which means that a very large fraction of cells are in close contact with other

cells or vessel walls at any given time. These constraints preclude a large number

of discretization points per cell and make an evolving mesh of the fluid domain

impractical and costly at large scale.

Simulations capable of capturing these various types of flows faithfully must be

• accurate, to reproduce the physics of interest without concern for numerical

error;

• robust, to handle high-volume-fraction flows, close contact between cells and

vessel walls, complex geometries, and long simulation times;

• efficient and scalable, to support a realistic number of cells in flows through

complex blood vessels.

Nevertheless, simulating realistic human blood flow requires simulating dense

suspensions of rigid and deformable particles. This entails many numerical chal-

lenges, one of which is the need to frequently and accurately resolve contact be-

tween particles, requiring very small times steps and/or fine spatial discretization.

To make such simulations at larger scale practical, we present an efficient, accu-

rate, and robust method for simulation of dense suspensions in Stokesian fluid in 2d

and 3d both in bounded and unbounded domains. We use the boundary integral

formulation to represent the flow and impose the contact-free condition as a con-

straint. This thesis focuses mainly on suspensions of rigid bodies and vesicles with

high volume fractions, in which multiple particles are in contact or near-contact.
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1.1 Our contributions

1. We present a contact-aware algorithm for particulate Stokesian suspensions

simulation in 2d. For high volume fraction, our method makes it possible to

increase the step size by at least an order of magnitude, and the simulation

remain stable even for relatively coarse spatial discretizations.

2. We present a parallel contact-aware algorithm for particulate Stokesian sus-

pensions simulation in 3d unbounded domain. Our method permits simula-

tions with high volume fractions (we report results with up to 60% volume

fraction). Within our framework, the time step size is independent from the

volume fraction and the simulation wall-clock-time is at least an order of

magnitude faster than the adaptive case.

3. We present a parallel platform for long-time simulations of red blood cells

through complex blood vessels. Flows through several complicated geome-

tries are demonstrated. We have parallelized a boundary solver for elliptic

PDE’s on smooth complex geometries in 3d. The sequential version of the

boundary solver is an ongoing work of Matthew Morse, Abtin Rahimian and

Denis Zorin. We extend the parallel collision handling to include arbitrary

boundaries composed of patches. We present weak and strong scalability

results of our simulation on the Stampede2 cluster at the Texas Advanced

Computing Center along with several visualizations long-time, large-scale

blood cell flows through vessels.
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1.2 Outline of The Thesis

In Chapter 2 of this thesis, we present an efficient, accurate, and robust

method for simulation of dense suspensions of deformable and rigid particles im-

mersed in Stokesian fluid in two dimensions. This chapter is the joint work with

Abtin Rahimian and Denis Zorin[53]. We use a well-established boundary inte-

gral formulation for the problem as the foundation of our approach. This type of

formulation, with a high-order spatial discretization and an implicit and adaptive

time discretization, have been shown to be able to handle complex interactions be-

tween particles with high accuracy. For dense suspensions, very small time-steps

or expensive implicit solves as well as a large number of discretization points are

required to avoid non-physical contact and intersections between particles, leading

to infinite forces and numerical instability. Our method maintains the accuracy of

previous methods at a significantly lower cost for dense suspensions. The key idea is

to ensure interference-free configuration by introducing explicit contact constraints

into the system. While such constraints are unnecessary in the formulation, in the

discrete form of the problem, they make it possible to eliminate catastrophic loss of

accuracy by preventing contact explicitly. Introducing contact constraints results

in a significant increase in stable time-step size for explicit time-stepping, and a

reduction in the number of points adequate for stability.

In Chapter 3 of this thesis, we present a parallel-scalable method for simu-

lating non-dilute suspensions of deformable particles immersed in Stokesian fluid

in three dimensions. This chapter is the joint work with Abtin Rahimian and

Denis Zorin[54]. A critical component in these simulations is robust and accurate

collision handling. This chapter complements Chapter 2 by extending it to 3d

and by introducing new parallel algorithms for collision detection and handling.
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Our method maintains the accuracy of previous methods at a significantly lower

cost for dense suspensions and the time step size is independent from the volume

fraction. Our method permits simulations with high volume fractions; we report

results with up to 60% volume fraction. We demonstrated the parallel scaling of

the algorithms on up to 16K CPU cores.

In Chapter 4 of this thesis, we present a fast scalable platform for the simu-

lation of red blood cell (RBC) flows through complex capillaries by modeling the

physical system as a viscous fluid with immersed deformable particles. This chapter

is the joint work with Matthew Morse, Abtin Rahimian, Georg Stadler and Denis

Zorin[55]. We describe a parallel boundary integral equation solver for general

elliptic partial differential equations, which we apply to Stokes flow through blood

vessels. We also detail a parallel collision avoiding algorithm to ensure RBCs and

the blood vessel remain contact-free. We have scaled our code on Stampede2 at

the Texas Advanced Computing Center up to 34,816 cores. Our largest simulation

enforces a contact-free state between four billion surface elements and solves for

three billion degrees of freedom on one million RBCs and a blood vessel composed

from two million patches.
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Chapter 2

Contact-aware simulations of

particulate Stokesian suspensions

in two-dimensional domain

2.1 Introduction

Particulate Stokesian suspensions of deformable and rigid particles commonly

occur in nature and are widely used in industrial applications. Examples of such

fluids include emulsions, colloidal structures, particulate suspensions, and blood.

Most of these examples are complex fluids, i.e., fluids with unusual macroscopic

behavior, often defying a simple constitutive-law description. A major challenge

in understanding the physics of complex fluids is the link between microscopic and

macroscopic fluid behavior. Dynamic simulation is a powerful tool [10, 64] to gain

insight into the underlying physical principles that govern these suspensions and

to obtain relevant constitutive relationships.
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Nevertheless, simulating dense suspensions of rigid and deformable particles

entails many numerical challenges, one of which is the need to frequently and ac-

curately resolve contact between particles, requiring very small times steps and/or

fine spatial discretization. To make such simulations at larger scale practical, we

present an efficient, accurate, and robust method for simulation of dense suspen-

sions in Stokesian fluid in 2d (e.g., Fig. 2.7), which does not make any assumption

about the dimensions of the problem and is extendable to 3d. We use the boundary

integral formulation to represent the flow and impose the contact-free condition

as a constraint. This work focuses mainly on suspensions of rigid bodies and

vesicles with high volume fractions, in which multiple particles are in contact or

near-contact.

Vesicles are closed deformable membranes suspended in a viscous medium. The

dynamic deformation of vesicles and their interaction with the Stokesian fluid play

an important role in many biological phenomena. They are used to understand

the properties of biomembranes [28, 63], and to simulate the motion of blood cells,

in which vesicles with moderate viscosity contrast are used to model red blood

cells and high viscosity contrast vesicles or rigid particles are used to model white

blood cells [9].

Boundary integral formulations offer a natural approach for accurate simulation

of vesicle flows, by reducing the problem to solving equations on surfaces, and

eliminating the need for discretizing changing 3d volumes. However, in non-dilute

suspensions, these methods are hindered by difficulties: inaccuracies in computing

near-singular integrals, and artificial force singularities caused by (non-physical)

intersection of particles. Contact situations in the Stokesian particulate flows occur

frequently when the volume fraction of suspensions is high, viscosity contrast of
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vesicles is high, or rigid particles are present. On the other hand, there are certain

classes of flows and formulations that are not hindered by frequent particle collision,

e.g., unbounded flow of vesicles with no viscosity contrast [103]. The dynamics of

particle collision in Stokes flow are governed by the lubrication film formation and

drainage, which has a time scale much shorter than that of the flow [27]. Solely

relying on the hydrodynamics to prevent contact requires the accurate solution

of the flow in the lubrication film, which in turn entails very fine spatial and

temporal resolution accompanied by increasingly ill-conditioned linear systems in

the boundary integral setting [85, 88] — imposing excessive computational burden

as the volume fraction increases.

While adaptive time-stepping [82, 83] goes a long way in maintaining stability

and efficiency in dilute suspensions, the time-step is determined by the closest pair

of vesicles, and tends to be uniformly small for dense suspensions.

In this work we take a different approach: we augment the governing equations

with the contact constraint. While from the point of view of the physics of the

problem such a constraint is redundant, as non-penetration is ensured by fluid

forces, in numerical context it plays an important role, improving both robustness

and accuracy of simulations. Typically, a contact law/constraint is characterized by

conditions of non-penetration, no-adhesion as well as a mechanical complementar-

ity condition, i.e., the contact force is zero when there is no collision. These three

conditions are known as Signorini conditions in the context of contact mechanics

or KKT conditions in the context of constrained optimization [66, 110].
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2.1.1 Our contributions

Contact constraints ensure that the discretized system remains intersection-

free, even for relatively coarse spatial and temporal discretizations, where the

fidelity of the numerical model is insufficient for resolving the lubrication film.

These constraints lead to a Nonlinear Complementarity Problem (NCP), which

we linearize and solve using an iterative method that avoids explicit construction

of full matrices. We describe an implicit-explicit time-stepping scheme, adapting

Spectral Deferred Correction (SDC) to our constrained setting, Section 2.3.2.

Contact constraints control the minimum distance between vesicles, maintain-

ing it independent of the temporal resolution. While solving NCP at every step

incurs an additional cost, it is more than compensated by the ability of our method

to maintain larger time-steps, and lower spatial resolutions for a given target error.

For high volume fraction, our method makes it possible to increase the step

size by at least an order of magnitude, and the simulation remain stable even for

relatively coarse spatial discretizations (16 points per vesicle, versus at least 64

needed for stability without contact resolution; Section 2.4).

2.1.2 Synopsis of the method

We use the boundary integral formulation based on [82, 86, 103]; the basic for-

mulation uses integral equation form of the problem and includes the effects of the

viscosity contrast, fixed boundaries, as well as deformable and rigid moving bodies.

We add contact constraints to this formulation, as an inequality constraint on a

gap function that is based on space-time intersection volume [36]. The contact

force is then parallel to the gradient of this volume with the Lagrange multiplier
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as its magnitude. We solve the contact NCP for the Lagrange multipliers of the

constraints using a Newton-like matrix-free method, as a sequence of Linear Com-

plementarity Problems (LCP) [15, 21], with each solved iteratively using GMRES.

The spectral Fourier bases are used for spatial discretization. For time stepping,

we use semi-implicit backward Euler or semi-implicit Spectral Deferred Correction

(SDC).

2.1.3 Related work

Related work on Stokesian particle flows Stokesian particle models are em-

ployed to theoretically and experimentally investigate the properties of biological

membranes [92], drug-carrying capsules [97], and blood cells [67, 76]. There is an

extensive body of work on numerical methods for Stokesian particulate flows and

an excellent review of the literature up to 2001 can be found in [78]. Reviews of

later advances can be found in [86, 88, 103]. Here, we briefly summarize the most

important numerical methods and discuss the most recent developments.

Integral equation methods have been used extensively for the simulation of

Stokesian particulate flows such as droplets and bubbles [51, 52, 89, 123], vesicles

[22, 25, 76, 86, 88, 94, 103, 120, 121], and rigid particles [74, 75, 119]. Other

methods — such as phase-field approach [11, 18], immersed boundary and front

tracking methods [43, 113], and level set method [47] — are used by several authors

for the simulation of particulate flows.

For certain flow regimes, near interaction and collision of particles has been a

source of difficulty, which was addressed either by spatial and temporal refinement

to resolve the correct dynamics (increasing the computational burden) or by the

introduction of repulsion forces (making the time-stepping stiff).
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[93] presented a framework for dynamic simulation of rigid particles with spher-

ical or cylindrical shapes, in which the lubrication forces were included directly by

putting Stokes doublets at the contact midpoint. The magnitude of lubrication

force was computed using asymptotic analysis. To maintain the accuracy in the

interaction of deformable drops, [51, 124, 125] resorted to time-step refinement

where the time step is kept proportional to particle distance d. [124, 125] keep the

time step proportional to
√
d. [51] adjust both the grid spacing around the contact

region and the time-step to be proportional to d. [25] resorted to repulsion force

to avoid contact in a 2d particulate flow. In a later work for 3d, Freund and coau-

thors [122] observed that significantly larger repulsion force density are needed

in three dimensions, as the total repulsion force is distributed over a smaller re-

gion, when measured as a fraction of the total surface area/length. Consequently,

they used a purely kinematic collision handing, in which, after each time-step, the

intersecting points are moved outside.

[83] applies adaptive time-stepping and backtracking to resolve collisions. Sim-

ilarly, [68] present an interesting integral equation method for the flow of droplets

in two dimensions with a specialized quadrature scheme for accurate near-singular

evaluation enabling simulation of flows with close to touching particles. While

methods using adaptivity both in space and time are the most robust and accu-

rate, they incur excessive cost as means of collision handling.

Related work on contact response A broad range of methods were developed

for collision detection and response. While the work in contact mechanics often

focuses on capturing the physics of the contact correctly (e.g., taking into account

friction effects), the work in computer graphics literature emphasizes robustness
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and efficiency. In our context, robustness and efficiency are particularly important,

as we aim to model vesicle flows with high volume fraction and large number of

particles. Physical correctness has a somewhat different meaning: as we know

that if the forces and surfaces in the system are resolved with high accuracy, the

contacts would not occur, our primary emphasis is on reducing the impact of the

artificial forces associated with contacts on the system.

There is an extensive literature on contact handling in computational contact

mechanics mainly in the context of FEM mechanical and thermal analysis [24, 39,

46, 81, 102, 109, 110]. [109, 110] presents in-depth reviews of the contact mechanics

framework. The works in contact mechanics literature can be categorized based

on their ability in handling large deformations and/or tangential friction. In some

of the methods, to simplify the problem, small deformation assumption is used

to predefine the active part of the boundary as well as to align the FEM mesh.

Numerical methods for contact response can be categorized as (i) penalty forces,

(ii) impulse/kinematic responses, and (iii) constraint solvers.

From algorithmic viewpoint, contact mechanics methods in FEM include: (i) Node-

to-node methods where the contact between nodes is only considered. The FEM

nodes of contacting bodies need to aligned and therefore this method is only ap-

plicable to small deformation. (ii) Node-to-surface methods check the collision

between predefined set of nodes and segments. Similar to node-to-node methods,

these methods can only handle small deformations. (iii) Surface-to-surface meth-

ods, where the contact constraint is imposed in weak form. In contrast to the two

previous class of algorithms, methods in this class are capable of handling large

deformations. Mortar Method is well-known within this class of algorithms [24, 46,

81, 102]. The Mortar Method was initially developed for connecting different non-
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matching meshes in the domain decomposition approaches for parallel computing,

e.g., [80].

In these methods, no-penetration is either enforced as a constraint using a

Lagrangian (identified with the contact pressure) or penalty force based on a gap

function. To the best of our knowledge, for contact mechanics problems, a signed

distance between geometric primitives is used as the gap function, in contrast to

our approach where we use space-time interference volume.

[24] present a frictionless contact resolution framework for 2d finite deformation

using Mortar Method using penalty force or Lagrange multiplier. [102] use similar

method for frictional contact in 2d. [81] use Mortar Method for large deformation

contact using quadratic element.

Our problem has similarities to large-deformation frictionless contact problems

in contact mechanics. An important difference however, is the presence of fluid,

which plays a major role in contact response.

Application of boundary integral methods in contact mechanics is rather limited

compared to the FEM methods [20, 33]. [20] used Boundary Element Method for

the static contact problem where Coulomb friction is presented. [33] solved static

problem with load increment and contact constraint on displacement and traction.

In computer graphics literature, a set of commonly used and efficient methods

are based on [79], a method for the collision handling of mass-spring cloth models.

To ensure that the system remains intersection-free, zones of impact are introduced

and rigid body motion is enforced in each zone of impact; while this method works

well in practice, its effects on the physics of the objects are difficult to quantify.

Penalty methods are common due to the ease in their implementation, but

suffer from time-stepping stiffness and/or the lack of robustness. [8] uses implicit
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time-stepping coupled with repulsion force equal to the variation of the quadratic

constraint energy with respect to control vertices. Soft collisions are handled by

the introduction of damped spring and rigid collisions are enforced by modification

to the mass matrix. [23] introduced Layered Depth Images to allow efficient com-

putation of the collision volumes and their gradients using GPUs. A penalty force

proportional to the gradient is used to resolve collisions. However, the stiffness

of the repulsion force varies greatly (from 105 to 1010) in their experiments. To

address these difficulties, [35] present a framework for robust simulation of contact

mechanics using penalty forces through asynchronous time-stepping, albeit at a

significant computational cost. Alternatively, one can view collision response as

an instantaneous reaction (an impulse), i.e., an instantaneous adjustment of the

velocities. However, such adjustments are often problematic in the case of multiple

contacts, as these may lead to a cyclic “trembling” behavior.

Our method belongs to a large family of constraint-based methods, which are

increasingly the standard approach to contact handling. This set of methods meets

our goals of providing robustness and improving efficiency of contact response,

while minimizing the impact on the physics of the system.

[19] start from Signorini’s law and derive the contact force formulation. The

resulting equation is an LCP that is solved by Gauss–Seidel like iterations, sequen-

tially resolving contacts until reaching the contact free state. [34] focus on robust

treatment of collision without simulation artifacts. To enforce the no-collision con-

straint, this work uses an impulse response that gives rise to an LCP problem for

its magnitude. To reduce the computational cost, the LCP solution (the Lagrange

multiplier) is approximated by solving a linear system. [69] uses a linear approx-

imation to contact constraints and a semi-implicit discretization, solving a mixed
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LCP problem at each iteration.

Our approach is directly based on [36] and is closest to [2], in which the inter-

section volume and its gradient with respect to control vertices are computed at

the candidate step. The non-collision is enforced as a constraint on this volume,

which lead to a much smaller system compared to distance formulation between

geometric primitives. The constrained formulation leads to an LCP problem. [36]

assumes linear trajectory between edits and define space-time interference volume

and uses it as a gap function and we use similar formulation to define the interfer-

ence volume.

2.1.4 Nomenclature

In Table 2.1 we list symbols and operators used in this chapter. Throughout

this chapter, lower case letters refer to scalars, and lowercase bold letters refer to

vectors. Discretized quantities are denoted by sans serif letters.

2.2 Formulation

We start this section by stating the equations governing the flow in differen-

tial form and the imposed boundary conditions in Section 2.2.1. We introduce

the requirements for the contact function, V , and its definition in Section 2.2.2.

In Section 2.2.3, we impose no-contact as a constraint V ≥ 0 to the differen-

tial equations introduced in Section 2.2.1 and derive the constrained formulation

for the evolution equations. The set of integro-differential equations with contact

constraint are solved using boundary integral formulation, which we outline in Sec-

tion 2.2.4. The boundary integral formulation covers the cases for flows due to the
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Symbol Definition

γi The boundary of the ith vesi-
cle

γ ∪iγi
µ Viscosity of the ambient fluid
µi Viscosity of the fluid inside ith

vesicle
νi The viscosity contrast µi/µ
πj The boundary of the jth rigid

particle
π ∪jπj
σ Tension
χ Shear rate
%i The domain enclosed by γi
% ∪i%i
G Stokes Single-layer operator
T Stokes Double-layer operator

LCP Linear Complementarity
problem

NCP Nonlinear Complementarity
Problem

SDC Spectral Deferred Correction
STIV Space-Time Interference Vol-

umes

Symbol Definition

LI Locally-implicit time-stepping
CLI Locally-implicit constrained

time-stepping
GI Globally-implicit time-stepping
d Separation distance of particles
dm Minimum separation distance
fσ Tensile force
fb Bending force
fc Collision force
h Arclength distance between two

discretization points
J Jacobian of contact volumes V
n Unit outward normal
u Velocity
u∞ The background velocity field
V Contact volumes
X Coordinate of a (Lagrangian)

point on a surface

Table 2.1: Index of frequently used symbols, operators, and abbrevia-
tions.

Dirichlet boundary condition on the fixed boundaries, moving rigid particles, and

elastic vesicle membranes. The formulation in Section 2.2.4 follows the standard

approach of potential theory [42, 77] and is presented in a concise manner.

2.2.1 Differential formulation

We consider the Stokes flow with Nv vesicles and Np rigid particles suspended

in a Newtonian fluid which is either confined or fills the free space, Fig. 2.1. In

Stokesian flows, due to high viscosity and/or small length scale, the ratio of iner-
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tial and viscous forces (The Reynolds number) is small and the fluid flow can be

described by the incompressible Stokes equation

−µ∆u(x) +∇ p(x) = F (x), and ∇·u(x) = 0 (x ∈ Ω), (2.2.1)

F (x) =

∫
γ

f(X)δ(x−X) ds(X), (2.2.2)

where f is the surface density of the force exerted by the vesicle’s membrane on the

fluid and δ is the two-dimensional Dirac delta. The surface integral in Eq. (2.2.2)

implies that F (x) is a distribution in the direction perpendicular to the surface. Ω

denotes the fluid domain of interest with Γ0 as its enclosing boundary (if present)

and µ denoting the viscosity of ambient fluid. If Ω is multiply-connected, its interior

boundary consists of K smooth curves denoted by Γ1, . . . ,ΓK . The outer boundary

Γ0 encloses all the other connected components of the domain. The boundary of

the domain is then denoted Γ :=
⋃
k Γk. We use x to denote an Eulerian point in

the fluid (x ∈ Ω) and X a Lagrangian point on the vesicles or rigid particles. We

let γi denote the boundary of the ith vesicle (i = 1, . . . , Nv), %i denote the domain

enclosed by γi, µi denote viscosity of the fluid inside that vesicle, and γ :=
⋃
i γi.

Equation (2.2.1) is valid for x ∈ %i by replacing µ with µi.

There are rigid particles suspended in the fluid domain. We denote the bound-

ary of the jth rigid particle by πj (j = 1, . . . , Np) and let π :=
⋃
j πj. The governing

equations are augmented with the no-slip boundary condition on the surface of

vesicles and particles

u(X, t) = Xt (X ∈ γ ∪ π), (2.2.3)

where Xt := ∂X
∂t

is the material velocity of point X on the surface of vesicles or
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Ω

Γ0

Γ1

π1

π2

γ1

γ2

Collision

n

n

Figure 2.1: Schematic. The flow domain Ω (gray shaded area) with boundary
Γk (k = 0, . . . ,K). Vesicles and rigid particles are suspended in the fluid. The
vesicle boundaries are denoted by γi (i = 1, . . . , Nv) and the rigid particles (check-
ered pattern) are denoted by πj (j = 1, . . . , Np). The outward normal vector to the
boundaries is denotes by n. The dotted lines around boundaries denote the prescribed
minimum separation distance for each of them. The minimum separation distance
is a parameter and can be set to zero. In this schematic, vesicle γ1 and particle π2

as well as vesicle γ2 and boundary Γ1 are in contact. The slices of the space-time
intersection volumes at the current instance are marked by orange area.

particles. The velocity on the fixed boundaries is imposed as a Dirichlet boundary

condition

u(x) = U (x) (x ∈ Γ). (2.2.4)

We assume that the vesicle membrane is inextensible, i.e.,

Xs · us = 0 (X ∈ γ), (2.2.5)
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where the subscript “s” denotes differentiation with respect to the arclength on

the surface of vesicles.

Rigid particles are typically force- and torque-free. However, surface forces may

be exerted on them due to a constraint, e.g., the contact force fc, which we will

define later. In this case, the force F π
j and torque Lπj exerted on the jth particle

are the sum of such terms induced by constraints

F π
j = 0, or F π

j =

∫
πj

fc(X) ds(X) (j = 1, . . . , Np),

Lπj = 0, or Lπj =

∫
πj

(X − cπj ) ·fc⊥(X) ds(X) (j = 1, . . . , Np),

(2.2.6)

where cπj is the center of mass for πj and f⊥ = (f1, f2)⊥ := (f2,−f1).

2.2.2 Contact definition

It is known [27, 65] that the exact solution of equations of motion, Eqs. (2.2.1),

(2.2.3), and (2.2.4), keeps particles apart in finite time due to formation of lu-

brication film. Thus, it is theoretically sufficient to solve the equations with an

adequate degree of accuracy to avoid any problems related to overlaps between

particles. Nonetheless, achieving this accuracy for many types of flows (most no-

tably, flows with high volume fraction of particles or with complex boundaries) is

prohibitively expensive.

With inadequate computational accuracy particles may intersect with each

other or with the boundaries and depending on the numerical method used, the

consequences of this varies. For methods based on integral equations the con-

sequences are particularly dramatic, as overlapping boundaries lead to divergent

integrals. To address this issue, we augment the governing equations with a contact
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constraint, formally written as

V (u, t) ≥ 0, (2.2.7)

The function V is chosen in a way that V < 0 implies some parts of the surface

S = Γ∪ γ ∪ π are at a distance less than a user-specified constant dm. Function V

may be a vector-valued function, for which the inequality is understood component-

wise. This constraint ensures that the suspension remains contact-free independent

of the numerical resolution.

