
On-Policy Deep Reinforcement Learning
The Discounted and Average Reward Criteria

by

Yiming Zhang

A dissertation submitted in partial fulfillment

of the reqirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January, 2022

Keith W. Ross

© Yiming Zhang

all rights reserved, 2022

Acknowledgements

First and foremost, I would like to thank my advisor Keith Ross. I am deeply grateful to him for

taking me as his PhD student, as well as being a constant source of support and encouragement.

His ability to tackle and think about research problems from �rst principles, his rigor, and his

creativity has shaped me into the researcher I am today. I will forever treasure the countless hours

of conversations we have had over the past �ve years. Keith will always be a role model to me as

a researcher, a teacher, and a person. I am also grateful to my committee members Kyunghyun

Cho, He He, Xi Chen, and Chris Musco for their thoughtful and constructive feedback throughout

the entire process.

I am forever grateful to count myself as a member of the NYU community. I want to thank

all my friends, colleagues, collaborators, and mentors at NYU who have deeply impacted me

over the years: Che (Watcher) Wang, Yanqiu (Autumn) Wu, Sean Welleck, Tianyao Chen, Ziyu

Wang, Mehryar Mohri, Ningshan Zhang, Scott Yang, Lingfan Yu, Yixin Hu, Roberta Raileanu,

Junbo (Jake) Zhao, Jing Leng, Krzysztof Geras, Ilya Kostrikov, Elman Manslov, Alfredo Canzani. I

also want to thank Santiago Pizzini, Hong Tam, and Rosemary Amico for all your hard work in

ensuring the smooth operations of the graduate program.

I am extremely thankful for the opportunity to conduct research at NYU Shanghai where

I spent a memorable two and a half years. Thank you Eric Mao, Xiaoyun (Vivien) Du, Fangqi

(Maggie) Mao, Lin Hong and countless others behind the scenes for making NYU Shanghai feel

like home for graduate students such as myself. I am thankful to my friends, collaborators and

iii

colleagues Quan Vuong, Xiaoyue Gong, Kenny Song, Xinyue Chen, Zijian Zhou, Canyu Zhu,

Mufei Li, Aiwen Xu, Guangyu (Gus) Xia, Shuyang Ling, and Zheng Zhang (ZZ). Also I want to

thank Diane Geng for introducing me to the wonderful community at NYUSH prior to starting

my PhD. Thank you Zhiguo Qi for maintaining the NYU Shanghai HPC center and helping us

overcome many of the technical di�culties on the compute clusters.

I want to give a special thanks to my friends who have accompanied me throughout this

special journey: Zhihao Wu, Wenyu Sheng, Yi Zhang, Bingqing Xu, Ruofan Wu, Wenchao Wu,

Ming Cong, Chang Zhao, Yue Sun, Xiaoai Lü, Lu’an Jiang, Qiushi Wang, Yangyang Hu, Xiaoxin

Du, Yudi Yang, Bryant Feng, Amata Lee, Joe Wu, Nishant Mohanchandra, Benjamin Xie, Stephen

Bates, Alina Zhu, and many many others.

Thank you Michelle for always being an unconditional beacon of support and encouragement.

Finally I want to thank my parents for their unwavering support over the years.

iv

Abstract

Reinforcement Learning (RL) is the study of sequential decision making where an agent attempts

to maximize its overall cumulative reward in some given environment. Combined with deep

learning, reinforcement learning has made remarkable strides in the past decade in complex tasks

such as playing video games [Mnih et al. 2013; Vinyals et al. 2019], playing Go [Silver et al. 2016,

2018], robotics [Lillicrap et al. 2016; Haarnoja et al. 2018], and chip design [Mirhoseini et al. 2021].

However despite these successes, modern RL algorithms often su�er from poor sample ef-

�ciency and lack of safety guarantees. In this thesis we tackle these issues in the context of

on-policy Deep Reinforcement Learning (DRL), both theoretically and algorithmically. This work

addresses both the discounted and average reward criteria. In the �rst part of this thesis, we

develop theory for average reward on-policy reinforcement learning by extending recent results

for local policy search. We show that previous work based on the discounted return [Schulman

et al. 2015; Achiam et al. 2017] results in a non-meaningful bound in the average-reward setting.

By addressing the average-reward criterion directly, we derive a novel bound which depends on

the average divergence between the two policies and Kemeny’s constant. Based on this bound, we

develop an iterative procedure which produces a sequence of monotonically improved policies for

the average reward criterion. We show that this iterative procedure can then be combined with

classic deep reinforcement learning methods, resulting in practical DRL algorithms that target

the long-run average reward criterion. Next, we develop a unifying framework for the on-policy

sample e�ciency problem. This methodology uses a two-step approach which �rst learns an

v

optimal policy in the non-parameterized policy space before projecting said policy back into the

parameter space. Our approach is general in that it applies to both discrete and continuous action

spaces, and can handle a wide variety of proximity constraints. Finally we address the problem

of reinforcement learning with safety constraints. We provide theoretical support that trust

region-based methods can be applied to problems with both discounted and non-discounted cost

constraints. We then propose a novel �rst-order algorithm for policy optimization for maximizing

an agent’s cumulative reward while at the same time satisfying a set of cost constraints. Our

algorithm is extremely simple to implement and has an approximate upper bound for worst-case

constraint violation throughout training.

vi

Contents

Acknowledgments iii

Abstract v

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Outline of Thesis . 3

1.2 List of Contributions . 4

2 Preliminaries 5

2.1 Markov Decision Processes . 5

2.2 Classi�cation of Markov Decision Processes . 6

2.3 Mean Passage Time and the Fundamental Matrix 7

2.4 Mixing Time . 9

2.5 The Discounted Reward Criterion . 11

2.6 The Average Reward Criterion . 12

2.7 Connecting the Discounted and Average Reward Criteria 14

2.8 Blackwell Optimality . 16

vii

3 Local Policy Search 18

3.1 Introduction . 18

3.2 Background . 21

3.2.1 Policy Gradient Methods . 21

3.2.2 Local Policy Search for Discounted Problems 22

3.3 Policy Improvement Theorem for the Average Reward Criterion 25

3.4 Approximate Policy Iteration . 32

3.5 Related Work . 33

3.6 Conclusion . 34

4 Average Reward TRPO 35

4.1 Background . 35

4.2 Trust Region Methods for the Average Reward Criterion 38

4.3 Average Reward TRPO . 39

4.4 Critic Estimation for the Average Reward . 41

4.5 Experiments . 45

4.5.1 Evaluation Protocol . 47

4.5.2 Comparing ATRPO and TRPO . 47

4.5.3 Sensitivity Analysis on Reset Cost . 51

4.5.4 Understanding Long Run Performance . 52

4.5.5 Implementation Details . 53

4.6 Conclusion . 54

5 Supervised Policy Update 56

5.1 Introduction . 56

5.2 The SPU Framework . 58

5.3 SPU Applied to Speci�c Criteria . 59

viii

5.3.1 Forward KL Constraints . 59

5.3.2 Backward KL Constraints . 64

5.3.3 !8 Constraints . 67

5.4 Extension to Continuous State and Action Spaces 70

5.5 Experiments . 71

5.5.1 Results on Mujoco . 72

5.5.2 Ablation Studies for Mujoco . 72

5.5.3 Sensitivity Analysis on Mujoco . 75

5.5.4 Results on Atari . 75

5.5.5 Implementation Details . 77

5.6 Related Work . 78

5.7 Conclusion . 80

6 Constrained Reinforcement Learning 82

6.1 Introduction . 82

6.2 Background: Constrained Markov Decision Processes 84

6.3 Constrained RL as Local Policy Search . 86

6.4 Average Cost CPO . 88

6.5 First Order Constrained Optimization in Policy Space 89

6.5.1 Finding the Optimal Update Policy . 90

6.5.2 Approximating the Optimal Update Policy 93

6.5.3 Practical Implementation . 95

6.6 Experiments . 98

6.6.1 Robots with Speed Limit . 99

6.6.2 Circle Tasks . 101

6.6.3 FOCOPS for Di�erent Cost Thresholds . 103

ix

6.6.4 Generalization Analysis . 104

6.6.5 Sensitivity Analysis . 105

6.6.6 Implementation Details . 106

6.7 Related Work . 107

6.8 Conclusion . 108

7 Conclusion and Future Directions 111

Bibliography 113

x

List of Figures

3.1 Comparing Gaussian distributions with identical Euclidean distance in the param-

eter space. 19

4.1 The MuJoCo Environments . 46

4.2 Comparing performance of ATRPO and TRPO with di�erent discount factors. The

G-axis is the number of agent-environment interactions and the ~-axis is the total

return averaged over 10 seeds. The solid line represents the agents’ performance

on evaluation trajectories of maximum length 1,000 (top row) and 10,000 (bottom

row). The shaded region represents one standard deviation. 48

4.3 Comparing performance of ATRPO and TRPO with di�erent discount factors.

TRPO is trained without the reset scheme. The G-axis is the number of agent-

environment interactions and the ~-axis is the total return averaged over 10 seeds.

The solid line represents the agents’ performance on evaluation trajectories of

maximum length 1,000 (top row) and 10,000 (bottom row). The shaded region

represent one standard deviation. 49

xi

4.4 Comparing performance of ATRPO and TRPO trained with and without the reset

costs. The curves for TRPO are for the best discount factor for each environment.

The G-axis is the number of agent-environment interactions and the ~-axis is

the total return averaged over 10 seeds. The solid line represents the agents’

performance on evaluation trajectories of maximum length 1,000 (top row) and

10,000 (bottom row). The shaded region represent one standard deviation. 50

4.5 Comparing ATRPO trained with di�erent reset costs to discounted TRPO with

the best discount factor for each environment. The G-axis is the number of agent-

environment interactions and the ~-axis is the total return averaged over 10 seeds.

The solid line represents the agents’ performance on evaluation trajectories of

maximum length 1,000. The shaded region represent one standard deviation. . . 51

4.6 Speed-time plot of a single trajectory (maximum length 10,000) for ATRPO and

Discounted TRPO in the Humanoid-v3 environment. The solid line represents the

speed of the agent at the corresponding timesteps. 52

5.1 Plot of !2;8? against the importance sampling ratio A “
c\ p0|Bq

c\: p0|Bq
for when the

advantage is positive and negative (Image from [Schulman et al. 2017b]) 68

5.2 SPU versus TRPO, PPO on 10 Mujoco environments in 1 million timesteps. The

x-axis indicates timesteps. The y-axis indicates the average episode reward of the

last 100 episodes. 73

5.3 SPU versus TRPO, PPO on 10 Mujoco environments in 3 million timesteps. The

x-axis indicates timesteps. The y-axis indicates the average episode reward of the

last 100 episodes. 74

5.4 Sensitivity Analysis for SPU . 76

5.5 High-level overview of results on Atari . 77

xii

6.1 Learning curves for robots with speed limit tasks. The G-axis represent the number

of samples used and the ~-axis represent the average total reward/cost return

of the last 100 episodes. The solid line represent the mean of 1000 bootstrap

samples over 10 random seeds. The shaded regions represent the bootstrap normal

95% con�dence interval. FOCOPS consistently enforce approximate constraint

satisfaction while having a higher performance on �ve out of the six tasks. 100

6.2 In the Circle task, reward is maximized by moving along the green circle. The

agent is not allowed to enter the blue regions, so its optimal constrained path

follows the line segments�� and �� (�gure and caption taken from [Achiam et al.

2017]). 103

6.3 Comparing reward and cost returns on circle Tasks. The G-axis represent the

number of samples used and the ~-axis represent the average total reward/cost

return of the last 100 episodes. The solid line represent the mean of 1000 bootstrap

samples over 10 random seeds. The shaded regions represent the bootstrap normal

95% con�dence interval. An unconstrained PPO agent is also plotted for comparison. 104

6.4 Performance of FOCOPS on robots with speed limit tasks with di�erent cost

thresholds. The G-axis represent the number of samples used and the ~-axis

represent the average total reward/cost return of the last 100 episodes. The solid

line represent the mean of 1000 bootstrap samples over 10 random seeds. The

horizontal lines in the cost plots represent the cost thresholds corresponding to

25%, 50%, and 75% of the cost required by an unconstrained PPO agent trained

with 1 million samples. Each solid line represents FOCOPS trained with the

corresponding thresholds. The shaded regions represent the bootstrap normal 95%

con�dence interval. 109

xiii

List of Tables

4.1 The MuJoCo environments. Description taken from https://gym.openai.com/

envs/#mujoco, the last two columns are the dimensions of the state and action

space respectively . 45

4.2 Summary statistics for all 10 trajectories using a Humanoid-v3 agent trained with

TRPO . 53

4.3 Hyperparameter Setup for Experiments in Chapter 4 54

5.1 Ablation study for SPU . 75

6.1 Bootstrap mean and normal 95% con�dence interval with 1000 bootstrap samples

over 10 random seeds of reward/cost return after training on robot with speed

limit environments. Cost thresholds are in brackets under the environment names. 102

6.2 Bootstrap mean and normal 95% con�dence interval with 1000 bootstrap samples

over 10 random seeds of reward/cost return after training on circle environments

for 10 million samples. Cost thresholds are in brackets under the environment

names. 103

6.3 Average return of 10 episodes for trained agents on the robots with speed limit

tasks on 10 unseen random seeds. Results shown are the bootstrap mean and

normal 95% con�dence interval with 1000 bootstrap samples. 105

6.4 Performance of FOCOPS for Di�erent _ . 106

xiv

https://gym.openai.com/envs/#mujoco
https://gym.openai.com/envs/#mujoco

6.5 Performance of FOCOPS for Di�erent amax . 106

6.6 Hyperparameters for robots with speed limit experiments 110

xv

1 | Introduction

One of the goals of modern arti�cial intelligence is to produce agents for sequential decision

making which can learn desirable behavior by interacting with the environment through trial and

error [Norvig and Russell 2002; Arulkumaran et al. 2017]. Reinforcement Learning (RL), which

builds on the theory of Markov Decision Processes (MDP) provides a fundamental framework for

this learning paradigm. Although traditional tabular reinforcement learning has enjoyed some

moderate success, it su�ers from the curse of dimensionality [Bellman 1957] and fails on problems

with large state and/or action spaces.

Recent advances in deep learning [Goodfellow et al. 2016] has had a signi�cant impact on

many areas of machine learning, including reinforcement learning. Parameterizing polices and

value functions with deep neural networks allows the agent to generalize over large and also

continuous state and action spaces. This gave rise to the modern sub�eld of Deep Reinforcement

Learning (DRL).

One of the key challenges for modern RL is the problem of sample e�ciency, which can be

de�ned the number of calls to the environment required to attain a speci�ed performance level

[Kakade 2003]. Although in practice, sample e�ciency is often evaluated empirically by comparing

the performance of di�erent algorithms after a �xed number of agent-environment interactions,

which will also be the focus of this work. Low sample e�ciency is particularly problematic in

domains where data collection can be extremely expensive, such as robotics where operating a

robot for an extended amount of time can lead to wear and tear of the hardware.

1

This work will focus on the sample e�ciency problem within the scope of on-policy deep

reinforcement learning, which describes a class of algorithms where the agent attempts to improve

or evaluate the policy used for data collection and decision making. This is opposed to o�-policy

methods where the policy that the agent is attempting to evaluate or improve is di�erent from the

policy (or policies) used to collect data. More concretely in on-policy algorithms, an agent collects

trajectories from the current policy, performs policy evaluation and update, then the previously

collected data are immediate discarded and the agent collects new data from the updated policy. A

key question for on-policy algorithms is then after collecting data from the environment, how do we

use it in the most e�cient manner? While recent work has shown that well-designed o�-policy

algorithms are in general more sample-e�cient [Haarnoja et al. 2018; Chen et al. 2021], on-policy

methods serve as the foundation for most o�-policy and/or model-based techniques [Janner et al.

2019], as well as emerging new sub-�elds such as o�ine RL [Levine et al. 2020] and meta-RL

[Wang et al. 2016; Duan et al. 2017]. Therefore a deeper understanding of on-policy methods is

essential to advancing the �eld of RL as a whole.

This thesis attempts to address the sample-e�ciency issue through the following perspectives:

First we look at the problem of average reward deep reinforcement learning. Much of the

recent advances in DRL relies on discounting rewards into the future since this allows for a simpler

mathematical formulation and more stable behavior in practice [Naik et al. 2019]. However,

when the natural objective of the problem is non-discounted, using discounting in the training

objective leads to a discrepancy between the problem we are interested in solving and what we

are actually solving. Furthermore, we �nd that using a shorter e�ective horizon for training can

have a signi�cant negative impact in terms of both sample e�ciency and asymptotic performance.

We address these issues by developing theory and algorithms for engaging the average reward

criteria directly.

Next, we develop a uni�ed algorithmic framework for solving the on-policy sample e�ciency

problem through local policy search, i.e. we aim to answer the question given a current policy,

2

what is the most sample-e�cient policy update within some local region around the current

policy?

Lastly, we focus on the special case of reinforcement learning with safety constraints, i.e.

how do we develop sample-e�cient algorithms given that the agent must satisfy a set of cost

constraints?

In terms of the broader impact of this research, the goal of this thesis is to bring RL closer

to more practical applications with positive societal impacts. In the real world, higher sample

e�ciency translates to time saved, lower costs, lower resource consumption, and lower carbon

emission. This of central concern and is instrumental for making RL practical for applications in

real physical systems such as robots and self-driving cars.

1.1 Outline of Thesis

Chapter 2 provides background material necessary for this thesis, this includes the basic de�nition

and properties of a Markov Decision Process (MDP), how MDPs are classi�ed, a brief introduction

to mean passage time and mixing time for Markov chains, the discounted and average criterion

and their respective Bellman equations, and �nally the concept of Blackwell optimality.

Chapter 3 begins by introducing the policy gradient theorem and the step-size issue for policy

gradient algorithms. We then discuss how local policy search is used to address this issue. The

core of the chapter is dedicated to extending the monotonic policy improvement bound for a

certain class of local policy search problems to accommodate for the average reward case. Here

we �rst showed that the aforementioned policy improvement bound results in a non-meaningful

bound in the average reward case. We then derived a novel bound which depends on the average

divergence between the two policies and Kemeny’s constant. Based on this bound, we develop

an iterative procedure which produces a sequence of monotonically improved policies for the

average reward criterion.

3

Chapter 4 gives a practical algorithm for learning policies in continuous and/or high dimen-

sional state and action spaces based on the theoretical results introduced in Chapter 3. The

algorithm is an extension of the well-known TRPO algorithm to the average reward criterion

and we demonstrated that our new algorithm Average Reward TRPO (ATRPO) signi�cantly

outperforms discounted TRPO on the most challenging MuJoCo environments.

Chapter 5 introduces a unifying framework for e�ectively solving the local policy search

problems via a two-step solution. This framework can �exibly accommodate for di�erence

divergence measures and is shown to demonstrate superior sample e�ciency compared to other

on-policy algorithms on both the MuJoCo and Atari benchmarks.

Chapter 6 develops theory and algorithms for the setting of constrained RL. We begin by intro-

ducing Constrained Markov Decision Processes (CMDPs) and extending theoretical guarantees

for local policy search for CMDPs with discounted costs to the case of non-discounted costs. We

then introduce a simple �rst-order algorithm which can achieve better sample e�ciency on a set

of continuous control tasks compared to more complex second-order methods while consistently

maintaining constraint satisfaction.

Chapter 7 concludes with a discussion and provides directions for future work.

1.2 List of Contributions

• Vuong, Q., Zhang, Y., Ross, K. (2019). Supervised Policy Update for Deep Reinforcement

Learning. International Conference for Learning Representations (ICLR).

• Zhang, Y., Vuong, Q., Ross, K. (2020). First Order Constrained Optimization in Policy Space.

Neural Information Processing Systems (NeurIPS).

• Zhang, Y., Ross, K. (2021). On-Policy Deep Reinforcement Learning for the Average Reward

Criterion. International Conference on Machine Learning (ICML).

4

2 | Preliminaries

In this chapter, we will give a basic introduction to the preliminaries and notations required for

this work. The chapter can be roughly divided into three parts. The �rst two sections present

the basic de�nition of a Markov Decision Process. Sections 2.3 and 2.4 introduces two ideas from

Markov chains which are of fundamental importance in the rest of this work. Finally in the last

four sections, we present the discounted and average reward criteria used to evaluate performance

in Markov Decision Processes and how the two criteria are connected.

2.1 Markov Decision Processes

Consider a Markov Decision Process (MDP) [Sutton and Barto 2018] pS,A, %, A, 30q where the

state space S and action space A are assumed to be �nite1. The transition probability is denoted

by % : S ˆA ˆ S Ñ r0, 1s where %pB 1|B, 0q is the probability of transitioning into state B 1 after

taking action 0 in state B . The reward function is A : S ˆ A Ñ rAmin, Amaxs where ApB, 0q is the

(bounded) immediate reward received by the agent after taking action 0 while in state B . And

30 : S Ñ r0, 1s is the initial state distribution.

Let c : S Ñ ΔpAq be a stationary policy where ΔpAq is the probability simplex over A, and Π

is the set of all stationary policies. We use g “ pB0, 00, B1, 01, ¨ ¨ ¨ q „ c to denote a sample trajectory
1With the exception of Section 5.4, the theoretical analysis of this thesis will focus exclusively on �nite state and

action spaces, however we will demonstrate that our algorithmic contributions can easily be applied to continuous
domains.

5

generated by the policy c , i.e. B0 „ 30, 0C „ cp¨|BCq, and BC`1 „ %p¨|BC , 0Cq. For tabular problems,

c can be a table of probabilitic values. However for problems with large or continuous state

and action spaces, we generally consider a set of parameterized policies Π\ “ tc\ |\ P Θu P Π.

In particular for Deep Reinforcement Learning, Π\ is a set of neural networks with the same

architecture.

In summary, the tuple pS,A, %, A, 30q gives the dynamics of the environment and the policy

c determines how the agent interact with the environment. Using the language of MDPs, the

sequence of environment interactions of an RL agent can be described as follows: At time C ,

the agent is in state BC , it takes action 0C according to policy c , receives a reward ApBC , 0Cq, then

transitions to state BC`1 according to %p¨|BC , 0Cq.

A policy c also induces a Markov chain over the state space and the state action-space. Let

%c P R
|S|ˆ|S| be the state transition matrix under policy c whose pB, B 1q components are %cpB 1|Bq “

ř

0 %pB
1|B, 0qcp0|Bq. We use %˚c :“ lim#Ñ8

1
#

ř#
C“0 %

C
c to denote the limiting distribution of the

transition matrix %c . Let3c P ΔpSq be the stationary distributions of %c , if one exists. For aperiodic

chains, we have %˚c “ limCÑ8 %
C
c “ 13)c where 1 is the column vector of appropriate dimensions

consisting of all 1’s.

2.2 Classification of Markov Decision Processes

We can classify MDPs based on the chain structure of the underlying Markov chain, and whether

states within the MDP are accessible from each other under some stationary policy c . More

concretely, MDPs can be classi�ed into the following �ve classes [Puterman 1994]:

• Ergodic: For every stationary policy, the induced Markov chain is irreducible and aperiodic.

• Unichain: For every stationary policy, the induced Markov chain contains a single recurrent

class and a �nite but possibly empty set of transient states.

6

• Communicating: For every pair of states B and B 1 in S, there exists a stationary policy c

under which B 1 is accessible from B , that is, % CcpB 1|Bq ą 0 for some C ě 1.

• Weakly Communicating: There exists a closed set of states where each state in that set

is accessible from every other state in that set under some stationary policy, and a �nite but

possibly empty set of states which is transient under every policy.

• Multichain: The transition matrix corresponding to at least one stationary policy contains

two or more closed irreducible recurrent classes.

From the above de�nitions, we see that unichain MDPs generalize Ergodic MDPs with a set of

transient states. Similarly, weakly communicating MDPs may be viewed as communicating MDPs

with an additional set of transient states. Ergodic MDPs are always communicating, and unichain

MDPs are always weakly communicating. In this work, we will focus on ergodic and unichain

MDPs.

2.3 Mean Passage Time and the Fundamental Matrix

In this section and the next, we introduce several concepts important to understanding the

long-term behavior of Markov chains. For a more detailed account, please refer to Brémaud [2020].

Let % be the transition matrix of a �nite Markov chain with = states2. De�ne the fundamental

matrix of a Markov chain with transition matrix % as

/ “ p� ´ % ` %˚q´1 (2.1)

where as before, we use %˚ to denote the limiting distribution of the transition matrix % . The

fundamental matrix exists for all �nite Markov chains [Bertsekas et al. 1995]. For any aperiodic
2These results naturally apply to the policy-induced Markov chain of an MDP %c .

7

Markov chain, we can also show that (Theorem 4.3.1, Kemeny and Snell [1960])

/ “ � `

8
ÿ

C“1
p% C ´ %˚q (2.2)

For ergodic Markov chains, one important application of the fundamental matrix is the calculation

of the mean �rst passage time. Let" P R=ˆ= be the mean �rst passage time matrix whose elements

"pB, B 1q is the expected number of steps it takes to reach state B 1 from B . For any ergodic MDP, the

matrix " can be calculated via (Theorem 4.4.7, Kemeny and Snell [1960])

" “ p� ´ / ` �/dgq� (2.3)

where � is a square matrix consisting of all ones. The subscript ‘dg’ refers to a matrix whose

diagonal entries are the diagonals of some square matrix and the rest of the entries are zero.

� P R=ˆ= is a diagonal matrix whose entries are 1{3pBq where 3 is the stationary distribution.

One important property of mean �rst passage time is that for ergodic MDP, the quantity

^ “
ÿ

B1

3pB 1q"pB, B 1q “ tracep/ q (2.4)

is a constant independent of the starting state (Theorem 4.4.10, Kemeny and Snell [1960].) The

constant ^ is sometimes referred to as Kemeny’s constant [Grinstead and Snell 2012]. This constant

can be interpreted as the mean number of steps it takes to get to any goal state weighted by the

steady-distribution of the goal states. This weighted mean does not depend on the starting state,

as mentioned just above.

