
Cold Case: The Lost MNIST Digits

by

Chhavi Yadav

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

Computer Science Department

New York University

May 2019

Advisor: Professor Rob Fergus

Second Reader: Professor Léon Bottou

Acknowledgements

I would like to thank Professor Léon Bottou for advising me on my first major research

project from the bottom of my heart. You were instrumental in making this thesis a reality.

Thank you so much for being patient with my silly doubts and mistakes. I would also like

to thank Professor Rob Fergus for giving me this opportunity.

I would like to thank Chris Burges, Corinna Cortes, and Yann LeCun for the precious

information they were able to share about the birth of MNIST, and Larry Jackel for his

constructive comments about this ”cold case”.

This thesis will be incomplete without thanking my parents and brother for their everlasting

support and encouragement.

i

Abstract

Although the popular MNIST dataset (LeCun, Cortes, and Burges 1994) is derived from the

NIST database (Grother and Hanaoka 1995), the precise processing steps for this derivation

have been lost to time. We propose a reconstruction that is accurate enough to serve as a

replacement for the MNIST dataset, with insignificant changes in accuracy. We trace each

MNIST digit to its NIST source and its rich metadata such as writer identifier, partition

identifier, etc. We also reconstruct the complete MNIST test set with 60,000 samples instead

of the usual 10,000. Since the balance 50,000 were never distributed, they enable us to

investigate the impact of twenty-five years of MNIST experiments on the reported testing

performances. Our results unambiguously confirm the trends observed by (Recht et al. 2018;

Recht et al. 2019): although the misclassification rates are slightly off, classifier ordering

and model selection remain broadly reliable. We attribute this phenomenon to the pairing

benefits of comparing classifiers on the same digits.

ii

Contents

Acknowledgements i

Abstract ii

List of Figures vi

1 Introduction 1

2 Recreating MNIST 3

2.1 An iterative process . 5

2.2 Evaluating the reconstruction quality . 6

2.3 MNIST trivia . 8

3 Generalization Experiments 11

3.1 About confidence intervals . 12

3.2 Results . 13

Conclusion 19

iii

Bibliography 20

iv

List of Figures

2.1 The two paragraphs of (Bottou, Cortes, et al. 1994) describing the MNIST

preprocessing. The hsf4 partition of the NIST dataset, that is, the original

test set, contains in fact 58,646 digits. 4

2.2 Side-by-side display of the first sixteen digits in the MNIST and QMNIST

training set. The magnified view of the first one illustrates the correct recon-

struction of the antialiased pixels. 6

2.3 We have reproduced a defect of the original resampling code that creates low

amplitude periodic patterns in the dark areas of thick characters. 10

2.4 Histogram of pixel values in range 1-255 in the MNIST (red dots) and QM-

NIST (blue line) training set. Logarithmic scale. 10

3.1 KNN error rates for various values of k using either the MNIST (left plot)

or QMNIST (right plot) training sets. Red circles: testing on MNIST. Blue

triangles: testing on its QMNIST counterpart. Green stars: testing on the

50,000 new QMNIST testing examples. 14

3.2 SVM error rates for various values of the regularization parameter C (left plot)

and the RBF kernel parameter g (right plot) after training on the MNIST

training set, using the same color and symbols as figure 3.1. 14

v

3.3 SVM error rates for various values of the regularization parameter C (left plot)

and the RBF kernel parameter g (right plot) after training on the QMNIST

training set, using the same color and symbols as figure 3.1. 15

3.4 Left plot: MLP error rates for various hidden layer sizes after training on

MNIST (left plot) and on QMNIST (right plot), using the same color and

symbols as figure 3.1 . 15

3.5 Left plot: Scatter plot comparing the MNIST and QMNIST50 testing errors

for all our MLP experiments. Right plot: Paired test of MLPs with different

hidden layer sizes and MLP with 700 hidden units (which performs best on

MNIST test set). All of the MLPs used in this plot were trained and tested

on MNIST. 16

3.6 Left plot: Scatter plot comparing the MNIST and QMNIST50 testing perfor-

mance of all the models trained on MNIST during the course of this study.

Right plot: Scatter plot comparing the best MNIST and QMNIST50 testing

performance of all the classifiers trained on MNIST during the course of this

study. 17

vi

“ You never fail until you stop trying.”

vii

Chapter 1

Introduction

The MNIST dataset (LeCun, Cortes, and Burges 1994; Bottou, Cortes, et al. 1994) has been

used as a standard machine learning benchmark for more than twenty years. During the last

decade, many researchers have expressed the opinion that this dataset has been overused. In

particular, the small size of its test set, merely 10,000 samples, has been a cause of concern.