For the constraint function V , in addition to the basic condition above, we

choose a function that satisfies these additional criteria:

(i) it introduces a relatively small number of additional constraints, and

(ii) when the function is discretized, no contact is missed even for large time step.

To clarify the second condition, suppose we have a small particle rapidly moving

towards a planar boundary. For a large time step, it may move to the other side

of the boundary in a single step, so any condition that considers an instantaneous

quantity depending on only the current position is likely to miss such contact.

To this end, we extend the Space-Time Interference Volumes (STIV) from [36]

to define the function V C as the area in space-time swept by the intersecting

segments of the boundary over time. To be more precise, for each point X(s, t0)

on the boundary, consider a trajectory X(s, τ), between a time t0, for which there

are no collisions, and a time t. Points X(s, τ) define a deformed boundary S(τ) for

each τ . For each point X(s, τ), we define τI(s), t0 ≤ τI ≤ t, to be the first instance

for which this point comes into contact with a different point of S(τI). Assuming
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an interference-free configuration at t0, the space-time volume constraint for the

time interval [t0, t] is

V C(S, t) = −
∫
S(t0)

∫ t

τI(s)

√
ε2 + (Xt(s, τ) · n(s, τ))2 dτ ds, (2.2.8)

where n(s, τ) denotes the normal to S(τ) at X(s, τ). The integration is over all

points for which τI(s) ∈ [t0, t]. For two dimensional flows, it is the area of the

surface formed by the points in 3d with coordinate (X(s, τ), ετ), for all (s, τ) such

that τI(s) ≤ t. To arrive at this formula, we used the fact that the surface is

inextensible and thus the surface metric does not change.

This is a modified continuous version of the discrete functional described in

[36]. The functional used in Harmon et al. differs in the following respects: (i) it

is defined for piecewise linear trajectories directly; (ii) ε = 0; (iii) the normal is

taken to be the vector at the time of contact n(s, τI(s)). In practice we observe

little difference in the behavior of two functionals, we choose this formulation

as corresponds directly to the space-time volume. The version of Harmon et al.

can be visualized as projection of the space-time volume to the spatial plane.

The constant ε we introduce, which has units of velocity, effectively replaces |u ·

n| with
√
ε2 + (u · n)2 in the original formulation, smoothing out the constraint

expression. Another important property of this choice of function, compared to,

e.g., a space intersection volume, is that for even a very thin object moving at high

velocity, it will be proportional to the time interval t− t0.

Infinitesimal version of the constraint Consider the constraint given in

Eq. (2.2.8) on the interval [t, t+∆t], where the configuration is collision-free at time

t. For a fixed τ , the contact area, i.e., the set of points s such that τI(s) ≤ τ , defines
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a set of boundary segments. We consider one such segment as a contact zone and

let s1(τ) and s2(τ) be the extents of such a contact zone at time τ . We rewrite the

STIV integral for this contact zone by exchanging the order of integration, using

τ(s) ≤ τ is equivalent to s1(τ) ≤ s ≤ s2(τ):

∆V C = −
∫ t+∆t

t

∫ s2(τ)

s1(τ)

√
ε2 + (u(s, τ) · n(s, τ))2 ds dτ. (2.2.9)

Neglecting higher-order terms in ∆t, we obtain:

∆V C = −
∫ s2(t)

s1(t)

√
ε2 + (u(s, t) · n(s, t))2 ds ∆t, (2.2.10)

implying the rate of change of the space-time volume with respect to time.

As the maximal value of the integrand is −ε, we add ε to make sure that the

constraint can be zero, defining

V (u, t) = −
∫ s2(t)

s1(t)

√
ε2 + (u(s, t) · n(s, t))2 ds+ ε, (2.2.11)

which we will use in the next section as a constraint for the fluid flow. The variation

of this constraint with respect to u is

duV [δu] = −
∫ s2(t)

s1(t)

(n · u)(n · δu)√
ε2 + (u · n)2

ds. (2.2.12)

We consider each connected component of this (infinitesimal) volume as a sep-

arate volume, and impose an inequality constraint on each; while keeping a single

volume is in principle equivalent, using multiple volumes avoid certain undesirable

effects in discretization [36]. Thus, V (u, t) is a vector function of time-dependent
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dimension, with one component per active contact region.

Depending on the context, we may omit the dependence of V on u and write

V (t) as the contact volume function or V (γi, t) for elements of V (u, t) involving

surface γi.

In practice, it is desirable to control the minimal distance between particles.

Therefore, we define a minimum separation distance dm ≥ 0 and modify the con-

straint such that particles are in contact when they are within dm distance from

each other; as shown in Fig. 2.1. The contact volume with minimum separation

distance is calculated with the surface displaced by dm, i.e., the time tI or, equiva-

lently, the contact segment [s1, s2] is obtained not from the first contact with S(τ)

but rather the displaced surface S(τ) + dmn(τ). Maintaining minimum separation

distance — rather than considering pure contact only — eliminates of potentially

expensive computation of nearly singular integrals close to the surface and improves

the accuracy in semi-explicit time-stepping.

2.2.3 Contact constraint

We use the Lagrange multiplier method (e.g., [110]) to add contact constraints,

Eq. (2.2.11), to the system. While it is computationally more expensive than

adding a penalty force for the constraint (effectively, an artificial repulsion force),

it has the advantage of eliminating the need of tuning the parameters of the penalty

force to ensure that the constraint is satisfied and keeping nonphysical forces in-

troduced into the system to the minimum required for maintaining the desired
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separation. The constrained system can be written as

min

∫
Ω

(
1

2
µ∇u · ∇u− u ·F

)
dA, (2.2.13)

subject to: ∇·u(x) = 0 (x ∈ Ω),

Xs ·us = 0 (X ∈ γ),

V (u, t) ≥ 0.

If we omit the inequality constraint, the remaining three equations are equivalent

to the Stokes equations (2.2.1). Since we are solving a quasi-static system where

the PDE is elliptic and the system is evolved due to no-slip boundary condition,

the system is in force balance at all instances. Also, the contact constraint is in

fact on the velocity field that evolves the surface. The Lagrangian for this system

is

L(u, p, σ, λ) =

∫
Ω

(
1

2
µ∇u · ∇u− u ·F − p∇·u

)
dA+

∫
γ

σXs ·us ds+ V ·λ.

(2.2.14)
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The first-order optimality (KKT) conditions yield the following modified Stokes

equation, along with the constraints listed in Eq. (2.2.13):

−µ∆u+∇ p = F ′, (2.2.15)

F ′(x) = F (x) +

∫
γ

fσδ(x−X) ds+

∫
S

fcδ(x−X) ds, (2.2.16)

fσ = −(σXs)s, (2.2.17)

fc = duV
Tλ, (2.2.18)

λ ≥ 0, (2.2.19)

λ ·V = 0, (2.2.20)

where the last condition is the complementarity condition — either an equality

constraint is active (Vi = 0) or its corresponding Lagrange multiplier λi is zero.

As we will see in the next section and based on Eq. (2.2.16), the collision force fc

is added to the traction jump across the vesicle’s interface. For rigid particles, the

contact force induces force and torque on each particle — as given in Eq. (2.2.6).

It is customary to combine V ≥ 0, λ ≥ 0, and λ ·V = 0, into one expression

and write

0 ≤ V (t) ⊥ λ ≥ 0, (2.2.21)

where ”⊥” denotes the complementarity condition. These ensure that the Sig-

norini conditions introduced in Section 3.1 are respected: contacts do not produce

attraction force (λ ≥ 0) and the constraint is active (λ nonzero) if and only if

V (t) is zero. We observe from Eq. (2.2.12) that for admissible velocities normal to

the contact, duV [δu] is zero for any δu. Therefore in the smooth case, the force

duV
Tλ does no work.
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2.2.4 Boundary integral formulation

Following the standard approach of potential theory [74, 77], one can express

the solution of the Stokes boundary value problem, Eq. (2.2.15), as a system of sin-

gular integro-differential equations on all immersed and bounding surfaces. Here,

we outline general formulae that we use in our framework and refer the interested

reader to [42, 77] for in depth treatments of the subject.

The Stokeslet tensor G, the Stresslet tensor T, and the Rotlet R are the

fundamental solutions of the Stokes equation and are given by

G(r) =
1

4πµ

(
− log‖r‖I +

r ⊗ r
‖r‖2

)
, (2.2.22)

T(r) =
1

π

r ⊗ r ⊗ r
‖r‖4

, (2.2.23)

R(r) =
1

4πµ

r⊥

‖r‖2
, (2.2.24)

where r⊥ = (r1, r2)⊥ := (r2,−r1) and ⊗ denotes the tensor product.

The solution of Eq. (2.2.15) can be expressed by the combination of single- and

double-layer integrals. We denote the single-layer integral on the vesicle surface γi

by

Gγi [f ](x) :=

∫
γi

G(x− Y ) · f(Y ) ds(Y ), (2.2.25)

where f is an appropriately defined density. The double-layer integral on a surface

S (a vesicle, a rigid particle, or a fixed boundary) is

TS[q](x) :=

∫
S

n(Y ) ·T(x− Y ) · q(Y ) ds(Y ), (2.2.26)

where n denotes the outward normal to the surface S (as shown in Fig. 2.1), and
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q is an appropriately defined density. When the evaluation point x is on the inte-

gration surface, Eq. (2.2.25) is a singular integral, and Eq. (2.2.26) is interpreted

in the principal value sense.

Due to the linearity of the Stokes equations, as formulated in [82, 86], the

velocity at a point x ∈ Ω can be expressed as the superposition of velocities due

to vesicles, rigid particles, and fixed boundaries

αu(x) = u∞(x)+uγ(x)+uπ(x)+uΓ(x), x ∈ Ω, α =


1 x ∈ Ω\%,

νi x ∈ %i,

(1 + νi)/2 x ∈ γi,
(2.2.27)

where u∞(x) represent the background velocity field (for unbounded flows) and

νi = µi/µ denotes the viscosity contrast of the ith vesicle. The velocity contri-

butions from vesicles, rigid particles, and fixed boundaries each can be further

decomposed into the contribution of individual components

uγ(x) =
Nv∑
i=1

uγi (x), uπ(x) =

Np∑
j=1

uπj (x), uΓ(x) =
K∑
k=0

uΓ
k (x). (2.2.28)

To simplify the representation, we introduce the complementary velocity for

each boundary component, as a shorthand to denote the velocity field induced by

other particles at point x. For the ith vesicle, it is defined as ūγi = αu− uγi . The

complementary velocity is defined in a similar fashion for rigid particles as well as

components of the fixed boundary.
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2.2.4.1 The contribution from vesicles

The velocity induced by the ith vesicle is expressed as an integral [77]:

uγi (x) = Gγi [f ](x) + (1− νi)Tγi [u](x) (x ∈ Ω), (2.2.29)

where the double-layer density u is the total interface velocity and f is the traction

jump across the vesicle membrane [103]. Based on Eq. (2.2.16), the traction jump

is equal to the sum of bending, tensile, and collision forces (when present)

f(X) = fb + fσ + fc = −κbXssss − (σXs)s + duV
Tλ (X ∈ γ), (2.2.30)

where κb is the membrane’s bending modulus. The tensile force fσ = (σXs)s is

determined by the local inextensibility constraint, Eq. (2.2.5), and the tension σ

is its Lagrangian multiplier, Eq. (2.2.17).

Note that Eq. (2.2.29) is the contribution from each vesicle to the velocity field.

To obtain an equation for the interfacial velocity, Eq. (2.2.29) is to be substituted

into Eq. (2.2.27) and evaluated at X ∈ γi:

(1 + νi)

2
u(X) = ūγi (X) + Gγi [f ](X) + (1− νi)Tγi [u](X) (X ∈ γi), (2.2.31)

subject to the local inextensibility constraint

Xs · us = 0 (X ∈ γi). (2.2.32)
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2.2.4.2 The contribution from the fixed boundaries

The velocity contribution from the fixed boundary can be expressed as a double-

layer integral [74] along Γ. The contribution of the outer boundary Γ0 is

uΓ
0 (x) = TΓ0 [η0](x) (x ∈ Ω), (2.2.33)

where η0 is the density to be determined based on boundary conditions. Sub-

stituting Eq. (2.2.33) into Eq. (2.2.27) and taking its limit to a point on Γ0 and

using the Dirichlet boundary condition, Eq. (2.2.4), we obtain a Fredholm integral

equations for the density η0

U(x)− ūΓ
0 (x) = −1

2
η0(x) + TΓ0 [η0](x) (x ∈ Γ0).

However, this equation is rank deficient [40]. To render it invertible, the equation

is modified following [40]:

U(x)− ūΓ
0 (x) = −1

2
η0(x) + TΓ0 [η0](x) +NΓ0 [η0](x) (x ∈ Γ0), (2.2.34)

where the operator NΓ0 is defined as

NΓ0 [η0](x) =

∫
Γ0

[n(x)⊗ n(y)] ·η0(y) ds(y) (x ∈ Γ0). (2.2.35)

For the enclosed boundary components Γk (k > 0), to eliminate the double-
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layer nullspace we need to include additional Stokeslet and Rotlet terms

uΓ
k (x) = TΓk

[ηk](x) + G(x− cΓ
k ) ·F Γ

k + R(x− cΓ
k )LΓ

k , (k = 1, . . . , K;x ∈ Ω),

(2.2.36)

where cΓ
k is a point enclosed by Γk, F

Γ
k is the force exerted on Γk, and LΓ

k is the

torque:

F Γ
k =

1

|Γk|

∫
Γk

ηk ds, LΓ
k =

1

|Γk|

∫
Γk

(X − cΓ
k ) ·η⊥k ds, (2.2.37)

where |Γk| denotes the perimeter of Γk. Taking the limit to points on the surface

Γk, leads to the following integral equation:

U (x)− ūΓ
k (x) = −1

2
ηk(x) + TΓk

[ηk](x) + G(x− cΓ
k ) · F Γ

k + R(x− cΓ
k )LΓ

k (x ∈ Γk).

(2.2.38)

Equations (2.2.37) and (2.2.38) are a complete system for double-layer densities

ηk, forces F Γ
k , and torques LΓ

k on each surface Γk.

2.2.4.3 The contribution from rigid particles

The formulation for rigid particles is very similar to that of fixed boundaries,

except the force and torque are known — cf. Eq. (2.2.6). The velocity contribution

from the jth rigid particle is

uπj (x) = Tπj [ζj](x) +G(x− cπj ) · F π
j +R(x− cπj )Lπj , (2.2.39)
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Where F π
j , L

π
j are, respectively, the known net force and torque exerted on the

particle and ζj is the unknown density.

Let Uπ
j and ωπj be the translational and angular velocities of the jth particle;

then we obtain the following integral equation for the density ζj from the limit of

(2.2.39):

Uπ
j +ωπj (X − cπj )⊥−ūπj (X) = −1

2
ζj(X)+Tπj [ζj](X)+G(X−cπj )·F π

j +R(X−cπj )Lπj .

(2.2.40)

where

F π
j =

1

|πj|

∫
πj

ζj ds, Lπj =
1

|πj|

∫
πj

(Y − cπj ) · ζ⊥j ds (2.2.41)

where cπj is the center of jth rigid particle. Equations (2.2.40) and (2.2.41) are

used to solve for the unknown densities ζj as well as the unknown translational

and angular velocities of each particle. Note that the objective of Eqs. (2.2.37)

and (2.2.41) is to remove the null space of the double-layer operator and therefore

their left-hand-side (i.e., the projection of the solution onto the null space) can be

chosen rather arbitrarily.

2.2.5 Formulation summary

The formulae outlined above govern the evolution of the suspension. The flow

constituents are hydrodynamically coupled through the complementary velocity.

Given the configuration of the suspension, the unknowns are:

• Velocity u(X) and tension σ of vesicles’ interface determined by Eqs. (2.2.30–

2.2.32). The velocity is integrated for the vesicles’ trajectory using Eq. (2.2.3).
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• The double-layer density on the enclosing boundary η0 as well as the double-

layer density ηk (k = 1, . . . , K), force F Γ
k , and torque LΓ

k on the interior

boundaries determined by Eqs. (2.2.34), (2.2.37), and (2.2.38). Note that

the collision constraint does not enter the formulation for the fixed bound-

aries and when a particle collides with a fixed boundary, the collision force

is only applied to the particle. The unknown force and torque above can be

interpreted as the required force to keep the interior boundary piece station-

ary.

• Translational Uπ
j and angular ωπj velocities of rigid particles (j = 1, . . . , Np)

as well as double-layer densities ζj on their boundary determined by Eqs. (2.2.40)

and (2.2.41). Where the force and torque are either zero or determined by

the collision constraint Eq. (2.2.6).

This system is constrained by Signorini (KKT) conditions for the contact,

Eq. (2.2.21), which is used to compute λ, the strength of the contact force.

In the referenced equations above, the complementary velocity is combination

of velocities given in Eqs. (2.2.29), (2.2.33), (2.2.36), and (2.2.39).

Parameters and scaling The characteristic length for a system with elastic

vesicles is defined as R0 = L/2π where L denotes the perimeter of a vesicle.

The characteristic time is defined as τ = µL3/κb, where µ is the viscosity of the

suspending fluid and κb is the vesicles’ bending modulus. The reduced area for a

vesicle is defined as A
πR2

0
. The reduced area is used extensively to classify vesicles’

shape and dynamics. In the shear flows, the non-dimensional shear rate is defined

as χ̂ = τχ, where τ is the characteristic time and χ is the shear rate. For other

types of flow, local shear rate within the domain is used for scaling. Hereinafter,

32



without change of notation, we use quantities non-dimensionalized by characteristic

variables [103].

2.3 Discretization and Numerical Methods

In this section, we describe the numerical algorithms required for solving the dy-

namics of a particulate Stokesian suspension. We use the spatial representation and

integral schemes presented in [86]. We also adapt the spectral deferred correction

time-stepping from [83, 84] to the local implicit time-stepping schemes. Further-

more, we use piecewise-linear discretization of curves to calculate the space-time

contact volume V (γ, t), Eq. (2.2.8), similar to [36]. To solve the complementarity

problem resulting from the contact constraint, we use the minimum-map Newton

method discussed in [21] or [15, Section 5.8].

The key difference, compared to previous works on particulate suspensions is

that at every time step instead of solving a linear system we solve a nonlinear

complementarity problem (NCP). The NCPs are solved iteratively by recursive lin-

earization and using a Linear Complementarity Problem (LCP) solver. We refer

to these iterations as contact-resolving iterations, in contrast to the outer time-

stepping iterations.

For simplicity, we describe the numerical scheme for a system including vesicles

only, without boundaries or rigid particles. Adding these requires straightforward

modifications to the equations. In the following sections, we will first summarize

the spatial discretization, then discuss the LCP solver, and close with the time

discretization with contact constraint.
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2.3.1 Spatial discretization

All interfaces are discretized with N uniformly-spaced discretization points [86].

The number of points on each curve is typically different but for the sake of clarity

we denote that number by N . The distance between discretization points over the

curves does not change with time due to the rigidity of particles or the local inex-

tensibility constraint for vesicles. Let X(s), with s ∈ (0, L], be a parametrization

of the interface γi (or πj), and let {sk = kL/N}Nk=1 be N equally spaced points in

arclength parameter, and Xk := X(sk) denote the corresponding material points.

High-order discretization for force computation We use the Fourier basis

to interpolate the positions and forces associated with sample points, and FFT to

calculate the derivatives of all orders to spectral accuracy. For computing surface

integrals with smooth integrand, we use the composite trapezoidal rule that pro-

vides spectral accuracy. We use the hybrid Gauss-trapezoidal quadrature rules of

[3] to integrate the singular single-layer potential for X ∈ γi

Gγi [f ](X) ≈ Gγi [f](X) :=
N+M∑
`=1

w`G(X− Y`) · f(Y`), (2.3.1)

where w` are the quadrature weights given in [3, Table 8] and Y` are quadrature

points. Collocating the integral equation on X the linear operator in Eq. (2.3.1) is

a matrix that we denote by Gγi .

The double-layer kernel n(Y ) ·T(X−Y ) in Eq. (2.2.26) is non-singular in two

dimensions

lim
γi3X→Y

n(Y ) ·T(X − Y ) = − κ

2π
t⊗ t,

where t denotes the tangent vector at Y . Therefore, a simple uniform-weight
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composite trapezoidal quadrature rule has spectral accuracy in this case. Similar

to the single-layer case, we denote the discrete double-layer operator on γi by Tγi .

We use the nearly-singular integration scheme described in [82] to maintain high

integration accuracy for particles closely approaching each other.

Piecewise-linear discretization for constraints While the spectral spatial

discretization is used for most computations, it poses a problem for the minimal-

separation constraint discretization. Computing parametric curve intersections,

an essential step in the STIV computation, is relatively expensive and difficult to

implement robustly, as this requires solving nonlinear equations. We observe that

the sensitivity to the separation distance on the overall accuracy is low in most

situations, as explored in Section 2.4. Thus, rather than enforcing the constraint as

precisely as allowed by the spectral discretization, we opt for a low-order, piecewise-

linear discretization in this case, and use an algorithm that ensures that at least

the target minimal separation is maintained, but may enforce a higher separation

distance.

For the purpose of computing STIV and its gradient, we use L(X, r), the

piecewise-linear interpolant of r times refinement of points — the refined points

correspond to arclength values with spacing L/(N2r), with r determined adap-

tively.

For discretized computations, we set the separation distance to (1 + 2α)dm,

where dm is the target minimum separation distance. We choose r such that

‖L(X, r) −X‖∞ < αdm. Our NCP solver, described below, ensures that the sep-

aration between parts of L(X, r) is (1 + 2α)dm at the end of a single time step.

We choose α = 0.1, which requires r = 1 in our experiments; smaller values of α
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require more refinement and enforce the constraint more accurately.

At the end of the time step, the minimal-separation constraint ensures that

L(X, r)(s), for any s, is at least at the distance (1 + 2α)dm from a possible inter-

section if its trajectory is extrapolated linearly. By computing the upper bounds

on the difference between the X(s) and L(X, r)(s) at the beginning of the time

step, and interpolated velocities, we obtain a lower bound on the actual separation

distance d′ for the spectral surface X(s). If d′ < dm, we increase r, and repeat the

time step. As the piecewise linear approximation converges to the spectral bound-

ary X, and so do the interpolated velocities. In practice, we have not observed a

need for refinement for our choice of α.

Computing the contact constraint To discretize the constraint forces, rather

than discretizing directly the infinitesimal functional Eq. (2.2.11), we closely follow

the approach of [36], and compute the finite STIV via discretization of Eq. (2.2.8),

approximating the motion of the vertices with piecewise linear functions, and com-

puting times of intersections for each vertex separately. While resulting in more

complex expressions versus direct discretization of Eq. (2.2.11), this approach re-

sults in less extreme changes in forces for larger time steps.

For the piecewise-linear discretization of curves, the space-time contact volume

V (γ, t), Eq. (2.2.8), and its gradient are calculated similar to the definitions and

algorithms in [36]. Given a contact-free configuration and a candidate configuration

for the next time step, we calculate the discretized space-time contact volume as the

sum of edge-vertex contact volumes V =
∑

k Vk(e,X), where k indexes edge-vertex

pairs. We use a regular spatial grid of size proportional to the average boundary

spacing to quickly find potential collisions. For all vertices and edges, the bounding
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box enclosing their initial (collision-free) and final (candidate position) locations is

formed and all the grid boxes intersecting that box are marked. When the minimal

separation distance dm > 0, the bounding box is enlarged by dm. For each edge-

vertex pair e(Xi,Xi+1) and Xk, we solve a quartic equation to find their earliest

contact time τI assuming linear trajectory between initial and candidate, where

the vertex velocity is defined as Uk = [Xk(tn+1) − Xk(tn)]/∆t. We calculate the

edge-vertex contact volume using Eq. (2.2.8):

Vk(e,X) = (t− τI)(1 + (Uk · n(τI))
2)1/2|e|, (2.3.2)

where n(τI) is the normal to the edge e(τI). For each edge-vertex contact volume,

we calculate the gradient with respect to the vertices Xi, Xi+1 and Xj, summing

over all the edge-vertex contact pairs we get the total space-time contact volume

and gradient.

2.3.2 Temporal discretization

Our temporal discretization is based on the locally-implicit time-stepping scheme

in [86] — adapting the Implicit–Explicit (IMEX) scheme [4] for interfacial flow — in

which we treat intra-particle interactions implicitly and inter-particle interactions

explicitly. We combine this method with the minimal-separation constraint. We

refer to this scheme as constrained locally-implicit (CLI) scheme. For comparison

purposes, we also consider the same scheme without constraints (LI) and the glob-

ally semi-implicit (GI) scheme, where all interactions treated implicitly [88]. From

the perspective of boundary integral formulation, the distinguishing factor between

LI and CLI is the extra traction jump term due to collision. Schemes LI/CLI and GI
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differ in their explicit or implicit treatment of the complementary velocities.