8

2.4 Mixing Time

In this section, we delve deeper into the asymptotic behavior of ergodic Markov chains. When

the state space is �nite, this behavior can be entirely characterized by the eigen-structure of the

transition matrix % [Brémaud 2020]. This is formalized in the Perron-Frobenius Theorem [Perron

1907; Frobenius 1912].

Theorem 2.1 (Perron-Frobenius). Let % be the transition matrix of an irreducible aperiodic Markov

chain and its eigenvalues _1, _2, ¨ ¨ ¨ , _= which are ordered such that 1 “ _1 ą |_2| ě ¨ ¨ ¨ ě |_=|.

Then

% C “ 13) `$pC<2´1
|_2|

C
q (2.5)

where< 9 is the algebraic multiplicity of _ 9 .

A proof can be found in Seneta [2006]. The Perron-Frobenius Theorem states that the relative

speed of convergence is determined by the Second Largest Eigenvalue Modulo (SLEM). Subsequently,

we will use _˚ to denote the SLEM.

The idea of mixing time characterizes the time it takes for a Markov chain to converge to its

stationary distribution. Formally, the mixing time for a transition matrix % is de�ned as

Cmixpnq :“ mintC : max
B
�TVp%

C
p¨|Bq ‖ 3q ď nu (2.6)

where we use % Cp¨|Bq to denote the Bth row of % C and �TV is the total variation distance which is

de�ned as

�TVp? ‖ @q :“
1
2
}? ´ @}1 “

1
2

ÿ

G

|?pGq ´ @pGq| (2.7)

for any two �nite probability distributions ? and @.

By the Perron-Frobenius Theorem, the SLEM determines the convergence speed of % C . It

therefore should not be suprising that Cmixpnq is also related to SLEM. In fact for any irreducible

9

and aperiodic Markov chain, We can upper-bound the mixing time by the SLEM (Theorem 12.5,

Levin and Peres [2017]):

Cmixpnq ě

ˆ

1
1´ _˚

´ 1
˙

log
ˆ

1
2n

˙

(2.8)

For a more in-depth discussion of Markov Chains and mixing times, see Levin and Peres [2017];

Brémaud [2020].

It turns out that a Markov chain’s mixing time is related to Kemeny’s constant through SLEM:

Proposition 2.2. For an ergodic Markov chain, let 1 “ _1 ą _2 ě ¨ ¨ ¨ ě _= ą ´1 be the eigenvalues

of % , we have

^ ď 1`
= ´ 1
1´ _‹

(2.9)

where _‹ “ max8“2,...,= |_8 |.

Proof. Let _ be an eigenvalue of % and D its corresponding eigenvector. Since % is aperiodic,

_ ‰ ´1, we then have
p� ´ % ` %‹qD “ D ´ %D ` lim

=Ñ8
% CD

“ p1´ _qD ` D lim
CÑ8

_C

“

´

1´ _ ` lim
CÑ8

_C
¯

D

(2.10)

where limCÑ8 _
C “ 1 when _ “ 1 and 0 when |_| ă 1. Therefore, p� ´ % ` %‹q has eigenvalues

1, 1´_2, . . . , 1´_= . The fundamental matrix / “ p� ´%`%‹q´1 has eigenvalues 1, 1
1´_2

, ¨ ¨ ¨ , 1
1´_= .

We can then upper bound Kemeny’s constant by

^ “ tracep/ q “ 1`
=
ÿ

8“2

1
1´ _8

ď 1`
=
ÿ

8“2

1
1´ |_8 |

ď 1`
= ´ 1
1´ _‹

(2.11)

�

10

2.5 The Discounted Reward Criterion

For some discount factor W P p0, 1q, the discounted reward objective is de�ned as

dWpcq :“ E
g„c

«

8
ÿ

C“0
W CApBC , 0Cq

ff

“
1

1´ W
E

B„3c,W
0„c

rApB, 0qs (2.12)

where

3c,WpBq :“ p1´ Wq
8
ÿ

C“0
W C%g„cpBC “ Bq (2.13)

is known as the future discounted state visitation distribution under policy c . For any bounded

reward function, the discounted objective is guaranteed to converge to a �nite value. Note also

that the discounted objective depends on the initial state distribution `. The distribution 3c,WpBq

can be regarded as the discounted analogy to the stationary distribution and it can be easily shown

that 3c,WpBq Ñ 3cpBq for all B P S as W Ñ 1 [Kakade and Langford 2002].

The discounted state-value function, de�ned as

+ c
W pBq :“ E

g„c

«

8
ÿ

C“0
W CApBC , 0Cq

ˇ

ˇ

ˇ

ˇ

B0 “ B

ff

, (2.14)

is the expected discounted return of policy c starting in state B . It is clear from de�nition that

dWpcq “ EB„30

”

+ c
W pBq

ı

. The discounted action-value function

&cW pB, 0q :“ E
g„c

«

8
ÿ

C“0
W CApBC , 0Cq

ˇ

ˇ

ˇ

ˇ

B0 “ B, 00 “ 0

ff

. (2.15)

is the expected discounted return of policy c after taking action 0 in state B .

The state-value function + c
W pBq and action-value function &cW pBq are related through the fol-

11

lowing equations [Sutton and Barto 2018]:

+ c
W pBq “

ÿ

0PA
cp0|Bq&cW pB, 0q (2.16)

&cW pB, 0q “ ApB, 0q ` W
ÿ

B1PS
%pB 1|B, 0q+ c

W pB
1
q. (2.17)

A fundamental property of + c
W pBq and &cW pBq is that they can be expressed using the following

recursive relations known as the Bellman equations [Sutton and Barto 2018]:

+ c
W pBq “

ÿ

0PA
cp0|Bq

˜

ApB, 0q ` W
ÿ

B1PS
?pB 1|B, 0q+ c

W pB
1
q

¸

(2.18)

&cW pB, 0q “ ApB, 0q ` W
ÿ

B1PS
%pB 1|B, 0q

ÿ

01PA
cp01|B 1q&cW pB, 0q. (2.19)

Finally, the discounted advantage function is de�ned as

�cW pB, 0q :“ &cW pB, 0q ´+
c
W pBq. (2.20)

The advantage function can be interpreted as measuring how much better than average a particular

action 0 is in state B .

2.6 The Average Reward Criterion

The average reward objective is de�ned as:

dpcq :“ lim
#Ñ8

1
#
E
g„c

«

#´1
ÿ

C“0
ApBC , 0Cq

ff

“ E
B„3c
0„c

rApB, 0qs. (2.21)

The limit is guaranteed to exist when c is stationary [Puterman 1994]. The term dpcq is also

referred to as the gain of policy c . In the unichain case, the average reward dpcq does not depend

12

on the initial state for any stationary policy c [Bertsekas et al. 1995].

We express the average-reward bias function as

s+ c
pBq :“ E

g„c

«

8
ÿ

C“0
pApBC , 0Cq ´ dpcqq

ˇ

ˇ

ˇ

ˇ

B0 “ B

ff

(2.22)

and average-reward action-bias function as

s&cpB, 0q :“ E
g„c

«

8
ÿ

C“0
pApBC , 0Cq ´ dpcqq

ˇ

ˇ

ˇ

ˇ

B0 “ B, 00 “ 0

ff

. (2.23)

The bias functions s+ cpBq and s&cpB, 0q are the average reward analogies of + c
W pBq and &cW pB, 0q, the

extra "´dpcq" term is to guarantee the convergence of the in�nite series. Similar to the discounted

case, we can show that

s+ c
pBq “

ÿ

0PA
cp0|Bq&cW pB, 0q (2.24)

s&cpB, 0q “ ApB, 0q ´ dpcq `
ÿ

B1PS
%pB 1|B, 0q+ c

W pB
1
q. (2.25)

The average reward bias and action-bias functions also satisfy the Bellman equation [Sutton and

Barto 2018]

s+ c
pBq “

ÿ

0PA
cp0|Bq

˜

ApB, 0q ´ dpcq `
ÿ

B1PS
?pB 1|B, 0qs+ c

pB 1q

¸

(2.26)

s&cpB, 0q “ ApB, 0q ´ dpcq `
ÿ

B1PS
%pB 1|B, 0q

ÿ

01PA
cp01|B 1qs&cpB, 0q. (2.27)

Note that these equations take a slightly di�erent form compared to the discounted Bellman

equations, there are no discount factors and the rewards are now replaced with ApB, 0q ´ dpcq.3

3In Sutton and Barto [2018], the term ApB, 0q ´ dpcq is referred to as the di�erential reward.

13

Finally, we de�ne the average-reward advantage function as

s�cpB, 0q :“ s&cpB, 0q ´ s+ c
pBq. (2.28)

2.7 Connecting the Discounted and Average Reward

Criteria

We noted in the previous section that the bias function is the average reward analogy of the value

function, in fact it can be shown that the bias function and the value function satisfy the following

relationship:

Proposition 2.3 (Blackwell 1962). For a given stationary policy c and discount factor W P p0, 1q,

lim
WÑ1

ˆ

+ c
W pBq ´

dpcq

1´ W

˙

“ s+ c
pBq (2.29)

for all B P S.

It is straight forward to extend the above results to the action-bias (value) functions and

advantage functions.

Corollary 2.4. For a given stationary policy c and discount factor W P p0, 1q,

lim
WÑ1

ˆ

&cW pB, 0q ´
dpcq

1´ W

˙

“ s&cpB, 0q (2.30)

lim
WÑ1

�cW pB, 0q “
s�cpB, 0q (2.31)

for all B P S and 0 P A.

14

Proof. From Proposition 2.3, we can rewrite (2.29) as

+ c
W pBq “

dpcq

1´ W
` s+ c

pBq ` 6pW, Bq (2.32)

where limWÑ1 6pW, Bq “ 0. We then expand &cW pB, 0q using the Bellman equation

&cW pB, 0q “ ApB, 0q ` W
ÿ

B1

%pB 1|B, 0q+ c
W pB

1
q

“ ApB, 0q ` W
ÿ

B1

%pB 1|B, 0q

ˆ

dpcq

1´ W
` s+ c

pB 1q ` 6cpW, B 1q

˙

“ ApB, 0q `
Wdpcq

1´ W
` W

ÿ

B1

%pB 1|B, 0q
`

s+ c
pB 1q ` 6cpW, B 1q

˘

“ ApB, 0q ´ dpcq `
dpcq

1´ W
`
ÿ

B1

%pB 1|B, 0qs+ c
pB 1q

´ p1´ Wq
ÿ

B1

%pB 1|B, 0qs+ c
pB 1q ` W

ÿ

B1

%pB 1|B, 0q6cpW, B 1q

“ s&cpB, 0q `
dpcq

1´ W
´ p1´ Wq

ÿ

B1

%pB 1|B, 0qs+ c
pB 1q ` W

ÿ

B1

%pB 1|B, 0q6cpW, B 1q

where we used Proposition 2.3 for the second equality. Note that the last two terms in the last

equality approach 0 as W Ñ 1, rearranging the terms and taking the limit for W Ñ 1 gives us

Equation (2.30).

We can then similarly rewrite (2.30) as

&cW pB, 0q “
dpcq

1´ W
` s&cpB, 0q ` ℎpW, B, 0q (2.33)

15

with limWÑ1 ℎpW, B, 0q “ 0. This allows us to rewrite the discounted advantage function as

�cW pB, 0q “ &cW pB, 0q ´+
c
W pBq

“ s&cpB, 0q `
dpcq

1´ W
` ℎcpB, 0,Wq ´ s+ c

pBq ´
dpcq

1´ W
´ 6cpB, Wq

“ s�cpB, 0q ` ℎcpB, 0,Wq ´ 6cpB,Wq

Since ℎcpB, 0,Wq and 6cpB, Wq both approach 0 as W approaches 1, taking the limit for W Ñ 1 gives

us Equation (2.31). �

2.8 Blackwell Optimality

A direct consequence of Proposition 2.3 is

dpcq “ lim
WÑ1
p1´ WqdWpcq (2.34)

meaning that the the average reward and the discounted reward objectives are equivalent in the

limit. Therefore an equivalent formulation to maximizing the average reward objective would

be to instead solve the optimization problem argmaxc limWÑ1p1´ WqdWpcq using the discounted

objective.

However this optimization problem contains a limit and is di�cult to solve in practice. What is

often done in practice is to instead maximize p1´WqdWpcq for increasingly larger discount factors,

i.e. we switch the order of the limit and the argmax operator limWÑ1 argmaxc limWÑ1p1´WqdWpcq

[Naik et al. 2019]. In fact, this limiting policy has strong theoretical implications which relate the

average and discounted reward criteria.

De�nition 2.5. A stationary policy c is said to be Blackwell optimal if it is simultaneously optimal

for all dWpcq with W P pW̄, 1q, where W̄ P p0, 1q.

16

In short, a Blackwell optimal policy is optimal w.r.t. dWpcq for all su�ciently large discount

factors. Blackwell [1962] showed that a Blackwell optimal policy always exits, and that a Blackwell

optimal policy is also optimal w.r.t. the average reward. Intuitively, a large discount factor

corresponds to a longer time horizon4, Blackwell optimality theory says that when a policy is

optimal for a su�ciently long time horizon, it is also optimal for the average reward.

4In literature, the term
1

1´ W
is known as the e�ective horizon [Agarwal et al. 2019]

17

3 | Local Policy Search

3.1 Introduction

One major source of di�culty with modern on-policy DRL algorithms lies in controlling the

step-size for policy updates. For on-policy policy update procedure (and to a large extent this

applies to o�-policy algorithms as well), the quality of data acquired by the agent depends on the

quality of the behavioral policy. Therefore an ill-chosen step-size could potentially result in bad

behavioral policies which will subsequently a�ect the trajectories experienced by the agent. This

could have potential downstreams e�ects which makes it very di�cult for the agent to recover

from suboptimal regions of the policy space. In addition, measuring the “distance” between

di�erent policies can be di�cult and naïvely using the Euclidean distance between the policy

parameters often does not respect the true “distance” between policies. This can be illustrated with

the following simple example in Figure 3.1, the two distributions in both Figure 3.1(a) and 3.1(b)

have the same Euclidean distance but it is clear by simple inspection that the two distributions in

Figure 3.1(b) are further apart.

In order to have better control over step-sizes, Schulman et al. [2015] constructed a lower

bound on the di�erence between the expected discounted return for two arbitrary policies c and

c 1 by building upon the work of Kakade and Langford [2002]. The bound is a function of the

divergence between these two policies and the discount factor. Schulman et al. [2015] showed

that iteratively maximizing this lower bound generates a sequence of monotonically improved

18

(a) `1 “ 0, f1 “ 1 and `2 “ 0.1, f2 “ 1 (b) `1 “ 0, f1 “ 0.01 and `2 “ 0.1, f2 “ 0.01

Figure 3.1: Comparing Gaussian distributions with identical Euclidean distance in the parameter space.

policies for their discounted return. This bound was later re�ned by Achiam et al. [2017].

One important open question is whether these policy improvement bounds can be applied

to non-discounted settings, which makes up an important set of reinforcement learning tasks.

Broadly speaking, modern RL tackles two kinds of problems: episodic tasks and continuing tasks.

In episodic tasks, the agent-environment interaction can be broken into separate distinct episodes,

and the performance of the agent is simply the sum of the rewards accrued within an episode.

Examples of episodic tasks include training an agent to learn to play Go [Silver et al. 2016, 2018],

where the episode terminates when the game ends. In continuing tasks, such as robotic locomotion

[Peters and Schaal 2008b; Schulman et al. 2015; Haarnoja et al. 2018] or in a queuing scenario

[Tadepalli and Ok 1994; Sutton and Barto 2018], there is no natural separation of episodes and

the agent-environment interaction continues inde�nitely. The performance of an agent in a

continuing task is more di�cult to quantify since the total sum of rewards is typically in�nite.

One way of making the long-term reward objective meaningful for continuing tasks is to

apply discounting so that the in�nite-horizon return is guaranteed to be �nite for any bounded

reward function. However the discounted objective biases the optimal policy to choose actions

that lead to high near-term performance rather than to high long-term performance. Such an

objective is not appropriate when the goal is to optimize long-term behavior, i.e., when the natural

objective underlying the task at hand is non-discounted. In particular, we note that for the vast

19

majority of benchmarks for reinforcement learning such as Atari games [Mnih et al. 2013] and

MuJoCo [Todorov et al. 2012], a non-discounted performance measure is used to evaluate the

trained policies.

Although in many circumstances where the non-discounted criteria are more natural, most

of the successful DRL algorithms today have been designed to optimize a discounted criterion

during training. One possible work-around for this mismatch is to simply train with a discount

factor that is very close to one. Indeed, from Blackwell optimality theory [Blackwell 1962] (see

also Section 2.8), we know that if the discount factor is very close to one, then an optimal policy

for the in�nite-horizon discounted criterion is also optimal for the long-run average-reward

criterion. However, although Blackwell’s result suggests we can simply use a large discount factor

to optimize non-discounted criteria, problems with large discount factors are in general more

di�cult to solve [Petrik and Scherrer 2008; Jiang et al. 2015, 2016; Lehnert et al. 2018]. Researchers

have also observed that state-of-the-art DRL algorithms typically break down when the discount

factor gets too close to one [Schulman et al. 2016; Andrychowicz et al. 2020].

In this chapter and the next, we seek to develop algorithms for �nding high-performing

policies for average-reward DRL problems. Instead of trying to simply use standard discounted

DRL algorithms with large discount factors, we instead attack the problem head-on, seeking

to directly optimize the average-reward criterion. While the average reward setting has been

extensively studied in the classical Markov Decision Process literature [Howard 1960; Blackwell

1962; Veinott 1966; Bertsekas et al. 1995], and has to some extent been studied for tabular RL

[Schwartz 1993; Mahadevan 1996; Abounadi et al. 2001; Wan et al. 2020], it has received relatively

little attention in the DRL community. Here, our focus is on developing average-reward on-policy

DRL algorithms.

We will begin by showing that the policy improvement theorem from Schulman et al. [2015]

and Achiam et al. [2017] results in a non-meaningful bound in the average reward case. We then

derive a novel result which lower bounds the di�erence of the average long-run rewards. The

20

bound depends on the average divergence between the policies and on the so-called Kemeny

constant, which measures to what degree the irreducible Markov chains associated with the

policies are “well-mixed”. We show that iteratively maximizing this lower bound guarantees

monotonic average reward policy improvement. In the next chapter, we demonstrate how these

bounds can be applied to practical algorithms.

3.2 Background

3.2.1 Policy Gradient Methods

In general, reinforcement learning algorithms can be classi�ed as value-based and policy-based1.

A value-based algorithms uses estimates of the value function to determine the appropriate policy,

examples of which include Q-Learning [Watkins 1989] and SARSA [Rummery and Niranjan 1994].

In constrast, policy-based methods learn the policy directly either with or without a value function.

One popular approach is to directly apply stochastic gradient ascent to the performance objective

function of interest. More concretely, given the discounted objective dWpc\ q where c\ denotes a

policy parameterized by \ , the gradient of dWpc\ q evaluated at a speci�c \ “ \: can be shown to

be [Williams 1992; Sutton et al. 1999]:

∇\dWpc\: q “ E
g„c\:

«

8
ÿ

C“0
W C∇\ logc\: p0C |BCq�

c\:
W pBC , 0Cq

ff

. (3.1)

This result is known as the policy gradient theorem. We can approximate (3.1) by sampling #

trajectories of length) from c\: :

∇\dWpc\: q «
1
#

#
ÿ

8“1

)´1
ÿ

C“0
∇\ logc\: p08C |B8Cq�

c\:
W pB8C , 08Cq. (3.2)

1An algorithm can also be both value-based and policy-based, i.e. actor-critic algorithms.

21

For the average reward setting, the policy gradient takes a very similar form [Sutton et al. 1999]:

∇\dWpc\: q “ E
g„c\:

«

8
ÿ

C“0
∇\ logc\: p0C |BCq s�

c\: pBC , 0Cq

ff

. (3.3)

However note here that the advantage function is now the average reward advantage function.

3.2.2 Local Policy Search for Discounted Problems

The policy gradient problem in deep reinforcement learning (DRL) can be de�ned as seeking a

parameterized policy with high expected reward. An issue with policy gradient methods is poor

sample e�ciency [Kakade 2003; Schulman et al. 2015; Wang et al. 2017; Wu et al. 2017; Schulman

et al. 2017b]. In algorithms such as REINFORCE [Williams 1992], new samples are needed for

every gradient step. When generating samples is expensive (such as robotic environments), sample

e�ciency is of central concern.

Thus, given the current policy and a �xed number of trajectories (samples) generated, the

goal of the sample e�ciency problem is to construct a new policy with the highest performance

improvement possible. To do so, it is desirable to limit the search to policies that are close to

the original policy c\: [Kakade 2001b; Schulman et al. 2015; Wu et al. 2017; Achiam et al. 2017;

Schulman et al. 2017b; Tangkaratt et al. 2018]. Intuitively, if the candidate new policy c\ is far

from the original policy c\: , it may not perform better than the original policy because too much

emphasis is being placed on the relatively small batch of new data generated by c\: , and not

enough emphasis is being placed on the relatively large amount of data and e�ort previously used

to construct c\: . Concretly, we iteratively update policies by maximizing them within a local

region, i.e., at iteration : we �nd a policy c\:`1 by solving the following optimization problem:

maximize
c\PΠ\

� pc\ q

subject to �pc\ , c\: q ď X

(3.4)

22

where � pc\ q is the policy performance metric we are interested in (e.g. including but not limited

to dWpc\ q or dpc\ q), � is some divergence measure. Di�erent choices of � results in di�erent

algorithm, for example:

• Vanilla Policy Gradient/Gradient Ascent [Sutton et al. 1999; Peters and Schaal 2008b]

�pc\ , c\: q “ }\ ´ \:}2

where }¨}2 denote the Euclidean norm.

• Newton’s method [Furmston et al. 2016]

�pc\ , c\: q “ p\ ´ \:q
)�p\:qp\ ´ \:q

where �p\:q is the Hessian matrix at \ “ \: .

• Natural Policy Gradient (NPG) [Kakade 2001b]/Trust Region Policy Optimization (TRPO)

[Schulman et al. 2015]

�pc\ , c\: q “ �KL pc\}c\: q « p\ ´ \:q
) � p\:qp\ ´ \:q

where � p\:q is the Fisher Information Matrix (FIM) at \ “ \: .

• Mirror Descent [Montgomery and Levine 2016; Tomar et al. 2020]

�pc\ , c\: q “ ��pc\ , c\: q

where �� is the Bregman divergence.

By using di�erent choices of � and X , this approach allows us to control the step-size of each

update, which can lead to better sample e�ciency [Peters and Schaal 2008b].

23

In this chapter we will focus on the case of � is the KL divergence, which we will subsequently

refer to as the NPG/TRPO problem2. Schulman et al. [2015] showed that this particular case, the

performance di�erence between two successive policies c:`1 and c: can be upper-bounded:

dWpc:`1q ´ dWpc:q ě
1

1´ W
E

B„3c: ,W
0„c:`1

r�
c:
W pB, 0qs ´

4nW
p1´ Wq2

¨max
B
r�TVpc:`1 ‖ c:qrBss (3.5)

where �TVpc
1 ‖ cqrBs :“ 1

2
ř

0 |c
1p0|Bq ´ cp0|Bq| is the total variation divergence3, and n is some

constant. Schulman et al. [2015] showed that by choosing c:`1 which maximizes the right

hand side of (3.5), we are guaranteed to have dWpc:`1q ě dWpc:q. This provided the theoretical

foundation for an entire class of on-policy DRL algorithms [Schulman et al. 2015, 2017b; Wu et al.

2017; Song et al. 2020; Tomar et al. 2020].

A natural question arises here is whether the iterative procedure described by Schulman et al.

[2015] also guarantees improvement for the average reward. Since the discounted and average

reward objectives become equivalent as W Ñ 1, one may conjecture that we can also lower bound

the policy performance di�erence of the average reward objective by simply letting W Ñ 1 for the

bounds in Schulman et al. [2015]. Unfortunately this results in a non-meaningful bound.

Proposition 3.1. Consider the bounds in Theorem 1 of Schulman et al. [2015] and Corollary 1 of

Achiam et al. [2017]. The right hand side of both bounds times p1´ Wq goes to negative in�nity as

W Ñ 1.

Proof. We will give a proof for the case of Corollary 1 in Achiam et al. [2017], a similar argument

can be applied to the bound in Theorem 1 of Schulman et al. [2015].

We �rst state Corollary 1 of Achiam et al. [2017] which says that for any two stationary policies
2In the next chapter we will expand upon how NPG and TRPO are related.
3Even though the TV divergence is used in the performance di�erence bound, the KL divergence is often used in

practice via Pinsker’s inequality (see Section 3.3 for more details)

24

c and c 1:

dWpc
1
q ´ dWpcq ě

1
1´ W

»

—

–
E

B„3c,W

0„c 1

r�cW pB, 0qs ´
2WnW

1´ W
E

B„3c,W

�TVpc
1 ‖ cq

fi

ffi

fl
(3.6)

where nW “ maxB
ˇ

ˇ

ˇ
E0„c 1r�

c
W pB, 0qs

ˇ

ˇ

ˇ
. Since 3c,W approaches the stationary distribution 3c as W Ñ 1,

we can multiply the right hand side of (4.1) by p1´ Wq and take the limit which gives us:

lim
WÑ1

¨

˚

˝
E

B„3c,W

0„c 1

r�cW pB, 0qs ˘
2WnW

1´ W
E

B„3c,W

�TVpc
1 ‖ cq

˛

‹

‚

“ E
B„3c
0„c 1

r s�cpB, 0qs ´ 2n E
B„3c

r�TVpc
1 ‖ cqs lim

WÑ1

W

1´ W

“´8

Here n “ maxB
ˇ

ˇE0„c 1r s�
cpB, 0qs

ˇ

ˇ. The �rst equality is a direct result of Corollary 2.4. �

Since limWÑ1p1 ´ WqpdWpc 1q ´ dWpcqq “ dpc 1q ´ dpcq, Proposition 3.1 says that the policy

improvement guarantee from Schulman et al. [2015] and Achiam et al. [2017] becomes trivial

when W Ñ 1 and thus does not generalize to the average reward setting. In the next section, we

will derive a novel policy improvement bound for the average reward objective, which in turn can

be used to generate monotonically improved policies w.r.t. the average reward.