‘Testing set rot’ is a problem arising from the persistent usage of a test set over a long period

of time. We can interpret a long succession of papers as a learning system that overfits on

that test set. Hundreds of publications report increasingly good performance on this same

test set. Did they overfit the test set? Can we trust any new conclusion drawn on this

dataset? How quickly do machine learning datasets become useless?

The first partitions of the large NIST handwritten character collection (Grother and Hanaoka

1995) had been released one year earlier, with a training set written by 2000 Census Bureau

employees and a substantially more challenging test set written by 500 high school students.

One of the objectives of LeCun, Cortes, and Burges was to create a dataset with similarly

distributed training and test sets. The process they describe produces two sets of 60,000

samples. The test set was then downsampled to only 10,000 samples, possibly because

manipulating such a dataset with the computers of the times could be annoyingly slow. The

remaining 50,000 test samples have since been lost.

1

The initial purpose of this work was to recreate the MNIST preprocessing algorithms in

order to trace back each MNIST digit to its original writer in NIST. This reconstruction

was first based on the available information and then considerably improved by iteratively

refinement. Chapter 2 describes this process and measures how closely our reconstructed

samples match the official MNIST samples. The reconstructed training set contains 60,000

images matching each of the MNIST training images. Similarly, the first 10,000 images of

the reconstructed test set match each of the MNIST test set images. The next 50,000 images

are a reconstruction of the 50,000 lost MNIST test images.1

In the same spirit as (Recht et al. 2018; Recht et al. 2019), the rediscovery of the 50,000

lost MNIST test digits provides an opportunity to quantify the degradation of the official

MNIST test set over a quarter-century of experimental research. Chapter 3 compares and

discusses the performances of well known algorithms measured on the original MNIST test

samples, on their reconstructions, and on the reconstructions of the 50,000 lost test samples.

Our results provide a well controlled confirmation of the trends identified by (Recht et al.

2018; Recht et al. 2019) on a different dataset.

The paper related to this thesis can be found at (Yadav and Bottou 2019) .

1Code and data are available at https://github.com/facebookresearch/qmnist.

2

https://github.com/facebookresearch/qmnist

Chapter 2

Recreating MNIST

Recreating the algorithms that were used to construct the MNIST dataset is a challenging

task. Figure 2.1 shows the two paragraphs that describe this process in (Bottou, Cortes, et

al. 1994). Although this was the first paper mentioning MNIST, the creation of the dataset

predates this benchmarking effort by several months.1 Curiously, this description incorrectly

reports that the number of digits in the hsf4 partition, that is, the original NIST testing set,

as 58,527 instead of 58,646.2

These two paragraphs give a relatively precise recipe for selecting the 60,000 digits that

compose the MNIST training set. Alas, applying this recipe produces a set that contains

one more zero and one less eight than the actual MNIST training set. Although they do not

match, these class distributions are too close to make it plausible that 119 digits were really

missing from the hsf4 partition.

The description of the image processing steps is much less precise. How were the 128x128

1When Lèon Bottou joined this effort during the summer 1994, the MNIST dataset was already ready.
2The same description also appears in (LeCun, Cortes, and Burges 1994; Le Cun et al. 1998). These

more recent texts incorrectly use the names SD1 and SD3 to denote the original NIST test and training sets.

And additional sentence explains that only a subset of 10,000 test images was used or made available, “5000

from SD1 and 5000 from SD3.”

3

The original NIST test contains 58,527 digit images written by 500

different writers. In contrast to the training set, where blocks of data

from each writer appeared in sequence, the data in the NIST test set

is scrambled. Writer identities for the test set is available and we used

this information to unscramble the writers. We then split this NIST

test set in two: characters written by the first 250 writers went into

our new training set. The remaining 250 writers were placed in our

test set. Thus we had two sets with nearly 30,000 examples each.

The new training set was completed with enough samples from the

old NIST training set, starting at pattern #0, to make a full set of 60,000

training patterns. Similarly, the new test set was completed with old

training examples starting at pattern #35,000 to make a full set with

60,000 test patterns. All the images were size normalized to fit in a

20 x 20 pixel box, and were then centered to fit in a 28 x 28 image

using center of gravity. Grayscale pixel values were used to reduce

the effects of aliasing. These are the training and test sets used in the

benchmarks described in this paper. In this paper, we will call them

the MNIST data.