While treating the inter-vesicle interactions explicitly may result in more fre-

quent violations of minimal-separation constraint, we demonstrate that in essen-

tially all cases the CLI scheme is significantly more efficient than both the GI and LI

schemes because these schemes are costlier and require higher spatial and temporal

resolution to prevent collisions.

We consider two versions of the CLI scheme, a simple first-order Euler scheme

and a spectral deferred correction version. A first-order backward Euler CLI time

stepping formulation for Eq. (2.2.31) is

1 + νi
2

u+
i = ūγi + Gγif i(X

+
i , σ

+
i , λ

+) + (1− νi)Tγiu
+
i , (2.3.3)

Xi,s ·u+
i,s = 0, (2.3.4)

f i(X
+
i , σ

+
i , λ

+) = −κbX+
i,ssss − (σ+Xi,s)s + (( duV

+)Tλ+)i, (2.3.5)

0 ≤ V(γ; t+) ⊥ λ+ ≥ 0, (2.3.6)

where the implicit unknowns to be solved for at the current step are marked with

superscript “+”. The position and velocity of the points of ith vesicle are denoted

by Xi, u
+
i = (X+

i −Xi)/∆t, and f i is the traction jump on the ith vesicle boundary.

V(γ; t+) is the STIV function.

2.3.2.1 Spectral Deferred Correction

We use spectral deferred correction (SDC) method [62, 83, 84] to get a better

stability behavior compared to the basic backward Euler scheme described above.

We use SDC both for LI and CLI time-stepping. To obtain the SDC time-stepping
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equations, we reformulate Eq. (2.2.3) as a Picard integral

X(tn+1) = X(tn) +

∫ tn+1

tn

u (X(τ), σ(τ), λ(τ)) dτ, (2.3.7)

where the velocity satisfies Eqs. (2.2.31) and (2.3.3). In the SDC method, the tem-

poral integral in Eq. (2.3.7) is first discretized with p+1 Gauss-Lobatto quadrature

points [62, 84]. Each iteration starts with p provisional positions X̃ corresponding

to times τi in the interval [tn, tn+1]; tn = τ0 < · · · < τp = tn+1. Provisional tensions

σ̃ and provisional λ̃ are defined similarly. The SDC method iteratively corrects the

provisional positions X̃ with the error term ẽ, which is solved using the residual r̃

resulting from the provisional solution as defined below. The residual is given by:

r̃(τ) = X̃(tn)− X̃(τ) +

∫ τ

tn

ũ(θ) dθ. (2.3.8)

After discretization, we use X̃
w,m

, to denote the provisional position at mth

Gauss-Lobatto point after w SDC passes. The error term ẽw,m denotes the com-

puted correction to obtain mth provisional position in wth pass. The SDC correction

iteration is defined by

X̃
w,m

= X̃
w−1,m

+ ẽw,m, σ̃w,m = σ̃w−1,m + ẽw,mσ , λ̃w,m = λ̃w−1,m + ẽw,mλ . (2.3.9)

Setting X̃
0,m

to zero, the first SDC pass is just backward Euler time stepping to

obtain nontrivial provisional solutions. Beginning from the second pass, we solve

for the error term as corrections.

Denote (αI − (1 − ν)Tγ̃w−1,m) by Dγ̃w−1,m . Following [83, 84], we solve the
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following equation for the error term:

α
ẽw,m − ẽw,m−1

∆τ
= Dγ̃w−1,m

(
r̃w−1,m − r̃w−1,m−1

∆τ

)
+ Gγ̃w−1,mf(ẽw,m, ẽw,mσ , ẽw,mλ )+

(1− ν)Tγ̃w−1,m

(
ẽw,m − ẽw,m−1

∆τ

)
.

(2.3.10)

Eq. (2.3.10) is the identical to Eq. (2.3.3), except the right-hand-side for Eq. (2.3.10)

is obtained from the residual while the right-hand-side for Eq. (2.3.3) is the comple-

mentary velocity. The residual r̃w,m is obtained using a discretization of Eq. (2.3.8):

r̃w,m = X̃
w,0 − X̃

w,m
+

p∑
l=0

wl,mũ
w,l. (2.3.11)

where wl,m are the quadrature weights for Gauss-Lobatto points, whose quadrature

error is O(∆t2p−3). In addition to the SDC iteration, Eq. (2.3.10), we also enforce

the inextensibility constraint

X̃
w−1,m

s · ũw,ms = 0, (2.3.12)

and the contact complementarity

0 ≤ V(γ̃w,m) ⊥ ẽw,mλ ≥ 0. (2.3.13)

In evaluating the residuals using Eq. (2.3.11), provisional velocities are re-

quired. In the GI scheme [84], all the interactions are treated implicitly and given

provisional position X̃
w,m

, the provisional velocities are obtained by evaluating

ũw,m = D−1
γ̃w,m

(
Gγ̃w,mf(X̃

w,m
, σ̃w,m, λ̃w,m) + u∞

)
. (2.3.14)
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which requires a global inversion of Dγ̃w,m . The same approach is taken for LI and

CLI schemes, except the provisional velocities are obtained using local inversion

only, all the inter-particle interactions are treated explicitly and added to the

explicit term, i.e., complementary velocity ˜̄uw−1,m

i ; modifying Eq. (2.3.14) for each

vesicle, we obtain

ũw,mi = D−1
γ̃w,m
i

(
Gγ̃w,m

i
f(X̃

w,m

i , σ̃w,mi , λ̃w,mi ) + ˜̄uw−1,m

i

)
, (2.3.15)

where ˜̄uw−1,m

i is computed using X̃
w,m

and ũw−1,m
j (j 6= i) accounting the velocity

influence from other vesicles. We only need to invert the local interaction matrices

Dγ̃w,m
i

in this scheme.

2.3.2.2 Contact-resolving iteration

Let AX+ = b be the linear system that is solved at each iteration of a CLI

scheme (in case of the CLI-SDC scheme, on each of the inner step of the SDC). A

is a block diagonal matrix, with blocks Aii corresponding to the self interactions

of the ith particle. All inter-particle interactions are treated explicitly, and thus

included in the right-hand side b. We write Eq. (2.3.3), or Eq. (2.3.10), in a

compact form as

AX+ = b + Gf+
c , (2.3.16)

0 ≤ V(γ; t+) ⊥ λ ≥ 0, (2.3.17)

which is a mixed Nonlinear Complementarity Problem (NCP), because the STIV

function V(γ, t) is a nonlinear function of position. Since this is the CLI scheme, G

is a block diagonal matrix. To approximately solve this NCP, we use a first-order
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linearization of the V(γ; t) to obtain an LCP and iterate until the NCP is solved to

the desired accuracy:

AX? = b + GJTλ. (2.3.18)

0 ≤ V(γ; t+k) + J∆X ⊥ λ ≥ 0, (2.3.19)

where ∆X is the update to get the new candidate solution X?, and J denotes the

Jacobian of the volume ∇XV(γ, t+k).

Algorithm 1 summarizes the steps to solve Eqs. (2.3.16) and (2.3.17) as a series

of linearization steps Eqs. (2.3.18) and (2.3.19). We discuss the details of the LCP

solver separately below. In lines 1 to 6, we solve the unconstrained system AX? = b

using the solution from previous time step. Then, the STIVs are computed to

check for collision. The loop in lines 7−14 is the linearized contact-resolving steps.

Algorithm 1: Contact-free time-stepping.

input : X,b
output: X+, f+

c

1 A← A(X)
2 b← b(X)
3 f+

c ← 0
4 k ← 0

5 X? ← A−1b
6 V← getContactVolume(X?)

7 while V < 0 do
8 J← getContactVolumeJacobi(X?)

9 λ← lcpSolver(V)
10 k ← k + 1

11 b← b + GJTλ

12 X? ← A−1b
13 V← getContactVolume(X?)

14 f+
c ← f+

c + JTλ

15 X+ ← X?
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Substituting Eq. (2.3.18) into Eq. (2.3.19), and using the fact that ∆X = A−1GJTλ

we cast the problem in the standard LCP form

0 ≤ V + Bλ ⊥ λ ≥ 0, (2.3.20)

where B = JA−1GJT . The LCP solver is called on line 9 to obtain the magnitude of

the constraint force, which is in turn used to obtain new candidate positions that

may or may not satisfy the constraints. In line 11, the collision force is incorporated

into the right-hand-side b for self interaction in the next LCP iteration. Line 13

checks the minimal-separation constraints for the candidate solution. In line 14,

the contact force is updated, which will be used to form the right-hand-side b for

the global interaction in the next time step.

The LCP matrix B is an M by M matrix, where M is the number of contact

volumes, M = O(Nv + Np). Each entry Bk,p is the induced change in the kth

contact volume by the pth contact force. Matrix B is sparse and typically diagonally

dominant, since most STIV volumes are spatially separate.

2.3.3 Solving the Linear Complementarity Problem

In the contact-resolving iterations we solve an LCP, Eq. (2.3.20). Most common

algorithms (e.g., Lemke’s algorithm [48] and splitting based iterative algorithms [1,

60]) requires explicitly formed LCP matrix B, which can be prohibitively expensive

when there are many collisions. We use the minimum-map Newton method [15,

Section 5.8], which we modify to require matrix-vector evaluation only, as we can

perform it without explicitly forming the system matrix.

We briefly summarize the minimum-map Newton method. Let y = V + Bλ.
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Using the minimum map reformulation we can convert the LCP to a root-finding

problem

H(λ) ≡


h(λ1, y1)

· · ·

h(λM , yM)

 = 0, (2.3.21)

where h(λi, yi) = min(λi, yi). This problem is solved by Newton’s method (Alg. 2).

In the algorithm, PA and PF are selection matrices: PAλ selects the rows of λ

whose indices are in set A and zeros out all the other rows. While function H

is not smooth, it is Lipschitz and directionally differentiable, and its so-called B-

derivative PAB + PF can be formed to find the descent direction for Newton’s

method [21]. The matrix PAB+PF is a sparse matrix, and we use GMRES to solve

this linear system. Since B is sparse and diagonally dominant, in practice the

linear system is solved in few GMRES iterations and the Newton solver converges

quadratically.

Algorithm 2: Minimum Map LCP Solver.

require: applyLCPMatrix(), V and ε
output : λ

1 e← ε
2 λ← 0
3 while e > ε do
4 y← V + applyLCPMatrix(λ)
5 A← {i|yi < λi} // index of active constraints

6 F← {i|yi ≥ λi}
7 Iteratively solve

[
B −I
PF PA

] [
∆λ
∆y

]
=

[
0

−PAy − PFλ

]
// B applied

by applyLCPMatrix

8 τ ← projectLineSearch(∆λ)
9 λ← λ+ τ∆λ

10 e← ‖H(λ)‖
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2.3.4 Algorithm Complexity

We estimate the complexity of a single time step as a function of the number

of points on each vesicle N , number of vesicles Nv. Let CN denote the cost of

solving a local linear system for one particle; then the complexity of inverting

linear systems for all particles is O (CNNv). In [86, 103] it is shown that for LI

scheme CN = O (N logN). The cost of evaluating the inter-particle interactions

at the NvN discrete points using FMM is O(NvN).

We assume that for each contact resolving step, the number of contact volumes

is M . Assuming that minimum map Newton method takes K1 steps to converge,

the cost of solving the LCP is O (K1CNNv), because inverting A is the costliest

step in applying the LCP matrix. The total cost of solving the NCP problem is

O (K1K2CNNv), where K2 are the number of contact resolving iterations. In the

numerical simulations we observe that the minimum map Newton method con-

verges in a few iterations (K1 ≈ 15) and the number of contact resolving iterations

is also small and independent of the problem size (K2 ≈ 10). In Section 2.4, we

compare the cost of solving contact constrained system and the cost of uncon-

strained system.

2.4 Results

In this section, we present results characterizing the accuracy, robustness, and

efficiency of a locally-implicit time stepping scheme (CLI) combined with our con-

tact resolution framework in comparison to other schemes mention in Section 2.3.2

with no contact resolution (i.e., LI and GI schemes).

• First, to demonstrate the robustness of our scheme in maintaining the pre-
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scribed minimal separation distance with different viscosity contrast ν, we

consider two vesicles in an extensional flow, Section 2.4.1.

• In Section 2.4.2, we explore the effect of minimal separation dm and its effect

on collision displacement in shear flow. We demonstrate that the collision

scheme has a minimal effect on the shear displacement.

• We compare the cost of our scheme with the unconstrained system using a

simple sedimentation example in Section 2.4.3. While the per-step cost of the

unconstrained locally implicit system is marginally lower, it requires much

finer spatial and temporal resolutions in order to maintain a valid contact-free

configuration, making the overall cost prohibitive.

• We report the convergence behavior of different time-stepping in Section 2.4.4

and show that our scheme achieves second order convergence rate with SDC2.

• We illustrate the efficiency and robustness of our algorithm with three ex-

amples: 100 sedimenting vesicles in a container, 196 vesicles in the Couette

apparatus with 48% volume fraction (Section 2.4.5), and a flow with multiple

vesicles and rigid particles within a constricted tube in Section 2.4.6.

Our experiments support the general observation that when vesicles become

close, the LI scheme does a very poor job in handling of vesicles’ interaction [88]

and the time stepping becomes unstable. The GI scheme stays stable, but the

iterative solver requires more and more iterations to reach the desired tolerance,

which in turn implies higher computational cost for each time step. Therefore,

the GI scheme performance degrades to the point of not being feasible due to the

cost of computation and the LI scheme fails due to intersection or the time-step
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Figure 2.2: Snapshots of two vesicles in extensional flow using GI and
CLI schemes. As the distance between two vesicles decreases the configuration
loses symmetry in the GI scheme as shown in the top row. Nevertheless, as shown
in the second row, the LI with minimal-separation constraint scheme maintains the
desired minimum separation distance and two vesicles also maintain a symmetric
configuration. (The viscosity contrast is 500 in this simulation).

instability.

2.4.1 Extensional flow

To demonstrate the robustness of our collision resolution framework, we con-

sider two vesicles placed symmetrically with respect to the y axis in the extensional

flow u = [−x, y]. The vesicles have reduced area of 0.9 and we use a first-order

time stepping with LI, CLI, and GI schemes for the experiments in this test. We

run the experiments with different time step size and viscosity contrast and report

the minimal distance between vesicles as well as the final error in vesicle perimeter,

which should be kept constant due local inextensibility. Snapshots of the vesicle

configuration for two of the time-stepping schemes are shown in Fig. 2.2.

In Fig. 2.3a, we plot the distance between two vesicles over time. The vesicles

continue to get closer in the GI scheme. However, the CLI scheme maintains the

desired minimum separation distance between two vesicles. In Fig. 2.3b, we show

the minimum distance between the vesicles over the course of simulation (with

time horizon T = 10) versus the viscosity contrast. As expected, we observe that
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Figure 2.3: Distance between two vesicles in extensional flow.
Fig. 2.3a The distance between two vesicles over time for both CLI and GI schemes.
R0 := L/2π denotes the effective radius of a vesicle. The CLI scheme easily main-
tains the prescribed minimal separation of dm. Fig. 2.3b The final distance (at
T = 10) between two vesicles as viscosity contrast is increased (using GI scheme).

the minimum distance between two vesicles decreases as the viscosity contrast is

increased. Consequently, for higher viscosity contrast with both GI and LI schemes,

either the configuration loses its symmetry or the two vesicles intersect. With

minimal-separation constraint, any desired minimum separation distance between

vesicles is maintained, and the simulation is more robust and accurate as shown

in Fig. 2.2 and Table 2.2.

In Table 2.2, we report the final error in vesicle perimeter for different schemes

with respect to viscosity contrast and timestep size. With minimal-separation

constraint, we achieve similar or smaller error in length compared to LI or GI

methods (when these methods produce a valid result). Moreover, whereas one can

use relatively large time step in CLI for all flow parameters — most notably when

vesicles have high viscosity contrast — the LI scheme requires very small, often

impractical, time steps to prevent instability or intersection.
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ν ∆t CLI LI GI

1 0.4 1.17e−01 1.17e−01 7.66e−02
1 0.2 9.49e−04 9.49e−04 1.03e−03
1 0.1 4.49e−04 4.49e−04 4.69e−04
1 0.05 2.23e−04 2.23e−04 2.29e−04
1 0.025 1.12e−04 1.12e−04 1.14e−04
1 0.0125 5.65e−05 5.65e−05 5.68e−05

1e2 0.4 9.42e−03 − 2.54e−04
1e2 0.2 1.33e−04 1.33e−04 1.22e−04
1e2 0.1 6.38e−05 6.38e−05 5.96e−05
1e2 0.05 3.05e−05 3.05e−05 2.95e−05
1e2 0.025 1.49e−05 1.49e−05 1.47e−05
1e2 0.0125 7.39e−06 7.39e−05 7.32e−06

ν ∆t CLI LI GI

1e3 0.4 8.88e−03T=8.8 − 1.66e−05
1e3 0.2 2.08e−02 − 7.99e−06
1e3 0.1 5.85e−06 − 3.93e−06
1e3 0.05 2.42e−06 1.93e−06 1.95e−06
1e3 0.025 1.12e−06 9.78e−07 7.33e−07
1e3 0.0125 5.89e−07 4.87e−07 2.01e−07

1e4 0.4 1.45e−03T=3.6 − −
1e4 0.2 7.23e−04T=5.4 − −
1e4 0.1 7.75e−04T=6.8 − −
1e4 0.05 2.41e−06 − −
1e4 0.025 1.17e−06 − −
1e4 0.0125 5.58e−07 − −

Table 2.2: Error in the length of vesicles in extensional flow. The error
in the final length of two vesicles in extensional flow with respect to viscosity contrast,
timestep size, and for different schemes. The experiment’s setup is described in
Section 2.4.1 and snapshots of which are shown in Fig. 2.2. The cases with a “−”
indicate that either vesicles have intersected or the GMRES failed to converge due to
ill-conditioning of the system; the latter happens in the GI scheme and high viscosity
contrast. Cases with superscript indicate that the flow loses its symmetry at that
time.

2.4.2 Shear flow

We consider vesicles and rigid bodies in an unbounded shear flow and explore

the effects of minimal separation on shear diffusivity. In the first simulation, we
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consider two vesicles of reduced area 0.98 (to minimize the effect of vesicles’ relative

orientation on the dynamics) placed in a shear flow with (non-dimensional) shear

rate χ = 2. We observed in our previous work that in semi-implicit methods for

vesicle suspensions, the stable time step is inversely proportional to shear rate χ [86,

Table 6] and [88, Table 4]. This is expected because we use the bending relaxation

time as characteristic time (see Section 2.2.5) that becomes less dominant as the

shear rate increases. With the observation that ∆tstable ∝ χ−1, we report the results

for a single shear rate, and the approximate stable time step can be estimated for

other rates from this.

Let δt = |y1
t − y2

t | denote the vertical offset between the centroids of vesicles at

time t. Initially, two vesicles are placed with a relative vertical offset δ0 as show in

Fig. 2.4.

In Fig. 2.5, we report δt and its value upon termination of the simulation when

x1 > 8, denoted by δ∞(dm). In Figs. 2.5a and 2.5b, we plot δt with respect to

x1 for different minimum separation distances. Based on a high-resolution simu-

lation (with N = 128 and 8× smaller time step), the minimal distance between

two vesicles without contact constraint is about 2.9h for vesicles and 2.2h for rigid

particles. As the minimum separation parameter dm is decreased below this thresh-

old, the simulations with minimal-separation constraint converge to the reference

a t = 5 b t = 7.5 c t = 10 d t = 12

Figure 2.4: Shear flow experiment. The snapshots of two vesicles in shear
flow. Initially, one vesicle is placed at [−8, δ0] and the second vesicle is placed at
[0, 0].
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simulation without minimal-separation constraint. In Fig. 2.5c, we plot the excess

terminal displacement due to contact constraint, [δ∞(dm) − δ∞(0)]/h, as a func-

tion of the minimum separation distance. When collision constraint is activate, the

particles are in effect hydrodynamically larger and the excess displacement grows

linearly with dm.

2.4.3 Sedimentation

To compare the performance of schemes with and without contact constraints,

we first consider a small problem with three vesicles sedimenting in a container.

We compare three first-order time stepping schemes: locally implicit (LI), locally

implicit with collision handling (CLI), and globally implicit (GI).

Snapshots of these simulations are shown in Fig. 2.6. For the LI scheme, the
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Figure 2.5: The offset δt(dm) between the centroids of two vesicles in
shear flow. The initial offset is δ0 = 0.64 and N = 64 discretization points are
used, implying h = 0.0994, where h is the distance between two discretization points
along vesicle boundary. Fig. 2.5a and Fig. 2.5b show δt(x

1) for the vesicles and
circular rigid particles for different minimal separation distance dm. Fig. 2.5c shows
the excess displacement induced by minimal separation. When collision constraint
is activate (larger dm), the particles are in effect hydrodynamically larger and the
excess displacement grows linearly with dm.
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error grows rapidly when the vesicles intersect and a 64× smaller time step is

required for resolving the contact and for stability. Similarly, for the GI scheme

the vesicle intersect as shown in Figs. 2.6e and 2.6f and a 4× smaller time step

is needed for the contact to be resolved. The CLI scheme, maintains the desired

minimal separation between vesicles.

Although the current code is not optimized for computational efficiency, it is

instructive to consider the relative amount of time spent for a single time step in

each scheme. Each time step in LI scheme takes about 1 second, the time goes

up to 1.5 seconds for the CLI scheme. In contrast, a single time step with the GI

scheme takes, on average, 65 seconds because the solver needs up to 240 GMRES

iterations to converge when vesicles are very close. This excessive cost renders this

scheme impractical for large problems.

To demonstrate the capabilities of the CLI scheme and to gain a qualitative

a CLI

t = 0
b CLI

t = 5 c CLI t = 20 d CLI t = 20
e GI

t = 10 f GI t = 10

Figure 2.6: Sedimenting vesicles. Snapshots of three sedimenting vesicles in a
container using three time-stepping schemes. The vesicles have reduced area of 0.9,
their viscosity contrast is 100, and are discretized with 64 points. The boundary is
discretized with 256 points, the simulation time horizon T = 26, and the time step
is 0.01. Fig. 2.6a–Fig. 2.6c The dynamics of three vesicles sedimenting with CLI

scheme. Fig. 2.6d The contact region of Fig. 2.6c. Fig. 2.6e The instance when the
vesicles intersect using GI scheme. Fig. 2.6f The contact region of Fig. 2.6e.
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a t = 0 b t = 1.2 c t = 5.0 d t = 30

Figure 2.7: Sedimentation of one hundred vesicles. Vesicles are randomly
placed in a container, where only gravitational force is present. Fig. 2.7a The initial
configuration. The colored tracer particles are shown for visualization purposes and
are not hydrodynamically active. Fig. 2.7b and Fig. 2.7c The intermediate states; we
see that as vesicles move downward they induce a strong back flow. Fig. 2.7d shows
the state where the simulation was terminated. As the vesicles accumulate at the
bottom of the container, many collision areas stay active. Nonetheless, the vesicles
are stacked stably and without any artifact from the collision handling.

understanding of the scaling of the cost as the number of intersections increases,

we consider the sedimentation of 100 vesicles. As the sediment progresses the
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number of contact regions grows to about 70 per time step. For this simulation,

we use a lower viscosity contrast of 10 and the enclosing boundary is discretized

with 512 points and the total time is T = 30. Snapshots of the simulation with

CLI scheme are shown in Fig. 2.7.

We observe that with first-order time stepping, both LI and CLI schemes are

unstable. Therefore, we run this simulation with second order SDC using LI and

CLI schemes. The GI scheme is prohibitively expensive and infeasible in this case,

due to ill-conditioning and large number of GMRES iterations per time-step.

The LI scheme requires at least 12000 time steps to maintain the non-intersection

constraint and each time step takes about 700 seconds to complete. On the other

hand, the CLI scheme only need 1500 time steps to complete the simulation (taking

the stable time step) and each time step takes about 830 seconds. We repeated this

experiment with 16 discretization points on each vesicle using CLI scheme and 1500

time steps are also sufficient for this case (with final length error about 3.83e−3),

each time step takes about 170 seconds and the simulation takes about 70 hours

to complete. The number of contact resolving iterations in Alg. 1 is about 10.

In summary, LI scheme requires 4× more points on each vesicle and 8× smaller

time-step size to keep vesicles in a valid configuration compared to CLI scheme.

2.4.4 Convergence analysis

To investigate the accuracy of the time-stepping schemes, we consider the sedi-

mentation of three vesicles with reduced area 0.9 in a container as shown in Fig. 2.6.