3.3 Policy Improvement Theorem for the Average Reward

Criterion

Suppose we have a new policy c 1 obtained via some update rule from the current policy c . Similar

to the discounted case, we would like to measure their performance di�erence dpc 1q ´ dpcq using

25

an expression which depends on c and some divergence metric between the two policies. The

following identity shows that dpc 1q´ dpcq can be expressed using the average reward advantange

function of c .

Lemma 3.2. For any aperiodic unichain MDP:

dpc 1q ´ dpcq “ E
B„3c 1

0„c 1

“

s�cpB, 0q
‰

(3.7)

for any two stochastic policies c and c 1.

Lemma 3.2 is an extension of the well-known policy di�erence lemma from Kakade and

Langford [2002] to the average reward case. A similar result was proven by Even-Dar et al. [2009]

and Neu et al. [2010]. For completeness, we provide two simple proofs.

Proof. In the �rst approach, we directly expand the right-hand side using the de�nition of the

advantage function and Bellman equation, which gives us:

E
B„3c

1

0„c 1

“

s�cpB, 0q
‰

“ E
B„3c

1

0„c 1

“

s&cpB, 0q ´ s+ c
pBq

‰

“ E
B„3c

1

0„c 1

„

ApB, 0q ´ dpcq ` E
B1„%p¨|B,0q

“

s+ c
pB 1q

‰

´ s+ c
pBq

“ dpc 1q ´ dpcq ` E
B„3c

1

0„c 1

B1„%p¨|B,0q

rs+ c
pB 1qs ´ E

B„3c
1
rs+ c
pBqs

Since 3c 1pBq is the stationary distribution:

E
B„3c

1

0„c 1

B1„%p¨|B,0q

rs+ c
pB 1qs “

ÿ

B

3c 1pBq
ÿ

0

c 1p0|Bq
ÿ

B1

%pB 1|B, 0qs+ c
pB 1q

“
ÿ

B

3c 1pBq
ÿ

B1

%c 1pB
1
|Bqs+ c

pB 1q “
ÿ

B1

3c 1pB
1
qs+ c

pB 1q

26

Therefore,

E
B„3c

1

0„c 1

B1„%p¨|B,0q

rs+ c
pB 1qs ´ E

B„3c
1
rs+ c
pBqs “ 0

which gives us the desired result.

Alternatively, we can directly apply Proposition 2.3 and Corollary 2.4 to Lemma 6.1 of [Kakade

and Langford 2002] and take the limit as W Ñ 1. �

Note that the expression (3.7) depends on samples drawn from c 1. However we can show

through the following lemma that when 3c and 3c 1 are “close” w.r.t. the TV divergence, we can

evaluate the right hand side of (3.7) using samples from 3c .

Lemma 3.3. For any aperiodic unichain MDP, the following bound holds for any two stochastic

policies c and c 1:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dpc 1q ´ dpcq ´ E
B„3c
0„c 1

“

s�cpB, 0q
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2n�TVp3c 1 ‖ 3cq (3.8)

where n “ maxB
ˇ

ˇE0„c 1p0|Bqr s�
cpB, 0qs

ˇ

ˇ.

Proof.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dpc 1q ´ dpcq ´ E
B„3c
0„c 1

“

s�cpB, 0q
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
B„3c

1

0„c 1

“

s�cpB, 0q
‰

´ E
B„3c
0„c 1

“

s�cpB, 0q
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

B

E
0„c 1

“

s�cpB, 0q
‰

p3c 1pBq ´ 3cpBqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

B

ˇ

ˇ

ˇ

ˇ

E
0„c 1

“

s�cpB, 0q
‰

p3c 1pBq ´ 3cpBqq

ˇ

ˇ

ˇ

ˇ

ď max
B

ˇ

ˇ

ˇ

ˇ

E
0„c 1

“

s�cpB, 0q
‰

ˇ

ˇ

ˇ

ˇ

}3c 1 ´ 3c}1

“ 2n�TVp3
c 1 ‖ 3cq

where the last inequality follows from Hölder’s inequality. �

27

Lemma 3.3 implies that

dpc 1q « dpcq ` E
B„3c
0„c 1

“

s�cpB, 0q
‰

(3.9)

when 3c and 3c 1 are “close”. However in order to study how policy improvement is connected to

changes in the actual policies themselves, we need to analyze the relationship between changes

in the policies and changes in stationary distributions. It turns out that the sensitivity of the

stationary distributions in relation to the policies is related to the structure of the underlying

Markov chain via Kemeny’s constant, which was introduced in Chapter 2.3.

The following result connects the sensitivity of the stationary distribution to changes to the

policy.

Lemma 3.4. For any ergodic MDP, the divergence between the stationary distributions 3c and 3c 1

can be upper bounded by the average divergence between policies c and c 1:

�TVp3c 1 ‖ 3cq ď p^˚ ´ 1q E
B„3c

r�TVpc
1 ‖ cqrBss (3.10)

where ^˚ “ maxc ^c

Proof. Our proof is based on Markov chain perturbation theory [Cho and Meyer 2001; Hunter

2005]. Note �rst that

p3)
c 1
´ 3)c qp� ´ %c 1 ` %

˚
c 1
q “ 3)

c 1
´ 3)c ´ 3

)
c 1
` 3)c%c 1

“ 3)c%c 1 ´ 3
)
c

“ 3)c p%c 1 ´ %cq

(3.11)

Right multiplying (3.11) by p� ´ %c 1 ` %˚c 1q
´1 gives us:

3)
c 1
´ 3)c “ 3)c p%c 1 ´ %cqp� ´ %c 1 ` %

˚
c 1
q
´1 (3.12)

28

Recall that /c 1 “ p� ´ %c 1 ` %˚c 1q
´1 and "c 1 “ p� ´ /c

1

` �/c
1

dgq�
c 1 . Rearranging the terms we

�nd that

/c
1

“ � ` �/c
1

dg ´"
c 1
p�c

1

q
´1 (3.13)

Plugging (3.13) into (3.12) gives us

3)
c 1
´ 3)c “ 3)c p%c 1 ´ %cqp� ` �/

c 1

dg ´"
c 1
p�c

1

q
´1
q

“ 3)c p%c 1 ´ %cqp� ´"
c 1
p�c

1

q
´1
q

(3.14)

where the last equality is due to p%c 1 ´ %cq� “ 0.

Let }¨}? denote the the operator norm of a matrix, in particular }¨}1 and }¨}8 are the maximum

absolute column sum and maximum absolute row sum respectively. By the submultiplicative

property of operator norms [Horn and Johnson 2012], we have:

}3c 1 ´ 3c}1 “
›

›

›
p� ´"c 1

p�c
1

q
´1
q
)
p%)
c 1
´ %)c q3c

›

›

›

1

ď

›

›

›
p� ´"c 1

p�c
1

q
´1
q
)
›

›

›

1

›

›p%)
c 1
´ %)c q3c

›

›

1

“

›

›

›
p� ´"c 1

p�c
1

q
´1
q

›

›

›

8

›

›p%)
c 1
´ %)c q3c

›

›

1

(3.15)

We can rewrite
›

›

›
� ´"c 1p�c

1

q´1
›

›

›

8
as

›

›

›
� ´"c 1

p�c
1

q
´1
›

›

›

8
“ max

B

˜

ÿ

B1

"c 1
pB, B 1q3c 1pB

1
q ´ 1

¸

“ ^c
1

´ 1

(3.16)

29

Finally we bound
›

›

›
p%)
c 1
´ %)c q3c

›

›

›

1
by

›

›p%)
c 1
´ %)c q3c

›

›

1 “
ÿ

B1

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

B

˜

ÿ

0

%pB 1|B, 0qc 1p0|Bq ´ %pB 1|B, 0qcp0|Bq

¸

3cpBq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

B1,B

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

0

%pB 1|B, 0qpc 1p0|Bq ´ cp0|Bqq

ˇ

ˇ

ˇ

ˇ

ˇ

3cpBq

ď
ÿ

B,B1,0

%pB 1|B, 0q
ˇ

ˇc 1p0|Bq ´ cp0|Bq
ˇ

ˇ3cpBq

ď
ÿ

B,0

ˇ

ˇc 1p0|Bq ´ cp0|Bq
ˇ

ˇ3cpBq

“ 2 E
B„3c

r�TVpc
1 ‖ cqs

(3.17)

Plugging back into (3.15) and setting ^˚ “ maxc ^c gives the desired result. �

By Proposition 2.2, for Markov chains with a small mixing time, where an agent can quickly

get to any state, Kemeny’s constant is relatively small and Lemma 3.4 shows that the stationary

distributions are not highly sensitive to small changes in the policy. On the other hand, for Markov

chains that that have high mixing times, the factor can become very large. In this case Lemma

3.4 shows that small changes in the policy can have a large impact on the resulting stationary

distributions.

Combining the bounds in Lemma 3.3 and Lemma 3.4 gives us the following result:

Theorem 3.5. For any ergodic MDP, the following bounds hold for any two stochastic policies c and

c 1, :

dpc 1q ´ dpcq ď E
B„3c
0„c

„

c 1p0|Bq

cp0|Bq
s�cpB, 0q

` 2b E
B„3c

r�TVpc
1 ‖ cqrBss (3.18)

dpc 1q ´ dpcq ě E
B„3c
0„c

„

c 1p0|Bq

cp0|Bq
s�cpB, 0q

´ 2b E
B„3c

r�TVpc
1 ‖ cqrBss (3.19)

where b “ p^˚ ´ 1qmaxB E0„c 1 | s�cpB, 0q|.

30

The bounds in Theorem 3.5 are guaranteed to be �nite. Analogous to the discounted case, the

multiplicative factor b provides theoretical guidance on the step-sizes for policy updates.

The bound in Theorem 3.5 is given in terms of the TV divergence; however the KL divergence is

more commonly used in practice. The relationship between the TV divergence and KL divergence

is given by Pinsker’s inequality [Tsybakov 2008], which says that for any two distributions ? and

@: �TVp? ‖ @q ď
a

�KL p?}@q {2. We can then show that

E
B„3c

r�TVpc
1 ‖ cqrBss ď E

B„3c

r

b

�KL pc 1}cq rBs{2s

ď

c

E
B„3c

r�KL pc 1}cqsrBss{2
(3.20)

where the second inequality comes from Jensen’s inequality. The inequality in (3.20) shows

that the bounds in Theorem 3.5 still hold when EB„3c r�TVpc
1 ‖ cqrBss is substituted with

a

EB„3c r�KL pc 1}cqsrBs{2. This parallels the bound for the discounted case introduced in [Achiam

et al. 2017].

Note that Theorem holds for any ergodic MDP; we can also show that a similar result can be

derived for the more general aperiodic unichain case.

For an aperioidic unichain MDP, we can similarly bound the sensitivity of the stationary

distribution to changes in the policy.

Lemma 3.6. For any aperiodic unichain MDP:

�TVp3c 1 ‖ 3cq ď Z ˚ E
B„3c

r�TVpc
1 ‖ cqrBss (3.21)

where Z ˚ “ maxc }/c}8.

Proof. Note that

3)
c 1
´ 3)c “ 3)c p%c 1 ´ %cqp� ´ %c 1 ` %

˚
c 1
q
´1

from Equation 3.12 still holds in the general aperiodic unichain case. By the submultiplicative

31

property, we have:

}3c 1 ´ 3c}1 “
›

›pp� ´ %c 1 ` %
˚
c 1
q
´1
q
)
p%)
c 1
´ %)c q3c

›

›

1

ď
›

›pp� ´ %c 1 ` %
˚
c 1
q
´1
q
)
›

›

1

›

›p%)
c 1
´ %)c q3c

›

›

1

“
›

›p� ´ %c 1 ` %
˚
c 1
q
´1›
›

8

›

›p%)
c 1
´ %)c q3c

›

›

1

(3.22)

Using the same argument as (3.17) to bound
›

›

›
p%)
c 1
´ %)c q3c

›

›

›

1
and setting Z ˚ “ maxc }/c}8 gives

the desired result. �

Combining Lemma 3.3 and Lemma 3.6 gives us the following result:

Theorem 3.7. For any aperiodic unichain MDP, the following bounds hold for any two stochastic

policies c and c 1:

dpc 1q ´ dpcq ď E
B„3c
0„c 1

“

s�cpB, 0q
‰

` 2b̃ E
B„3c

r�TVpc
1 ‖ cqrBss (3.23)

dpc 1q ´ dpcq ě E
B„3c
0„c 1

“

s�cpB, 0q
‰

´ 2b̃ E
B„3c

r�TVpc
1 ‖ cqrBss (3.24)

where b̃ “ Z ˚maxB E0„c 1 | s�cpB, 0q|.

The constant Z ˚ is always �nite therefore we can similarly apply the approximate policy

iteration procedure from Algorithm 1 to generate a sequence of monotonically improving policies.

3.4 Approximate Policy Iteration

Parallel to the discounted cases [Schulman et al. 2015; Achiam et al. 2017], one direct consequence

of Theorem 3.5 is that iteratively maximizing the right hand side of (3.19) generates a monotoni-

cally improving sequence of policies w.r.t. the average reward objective. Algorithm 1 gives an

approximate policy iteration algorithm that produces such a sequence of policies.

32

Algorithm 1 Approximate Average Reward Policy Iteration
Initialize: c0

1: for : “ 0, 1, 2, . . . do
2: Policy Evaluation: Evaluate s�c: pB, 0q for all B, 0
3: Policy Improvement:

c:`1 “ argmax
c

E
B„3c:
0„c

“

s�c: pB, 0q
‰

´ b

c

2 E
B„3c:

r�KL pc}c:q rBss (3.25)

where b “ p^˚ ´ 1qmaxB E0„c | s�c: pB, 0q|

Proposition 3.8. Given an initial policy c0, Algorithm 1 is guaranteed to generate a sequence of

policies c1, c2, . . . such that dpc0q ď dpc1q ď dpc2q ď ¨ ¨ ¨ .

Proof. At iteration : , EB„3c: ,0„c r
s�c: pB, 0qs “ 0, EB„3c: r�KL pc}c:q rBss “ 0 for c “ c: . By

Theorem 3.5 and (3.25), dpc:`1q ´ dpc:q ě 0. �

However, Algorithm 1 is di�cult to implement in practice since it requires exact knowledge

of s�c: pB, 0q and the transition matrix. Furthermore, calculating the term b is impractical for

high-dimensional problems. In the next two chapters, we will introduce simple sample-based

algorithms which approximates the update rule in Algorithm 1 which can be practically applied

to problems with large state and action spaces.

3.5 Related Work

Dynamic programming algorithms for �nding the optimal average reward policies have been well-

studied [Howard 1960; Blackwell 1962; Veinott 1966]. Several tabular Q-learning-like algorithms

for problems with unknown dynamics have been proposed, such as R-Learning [Schwartz 1993],

RVI Q-Learning [Abounadi et al. 2001], CSV-Learning [Yang et al. 2016], and Di�erential Q-

Learning [Wan et al. 2020]. Mahadevan [1996] conducted a thorough empirical analysis of the

R-Learning algorithm. We note that much of the previous work on average reward RL focuses on

33

the tabular setting without function approximations, and the theoretical properties of many of

these Q-learning-based algorithm are not well understood (in particular R-learning). More recently,

POLITEX updates policies using a Boltzmann distribution over the sum of action-value function

estimates of the previous policies [Abbasi-Yadkori et al. 2019] and Wei et al. [2020] introduced a

model-free algorithm for optimizing the average reward of weakly-communicating MDPs.

For policy gradient methods, Baxter and Bartlett [2001] showed that if 1{p1 ´ Wq is large

compared to the mixing time of the Markov chain induced by the MDP, then the gradient of dWpcq

can accurately approximate the gradient of dpcq. Kakade [2001a] extended upon this result and

provided an error bound on using an optimal discounted policy to maximize the average reward.

In contrast, our work directly deals with the average reward objective and provides theoretical

guidance on the optimal step size for each policy update.

Policy improvement bounds have been extensively explored in the discounted case. The results

from Schulman et al. [2015] are extensions of Kakade and Langford [2002]. Pirotta et al. [2013]

also proposed an alternative generalization to Kakade and Langford [2002]. Achiam et al. [2017]

improved upon Schulman et al. [2015] by replacing the maximum divergence with the average

divergence.

3.6 Conclusion

In this chapter, we introduced a novel policy improvement bound for the average reward criterion.

The bound is based on the average divergence between two policies and Kemeny’s constant or

mixing time of the Markov chain. We show that previous existing policy improvement bounds for

the discounted case results in a non-meaningful bound for the average reward objective. These

results provides the theoretical justi�cation and the means to generalize the popular trust-region

based algorithms to the average reward setting. In the next chapter, we will apply these theoretical

results to practical algorithms.

34

4 | Average Reward TRPO

4.1 Background

Formally our goal is to obtain the best possible c\:`1 in a parameterized policy class Π\ given the

current policy c\: at iteration : . Recall �rst that in the discounted case, iteratively maximizing

the right hand side of (4.1) generates a sequence of monotonically improving policies in w.r.t. the

discounted criteria, i.e.

c\:`1 “ argmax
c\PΠ\

1
1´ W

»

—

–
E

B„3c\: ,W
0„c\

r�
c\:
W pB, 0qs ´

WnW

1´ W

c

2 E
B„3c\: ,W

r�KL pc\}c\: qs

fi

ffi

fl
(4.1)

where we replaced the TV divergence with the KL divergence using Pinsker’s inequality. Similar

to the average reward case (see Section 3.4), solving this unconstrained problem can be chal-

lenging and often infeasible [Schulman et al. 2015; Achiam 2017]. However, we note that when

�KL pc\}c\: q « 0, i.e. when c\ and c\: are close, we can approximate the performance di�erence

using the following surrogate function:

dWpc\ q ´ dWpc\: q «
r�W,c\:

pc\ q :“
1

1´ W

»

—

–
E

B„3c\: ,W
0„c\

r�
c\:
W pB, 0qs

fi

ffi

fl
. (4.2)

35

It can also be easily shown that the surrogate function (4.2) matches dWpc\ q ´ dWpc\: q to the �rst

order w.r.t. the parameter \ [Achiam 2017]. Using these facts, Schulman et al. [2015] proposed

solving the following constrained version of Problem (4.1):

maximize
c\PΠ\

E
B„3c\: ,W
0„c\

r�
c\:
W pB, 0qs

subject to �̄KLpc\ ‖ c\: q ď X.

(4.3)

Note here that the objective is the surrogate function de�ned in (4.2) and �̄KLpc\ ‖ c\: q :“

EB„3c\: ,W
r�KL pc\}c\: q rBss. The constraint set tc\ P ΠΘ : �̄KLpc\ ‖ c\: q ď Xu is called the trust

region set. The step-size X is treated as a hyperparamter in practice and should ideally be tuned

for each speci�c task.

However for problems with high dimensional parameter spaces such as deep neural networks,

solving (4.3) is highly impractical. We can approximate this problem by performing �rst-order

Taylor approximation on the objective and second-order approximation on the KL constraint1

around \: which gives us:

maximize
\

6)W p\ ´ \:q

subject to
1
2
p\ ´ \:q

)�Wp\ ´ \:q ď X

(4.4)

where

6W :“ E
B„3c\: ,W
0„c\:

”

∇\ logc\ p0|Bq|\“\:�
c\:
W pB, 0q

ı

(4.5)

and

�W :“ E
B„3c\: ,W
0„c\:

”

∇\ logc\ p0|Bq|\“\:∇\ logc\ p0|Bq|)\“\:
ı

(4.6)

Note that this approximation is good provided that the step-size X is small. The term 6 is the
1The gradient and �rst-order Taylor approximation of �̄KLpc\ ‖ c\: q at \ “ \: is zero.

36

discounted reward policy gradient at \ “ \: with an additional baseline term [Sutton et al. 1999]

and �W is the Fisher Information Matrix (FIM) [Lehmann and Casella 2006] where we use the

subscript W to denote its dependency on the discount factor. The FIM is a symmetrical matrix

and always positive semi-de�nite. If we assume �W is always positive de�nite, we can solve (4.4)

analytically with a Lagrange duality argument which yields the solution:

\ “ \: `

d

2X
6)W�

´1
W 6

�´1
W 6 (4.7)

The update rule in (4.7) has the same form as that of natural policy gradients [Kakade 2001b] and

both 6W and �W can be approximated using samples drawn from the policy c\: .

Up until now, the update rule for TRPO and NPG are identical. But one issue is that due

to the use of Taylor approximations, the KL constraint may no longer be satis�ed. Hence after

applying the update term (4.7), we use backtracking linesearch to �nd an update term which

has a positive advantage value and also maintains KL constraint satisfaction. We also apply the

conjugate gradient method [Strang 2007] to estimate �´1
W .

In the next several sections, we will focus on how to convert the TRPO problem to the average

reward setting. At the end of this chapter, we will also demonstrate that the non-discounted

version of the TRPO algorithm signi�cantly outperforms its discounted variants on a set of high

dimensional continuing control tasks.

37

4.2 Trust Region Methods for the Average Reward

Criterion

Following a similar line of logic to the discounted case, we can rewrite the unconstrained opti-

mization problem in (3.25) as a constrained problem:

maximize
c\PΠ\

E
B„3c\:
0„c\

r s�c\: pB, 0qs

subject to �̄KLpc\ ‖ c\: q ď X.

(4.8)

Here �̄KLpc\ ‖ c\: q :“ EB„3c\:
r�KL pc\}c\: q rBsswhere B is drawn from the stationary distribution

(as opposed to 3c\: ,W in the discounted case). Importantly, the advantage function s�c\: pB, 0q

appearing in (4.8) is the average-reward advantage function, de�ned as the bias minus the action-

bias, and not the discounted advantage function. Another crucial di�erence in the average reward

setting is that the choice of step-size is related to the mixing time of the underlying Markov chain

(since it is related to the multiplicative factor b in Theorem 3.5). When the mixing time is small,

a larger step-size can be chosen and vice versa. While it is impractical to calculate the optimal

step-size, in certain applications domain knowledge on the mixing time can be used to serve as a

guide for tuning X .

Similar to the discounted case [Schulman et al. 2015; Achiam et al. 2017]. When we set c\:`1

to be the optimal solution to (4.8), the policy improvement guarantee no longer holds. However

we can show that c\:`1 has the following worst-case performance degradation guarantee:

Proposition 4.1. Let c\:`1 be the optimal solution to (4.8) for some c\: P Π\ . The policy performance

di�erence between c\:`1 and c\: can be lower bounded by

dpc\:`1q ´ dpc\: q ě ´b
c\:`1

?
2X (4.9)

38

where bc\:`1 “ p^
c\:`1 ´ 1qmaxB E0„c\:`1

| s�c\: pB, 0q|.

Proof. Since �̄KLpc\: ‖ c\: q “ 0, c\: is feasible. The objective value is 0 for c\ “ c\: . The bound

follows from (3.19) and (3.20) where the average KL is bounded by X . �

Several algorithms have been proposed for e�ciently solving the discounted version of (4.8)

[Schulman et al. 2015; Wu et al. 2017; Tangkaratt et al. 2018; Song et al. 2020]. These algorithms

can also be adapted for the average reward case and are theoretically justi�ed via Theorem 3.5

and Proposition 4.1. In the next section, we will provide as a speci�c example how this can be

done for one such algorithm.

4.3 Average Reward TRPO

In this section, we introduce ATRPO, which is an average-reward modi�cation of TRPO algorithm

[Schulman et al. 2015]. Similar to TRPO, we apply Taylor approximations to (4.8). This gives us

a new optimization problem which can be solved exactly using Lagrange duality. The solution

to this approximate problem gives an explicit update rule for the policy parameters which then

allows us to perform policy updates using an actor-critic framework. The algorithm is similar to

TRPO in the discount case but with several notable distinctions.

Algorithm 2 provides a basic outline of ATRPO.

The major di�erences between ATRPO and TRPO are as follows:

(i) The critic network in Algorithm 2 approximates the average-reward bias rather than the

discounted value function.

(ii) ATRPO must estimate the average return d of the current policy.

(iii) The target for the bias function and the advantage are calculated without discount factors

and the average return d is subtracted from the reward. Simply setting the discount factor to

1 in TRPO does not lead to Algorithm 2.

39

Algorithm 2 Average Reward TRPO (ATRPO)
Initialize: Policy parameters \0, critic net parameters q0, learning rate U , trajectory truncation

parameter # .
1: for : “ 0, 1, 2, ¨ ¨ ¨ do
2: Collect a truncated trajectory tBC , 0C , BC`1, ACuC“1:# from the environment using c\: .
3: Calculate sample average reward of c\: via d “ 1

#

ř#
C“1 AC .

4: for C “ 1, 2, . . . , # do
5: Get target

s+
target
C “ AC ´ d ` s+q: pBC`1q

6: Get advantage estimate:

�̂pBC , 0Cq “ AC ´ d ` s+q: pBC`1q ´ s+q: pBCq

7: Update critic by
q:`1 Ð q: ´ U∇qLpq:q

where

Lpq:q “
1
#

#
ÿ

C“1

›

›

›
+̄q: pBCq ´

s+
target
C

›

›

›

2

8: Use �̂pBC , 0Cq to update \: using TRPO policy update [Schulman et al. 2015].

(iv) For ATRPO, the policy gradient term 6 is now the average reward policy gradient which

takes the form:

6 :“ E
B„3c\:
0„c\:

“

∇\ logc\ p0|Bq|\“\: s�
c\: pB, 0q

‰

. (4.10)

This term also requires estimating the average reward advantage function.

(v) Another subtle distinction is that in theory both 6W and �W should be estimated via samples

collected from the future discounted state visitation distribution for c\: but this is often ignored

in practice [Sutton and Barto 2018]. In fact it can be shown that this practice results in the

estimated 6 not being an actual gradient [Nota and Thomas 2020]. In contrast for the average

reward case both 6 and � are estimated using samples from the stationary distribution.