Figure 2.1: The two paragraphs of (Bottou, Cortes, et al. 1994) describing the MNIST

preprocessing. The hsf4 partition of the NIST dataset, that is, the original test set, contains

in fact 58,646 digits.

binary NIST images cropped? Which heuristics, if any, were used to disregard noisy pixels

that do not belong to the digits themselves? How were these rectanglular crops centered in

a square image? How were these square images resampled to 20x20 gray level images? How

were the coordinates of the center of gravity rounded for the final centering step?

4

2.1 An iterative process

Our initial reconstruction algorithms were informed by the existing description and, crucially,

by our knowledge of a curious resampling algorithm found in ancient parts of the Lush

codebase: instead of using a bilinear or bicubic interpolation, this code computes the exact

overlap of the input and output image pixels.3

Although our first reconstructed dataset, dubbed QMNISTv1, behaves very much like MNIST

in machine learning experiments, its digit images could not be reliably matched to the actual

MNIST digits. In fact, because many digits have similar shapes, we must rely on subtler

details such as the anti-aliasing pixel patterns. It was however possible to identify a few

matches. For instance we found that the lightest zero in the QMNIST training set matches

the lightest zero in the MNIST training set. We were able to reproduce their antialiasing pat-

terns by fine-tuning the initial centering and resampling algorithms, leading to QMNISTv2.

We then found that the smallest L2 distance between MNIST digits and jittered QMNIST

digits was a reliable match indicator. Running the Hungarian assignment algorithm on

the two training sets gave good matches for most digits. A careful inspection of the worst

matches allowed us to further tune the cropping algorithms, and to discover, for instance,

that the extra zero in the reconstructed training set was in fact a duplicate digit that the

MNIST creators had identified and removed. The ability to obtain reliable matches allowed

us to iterate much faster and explore more aspects the image processing algorithm space,

leading to QMNISTv3, v4, and v5.

This seemingly pointless quest for an exact reconstruction was surprisingly addictive. Sup-

posedly urgent tasks could be indefinitely delayed with this important procrastination pre-

text. Since all good things must come to an end, we eventually had to freeze one of these

datasets and call it Quasi-MNIST or QMNIST.

3See https://tinyurl.com/y5z7qtcg.

5

https://tinyurl.com/y5z7qtcg

Magnification:

MNIST #0

NIST #229421

Figure 2.2: Side-by-side display of the first sixteen digits in the MNIST and QMNIST

training set. The magnified view of the first one illustrates the correct reconstruction of the

antialiased pixels.

2.2 Evaluating the reconstruction quality

Although the QMNIST reconstructions are closer to the MNIST images than we had envi-

sioned, they remain imperfect.

Table 2.2 indicates that about 0.25% of the QMNIST training set images are shifted by one

pixel relative to their MNIST counterpart. This occurs when the center of gravity computed

during the last centering step (see Figure 2.1) is very close to a pixel boundary. Because

the image reconstruction is imperfect, the reconstructed center of gravity sometimes lands

on the other side of the pixel boundary, and the alignment code shifts the image by a whole

6

Table 2.1: Quartiles of the jittered distances between matching MNIST and QMNIST

training digit images with pixels in range 0 . . . 255. A L2 distance of 255 would indicate

a one pixel difference. The L∞ distance represents the largest absolute difference between

image pixels.

Min 25% Med 75% Max

Jittered L2 distance 0 7.1 8.7 10.5 17.3

Jittered L∞ distance 0 1 1 1 3

Table 2.2: Count of training samples for which the MNIST and QMNIST images align best

without translation or with a ±1 pixel translation.

Jitter 0 pixels ±1 pixels

Number of matches 59853 147

pixel.

Table 2.1 gives the quartiles of the L2 distance and L∞ distances between the MNIST and

QMNIST images, after accounting for these occasional single pixel shifts. An L2 distance of

255 would indicate a full pixel of difference. The L∞ distance represents the largest difference

between image pixels, expressed as integers in range 0 . . . 255.

In order to further verify the reconstruction quality, we trained a variant of the Lenet5 net-

work described by (Le Cun et al. 1998). Its original implementation is still available as a

Table 2.3: Misclassification rates of a Lenet5 convolutional network trained on both the

MNIST and QMNIST training sets and tested on the MNIST test set, and on both the

matching and new parts of the QMNIST test set.

Test on MNIST QMNIST10K QMNIST50K

Train on MNIST 0.82% (±0.2%) 0.81% (±0.2%) 1.08% (±0.1%)

Train on QMNIST 0.81% (±0.2%) 0.80% (±0.2%) 1.08% (±0.1%)

7

demonstration in the Lush codebase. Lush (Bottou and LeCun 2001) descends from the

SN neural network software (Bottou and Le Cun 1988) and from its AT&T Bell Laborato-

ries variants developped in the nineties. This particular variant of Lenet5 omits the final

Euclidean layer described in (Le Cun et al. 1998) without incurring a performance penalty.