We test LI and CLI schemes for a range of time steps and spatial resolutions and

report the error in the location of the center of mass of the vesicles at the end of

simulation. The spatial resolution h is chosen proportional to time-step size and
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for the CLI scheme the minimal separation dm is proportional to h. As a reference,

we use a fine-resolution simulation with GI scheme. The error as a function of time

step size is shown in Fig. 2.8.

2.4.5 Couette Apparatus

To demonstrate the ability of the contact constraint scheme to handle a high

volume fraction of vesicles, we consider the flow inside a Couette apparatus. The

device is filled with 196 vesicles of reduced area 0.65 and viscosity contrast 2.

The volume fraction is approximately 48%. With this high concentration, we use

∆t = 0.04 and SDC2 for both LI and CLI schemes. Snapshots of the flow and the

instantaneous effective viscosity are illustrated in Fig. 2.9.

The LI scheme results in intersecting vesicles at t = 10.6, while the CLI scheme

maintains the contact constraint over the whole simulation. There are approxi-

mately 10 contact regions per time step. The simulation with T = 20 takes about
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Figure 2.8: Convergence rate. We compare the final center of mass of three
sedimenting vesicles in a container (shown in Fig. 2.6) for Backward Euler and
SDC2 (second order Spectral Deferred Correction scheme). The time horizon is set
to T = 2. We choose the spatial resolution proportional to the time-step. As a
reference, we use the results for the GI scheme with time step ∆t = 1.25e−3 and
N = 256 discretization points on each vesicle and 512 discretization points on the
boundary.
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120 hours to complete for CLI scheme. At t = T , the error in area is 7.81e − 03

and the error in length is 1.17e − 03. We did not run the GI scheme as, with the

same area and length errors, it is estimated to take more than three months for

the simulation to complete.

In Fig. 2.9c we report the instantaneous effective viscosity with respect to

time. The effective viscosity is in qualitative agreement with similar studies for

semi-dilute rigid-particle suspensions in wall bounded shear flow [16, Eq. 1 with

[η] = 2, β = 3.6]. We are not aware of any other study for the effective viscosity of

high-volume fraction vesicle suspension with flow curvature and viscosity contrast.

An expression for effective viscosity as a function of the flow parameters can be

constructed from this type of experiment by systematic long-time integration of

multiple instantiations of the flow with large ensembles which we will report in a

separate work.

a t = 0 b t = 20 c Instantaneous effective viscosity
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Figure 2.9: Couette flow with 196 vesicles. Fig. 2.9a–Fig. 2.9b Snapshots
of the vesicles’ initial and final configuration with the contact constraint. Vesicles a
viscosity contrast of 2 and their reduced area is 0.65. The inner boundary completes
one full revolution every 10 time units. The simulation without contact constraint
fails at t = 10.64 as vesicles intersect. Fig. 2.9c The instantaneous effective viscosity
(as the ratio of the net torque on the inner circle and its angular velocity) with respect
to time.
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a t = 0

b t = 4.5

c t = 6.1

d t = 11.3

Figure 2.10: Stenosis with 25 vesicles and 25 rigid particles. Snapshots
of vesicles and rigid particles passing a constricted tube, the fluid flows from left to
right (using proper Dirichlet boundary condition on the wall). The colored tracers
are for visualization purposes and do not induce any flow. The simulation time
horizon is set to T = 20, each vesicle or rigid particle is discretized with 32 points,
and the wall is discretized with 1024 points. Fig. 2.10a The initial configuration.
Fig. 2.10b–Fig. 2.10d The interaction and collision between vesicles, rigid particles,
and the domain boundary at different instances. Without minimal-separation con-
straint, vesicles and rigid particles easily contact at the entrance of the constricted
area.
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Figure 2.11: error for stenosis example. The relative minimal distance and
error for different schemes and time step sizes. R0 is the effective radius. For the
LI scheme, independent of the time step size, vesicles or particles intersect with the
domain boundary, resulting in exponential error growth. The CLI scheme is stable
and maintains the desired minimal distance.

2.4.6 Stenosis

As another stress test for particle-boundary and vesicle-boundary interaction,

we study the flow with 25 vesicles of reduced area 0.9, mixed with 25 circular

rigid particles in a constricted tube (Fig. 2.10). It is well known that rigid bodies

can become arbitrarily close in the Stokes flow, e.g. [51], and without proper

collision handling, the required temporal/spatial resolution is expected to be high

for methods based on boundary integrals; [85] and Fig. 2.11.

In this example, the vesicles and rigid particles are placed at the right hand

side of the constricted tube. We use backward Euler method and search for the

stable time step for schemes LI and CLI. Similarly to the sedimentation example,

we do not consider the GI scheme due to its excessive computational cost.

The stable time step for the CLI scheme is ∆t = 0.01. For the LI scheme, we

tested the cases with up to 32× smaller time step size, but we were unable to avoid

contact and intersection between vesicles and rigid particles.
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Figure 2.12: Effective minimal distance. The minimal distance between 32-
point piecewise-linear approximations (enforced by the constraint) and the true mini-
mal distance between high-order shapes. R0 is the effective radius of vesicles. We use
an upsampled linear approximation with N = 128 as the surrogate for the high-order
curves.

Figure 2.11 shows the error and minimal distance between vesicles, particles,

and boundary for CLI and LI schemes with different time step sizes. Without the

minimal-separation constraint, the solution diverges when the particles cross the

domain boundary.

To validate our estimates for the errors due to using a piecewise-linear approx-

imation in the minimal separation constraint instead of high-order shapes, we plot

the minimum distance at each step for the piecewise-linear approximation and

upsampled shapes in Fig. 2.12. The target minimal separation distance is set to

dm = h. We observe that the actual minimal distance for smooth curve is smaller

than the minimal distance for piecewise-linear curve, while the difference between

two distances is small compared to the target minimum separation distance.

Note that the due to higher shear rate in the constricted area, the stable time

step is dictated by the dynamics in that area. For these flows, we expect a com-

bination of adaptive time stepping [84] and the scheme outlined in this chapter to

provide the highest speedup.
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2.5 Conclusion

In this chapter we introduced a new scheme for efficient simulation of dense

suspensions of deformable and rigid particles immersed in Stokesian fluid. We

demonstrated through numerical experiments that this scheme is orders of magni-

tude faster than the alternatives and can achieve high order temporal accuracy.
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Chapter 3

Parallel contact-aware simulations

of deformable particles in

three-dimensional free-space

Stokes flow

3.1 Introduction

Suspensions of rigid and deformable particles are ubiquitous in biological sys-

tems and industrial applications. Well-known examples of such fluids are colloids,

particulate suspensions, soft-particle pastes, cytoplasm, and blood. The rheology

of some these suspensions is well understood in the dilute regime where theoretical

models are tractable and simplifying assumptions can be applied to both theoret-

ical and computational models.

In these suspensions, as the volume fraction of particles increases, collective

61



motion emerges and the length scale of the problem grows [49], whereby mak-

ing theoretical analysis intractable and high-fidelity computational models fraught

with numerical challenges. A critical component in simulating non-dilute suspen-

sions of (deformable) particles is robust and accurate collision handling. From

the rheological perspective, proper collision handling is key for obtaining accurate

bulk properties as well as observing correct phase transitions (e.g., to clogging).

Computationally, robust collision handling algorithms are key for stable long-time

simulations of large ensembles.

To this end, we present an efficient, accurate, and robust method for parallel

simulation of dense suspensions in Stokesian fluid in 3d (e.g., Fig. 3.8). This work

complements our previous work [53] by extending it to 3d and by introducing new

parallel algorithms for collision detection and handling, essential for modeling large

numbers of particles. We report computational experiments with volume fractions

up to 60% (above the volume fraction of red blood cells, i.e., 45%) involving thou-

sands of deformable particles. We also report strong and weak scaling results for

the parallel algorithms on the Stampede system at Texas Advanced Computing

Center.

Similar to [53], we focus on the Stokes flow and the vesicle model for deformable

particles. Vesicles are closed deformable membranes suspended in a viscous fluid

that resist bending. The deformation of vesicles and their interaction with the

Stokesian fluid play an important role in many biological phenomena. They are

used to understand the properties of biomembranes [28, 63] and to simulate the

motion of blood cells, in which vesicles with moderate viscosity contrast are used to

model red blood cells and high viscosity contrast vesicles or rigid particles are used

to model white blood cells [9]. Nonetheless, our contact algorithms do not make
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any assumptions about the nature of the particles and are applicable to deformable

particles with any constitutive properties.

For fluid flow, we use the boundary integral formulation of the Stokes equations.

It offers a natural approach for accurate simulation of vesicle flows by reducing the

problem to solving equations on surfaces and eliminating the need for discretiz-

ing rapidly evolving 3d fluid volumes. However, in non-dilute suspensions, these

methods are hindered by a number of difficulties, such as inaccuracies in comput-

ing near-singular integrals and artificial force singularities caused by non-physical

intersection of particles. In the case of high volume-fraction suspensions, numerical

difficulties related to contact and near-contact are of particular importance.

The dynamics of particle collision in Stokes flow is governed by lubrication

film formation and drainage, which has a time scale much shorter than that of

the flow [27]. In principle, in an accurately resolved flow, fluid forces prevent

the contact between particles. However, solely relying on the hydrodynamics to

prevent contact requires the accurate solution of the flow in the lubrication film,

which in turn entails extremely fine spatial and temporal resolution accompanied

by increasingly ill-conditioned linear systems in the boundary integral setting [85,

88] — becoming computationally impractical as the volume fraction increases.

Introducing artificial repulsion forces along with adaptive time stepping [59,

82, 83] is effective at maintaining stability and efficiency in dilute suspensions.

However, the time-step in this case is determined by the closest pair of vesicles,

and tends to be uniformly small for dense suspensions (see Section 3.4.5). Further-

more, the heuristic parameters of the repulsion force may be difficult to determine

automatically, and often require problem-dependent adjustments (Section 3.4.5

and Table 3.5). This is insufficient for a general platform for simulating vesicle
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dynamics.

Our contributions In this work, we take a different approach: we augment

the governing equations with a collision-free constraint, i.e., Eq. (3.2.8). For the

model we consider in this chapter, such a constraint is physically redundant, as non-

penetration is ensured by fluid forces for a sufficiently high resolution. However,

in the numerical context, it plays an important role by ensuring both robustness

and accuracy of simulations for a given discretization accuracy.

Contact constraints ensure that the geometry remains intersection-free, even

for relatively coarse spatial and temporal discretizations, where the fidelity of the

numerical model is insufficient for resolving the lubrication film precisely enough

to prevent contact.

One of our principal contributions is the distributed parallel version of contact

detection and resolution algorithms. We describe an efficient fully-parallel contact

detection algorithm based on fast parallel sorting [98]. Our algorithm utilizes

an implicit grid, sorted in Morton curve order on distributed memory machines,

for inter-process collision detection, and uses an explicit spatial grid to perform

intra-process collision detection calculation locally. The contact constraints are

formulated as a Nonlinear Complementarity Problem (NCP). The solution of the

NCP problem and the construction of the necessary matrices are both done in

parallel based on the iterative minimal map Newton method.

We accelerate the computation of far-field hydrodynamics interactions using

the highly optimized PVFMM library [56]. The PVFMM library supports periodic

boundary conditions and this allows us to simulate vesicles in periodic flows with

a prescribed volume fraction.
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Our method permits simulations with high volume fractions (we report results

with up to 60% volume fraction, e.g., Fig. 3.8). Within our framework, the time

step size is independent from the volume fraction and the simulation wall-clock-

time is at least an order of magnitude faster than the adaptive case (Section 3.4.5).

Related work This chapter is most closely related to [53, 59, 88]. We extend

these works to enable long-time contact-aware simulation of concentrated vesicle

suspensions in parallel. In [53], we proposed the initial version of contact detection

and resolution algorithms for 2d and demonstrated that these algorithms enable

long-term simulations, increase robustness, and reduce the computational costs. In

[59], several novel computational algorithms (e.g., adaptive time stepping, robust

near-singular integration, and adaptive mesh refinement) are proposed to facilitate

long-time simulation of concentrated suspensions. A short-range repulsion force

along with adaptive time stepping were introduced to avoid collision, permitting

simulations with up to 35% volume fraction. If a collision is detected, the time

step is backtracked and time step size is refined, which in high volume-fraction

cases, may result in very small time steps (Section 3.4.5). Our method enables

higher density simulations with significantly larger time steps, and does not require

parameter tuning for the penalty function.

More broadly, Stokesian particle models are employed to theoretically and com-

putationally investigate the properties of biological membranes [92], drug-carrying

capsules [97], and blood cells [67, 76]. There is an extensive body of work on nu-

merical methods for Stokesian particulate flows and a review of the literature up

to 2001 can be found in [78]. Reviews of later advances can be found in [86, 88,

103]. Here, we briefly summarize some notable numerical methods and discuss the
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most recent developments.

Integral equation methods have been used extensively for the simulation of

Stokesian particulate flows such as droplets and bubbles [51, 52, 89, 123], vesicles

[22, 25, 76, 86, 88, 94, 103, 120, 121], and rigid particles [74, 75, 119]. Other

methods — such as phase-field approach [11, 18], immersed boundary and front

tracking methods [43, 113], and level set method [47] — are used by several authors

for the simulation of particulate flows.

In Chapter 2 we extensively reviewed works on collision detection and handling

in the context of (i) Stokesian flows [25, 51, 68, 83, 93, 122, 124, 125]; (ii) contact

mechanics and response [24, 39, 46, 81, 102, 109, 110]; and (iii) computer graphics

[8, 19, 23, 34, 35, 36, 69, 79] . We refer the interested reader to [53] for more

details; here, we focus on most closely related work.

Our constraint-handling algorithms belongs to a large family of constraint-based

methods, commonly used to handle contacts reliably in many applications, primar-

ily in computer graphics. This class of methods meets our goals of providing ro-

bustness and improving efficiency of contact response, while minimizing the impact

on the physics of the system. Our contact resolution approach is directly based

on [36] and is closest to [2], in which the intersection volume and its gradient with

respect to control vertices are computed at the candidate step. The non-collision

is enforced as a constraint on this volume, which leads to a much smaller system

compared to distance formulation between geometric primitives. The constrained

formulation leads to an LCP problem. [36] assumes linear trajectory between edits

and defines a space-time interference volume (STIV) which serves as a gap function.

We use a similar formulation to define our contact constraint.

Parallel algorithms for collision detection, for shared and distributed memory
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architectures, often include two stages: the first stage is culling, i.e., reducing the

set of potential collision pairs using a fast and conservative criterion to determine

which pairs do no intersect, followed by precise collision detection between remain-

ing pairs. Many authors used multi-threading and GPU computation to accelerate

different stages of collision detection [50, 61, 99, 100, 101]. The main focus of these

algorithms is distributing the task of collision culling between threads and they

use a variety of techniques.

[50] proposed a GPU-based discrete collision detection algorithm, in which axis-

aligned bounding boxes are computed for each object followed by sweep-and-prune

steps on the GPU to identify a small set of collision candidates efficiently. In [61],

surfaces are approximated by large collections of padded spheres and intersections

between spheres are used to cull collision candidates. [41] developed a parallel

continuous collision detection algorithm for heterogeneous shared-memory archi-

tectures. The algorithm uses bounding volume hierarchy (BVH) for culling. CPUs

perform the BVH traversal and culling, while GPUs perform collision tests between

geometric primitives.

For distributed memory collision handling, more complex data structures are

required. [38] presents a method for rigid body simulation on distributed mem-

ory machines. The domain of interest is partitioned and distributed over all MPI

processes and each process maintains a list of objects in its domain.

The algorithms we present in this work shares a number of features with [17,

70, 108]. [108] presents a parallel distributed-memory N-Body algorithm. This

algorithm uses a parallel octree using the Morton ordering curve and a local essen-

tial tree to form a distributed memory octree for N-body interaction calculation.

[17] describes a parallel continuous collision detection algorithm for rigid bodies.
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Rigid bodies are approximated by spherical bounding volumes and space-time axis

aligned bounding boxes are computed for each sphere. The domain is divided into

cells, each with a list of overlapping rigid bodies. The cells are distributed over

MPI processes and the lists are dynamically updated in parallel. Within each cell,

the collision detection is performed locally. Similarly, [70] (a shared-memory al-

gorithm) use spatial cells along with hashing for candidate collision identification,

followed by primitive collision tests.

3.1.1 Nomenclature

In Table 3.1, we list symbols and operators used in this chapter. Lowercase

letters refer to scalars, and lowercase bold letters refer to vectors. Discretized

quantities are denoted by sans serif letters.

3.1.2 Synopsis of the method

We use the boundary integral formulation based on [88]. The basic formulation

uses integral equation form of the problem and includes the effects of the viscosity

contrast. We add contact constraints to this formulation as an inequality constraint

on a gap function that is based on space-time intersection volume (Section 3.2).

The contact force is then parallel to the gradient of this volume with the Lagrange

multiplier as its magnitude.

We solve the resulting contact NCP for the Lagrange multipliers of the con-

straints using a Newton-like matrix-free method as a sequence of Linear Comple-

mentarity Problems (LCP) [15, 21]. Each LCP is solved iteratively using GMRES.

The spherical harmonics bases are used for spatial discretization. For time step-

ping, we use semi-implicit backward Euler (Section 3.3).
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Symbol Definition

γi The boundary of the ith vesi-
cle

γ ∪iγi
µ Viscosity of the ambient fluid
µi Viscosity of the fluid inside ith

vesicle
νi The viscosity contrast µi/µ
σ Tension
χ Shear rate
$i The domain enclosed by γi
$ ∪i$i

G Stokes Single-layer operator
T Stokes Double-layer operator

LCP Linear Complementarity
problem

NCP Nonlinear Complementarity
Problem

STIV Space-Time Interference Vol-
umes

Symbol Definition

LI Locally Implicit time stepping
CLI Constrained Locally Implicit

time stepping
GI Globally Implicit time stepping

RGI Repulsion-based Globally Im-
plicit time stepping

dm Minimum separation distance
fσ Tensile force
fb Bending force
fc Collision force
J Jacobian of contact volumes V
n Unit outward normal
u Velocity
u∞ The background velocity field
V Contact volumes
X A Lagrangian point on a surface

Table 3.1: Index of frequently used symbols, operators, and abbrevia-
tions.

In Section 3.3, we present a summary of the spatial and temporal discretization.

We also present parallel algorithms for collision culling, STIV computation, and the

solution of LCP’s.

In Section 3.4, we present results showing the accuracy and effectiveness of

our scheme. We also present weak and strong scaling results for simulations on

up to 16K processors and report wall-clock-time for different methods and volume

fractions.
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3.2 Formulation

In this section, we briefly outline mathematical formulation for suspension of

vesicles in Stokes flow with contact constraints. We presented a more in-depth

formulation applicable to 2d and 3d vesicle flows in [53, 88].

We consider the Stokes flow with N vesicles suspended in a Newtonian fluid.

The fluid domain is assumed to be unbounded. In Stokesian flow, due to high

viscosity and/or small length scale, the ratio of inertial and viscous forces (the

Reynolds number) is small and the fluid flow can be described by the incompressible

Stokes equation:

−µ∆u(x) +∇ p(x) = F (x) and ∇·u(x) = 0 (x ∈ R3), (3.2.1)

F (x) =

∫
γ

f(X)δ(x−X) dA(X), (3.2.2)

where f is the surface density of the force exerted by the vesicles’ membrane on

the fluid and µ denotes the viscosity of ambient fluid. We use x to denote an

Eulerian point in the fluid (x ∈ R3) and X to denote a Lagrangian point on the

vesicles. We let γi denote the boundary of the ith vesicle (i = 1, . . . , N), $i denote

the domain enclosed by γi, µi denote viscosity of the fluid inside that vesicle, and

γ :=
⋃
i γi. Equation (3.2.1) is valid for x ∈ $i by replacing µ with µi. The

governing equations are augmented with the no-slip boundary condition on the

surface of vesicles

u(X, t) = Xt (X ∈ γ), (3.2.3)

where Xt := ∂X
∂t

is the material velocity of a point X on the surface of the vesicles.
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γ1

γ2

Collision

n

Figure 3.1: Schematic. Vesicles are suspended in free-space, both filled with fluid.
The vesicle boundaries are denoted by γi (i = 1, . . . , N). The outward normal vector
to the boundaries is denotes by n. The dotted lines around boundaries denote the
prescribed minimum separation distance for each of them. The minimum separation
distance is a parameter and can be set to zero. In this schematic, vesicles γ1 and γ2

are in contact. A slice of the space-time intersection volume at the current instance
is marked by orange area.

We assume that the vesicle membrane is inextensible, i.e.,

∇γ · u(X) = 0 (X ∈ γ), (3.2.4)

where ∇γ · denotes the surface divergence operator.

3.2.1 Contact definition

It is known [27, 65] that the exact solution of the equations of motion (Eqs. (3.2.1),

(3.2.3), and (3.2.4)) keeps particles apart in finite time due to formation of the lu-

brication film. As a consequence, it is theoretically sufficient to solve the equations

with an adequate degree of accuracy to avoid any problems related to overlaps be-

tween particles. Nonetheless, achieving this accuracy for many types of flows (most

notably, flows with high volume fraction of particles or with complex boundaries)

may be prohibitively expensive.

With inadequate computational accuracy, particles may collide with each other

or with boundaries (if present). Depending on the numerical method employed,
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the consequences of this may vary. For methods based on integral equations, the

consequences are particularly dramatic, as overlapping boundaries may lead to

divergent integrals. To address this issue, we augment the governing equations

with a contact constraint, formally written as

V (γ, t) ≥ 0, (3.2.5)

where γ denotes the boundary of all particles. The function V is chosen in such

a way that V < 0 implies some parts of the surface γ are at a distance less than

a user-specified constant dm. Function V may be a vector-valued function, for

which the inequality is understood component-wise. This constraint ensures that

the suspension remains contact-free independent of numerical resolution.

For the constraint function V, in addition to the basic condition above, we

choose a function that satisfies several additional criteria:

(i) V introduces a relatively small number of additional constraints, and

(ii) when V is discretized, no contacts are missed even for large time steps.

To clarify the second condition, suppose we have a small particle rapidly moving

towards a planar boundary. For a large time step, it may move to the other side

of the boundary in a single step, so any condition that considers an instantaneous

quantity depending on only the current position is likely to miss the contact.

To this end, we extend the Space-Time Interference Volumes (STIV) from [36]

to define the function V C as the space-time volume swept by the intersecting

segments of the boundary over time. To be more precise, for each point X(φ, θ, t0)

on the boundary, consider a trajectory X(φ, θ, τ), between a time t0, for which

there are no collisions, and a time t. Points X(φ, θ, τ) define a deformed boundary
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γ(τ) for each τ . For each point X(φ, θ, τ), we define τI(φ, θ), t0 ≤ τI ≤ t, to be

the first instance for which this point comes into contact with a different point

of γ(τI). Assuming an interference-free configuration at t0, the space-time volume

constraint for the time interval [t0, t] is

V C(γ, t) = −
∫
γ(t0)

∫ t

τI(φ,θ)

√
ε2 + (Xt(φ, θ, τ) · n(φ, θ, τ))2 dτ dA, (3.2.6)

where n(φ, θ, τ) denotes the normal to γ(τ) at X(φ, θ, τ). The integration is over

the initial boundary γ(t0), and we use the fact that the surface is inextensible and

the surface metric does not change. Comparing Eq. (3.2.6) with its 2d counterpart

[53, Eq. 8], we see that the only difference is that Eq. (3.2.6) is a surface integral.

The derivation for Eq. (3.2.6) is given in Section 3.2.2. Writing the constraint for

infinitesimal time to obtain the volume constraint V , using the no-slip condition

on surface, and taking the variation with respect to the velocity we have

duV [δu] = −
∫
γ(t)

(n · u)(n · δu)√
ε2 + (u · n)2

Icontact dA, (3.2.7)

where Icontact is the indicator function for points that are in contact. We consider

each connected component of this volume in Eq. (3.2.6) as a separate volume and

impose an inequality constraint on each; while keeping a single volume is equivalent

in principle, using multiple volumes avoids undesirable effects in contact resolution

computation [36]. We define V (γ, t) to be a time-dependent, variable-size vector

of contact volumes, with one component per connected component of the contact

zone. Depending on the context, we may omit the dependence of V on γ and

write V (t) as the contact volume function, or V (γi, t) for the sub-vector of V (γ, t)

involving surface γi.
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In practice, it is desirable to control the minimal distance between particles.

Therefore, we define a minimum separation distance dm ≥ 0 and modify the con-

straint such that particles are in contact when they are within dm distance from

each other, as shown in Fig. 3.1. The contact volume with minimum separation

distance is calculated with the surface displaced by dm, i.e., the time tI is obtained

not from the first contact with γ(τ) but rather the first time when surfaces are at

distance dm. Maintaining minimum separation distance — rather than consider-

ing pure contact only — eliminates a potentially expensive computation of nearly

singular integrals close to the surface and improves the accuracy in semi-explicit

time-stepping.