(vi) ATRPO also assumes that the underlying task is a continuing in�nite-horizon task. But since

in practice we cannot run in�nitely long trajectories, all trajectories are truncated at some

40

large truncation value # . Unlike TRPO, during training we do not allow for episodic tasks

where episodes terminate early (before #). For the MuJoCo environments, we will address

this by having the agent not only resume locomotion after falling but also incur a penalty

for falling (see Section 4.5 for more details.)

Also in Algorithm 2, for illustrative purposes, we use the average reward one-step bootstrapped

estimate for the target of the critic and the advantage function. In practice, we instead develop

and use an average-reward version of the Generalized Advantage Estimator (GAE) from Schulman

et al. [2016]. We provide more details on how GAE can be generalized to the average-reward case

in the next section.

4.4 Critic Estimation for the Average Reward

Suppose the agent collects a batch of data consisting of a trajectories each of length# tBC , 0C , AC , BC`1u

pC “ 1, . . . , # q using policy c . Similar to what is commonly done for critic estimation in on-policy

methods, we �t some value function + c
q

parameterized by q using data collected with the policy.

We will �rst review how this is done in the discounted case. Two of the most common ways

of calculating the regression target for + c
q

are the Monte Carlo target denoted by

+
target
C “

#
ÿ

C 1“C

W C
1´CAC , (4.11)

or the bootstrapped target

+
target
C “ AC ` W s+

c
q
pBC`1q. (4.12)

Using the dataset tBC ,+
target
C u, we can �t + c

q
with supervised regression by minimizing the

MSE between + c
q
pBCq and + target

C . With the �tted value function, we can estimate the advantage

41

function either with the Monte Carlo estimator

�̂cMCpBC , 0Cq “

#
ÿ

C 1“C

W C
1´CAC ´ s+ c

q
pBCq

or the bootstrap estimator

�̂cBSpBC , 0Cq “ AC ` W s+
c
q
pBC`1q ´ s+ c

q
pBCq.

When the Monte Carlo advantage estimator is used to approximate the policy gradient, it does not

introduce a bias but tends to have a high variance whereas the bootstrapped estimator introduces a

bias but tends to have lower variance. These two estimators are seen as the two extreme ends of the

bias-variance trade-o�. In order to have better control over the bias and variance, Schulman et al.

[2016] used the idea of eligibility traces [Sutton and Barto 2018] and introduced the Generalized

Advantage Estimator (GAE). The GAE takes the form

�̂GAEpBC , 0Cq “

#
ÿ

C 1“C

pW_qC
1´CXC 1 (4.13)

where

XC 1 “ AC 1 ` W s+
c
q
pBC 1`1q ´ s+ c

q
pBC 1q (4.14)

and _ P r0, 1s is the eligibility trace parameter. We can then use the parameter _ to tune the

bias-variance trade-o�. It is worth noting two special cases corresponding to the bootstrap and

Monte Carlo estimator:

_ “ 0 : �̂GAEpBC , 0Cq “ AC ` W s+
c
q
pBC`1q ´ s+ c

q
pBCq

_ “ 1 : �̂GAEpBC , 0Cq “

#
ÿ

C 1“C

W C
1´CAC 1 ´ s+ c

q
pBCq

42

For in�nite horizon tasks, the discount factor W is used to reduce variance by downweighting

rewards far into the future [Schulman et al. 2016]. Also noted in Schulman et al. [2016] is that for

any ; " 1{p1´ Wq, W ; decreases rapidly and any e�ects resulting from actions after ; « 1{p1´ Wq

are e�ectively "forgotten". This approach in essence converts a continuing control task into an

episodic task where any rewards received after ; « 1{p1´Wq becomes negligible. This undermines

the original continuing nature of the task and could prove to be especially problematic for problems

where e�ects of actions are delayed far into the future. However, increasing W would lead to

an increase in variance. Thus in practice W is often treated as a hyperparameter to balance the

e�ective horizon of the task and the variance of the gradient estimator.

To mitigate this, we introduce how we can formulate critics for the average reward. A key

di�erence is that in the discounted case we use + c
q

to approximate the discounted value function

whereas in the average reward case s+ c
q

is used to approximate the average reward bias function.

Let

d̂c “
1
#

#
ÿ

C“1
AC

denote the estimated average reward. The Monte Carlo target for the average reward value

function is

s+
target
C “

#
ÿ

C 1“C

pAC ´ d̂cq (4.15)

and the bootstrapped target is

s+
target
C “ AC ´ d̂c ` s+ c

q
pBC`1q. (4.16)

Note that our targets (4.15-4.16) are distinctly di�erent from the traditional discounted targets

(4.11-4.12).

43

The Monte Carlo and Bootstrap estimators for the average reward advantage function are:

�̂cMCpBC , 0Cq “

#
ÿ

C 1“C

pAC ´ d̂cq ´ s+ c
q
pBCq

�̂cBSpBC , 0Cq “ A8,C ´ d̂c ` s+ c
q
pBC`1q ´ s+ c

q
pBCq

We can similarly extend the GAE to the average reward setting:

�̂GAEpBC , 0Cq “

#
ÿ

C 1“C

_C
1´CXC 1 (4.17)

where

XC 1 “ AC 1 ´ d̂c ` s+ c
q
pBC 1`1q ´ s+ c

q
pBC 1q. (4.18)

and set the target for the value function to

s+
target
C “ AC ´ d̂c ` s+ c

q
pBC`1q `

#
ÿ

C 1“C`1

_C
1´CXC 1 (4.19)

The two special cases corresponding to _ “ 0 and _ “ 1 are

_ “ 0 : �̂GAEpBC , 0Cq “ AC ´ d̂c ` s+ c
q
pBC`1q ´ s+ c

q
pBCq

_ “ 1 : �̂GAEpBC , 0Cq “

#
ÿ

C 1“C

pAC 1 ´ d̂cq ´ s+ c
q
pBCq

We note again that the average reward advantage estimator is distinct from the discounted case.

To summarize, in the average reward setting:

• The parameterized value function is used to �t the average reward bias function.

• The reward term AC in the discounted formulation is replaced by AC ´ d̂c .

• Without any discount factors, recent and future experiences are weighed equally thus

44

respecting the continuing nature of the task.

4.5 Experiments

We conducted experiments comparing the performance of ATRPO and TRPO on continuing control

tasks. For most experiments in this chapter and subsequent chapters, we will be using the MuJoCo

physical simulator [Todorov et al. 2012] implemented using OpenAI gym [Brockman et al. 2016].

Table 4.1: The MuJoCo environments. Description taken from https://gym.openai.com/envs/#mujoco,
the last two columns are the dimensions of the state and action space respectively

Name Description State Space Action Space

Ant Make a 3D four-legged robot walk 111 8

HalfCheetah Make a 2D cheetah robot run 17 6

Hopper Make a 2D robot hop 11 3

Humanoid Make a 3D two-legged robot walk 376 17

HumanoidStandup Make a 3D two-legged robot standup 376 17

InvertedDoublePendulum Balance a pole on a pole on a cart 11 1

InvertedPendulum Balance a pole on a cart 4 1

Reacher
Make a 2D robot reach to
a randomly located target 11 2

Swimmer Make a 2D robot swim 8 2

Walker2d Make a 2D robot walk 17 6

For experiments in this chapter, We consider the three tasks Ant, HalfCheetah, and Humanoid

— which are considered the most challenging of the MuJoCo environments — where the natural

goal is to train the agents to run as fast as possible without falling.

45

https://gym.openai.com/envs/#mujoco

(a) Ant (b) HalfCheetah (c) Hopper

(d) Humanoid (e) HumanoidStandup (f) InvertedDoublePendulum

(g) InvertedPendulum (h) Reacher (i) Swimmer (j) Walker2d

Figure 4.1: The MuJoCo Environments

46

4.5.1 Evaluation Protocol

Even though the MuJoCo benchmark is commonly trained using the discounted objective (see e.g.

Schulman et al. [2015], Wu et al. [2017], Lillicrap et al. [2016], Schulman et al. [2017b], Haarnoja

et al. [2018]), it is always evaluated without discounting. Similarly, we also evaluate performance

using the undiscounted total-reward objective for both TRPO and ATRPO.

Speci�cally for each environment, we train a policy for 10 million environment steps. During

training, every 100,000 steps, we run 10 separate evaluation trajectories with the current policy

without exploration (i.e., the policy is kept �xed and deterministic). For each evaluation trajectory

we calculate the undiscounted return of the trajectory until the agent falls or until 1,000 steps,

whichever comes �rst. We then report the average undiscounted return over the 10 trajectories.

Note that this is the standard evaluation metric for the MuJoCo environments. In order to understand

the performance of the agent for long time horizons, we also report the performance of the agent

evaluated on trajectories of maximum length 10,000.

4.5.2 Comparing ATRPO and TRPO

To simulate an in�nite-horizon setting during training, we do the following: when the agent falls,

the trajectory does not terminate; instead the agent incurs a large reset cost for falling, and then

continues the trajectory from a random start state. The reset cost is set to 100. However, we show

in the supplementary material. We note that this modi�cation does not change the underlying

goal of the task. We also point out that the reset cost is only applied during training and is not

used in the evaluation phase described in the previous section.

We plot the performance for ATRPO and TRPO trained with di�erent discount factors in Figure

4.2. We see that TRPO with its best discount factor can perform as well as ATRPO for the simplest

environment HalfCheetah, but ATRPO provides dramatic improvements in Ant and Humanoid. In

particular for the most challenging environment Humanoid, ATRPO performs on average 50.1%

47

Figure 4.2: Comparing performance of ATRPO and TRPO with di�erent discount factors. The G-axis is
the number of agent-environment interactions and the ~-axis is the total return averaged over 10 seeds.
The solid line represents the agents’ performance on evaluation trajectories of maximum length 1,000 (top
row) and 10,000 (bo�om row). The shaded region represents one standard deviation.

better than TRPO with its best discount factor when evaluated on trajectories of maximum length

1000. The improvement is even greater when the agents are evaluated on trajectories of maximum

length 10,000 where the performance boost jumps to 913%.

Next, we show that ATRPO also signi�cantly outperforms TRPO when TRPO is trained without

the reset scheme described at the beginning of this section (i.e. the standard MuJoCo setting.). The

results are shown in Figure 4.3. Note that these results are largely consistent with those reported

in Figure 4.2

48

Figure 4.3: Comparing performance of ATRPO and TRPO with di�erent discount factors. TRPO is trained
without the reset scheme. The G-axis is the number of agent-environment interactions and the ~-axis is
the total return averaged over 10 seeds. The solid line represents the agents’ performance on evaluation
trajectories of maximum length 1,000 (top row) and 10,000 (bo�om row). The shaded region represent one
standard deviation.

49

Figure 4.4: Comparing performance of ATRPO and TRPO trained with and without the reset costs. The
curves for TRPO are for the best discount factor for each environment. The G-axis is the number of
agent-environment interactions and the ~-axis is the total return averaged over 10 seeds. The solid line
represents the agents’ performance on evaluation trajectories of maximum length 1,000 (top row) and
10,000 (bo�om row). The shaded region represent one standard deviation.

In Figure 4.4 we plotted the performance of the best discount factor for each environment

for TRPO trained with and without the reset scheme (i.e. the best performing TRPO curves from

Figure 4.2 and Figure 4.3.) ATRPO is also plotted for comparison.

We make two observations regarding discounting. First, we note that increasing the discount

factor does not necessarily lead to better performance for TRPO. A larger discount factor in

principle enables the algorithm to seek a policy that performs well for the average-reward criterion

[Blackwell 1962]. Unfortunately, a larger discount factor can also increase the variance of the

gradient estimator [Zhao et al. 2011; Schulman et al. 2016], increase the complexity of the policy

space [Jiang et al. 2015], lead to slower convergence [Bertsekas et al. 1995; Agarwal et al. 2020],

50

and degrade generalization in limited data settings [Amit et al. 2020]. Moreover, algorithms with

discounting are known to become unstable as W Ñ 1 [Naik et al. 2019]. Secondly, for TRPO the

best discount factor is di�erent for each environment (0.99 for HalfCheetah and Ant, 0.95 for

Humanoid). The discount factor therefore serves as a hyperparameter which can be tuned to

improve performance, choosing a suboptimal discount factor can have signi�cant consequences.

Both of these observation are consistent with what was seen in the literature [Andrychowicz et al.

2020]. We have shown here that using the average reward criterion directly not only delivers

superior performance but also obviates the need to tune the discount factor.

4.5.3 Sensitivity Analysis on Reset Cost

For the experiments we presented so far, we introduced a reset cost in order to simulate an in�nite

horizon setting. Here we analyze the sensitivity of the results with respect to this reset cost.

Figure 4.5: Comparing ATRPO trained with di�erent reset costs to discounted TRPO with the best discount
factor for each environment. The G-axis is the number of agent-environment interactions and the ~-axis is
the total return averaged over 10 seeds. The solid line represents the agents’ performance on evaluation
trajectories of maximum length 1,000. The shaded region represent one standard deviation.

Figure 4.5 shows that ATRPO is largely insensitive to the choice of reset cost. Though we note

that for Humanoid, extremely large reset costs (200 and 500) does negatively impact performance

but the result is still above that of TRPO.

51

4.5.4 Understanding Long Run Performance

Next, we demonstrate that agents trained using the average reward criterion are better at optimiz-

ing for long-term returns. Here, we �rst train Humanoid with 10 million samples with ATRPO

and with TRPO with a discount factor of 0.95 (shown to be the best discount factor in the previous

experiments).

Figure 4.6: Speed-time plot of a single trajectory (maximum length 10,000) for ATRPO and Discounted
TRPO in the Humanoid-v3 environment. The solid line represents the speed of the agent at the correspond-
ing timesteps.

Then for evaluation, we run the trained ATRPO and TRPO policies for a trajectory of 10,000

timesteps (or until the agent falls). We use the same random seeds for the two algorithms. Figure

4.6 is a plot of the speed of the agent at each time step of the trajectory, using the seed that gives

the best performance for discounted TRPO. We see in Figure 4.6 that the discounted algorithm gives

a higher initial speed at the beginning of the trajectory. However its overall speed is much more

erratic throughout the trajectory, resulting in the agent falling over after approximately 5000 steps.

This coincides with the notion of discounting where more emphasis is placed at the beginning of

the trajectory and ignores longer-term behavior. On the other hand, the average-reward policy —

while having a slightly lower velocity overall throughout its trajectory — is able to sustain the

trajectory much longer, thus giving it a higher total return. In fact, we observed that for all 10

random seeds we tested, the average reward agent is able to �nish the entire 10,000 time step

trajectory without falling. In Table 4.2 we present the summary statistics of trajectory length for

all trajectories using discounted TRPO we note that the median trajectory length for the TRPO

52

discounted agent is 452.5, meaning that on average TRPO performs signi�cantly worse than what

is reported in Figure. 4.6.

Table 4.2: Summary statistics for all 10 trajectories using a Humanoid-v3 agent trained with TRPO

Min Max Average Median Std

108 4806 883.1 452.5 1329.902

4.5.5 Implementation Details

All experiments in this secton were implemented in Pytorch 1.3.1[Paszke et al. 2019] and Python

3.7.4 on Intel Xeon Gold 6230 processors. We based our TRPO implementation on https://github.

com/ikostrikov/pytorch-trpo and https://github.com/Khrylx/PyTorch-RL. Our CPO im-

plementation is our own Pytorch implementation based on https://github.com/jachiam/cpo

and https://github.com/openai/safety-starter-agents. Our hyperparameter selections

were also based on these implementations. Our choice of hyperparameters were based on the

motivation that we wanted to put discounted TRPO in the best possible light and compare its

performance with ATRPO. Our hyperparameter choices for ATRPO mirrored the discounted

case since we wanted to understand how performance for the average reward case di�ers while

controlling for all other variables.

With the exception of the sensitivity analysis experiments, the reset cost is set to 100 on all

three environments. In the original implementation of the MuJoCo environments in OpenAI gym,

the maximum episode length is set to 10002, we removed this restriction in our experiments in

order to study long-run performance.

We used a two-layer feedforward neural network with a tanh activation for both our policy and

critic networks. The policy is Gaussian with a diagonal covariance matrix. The policy networks

outputs a mean vector and a vector containing the state-independent log standard deviations.
2See https://github.com/openai/gym/blob/master/gym/envs/__init__.py

53

https://github.com/ikostrikov/pytorch-trpo
https://github.com/ikostrikov/pytorch-trpo
https://github.com/Khrylx/PyTorch-RL
https://github.com/jachiam/cpo
https://github.com/openai/safety-starter-agents
https://github.com/openai/gym/blob/master/gym/envs/__init__.py

States are normalized by the running mean and the running standard deviation before being fed to

any network. We used the GAE for advantage estimation (see Section 4.4). The advantage values

are normalized by its batch mean and batch standard deviation before being used for policy updates.

Learning rates are linearly annealed to 0 over the course of training. Note that these settings

are common in most open-source implementations of TRPO and other on-policy algorithms.

For training and evaluation, we used di�erent random seeds (i.e. the random seeds we used to

generate the evaluation trajectories are di�erent from those used during training). We optimize

both networks using Adam [Kingma and Ba 2015]. Table 6.6 summarizes the hyperparameters

used in our experiments.

Table 4.3: Hyperparameter Setup for Experiments in Chapter 4

Hyperparameter TRPO/ATRPO

No. of hidden layers 2
No. of hidden nodes 64
Activation tanh
Initial log std -0.5
Batch size 5000
GAE parameter (reward) 0.95
Learning rate for policy 3ˆ 10´4

Learning rate for critic net 3ˆ 10´4

!2-regularization coe�. for critic net 3ˆ 10´3

Damping coe�. 0.01
Backtracking coe�. 0.8
Max backtracking iterations 10
Max conjugate gradient iterations 10
Trust region bound X 0.01

4.6 Conclusion

Motivate by the theoretical results in the previous chapter, we derived practical algorithms. We

propose ATRPO, a modi�cation of the TRPO algorithm for on-policy DRL. We demonstrate through

54

a series of experiments that ATRPO is highly e�ective on high-dimensional continuing control

tasks. To the best of our knowledge, this is the �rst DRL algorithm for the average reward setting.

55

5 | Supervised Policy Update

5.1 Introduction

In this chapter, we introduce an alternative paradigm for solving the local policy search problem.

As we have extensively discussed in Chapter 3, the guideline of limiting the search to nearby

policies seems reasonable in principle, but requires a distance �pc\ , c\: q between the current

policy c\: and the candidate new policy c\ , and then attempt to solve the constrained optimization

problem:

maximize
\

�̂ pc\ | c\: , new dataq

subject to �pc\ , c\: q ď X

(5.1)

where �̂ pc\ | c\: , new dataq is an estimate of � pc\ q, the performance of policy c\ , based on the

previous policy c\: and the batch of fresh data generated by c\: . The objective in (5.1) attempts

to maximize the performance of the updated policy, and the constraint in (5.1) ensures that the

updated policy is not too far from the policy c\: that was used to generate the data that can be

possibly annealed over time.

To summarize, the general local policy update problem gives rise to three questions:

• What is a good estimator �̂ pc\ | c\: , new dataq for the performance of c\?

• Given that there are many possible ways to de�ne closeness �pc\ , c\: q, which de�nitions

lead to the most sample-e�cient algorithms?

56

• Given an estimator �̂ pc\ |c\: , new dataq and a constraint �pc\ , c\: q ď X , what is a good

algorithm for solving the optimization problem in (5.1)?

It is our belief that these three sub-problems should be solved in a uni�ed manner.

We propose a new methodology, called Supervised Policy Update (SPU), for this sample

e�ciency problem. The methodology is general in that it applies to both discrete and continuous

action spaces, and can address a wide variety of constraint types for the constrained optimization

problem in (5.1). Starting with data generated by the current policy, SPU optimizes over a proximal

policy space to �nd an optimal non-parameterized policy. It then solves a supervised regression

problem to convert the non-parameterized policy to a parameterized policy, from which it draws

new samples. We develop a general methodology for �nding an optimal policy in the non-

parameterized policy space, and then illustrate the methodology for three di�erent de�nitions of

proximity. We also show how the Natural Policy Gradient and Trust Region Policy Optimization

(NPG/TRPO) problems and the Proximal Policy Optimization (PPO) problem can be addressed by

this methodology. While SPU is substantially simpler than NPG/TRPO in terms of mathematics

and implementation, our extensive experiments show that SPU is more sample e�cient than

TRPO in Mujoco simulated robotic tasks and PPO in Atari video game tasks.

Our work also strikes the right balance between performance and simplicity. The implementa-

tion is only slightly more involved than PPO [Schulman et al. 2017b]. Simplicity in RL algorithms

has its own merits. This is especially useful when RL algorithms are used to solve problems outside

of traditional RL testbeds.

57

5.2 The SPU Framework

The SPU methodology has two steps. In the �rst step, for a given constraint criterion�pc, c\: q ď X ,

we �nd the optimal solution to the non-parameterized problem:

maximize
cPΠ

�̂c\:
pcq

subject to �pc, c\: q ď X

(5.2)

Note that c is not restricted to the set of parameterized policies Π\ . As commonly done, we

approximate the objective function. However, unlike PPO/TRPO, we are not approximating the

constraint. We will show below the optimal solution c˚ for the non-parameterized problem (5.2)

can be determined nearly in closed form for many natural constraint criteria �pc, c\: q ď X .

In the second step, we attempt to �nd a policy c\ in the parameterized space Π\ that is close

to the target policy c˚. Concretely, to advance from \: to \:`1, we perform the following steps:

(i) We �rst sample# trajectories using policy c\: , giving sample data pB8, 08, �8q, 8 “ 1, ..,<. Here

�8 is an estimate of the advantage value �c\: pB8, 08q. (For simplicity, we index the samples

with 8 rather than with p8, Cq corresponding to the C th sample in the 8th trajectory.)

(ii) For each B8 , we de�ne the target distribution c˚ to be the optimal solution to the constrained

optimization problem (5.2) for a speci�c constraint � .

(iii) We then �t the policy network c\ to the target distributions c˚p¨|B8q, 8 “ 1, ..,<. Speci�cally,

to �nd \:`1, we minimize the following supervised loss function:

!p\q “
1
#

<
ÿ

8“1
�KL pc\}c

˚q rB8s. (5.3)

For this step, we initialize with the weights for c\: . We minimize the loss function !p\q with

stochastic gradient descent methods. Over�tting to the fresh data pB8, 08, �8q, 8 “ 1, ..,< can

58

be controlled by dynamic early stopping [Goodfellow et al. 2016]. The resulting \ becomes

our \:`1.

5.3 SPU Applied to Specific Criteria

To illustrate the SPU methodology, for three di�erent but natural types of proximity constraints,

we solve the corresponding non-parameterized optimization problem and derive the resulting

gradient for the SPU supervised learning problem. We also demonstrate that di�erent constraints

lead to very di�erent but intuitive forms of the gradient update. Although we consider three classes

of proximity constraint, there may be yet another class that leads to even better performance. The

methodology allows researchers to explore other proximity constraints in the future.

5.3.1 Forward KL Constraints

We �rst consider constraint criteria of the form:

maximize
cPΠ

ÿ

B

3c\: ,W
pBq E

0„cp¨|Bq

”

�
c\:
W pB, 0q

ı

subject to
ÿ

B

3c\: ,W
pBq�KL pc}c\: q rBs ď X

�KL pc}c\: q rBs ď n for all B

(5.4)

We refer to the �rst constraint in (5.4) as the aggregated KL constraint and the second constraint

as the disaggregated KL constraint. These two constraints taken together restrict c from deviating

too much from c\: . We shall refer to (5.4) as the forward-KL non-parameterized optimization

problem.

Note that this problem without the disaggregated constraints is analogous to the TRPO problem

[Schulman et al. 2015]. The TRPO paper actually prefers enforcing the disaggregated constraint

to enforcing the aggregated constraints. However, for mathematical conveniences, they worked

59

with the aggregated constraints: "While it is motivated by the theory, this problem is impractical

to solve due to the large number of constraints. Instead, we can use a heuristic approximation

which considers the average KL divergence" [Schulman et al. 2015]. The SPU framework allows

us to solve the optimization problem with the disaggregated constraints exactly. Experimentally,

we compared against TRPO in a controlled experimental setting, e.g. using the same advantage

estimation scheme, etc. Since we clearly outperform TRPO, we argue that SPU’s two-process

procedure has signi�cant potentials.

For each _ ą 0, de�ne:

c_p0|Bq “
c\: p0|Bq

Z_pBq
exp

˜

�
c\:
W pB, 0q

_

¸

(5.5)

where Z_pBq is the normalization term. Note that c_p0|Bq is a function of _. Further, for each s, let

_B be such that �KL
`

c_B
›

›c\:

˘

rBs “ n . Also let Γ_ “ tB : �KL
`

c_
›

›c\:

˘

rBs ď nu.

Theorem 5.1. The optimal solution to the problem (5.4) is given by:

rc_p0|Bq “

$

’

’

&

’

’

%

c_p0|Bq B P Γ_

c_B p0|Bq B R Γ_
(5.6)

where _ is chosen so that
ř

B 3
c\: pBq�KL

`

rc_
›

›c\:

˘

rBs “ X .

Proof. We �rst show that (5.4) is a convex optimization. To this end, �rst note that the objective

is a linear function of the decision variables c “ tcp0|Bq :́ B P S, 0 P Au. The LHS of the

disaggregated KL constraint can be rewritten as:
ř

0PA cp0|Bq logcp0|Bq ´
ř

0PA c logc\: p0|Bq.

The second term is a linear function of c . The �rst term is a convex function since the second

derivative of each summand is always positive. The LHS of the disaggregated KL constraint is

thus a convex function. By extension, the LHS of the aggregated KL constraint is also a convex

function since it is a nonnegative weighted sum of convex functions. The problem (5.4) is thus a

60

convex optimization problem. According to Slater’s constraint quali�cation, strong duality holds

since is a feasible solution to (5.4) where the inequality holds strictly.