Following the pattern set by the original implementation, the training protocol consists of

three sets of 10 epochs with global stepsizes 1e-4, 1e-5, and 1e-6. Each set starts with an

estimate of the diagonal of the Hessian. The per-weight stepsizes are computed by dividing

the global stepsize by the estimated curvature plus 0.02. Table 2.3 reports insignificant dif-

ferences when one trains with the MNIST or QMNIST training set or test with MNIST test

set or the matching part of the QMNIST test set. On the other hand, we observe a more

substantial difference when testing on the remaining part of the QMNIST test set, that is,

the reconstructions of the lost MNIST test digits. Such discrepancies will be discussed more

precisely in Chapter 3.

2.3 MNIST trivia

The reconstruction effort allowed us to uncover a lot of previously unreported facts about

MNIST.

1. There are exactly three duplicate digits in the entire NIST handwritten character

collection. Only one of them falls in the segments used to generate MNIST but was

removed by the MNIST authors.

2. The first 5001 images of the MNIST test set seem randomly picked from those written

by writers #2350-#2599, all high school students. The next 4999 images are the

consecutive NIST images #35,000-#39,998, in this order. They have been written by

only 48 Census Bureau employees, writers #326-#373. Although this small number of

writers could make us fear for statistical significance, these images are comparatively

very clean and contribute little to the total test error.

8

3. Even-numbered images among the 58,100 first MNIST training set samples exactly

match the digits written by writers #2100-#2349, all high school students, in random

order. The remaining images are the NIST images #0 to #30949 in that order. The

beginning of this sequence is in fact visible in Figure 2.2. This means that half of the

images found in a typical minibatch of consecutive MNIST training images are likely to

have been written by the same writer. We can only recommend shuffling the training

set before assembling the minibatches.

4. There is a rounding error in the final centering of the 28x28 MNIST images. The

average center of mass of a MNIST digits is in fact located half a pixel away from the

geometrical center of the image. This is important because training on correctly cen-

tered images and testing on the MNIST test set gives substantially worse performance.

5. A slight defect in the MNIST resampling code generates low amplitude periodic pat-

terns in the dark areas of thick characters. These patterns, illustrated in Figure 2.3,

can be traced to a 0.99 fudge factor that is still visible in the Lush legacy code.4 The

period of these patterns depend on the relative sizes of the input and output images

passed to the resampling code. This is how we were able to determine that small NIST

images were not upsampled to 20x20 size by directly calling the resampling code, but

by first doubling their resolution, and then downsampling to size 20x20.

6. There is something bizarre about the conversion of the continuous-valued pixels of

the subsampled images into integer-valued pixes. Our current code linearly maps the

range observed in each image to the interval [0.0,255.0] and then rounds to the closest

integer. However, comparing the pixel histograms (see Figure 2.4) shows that MNIST

has substantially more pixels with value 128 and less pixels with value 255. We could

not think of a plausibly simple algorithm compatible with this observation.

4See https://tinyurl.com/y5z7abyt

9

https://tinyurl.com/y5z7abyt

Figure 2.3: We have reproduced a defect of the original resampling code that creates low

amplitude periodic patterns in the dark areas of thick characters.

0.0001

0.0005

0.001

0.005

0.01

0.05

50 100 150 200 250

Figure 2.4: Histogram of pixel values in range 1-255 in the MNIST (red dots) and QMNIST

(blue line) training set. Logarithmic scale.

10

Chapter 3

Generalization Experiments

This chapter takes advantage of the reconstruction of the lost 50,000 testing samples to revisit

some MNIST performance results reported during the last twenty-five years. (Recht et al.

2018; Recht et al. 2019) perform a similar study on the CIFAR10 and ImageNet datasets and

identify very interesting trends. However they also explain that they cannot fully ascertain

how closely the distribution of the reconstructed dataset matches the distribution of the

original dataset, raising the possibility of the reconstructed dataset being substantially harder

than the original. Because the published MNIST test set was subsampled from a larger set,

we have a much tighter control of the data distribution and can confidently confirm their

findings.

Because the MNIST testing error rates are usually low, we start with a careful discussion of

the computation of confidence intervals and of the statistical significance of error compar-

isons in the context of repeated experiments. We then report on MNIST results for several

methods: k-nearest neightbors (KNN), support vector machines (SVM), multilayer percep-

trons (MLP), as well as the convolutional network of Table 2.3, with the intent of replicating

the performance levels reported by (Le Cun et al. 1998).