3.2.2 Space-time volume

The space-time volume is a 3d volume embedded in 4d space parameterized by

φ, θ and t, that is, by the map

P (φ, θ, t) = (x(φ, θ, t), y(φ, θ, t), z(φ, θ, t), εt) = (X, εt),

where ε is a scaling factor and has the unit of velocity. It is used to make the units

consistent. Let gαβ and hαβ respectively denote the 3d and 4d metric tensors, i.e.,

gαβ = Xα ·Xβ, α, β ∈ {φ, θ},

hαβ = Pα ·Pβ, α, β ∈ {φ, θ, t},
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and g = det(gαβ), h = det(hαβ). Elements hαβ are related to gαβ, spatial velocity,

and basis of tangent space as

h = det(hαβ) = det


gφφ gφθ u ·Xφ

gθφ gθθ u ·Xθ

u ·Xφ u ·Xθ ε2 + u ·u.

 .

Expanding and simplifying the expression for the determinant, we have

h = g
[
ε2 + (u ·u)− (u ·Xα)(u ·Xα)

]
,

where Xα := gαβXβ is the contravariant basis and gαβ denotes the dual tensor to

gαβ. By the definition of the contravariant basis, we can decompose the velocity

as

u = (u ·Xα)Xα + (u ·n)n.

This in turn implies,

u ·u = (u ·Xα)(u ·Xβ)Xα ·Xβ + (u ·n)2 = (u ·Xα)(u ·Xα) + (u ·n)2.

Combining these results, we have

h = g
[
ε2 + (u ·n)2

]
.
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The space-time volume is now easily computed by

V C =

∫ √
h dφ dθ dt =

∫ √
g(ε2 + (u ·n)2) dφ dθ dt =

∫ √
ε2 + (u ·n)2 dA dt,

where we substituted dA =
√
g dθ dφ.

3.2.3 Contact constraint

We use the Lagrange multiplier method (e.g., [110]) to enforce contact con-

straints in the system. While it is computationally more expensive than adding

a penalty force for the constraint (effectively, an artificial repulsion force), it has

the advantages of (i) eliminating the need to tune the parameters of the penalty

force to ensure that the constraint is satisfied; and (ii) keeping nonphysical contact

forces introduced into the system to the minimum The constrained system can be

written as

min

∫
R3

(
1

2
µ∇u · ∇u− u ·F

)
dV, (3.2.8)

subject to: ∇·u(x) = 0 (x ∈ R3),

∇γ · u = 0 (X ∈ γ),

V (γ, t) ≥ 0.
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If we omit the inequality constraint, the remaining three equations are equivalent

to the Stokes equations (3.2.1). The Lagrangian for this system is

L(u, p, σ, λ) =

∫
R3

(
1

2
µ∇u · ∇u− u ·F − p∇·u

)
dV +

∫
γ

σ∇γ · u dA+ λ ·V.

(3.2.9)

The first-order optimality (KKT) conditions yield the following modified Stokes

equation, along with the constraints listed in Eq. (3.2.8):

−µ∆u+∇ p = F ′, (3.2.10)

F ′(x) = F (x) +

∫
γ

(fσ + fc)(X)δ(x−X) dA, (3.2.11)

fσ = σ∆γX +∇γ σ, (3.2.12)

fc = ( duV )Tλ, (3.2.13)

λ ≥ 0;λ ·V = 0, (3.2.14)

where duV is the variation of of V with respect to u. The last condition is the

complementarity condition — either an equality constraint is active (Vi = 0) or

its Lagrange multiplier is zero. As we will see in the next section and based on

Eq. (3.2.11), the collision force fc is added to the traction jump across the vesicle’s

interface.

It is customary to combine V ≥ 0, λ ≥ 0, and λ ·V = 0, into one expression

and write

0 ≤ V (t) ⊥ λ ≥ 0. (3.2.15)
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3.2.4 Boundary integral formulation

Following the standard approach of potential theory [74], one can express the

solution of the Stokes boundary value problem, Eq. (3.2.10), as a system of singular

integro-differential equations on all immersed and bounding surfaces.

The Stokeslet tensor G and the Stresslet tensor T are the fundamental solutions

of the Stokes equation given by

G(r) =
1

8πµ

1

‖r‖

(
I +

r ⊗ r
‖r‖2

)
, T(r) = − 3

4πµ

r ⊗ r ⊗ r
‖r‖5

.

The solution of Eq. (3.2.10) can be expressed by the combination of single- and

double-layer integrals. We denote the single-layer integral on the vesicle surface γi

by

Gγi [f ](x) :=

∫
γi

G(x− Y ) · f(Y ) dA, (3.2.16)

where f is an appropriately defined density. The double-layer integral is defined

as

Tγi [q](x) :=

∫
γi

n(Y ) ·T(x− Y ) · q(Y ) dA, (3.2.17)

where n denotes the outward normal (as shown in Fig. 3.1) to the surface γi and

q is the appropriately defined density. When the evaluation point x is on the inte-

gration surface, Eq. (3.2.16) is a singular integral, and Eq. (3.2.17) is interpreted

in the principal value sense.

The velocity at a point x ∈ R3 can be expressed as the superposition of veloc-
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ities due to each vesicle

αu(x) = u∞(x) +
∑
i

ui(x), x ∈ R3, α =


1 x ∈ R3\γ,

νi x ∈ $i,

(1 + νi)/2 x ∈ γi,

(3.2.18)

where u∞(x) represent the background velocity field (for unbounded flows), νi =

µi/µ denotes the viscosity contrast of the ith vesicle, and ui denotes the velocity

contributions from vesicle i. To simplify the representation, we introduce the

complementary velocity for each vesicle, defined as ūi = αu− ui.

The velocity induced by the ith vesicle is expressed as an integral [77]:

ui(x) = Gγi [f ](x) + (1− νi)Tγi [u](x) (x ∈ R3), (3.2.19)

where the double-layer density u is the total velocity from Eq. (3.2.18) and f is

the traction jump across the vesicle membrane. Based on Eq. (3.2.11), the traction

jump is equal to the sum of bending, tensile, and collision forces

f(X) = fb + fσ + fc (X ∈ γ). (3.2.20)

Note that Eq. (3.2.19) is the contribution from each vesicle to the velocity field.

To obtain an equation for the interfacial velocity, Eq. (3.2.19) is substituted into

Eq. (3.2.18):

(1 + νi)

2
u(X) = ūi(X) + Gγi [f ](X) + (1− νi)Tγi [u](X) (X ∈ γi), (3.2.21)
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subject to local inextensibility

∇γ · u = 0 (X ∈ γ). (3.2.22)

3.2.5 Formulation summary

The formulae outlined above govern the evolution of the suspension. The flow

constituents are hydrodynamically coupled through the complementary velocity

(i.e., the velocity from all other constituents). Given the configuration of the

suspension, the unknowns are velocity u(X) and tension σ of vesicles’ interface

determined by Eqs. (3.2.20–3.2.22). The velocity is integrated for the vesicles’

trajectory using Eq. (3.2.3).

This system is constrained by Signorini (KKT) conditions for the contact,

Eq. (3.2.15), which is used to compute λ, the strength of the contact force. In

the referenced equations above, the complementary velocity is combination of ve-

locities given in Eq. (3.2.19).

3.3 Numerical algorithms

In this section, we describe the algorithms required for solving the dynamics

of particulate Stokesian suspensions. Our spatial/temporal representation and

surface quadratures follow our previous work [58, 88, 105].

We present a set of parallel distributed-memory algorithms for contact resolu-

tion in 3d. The parallelization is a necessity for simulations of reasonable size in

3d. The overall approach follows our two-dimensional contact-aware scheme pre-

sented in [53], but new algorithms are needed for the distributed-memory contact
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detection and resolution.

At every time step, we resolve contacts by solving a nonlinear complementarity

problem (NCP) in parallel. The NCP is solved iteratively by recursive linearization

and using a new parallel Linear Complementarity Problem (LCP) solver.

In the following sections, we first summarize a brief description of the spatial

discretization from [88], then discuss the time discretization with contact constraint

and the corresponding parallel algorithms.

3.3.1 Spatial discretization

3.3.1.1 Spherical harmonic expansion

We assume that the boundary of each vesicle is parameterized by a smooth map

X(φ, θ) from a unit sphere S2 to R3 and use the spherical harmonics expansions

to represent the surface [105]. The surface of the unit sphere S2 is parameterized

by the spherical angles (φ, θ) ∈ [0, π]× [0, 2π). To approximate a function f on γ,

we use the spherical harmonic basis Ynm up to degree q

f(φ, θ) ≈
q∑

n=0

n∑
m=−n

f̂nmYnm(φ, θ), with f̂nm = (f, Ynm) =

∫
S2
fY nm ds. (3.3.1)

where f̂nm are the coefficients in the spherical harmonic expansion. A q-grid is the

grid associated with a qth order spherical harmonic expansion, with q+1 Legendre

points in the latitude direction and 2q equi-spaced points in the longitude direction.

All functions on the surface of vesicle (such as surface position/velocity and ten-

sile/bending/contact forces) are presented in the spherical harmonic basis. Inter-

polation to collocation points of a finer/coarser grid is done by padding/truncation

of the spherical harmonics expansion. To evaluate a function on a non-grid point,
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we construct local third order interpolants on a 4× 4 set of points from the q-grid

and interpolate at the target [88].

3.3.1.2 Stokes layer potentials singular and near-singular integration

We need to evaluate single- and double-layer potential in our boundary integral

formulation, we use the same quadrature rule for single- and double-layer potential.

Consider the single-layer potential Gγ[f ](Y ) from a single surface γ at a target

point Y . We can express the integral as

Gγ[f ](Y ) =

∫ π

φ=0

∫ 2π

θ=0

G(Y ,X(φ, θ)) f(φ, θ) W (φ, θ) dφ dθ, (3.3.2)

where W (φ, θ) =
√
EG− F 2 is the area element of the surface (with E, F and G

denoting the coefficients of the first fundamental form of γ).

For the target point Y not on the surface γ, the integrand is smooth; we use

Gauss-Legendre quadrature for φ and trapezoidal quadrature for θ directions. We

discretize the integral in Eq. (3.3.2) by a quadrature rule over the q-grid

Gγ[f ](Y ) ≈
q∑
i=0

2q−1∑
j=0

G(Y,Xij) f ij Wij wij (3.3.3)

where wij are the quadrature weights, Xij, f ij and Wij are the surface position, the

density function and the area element evaluated on the q-grid, respectively. We

use the Fast Multipole Method (FMM) to accelerate the calculation in Eq. (3.3.3).

As Y approaches γ, Eq. (3.3.3) is insufficient to accurately evaluate near-singular

layer-potential. We use the near-singular integration scheme discussed in [58].

For the target point Y on the surface γ, the layer potential is singular. We use

the singular integration algorithm discussed in [58, 105] for both the Stokes single-
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layer potential and the Stokes double-layer potential. This quadrature scheme

involves rotation of the spherical harmonics and is spectrally accurate for both

single- and double-layer potentials.

3.3.1.3 Piecewise-linear triangular discretization for constraints

Similar to the 2d case, while the spectral spatial discretization is used for most

computations, it poses a problem for the minimal-separation constraint discretiza-

tion. Computing parametric surface intersections, an essential step in the STIV

computation, is relatively expensive and difficult to implement robustly, as this re-

quires solving nonlinear equations for intersections. We follow the same approach

as in 2d [53] and use a piecewise-linear triangular discretization of the surface to

calculate the space-time contact volume and its gradient.

The collocation points for the q-grid naturally give a quadrilateral mesh of the

surface, except at the poles, where quads are degenerate. Splitting each quadri-

lateral along the diagonal we get a piecewise-linear triangular discretization of the

surface as illustrated in Fig. 3.2.

We first upsample the q-grid to a qup-grid and convert the qup-grid to a tri-

angular mesh for STIV calculation. Since we opt for a low-order, piecewise-linear

approximation of the vesicle, we need to use an algorithm that ensures that at

least the target minimal separation is maintained between actual smooth surfaces

represented by spherical harmonics. For the triangular mesh, we set the separation

distance to (1 + 2α)dm, where dm is the target minimum separation distance. We

observe that the sensitivity to the separation distance on the overall accuracy is

low in most situations as explored in Section 3.4; in practice we choose α = 0.05

and we find that qup = 32 is sufficient for ‖Xqup −X(φ, θ)‖∞ < αdm.
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To compute the contact constraint with the triangular mesh of a qup-grid, we

calculate the discretized space-time contact volume as the sum of triangle-vertex

contact volumes V =
∑

k Vk(t,X), where k indexes triangle-vertex pairs. Parallel

algorithms to find colliding triangle-vertex pairs are discussed Section 3.3.3.

For each triangle t(Xi−1,Xi,Xi+1) and vertex Xk pair, we solve a degree six

equation to find their earliest contact time τI assuming linear trajectory between

the initial position at time tn and candidate position at tn+1:

([Xk(t)− Xi−1(t)] · [(Xi(t)− Xi−1(t))× (Xi+1(t)− Xi−1(t))])2

−d2
m

∥∥ [(Xi(t)− Xi−1(t))× (Xi+1(t)− Xi−1(t))]
∥∥2

= 0, (3.3.4)

where Xk(t) = Xk(tn) + tUk, with the linear trajectory assumption the vertex

velocity is defined as Uk = [Xk(tn+1)− Xk(tn)] /∆t. We calculate the triangle-

a Qua mesh b Tri mesh

Figure 3.2: Piecewise-
linear triangular discretiza-
tion. Illustrating the conver-
sion of a 16-grid Fig. 3.2a to
a piecewise-linear triangular
mesh Fig. 3.2b.

a Morton order grid b Check points

Figure 3.3: Morton order grid. Diagram
Fig. 3.3a shows the 2d Morton curve order for a
grid. Fig. 3.3b shows the schematic of 2d space-
time bounding box (red) of a vesicle (dotted blue
curve is the initial position, solid blue curve is the
candidate position) filled with check points.
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vertex contact volume using Eq. (3.2.6):

Vk(t,X) = (t− τI)(ε2 + (Uk · n(τI))
2)1/2|t|, (3.3.5)

where n(τI) is the normal to the triangle t(τI) at the intersection time and |t|

is the area of the triangle. For each triangle-vertex contact volume, we calculate

the gradient of Eq. (3.3.5) with respect to the vertices Xi−1, Xi, Xi+1 and Xk and

by summing over all the triangle-vertex contact pairs, we get the total space-time

interference volume and its gradient.

3.3.2 Temporal discretization

Our temporal discretization is based on the locally-implicit time-stepping scheme

in [88]: we treat intra-vesicle interactions implicitly and inter-vesicle interactions

explicitly. We combine this method with minimal-separation constraint and use

first-order backward Euler time stepping (more accurate time-stepping methods

such as spectral deferred correction (SDC) method [53] can be easily integrated).

We denote this locally-implicit scheme with collision constraint by CLI. In Sec-

tion 3.4, we compare this method to the same scheme without constraints (LI) and

the globally semi-implicit with/without repulsion(GI and RGI) schemes, where all

interactions treated implicitly as in [58].

Marking the unknowns to be solved for with ‘·+’ superscript and by denoting

the position, velocity and traction jumps at each point of the ith vesicle by Xi,

u+
i = (X+

i − Xi)/∆t, and f i, respectively, we obtain the following time-stepping
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equation:

1 + νi
2

u+
i = ūi + Gγif i(X

+
i , σ

+
i , λ

+) + (1− νi)Tγiu
+
i , (3.3.6)

∇γ · u+
i = 0, (3.3.7)

f i(X
+
i , σ

+
i , λ

+) = fb(X
+
i ) + fσ(σ+

i ,Xi) + f+
c , (3.3.8)

f+
c = (( duV

+)Tλ+)i, (3.3.9)

0 ≤ V(γ; t+) ⊥ λ+ ≥ 0, (3.3.10)

where V(γ; t+) is the space-time volume.

Let AX+ = b be the linear system that is solved at each iteration of a CLI

scheme. A is a block diagonal matrix, with blocks Aii corresponding to the self

interactions of the ith vesicle. All inter-vesicle interactions are treated explicitly,

and thus included in the right-hand side b. The matrix A is obtained by combining

and rearranging Equations (3.3.6–3.3.9). We write Eq. (3.3.6) in a compact form

as

AX+ = b + Gf+
c , (3.3.11)

0 ≤ V(γ; t+) ⊥ λ ≥ 0. (3.3.12)

At each step, we need to resolve contacts by solving this mixed Nonlinear Comple-

mentarity Problem (NCP). We outline our parallel algorithms for solving this NCP

next.
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Algorithm 3: Contact-free time-stepping.

input : X, fc
output: X+, f+

c

1 A← A(X)
2 b← b(X, fc)
3 f+

c ← 0
4 k ← 0

5 X? ← A−1b // Get initial candidate position

6 V, J← ContactVolume(X,X?) // Alg. 5

7 while V < 0 do
8 B← FormLCP(J,A) // Alg. 6

9 λ← LCPSolver(V,B) // Alg. 7

10 k ← k + 1

11 b← b + GJTλ // Update the RHS with the new collision

force

12 X? ← A−1b // Get new candidate position X?

13 V, J← ContactVolume(X,X?) // Check collision for X?

14 f+
c ← f+

c + JTλ // Accumulate the collision force

15 X+ ← X?

3.3.2.1 Contact-resolving iterations

To approximately solve Eqs. (3.3.11) and (3.3.12), we iteratively construct lin-

earizations to V(γ; t) around the current candidate position and solve a sequence

of LCPs:

AX? = b + GJTλ. (3.3.13)

0 ≤ V(γ; t+k) + J∆X ⊥ λ ≥ 0, (3.3.14)

until the original NCP is solved to the desired accuracy. In Eq. (3.3.14), X? is

the candidate solution, ∆X is the update to get the new candidate solution, and

J denotes the Jacobian of the STIV dXV(γ, t+k), where k indexes the contact-

resolving iterations.
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Alg. 3 summarizes the contact-free time-stepping to solve Eqs. (3.3.11) and (3.3.12)

as a series of linearization steps in the form of Eqs. (3.3.13) and (3.3.14). In lines 1

to 5, we solve the unconstrained system AX? = b using the solution from previous

time step. In line 6, the STIVs are computed using a parallel collision detection

algorithm, which is discussed in Section 3.3.3. The loop in lines 7−14 is the lin-

earized contact-resolving steps. Substituting Eq. (3.3.13) into Eq. (3.3.14), and

using the fact that ∆X = A−1GJTλ we cast the problem in the standard LCP form

0 ≤ V + Bλ ⊥ λ ≥ 0, (3.3.15)

where B = JA−1GJT . The LCP solver is called on line 9 to obtain the magnitude of

the constraint force, which is in turn used to obtain new candidate positions that

may or may not satisfy the constraints. In line 11, the collision force is incorporated

into the right-hand-side b for self interaction in the next LCP iteration. Line 13

checks the minimal-separation constraints for the candidate solution. In line 14,

the contact force is updated, which will be used to form the right-hand-side b for

the global interaction in the next time step.

3.3.3 Parallel collision handling

In this section, we describe the most challenging algorithmic part of our method,

parallel collision handling, which is essential for scalability.

To avoid costly communication and computation, our contact detection is per-

formed in two phases. In the first phase, we find intersecting bounding boxes of

particles (Alg. 4). For each particle, this results in a list of other particles that it

may be colliding with (i.e., candidate pairs). In the second phase, we communicate
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the mesh information for the particles in the list and compute the pairwise STIVs

(Alg. 5). These intersection volumes and their gradients (Alg. 3 lines 6 or 13) are

used in the LCP to find the magnitude of contact force.

In our algorithm descriptions, superscript p denotes data that resides on process

p. Each vesicle is assigned to a process p and the assignment does not change during

the simulation. Variables without superscripts are either shared variables among all

processes, or global arrays whose local parts are denoted with the superscripts. We

use subscripts for indices of the vesicles, bounding boxes, etc. Table 3.2 summarizes

the variables used in this section.

3.3.3.1 Phase 1: Bounding box intersections

To narrow down the set of potential collision pairs efficiently, we initially use

space-time bounding boxes as collision proxies, i.e., 3d bounding boxes enclosing

point trajectories from the initial positions Xp
0 to candidate positions Xp

1 for each

vesicle. Each axis-aligned bounding box is stored as a pair of points {
¯
bpi , b̄

p
i }, that

are the corners of the box with lexicographically-ordered minimum and maximum

coordinate values.

To identify the intersecting bounding box pairs efficiently and in parallel, we

use a spatial grid algorithm. There are three main steps in finding the intersecting

bounding box pairs using a spatial grid:

(1) For each bounding box, find grid cells it overlaps.

(2) For each grid cell, compute a list of bounding boxes overlapping it by merging

the lists of (box, grid cell) pairs from step 1, and sorting it by grid cell.

(3) For each grid cell with a non-empty list, perform intersection check for all

bounding box pairs in that cell and find all the intersecting bounding box
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Symbol Definition

np Number of MPI processes
p Process index
n Number of points on a vesicle (assumed fixed)
Np Number of vesicles

N
p

Number of ghost vesicles
Np
c Number of check points

Np
P Number of candidate vesicle pairs

Np
v Number of contact volumes

Xp
0 , X

p
1 Initial and candidate positions (size nNp)

X
p
0, X

p
1 Initial and candidate positions of ghost vesicles

Ip Set of global indices for vesicles (vectors of size Np)

I
p

Set of global indices for ghost vesicles

Bp Set of space-time bounding boxes of vesicles
Ipb Set of global bounding-boxes indices
P p Set of index pairs of intersecting bounding boxes, {(jr, kr) | r =

1, . . . , Np
P , jr ∈ I

p
b , kr ∈ Ib, jr < kr}

cp, Ipc , I
p
c,b,M

p Positions, global indices, vesicles indices, and Morton codes of
check points

hm Morton order grid cell size

V p, Ipv Contact volumes and their global indices (size Np
v )

Jp Jacobian of the vector of contact volumes with respect to vesi-
cles (size Np

v × 3nNp)

J
p

Jacobian with respect to ghost vesicles (size Np
v × 3nN

p
)

λp = λ(Ipv ) Lagrange multipliers

Table 3.2: Parallel variables. Superscript p denotes the data corresponding to
process p.

pairs.

Parallel version The most direct approach to parallelizing this algorithm is to

distribute the lists of boxes associated with grid cells across processes. However,

performing step (2) efficiently is difficult in this case, since merging the lists ob-

tained in step (1) requires irregular communication pattern between all processors.

Instead of using an explicitly distributed spatial grid data structure storing lists
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Algorithm 4: Bounding Box Intersection.

input : A set of axis aligned bounding boxes Bp, Ipb
output: Intersecting bounding box index pairs: P p

// (1) Insert boxes to the tree by computing the Morton ID

of grid cells they intersect.

1 hm ← average
(
‖
¯
bpi − b̄pi ‖

)
// Parallel reduction

2 {cp, Ipc ,Mp, Ipc,b,¯
xp, x̄p} ← generateCheckPts (Bp, Ipb , hm)

3 Update Ipc to global index // Parallel scan

// (2) Merge the lists by sorting check points using Morton

IDs and scatter data based on Ipc .

4 hypercubeQSort
(
Mp, {Ipc , Ipc,b,¯x

p, x̄p}
)

// (3) Local check of intersecting bounding box pairs

5 P p ← ∅
6 for each m ∈Mp do
7 for each bounding box pair {j, k}(j, k ∈ Ipc,b) in grid m do

8 if bbiCheck(
¯
bj, b̄j,

¯
bk, b̄k) then

9 Add intersecting bounding box pair{j, k} to P p

10 Send P p ({j, k}) to the process q such that j ∈ Iqb
11 P p ← unique(P p)

of boxes, we use an implicit representation of grid cells based on Morton curve

order numbering. Morton IDs of cells are assigned to check points, sampled on

bounding boxes in a way that guarantees that at least one check point is contained

in every grid cell overlapping the box. Parallel-sorting the check points by their

Morton IDs collects, on each processor, a set of check points corresponding to

bounding boxes overlapping the same grid cells, as their Morton IDs will be the

same. Then bounding boxes overlapping each grid cell are checked for intersections

in parallel. Finally, detected candidate intersection pair lists are scattered back to

the processors owning bounding boxes contained in the list. Next, we describe the

algorithm more formally. In the pseudocode (Alg. 4) lines 1–3, line 4, and lines
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Process 1 Process 2

Unsorted

M : 111 110 001 000 001 000 000 101
Ic: 1 2 3 4 5 6 7 8
Ic,b: 1 1 1 1 2 2 2 2

local data: a b c d e f g h

Sorted (shaded rows are misaligned)

M : 000 000 000 001 001 101 110 111
Ic: 4 6 7 3 5 8 2 1
Ic,b: 1 1 1 1 2 2 2 2

local data: a b c d e f g h

Scattered (data is aligned)

M : 000 000 000 001 001 101 110 111
Ic: 4 6 7 3 5 8 2 1
Ic,b: 1 2 2 1 2 2 1 1

local data: d f g c e h b a

Table 3.3: Sorting and scattering of check points on two processes. A
simple check points sorting and data scattering example. This example illustrates the
data movement between two processes. Unsorted rows show the input information on
process 1 and process 2. Sorted rows show the sorted check points’ Morton codes M
and shuffled index set Ic with Ic,b and unscattered data on each process. Shaded rows
are misaligned. Scattered rows show the result of scattering using the shuffled index
set Ic as a scatter mapping from original data to scattering place on each process.