We can therefore solve (5.4) by solving the related Lagrangian problem. For a �xed _ consider:

maximize
cPΠ

ÿ

B

3c\: ,W
pBq

„

E
0„cp¨|Bq

r�
c\:
W pB, 0qs ´ _�KL pc}c\: q rBs

subject to �KL pc}c\: q rBs ď n for all B

(5.7)

The above problem decomposes into separate problems, one for each state B:

maximize
cp¨|Bq

E
0„cp¨|Bq

r�
c\:
W pB, 0qs ´ _�KL pc}c\: q rBs

subject to �KL pc}c\: q rBs ď n

(5.8)

Further consider the objective in (5.8) without the constraint:

maximize
cp¨|Bq

ÿ

0

cp0|Bq

„

�
c\:
W pB, 0q ´ _ log

ˆ

cp0|Bq

c\: p0|Bq

˙

subject to
ÿ

0

cp0|Bq “ 1

cp0|Bq ě 0, for all 0

(5.9)

A simple Lagrange-multiplier argument shows that the optimal solution to (5.9) is given by:

c_p0|Bq “
c\: p0|Bq

Z_pBq
exp

«

�
c\:
W pB, 0q

_

ff

(5.10)

where Z_pBq is de�ned so that c_ is a valid distribution. Now returning to the decomposed con-

strained problem (5.8), there are two cases to consider. The �rst case is when �KL
`

c_
›

›c\:

˘

rBs ď n .

In this case, the optimal solution to (5.8) is c_p0|Bq. The second case is when �KL
`

c_
›

›c\:

˘

rBs ą

n . In this case the optimal is c_p0|Bq with _ replaced with _B , where _B is the solution to

61

�KL
`

c_
›

›c\:

˘

rBs “ n . Thus, an optimal solution to (5.8) is given by:

rc_p0|Bq “

$

’

’

’

’

&

’

’

’

’

%

c\: p0|Bq

ZpBq exp

«

�
c\:
W pB, 0q

_

ff

B P Γ_

c\: p0|Bq

ZpBq exp

«

�
c\:
W pB, 0q

_B

ff

B R Γ_
(5.11)

where Γ_ “ tB : �KL
`

c_
›

›c\:

˘

rBs ď nu.

To �nd the Lagrange multiplier _, we can then do a line search to �nd the _ that satis�es:

ÿ

B

3c\: pBq�KL

´

rc_
›

›

›
c\:

¯

rBs “ X (5.12)

�

Equation (5.6) provides the structure of the optimal non-parameterized policy. As part of the

SPU framework, we then seek a parameterized policy c\ that is close to rc_p0|Bq, that is, minimizes

the loss function (5.3). To this end, we apply stochastic gradient descent, we can show that the

gradient of the loss function takes the following form:

Proposition 5.2. For each sampled state B8 :

∇\�KL

´

c\

›

›

›
rc_
¯

rB8s “ ∇\�KL pc\}c\: q rB8s ´
1
r_B8

E
0„c\:

p¨|B8q
r∇\ logc\ p0|B8q�

c\:
W pB8, 0qs (5.13)

where
„

_B8 “ _ for B8 P Γ_ and _̃B8 “ _B8 for B8 R Γ
_ .

62

Proof. We �rst calculate the cross entropy �pc\ , c̃ _̃B q which gives us:

�pc\ , c̃
_̃B q “ ´

ÿ

0

c\ p0|Bq log rc
r_B p0|Bq

“ ´
ÿ

0

c\ p0|Bq log

˜

c\: p0|Bq

Z
_̃B
pBq

exp

˜

�
c\:
W pB, 0q

r_B

¸¸

“ ´
ÿ

0

c\ p0|Bq log

˜

c\: p0|Bq

Z
r_B
pBq

¸

´
ÿ

0

c\ p0|Bq
�
c\:
W pB, 0q

r_B

“ ´
ÿ

0

c\ p0|Bq logc\: p0|Bq `
ÿ

0

c\ p0|Bq logZ
r_B
pBq ´

1
r_B

ÿ

0

c\: p0|Bq
c\ p0|Bq

c\: p0|Bq
�
c\:
W pB, 0q

“ �pc\ , c\: qrBs ` logZ
r_B
pBq ´

1
r_B

E
0„c\:

p.|Bq

„

c\ p0|Bq

c\: p0|Bq
�
c\:
W pB, 0q

(5.14)

Taking the gradient of the above cross entropy term:

∇\�pc\ , c̃ _̃B q “ ∇\�pc\ , c\: qrBs ´
1
r_B

E
0„c\:

p.|Bq

„

∇\c\ p0|Bq
c\: p0|Bq

�
c\:
W pB, 0q

(5.15)

Finally we add the gradient of the entropy on both sides and collapse the sum of gradients of cross

entropy and entropy into the gradient of the KL:

∇\�KL

´

c\

›

›

›
rc
r_B

¯

rBs “ ∇\�KL pc\}c\: q rBs ´
1
r_B

E
0„c\:

p.|Bq

„

∇\c\ p0|Bq
c\: p0|Bq

�
c\:
W pB, 0q

(5.16)

�

We estimate the expectation in (5.13) with the sampled action 08 and approximate �
c\:
W pB8, 08q

as �8 (obtained from the critic network), giving:

∇\�KL

´

c\

›

›

›
rc_
¯

rB8s « ∇\�KL pc\}c\: q rB8s ´
1
r_B8

∇\c\ p08 |B8q
c\: p08 |B8q

�8 (5.17)

To simplify the algorithm, we slightly modify (5.17). We replace the hyperparameter X with the

hyper-parameter _ and tune _ rather than X . Further, we set r_B8 “ _ for all B8 in (5.17) and introduce

63

per-state acceptance to enforce the disaggregated constraints, giving the approximate gradient:

∇\�KL

´

c\

›

›

›
rc_
¯

«
1
<

<
ÿ

8“1

„

∇\�KL pc\}c\: q rB8s ´
1
_

∇\c\ p08 |B8q
c\: p08 |B8q

�8

1
�KLpc\}c\: qrB8 sďn

(5.18)

We make the approximation that the disaggregated constraints are only enforced on the states

in the sampled trajectories. We use (5.18) as our gradient for supervised training of the policy

network. The equation (5.18) has an intuitive interpretation: the gradient represents a trade-o�

between the approximate performance of c\ (as captured by
1
_

∇\c\ p08 |B8q
c\: p08 |B8q

�8) and how far c\

diverges from c\: (as captured by ∇\�KL pc\}c\: q rB8s). For the stopping criterion, we train until
1
<

ř

8 �KL pc\}c\: q rB8s « X .

We present an outline of the Forward KL SPU algorithm in Algorithm 3. We note also that

similar to what we have done with TRPO in Chapter 4, SPU can be similarly modi�ed to directly

optimize for the average reward.

Algorithm 3 SPU (Forward KL)
Initialize: Policy network c\0 , Value networks +q0 .

1: while Stopping criteria not met do
2: Generate trajectories g „ c\: .
3: for epochs do
4: for each minibatch do
5: Update value networks by minimizing MSE of +q: , + target

q:
.

6: Update policy network using Equation (5.18)
7: if 1

#

ř#
9“1�KL pc\}c\: q rB 9 s ą X then

8: Break out of inner loop

5.3.2 Backward KL Constraints

In a similar manner, we can derive the structure of the optimal policy when using the reverse

KL-divergence as the constraint. For simplicity, we provide the result for when there are only

64

disaggregated constraints. We seek to �nd the non-parameterized optimal policy by solving:

maximize
cPΠ

ÿ

B

3c\: pBq E
0„cp¨|Bq

”

�
c\:
W pB, 0q

ı

�KL pc\: }cq rBs ď n for all B
(5.19)

Theorem 5.3. The optimal solution to the problem (5.19) is given by:

c˚p0|Bq “ c\: p0|Bq
_pBq

_1pBq ´�
c\:
W pB, 0q

(5.20)

where _pBq ą 0 and _1pBq ą max0 �
c\:
W pB, 0q

Proof. The problem (5.19) decomposes into separate problems, one for each state B P S:

maximize
cp¨|Bq

E
0„c\:

p¨|Bq

„

cp0|Bq

c\: p0|Bq
�
c\:
W pB, 0q

subject to E
0„c\:

p¨|Bq

„

log
c\: p0|Bq

cp0|Bq

ď n

(5.21)

After some algebra, we see that above optimization problem is equivalent to:

maximize
cp¨|Bq

ÿ

0

�
c\:
W pB, 0qcp0|Bq

subject to ´
ÿ

0

c\: p0|Bq logcp0|Bq ď n ` �pc\: q

ÿ

0

cp0|Bq “ 1

cp0|Bq ě 0, for all 0

(5.22)

where �pc\: q denotes the entropy of c\: . Problem (5.22) is a convex optimization problem with

Slater’s condition holding. Strong duality thus holds for the problem (5.22). Applying standard

65

Lagrange multiplier arguments, it is easily seen that the solution to (5.22) is

c˚p0|Bq “ c\: p0|Bq
_pBq

_1pBq ´�
c\:
W pB, 0q

where _pBq and _1pBq are constants chosen such that the disaggregegated KL constraint is binding

and the sum of the probabilities equals 1. It is easily seen _pBq ą 0 and _1pBq ą max0 �
c\:
W pB, 0q. �

Note that the structure of the optimal policy with the backward KL constraint is quite di�erent

from that with the forward KL constraint. Similar to the forward KL case, the gradient of the loss

function can also be evaluated with some straightforward calculation:

Proposition 5.4. The gradient of the loss function w.r.t. the backward KL optimal policy is:

∇\�KL pc\}c
˚q rBs “ ∇\�KL pc\}c\: q rBs ´ E

0„c\:

«

∇\c\ p0|Bq
c\: p0|Bq

log

˜

1
_1pBq ´�

c\:
W pB, 0q

¸ff

(5.23)

Proof. Similar to the forward KL case, we �rst calculate the cross entropy term:

�pc\ , c
˚
qrBs “ ´

ÿ

0

c\ p0|Bq logc˚p0|Bq

“ ´
ÿ

0

c\ p0|Bq log

˜

c\: p0|Bq
_pBq

_1pBq ´�
c\:
W pB, 0q

¸

“ ´
ÿ

0

c\ p0|Bq logc\: p0|Bq ´
ÿ

0

c\ p0|Bq log _pBq `
ÿ

0

c\ p0|Bq logp_1pBq ´�
c\:
W pB, 0qq

“ �pc\ , c\: qrBs ´ _pBq ` E
0„c\:

„

c\ p0|Bq

c\: p0|Bq
logp_1pBq ´�

c\:
W pB, 0qq

“ �pc\ , c\: qrBs ´ _pBq ´ E
0„c\:

«

c\ p0|Bq

c\: p0|Bq
log

1
_1pBq ´�

c\:
W pB, 0q

ff

(5.24)

Taking the gradient of both sides gives us:

∇\�pc\ , c˚qrBs “ ∇\�pc\ , c\: qrBs ´ E
0„c\:

«

∇\c\ p0|Bq
c\: p0|Bq

log
1

_1pBq ´�
c\:
W pB, 0q

ff

(5.25)

66

Finally we add the gradient of the entropy on both sides and collapse the sum of gradients of cross

entropy and entropy into the gradient of the KL:

∇\�KL pc\}c
˚q rBs “ ∇\�KL pc\}c\: q rBs ´ E

0„c\:

«

∇\c\ p0|Bq
c\: p0|Bq

log
1

_1pBq ´�
c\:
W pB, 0q

ff

(5.26)

�

The equation (5.23) has an intuitive interpretation. It increases the probability of action 0 if

�
c\:
W pB, 0q ą _1pBq ´ 1 and decreases the probability of action 0 if �

c\:
W pB, 0q ă _1pBq ´ 1. (5.23) also

tries to keep c\ close to c\: by minimizing their KL divergence.

5.3.3 !8 Constraints

In this section we show how a PPO-like objective [Schulman et al. 2017b] can be formulated in

the context of SPU. PPO-clipped updates policy by

\:`1 “ argmax
\

E
g„c\:

r!2;8?pc\ , c\: qs (5.27)

where

!2;8?pc\ , c\: q “ min
ˆ

c\ p0|Bq

c\: p0|Bq
�
c\:
W pB, 0q, clip

ˆ

c\ p0|Bq

c\: p0|Bq
, 1´ n, 1` n

˙

�
c\:
W pB, 0q

˙

(5.28)

We note that this objective can be estimated using sample trajectory collected from the environment

and can be easily optimized via stochastic gradient ascent. The clipping in PPO can be seen as

an attempt at keeping c\ p08 |B8q from becoming neither much larger than p1 ` nqc\: p08 |B8q nor

much smaller than p1 ´ nqc\: p08 |B8q for 8 “ 1, . . . ,<. This is illustrated in Figure 5.1. When the

advantage is positive, the objective function increases if the current state action pair pB8, 08q is

more likely. However the objective has an upper limit in how much it is allowed to increase, i.e.

67

Figure 5.1: Plot of !2;8? against the importance sampling ratio A “
c\ p0|Bq

c\: p0|Bq
for when the advantage is

positive and negative (Image from [Schulman et al. 2017b])

the ceiling 1` n . By similar logic, when the advantage is negative, the objective increase when

pB8, 08q is less likely and this value is capped by 1´ n .

In this subsection, we consider the constraint function

�pc, c\: q “ max
8“1,...,<

|cp08 |B8q ´ c\: p08 |B8q|

c\: p08 |B8q
(5.29)

which leads us to the following optimization problem:

maximize
cp01|B1q,...,cp0<|B<q

<
ÿ

8“1
�
c\:
W pB8, 08q

cp08 |B8q

c:p08 |B8q

subject to
ˇ

ˇ

ˇ

ˇ

cp08 |B8q ´ c\: p08 |B8q

c\: p08 |B8q

ˇ

ˇ

ˇ

ˇ

ď n 8 “ 1, . . . ,<

<
ÿ

8“1

ˆ

cp08 |B8q ´ c\: p08 |B8q

c\: p08 |B8q

˙2

ď X

(5.30)

Note that here we are using a variation of the SPU methodology described in Section 5.2 since

here we �rst create estimates of the expectations in the objective and constraints and then solve

the optimization problem (rather than �rst solve the optimization problem and then take samples

as done for Theorems 5.1 and 5.3). Note that we have also included an aggregated constraint

68

(constraint 2 of (5.31)) in addition to the PPO-like constraint (constraint 1 of (5.31)), which further

ensures that the updated policy is close to c\: .

Theorem 5.5. The optimal solution to the optimization problem (5.31) is given by:

c˚p08 |B8q “

$

’

’

&

’

’

%

c\: p08 |B8qmint1` _�8, 1` nu �8 ě 0

c\: p08 |B8qmaxt1` _�8, 1´ nu �8 ă 0
(5.31)

for some _ ą 0 where �8 :“ �
c\:
W pB8, 08q.

Proof. The problem (5.31) is equivalent to:

maximize
cp01|B1q,...,cp0<|B<q

<
ÿ

8“1
�
c\:
W pB8, 08q

cp08 |B8q

c\: p08 |B8q

subject to 1´ n ď
cp08 |B8q

c\: p08 |B8q
ď 1` n 8 “ 1, . . . ,<

<
ÿ

8“1

ˆ

cp08 |B8q ´ c\: p08 |B8q

c\: p08 |B8q

˙2

ď X

(5.32)

This problem is clearly convex. c\: p08 |B8q, 8 “ 1, . . . ,< is a feasible solution where the inequality

constraint holds strictly. Strong duality thus holds according to Slater’s constraint quali�cation.

To solve (5.32), we can therefore solve the related Lagrangian problem for �xed _:

maximize
cp01|B1q,...,cp0<|B<q

<
ÿ

8“1

«

�
c\:
W pB8, 08q

cp08 |B8q

c\: p08 |B8q
´ _

ˆ

cp08 |B8q ´ c\: p08 |B8q

c\: p08 |B8q

˙2
ff

subject to 1´ n ď
cp08 |B8q

c\: p08 |B8q
ď 1` n 8 “ 1, . . . ,<

(5.33)

which is separable and decomposes into< separate problems, one for each B8 :

maximize
cp08 |B8q

�
c\:
W pB8, 08q

cp08 |B8q

c\: p08 |B8q
´ _

ˆ

cp08 |B8q ´ c\: p08 |B8q

c\: p08 |B8q

˙2

subject to 1´ n ď
cp08 |B8q

c\: p08 |B8q
ď 1` n

(5.34)

69

The solution to the unconstrained problem without the constraint is:

c˚p08 |B8q “ c\: p08 |B8q

˜

1`
�
c\:
W pB8, 08q

2_

¸

(5.35)

Now consider the full constrained problem . If�
c\:
W pB8, 08q ě 0 and c˚p08 |B8q ą c\: p08 |B8qp1`nq, the

optimal solution is c\: p08 |B8qp1` nq. Similarly, If �
c\:
W pB8, 08q ă 0 and c˚p08 |B8q ă c\: p08 |B8qp1´ nq,

the optimal solution is c\: p08 |B8qp1´ nq. Rearranging the terms gives (5.31). To obtain _, we can

perform a line search over _ so that the second constraint (5.32) is binding. �

To simplify the algorithm, we treat _ as a hyper-parameter rather than X . After solving for

c˚, we seek a parameterized policy c\ that is close to c˚ by minimizing their mean square error

over sampled states and actions, i.e. by updating \ in the negative direction of ∇\
ř

8pc\ p08 |B8q ´

c˚p08 |B8qq
2. This loss is used for supervised training instead of the KL because we take estimates

before forming the optimization problem. Thus, the optimal values for the decision variables

do not completely characterize a distribution. We refer to this approach as SPU with the !8

constraint.

5.4 Extension to Continuous State and Action Spaces

The methodology developed in the previous section also applies to continuous state and action

spaces. In this section, we outline the modi�cations that are necessary for the continuous case.

We �rst modify the de�nition of 3c,W by replacing %cpBC “ Bq with 3
3B
%cpBC ď Bq so that

3c,WpBq becomes a density function over the state space. With this modi�cation, the de�nition of

�̄KLpc ‖ c:q and the approximation (4.2) are unchanged. The SPU framework described in Section

4 is also unchanged.

Consider now the non-parameterized optimization problem with aggregate and disaggregate

70

constraints (5.4), but with continuous state and action space:

maximize
cPΠ

ż

3c\: ,W
pBq E

0„cp¨|Bq
r�c\: pB, 0qs3B

subject to
ż

3c\: ,W
pBq�KL pc}c\: q rBs3B ď X

�KL pc}c\: q rBs ď n for all B

(5.36)

Theorem 5.1 holds although its proof needs to be slightly modi�ed as follows. It is straight-

forward to show that (5.36) remains a convex optimization problem. We can therefore solve

(5.36) by solving the Lagrangian (5.7) with the sum replaced with an integral. This problem again

decomposes with separate problems for each B P S giving exactly the same equations (5.8). The

proof then proceeds as in the remainder of the proof of Theorem 5.1.

Theorem 5.3 and 5.5 are also unchanged for continuous action spaces. Their proofs require

slight modi�cations, as in the proof of Theorem 5.1.

5.5 Experiments

Extensive experimental results demonstrate SPU outperforms recent state-of-the-art methods for

environments with continuous or discrete action spaces. We provide ablation studies to show the

importance of the di�erent algorithmic components, and a sensitivity analysis to show that SPU’s

performance is relatively insensitive to hyper-parameter choices. There are two de�nitions we

use to conclude A is more sample e�cient than B: (i) A takes fewer environment interactions to

achieve a pre-de�ned performance threshold [Kakade 2003]; (ii) the averaged �nal performance

of A is higher than that of B given the same number environment interactions [Schulman et al.

2017b]. .

71

5.5.1 Results on Mujoco

We will �rst present experimental results on the MuJoCo robotic simulation environments [Todorov

et al. 2012]. In terms of �nal performance averaged over all available ten Mujoco environments

and ten di�erent seeds in each, SPU with !8 constraint (Section 5.3.3) and SPU with forward KL

constraints (Section 5.3.1) outperform TRPO by 6% and 27% respectively. Since the forward-KL

approach is our best performing approach, we focus subsequent analysis on it and hereafter refer

to it as SPU, an algorithmic outline of which was presented in Algorithm 3. SPU also outperforms

PPO by 17%. Figure 5.2 illustrates the performance of SPU versus TRPO, PPO.

To ensure that SPU is not only better than TRPO in terms of performance gain early during

training, we further retrain both policies for 3 million timesteps (Figure 5.3). Again here, SPU

outperforms TRPO by 28% . .

5.5.2 Ablation Studies for Mujoco

The indicator variable in (5.18) enforces the disaggregated constraint. We refer to it as per-state

acceptance. Removing this component is equivalent to removing the indicator variable. We refer

to using
ř

8 �KL pc\}c\: q rB8s to determine the number of training epochs as dynamic stopping.

Without this component, the number of training epochs is a hyperparameter. We also tried

removing ∇\�KL pc\}c\: q rB8s from the gradient update step in (5.18). Table 5.1 illustrates the

contribution of the di�erent components of SPU to the overall performance. The third row shows

that the term ∇\�KL pc\}c\: q rB8s makes a crucially important contribution to SPU. Furthermore,

per-state acceptance and dynamic stopping are both also important for obtaining high performance,

with the former playing a more central role. When a component is removed, the hyperparameters

are re-tuned to ensure that the best possible performance is obtained with the alternative (simpler)

algorithm.

72

Figure 5.2: SPU versus TRPO, PPO on 10 Mujoco environments in 1 million timesteps. The x-axis indicates
timesteps. The y-axis indicates the average episode reward of the last 100 episodes.

73

Figure 5.3: SPU versus TRPO, PPO on 10 Mujoco environments in 3 million timesteps. The x-axis indicates
timesteps. The y-axis indicates the average episode reward of the last 100 episodes.

74

Table 5.1: Ablation study for SPU

Approach Percentage better than TRPO Performance vs. original algorithm

Original Algorithm 27% 0%
No grad KL 4% - 85%

No dynamic stopping 24% - 11%
No per-state acceptance 9% - 67%

5.5.3 Sensitivity Analysis on Mujoco

To demonstrate the practicality of SPU, we show that its high performance is insensitive to

hyper-parameter choice. One way to show this is as follows: for each SPU hyper-parameter,

select a reasonably large interval, randomly sample the value of the hyper parameter from this

interval, and then compare SPU (using the randomly chosen hyperparameter values) with TRPO.

We sampled 100 SPU hyperparameter vectors (each vector including X, n, _), and for each one

determined the relative performance with respect to TRPO. Since values for SPU hyperparameter

are randomly sampled, the percentage improvement of SPU over TRPO becomes a random variable.

Figure 5.4 illustrates the CDF of this random variable.

First, we found that for all 100 random hyperparameter value samples, SPU performed better

than TRPO. 75% and 50% of the samples outperformed TRPO by at least 18% and 21% respectively.

The full CDF is given in Figure 5.4 in the Appendix. We can conclude that SPU’s superior

performance is largely insensitive to hyperparameter values.

5.5.4 Results on Atari

Mania et al. [2018] demonstrated that neural networks are not needed to obtain high performance

in many MuJoCo environments. To conclusively evaluate SPU, we compare it against PPO on the

Atari Arcade Learning Environments [Mnih et al. 2013]. Using the same network architecture and

75

Figure 5.4: Sensitivity Analysis for SPU

hyperparameters, we learn to play 60 Atari games from raw pixels and rewards. This is highly

challenging because of the diversity in the games and the high dimensionality of the observations.

Here, we compare SPU against PPO because PPO outperforms TRPO by 9% in MuJoCo.

Averaged over 60 Atari environments and 20 seeds, SPU is 55% better than PPO in terms of

averaged �nal performance. Figure 5.5 provides a high-level overview of the result. The dots in

the shaded area represent environments where their performances are roughly similar. The dots

to the right of the shaded area represent environment where SPU is more sample e�cient than

PPO. We can draw two conclusions: (i) In 36 environments, SPU and PPO perform roughly the

same ; SPU clearly outperforms PPO in 15 environments while PPO clearly outperforms SPU in 9;

(ii) In those 15+9 environments, the extent to which SPU outperforms PPO is much larger than

the extent to which PPO outperforms SPU. SPU’s high performance in both the MuJoCo and Atari

domains demonstrates its high performance and generality.

76

Figure 5.5: High-level overview of results on Atari

5.5.5 Implementation Details

MuJoCo

As was done in the previous Chapter and in [Schulman et al. 2017b], the policy is param-

eterized by a fully-connected feed-forward neural network with two hidden layers, each with

64 units and tanh nonlinearities. The policy outputs the mean of a Gaussian distribution with

state-independent variable standard deviations. The action dimensions are assumed to be indepen-

dent. The probability of an action is given by the multivariate Gaussian probability distribution

function. The baseline used in the advantage value calculation is parameterized by a similarly

sized neural network, trained to minimize the MSE between the sampled states TDp_q returns

and the their predicted values. For both the policy and baseline network, SPU and TRPO use the

same architecture. To calculate the advantage values, we use Generalized Advantage Estimation

[Schulman et al. 2016]. States are normalized by dividing the running mean and dividing by

the running standard deviation before being fed to any neural networks. The advantage values

are normalized by dividing the batch mean and dividing by the batch standard deviation before

being used for policy update. The TRPO result is obtained by running the TRPO implementation

provided by OpenAI [Dhariwal et al. 2017]. At every iteration, SPU collects 2048 samples before

updating the policy and the baseline network. For both networks, gradient descent is performed

using Adam [Kingma and Ba 2015] with step size 0.0003, minibatch size of 64. The step size is

linearly annealed to 0 over the course of training. W and _ for GAE [Schulman et al. 2016] are set

77

to 0.99 and 0.95 respectively. For SPU, X, n, _ and the maximum number of epochs per iteration

are set to 0.05{1.2, 0.05, 1.3 and 30 respectively. In the sensitivity analysis, the ranges of values for

the hyperparameters X, n, _ and maximum number of epochs are r0.05, 0.07s, r0.01, 0.07s, r1.0, 1.2s

and r5, 30s respectively.

Atari

Unless otherwise mentioned, the hyperparameter values are the same as in the MuJoCo

expreriments. The policy is parameterized by a convolutional neural network with the same

architecture as described in [Mnih et al. 2015]. The output of the network is passed through a ReLu,

linear and softmax layer in that order to give the action distribution. The output of the network is

also passed through a di�erent linear layer to give the baseline value. States are normalized by

dividing by 255 before being fed into any network. The PPO result is obtained by running the PPO

implementation provided by OpenAI [Dhariwal et al. 2017]. 8 di�erent processes run in parallel to

collect timesteps. At every iteration, each process collects 256 samples before updating the policy

and the baseline network. Each process calculates its own update to the network’s parameters and

the updates are averaged over all processes before being used to update the network’s parameters.

Gradient descent is performed using Adam [Kingma and Ba 2015] with step size 0.0001. In each

process, random number generators are initialized with a di�erent seed according to the formula

?A>24BB_B443 “ 4G?4A8<4=C_B443 ` 10000 ˚ ?A>24BB_A0=: . Training is performed for 10 million

timesteps for both SPU and PPO. For SPU, X, n, _ and the maximum number of epochs per iteration

are set to 0.02, X{1.3, 1.1 and 9 respectively.

5.6 Related Work

Natural gradient [Amari 1998] was �rst introduced to policy gradient by Kakade [2001b] and

then in Peters and Schaal [2008a,b]; Schulman et al. [2015], which we will collectively refer to as

NPG/TRPO. As we have mentioned in the previous chapter, algorithmically, NPG/TRPO �nds the

78

gradient update by solving the sample e�ciency problem (5.1) with �pc\ , c\: q “ �̄KLpc\ ‖ c\: q,

i.e., use the aggregate KL-divergence for the policy proximity constraint. NPG/TRPO addresses this

problem in the parameter space \ P Θ. First, it approximates the objective in (5.1) with �rst-order

Taylor approximation and �̄KLpc\ ‖ c\: q using a similar second-order method. Second, it uses

samples from c\: to form estimates of these two approximations. Third, using these estimates

(which are functions of \), it solves for the optimal \˚.

SPU takes a very di�erent approach by �rst (i) posing and solving the optimization problem in

the non-parameterized policy space, and then (ii) solving a supervised regression problem to �nd

a parameterized policy that is near the optimal non-parameterized policy. A recent paper, Guided

Actor Critic (GAC), independently proposed a similar decomposition [Tangkaratt et al. 2018].

However, GAC is much more restricted in that it considers only one speci�c constraint criterion

(aggregated reverse-KL divergence) and applies only to continuous action spaces. Furthermore,

GAC incurs signi�cantly higher computational complexity, e.g. at every update, it minimizes the

dual function to obtain the dual variables using Sequential Least-Squares Quadratic Programming

(SLSQP) methods [Kraft et al. 1988]. Maximum Aposteriori Policy Optimisation (MPO) also

independently propose a similar decomposition [Abdolmaleki et al. 2018]. MPO uses much more

complex machinery, namely, Expectation Maximization to address the DRL problem. However,

MPO has only demonstrates preliminary results on problems with discrete actions whereas our

approach naturally applies to problems with either discrete or continuous actions. In both GAC

and MPO, working in the non-parameterized space is a by-product of applying the main ideas

in those papers to DRL. Our paper demonstrates that the decomposition alone is a general and

useful technique for solving constrained policy optimization.

PPO-clipped [Schulman et al. 2017b] takes a very di�erent approach to TRPO. At each iteration,

PPO makes many gradient steps while only using the data from c\: . Without the clipping, PPO is

the approximation in (4.2). The clipping is analogous to the constraint in (5.1) in that it has the

goal of keeping c\ close to c\: . Indeed, the clipping keeps c\ p0C |BCq from becoming neither much

79

larger than p1` nqc\: p0C |BCq nor much smaller than p1´ nqc\: p0C |BCq. Thus, although the clipped

PPO objective does not squarely �t into the optimization framework in (5.1), it is quite similar

in spirit. We note that the PPO paper considers adding the KL penalty to the objective function,

whose gradient is similar to ours. However, this form of gradient was demonstrated to be inferior

to Clipped-PPO. To the best of our knowledge, it is only until our work that such form of gradient

is demonstrated to outperform Clipped-PPO.

Actor-Critic using Kronecker-Factored Trust Region (ACKTR) [Wu et al. 2017] proposed using

Kronecker-factored approximation curvature (K-FAC) to update both the policy gradient and critic

terms, giving a more computationally e�cient method of calculating the natural gradients. ACER

[Wang et al. 2017] exploits past episodes, linearizes the KL divergence constraint, and maintains

an average policy network to enforce the KL divergence constraint. In future work, it would of

interest to extend the SPU methodology to handle past episodes. In contrast to bounding the

KL divergence on the action distribution as we have done in this work, Relative Entropy Policy

Search [Peters et al. 2010] considers bounding the joint distribution of state and action and was

only demonstrated to work for small problems.

The general idea of �rst �nding a non-parametric solution then projecting back into the

parameter space is also used in other sub-�elds of machine learning. Notably in variational

inference [Blei et al. 2017] where a non-parametric posterior distribution is projected into a space

of parameterized distributions.

5.7 Conclusion

We developed a novel policy-space methodology, which can be used to compare and contrast

various sample-e�cient reinforcement learning algorithms, including PPO and di�erent versions

of TRPO. The methodology can also be used to study many other forms of constraints, such as

constraining the aggregated and disaggregated reverse KL-divergence. We also proposed a new

80

sample-e�cient class of algorithms called SPU, for which there is signi�cant �exibility in how we

set the targets.

As compared to PPO, our experimental results show that SPU with simple target functions can

lead to improved sample-e�ciency performance without increasing wall-clock time. In the future,

it may be possible to achieve further gains with yet-to-be-explored classes of target functions,

annealing the targets, and changing the number of passes through the data.

81

6 | Constrained Reinforcement

Learning

6.1 Introduction

In the prior chapters, we allowed the agent to freely explore the environment to obtain desirable

behavior, provided that it leads to performance improvement. No regard is given to whether the

agent’s behavior may lead to negative or harmful consequences. Consider for instance the task

of controlling a robot, certain maneuvers may damage the robot, or worse harm people around

it. RL safety [Amodei et al. 2016] is a pressing topic in modern reinforcement learning research

and imperative to applying reinforcement learning to safety-critical settings such as autonomous

driving [Kendall et al. 2019; Scheel et al. 2021] and healthcare [Prasad et al. 2017; Komorowski

et al. 2018; Gottesman et al. 2019].

Constrained Markov Decision Processes (CMDP) [Kallenberg 1983; Ross 1985; Beutler and

Ross 1985; Ross and Varadarajan 1989; Altman 1999] provide a principled mathematical framework

for dealing with such problems as it allows us to naturally incorporate safety criteria in the form

of constraints. In low-dimensional �nite settings, an optimal policy for CMDPs with known

dynamics can be found by linear programming [Kallenberg 1983] or Lagrange relaxation [Ross

1985; Beutler and Ross 1985].

While we can solve problems with small state and action spaces via linear programming and

82

value iteration, function approximation is required in order to generalize over large state spaces.

Based on recent advances in local policy search methods [Kakade and Langford 2002; Peters

and Schaal 2008b; Schulman et al. 2015], Achiam et al. [2017] proposed the Constrained Policy

Optimization (CPO) algorithm. However policy updates for the CPO algorithm involve solving an

optimization problem through Taylor approximations and inverting a high-dimensional Fisher

information matrix. These approximations often result in infeasible updates which would require

additional recovery steps, this could sometimes cause updates to be backtracked leading to a waste

of samples. Moreover, the theoretical guarantees for the CPO algorithm assume that the cost

constraint takes the form of a discounted sum. Tessler et al. [2019] pointed out that trust-region

based methods such as the Constrained Policy Optimization (CPO) algorithm [Achiam et al. 2017]

cannot be used for non-discounted cost constraints.

In this chapter, we �rst show that the theoretical guarantees for the CPO algorithm can in fact

be extended to non-discounted cost constraints. We then propose the First Order Constrained

Optimization in Policy Space (FOCOPS) algorithm. FOCOPS attempts to answer the following

question: given some current policy, what is the best constraint-satisfying policy update? Inspired

by ideas introduced in Chapter 5, FOCOPS provides a solution to this question in the form of a

two-step approach. First, we will show that the best policy update has a near-closed form solution

when attempting to solve for the optimal policy in the nonparametric policy space rather than

the parameter space. However in most cases, this optimal policy is impossible to evaluate. Hence

we project this policy back into the parametric policy space. This can be achieved by drawing

samples from the current policy and evaluating a loss function between the parameterized policy

and the optimal policy we found in the nonparametric policy space. Theoretically, FOCOPS has

an approximate upper bound for worst-case constraint violation throughout training. Practically,

FOCOPS is extremely simple to implement since it only utilizes �rst order approximations. We

further test our algorithm on a series of challenging high-dimensional continuous control tasks

and found that FOCOPS achieves better performance while maintaining approximate constraint

83

satisfaction compared to current state of the art approaches, in particular second-order approaches

such as CPO.

6.2 Background: Constrained Markov Decision Processes

A Constrained Markov Decision Processes (CMDP) [Kallenberg 1983; Ross 1985; Altman 1999]

is an MDP equipped with a constraint set Π2 “ tc P Π : �2pcq ď 1u where �2pcq is the cost

constraint which depends on the scalar cost function 2 : S ˆA Ñ r2min, 2maxs, 1 is the constraint

bound. The cost 2pB, 0q is the immediate cost incurred by the agent in state B after taking action 0.

The goal of a CMDP problems �nds a policy c within the constraint set that maximizes an agent’s

long-run reward, i.e.

c˚ “ argmax
cPΠ2

� pcq. (6.1)

where again we use � pcq to denote some policy performance measure.

The cost constraint can take various forms, some common examples include:

• Per-state cost constraint [Dalal et al. 2018]

2pBq ď 1 for all B P S.

• Discounted cost constraint [Achiam et al. 2017]

d2,Wpcq :“ E
g„c

«

8
ÿ

C“0
W C2pBC , 0Cq

ff

• Average cost constraint [Altman 1999]

d2pcq :“ lim
#Ñ8

1
#
E
g„c

«

#´1
ÿ

C“0
2pBC , 0Cq

ff

84

• Sample path constraint [Ross 1985; Ross and Varadarajan 1991]

%c

˜

lim
#Ñ8

1
#

#´1
ÿ

C“0
2pBC , 0Cq ď 1

¸

“ 1

• Entropy constraint [Ziebart et al. 2008]

E
B

„

´

ż

0

cp0|Bq logcp0|Bq30

ě 1

• Value-at-Risk (VaR) constraint [Chow et al. 2017]

VaRU “ min
I

#

%c

˜

8
ÿ

C“0
W C2pBC , 0Cq ď I

¸

ě U

+

ď 1

In this thesis, We consider two forms of constraint sets: the average cost constraint set tc P Π :

d2pcq ď 1u and the discounted cost constraint set tc P Π : d2,Wpcq ď 1u. We will also restrict our

attention to the case of a single cost constraints, however many of the results we introduce can be

naturally extended to accommodate for multiple constraints.

Similar to the reward function, the form of the cost function 2pB, 0q is usually speci�ed by

user depending speci�c application needs. For instance, in many applications involving robotic

locomotive tasks, it is reasonable for safety reasons to set a speed limit for the robot. However

just like the task of speci�ying a reward function, de�ning a cost function and choosing a cost

constraint often requires speci�c domain knowledge and can be very challenging in practice

[Amodei et al. 2016]. More recently, safety constraints have also been expressed in other more

natural forms such as human preferences [Christiano et al. 2017] or natural language [Luketina

et al. 2019].

Analogous to + c
W , &cW , �cW , s+ c , s&c , s�c for the rewards. We can de�ne + c

2,W , &c2,W , �c2,W , s+ c
2 , s&c2 ,

s�c2 by replacing the reward function with the cost function.

85

6.3 Constrained RL as Local Policy Search

We �rst consider the case of discounted costs. Recall the local policy search problem introduced

in Chapter 3. We can augment this problem to solve for CMDPs by adding the cost constraint, i.e.

maximize
cPΠ

� pcq

subject to d2,Wpcq ď 1

�pc, c:q ď X.

(6.2)

However solving CMDPs directly can be challenging and sample ine�cient since after each policy

update, additional samples need to be collected from the new policy in order to evaluate whether

the constraints are satis�ed.

Achiam et al. [2017] proposed replacing the cost constraint with a surrogate cost function

which evaluates the constraint d2,Wpc\ q using samples collected from the current policy c\: . This

surrogate function is shown to be a good approximation to d2,Wpc\ q when c\ and c\: are close

w.r.t. the KL divergence. Based on this idea, the CPO algorithm [Achiam et al. 2017] performs

policy updates as follows: given some policy c\: , the new policy c\:`1 is obtained by solving the

optimization problem

maximize
c\PΠ\

E
B„3c\: ,W
0„c\

r�
c\:
W pB, 0qs

subject to d̃2,Wpc\ q ď 1

E
B„3c\: ,W

r�KL pc\}c\: q rBss ď X.

(6.3)

Here,

d̃2,Wpc\ q :“ d2,Wpc\: q `
1

1´ W
E

B„3c\: ,W
0„c\

”

�
c\:
2,W pB, 0q

ı

(6.4)

86

is a surrogate cost function used to approximate the cost constraint. Note that (6.4) can be evaluated

using samples from c\: . By Corollary 2 of Achiam et al. [2017] and (3.20):

ˇ

ˇd2,Wpc\ q ´ d̃2,Wpc\ q
ˇ

ˇ ď
Wn2,W

p1´ Wq2
b

2�̄KLpc\ ‖ c\: q (6.5)

where n2,W “ maxB
ˇ

ˇ

ˇ
E0„c 1r�

c
2,WpB, 0qs

ˇ

ˇ

ˇ
. This shows that the surrogate cost is a good approximation

to d2,Wpc\ qwhen c\ and c\: are close w.r.t. the KL divergence. When c\:`1 is the solution to (6.3), it

satis�es the following bound for worst-case guarantee for cost constraint satisfaction (Proposition

2 of Achiam et al. [2017]):

d2,Wpc\:`1q ď 1 `

?
2XWn2,W
p1´ Wq2

(6.6)

However, this framework is problematic when the cost constraint is undiscounted. Consider

the corresponding average cost problem to (6.3):

maximize
c\PΠ\

E
B„3c\:
0„c\

r s�c\: pB, 0qs

subject to d̃2pc\ q ď 1

�̄KLpc\ ‖ c\: q ď X.

(6.7)

where

d̃2pc\ q :“ d2pc\: q ` E
B„3c\:
0„c\:

r�
c\
2 pB, 0qs (6.8)

is the average cost surrogate function. We can easily show that

lim
WÑ1
p1´ Wqpd2,Wpc\ q ´ d̃2,Wpc\ qq “ d2pc\ q ´ d̃2pc\ q and lim

WÑ1

Wn2,W

1´ W

b

2�̄KLpc\ ‖ c\: q “ 8

87

However, by Theorem 3.51 and (3.20):

|d2pc\ q ´ d̃2pc\ q| ď b
c\
2

b

2�̄KLpc\ ‖ c\: q (6.9)

where bc\2 “ p^˚ ´ 1qmaxB E0„c\ |�
c\:
2 pB, 0q|. We then have the following result:

Proposition 6.1. Suppose c\ and c\: satisfy the constraints d̃2pc\ q ă 1 and �̄KLpc\ ‖ c\: q ď X ,

then

d2pc\ q ď 1 ` b
c\
2

?
2X (6.10)

The upper-bound in Proposition 6.1 provides a worst-case constraint violation guarantee when

c\ is the solution to the average-cost variant of (6.3). It is an undiscounted parallel to Proposition

2 in Achiam et al. [2017] which provides a similar guarantee for the discounted case. It shows that

contrary to what was previously believed [Tessler et al. 2019], Problem (6.3) can easily be modi�ed

to accommodate for average cost constraints and still satisfy an upper bound for worst-case

constraint violation. In the next section, we will show how the CPO algorithm [Achiam et al.

2017] can be modi�ed for average cost constraints.

6.4 Average Cost CPO

Consider the optimization problem (6.7). Similar to TRPO/ATRPO, we can apply �rst and second

order Taylor approximations to (6.7) which then gives us

maximize
\

6) p\ ´ \:q

subject to 2̃ ` 6̃) p\ ´ \:q ď 0
1
2
p\ ´ \:q

)�p\ ´ \:q ď X

(6.11)

1It is straightforward to show that the theorem still holds when we replace the reward with the cost.

88

where 6, � were de�ned Section 4.1, 2̃ “ dpc\: q ´ 1, and

6̃ :“ E
B„3c\:
0„c\:

”

∇\ logc\ p0|Bq|\“\: s�
c\:
2 pB, 0q

ı

(6.12)

is the gradient of the constraint. Similar to the case of ATRPO,6, 6̃,� , and 2̃ can all be approximated

using samples collected from c\: . The term s�
c\:
2 pB, 0q also involves the cost bias-function which

can be approximated via a separate cost critic network. The optimization problem (6.11) is a

convex optimization problem where strong duality holds, hence it can be solved using a simple

Lagrangian argument. The update rule takes the form

\ “ \: `
1
_
�´1

p6 ´ a6̃q (6.13)

where _ and a are Lagrange multipliers satisfying [Achiam et al. 2017]:

max
_,aě0

´
1

2_
`

6)�´16 ` 2a6)�´16̃ ` a26̃�´16̃)
˘

` a2̃ ´
1
2
_X (6.14)

The dual problem (6.14) can be solved explicitly [Achiam et al. 2017]. Similar to ATRPO, we use

the conjugate gradient method to estimate � and perform a backtracking line search procedure to

guarantee approximate constraint satisfaction.

6.5 First Order Constrained Optimization in Policy Space

The CPO/ACPO algorithm attempts to approximately solve (6.3) and (6.7) introduced in the

previous section introduces several sources of errors in the process, namely

(i) Sampling error resulting from taking sample trajectories from the current policy.

(ii) Approximation errors resulting from Taylor approximations.

89

(iii) Using the conjugate gradient method in order to calculate the inverse of a Fisher information

matrix.

In practice the presence of these errors require the CPO/ACPO algorithm to take additional steps

during each update in the training process in order to recover from constraint violations, this is

often di�cult to achieve and may not always work well in practice. In this section, we introduce a

simple �rst-order method which is able to eliminate the last two sources of error and outperform

CPO/ACPO.

Instead of solving (6.3) and (6.7) directly, we use a two-step approach inspired by the high-level

ideas introduced in Chapter 5:

1. Given policy c\: , �nd an optimal update policy c˚ by solving the optimization problem from

(6.3) and (6.7) in the nonparameterized policy space.

2. Project the policy found in the previous step back into the parameterized policy space Π\

by solving for the closest policy c\ P Π\ to c˚ in order to obtain c\:`1 .

Subsequently, we will consider the discounted cost problem in (6.3), however our results can

be naturally extended to the average cost case.

6.5.1 Finding the Optimal Update Policy

In the �rst step, we consider the optimization problem

maximize
cPΠ

E
B„3c\: ,W
0„c

r�
c\:
W pB, 0qs

subject to d̃2,Wpcq ď 1

�̄KLpc ‖ c\: q ď X.

(6.15)

Note that this problem is almost identical to Problem (6.3) except the parameter of interest is

90

now the nonparameterized policy c and not the policy parameter \ . We can show that Problem

(6.15) admits the following solution:

Theorem 6.2. Let 1̃ “ p1 ´ Wqp1 ´ d2,Wpc\: qq. If c\: is a feasible solution, the optimal policy for

(6.15) takes the form

c˚p0|Bq “
c\: p0|Bq

Z`,apBq
exp

ˆ

1
`

´

�
c\:
W pB, 0q ´ a�

c\:
2,W pB, 0q

¯

˙

(6.16)

where Z`,apBq is the partition function which ensures (6.16) is a valid probability distribution, ` and

a are solutions to the optimization problem:

min
`,aě0

`X ` a1̃ ` ` E
B„3c\: ,W

rlogZ`,apBqs (6.17)

Proof. We will begin by showing that Problem (6.15) is convex w.r.t. c “ tcp0|Bq : B P S, 0 P Au.

First note that the objective function is linear w.r.t. c . Since d2pc\: q is a constant w.r.t. c , the �rst

constraint is linear. The trust region constraint can be rewritten as
ř

B 3c\: ,W
pBq�KL pc}c\: q rBs ď X ,

the KL divergence is convex w.r.t. its �rst argument, therefore the trust region constraint which is

a linear combination of convex functions is also convex. Since c\: satis�es the cost constraint

and is also an interior point within the set given by the trust region constraint (�KL pc\: }c\: q “ 0,

and X ą 0), therefore Slater’s constraint quali�cation holds, strong duality holds.

We can therefore solve for the optimal value of Problem (6.15) ?˚ by solving the corresponding

dual problem. Let

!pc, `, aq “ `X ` a1̃ ` E
B„3c\: ,W

„

E
0„cp¨|Bq

r�
c\:
W pB, 0qs ´ a E

0„cp¨|Bq
r�

c\:
2,W pB, 0qs ´ `�KL pc}c\: q rBs

(6.18)

Therefore,

?˚ “ max
cPΠ

min
`,aě0

!pc, `, aq “ min
`,aě0

max
cPΠ

!pc, `, aq (6.19)

where we invoked strong duality in the second equality. We note that if c˚, `˚, a˚ are optimal for

91

(6.19), c˚ is also optimal for Problem (6.15) [Boyd et al. 2004].

Consider the inner maximization problem in (6.19), we can decompose this problem into

separate problems, one for each B . This gives us an optimization problem of the form,

maximize
c

E
0„cp¨|Bq

„

�
c\:
W pB, 0q ´ a�

c\:
2,W pB, 0q ´ `plogcp0|Bq ´ logc\: p0|Bqq

subject to
ÿ

0

cp0|Bq “ 1

cp0|Bq ě 0 for all 0 P A

(6.20)

which is equivalent to the inner maximization problem in (6.19). This is clearly a convex optimiza-

tion problem which we can solve using a simple Lagrangian argument. We �nd that the optimal

solution c˚ to (6.20) takes the form

c˚p0|Bq “
c\: p0|Bq

Z`,apBq
exp

ˆ

1
`

´

�
c\:
W pB, 0q ´ a�

c\:
2,W pB, 0q

¯

˙

Plugging c˚ back into Equation 6.19 gives us

?˚ “ min
`,aě0

`X ` a1̃ ` E
B„3c\:
0„c˚

r�
c\:
W pB, 0q ´ a�

c\:
2,W pB, 0q ´ `plogc˚p0|Bq ´ logc\: p0|Bqqs

“ min
`,aě0

`X ` a1̃ ` E
B„3c\:
0„c˚

r�
c\:
W pB, 0q ´ a�

c\:
2,W pB, 0q ´ `plogc\: p0|Bq ´ logZ`,apBq

`
1
`
p�

c\:
W pB, 0q ´ a�

c\:
2,W pB, 0qq ´ logc\: p0|Bqqs

“ min
`,aě0

`X ` a1̃ ` ` E
B„3c\:

rlogZ`,apBqs

�

The form of the optimal policy is intuitive, it gives high probability mass to areas of the state-

action space with high return which is o�set by a penalty coe�cient times the cost advantage.

92

We will refer to the optimal solution to (6.16) as the optimal update policy. We also note that it is

possible to extend our results to accommodate for multiple constraints by introducing Lagrange

multipliers a1, . . . , a< ě 0, one for each cost constraint and applying a similar duality argument.

It is also straightforward to show that (6.16) satis�es the worst-case constraint violation

guarantee in (6.6).

6.5.2 Approximating the Optimal Update Policy

When solving Problem (6.15), we allow c to be in the set of all stationary policies Π thus the

resulting c˚ is not necessarily in the parameterized policy space Π\ and we may no longer be able

to evaluate or sample from c˚. Therefore in the second step we project the optimal update policy

back into the parameterized policy space by minimizing the loss function:

Lp\q “ E
B„3

c\:

r�KL pc\}c
˚q rBss (6.21)

Here c\ P Π\ is some projected policy which we will use to approximate the optimal update policy.

We can use �rst-order methods to minimize this loss function where we make use of the following

result:

Corollary 6.3. The gradient of Lp\q takes the form

∇\Lp\q “ E
B„3

c\:

r∇\�KL pc\}c
˚q rBss (6.22)

where

∇\�KL pc\}c
˚q rBs “ ∇\�KL pc\}c\: q rBs´

1
`
E

0„c\:

„

∇\c\ p0|Bq
c\: p0|Bq

´

�
c\:
W pB, 0q ´ a�

c\:
2,W pB, 0q

¯

(6.23)

Proof. We only need to calculate the gradient of the loss function for a single sampled B . We �rst

93

note that,

�KL pc\}c
˚q rBs “ ´

ÿ

0

c\ p0|Bq logc˚p0|Bq `
ÿ

0

c\ p0|Bq logc\ p0|Bq

“�pc\ , c
˚
qrBs ´ �pc\ qrBs

where �pc\ qrBs is the entropy and �pc\ , c˚qrBs is the cross-entropy under state B . We expand the

cross entropy term which gives us

�pc\ , c
˚
qrBs “ ´

ÿ

0

c\ p0|Bq logc˚p0|Bq

“ ´
ÿ

0

c\ p0|Bq log
ˆ

c\: p0|Bq

/`,apBq
exp

„

1
`

´

�
c\:
W pB, 0q ´ a�

c\:
2,W pB, 0q

¯

˙

“´
ÿ

0

c\ p0|Bq logc\: p0|Bq ` logZ`,apBq ´
1
`

ÿ

0

c\ p0|Bq

´

�
c\:
W pB, 0q ´ a�

c\:
2,W pB, 0q

¯

We then subtract the entropy term to recover the KL divergence:

�KL pc\}c
˚q rBs “�KL pc\}c\: q rBs ` logZ`,apBq ´

1
`

ÿ

0

c\ p0|Bq

´

�
c\:
W pB, 0q ´ a�

c\:
2,W pB, 0q

¯

“�KL pc\}c\: q rBs ` logZ`,apBq ´
1
`

E
0„c\:

p¨|Bq

„

c\ p0|Bq

c\: p0|Bq

´

�
c\:
W pB, 0q ´ a�

c\:
2,W pB, 0q

¯

where in the last equality we applied importance sampling to rewrite the expectation w.r.t. c\: .