5–11 respectively are steps (1) to (3) outlined above.

We view the spatial grid as a uniformly refined octree. The depth of octree is

log(L/hm) where hm is the grid cell size. We set hm to the average diagonal length

of all vesicle bounding boxes and L is the domain length. Each leaf in the octree

is associated with a unique Morton ID, as shown in Fig. 3.3a. Table 3.3 illustrates

the data movement in the parallel sorting algorithm(line 4 of Alg. 4).

In step (1), check points cp are defined for the bounding boxes Bp (lines 2 and

3). As schematically shown in Fig. 3.3b, check points are located uniformly inside
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each bounding box with a spacing less than hm. With this spacing, a bounding

box should have at least one check point in an any grid cell it overlaps. Each check

point is associated with its originating bounding box index and that bounding

box’s spatial data, i.e., Ipc,b and {
¯
xp, x̄p}. Our choice of spacing results in 23 to 33

check points for each bounding box.

We compute the set of all Morton IDs Mp for all check points. Since each

Morton ID is uniquely associated with a grid cell and each bounding box has at

least one check point inside the grid cell overlapping with that bounding box, our

lists Mp include the Morton ID of all grid cells that intersect with each bounding

box, possibly multiple times (we drop the duplicates).

Initially, the lists Ipc are the global indices of the check points on process p; to

calculate this global index we perform an MPI scan operation on the number of

check points on pth process Np
c . With the Morton IDs and global check point index

computed for each check point, we can move to the next stage.

Step (2) of the algorithm (merging lists) is equivalent to a parallel sort on the

Morton IDs followed by scattering of data associated with a check point using the

shuffle index Ipc obtained as a result of the sort.

We use a parallel hypercube quicksort algorithm [98]. The hypercube quicksort

algorithm takes the Morton code Mp (keys) and index set of check points and their

associated information Dp
c = {Ipc , Ipc,b,¯x

p, x̄p}. (values) on pth process as input, it

outputs the globally sorted Morton code, and shuffled per-check point information.

The parallel sorting algorithm evenly distributes the sorted Morton IDs among

all processes so that the pth process contains list Mp, which is a consecutive part of

the sorted global Morton code M , along with corresponding data Dp
c . In addition,

the sorting algorithm places identical Morton codes on the same process, which is
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equivalent to assigning the list of boxes overlapping a grid cell to a single process.

This process is responsible for checking intersections of boxes on this grid cell’s

list.

We find intersecting bounding box pairs on process p by checking all pairs of

bounding boxes in Ipc,b which have the same Morton code (line 5–11 of Alg. 4).

Line 8 checks the candidate intersecting bounding box pairs to see whether they

actually intersect or not. For each pair of intersecting boxes (j, k) we generate two

ordered pairs (k, j) and (j, k).

The process p sends the pairs to the process which originally owned the first

vesicle in each P p entry, using a sparse MPI all-to-all communication call. After

the MPI communication, the pth process will have a list of intersecting bounding

box pairs P p = {(j, k)}, where j ∈ Ipb and k ∈ Iqb . These intersecting bounding

box pairs are used as the contact candidates for vesicle pairs in STIV calculation

below.

3.3.3.2 Phase 2: STIV computation

We compute the STIV between the candidate vesicle pairs found by Alg. 4 to

identify pairs that actually intersect.

Algorithm 5 summarizes the steps for computing the STIV. The algorithm starts

by defining global index sets Ip for vesicle points stored on each process (this

requires an MPI reduction on the set of processes).

Since vesicles are distributed over multiple processes, vesicles may have contact

with vesicles on other processes; to compute STIV for all vesicles owned by a process

p, positions and velocities of points of vesicles in P p need to be communicated to

p. We refer to these copies of vesicle information as ghost vesicles.
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Using the contact candidate vesicle pairs P p, we compute the ghost vesi-

cles’ global index sets I
p

which are used to distribute ghost vesicle point data

{Xp

0, X
p

1} (lines 4 and 5). On each process, using the contact detection method

Section 3.3.1.3, we compute the contact volumes V p, the contact volumes’ index

set Ipv , the contact volume Jacobian Jp with respect to the local vesicle points on

process p, and the contact volume Jacobian J
p

with respect to the ghost vesicle

points copied to this process (line 6).

Initially, the contact volume index set Ipv is computed from local data and

contains local indices. Ipv is converted to global indices by doing an MPI scan

communication on Np
v .

In addition, process p sends back J
p

to the owner process of each ghost vesicle

and Jp on each process is updated to store rows J(Ipv , :) of the global Jacobian

matrix J .

In the contact volume calculation, each discretization point on the vesicle can

only be involved in one contact volume, i.e., each column of J has only a single

Algorithm 5: ContactVolume.

input : Minimum separation distance dm, vesicles’ initial position Xp
0 ,

candidate position Xp
1

output: Contact Volumes V p and the Jacobian Jp

1 Compute Ip // MPIScan

2 Bp ← getBoundingBox(Xp
0 , X

p
1 , dm)

3 P p ← getIntersectingBBPair(Bp, Ip) // Alg. 4

4 I
p ← getGhostVesicleID(P p)

5 Send and receive {Xp

0, X
p

1} // MPIAlltoallSparse

6 {V p, Ipv , J
p, J

p} ← checkContact(Xp
0 , X

p
1 , X

p

0, X
p

1, dm)

7 updateContactData(Ipv , J
p, J

p
) // MPIScan and MPIAlltoallSparse
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nonzero element. As a consequence, Jp can be compactly stored as vectors gpX and

gpI where gpX is the contact volume gradient with respect to Xp
1 and gpI stores the

contact volume indices the contact volume gradient components belong to. Next,

we can proceed to solve the LCP and compute the magnitude of the contact force.

3.3.3.3 Solving the linear complementarity problem

The LCP matrix B = JA−1GJT is an Nv ×Nv matrix, where Nv is the number

of contact volumes, Nv = O(N). Each entry Bj,k is the change in the jth contact

volume induced by the kth contact force. Due to sparsity in matrices J and A

(when the locally implicit scheme is used), the matrix B is sparse and typically

diagonally dominant, since most STIV volumes are spatially separate. Two key

algorithms are the parallel construction of the LCP matrix B and applying it to a

vector (Alg. 6).

In Alg. 6, we form the LCP matrix B, taking advantage of its sparsity and

the sparsity of J. After contact computation (Alg. 5), each process owns a list of

contact volumes with indices Ipv . A process p stores rows B(Ipv , :) of B and λ(Ipv ),

the local vector of Lagrange multipliers. Note that Ipv can be empty, which means

there is no contact volume on process p. To form B(Ipv , :), we loop over all the

vesicles residing on process p.

For each contact volume pair (j, k) that a vesicle i is involved in, let gj and gk

denote the rows j and k of the Jacobian matrix’s columns with respect to vesicle

i sample point positions, then B(j, k) is updated as in line 7 of Alg. 6.

Finally, process p needs to send B(j, k) to process q if j ∈ Iqv and p 6= q, the

owner of jth contact volume.

Since the matrix B and the vector λ is distributed non-contiguously, some
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communication is needed to compute the matrix-vector product between B and

λ. Process p needs to send λ(k) to process q if there is any non-zero entry B(j, k)

where j ∈ Iqv and k ∈ Ipv . After the communication, we can compute the LCP

matrix-vector product Bλ locally.

Algorithm 6: Form LCP Matrix.

input : Contact volume Jacobian J and CLI scheme matrix A
output: LCP matrix B
// For pth process, form LCP matrix block B(Ipv , :). Use map

data structure for sparse matrix B

1 B← ∅
2 for each local vesicle i do
3 for each contact volume j vesicle i involved in do
4 for each contact volume k vesicle i involved in do

// accumulate change from kth contact force to jth

contact volume

5 B(j, k) = B(j, k) + gj · A(i, i)−1G(i, i)gk

6 if j /∈ Ipv then
7 Send B(j, k) to process q such that j ∈ Iqv

Algorithm 7: Minimum Map LCP Solver.

require: LCPMatrixApply(), V and ε
output : λ

1 e← ε
2 λ← 0
3 while e > ε do
4 y← V + LCPMatrixApply(λ)
5 A← {i|yi < λi} // index of active constraints

6 F← {i|yi ≥ λi}
7 Iteratively solve

[
B −I
PF PA

] [
∆λ
∆y

]
=

[
0

−PAy − PFλ

]
// B applied

by LCPMatrixApply

8 τ ← projectLineSearch(∆λ)
9 λ← λ+ τ∆λ

10 e← ‖H(λ)‖
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To solve the LCP, we use the minimum-map Newton method [15, Section 5.8],

which only requires the application of the LCP matrix. For the sake of completeness,

we briefly summarize the minimum-map Newton method. Let y = V + Bλ. Using

the minimum map reformulation, we can convert the LCP to a root-finding problem

H(λ) ≡


h(λ1, y1)

· · ·

h(λM , yM)

 = 0, (3.3.16)

where h(λi, yi) = min(λi, yi). This problem is solved by Newton’s method (Alg. 7).

In the algorithm, PA and PF are selection matrices: PAλ selects the rows of λ

whose indices are in set A and zeros out all the other rows. While function H

is not smooth, it is Lipschitz and directionally differentiable, and its B-derivative

PAB + PF can be formed to find the descent direction for Newton’s method [21].

The matrix PAB + PF is a sparse matrix, and we use GMRES to solve this linear

system. Since B is sparse and diagonally dominant, in practice the linear system

is solved in few GMRES iterations and the Newton solver converges quadratically.

3.4 Results

In this section, we present results characterizing the accuracy, robustness, and

efficiency of a locally-implicit time stepping scheme (CLI) combined with our

contact resolution framework in comparison to other schemes described in Sec-

tion 3.3.2: with no contact resolution (i.e., LI scheme) and globally semi-implicit

schemes with/without repulsion force (i.e., GI and RGI schemes).

• First, to demonstrate the robustness of our scheme in maintaining the pre-

98



scribed minimum separation distance with different viscosity contrast ν, we

consider two vesicles in an extensional flow, Section 3.4.1.

• In Section 3.4.2, we explore the effect of minimum separation dm and its effect

on collision displacement in shear flow. We demonstrate that the collision

scheme has a minimum effect on the shear displacement.

• We present the timing for strong scalability and the weak scalability of our

scheme.

• We close this section by reporting the computation cost (wall clock time) for

simulations with different volume fractions, and compare the cost with RGI

scheme.

Our experiments support the general observation that when vesicles become

close, the LI scheme cannot, at a reasonable resolution of discretization, compute

the interaction forces between close vesicles [88] and the time stepping becomes

unstable. The GI scheme stays stable longer, but the iterative solver requires more

and more iterations to reach the desired tolerance, which in turn implies higher

computational cost for each time step. Finally, the RGI scheme requires choosing

a penalty coefficient, which is typically done on case-by-case basis. If the penalty

coefficient is too small, collisions many not be resolved, and an excessively large

coefficient increases the error.

3.4.1 Extensional flow

Recall that to maintain accuracy of integral computations at a fixed surface

resolution, one needs to ensure that a minimum separation distance is maintained.
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a t = 0 b t = 1.5 c t = 3.5

d t = 10

Figure 3.4: Snapshots of two vesicles in extensional flow using the CLI

scheme. As the distance between two vesicles decreases, the CLI scheme maintains
the desired minimum separation distance dm = 0.009 and two vesicles also maintain
a symmetric configuration. The viscosity contrast is 64 in this simulation.

To demonstrate the ability of our framework to maintain a prescribed separation

distance, we consider two vesicles placed symmetrically with respect to the z axis

in the extensional flow u = [−x, y/2, z/2]. The vesicles have a reduced volume

of 0.85 and we use a first-order time stepping with CLI and RGI schemes for the

experiments in this test. We run the experiments with different viscosity contrasts

and report the resulting minimal distance between vesicles. Snapshots of the vesicle

configuration in the CLI scheme are shown in Fig. 3.4.

In Fig. 3.5a, we plot the distance between two vesicles over time using two

different schemes (CLI and RGI). The vesicles continue to get closer in the RGI

scheme and fluctuates when the repulsion force is present. On the other hand,

the CLI scheme consistently maintains the desired minimum separation distance

between two vesicles. In Fig. 3.5b, we show the minimum distance between vesicles

at the end of simulations, T = 10, versus the viscosity contrast with no collision

handling. We use adaptive time stepping GI scheme to run the simulations to
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Figure 3.5: Distance between two vesicles in extensional flow.
Fig. 3.5a The distance between two vesicles over time for both CLI and RGI schemes
(in all case, the viscosity contrast is 64). The vesicles start to be in contact around
t = 6. The black curve shows the minimal distance for the piecewise-linear trian-
gular approximations to a p = 32 spherical harmonics grid. The red curve shows
the estimated minimal distance between high order spectral surfaces (computed on a
linear-triangulation to 4× upsampled surfaces). For the CLI scheme, the minimum
separation distance dm is set to 0.009; as discussed in Section 3.3.1.3, we set sepa-
ration distance to (1 + 2α)dm with α = 0.05 for p = 32 piecewise-linear triangular
approximation for contact detection. For the RGI scheme, the repulsion coefficient
Cr is set to 0.1, 0.01 and 0.001. R0 :=

√
Area/4π denotes the effective radius of

a vesicle. In these simulations R0 = 1.136 and it is used to normalize the minimal
distance (the y-axis). The CLI scheme easily maintains the prescribed minimum
separation of dm. In this example, the RGI scheme maintains a similar minimal
separation distance with Cr = 0.01, causes large separation distance with Cr = 0.1;
and results in collision with Cr = 0.001. Fig. 3.5b The final distance (at T = 10)
between two vesicles as viscosity contrast is increased (using GI scheme).

get the final (T = 10) minimum distance between two vesicles. As expected, we

observe that the minimum distance between two vesicles decreases as the viscosity

contrast is increased. In 3d, however, the minimum distance decreases much faster

as the viscosity contrast is increased relative to 2d simulations [53].

To validate our estimates for the error due to piecewise-linear triangular ap-

proximation in the minimal separation calculation instead of the exact high-order

geometry discretization, we plot the minimum distance at each step for two cases
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in Fig. 3.5a: (i) the piecewise-linear triangular approximation; and (ii) the corre-

sponding 4× upsampled shape. We observe that, as expected, the actual minimal

distance for the smooth, high-order surface is smaller than the minimal distance

for piecewise-linear triangular approximation, while the difference between two

distances is small compared to the target minimum separation distance.

With the minimum-separation constraint, any desired minimum separation dis-

tance between vesicles is maintained and the simulation is more robust as shown

in Figs. 3.4 and 3.5. Moreover, the CLI scheme maintains the prescribed mini-

mum separation, while the RGI scheme may fluctuate or collide depending on the

prescribed repulsion coefficient Cr. We will show in Section 3.4.5 that with the

prescribed repulsion coefficient of Cr = 0.01 and similar accuracy compared to the

CLI scheme, the RGI does not prevent collisions and is more expensive than the

CLI scheme.

3.4.2 Shear flow

We consider vesicles in an unbounded shear flow and explore the effects of

minimal separation on shear diffusivity. We report the difference between centroids

as a function of the minimum separation distance dm to demonstrate the effect of

the minimum separation constrained system on the dynamics. For this experiment,

we set the viscosity contrast to 5.

Snapshot of the flow is shown in Fig. 3.6. In Fig. 3.7, we show the convergence of

the vertical displacement between vesicle as a function of the minimum separation

dm and the convergence rate of the scheme.

In Fig. 3.7a, we report the vertical offset between centroids over time as we

increase the minimum separation distance. We consider two vesicles of reduced
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volume 0.85 (to minimize the effect of vesicles’ relative orientation on the dynamics)

placed in a shear flow with (non-dimensional) shear rate χ = 1. We observed in

our previous work that in semi-implicit methods for vesicle suspensions, the stable

time step is inversely proportional to shear rate χ [86, Table 6] and [88, Table 4].

With the observation that ∆tstable ∝ χ−1, we report the results for a single shear

a t = 0 b t = 5 c t = 20 d t = 22.5 e t = 25

Figure 3.6: Shear flow experiment. The snapshots of two vesicles in shear
flow. Initially, one vesicle is placed at [−5.5, 0, 0] and the second vesicle is placed at
[0, 0, 0]. The viscosity contrast for both vesicles is set to 5.
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Figure 3.7: The offset δt(dm) between the centroids of two vesicles
in shear flow and convergence rate. The initial offset is δ0 = 0, viscosity
contrast is set to 5, and the effective radius is R0 = 1.136. Fig. 3.7a This plot shows
the vertical offset δt(dm) = |z1(t)−z0(t)| over time for different minimum separation
distance dm. The dm ranges from 5e−3 to 8e−2, the simulations converge, as we
decrease the dm. Spherical harmonic order p = 16 is used. Fig. 3.7b This plot shows
the error in the final (T = 25) centroid location as we decrease the time step size for
two spherical harmonic orders p = 16 and p = 32. We set dm = 5e−3 for p = 16
and dm = 2.5e−3 for p = 32. The final error in centroids is calculated with respect
to the adaptive GI without repulsion force and p = 32 and error factor Ef = 0.05.
As expected we observe first order convergence with our CLI scheme.
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rate and the approximate stable time step can be estimated for other rates from

this. We let δt(dm) := |z1(t; dm)− z0(t; dm)| denote the vertical offset between the

centroids of vesicles at time t. Initially, two vesicles are placed with a relative ver-

tical offset δ0 = 0, as shown in Fig. 3.6. The background shear flow is u = [χz, 0, 0]

and the viscosity contrast is set to 5 in this experiment. In Fig. 3.7a, we plot δt

with respect to x1(t) − x0(t) for different minimum separation distances. As the

minimum separation parameter dm is decreased, the simulations with minimum-

separation constraint converges to the precisely computed trajectory.

In Fig. 3.7b, we report the convergence rate for the final error in centroid

locations with some fixed minimum separation distance as we decrease the time

step size. We use two p = 16 and p = 32 and dm accordingly. We observe first

order convergence with CLI scheme. The LI scheme requires very small and often

impractical time steps to prevent instability or intersection; we will revisit this in

a later section.

3.4.3 Strong scalability

In this section and next, we use report the parallel scaling results for our frame-

work. We used the Stampede1 system at the Texas Advanced Computing Center

(TACC) to obtain the strong and weak scalability results. Each compute node in

Stampede1 has two eight-core Intel Xeon E5-2680 CPUs running at 2.7GHz and

32GB of memory. We use the periodic Taylor vortex flow, as shown in Fig. 3.8, to
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d y−z e y−z f y−z

g x−z h x−z i x−z

j x−y k x−y l x−y

Figure 3.8: Taylor vortex flow experiment. Snapshots of 1440 vesicles in
Taylor vortex flow.
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investigate strong scaling. For this flow, the background velocity is

u∞(x, y, z) = α sin

(
2πx

L

)
cos

(
2πy

L

)
sin

(
2πz

L

)
e1 (3.4.1)

+ α cos

(
2πx

L

)
sin

(
2πy

L

)
sin

(
2πz

L

)
e2,

where L is the periodic length and α is the scaling factor. For the simulations

in this section, we choose L = 28.4 and α = 1. Resulting timings are shown in

Fig. 3.9.

We used the following simulation parameters:

• The number of vesicles is 1440; the vesicles are ellipsoidal, of effective radius

R0 = 1.34 with reduced volume 0.91 and the bending modulus is 0.1.

• Vesicle volume fraction is 58%.

• For spatial discretization, order p = 16 spherical harmonic were used, and

the grid was upsampled to twice the resolution for collision detection.

• The time horizon is T = 2 and the time step size is ∆t = 0.1.

• The block-diagonal solver relative tolerance is chosen to be 1e−5.

The average number of contacts per vesicle stays about 2 per time step in

our simulation. In Fig. 3.9, we report the total CPU time (wall-clock-time ×

CPU cores) for the number of cores ranging from 16 (1 compute node) to 960 (60

compute nodes). We achieve a speedup of 20.1 for the wall-clock-time or 33.5%

strong scaling efficiency.

Figure 3.9 also shows the breakdown of the time spent in different parts of the

code. As is evident in Fig. 3.9b, there are two main regimes in the scaling. When
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Figure 3.9: Strong scalability for periodic Taylor-vortex flow. Setup

is the setup phase for FMM, FMM is the actual FMM evaluation, Near is the near-
singular calculation, (FMM+Near is line 2 of Alg. 3), LIStep represents the solve
phase of LI scheme FormLCP and SolLCP are lines 8 and 9 respectively in Alg. 3
and constitute the time spent on LCP , CV is the contact volume calculation which
corresponds to Alg. 5, GetDx is the phase of calculating new candidate solution (line
12 of Alg. 3), and Other represents all other calculations.

there are few vesicles per core (going from 64 to 128 cores), the load imbalance

for the collision becomes more pronounced. The fraction of time spent on contact

volume computation (CV) grows due to load imbalance with respect to the number

of collisions and STIV calculation. Simple rebalancing by re-assigning different

numbers of vesicles to processors is ineffective because of the subsequent increase

in the load imbalance for the solver and FMM portions. The computational load

of collision computations is dynamic and depends on the flow regime. To improve

scalability of the collision computation in strong scaling regime, careful dynamic

rebalancing, that takes into account the trade off between collision and solver

balancing, will be needed.

In our experiments, we observe that when the grain size (i.e., the number

of vesicles per processor) is not too small, randomly distributing vesicles among

processors with equal number of vesicles per processor achieves a good load balance
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a t = 0 b t = 5 c t = 20

Figure 3.10: Sedimentation of poly-disperse vesicles. The snapshots of
512 (8×8×8 lattice) vesicles sedimenting under gravity. Each vesicle has a reduced
volume of 0.91, bending modulus is in the range [0.05, 0.1], viscosity contrast in the
range [0.5, 5] and an excess density of 1. We use time step size ∆t = 0.01 and time
horizon T = 30 in this simulation, the initial lattice has volume fraction of 53%.

for both solver and collision parts of the code.

The solver time (LIStep) dominates for very small grain size, since the linear

system is block-diagonal and each process requires a different number of GMRES

iterations for convergence; processes with fewer GMRES iterations will wait for

processes requiring more GMRES iterations.

3.4.4 Weak Scalability

To showcase different flows, we use the sedimentation of a poly-disperse sus-

pension of vesicles as in Fig. 3.10 on 16K CPU cores for our weak scaling study.

The scaling results are shown in Fig. 3.11. We use time step size of ∆t = 0.01 and

a time horizon T = 0.1. All other simulation parameters are equal to those of the

strong scaling test.
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Figure 3.11: Weak scalability results for poly-disperse sedimentation.
The left figure is with grain size 1 vesicle per core, the right figure is with grain size 8
vesicles per core. The flow snapshots are shown in Fig. 3.10 and the flow parameters
are outlined therein. For each case, we present a breakdown of the wall-clock-time
spent on each of the different functions in our algorithm. See the caption of Fig. 3.9
for the description of the labels.

We present two sets of results for 1 vesicle per core (Fig. 3.11 left) and 8 vesicles

per core (Fig. 3.11 right). We present a breakdown of the time spent on different

functions of our algorithm as we scale from 16 cores to 16K cores. Similar to the

strong scaling case, load imbalance with respect to the number of collisions causes

the timing to grow. In this flow, different regions of space have very different

number of collisions.

Another factor that affects the timing is the number of contact-resolving iter-

ations, which grows from 4 to 8 as we increase the number of cores from 16 to

16K (i.e., as the problem size increases). For uniform lattice as in sedimentation

experiment Fig. 3.10, the number of contact-resolving iterations stabilizes to about

8 as we increase the number of cores.
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3.4.5 High volume-fraction flows

In our final experiment, we investigate the effectiveness of our scheme in mod-

eling flows with high volume-fraction φ. We use the wall-clock-time for a fixed

time horizon to quantify the cost of simulation for each scheme (CLI, RGI, and

time-adaptive RGI).

For this experiment, we use Taylor-vortex flow with 168 prolate vesicles dis-

tributed on a staggered lattice as shown in Fig. 3.12. The shape and distribution of

vesicles are chosen to achieve high volume fractions), the simulation time horizon

is set to T = 15. We change the periodic length L and spacing between vesicles

to obtain different volume fractions. All of the simulations are executed on a ded-

icated node with the same type of CPU with 1 MPI process to ensure the wall time

used is calculated consistently.