Finally, taking the gradient on both sides gives us:

∇\�KL pc\}c
˚q rBs “ ∇\�KL pc\}c\: q rBs ´

1
`

E
0„c\:

p¨|Bq

„

∇\c\ p0|Bq
c\: p0|Bq

´

�
c\:
W pB, 0q ´ a�

c\:
2,W pB, 0q

¯

.

�

Note that (6.22) can be estimated by sampling from the trajectories generated by policy c\:

which allows us to train our policy using stochastic gradients.

94

Corollary 6.3 provides an outline for our algorithm. At every iteration we begin with a policy

c\: , which we use to run trajectories and gather data. We use that data and (6.17) to �rst estimate

` and a . We then draw a minibatch from the data to estimate ∇\Lp\q given in Corollary 6.3. After

taking a gradient step using Equation (6.22), we draw another minibatch and repeat the process.

6.5.3 Practical Implementation

Solving the dual problem (6.17) is computationally impractical for large state/action spaces as

it requires calculating the partition function Z`,apBq which often involves evaluating a high-

dimensional integral or sum. Furthermore, ` and a depends on : and should be adapted at every

iteration.

We note that as ` Ñ 0, c˚ approaches a greedy policy; as ` increases, the policy becomes more

exploratory. We also note that ` is similar to the temperature term used in maximum entropy

reinforcement learning [Ziebart et al. 2008], which has been shown to produce reasonable results

when kept �xed during training [Schulman et al. 2017a; Haarnoja et al. 2018]. In practice, we

found that a �xed ` found through hyperparameter sweeps provides good results. However a

needs to be continuously adapted during training so as to ensure cost constraint satisfaction.

Here we appeal to an intuitive heuristic for determining a based on primal-dual gradient methods

[Bertsekas 2014]. Recall that by strong duality, the optimal `˚ and a˚ minimizes the dual function

(6.17) which we will denote by !pc˚, `, aq. We can therefore apply gradient descent w.r.t. a to

minimize !pc˚, `, aq. We can show that

Corollary 6.4. The derivative of !pc˚, `, aq w.r.t. a is

B!pc˚, `, aq

Ba
“ 1̃ ´ E

B„3c\:
0„c˚

r�
c\:
2,W pB, 0qs (6.24)

95

Proof. From Theorem 6.2, we have

!pc˚, `, aq “ `X ` a1̃ ` ` E
B„3c\:

rlogZ`,apBqs. (6.25)

The �rst two terms is an a�ne function w.r.t. a , therefore its derivative is 1̃. We will then focus on

the expectation in the last term.

The partial derivative of Z w.r.t. a is,

BZ`,apBq

Ba
“
B

Ba

ÿ

0

c\: p0|Bq exp
ˆ

1
`

´

�
c\:
W pB, 0q ´ a�

c\:
2,W pB, 0q

¯

˙

“
ÿ

0

´c\: p0|Bq
�
c\:
�
pB, 0q

`
exp

ˆ

1
`

´

�
c\:
W pB, 0q ´ a�

c\:
2,W pB, 0q

¯

˙

“
ÿ

0

´
�
c\:
�
pB, 0q

`

c\: p0|Bq

/`,apBq
exp

ˆ

1
`

´

�
c\:
W pB, 0q ´ a�

c\:
2,W pB, 0q

¯

˙

Z`,apBq

“ ´
Z`,apBq

`
E

0„c˚p¨|Bq

”

�
c\:
2,W pB, 0q

ı

.

(6.26)

Therefore,
B logZ`,apBq

Ba
“
BZ`,apBq

Ba

1
Z`,apBq

“ ´
1
`

E
0„c˚p¨|Bq

”

�
c\:
2,W pB, 0q

ı

. (6.27)

Plugging the above derivative into the expectation and combining (??) with the derivatives of the

a�ne term gives us the �nal desired result. �

The last term in the gradient expression in Equation (6.24) cannot be evaluated since we

do not have access to c˚. However since c\: and c˚ are ’close’, it is reasonable to assume that

�B„3c\:
,0„c˚r�

c\: pB, 0qs « �B„3c\:
,0„c\:

r�c\: pB, 0qs “ 0. In practice we �nd that this term can be

set to zero which gives the update term:

a Ð proj
a

“

a ´ Up1 ´ d2,Wpc\: qq
‰

(6.28)

96

where U is the step size, here we have incorporated the discount term p1´ Wq in 1̃ into the step

size. The projection operator proja projects a back into the interval r0, amaxs where amax is chosen

so that a does not become too large. However we will show in later sections that FOCOPS is

generally insensitive to the choice of amax and setting amax “ `8 does not appear to greatly reduce

performance. Practically, d2,Wpc\: q can be estimated via Monte Carlo methods using trajectories

collected from c\: . We note that the update rule in Equation (6.28) is similar in to the update rule

introduced in Chow et al. [2017]. We recall that in (6.16), a acts as a cost penalty term where

increasing a makes it less likely for state-action pairs with higher costs to be sampled by c˚. Hence

in this regard, the update rule in (6.28) is intuitive in that it increases a if d2,Wpc\: q ą 1 (i.e. the

cost constraint is violated for c\:) and decreases a otherwise. Using the update rule (6.28), we can

then perform one update step on a before updating the policy parameters \ .

Our method is a �rst-order method, so the approximations that we make is only accurate

near the initial condition (i.e. c\ “ c\:). In order to better enforce this we also add to (6.22) a

per-state acceptance indicator function �pB 9q :“ 1
�KLpc\}c\: qrB 9 sďX

. This way sampled states whose

�KL pc\}c\: q rBs is too large are rejected from the gradient update. The resulting sample gradient

update term is

∇̂\Lp\q «
1
#

#
ÿ

9“1

„

∇\�KL pc\}c\: q rB 9 s ´
1
`

∇\c\ p0 9 |B 9q
c\: p0 9 |B 9q

ˆ

�̂WpB 9 , 0 9q ´ a�̂2,WpB 9 , 0 9q

˙

�pB 9q. (6.29)

Here # is the number of samples we collected using policy c\: , �̂ and �̂� are estimates of the

advantage functions (for the return and cost) obtained from critic networks. We estimate the

advantage functions using the Generalized Advantage Estimator (GAE) [Schulman et al. 2016].

We can then apply stochastic gradient descent using Equation (6.29). During training, we use the

early stopping criteria 1
#

ř#
8“1�KL pc\}c\: q rB8s ą X which helps prevent trust region constraint

violation for the new updated policy. We update the parameters for the value net by minimizing the

Mean Square Error (MSE) of the value net output and some target value (which can be estimated

97

via Monte Carlo or bootstrap estimates of the return). We emphasize again that FOCOPS only

requires �rst order methods (gradient descent) and is thus extremely simple to implement.

Algorithm 4 presents a summary of the FOCOPS algorithm.

Algorithm 4 FOCOPS Outline

Initialize: Policy network c\0 , Value networks +q0 , +�k0
.

1: while Stopping criteria not met do
2: Generate trajectories g „ c\: .
3: Estimate �-returns and advantage functions.
4: Update a using Equation (6.28).
5: for epochs do
6: for each minibatch do
7: Update value networks by minimizing MSE of +q: , + target

q:
and +�

k:
, +�,target
k:

.
8: Update policy network using Equation (6.29)
9: if 1

#

ř#
9“1�KL pc\}c\: q rB 9 s ą X then

10: Break out of inner loop

6.6 Experiments

We designed two di�erent sets of experiments to test the e�cacy of the FOCOPS algorithm. In

the �rst set of experiments, we train di�erent robotic agents to move along a straight line or a

two dimensional plane, but the speed of the robot is constrained for safety purposes. The second

set of experiments is inspired by the Circle experiments from Achiam et al. [2017]. Both sets of

experiments are implemented using the OpenAI Gym API [Brockman et al. 2016] for the MuJoCo

physical simulator [Todorov et al. 2012].

In addition to the CPO algorithm, we are also including for comparison two algorithms based

on Lagrangian methods [Bertsekas 1997], which uses adaptive penalty coe�cients to enforce

constraints. For an objective function 5 p\q and constraint 6p\q ď 0, the Lagrangian method solves

max-min optimization problem max\ minaě0p5 p\q´a6p\qq. These methods �rst perform gradient

ascent on \ , and then gradient descent on a . Chow et al. [2019] and Ray et al. [2019] combined

98

Lagrangian method with PPO [Schulman et al. 2017b] and TRPO [Schulman et al. 2015] to form

the PPO Lagrangian and TRPO Lagrangian algorithms, which we will subsequently abbreviate as

PPO-L and TRPO-L respectively.

6.6.1 Robots with Speed Limit

We consider six MuJoCo environments where we attempt to train a robotic agent to walk. However

we impose a speed limit on our environments. The cost thresholds are calculated using 50% of the

speed attained by an unconstrained PPO agent after training for a million samples. For agents

manuvering on a two-dimensional plane, the cost is calculated as

2pB, 0q “

b

E2
G ` E

2
~

For agents moving along a straight line, the cost is calculated as

2pB, 0q “ |EG |

where EG , E~ are the velocities of the agent in the G and ~ directions respectively.

99

Figure 6.1: Learning curves for robots with speed limit tasks. The G-axis represent the number of samples
used and the ~-axis represent the average total reward/cost return of the last 100 episodes. The solid
line represent the mean of 1000 bootstrap samples over 10 random seeds. The shaded regions represent
the bootstrap normal 95% confidence interval. FOCOPS consistently enforce approximate constraint
satisfaction while having a higher performance on five out of the six tasks.

100

Figure 6.1 shows that FOCOPS outperforms other baselines in terms of reward on most tasks

while enforcing the cost constraint. In theory, FOCOPS assumes that the initial policy is feasible.

This assumption is violated in the Swimmer-v3 environment. However in practice, the gradient

update term increases the dual variable associated with the cost when the cost constraint is violated,

this would result in a feasible policy after a certain number of iterations. We observed that this

is indeed the case with the swimmer environment (and similarly the AntCircle environment in

the next section). Note also that Lagrangian methods outperform CPO on several environments

in terms of reward, this is consistent with the observation made by Ray et al. [2019] and Stooke

et al. [2020]. However on most tasks TRPO-L does not appear to consistently maintain constraint

satisfaction during training. For example on HalfCheetah-v3, even though TRPO-L outperforms

FOCOPS in terms of total return, it violates the cost constraint by nearly 9%. PPO-L is shown

to do well on simpler tasks but performance deteriorates drastically on the more challenging

environments (Ant-v3, HalfCheetah-v3, and Humanoid-v3), this is in contrast to FOCOPS which

perform particularly well on these set of tasks. In Table 6.1 we summarized the performance of all

four algorithms.

6.6.2 Circle Tasks

For these tasks, we use the same exact geometric setting, reward, and cost constraint function as

Achiam et al. [2017].The goal of the agents is to move along the circumference of a circle while

remaining within a safe region smaller than the radius of the circle. The exact geometry of the

task is shown in Figure 6.2. The reward and cost functions are de�ned as:

ApBq “
´~EG ` GE~

1` |
a

G2 ` ~2 ´ A |

2pBq “ 1p|G | ą Glimq.

101

Table 6.1: Bootstrap mean and normal 95% confidence interval with 1000 bootstrap samples over 10
random seeds of reward/cost return a�er training on robot with speed limit environments. Cost thresholds
are in brackets under the environment names.

Environment PPO-L TRPO-L CPO FOCOPS

Ant-v3 Reward 1291.4˘ 216.4 1585.7˘ 77.5 1406.0˘ 46.6 1830.0˘ 22.6
(103.12) Cost 98.78˘ 1.77 107.82˘ 1.16 100.25˘ 0.67 102.75˘ 1.08

HalfCheetah-v3 Reward 1141.3˘ 192.4 1621.59˘ 39.4 1470.8˘ 40.0 1612.2˘ 25.9
(151.99) Cost 151.53˘ 1.88 164.93˘ 2.43 150.05˘ 1.40 152.36˘ 1.55

Hopper-v3 Reward 1433.8˘ 313.3 750.3˘ 355.3 1167.1˘ 257.6 1953.4˘ 127.3
(82.75) Cost 81.29˘ 2.34 87.57˘ 3.48 80.39˘ 1.39 81.84˘ 0.92

Humanoid-v3 Reward 471.3˘ 49.0 4062.4˘ 113.3 3952.7˘ 174.4 4529.7˘ 86.2
(20.14) Cost 18.89˘ 0.77 19.23˘ 0.76 15.83˘ 0.41 18.63˘ 0.37

Swimmer-v3 Reward 29.73˘ 3.13 21.15˘ 9.56 20.31˘ 6.01 31.94˘ 2.60
(24.52) Cost 24.72˘ 0.85 28.57˘ 2.68 23.88˘ 0.64 25.29˘ 1.49

Walker2d-v3 Reward 2074.4˘ 155.7 1153.1˘ 473.3 1040.0˘ 303.3 2485.9˘ 158.3
(81.89) Cost 81.7˘ 1.14 80.79˘ 2.13 78.12˘ 1.78 81.27˘ 1.33

where G,~ are the positions of the agent on the plane, EG , E~ are the velocities of the agent along

the G and ~ directions, A is the radius of the circle, and Glim speci�es the range of the safety region.

The radius is set to A “ 10 for both Ant and Humanoid while Glim is set to 3 and 2.5 for Ant and

Humanoid respectively.

Similar to the previous tasks, we provide learning curves (Figure 6.3) and numerical summaries

(Table 6.2) of the experiments. We also plotted an unconstrained PPO agent for comparison. On

these tasks, all four approaches are able to approximately enforce cost constraint satisfaction (set

at 50), but FOCOPS does so while having a higher performance. Note for both tasks, the 95%

con�dence interval for FOCOPS lies above the con�dence intervals for all other algorithms, this is

strong indication that FOCOPS outperforms the other three algorithms on these particular tasks.

102

Figure 6.2: In the Circle task, reward is maximized by moving along the green circle. The agent is not
allowed to enter the blue regions, so its optimal constrained path follows the line segments �� and ��
(figure and caption taken from [Achiam et al. 2017]).

Table 6.2: Bootstrap mean and normal 95% confidence interval with 1000 bootstrap samples over 10
random seeds of reward/cost return a�er training on circle environments for 10 million samples. Cost
thresholds are in brackets under the environment names.

Environment PPO-L TRPO-L CPO FOCOPS

Ant-Circle Reward 637.4˘ 88.2 416.7˘ 42.1 390.9˘ 43.9 965.9˘ 46.2
(50.0) Cost 50.4˘ 4.4 50.4˘ 3.9 50.0˘ 3.5 49.9˘ 2.2

Humanoid-Circle Reward 1024.5˘ 23.4 697.5˘ 14.0 671.0˘ 12.5 1106.1˘ 32.2
(50.0) Cost 50.3˘ 0.59 49.6˘ 0.96 47.9˘ 1.5 49.9˘ 0.8

6.6.3 FOCOPS for Different Cost Thresholds

In this section, we verify that FOCOPS works e�ectively for di�erent threshold levels. We

experiment on the robots with speed limits environments. For each environment, we calculated

the cost required for an unconstrained PPO agent after training for 1 million samples. We then used

25%, 50%, and 75% of this cost as our cost thresholds and trained FOCOPS on each of thresholds

respectively. The learning curves are reported in Figure 6.4. We note from these plots that FOCOPS

can e�ectively learn constraint-satisfying policies for di�erent cost thresholds.

103

Figure 6.3: Comparing reward and cost returns on circle Tasks. The G-axis represent the number of samples
used and the ~-axis represent the average total reward/cost return of the last 100 episodes. The solid line
represent the mean of 1000 bootstrap samples over 10 random seeds. The shaded regions represent the
bootstrap normal 95% confidence interval. An unconstrained PPO agent is also plo�ed for comparison.

6.6.4 Generalization Analysis

We used trained agents using all four algorithms (PPO Lagrangian, TRPO Lagrangian, CPO, and

FOCOPS) on robots with speed limit tasks shown in Figure 6.1. For each algorithm, we picked the

seed with the highest maximum return of the last 100 episodes which does not violate the cost

constraint at the end of training. The reasoning here is that for a fair comparison, we wish to pick

the best performing seed for each algorithm. We then ran 10 episodes using the trained agents

on 10 unseen random seeds (identical seeds are used for all four algorithms) to test how well the

algorithms generalize over unseen data. The �nal results of running the trained agents on the

speed limit and circle tasks are reported in Tables 6.3. We note that on unseen seeds FOCOPS

outperforms the other three algorithms on �ve out of six tasks.

104

Table 6.3: Average return of 10 episodes for trained agents on the robots with speed limit tasks on 10
unseen random seeds. Results shown are the bootstrap mean and normal 95% confidence interval with
1000 bootstrap samples.

Environment PPO-L TRPO-L CPO FOCOPS

Ant-v3 Reward 920.4˘ 75.9 1721.4˘ 191.2 1335.57˘ 43.17 1934.9˘ 99.5
(103.12) Cost 68.25˘ 11.05 99.20˘ 2.55 80.72˘ 3.82 105.21˘ 5.91

HalfCheetah-v3 Reward 1698.0˘ 22.5 1922.4˘ 12.9 1805.5˘ 60.0 2184.3˘ 32.6
(151.99) Cost 150.21˘ 4.47 179.82˘ 1.73 164.67˘ 9.43 158.39˘ 6.56

Hopper-v3 Reward 2084.9˘ 39.69 2108.8˘ 24.8 2749.9˘ 47.0 2446.2˘ 9.0
(82.75) Cost 83.43˘ 0.41 82.17˘ 1.53 52.34˘ 1.95 81.26˘ 0.88

Humanoid-v3 Reward 582.2˘ 28.9 3819.3˘ 489.2 1814.8˘ 221.0 4867.3˘ 350.8
(20.14) Cost 18.93˘ 0.93 18.60˘ 1.27 20.30˘ 1.81 21.58˘ 0.74

Swimmer-v3 Reward 37.90˘ 1.05 33.48˘ 0.44 33.45˘ 2.30 39.37˘ 2.04
(24.52) Cost 25.49˘ 0.57 32.81˘ 2.61 22.61˘ 0.33 17.23˘ 1.64

Walker2d-v3 Reward 1668.7˘ 337.1 2638.9˘ 163.3 2141.7˘ 331.9 3148.6˘ 60.5
(81.89) Cost 79.23˘ 1.24 90.96˘ 0.97 40.67˘ 6.86 73.35˘ 2.67

6.6.5 Sensitivity Analysis

We tested FOCOPS across ten di�erent values of _, and �ve di�erence values of amax while keeping

all other parameters �xed by running FOCOPS for 1 millon samples on each of the robots with

speed limit experiment. For ease of comparison, we normalized the values by the return and cost

of an unconstrained PPO agent trained for 1 million samples (i.e. if FOCOPS achieves a return of G

and an unconstrained PPO agent achieves a result of ~, the normalized result reported is G{~) The

results on the robots with speed limit tasks are reported in Tables 6.4 and 6.5. We note that the

more challenging environments such as Humanoid are more sensitive to parameter choices but

overall FOCOPS is largely insensitive to hyperparameter choices (especially the choice of amax).

We also presented the performance of PPO-L and TRPO-L for di�erent values of amax.

105

Table 6.4: Performance of FOCOPS for Di�erent _

Ant-v3 HalfCheetah-v3 Hopper-v3 Humanoid-v3 Swimmer-v3 Walker2d-v3 All Environments

_ Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost

0.1 0.66 0.55 0.38 0.46 0.77 0.50 0.63 0.52 0.34 0.51 0.43 0.48 0.53 0.50
0.5 0.77 0.54 0.38 0.45 0.97 0.50 0.71 0.54 0.36 0.50 0.66 0.50 0.64 0.50
1.0 0.83 0.55 0.47 0.47 1.04 0.50 0.80 0.52 0.34 0.49 0.76 0.49 0.70 0.50
1.3 0.83 0.55 0.42 0.47 1.00 0.50 0.85 0.53 0.36 0.51 0.87 0.49 0.72 0.51
1.5 0.83 0.55 0.42 0.47 1.01 0.50 0.87 0.52 0.37 0.51 0.87 0.50 0.73 0.51
2.0 0.83 0.55 0.42 0.47 1.06 0.50 0.89 0.52 0.37 0.52 0.82 0.45 0.73 0.51
2.5 0.79 0.54 0.43 0.47 1.03 0.50 0.94 0.53 0.35 0.50 0.73 0.49 0.71 0.51
3.0 0.76 0.54 0.42 0.47 1.01 0.49 0.92 0.52 0.41 0.50 0.77 0.49 0.72 0.50
4.0 0.70 0.54 0.40 0.46 1.00 0.49 0.87 0.53 0.43 0.49 0.64 0.49 0.67 0.50
5.0 0.64 0.55 0.40 0.47 1.01 0.50 0.81 0.54 0.38 0.49 0.57 0.50 0.63 0.51

Table 6.5: Performance of FOCOPS for Di�erent amax

Ant-v3 HalfCheetah-v3 Hopper-v3 Humanoid-v3 Swimmer-v3 Walker2d-v3 All Environments

amax Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost Reward Cost

1 0.83 0.55 0.45 0.61 1.00 0.51 0.87 0.52 0.40 0.62 0.88 0.50 0.74 0.55
2 0.83 0.55 0.42 0.47 1.01 0.50 0.87 0.52 0.35 0.51 0.87 0.50 0.73 0.51
3 0.81 0.54 0.41 0.47 1.01 0.49 0.83 0.53 0.34 0.49 0.87 0.50 0.71 0.50
5 0.82 0.55 0.41 0.47 1.01 0.50 0.83 0.53 0.31 0.49 0.87 0.50 0.71 0.51
10 0.82 0.55 0.41 0.47 1.01 0.50 0.83 0.53 0.34 0.47 0.87 0.50 0.71 0.50
`8 0.82 0.55 0.41 0.47 1.01 0.50 0.83 0.53 0.35 0.47 0.88 0.50 0.72 0.50

6.6.6 Implementation Details

All experiments were implemented in Pytorch 1.3.1 and Python 3.7.4 on Intel Xeon Gold 6230

processors. We used our own Pytorch implementation of CPO based on https://github.com/

jachiam/cpo. For PPO, PPO Lagrangian, TRPO Lagrangian, we used an optimized PPO and

TRPO implementation based on https://github.com/Khrylx/PyTorch-RL, https://github.

com/ikostrikov/pytorch-a2c-ppo-acktr-gail, and

https://github.com/ikostrikov/pytorch-trpo.

We used a two-layer feedforward neural network with a tanh activation for both our policy

and value networks. We assume the policy is Gaussian with independent action dimensions.

The policy networks outputs a mean vector and a vector containing the state-independent log

standard deviations. States are normalized by the running mean the running standard deviation

106

https://github.com/jachiam/cpo
https://github.com/jachiam/cpo
https://github.com/Khrylx/PyTorch-RL
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-trpo

before being fed to any network. The advantage values are normalized by the batch mean and

batch standard deviation before being used for policy updates. Except for the learning rate for a

which is kept �xed, all other learning rates are linearly annealed to 0 over the course of training.

Our hyperparameter choices are based on the default choices in the implementations cited at the

beginning of the section. For FOCOPS, PPO Lagrangian, and TRPO Lagrangian, we tuned the

value of amax across t1, 2, 3, 5, 10,`8u and used the best value for each algorithm. However we

found all three algorithms are not especially sensitive to the choice of amax. Table 6.6 summarizes

the hyperparameters used in our experiments.

6.7 Related Work

In the tabular case, CMDPs have been extensively studied for di�erent constraint criteria [Kallen-

berg 1983; Beutler and Ross 1985, 1986; Ross 1989; Ross and Varadarajan 1989, 1991; Altman

1999].

In high-dimensional settings, Chow et al. [2017] proposed a primal-dual method which is

shown to converge to policies satisfying cost constraints. Tessler et al. [2019] introduced a penal-

ized reward formulation and used a multi-timescaled approach for training an actor-critic style

algorithm which guarantees convergence to a �xed point. However multi-timescaled approaches

impose stringent requirements on the learning rates which can be di�cult to tune in practice.

We note that neither of these methods are able to guarantee cost constraint satisfaction during

training.

Several recent work leveraged advances in control theory to solve the CMDP problem. Chow

et al. [2018, 2019] presented a method for constructing Lyapunov function which guarantees

constraint-satisfaction during training. Stooke et al. [2020] combined PID control with Lagrangian

methods which dampens cost oscillations resulting in reduced constraint violations.

Recently Yang et al. [2020] independently proposed the Projection-Based Constrained Policy

107

Optimization (PCPO) algorithm which utilized a di�erent two-step approach. PCPO �rst �nds the

policy with the maximum return by doing one TRPO [Schulman et al. 2015] update. It then projects

this policy back into the feasible cost constraint set in terms of the minimum KL divergence. While

PCPO also satis�es theoretical guarantees for cost constraint satisfaction, it uses second-order

approximations in both steps. FOCOPS is �rst-order which results in a much simpler algorithm in

practice. Furthermore, empirical results from PCPO does not consistently outperform CPO.

The idea of �rst solving within the nonparametric space and then projecting back into the

parameter space has a long history in machine learning and has recently been adopted by the RL

community. Abdolmaleki et al. [2018] took the “inference view” of policy search and attempts to

�nd the desired policy via the EM algorithm, whereas FOCOPS is motivated by the “optimization

view” by directly solving the cost-constrained trust region problem using a primal-dual approach

then projecting the solution back into the parametric policy space. Peters et al. [2010] and

Montgomery and Levine [2016] similarly took an optimization view but are motivated by di�erent

optimization problems. However to the best of our knowledge, FOCOPS is the �rst algorithm to

apply these ideas to cost-constrained RL.