We run three sets of experiments:

1. CLI scheme: We use the CLI scheme to run the simulations with different

volume fractions φ and different time step sizes ∆t. The minimum separa-

Figure 3.12: Volume fraction experiment. An example of the initial distri-
bution of 168 vesicles in Taylor-vortex flow. We modify the spacing between vesicles
to obtain different volume fractions.
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tion dm is set to 0.009. We report the total wall-clock-time (in seconds) in

Table 3.4a. Since the time stepping scheme is locally implicit, large time

steps cause the simulation to diverge. We mark those cases by “LI-div”. As

φ
∆t

0.1 0.2 0.4 0.8

0.35 3.1e3 2.1e3 1.8e3 LI-div
0.40 3.3e3 2.2e3 1.9e3 LI-div
0.45 3.7e3 2.5e3 2.1e3 LI-div
0.50 4.2e3 2.7e3 2.3e3 LI-div
0.55 5.2e3 3.4e3 2.7e3 LI-div

(a) CLI scheme

φ
Ef

0.25 0.5 1.0 2.0 4.0

0.35 150e3 150e3 142e3 136e3 Col
0.40 139e3 135e3 133e3 127e3 Col
0.45 Limit 172e3 173e3 173e3 Col
0.50 Limit 158e3 158e3 154e3 Col
0.55 Limit 143e3 139e3 Col Col

(b) Adaptive RGI scheme

Table 3.4: Wall-clock-time vs. volume fraction. Wall-clock-time (sec-
onds) for simulating 168 vesicles in Taylor vortex flow with different volume frac-
tions. Table 3.4a For the CLI scheme, dm = 0.009. Table 3.4b For the RGI scheme,
the Cr = 0.01.

Cr

∆t

0.025 0.05 0.1 0.2 0.4 0.8

0.01 49.7e3 Col Col Col Col RGI-div
0.02 46.6e3 33.3e3 20.2e3 Col Col RGI-Div
0.05 42.7e3 30.1e3 18.8e3 11.1e3 Col RGI-Div
0.10 40.1e3 29.3e3 17.5e3 10.5e3 Col RGI-Div

Table 3.5: Wall-clock-time vs. repulsion coefficient. Wall-clock-time
(seconds) for the non-adaptive RGI scheme with different repulsion coefficient Cr
and fixed time step ∆t. The volume fraction is fixed at φ = 0.5.
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expected, the wall-clock-time shows weak dependence on the volume fraction

since there are more collisions.

2. Adaptive time stepping with repulsion: We use adaptive time stepping RGI

scheme to run simulations with different error factors Ef , different volume

fractions φ, and a fixed repulsion coefficient Cr = 0.01, which maintains sim-

ilar separation distance as dm = 0.009 for the CLI scheme above, Fig. 3.5a. In

the adaptive scheme, the error factor is the tolerance for the error committed

in each simulation time unit [58]. If the problem is non-stiff, one expects the

time step to be proportional to Ef . Therefore, the counterpart of Ef in non-

adaptive schemes is the step size ∆t. In Table 3.4b, we report the wall-clock

time in seconds provided that the simulation finishes. If ∆t of the adaptive

scheme is reduced below (1e−11) we abort the simulation (these are marked

as “Limit” in the table). If a collision occurs, we stop the simulation and

mark it as “Col”.

In Table 3.4b, we chose the widest possible range for Ef (going from .25 to

4.0) to present the full picture with respect to the simulation cost. Comparing

the results in Table 3.4, we see that the adaptive scheme is one to two orders

of magnitude more expensive for similar cases. For example, for φ = 0.55,

the RGI scheme with Ef = 0.5 requires 143e3 seconds compared to 2.7e3 of

the CLI scheme with ∆t = 0.4; a 53× speedup.

3. Non-adaptive RGI scheme: To compare the cost of RGI scheme with that of

CLI, we report the wall-clock time for fixed ∆t and different repulsion coef-

ficients Cr; the volume fraction for this experiment is fixed at φ = 0.5. The

time steps are chosen to include those used for the CLI scheme in Table 3.4.
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In Table 3.5 we report the wall-clock time (in seconds) when the simulation

finishes. The cases where the scheme diverges, because the chosen time step

is unstable due to the stiffness introduced by the repulsion force, are marked

as “RGI-div”.

Larger repulsion coefficients avoid collision at the expense of accuracy. In

[58, Figure 5(f)], the error analysis for different repulsion coefficients shows

that large repulsion coefficient will introduce significant error in the center of

mass trajectory. The largest repulsion coefficient we test here is 0.10 which

already has a significant error. To match the error of CLI, Cr needs to be set

around 0.01 that in turn requires very small time step.

The results in Table 3.5 show that for a fixed ∆t, the repulsion coefficient

needs to be adjusted for the simulation to succeed. There are many factors

influencing the choice of repulsion coefficient, e.g., bending modulus, viscos-

ity contrast, volume fraction, reduced volume, background flow and vesicle

shape, which makes an automatic choice difficult.

Comparing to the row corresponding to volume fraction φ = 0.5 of the CLI

scheme in Table 3.4, the CLI scheme is at least 5× faster than RGI with the

“right” choice of the repulsion coefficient.

3.5 Conclusion

We have introduced new parallel algorithms for efficient 3d simulation of non-

dilute suspensions of deformable particles immersed in Stokesian fluid in this chap-

ter. We demonstrated the parallel scaling of the algorithms on up to 16K CPU cores.

Moreover, we demonstrated through numerical experiments that our scheme is or-
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ders of magnitude faster than the alternatives for several setups.
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Chapter 4

Parallel algorithms for direct

simulation of blood flow in

complex geometry

4.1 Introduction

The ability to simulate complex biological flows from first principles has the

potential to provide insight into complicated physiological processes. Simulation

of blood flow, in particular, is of paramount biological and clinical importance.

Blood vessel constriction and dilation affects blood pressure, forces between RBCs

can cause clotting, various cells migrate differently through microfluidic devices.

Achieving accurate, robust and scalable simulation for a blood flow requires

that the system meets a number of stringent requirements. While previous work

has made significant progress [58, 87], we focus on several new infrastructure com-

ponents essential for handling confined flows and arbitrarily long-time, high volume
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fractions RBC flows; in particular, our work is able to realize each of these goals.

We formulate the viscous flow in blood vessels as an integro-differential equation

and make use of fast scalable summation algorithms for efficient implementation,

as in prior RBC simulations [105]. This is the only approach to date that maintains

high accuracy at the microscopic level while avoiding expensive discretization of

fluid volume: all degrees of freedom reside on the surfaces of RBCs and blood

vessels.

To achieve high accuracy with minimal degrees of freedom per cell, we required

a smooth yet compact boundary representation; we use spherical harmonic rep-

resentations for cell boundaries and high-order polynomials for the blood vessels.

We update RBC positions with a semi-implicit time stepping scheme.

The most important novel aspects of our system include: (a) handling the

RBC-blood vessel interaction with a fully parallel, high-order boundary integral

equation solver; (b) explicit handling of collisions with a parallel constraint-based

resolution and detection algorithm. The former is essential for modeling confined

flows, while the latter is essential for handling high-volume fraction flows at long

time scales without excessively small time steps or fine spatial discretizations.

Our contributions

1. We present a parallel platform for long-time simulations of RBCs through

complex blood vessels. The extension to suspensions of various particulates

(fibers, rigid bodies etc.) is straightforward from the boundary integral for-

mulation. Flows through several complicated geometries are demonstrated.

2. We have parallelized a boundary solver for elliptic PDEs on smooth complex

geometries in 3d. By leveraging the parallel fast-multipole method of [56] and

116



the parallel forest of quadtrees of [13], we are able to achieve good parallel

performance and load balancing.

3. We have extended the parallel collision handling of [54] to include rigid 3d

boundaries composed of patches.

4. We present weak and strong scalability results of our simulation on the Sky-

lake cluster and weak scaling results on the Knights Landing cluster on Stam-

pede2 at the Texas Advanced Computing Center along with several visual-

izations of long-time, large-scale blood cell flows through vessels. We observe

49% strong scaling efficiency for a 32-fold increase of compute cores. In our

largest test on 12288 cores, we simulate 1,048,576 RBCs in a blood vessel

composed of 2,097,152 patches with weak scaling efficiency of 71% compared

to 192 cores (Fig. 4.7). In each time step, this test uses over three billion

degrees of freedom and over four billion surface elements (triangles).

5. We are able to simulate realistic human blood flows with RBC volume frac-

tions over 47% (Fig. 4.4).

Limitations Despite the advantages and contributions of the computational

framework presented here, our work has some limitations. We have made sev-

eral simplifications in our model for RBCs. We are restricted to the low Reynolds

number regime, i.e., small arteries and capillaries. We use a simplified model for

RBCs, assuming the cell membranes to be inextensible and with no in-plane shear

rigidity, In our scheme, each RBC is discretized with an equal number of points,

despite the varied behavior of the velocity through the vessel. Adaptive refinement

is required in order to resolve the velocity accurately. Finally, the blood vessel is
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constructed to satisfy certain geometric constraints that allow for the solution of

Eq. (4.2.5) via singular integration. This can be overcome through uniform refine-

ment, but a parallel adaptive algorithm is required to maintain good performance.

Related work: blood flow Large-scale simulation of RBC flows typically fall

into four categories: (a) Immersed boundary (IB) and immersed interface meth-

ods ; (b) particle-based methods such as lattice Boltzmann (LB), dissipative par-

ticle dynamics (DPD) and smoothed particle hydrodynamics (SPH) (c) multiscale

network-based appraoches and (d) boundary integral equation (BIE) approaches.

For a comprehensive review of general blood flow simulation methods, see [26]. IB

methods can produce high-quality simulations of heterogeneous particulate flows in

complex blood vessels [6, 7, 111]. These methods typically require a finite element

solve for each RBC to compute membrane tensions and use IB to couple the stresses

with the fluid. This approach quickly becomes costly, especially for high-order el-

ements, and although reasonably large simulation have been achieved, large-scale

parallelization has remained a challenge. A different approach to simulating blood

flow is with multiscale reduced-order models. By making simplifying assumptions

about the fluid behavior throughout the domain and transforming the complex

fluid system into a simpler flow problem, the macroscopic behaviors of enormous

capillary systems can be characterized [72, 73] and scaled up to thousands of cores

[71]. This comes at a cost of local accuracy; by simulating the flows directly, we

are able to accurately resolve local RBC dynamics that are not captured by such

schemes.

Particle-based methods have had the greatest degree of success at large-scale

blood flow simulations [29, 32, 90, 91]. These types of approaches are extremely
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flexible in modeling the fluid and immersed particles, but usually suffer from nu-

merical stiffness that requires very small time steps and are computationally de-

manding, for a given target accuracy. For a comprehensive review, see [115]. There

have also been recent advances in coupling a particle-based DPD-like scheme with

IB in parallel [114, 116], but the number of RBCs simulated and the complexity of

the boundary seems to be limited.

BIE methods have successfully realized large-scale simulations of millions of

RBCs [87] in free space. Recently, new methods for robust handling of collisions

between RBCs in high-volume fraction simulations have been introduced [54, 58].

This approach is versatile and efficient due to only requiring discretization of RBCs

and blood vessel surfaces, while achieving high-order convergence and optimal

complexity implementation due to fast summation methods [44, 88, 95, 96, 104,

105, 122]. To solve elliptic partial differential equations, BIE approaches have

been successful in several application domains [12, 106, 107, 117]. However, to

our knowledge, there has been no work combining a Stokes boundary solver on

arbitrary complex geometries in 3d with a collision detection and resolution scheme

to simulate RBC flows at large scale. This work aims to fill this gap, illustrating

that this can be achieved in a scalable manner.

Related work: collisions Parallel collision detection methods are a well-studied

area in computer graphics for both shared memory and GPU parallelism [41, 50,

61]. [17, 38] detect collisions between rigid bodies in a distributed memory archi-

tecture via domain decomposition. [70] constructs a spatial hash to cull collision

candidates and explicitly check candidates that hash to the same value. The paral-

lel geometry and physics-based collision resolution scheme detailed in [112] is most
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similar to the scheme used in this work. However, such discrete collision detection

schemes require small time steps to guarantee detections which can become costly

for high-volume fraction simulations.

4.2 Formulation and solver overview

4.2.1 Problem summary

We simulate the flow of N cells with deformable boundary surfaces γi, i =

1, . . . , N in a viscous Newtonian fluid in a domain Ω ⊂ R3 with a fixed boundary

Γ. The governing partial differential equations (PDEs) describing the conservation

of momentum and mass are the incompressible Stokes equations for the velocity u

and pressure p, combined with velocity boundary conditions on Γ. Additionally,

we model cell membranes as massless, so the velocity Xt of the points on the cell

surface coincides with the flow velocity:

−µ∆u(x) +∇p(x) = F(x) and ∇ · u(x) = 0, x ∈ Ω, (4.2.1)

u(x) = g(x), x ∈ Γ, (4.2.2)

Xt = u(X), X ∈ γi(t), (4.2.3)

where µ is the viscosity of the ambient fluid; in our simulations, we use a simplified

model with the viscosity of the fluid inside the cells also being µ although our code

supports arbitrary viscosity contrast. The right-hand side force in the momentum

equation is due to the sum of tension and bending forces f = fσ + fb; it is con-

centrated on the cell surfaces. We assume that cell surfaces are inextensible, with

bending forces determined by the Canham-Helfrich model [14, 37], based on the
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surface curvature, and surface tension determined by the surface incompressibility

condition ∇γi · u = 0 resulting in

F(x) =
∑
i

∫
γi

f(y)δ(x− y)dy

(see, e.g., [88] for the expressions for f). Except on inflow and outflow regions of

the vascular network, the boundary condition g is zero, modeling no-slip boundary

condition on blood vessel walls.

4.2.1.1 Boundary integral formulation

To enforce the boundary conditions on Γ, we use the standard approach of

computing u as the sum of the solution ufr of the free-space equation Eq. (4.2.1)

without boundary conditions but with non-zero right-hand side F(x), and the

second term uΓ obtained by solving the homogeneous equation with boundary

conditions on Γ given by g − ufr.

Following the approach of [54, 64, 75, 77], we reformulate Eqs. (4.2.1) and (4.2.2)

in the integral form. The free-space solution ufr can be written directly as the sum

of the single-layer Stokes potentials uγi :

uγi(x) = (Sif)(x) =

∫
γi

S(x,y)f(y)dy, x ∈ Ω. (4.2.4)

To obtain uΓ, we reformulate the homogeneous volumetric PDE with nonzero

boundary conditions as a boundary integral equation for an unknown double-layer

density φ defined on the domain boundary Γ:

(
1

2
I +D +N

)
φ = D̃Γφ = g − ufr, x ∈ Γ, (4.2.5)
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where the double-layer operator is Dφ(x) =
∫

Γ
D(x,y)φ(y)dy with double-layer

Stokes kernel D(x,y), and the null-space operator needed to make the equations

full-rank is defined as (Nφ)(x) =
∫

Γ
(n(x) · φ(y))n(y)dy (cf. [53]). One of the key

differences between this work and previous free-space large-scale simulations is the

need to solve this equation in a scalable way. Once the density φ is computed, the

velocity correction uΓ is evaluated directly as uΓ = Dφ.

The equation for the total velocity u(x) at any point x ∈ Ω is then given by

u = ufr + uΓ =
N∑
i=1

uγi + uΓ. (4.2.6)

In particular, this determines the update equation for the boundary points of cells;

see Eq. (4.2.3).

Contact formulation In theory, the contacts between surfaces are prevented

by the increasing fluid forces as surfaces approach each other closely. However,

ensuring accuracy of resolving forces may require prohibitively fine sampling of

surfaces and very small time steps, making large-scale simulations in space and

time impractical. At the same time, as shown in [53], interpenetration of surfaces

results in a catastrophic loss of accuracy due to singularities in the integrals.

To guarantee that our discretized cells remain interference-free, we augment

Eqs. (4.2.1) and (4.2.2) with an explicit inequality constraint preventing collisions.

We define a vector function V (t) with components becoming strictly negative if

any cell surfaces intersect each other, or intersect with the vessel boundaries Γ.

More specifically, we use the space-time interference volumes introduced in [36]

and applied to 3D cell flows in [54]. Each component of V corresponds to a

single connected overlap. The interference-free constraint at time t is then simply
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V (t) ≥ 0.

For this constraint to be satisfied, the forces f are augmented by an artificial

collision force, i.e., f = fb + fσ + fc, fc = ∇uV
Tλ, where λ is the vector of Lagrange

multipliers, which is determined by the additional complementarity conditions:

λ(t) ≥ 0, V (t) ≥ 0, λ(t) · V (t) = 0, (4.2.7)

at time t, where all inequalities are to be understood component-wise.

To summarize, the system that we solve at every time step can be formulated

as follows, where we separate equations for different cells and global and local parts

of the right-hand side, as it is important for our time discretization:

Xt =

(∑
j 6=i

Sjfj +Dφ

)
+ Sif i, for points on γi, (4.2.8)

∇γi ·Xt = 0, fj = f(Xj, σj, λ), (4.2.9)

BΓφ = g −
∑
j

Sjfj, for points on Γ, (4.2.10)

λ(t) ≥ 0, V (t) ≥ 0, λ(t) · V (t) = 0. (4.2.11)

At every time step, (4.2.11) results in coupling of all close γi’s, which requires

a non-local computation. We follow the approach detailed in [53, 54] to define and

solve the nonlinear complementarity problem (NCP) arising from cell-cell interac-

tions in parallel, and extend it to prevent intersection of cells with the domain

boundary Γ, as detailed in Section 4.4.
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4.2.2 Algorithm Overview

Next, we summarize the algorithmic steps used to solve the constrained integral

equations needed to compute cell surface positions and fluid velocities at each time

step. In the subsequent sections, we detail the parallel algorithms we developed to

obtain good weak and strong scalability, as shown in Section 4.5.

Overall Discretization. RBC surfaces are discretized using a spherical harmonic

representation, with surfaces sampled uniformly in the standard latitude-longitude

sphere parametrization. The blood vessel surfaces Γ are discretized using a collec-

tion of high-order tensor-product polynomial patches, each sampled at Clenshaw-

Curtis quadrature points. The space-time interference volume function V (t) is

computed using a piecewise-linear approximation as described in [54]. For time

discretization, we use a locally-implicit first order time-stepping (higher-order time

stepping can be easily incorporated). Interactions between RBCs and the blood ves-

sel surfaces are computed explicitly, while the self-interaction of a single RBC is

computed implicitly.

The state of the system at every time step is given by a triple of distributed

vectors (X, σ, λ). The first two (cell surface positions and tensions) are defined at

the discretization points of cells. The vector λ has variable length and corresponds

to connected components of collision volumes. We use the subscript i to denote the

subvectors corresponding to i-the cell. X and σ are solved for as a single system,

including the incompressibility constraint Eq. (4.2.9). To simplify exposition, we

omit σ in our algorithm summary, which corresponds to dropping fσ in the Stokes

equation, and dropping the surface incompressibility constraint equation.
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Algorithm summary At each step t, we compute the new positions X+
i and

collision Lagrange multipliers λ+ at time t+ = t + ∆t. We assume that in the

initial configuration there are no collisions, so the Lagrange multiplier vector λ is

zero. Discretizing in time, Eq. (4.2.8) becomes

X+
i = Xi + ∆t

(∑
j 6=i

Sjfj(Xj, λ) +Dφ(Xj, λ)

)
+ ∆tSif i(X

+
i , λ

+).

At each single time step, we perform the following steps to obtain (X+, λ+)

from (X, λ). Below evaluation of integrals implies using appropriate (smooth,

near-singular or singular) quadrature rules on cell or blood vessel surfaces.

1. Compute the explicit part b of the position update (first term in Eq. (4.2.8)).

(a) Evaluate ufr from (X, λ) on Γ with Eq. (4.2.4).

(b) Solve Eq. (4.2.5) for the unknown density φ on Γ using GMRES.

(c) For each cell, evaluate uΓ
i = Dφ at all cell points Xi.

(d) For each cell i, compute the contributions of other cells to X+
i : bci =

ufr − uγi =
∑

j 6=i Sjfj.

(e) Set bi = uΓ
i + bci .

2. Perform the implicit part of the update: solve the NCP obtained by treating

the second (self-interaction) term in Eq. (4.2.8) while enforcing the comple-

mentarity constraints Eq. (4.2.7), i.e., solve

X+
i = Xi + ∆t(bi + Sifi(X

+
i , λ

+)), (4.2.12)

λ(t+) ≥ 0, V (t+) ≥ 0, λ(t+) · V (t+) = 0. (4.2.13)
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Items 1a to 1d all require evaluation of global integrals, evaluated as sums over

quadrature points; we compute these sums in parallel with PVFMM. In particular,

Item 1b uses PVFMM as a part of each matrix-vector product in the GMRES

iteration. These matrix-vector product, as well as Items 1a, 1c and 1d require

near-singular integration to compute the velocity accurately near RBC and blood

vessel surfaces; this requires parallel communication to find non-local evaluation

points. Details of these computations are discussed in Section 4.3.

The NCP problem is solved using a sequence of linear complementarity problems

(LCPs). Algorithmically, this requires parallel searches of collision candidate pairs

and the repeated application of the distributed LCP matrix to distributed vectors.

Details of these computations are provided in Section 4.4.

4.3 Boundary Solver

A main challenge in incorporating prescribed flow boundary conditions g on

the domain boundary Γ is the approximation and solution of the boundary integral

problem Eq. (4.2.5). Upon spatial discretization, this is an extremely large, dense

linear system that must be solved at every time step due to the changing free space

solution ufr on the right hand side. Since we aim at a scalable implementation,

we do not assemble the operator on the left hand side but only implement the

corresponding matvec-operation, i.e., its application to vectors. Combined with

an iterative solver (we use GMRES), this matvec operation is sufficient to solve

Eq. (4.2.5). Application of the double-layer operator D to vectors amounts to a

near-singular quadrature for points close to Γ. Controlling the error in this compu-

tation requires a tailored quadrature scheme. This scheme is detailed below, where
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we put a particular emphasis on the challenges due to our parallel implementation.

4.3.1 Quadrature for integral equation

The domain boundary Γ is given by a collection of non-overlapping patches

Γ =
⋃
i Pi(Q), where Pi : Q→ R3 is defined on Q = [−1, 1]2. We use the Nyström

discretization for Eq. (4.2.5). Since D(x,y) is singular, this requires a singular

quadrature scheme for the integral on the right-hand side. We proceed in several

steps, starting with the direct non-singular discretization, followed by an distinct

discretization for the singular and near-singular case.

Non-singular integral quadrature. We discretize the integral in Eq. (4.2.5),

for x 6∈ Γ, by rewriting it as an integral over a set of patches and then apply a

tensor-product qth order Clenshaw-Curtis rule to each patch:

u(x) =
∑
i

∫
Pi

D(x,y)φ(y)dyPi
≈
∑
i

q2∑
j=0

D(x,yij)wijφ(yij), (4.3.1)

where yij = Pi(tj) and tj ∈ [−1, 1]2 is the jth quadrature point and wij is the

corresponding quadrature weight. We refer to the points yij as the coarse dis-

cretization of Γ and introduce a single global index y` = yij with ` = `(i, j) =

(i− 1)q2 + j, ` = 1, . . . , N , where N is the total number of quadrature nodes. We

can then rewrite the right-hand side of (4.3.1) compactly as the vector dot product

W (x) · φ, where φ` = φ(y`) and W`(x) = D(x,y`)w` are the quadrature weights

in Eq. (4.3.1).

As x → Γ for x ∈ Ω, the integrand becomes more singular and the accuracy

of this quadrature rapidly decreases due to the singularity in the kernel D. This
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requires us to construct a singular integral discretization for x = y`, ` = 1, . . . , N ,

and general points on Γ, which is discussed next. Note that the same method is

used for evaluation of the velocity values at points close to the surface, once the

equation is solved (near-singular integration).

Figure 4.1: Boundary quadrature schematic. Schematic of our unified
singular/near-singular quadrature scheme. Shown is a domain boundary Γ split
into patches (patch edges shown in black), an off-surface target point (green), check
points (gray) and the fine discretization of Γ (small dots), which uses k = 16
tensor-product points per patch.

Singular and near-singular integral quadrature. We take an approach sim-

ilar to [45]. The idea is to evaluate the integral sufficiently far from the surface

using the non-singular quadrature rule (4.3.1) on an upsampled mesh, and then to

extrapolate the accurate values towards the surface. Concretely, to compute the

singular integral at a point x near or on Γ, we use the following steps:

1. Upsample φ using qth order interpolation, i.e., φup = Uφ, where φup is the
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vector of Nk samples of the density and U is the interpolation operator. To

be precise, we subdivide each patch Pi into k square subdomains Pik and use

Clenshaw-Curtis nodes in each subdomain. We subdivide uniformly, i.e., Pi

is split into k = 4η patches for an integer η. This is the fine discretization of

Γ. We use W up to denote the weights for Eq. (4.3.1) the fine discretization

quadrature points.

2. Find the closest point y = P (u∗, v∗) to x on Γ for some patch P on Γ with

u∗, v∗ ∈ [−1, 1] (y = x if x ∈ Γ).

3. Construct check points cq = cq(x) = −(R + ir)n(u∗, v∗), i = 0, . . . , p, where

n(u, v) is the outward normal vector to Γ at P (u, v).

4. Evaluate the velocity at the check points:

u(cq(x)) ≈ W up(cq) · φup, i = 0, . . . , p. (4.3.2)

5. Extrapolate the velocity from the check points to x with 1D polynomial

extrapolation:

u(x) ≈
∑
q

equ(cq(x)) =

(∑
q

eqW
up(cq))

)
Uφ (4.3.3)

= W s(x) · φ, (4.3.4)

where eq are the extrapolation weights.

The parameters R, p, r and η are chosen to balance the error in the accuracy of

W up(cq)·φup and the extrapolation to x. A schematic of this quadrature procedure

is shown in Fig. 4.1.
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Discretizing the integral equation. With the singular integration method de-

scribed above, we take x = y`, ` = 1 . . . N , and obtain the following discretization

of Eq. (4.2.5):

(
1

2
I + A

)
φ = g, A`m = W s

m(y`) +Nij, (4.3.5)

where g is the boundary condition evaluated at y`, W
s
m(x) is the mth component

of W s(x) and Nij is the appropriate element of the rank-completing operator in

Eq. (4.2.5).

The dense operator A is never assembled explicitly. We use GMRES to solve

Eq. (4.3.5), which only requires application of A to vectors φ. This matrix-vector

product is computed using the steps summarized above.

Extrapolation and upsampling are local computations that are parallelized triv-

ially if all degrees of freedom for each patch are on a single processor. The main

challenges in parallelization of the above singular evaluation are 1) initially dis-

tributing the patches among processors, 2) computing the closest point on Γ and

3) evaluating the velocity at the check points. The parallelization of these compu-

tations is detailed in the remainder of this section.

4.3.2 Distributing geometry and evaluation parallelization

We load pieces of the blood vessel geometry, which is provided as a quad mesh,

separately on different processors. Each face of the quad mesh has a corresponding

polynomial Pi defining the ith patch.

The k levels of patch subdivision induce a uniform quadtree structure within

each quad. We use the p4est library [13] to manage this surface mesh hierarchy,
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keep track of neighbor information, distribute patch data and to refine and coarsen

the discretization in parallel. The parallel quadtree algorithms provided by p4est

are used to distribute the geometry without replicating the complete surface and

polynomial patches across all processors. p4est also determines parent-child patch

relationships between the coarse and fine discretizations and the coordinates of the

child patches to which we interpolate.

Once the geometry is distributed, constructing check points, upsampling and

extrapolation are performed locally.

4.3.3 Parallel closest point search

To evaluate the solution at a point x, we must find the closest point y on the

boundary to x. The distance ‖x − y‖2 determines whether or not near-singular

integration is required to compute the velocity at x. If it is, y is used to construct

check points.

In the context of this chapter, the point x is on the surface of an RBC, which

may be on a different processor than the patch containing y. This necessitates a

parallel algorithm to search for y. For that purpose, we extend the spatial sorting

algorithm from [54, Algorithm 1] to support our fixed patch-based boundary and

detect near pairs of target points and patches.

a. Construct a bounding box BP,ε for the near-zone of each patch. We choose a

distance dε so that for all points z further away than dε from P , the quadrature

error of integration over P is bounded by ε. The set of points closer to P than

dε is the near-zone of P . We inflate the bounding box BP of P by dε along the

diagonal to obtain BP,ε to contain all such points.
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b. Sample BP,ε and compute a spatial hash of the samples and x. Let H be the

average diagonal length of all BP,ε. We sample the volume contained in BP,ε

with equispaced samples of spacing hP < H. Using a spatial hash function,

(such as Morton ordering, for a spatial grid with spacing H), we assign hash

values to bounding box samples and x to be used as a sorting key. This results

in a collection of hash values that contain the near-zone of Γ.

c. Sort all samples by the sorting key. Use the parallel sort of [98] on the sorting key

of bounding box samples and that of x. This collects all points with identical

sorting key (i.e., close positions) and places them on the same processor. If the

hash of x matches the hash of a bounding box sample, then x could require

near-singular integration, which we check explicitly. Otherwise, we can assume

x is sufficiently far from P and does not require singular integration.

d. Compute distances ‖x − Pi‖. For each patch Pi with a bounding box key of

x, we locally solve the minimization problem min(u,v)∈[−1,1]2 ‖x − Pi(u, v)‖ via

Newton’s method with a backtracking line search. This is a local computation

since x and Pi were communicated during the Morton ID sort.

e. Choose the closest patch Pi. We perform a global reduce on the distances ‖x−

Pi‖ to determine the closest Pi to x and communicate back all the relevant

information required for singular evaluation back to x’s processor.

4.3.4 Far evaluation and other quadrature algorithms

Far evaluation To compute the fluid velocity away from Γ, where Eq. (4.2.5) is

non-singular, i.e., at the check points, the integral can be directly evaluated using

Eq. (4.3.1). Observing that Eq. (4.3.1) has the form of an N -body summation, we
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use the fast-multipole method [31] to evaluate it for all target points at once. We

use the parallel, kernel-independent implementation, PVFMM [56, 57], which has

been demonstrated to scale to hundreds of thousands of cores. PVFMM handles all

of the parallel communication required to aggregate and distribute the contribution

of non-local patches in O(N) time.

Other quadrature methods Various other parallel algorithms from are lever-

aged to perform boundary integration for the complex vessel geometry. To compute

uγi(X) for X ∈ γi, the schemes presented in [105] are used to achieve spectral

convergence for single-layer potentials by performing a spherical harmonic rota-

tion and apply the quadrature rule of [30]. We use the improved algorithm in [58]

to precompute the singular integration operator and improve overall complexity

substantially. To compute uγi(X) for X close to, but not on γi, we follow the ap-

proaches of [58, 95], which use a variation of the near-singular evaluation scheme

of [118]. Rather than extrapolating the velocity from nearby check points as in

Section 4.3, we use [105] to compute the velocity on surface, upsampled quadrature

on γi to compute the velocity at check points and interpolate the velocity between

them to the desired location.

4.4 Parallel collision handling

We preventing collisions of RBCs with other RBCs and with the vessel sur-

face Γ by solving the NCP problem given in Eqs. (4.2.12) and (4.2.13). This is a

nonsmooth and non-local problem, whose assembly and efficient solution is partic-

ularly challenging in parallel, especially in the context of complex geometries. In

this section, we summarize our constraint-based approach and algorithm.
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We have integrated piecewise polynomial patches into the framework of [54]

for parallel collision handling, to which we refer the reader for a more detailed

discussion. The key step to algorithmically unify RBCs and patches is to form a

linear triangle mesh approximation of both objects. We now want to enforce that

these meshes are collision-free subject to the physics constraints in Eq. (4.2.12).

We linearize the NCP and solve a sequence of LCP problems whose solutions

converge to the NCP solution. At a high-level, the collision algorithm proceeds as

follows:

1. Find triangle-vertex pairs of distinct meshes that are candidates for collision.

2. Compute V (t+) = V (t+,0). If any triangle-vertex pairs on distinct meshes

collide, the corresponding component of V (t) will be negative.

3. While Vi(t
+,k) < 0 for any i:

(a) Suppose m components of V (t) are negative

(b) Solve the following linearized version of Eqs. (4.2.12) and (4.2.13)

X+,k
i = Xi + ∆t(bi + Si(f i(X

+,k
i , λ+,k)), (4.4.1)

λ(t+) ≥ 0, L(t+,k) ≥ 0, λ(t+,k) · L(t+,k) = 0, (4.4.2)

where L(t) = V (t) +∇uV
T∆Xi(t) (4.4.3)

for the kth iteration of the loop and X+,k
i = Xi + ∆Xi(t

+,k).

(c) Find new candidate triangle-vertex pairs and compute V (t+,k).

Here, t+,k is the intermediate time step at which a new candidate position X+,k
i

occurs. Upon convergence of this algorithm, we are guaranteed that our system is
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collision-free.

To solve the LCP problem in Item 3b, we follow the approach detailed in [53,

Section 3.2.2, Section 3.3]. We reformulate the problem first in standard LCP form

with system matrix B, then solve an equivalent root finding problem by applying

a minimum-map Newton’s method. This can be restructured to use GMRES, so

we only need to repeatedly apply B to vectors to solve each LCP problem. Each

entry Bij is the change in the jth contact volume induced by the kth contact force,

which is explicitly defined in [54, Algorithm 3]. This means thatB is of size m×m,

where m is the number of collisions, but is extremely sparse. We need not store the

entire matrix explicitly; we only compute the non-zero entries and store them in a

distributed hash-map. Computing these matrix elements requires an accumulation

of all coupled collision contributions to the velocity, which requires just a sparse

MPI All to Allv to send each local contribution to the process containing Vi(t
+,k).

An important step to ensure good scaling of our collision handling algorithm

is to minimize the number of triangle-vertex pairs that are found in Item 1. One

could explicitly compute an all-to-all collision detection on all meshes in the system,

but this requires O(N2) work and global communication. We perform a high-level

filtering first to find local candidate collision mesh pairs, then only communicate

and compute the required O(m) information. Since spatially-near mesh pairs may

be on different processors, we need a parallel algorithm to compute these collision

candidates.

To address this, we reuse Items a to c from Section 4.3.3 and adapt it to this

problem. For each mesh in the system, we form the space-time bounding box of the

mesh: the smallest axis-aligned bounding box containing the mesh at positions Xi

and X+
i , as shown in Fig. 4.2. For patches Pi, note that P+

i = Pi. This means
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Figure 4.2: Grid for candidate collision pair. A 2d depiction of the
parallel candidate collision pair algorithm. Shown is the implicit spatial grid (gray),
a piece of the blood vessel Γ (open black curve), an RBC γi at the current time step
(closed black curve) and at the next time step (dotted closed back curve). Also
shown is the space-time bounding box and bounding box samples of a single patch
(red square and red dots) and an RBC (blue square and blue dots).

one can reuse the bounding box of Pi constructed in Section 4.3.3 for this purpose

and simply set dε to zero. After forming all space-time bounding boxes for the

meshes of all patches and RBCs, we apply steps Items b and c directly to these

boxes. Item c will communicate meshes with the same spatial sorting key to the

same processor; these meshes are collision candidate pairs. Once the computation

is local and candidate collision pairs are identified, we can proceed with the NCP

solution algorithm described above.
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Figure 4.3: Strong scalability simulation domain. Simulation results for
40,960 RBCs in a complex vessel geometry. For our strong scaling experiments, we
use the vessel geometry shown on the left, with inflow-outflow boundary conditions
at various regions of the vessel geometry. To setup the problem, we fill the vessel
with nearly-touching RBCs of different sizes. The figure above shows a setup with
overall 40,960 RBCs at a volume fraction of 19%, and 40,960 polynomial patches.
The full simulation video is available at https://vimeo.com/329509229.

4.5 Results

In this section, we present scalability results for our blood flow simulation

framework on various test geometries. We also highlight simulations with various

volume fractions, including one with volume fraction comparable to realistic human

blood flows.

4.5.1 Implementation and example setup

Architecture and software libraries. We use the Stampede2 system at the

Texas Advanced Computing Center (TACC) to study the scalability of our al-

gorithms and implementation. Stampede2 has two types of compute nodes, the

Knights Landing (KNL) compute nodes and the Skylake (SKX) compute nodes. The

SKX cluster has 1,736 dual-socket compute nodes, each with two 24-core 2.1GHz

CPUs and 192GB of memory. The KNL cluster has 4,200 compute nodes, with a
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68-core Intel Xeon Phi 7250 1.4Ghz CPUs and 96GB of memory plus 16GB of high-

speed MCDRAM. We run our simulations in a hybrid distributed-shared memory

fashion: we run one MPI process per node, with one OpenMP thread per hardware

core. Our largest simulations use 256 SKX and 512 KNL nodes.

We leverage several high-performance libraries in our implementation. We use

PETSc’s [5] parallel matrix and vector operations, and its parallel GMRES solver.

Management and distribution of patches describing the blood vessel geometry uses

the p4est library [13], and we use PVFMM [56] for parallel FMM evaluation. We

also heavily leverage Intel MKL for fast dense linear algebra routines at the core

of our algorithms and paraview for our visualizations.

Discretization and example setup For all test cases we present, we discretize

each RBC with 544 quadrature points and 2,112 points for collision detection. The

blood vessel geometry is represented with 8th order tensor-product polynomial

patches with 121 quadrature points per patch and 484 equispaced points for colli-

sion detection.

Since our scaling tests are performed on complex, realistic blood vessel geome-

tries, we must algorithmically generate our initial simulation configuration. We

prescribe portions of the blood vessel as inflow and outflow regions and appro-

priately prescribe positive and negative parabolic flows (inlet and outlet flow) as

boundary conditions, such that the total fluid flux is zero. To populate the blood

vessel with RBCs, we uniformly sample the volume of the bounding box of the

vessel with a spacing h to find point locations inside the domain at which we place

RBCs in a random orientation. We then slowly increase the size of each RBC until

it collides with the vessel boundary or another RBC; this determines a single RBC’s
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size. We continue this process until all RBCs stop expanding; this means that we

are running a simulation of RBCs of various sizes. We refer to this process as filling

the blood vessel with RBCs. This is a precomputation for our simulation, so we do

not include this step in the timings we report for weak and strong scaling.

Additionally, RBCs in such a confined flow will collide with the blood vessel

wall if special care is not taken near the outflow part of the boundary. We define

regions near the inlet and outlet flows where we can safely add and remove RBCs.

When an RBC γi is within the outlet region, we subtract off the velocity due to γi

from the entire system and move γi into an inlet region such that the arising RBC

configuration is collision-free.

Limiting GMRES iterations We have observed that the GMRES solver typ-

ically requires 30 iterations or less for convergence for almost all time steps, but

the number of needed iterations may vary more in the first steps. To simulate the

amount of work in a typical simulation time step, we cap the number of GMRES

iterations at 30 and report weak and strong scaling for these iterations. A more

detailed analysis of this behavior is needed.

4.5.2 Parallel scalability

Strong scalability To study the strong scalability of our algorithms, we use the

blood vessel geometry and RBC configuration in Fig. 4.3-left. This simulation con-

tains 40,960 RBCs and the blood vessel is represented with 40,960 patches. With

four degrees of freedom per RBC quadrature point and three per vessel quadrature

point, this amounts to 89,128,960 and 14,868,480 degrees for the RBCs and blood

vessel, respecitvely (103,997,440 in total). As can be seen from Fig. 4.5, we achieve
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Figure 4.4: High volume fraction simulation. Shown is a high-volume frac-
tion sedimentation due to gravitational force. The initial configuration (top figures)
has a volume fraction of 47%. As the cells sediment to the lower part of the do-
main (bottom figures), the effective volume fraction of the final state is around 55%.
Shown on the right side are slices through the center of the domain together with the
RBC boundaries in the initial and final configuration. The full simulation video is
available at https://vimeo.com/329509435.

a 15.7-fold speed-up in total wall-time scaling from 384 to 12288 cores, correspond-

ing to 49% parallel efficiency. This level of parallel efficiency is partially due to

the calls to the fmm library PVFMM. The strong scalability of PVFMM we observe
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efficiency 1.00 0.98 0.86 0.75 0.63 0.49

COL+BIE-solve (sec) 3901 1843 1046 596 317 183
efficiency 1.00 1.05 0.93 0.82 0.77 0.66

Figure 4.5: Strong scalability result. Strong scalability of a simulation with
40960 RBCs on Stampede’s SKX partition for the vessel network geometry shown in
Fig. 4.3. The vessel is discretized with 40960 polynomial patches. Shown in the bar
graph is a breakdown of the compute resources (wall-time × CPU cores) required
by the individual components for a simulation with 10 time steps on 384 to 12288
cores. The compute resources used by the main algorithms presented in this chapter
are COL (collision handling), BIE-solve (computation of uΓ, not including FMM
calls). Shown in different gray scales are the compute resources required by FMM
(BIE-FMM and FMM-other) and other operations (Other). Shown in the table
are the compute time and the parallel efficiency for the overall computation and for
the sum of COL and BIE-solve. For the collision avoidance and the boundary solve
we observe a parallel efficiency of 66% for a 32-fold increase from 384 to 12288 CPU
cores.

is largely consistent with the results reported in [57]. Neglecting the time for calls

to FMM, i.e., only counting the time for the boundary solver to compute uΓ and
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Figure 4.6: Weak scalability simulation domain. For our weak scaling
experiments, we use the the vessel geometry shown above with inflow boundary con-
ditions on the right side and outflow boundary condition on the two left sides. To
setup the problem, we fill the vessel with nearly-touching RBCs of different sizes to
obtain a desired number, and refine the vessel geometry patches. The figure above
shows a setup with overall 262,144 RBCs at a volume fraction of 26%.

for collision prevention, we find 66% parallel efficiency when scaling strongly from

384 to 12288 cores.

Hence, the parallel collision handling and integral equation solver computa-

tions, excluding FMM, scale well as the number of cores is increased.

Weak Scalability Our weak scalability results are reported in Fig. 4.7 and

Fig. 4.8. Both tests are performed on the blood vessel displayed in Fig. 4.6. We be-

gin with an initial boundary composed of a fixed number M of polynomial patches

and fill the domain with roughly M/2 RBCs (which requires spacing h). To scale

up our simulation by a factor of four, we: (1) subdivide the M polynomial patches

into 4M new but equivalent polynomial patches (via subdivision rules for Bezier

curves); (2) refill the domain with RBCs using spacing h/ 3
√

4. This will place 2M
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total time (sec) 7070 8892 12076 10869 12446
efficiency − 1.00 0.74 0.81 0.71

COL+BIE-solve (sec) 1461 2345 3901 3222 3904
efficiency − 1.00 0.60 0.73 0.60

Figure 4.7: Weak scalability result. Weak scalability on Stampede’s SKX

partition with node grain size of 4096 RBCs and 8192 polynomial patches per compute
node (each node has 48 cores) for the vessel geometry shown in Fig. 4.6. Increasing
the number of RBCs and boundary patches is realized by decreasing the size of the
RBCs as discussed in Section 4.5.2. Shown in the bar graph is a breakdown of wall-
time spent in individual components for a simulation with 10 time steps on 136 to
12288 cores (i.e., 4 to 256 nodes). The explanation of the labels used in the legend
is detailed in Fig. 4.5. Additionally, we show the volume fraction of RBCs for each
simulation, as well as the percentage of vesicles where the RBC-RBC or RBC-vessel
collision prevention is active. We report the parallel scalability with respect to 192
cores, as the smallest simulation is in a single node and no MPI communication
is necessary. The largest simulation has 1,048,576 RBCs and 2,097,152 polynomial
patches and an overall number of 3,042,967,552 unknowns per time step.

RBCs in the domain volume. We repeat this process each time we increase the

number of cores by a factor of four in order to keep the number of patches and

143



136 544 2176 8704 34816
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

CPU cores →

w
al

l-
ti

m
e
→

COL BIE-solve BIE-FMM
other-FMM other

cores 48 192 768 3072 12288

vol fraction 17% 19% 20% 23% 26%
#collision/ #RBCs 10% 15% 13% 17% 15%

total time (sec) 2739 3203 3768 4782 5806
efficiency 1.00 0.86 0.73 0.57 0.47

COL+BIE-solve (sec) 642 808 982 1532 1480
efficiency 1.00 0.79 0.65 0.42 0.43

Figure 4.8: Weak scalability result on KNL nodes. Same as Fig. 4.7 but
on Stampede2’s KNL partition with 512 RBCs and 1024 vessel boundary patches per
node (each node has 68 cores). We find an overall parallel scalability of 47% for a
256-fold increase of the problem size.

RBCs per core fixed.

The largest weak scaling test contains 1,048,576 RBCs and 2,097,152 polynomial

patches on the blood vessel; we solve for 3,042,967,552 unknowns at each time step

and are able to maintain a collision-free state between 4,194,304,000 triangular

surface elements at each time step. Comparing the weak scalability results for

SKX (Fig. 4.7) and KNL (Fig. 4.6), we observe similar qualitative behavior. Note

that the smallest test on the SKX architecture only uses a single node, i.e., no

MPI communication was needed. This explains the increased time for the collision
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prevention algorithms when going from 1 (48 cores) to 4 nodes (192 cores). Note

also that the simulation on the KNL architecture used a significantly lower number

of RBCs and geometry patches per node. Thus, this simulation has a larger ratio of

communication to local work. This explains the less perfect scalability compared

to the results obtained on the SKX architecture.

As with strong scaling, we see good parallel scaling of the non-FMM-related

parts of the computation of uΓ and the collision handling algorithm. The FMM-

related calls dominate the overall runtime.

Discussion The parts of the algorithm introduced in this chapter scale as well

as the FMM implementation we are using. However, our overall scaling is dimin-

ished by the multiple expensive FMM evaluations required for solving Eq. (4.2.5).

This can be addressed by using a local singular quadrature scheme, i.e., compute

a singular integral using the FMM on Eq. (4.3.1) directly, then compute a singular

correction locally. This calculation has a three-fold impact on parallel scalability:

(1) the FMM evaluation required is proportional to the size of the coarse discretiza-

tion rather than the fine discretization (O((p + 1)N) vs. O((k + p)N)); (2) after

the FMM evaluation, the local correction is embarrassingly parallel; (3) the linear

operator Eq. (4.3.3) can be precomputed, making the entire calculation extremely

fast with MKL linear algebra routines. These improvements together will allow our

algorithm to scale well beyond the computational regime explored in this work.

4.5.3 High volume fraction

The RBC volume fraction, i.e., the ratio of volume occupied by RBCs compared

to the overall blood volume is 35-45% in healthy women and 38-48% in healthy men.
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As can be seen in the tables in Figs. 4.7 and 4.8, the volume fraction in our weak

scaling simulations is below these values, which is due to the procedure used to fill

the blood vessel with RBCs (see the discussion in Section 4.5.1). To demonstrate

that we can simulate realistic high-volume fraction blood flows, Fig. 4.4 shows a test

of 140 RBCs sedimenting under a gravitational force in a small capsule. The volume

fraction for this example is 47%, calculated by dividing the amount of volume

occupied by RBCs by the volume of the capsule. By the end of the simulation, we

achieve an effective volume fraction of 55% (determined by bounding the RBCs by

a cylinder) since the RBCs have become more tightly packed.

4.6 Conclusion

We have shown that our parallel platform for the simulation of red blood cell

flows is capable of accurately resolved long-time simulation of red blood cell flows

in complex vessel networks. We are able to achieve realistic cell volume frac-

tions of over 47%, while avoiding collisions between cells or with the blood vessel

walls. Incorporating blood vessels into red blood cell simulations requires solving

a boundary integral equation, for which we use GMRES. Each GMRES iteration

computes a matrix-vector product, which in turn involves singular quadrature and

an FMM evaluation; the latter dominates the computation time. To avoid colli-

sions, we solve a nonlinear complementarity problem in the implicit part of each

time step. This requires repeated assembly of sparse matrices that, in principle,

couple all cells globally. Nevertheless, solving this complementarity system yields

close-to-optimal strong and weak scaling in our tests. Overall, the vast majority of

compute time is spent in FMM evaluations, which implies that the scaling behavior
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of our simulation is dominated by the scalability of the FMM implementation. As

discussed at the end of Section 4.5.2, in the future, we will employ a local singular

quadrature scheme that will allow us to significantly reduce the time spent in FMM

evaluations. This will not only speed up the overall simulation but also improve

the weak and strong scalability of our simulation platform.
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[45] A. Klöckner, A. Barnett, L. Greengard, and M. O’Neil. “Quadrature by

expansion: A new method for the evaluation of layer potentials”. In: Journal

of Computational Physics 252 (2013), pp. 332–349.

153



[46] R. H. Krause and B. I. Wohlmuth. “A Dirichlet–Neumann type algorithm

for contact problems with friction”. In: Computing and visualization in sci-

ence 5.3 (2002), pp. 139–148.

[47] A. Laadhari, P. Saramito, and C. Misbah. “Computing the dynamics of

biomembranes by combining conservative level set and adaptive finite ele-

ment methods”. In: Journal of Computational Physics 263 (2014), pp. 328–

352.

[48] C. E. Lemke. “Bimatrix equilibrium points and mathematical program-

ming”. In: Management science 11.7 (1965), pp. 681–689.
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