6.8 Conclusion

In this chapter, we extended the theoretical guarantees for CPO from Achiam et al. [2017] to the

average cost case. We then introduced FOCOPS—a simple �rst-order approach for training RL

agents with safety constraints. FOCOPS is theoretically motivated and is shown to empirically

outperform more complex second-order methods. FOCOPS is also easy to implement. We believe

in the value of simplicity as it makes RL more accessible to researchers in other �elds who wish to

apply such methods in their own work. Our results indicate that constrained RL is an e�ective

approach for addressing RL safety and can be e�ciently solved using our two step approach.

108

Figure 6.4: Performance of FOCOPS on robots with speed limit tasks with di�erent cost thresholds. The
G-axis represent the number of samples used and the ~-axis represent the average total reward/cost return
of the last 100 episodes. The solid line represent the mean of 1000 bootstrap samples over 10 random seeds.
The horizontal lines in the cost plots represent the cost thresholds corresponding to 25%, 50%, and 75% of
the cost required by an unconstrained PPO agent trained with 1 million samples. Each solid line represents
FOCOPS trained with the corresponding thresholds. The shaded regions represent the bootstrap normal
95% confidence interval.

109

Table 6.6: Hyperparameters for robots with speed limit experiments

Hyperparameter PPO PPO-L TRPO-L CPO FOCOPS

No. of hidden layers 2 2 2 2 2
No. of hidden nodes 64 64 64 64 64
Activation tanh tanh tanh tanh tanh
Initial log std -0.5 -0.5 -1 -0.5 -0.5
Discount for reward W 0.99 0.99 0.99 0.99 0.99
Discount for cost W� 0.99 0.99 0.99 0.99 0.99
Batch size 2048 2048 2048 2048 2048
Minibatch size 64 64 N/A N/A 64
No. of optimization epochs 10 10 N/A N/A 10
Maximum episode length 1000 1000 1000 1000 1000
GAE parameter (reward) 0.95 0.95 0.95 0.95 0.95
GAE parameter (cost) N/A 0.95 0.95 0.95 0.95
Learning rate for policy 3ˆ 10´4 3ˆ 10´4 N/A N/A 3ˆ 10´4

Learning rate for reward value net 3ˆ 10´4 3ˆ 10´4 3ˆ 10´4 3ˆ 10´4 3ˆ 10´4

Learning rate for cost value net N/A 3ˆ 10´4 3ˆ 10´4 3ˆ 10´4 3ˆ 10´4

Learning rate for a N/A 0.01 0.01 N/A 0.01
!2-regularization coe�. for value net 3ˆ 10´3 3ˆ 10´3 3ˆ 10´3 3ˆ 10´3 3ˆ 10´3

Clipping coe�cient 0.2 0.2 N/A N/A N/A
Damping coe�. N/A N/A 0.01 0.01 N/A
Backtracking coe�. N/A N/A 0.8 0.8 N/A
Max backtracking iterations N/A N/A 10 10 N/A
Max conjugate gradient iterations N/A N/A 10 10 N/A
Iterations for training value net2 1 1 80 80 1
Temperature _ N/A N/A N/A N/A 1.5
Trust region bound X N/A N/A 0.01 0.01 0.02
Initial a , amax N/A 0, 1 0, 2 N/A 0, 2

110

7 | Conclusion and Future Directions

This thesis explored several algorithmic and theoretical issues around on-policy deep reinforcement

learning. Sample e�ciency is of central concern to our work and we explored this issue through

the perspective of local policy search, average reward RL, and constrained RL.

In Chapters 3 and 4, we focused on the problem of average reward deep reinforcement learning.

We introduced a new policy improvement bound for the average reward setting and demonstrated

that an algorithm based on this bound can signi�cantly outperform its discounted counterparts.

Our work successfully addressed the mismatch between training and evaluation objectives which

is common in modern DRL problems.

In Chapter 5 we revisited the original local policy search [Kakade and Langford 2002; Peters

and Schaal 2008b] problem. We developed a unifying framework for policy updates involving a

two-step process. Our approach is both easy to implement and could �exibly accommodate for a

wide range of proximity measures.

Finally in Chapter 6, we considered the problem of RL problems with safety constraints. We

examined both discounted and non-discounted cost constraints where we were able to extend the

worst-case constraint violation guarantee from Achiam et al. [2017] to the non-discounted case.

We then developed a simple �rst-order algorithm which balances both performance and safety.

One extension to our current work is to the o�-policy setting. We recall that for on-policy

algorithms, data is discarded after each update. Therefore an obvious approach to improve sample

e�ciency would be to attempt to re-use data generated by all or several previous policies. However,

111

due to the use of data points coming from several di�erent distributions during the update phase,

o�-policy methods can be very unstable when combined with deep neural network function

approximators [Sutton and Barto 2018].

For the average reward setting, We recall from Chapter 4 that critic estimation in the average

reward value functions require knowledge of the gain term d . Estimating d in the on-policy

setting is trivial and can be accomplished by a simple Monte Carlo estimate with trajectories

collected using the current policy. However, this task becomes much more challenging in the

o�-policy case where data points come from di�erent distributions. Recently Wan et al. [2020]

introduced a convergent Q-learning-like algorithm for learning the optimal state-action bias

function in the tabular setting which updates d in a temporal-di�erencing manner, and Zhang

et al. [2021] proposed an algorithm for average reward o�-policy evaluation with linear function

approximators. However an e�ective o�-policy DRL algorithm targeted at the average reward

remains an open question.

Another potential research question is how to e�ectively use o�-policy data for constrained

RL problems. While in theory Lagrangian methods and the Lyapunov framework does allow

extensions to the o�-policy setting, constraint satisfaction is extremely challenging due to covariate

shifts introduced by o�-policy data [Chow et al. 2019]. Cost evaluation is an essential part of

solving a constrained RL problem since an agent’s decision process requires evaluating whether a

policy satis�es the cost constraints. In the on-policy case, this can be done using either a simple

Monte Carlo estimate or the surrogate function introduced in Chapter 6. However in the o�-policy

case, this requires evaluating a policy using data collected from other policies. The problem of

O�-policy Policy Evaluation (OPE) [Voloshin et al. 2019] is itself a challenging problem where

more research is needed.

112

Bibliography

Abbasi-Yadkori, Y., Bartlett, P., Bhatia, K., Lazic, N., Szepesvari, C., and Weisz, G. (2019). Politex:

Regret bounds for policy iteration using expert prediction. In International Conference on

Machine Learning, pages 3692–3702.

Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R., Heess, N., and Riedmiller, M. (2018).

Maximum a posteriori policy optimisation. International Conference on Learning Representation

(ICLR).

Abounadi, J., Bertsekas, D., and Borkar, V. S. (2001). Learning algorithms for markov decision

processes with average cost. SIAM Journal on Control and Optimization, 40(3):681–698.

Achiam, J. (2017). UC Berkeley CS 285 (Fall 2017), Advanced Policy Gradients. URL: http://

rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_13_advanced_pg.pdf.

Last visited on 2020/05/24.

Achiam, J., Held, D., Tamar, A., and Abbeel, P. (2017). Constrained policy optimization. In

Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 22–31.

JMLR. org.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G. (2019). On the theory of policy gradient

methods: Optimality, approximation, and distribution shift. arXiv preprint arXiv:1908.00261.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G. (2020). Optimality and approximation with

113

http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_13_advanced_pg.pdf
http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_13_advanced_pg.pdf

policy gradient methods in markov decision processes. In Conference on Learning Theory, pages

64–66. PMLR.

Altman, E. (1999). Constrained Markov decision processes, volume 7. CRC Press.

Amari, S.-I. (1998). Natural gradient works e�ciently in learning. Neural computation, 10(2):251–

276.

Amit, R., Meir, R., and Ciosek, K. (2020). Discount factor as a regularizer in reinforcement learning.

In International conference on machine learning.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., and Mané, D. (2016). Concrete

problems in ai safety. arXiv preprint arXiv:1606.06565.

Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M., Girgin, S., Marinier, R., Hussenot, L.,

Geist, M., Pietquin, O., Michalski, M., et al. (2020). What matters in on-policy reinforcement

learning? a large-scale empirical study. arXiv preprint arXiv:2006.05990.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017). Deep reinforcement

learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38.

Baxter, J. and Bartlett, P. L. (2001). In�nite-horizon policy-gradient estimation. Journal of Arti�cial

Intelligence Research, 15:319–350.

Bellman, R. (1957). Dynamic Programming. Princeton University Press.

Bertsekas, D. P. (1997). Nonlinear programming. Journal of the Operational Research Society,

48(3):334–334.

Bertsekas, D. P. (2014). Constrained optimization and Lagrange multiplier methods. Academic press.

Bertsekas, D. P., Bertsekas, D. P., Bertsekas, D. P., and Bertsekas, D. P. (1995). Dynamic programming

and optimal control, volume 1,2. Athena scienti�c Belmont, MA.

114

Beutler, F. J. and Ross, K. W. (1985). Optimal policies for controlled markov chains with a constraint.

Journal of mathematical analysis and applications, 112(1):236–252.

Beutler, F. J. and Ross, K. W. (1986). Time-average optimal constrained semi-markov decision

processes. Advances in Applied Probability, 18(2):341–359.

Blackwell, D. (1962). Discrete dynamic programming. The Annals of Mathematical Statistics, pages

719–726.

Blei, D. M., Kucukelbir, A., and McAuli�e, J. D. (2017). Variational inference: A review for

statisticians. Journal of the American statistical Association, 112(518):859–877.

Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004). Convex optimization. Cambridge university

press.

Brémaud, P. (2020). Markov Chains Gibbs Fields, Monte Carlo Simulation and Queues. Springer, 2

edition.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.

(2016). Openai gym.

Chen, X., Wang, C., Zhou, Z., and Ross, K. (2021). Randomized ensembled double q-learning:

Learning fast without a model. In International Conference on Learning Representations (ICLR).

Cho, G. E. and Meyer, C. D. (2001). Comparison of perturbation bounds for the stationary

distribution of a markov chain. Linear Algebra and its Applications, 335(1-3):137–150.

Chow, Y., Ghavamzadeh, M., Janson, L., and Pavone, M. (2017). Risk-constrained reinforcement

learning with percentile risk criteria. The Journal of Machine Learning Research, 18(1):6070–6120.

Chow, Y., Nachum, O., Duenez-Guzman, E., and Ghavamzadeh, M. (2018). A lyapunov-based

approach to safe reinforcement learning. In Advances in neural information processing systems,

pages 8092–8101.

115

Chow, Y., Nachum, O., Faust, A., Ghavamzadeh, M., and Duenez-Guzman, E. (2019). Lyapunov-

based safe policy optimization for continuous control. arXiv preprint arXiv:1901.10031.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., and Amodei, D. (2017). Deep reinforcement

learning from human preferences. In Advances in Neural Information Processing Systems, pages

4299–4307.

Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru, C., and Tassa, Y. (2018). Safe exploration

in continuous action spaces. arXiv preprint arXiv:1801.08757.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S.,

Wu, Y., and Zhokhov, P. (2017). Openai baselines. https://github.com/openai/baselines.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I., and Abbeel, P. (2017). RlΘ2: Fast

reinforcement learning via slow reinforcement learning. In International Conference on Learning

Representations (ICLR).

Even-Dar, E., Kakade, S. M., and Mansour, Y. (2009). Online markov decision processes. Mathematics

of Operations Research, 34(3):726–736.

Frobenius, G. (1912). über matrizen aus nicht negativen elementen. Sitzungsberichte der Königlich

Preussischen Akademie der Wissenschaften, pages 456–477.

Furmston, T., Lever, G., and Barber, D. (2016). Approximate newton methods for policy search in

markov decision processes. Journal of Machine Learning Research, 17.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Gottesman, O., Johansson, F., Komorowski, M., Faisal, A., Sontag, D., Doshi-Velez, F., and Celi,

L. A. (2019). Guidelines for reinforcement learning in healthcare. Nature medicine, 25(1):16–18.

Grinstead, C. M. and Snell, J. L. (2012). Introduction to probability. American Mathematical Soc.

116

https://github.com/openai/baselines

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: O�-policy maximum

entropy deep reinforcement learning with a stochastic actor. International Conference onMachine

Learning (ICML).

Horn, R. A. and Johnson, C. R. (2012). Matrix analysis. Cambridge university press.

Howard, R. A. (1960). Dynamic programming and markov processes. John Wiley.

Hunter, J. J. (2005). Stationary distributions and mean �rst passage times of perturbed markov

chains. Linear Algebra and its Applications, 410:217–243.

Janner, M., Fu, J., Zhang, M., and Levine, S. (2019). When to trust your model: Model-based policy

optimization. In Advances in Neural Information Processing Systems.

Jiang, N., Kulesza, A., Singh, S., and Lewis, R. (2015). The dependence of e�ective planning horizon

on model accuracy. In Proceedings of the 2015 International Conference on Autonomous Agents

and Multiagent Systems, pages 1181–1189. Citeseer.

Jiang, N., Singh, S. P., and Tewari, A. (2016). On structural properties of mdps that bound loss due

to shallow planning. In IJCAI, pages 1640–1647.

Kakade, S. (2001a). Optimizing average reward using discounted rewards. In International

Conference on Computational Learning Theory, pages 605–615. Springer.

Kakade, S. and Langford, J. (2002). Approximately optimal approximate reinforcement learning.

In International Conference on Machine Learning, volume 2, pages 267–274.

Kakade, S. M. (2001b). A natural policy gradient. Advances in neural information processing systems,

14.

Kakade, S. M. (2003). On the sample complexity of reinforcement learning. PhD thesis, University

College London.

117

Kallenberg, L. (1983). Linear Programming and Finite Markovian Control Problems. Centrum Voor

Wiskunde en Informatica.

Kemeny, J. and Snell, I. (1960). Finite Markov Chains. Van Nostrand, New Jersey.

Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J.-M., Lam, V.-D., Bewley, A., and Shah,

A. (2019). Learning to drive in a day. In International Conference on Robotics and Automation

(ICRA), pages 8248–8254. IEEE.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In International

Conference for Learning Representations (ICLR).

Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C., and Faisal, A. A. (2018). The arti�cial

intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nature

medicine, 24(11):1716–1720.

Kraft, D. et al. (1988). A software package for sequential quadratic programming.

Lehmann, E. L. and Casella, G. (2006). Theory of point estimation. Springer Science & Business

Media.

Lehnert, L., Laroche, R., and van Seijen, H. (2018). On value function representation of long

horizon problems. In Proceedings of the AAAI Conference on Arti�cial Intelligence, volume 32.

Levin, D. A. and Peres, Y. (2017). Markov chains and mixing times, volume 107. American

Mathematical Soc.

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). O�ine reinforcement learning: Tutorial, review,

and perspectives on open problems. arXiv preprint arXiv:2005.01643.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2016).

Continuous control with deep reinforcement learning. International Conference on Learning

Representations (ICLR).

118

Luketina, J., Nardelli, N., Farquhar, G., Foerster, J., Andreas, J., Grefenstette, E., Whiteson, S., and

Rocktäschel, T. (2019). A survey of reinforcement learning informed by natural language. arXiv

preprint arXiv:1906.03926.

Mahadevan, S. (1996). Average reward reinforcement learning: Foundations, algorithms, and

empirical results. Machine learning, 22(1-3):159–195.

Mania, H., Guy, A., and Recht, B. (2018). Simple random search provides a competitive approach

to reinforcement learning. arXiv preprint arXiv:1803.07055.

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J. W., Songhori, E., Wang, S., Lee, Y.-J., Johnson, E.,

Pathak, O., Nazi, A., et al. (2021). A graph placement methodology for fast chip design. Nature,

594(7862):207–212.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M.

(2013). Playing atari with deep reinforcement learning. NIPS Deep Learning Workshop.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller,

M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement

learning. nature, 518(7540):529–533.

Montgomery, W. H. and Levine, S. (2016). Guided policy search via approximate mirror descent.

Advances in Neural Information Processing Systems, 29:4008–4016.

Naik, A., Shari�, R., Yasui, N., and Sutton, R. S. (2019). Discounted reinforcement learning is not an

optimization problem. NeurIPS Optimization Foundations for Reinforcement Learning Workshop.

Neu, G., Antos, A., György, A., and Szepesvári, C. (2010). Online markov decision processes under

bandit feedback. In Advances in Neural Information Processing Systems, pages 1804–1812.

Norvig, P. and Russell, S. (2002). A modern approach. Prentice Hall Upper Saddle River, NJ, USA:.

119

Nota, C. and Thomas, P. S. (2020). Is the policy gradient a gradient? In International Conference on

Autonomous Agents and Multiagent Systems (AAMAS).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,

N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,

S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style, high-

performance deep learning library. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,

F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems 32, pages

8024–8035. Curran Associates, Inc.

Perron, O. (1907). Zur theorie der matrices. Mathematische Annalen, 64(2):248–263.

Peters, J., Mulling, K., and Altun, Y. (2010). Relative entropy policy search. In Twenty-Fourth AAAI

Conference on Arti�cial Intelligence.

Peters, J. and Schaal, S. (2008a). Natural actor-critic. Neurocomputing, 71(7-9):1180–1190.

Peters, J. and Schaal, S. (2008b). Reinforcement learning of motor skills with policy gradients.

Neural networks, 21(4):682–697.

Petrik, M. and Scherrer, B. (2008). Biasing approximate dynamic programming with a lower

discount factor. In Twenty-Second Annual Conference on Neural Information Processing Systems-

NIPS 2008.

Pirotta, M., Restelli, M., Pecorino, A., and Calandriello, D. (2013). Safe policy iteration. In

International Conference on Machine Learning, pages 307–315.

Prasad, N., Cheng, L.-F., Chivers, C., Draugelis, M., and Engelhardt, B. E. (2017). A reinforcement

learning approach to weaning of mechanical ventilation in intensive care units. In Conference

on Uncertainty in Arti�cial Intelligence (UAI).

120

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming. John

Wiley & Sons.

Ray, A., Achiam, J., and Amodei, D. (2019). Benchmarking Safe Exploration in Deep Reinforcement

Learning. arXiv preprint arXiv:1910.01708.

Ross, K. W. (1985). Constrained markov decision processes with queueing applications. Dissertation

Abstracts International Part B: Science and Engineering[DISS. ABST. INT. PT. B- SCI. & ENG.],,

46(4).

Ross, K. W. (1989). Randomized and past-dependent policies for markov decision processes with

multiple constraints. Operations Research, 37(3):474–477.

Ross, K. W. and Varadarajan, R. (1989). Markov decision processes with sample path constraints:

the communicating case. Operations Research, 37(5):780–790.

Ross, K. W. and Varadarajan, R. (1991). Multichain markov decision processes with a sample path

constraint: A decomposition approach. Mathematics of Operations Research, 16(1):195–207.

Rummery, G. A. and Niranjan, M. (1994). On-line Q-learning using connectionist systems, volume 37.

Citeseer.

Scheel, O., Bergamini, L., Wołczyk, M., Osiński, B., and Ondruska, P. (2021). Urban driver: Learning

to drive from real-world demonstrations using policy gradients. In International Conference on

Robotics and Automation (ICRA). IEEE.

Schulman, J., Chen, X., and Abbeel, P. (2017a). Equivalence between policy gradients and soft

q-learning. arXiv preprint arXiv:1704.06440.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy optimiza-

tion. In International Conference on Machine Learning, pages 1889–1897.

121

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2016). High-dimensional contin-

uous control using generalized advantage estimation. International Conference on Learning

Representations (ICLR).

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017b). Proximal policy

optimization algorithms. arXiv preprint arXiv:1707.06347.

Schwartz, A. (1993). A reinforcement learning method for maximizing undiscounted rewards. In

Proceedings of the tenth international conference on machine learning, volume 298, pages 298–305.

Seneta, E. (2006). Non-negative matrices and Markov chains. Springer Science & Business Media.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J.,

Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of go with

deep neural networks and tree search. nature, 529(7587):484.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L.,

Kumaran, D., Graepel, T., et al. (2018). A general reinforcement learning algorithm that masters

chess, shogi, and go through self-play. Science, 362(6419):1140–1144.

Song, H. F., Abdolmaleki, A., Springenberg, J. T., Clark, A., Soyer, H., Rae, J. W., Noury, S., Ahuja, A.,

Liu, S., Tirumala, D., et al. (2020). V-mpo: on-policy maximum a posteriori policy optimization

for discrete and continuous control. International Conference on Learning Representations.

Stooke, A., Achiam, J., and Abbeel, P. (2020). Responsive safety in reinforcement learning by pid

lagrangian methods. In International Conference on Machine Learning.

Strang, G. (2007). Computational science and engineering. Wellesley-Cambridge Press.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

122

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (1999). Policy gradient methods

for reinforcement learning with function approximation. In Advances in neural information

processing systems, pages 1057–1063.

Tadepalli, P. and Ok, D. (1994). H-learning: A reinforcement learning method to optimize undis-

counted average reward. Technical Report 94-30-01, Oregon State University.

Tangkaratt, V., Abdolmaleki, A., and Sugiyama, M. (2018). Guide actor-critic for continuous control.

In International Conference on Learning Representations (ICLR).

Tessler, C., Mankowitz, D. J., and Mannor, S. (2019). Reward constrained policy optimization.

International Conference on Learning Representation (ICLR).

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based control. In

2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE.

Tomar, M., Shani, L., Efroni, Y., and Ghavamzadeh, M. (2020). Mirror descent policy optimization.

arXiv preprint arXiv:2005.09814.

Tsybakov, A. B. (2008). Introduction to nonparametric estimation. Springer Science & Business

Media.

Veinott, A. F. (1966). On �nding optimal policies in discrete dynamic programming with no

discounting. The Annals of Mathematical Statistics, 37(5):1284–1294.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H., Powell,

R., Ewalds, T., Georgiev, P., et al. (2019). Grandmaster level in starcraft ii using multi-agent

reinforcement learning. Nature, 575(7782):350–354.

Voloshin, C., Le, H. M., Jiang, N., and Yue, Y. (2019). Empirical study of o�-policy policy evaluation

for reinforcement learning. arXiv preprint arXiv:1911.06854.

123

Vuong, Q., Zhang, Y., and Ross, K. W. (2019). Supervised policy update for deep reinforcement

learning. In International Conference on Learning Representation (ICLR).

Wan, Y., Naik, A., and Sutton, R. S. (2020). Learning and planning in average-reward markov

decision processes. arXiv preprint arXiv:2006.16318.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., Blundell, C., Kumaran,

D., and Botvinick, M. (2016). Learning to reinforcement learn. arXiv preprint arXiv:1611.05763.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., and de Freitas, N. (2017).

Sample e�cient actor-critic with experience replay. In International Conference on Learning

Representations (ICLR).

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, King’s College, Cambridge

University.

Wei, C.-Y., Jafarnia-Jahromi, M., Luo, H., Sharma, H., and Jain, R. (2020). Model-free reinforce-

ment learning in in�nite-horizon average-reward markov decision processes. In International

conference on machine learning.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning. Machine learning, 8(3-4):229–256.

Wu, Y., Mansimov, E., Grosse, R. B., Liao, S., and Ba, J. (2017). Scalable trust-region method for

deep reinforcement learning using kronecker-factored approximation. In Advances in neural

information processing systems (NIPS), pages 5285–5294.

Yang, S., Gao, Y., An, B., Wang, H., and Chen, X. (2016). E�cient average reward reinforcement

learning using constant shifting values. In AAAI, pages 2258–2264.

Yang, T.-Y., Rosca, J., Narasimhan, K., and Ramadge, P. J. (2020). Projection-based constrained

policy optimization. In International Conference on Learning Representation (ICLR).

124

Zhang, S., Wan, Y., Sutton, R. S., and Whiteson, S. (2021). Average-reward o�-policy policy

evaluation with function approximation. arXiv preprint arXiv:2101.02808.

Zhang, Y. and Ross, K. (2021). On-policy deep reinforcement learning for the average reward

criterion. In International Conference on Machine Learning.

Zhang, Y., Vuong, Q., and Ross, K. (2020). First order constrained optimization in policy space. In

Advances in Neural Information Processing Systems, volume 33.

Zhao, T., Hachiya, H., Niu, G., and Sugiyama, M. (2011). Analysis and improvement of policy

gradient estimation. In Advances in Neural Information Processing Systems, pages 262–270.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K. (2008). Maximum entropy inverse

reinforcement learning. In AAAI, volume 8, pages 1433–1438. Chicago, IL, USA.

125

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Outline of Thesis
	List of Contributions

	Preliminaries
	Markov Decision Processes
	Classification of Markov Decision Processes
	Mean Passage Time and the Fundamental Matrix
	Mixing Time
	The Discounted Reward Criterion
	The Average Reward Criterion
	Connecting the Discounted and Average Reward Criteria
	Blackwell Optimality

	Local Policy Search
	Introduction
	Background
	Policy Gradient Methods
	Local Policy Search for Discounted Problems

	Policy Improvement Theorem for the Average Reward Criterion
	Approximate Policy Iteration
	Related Work
	Conclusion

	Average Reward TRPO
	Background
	Trust Region Methods for the Average Reward Criterion
	Average Reward TRPO
	Critic Estimation for the Average Reward
	Experiments
	Evaluation Protocol
	Comparing ATRPO and TRPO
	Sensitivity Analysis on Reset Cost
	Understanding Long Run Performance
	Implementation Details

	Conclusion

	Supervised Policy Update
	Introduction
	The SPU Framework
	SPU Applied to Specific Criteria
	Forward KL Constraints
	Backward KL Constraints
	L Constraints

	Extension to Continuous State and Action Spaces
	Experiments
	Results on Mujoco
	Ablation Studies for Mujoco
	Sensitivity Analysis on Mujoco
	Results on Atari
	Implementation Details

	Related Work
	Conclusion

	Constrained Reinforcement Learning
	Introduction
	Background: Constrained Markov Decision Processes
	Constrained RL as Local Policy Search
	Average Cost CPO
	First Order Constrained Optimization in Policy Space
	Finding the Optimal Update Policy
	Approximating the Optimal Update Policy
	Practical Implementation

	Experiments
	Robots with Speed Limit
	Circle Tasks
	FOCOPS for Different Cost Thresholds
	Generalization Analysis
	Sensitivity Analysis
	Implementation Details

	Related Work
	Conclusion

	Conclusion and Future Directions
	Bibliography