11

3.1 About confidence intervals

Confidence intervals on the error rates reported in this work are using the classic Wald

method. When we observe n1 misclassifications out of n independent samples, the error rate

ν = n1/n is reported with confidence 1− η as

ν ± z

√
ν(1− ν)

n
, (3.1)

where z =
√

2 erfc−1(η) is approximately equal to 2 for a 95% confidence interval. For

instance, an error rate close to 1.0% measured on the usual 10,000 test example is reported

as a 1%± 0.2% error rate, that is, 100± 20 misclassifications.

Such confidence intervals are overly pessimistic when we merely want to know whether a

first classifier with error rate ν1 = n1/n is worse than a second classifier with error rate

ν2 = n2/n. Because these error rates are measured on the same test samples, we can instead

rely on a one-sided paired test. The first classifier can be considered worse with confidence

1− η when

ν1 − ν2 =
n12 − n21

n
≥ z

√
n12 + n21

n
, (3.2)

where n12 represents the count of examples misclassified by the first classifier but not the

second classifier, n21 is the converse, and z =
√

2 erfc−1(2η) is approximately 1.7 for a 95%

confidence. For instance, four additional misclassifications out of 10,000 examples is sufficient

to make such a determination. This correspond to a difference in error rate of 0.04%, roughly

ten times smaller than what would be needed to observe disjoint error bars (3.1).

We can take into account repeated experiments performed on the same test set using a Bon-

ferroni correction (Bonferroni 1936), that is, by dividing η by the number K of experiments.

This means that K pairwise comparisons remain simultaneously valid with confidence 1− η

if all comparisons satisfy

n12 − n21 ≥
√

2 erfc−1
(

2η

K

) √
n12 + n21

For instance, in the realistic situation

n = 10000 , n1 = 200 , n12 = 40 , n21 = 10 , n2 = n1 − n12 + n21 = 170 ,

12

the conclusion that classifier 1 is worse than classifier 2 remains valid with confidence 95% as

long as it is part of a series of less than K = 4545 experiments satisfying the same criterion.

In contrast, after merely K = 50 experiments, the 95% confidence interval for the absolute

error rate of classifier 1 is already 2%± 0.5%, too large to distinguish it from the error rate

of classifier 2.

We should therefore expect that repeated model selection on the same test set leads to

decisions that remain valid far longer than the corresponding absolute error rates.

3.2 Results

We report results using two training sets, namely the MNIST training set and the QMNIST

reconstructions of the MNIST training digits, and three testing sets, namely the official

MNIST testing set with 10,000 samples (MNIST), the reconstruction of the official MNIST

testing digits (QMNIST10), and the reconstruction of the lost 50,000 testing samples (QM-

NIST50). We use the names TMTM, TMTQ10, TMTQ50 to identify results measured on

these three testing sets after training on the MNIST training set. Similarly we use the

names TQTM, TQTQ10, and TQTQ50, for results obtained after training on the QMNIST

training set and testing on the three test sets. None of these results involves data augmen-

tation or preprocessing steps such as deskewing, noise removal, blurring, jittering, elastic

deformations, etc.

Figure 3.1 (left plot) reports the testing error rates obtained with KNN for various values of

the parameter k using the MNIST training set as reference points. The QMNIST50 results

are slightly worse but within the confidence intervals. The best k determined on MNIST is

also the best k for QMNIST50. Figure 3.1 (right plot) reports similar results and conclusions

when using the QMNIST training set as a reference point.

Figure 3.2 reports testing error rates obtained with RBF kernel SVMs after training on the

MNIST training set with various values of the hyperparameters C and g. The QMNIST50

13

k=1 k=3 k=5 k=7 k=9
2.6

2.8

3.0

3.2

3.4

3.6

3.8

Te
st

 E
rro

r %

TM* for different k
TMTM
TMTQ10
TMTQ50
Best K TMTM
Best K TMTQ10
Best K TMTQ50

k=1 k=3 k=5 k=7 k=9
2.6

2.8

3.0

3.2

3.4

3.6

Te
st

 E
rro

r %

TQ* for different k
TQTM
TQTQ10
TQTQ50
Best K TQTM
Best K TQTQ10
Best K TQTQ50

Figure 3.1: KNN error rates for various values of k using either the MNIST (left plot) or

QMNIST (right plot) training sets. Red circles: testing on MNIST. Blue triangles: testing on

its QMNIST counterpart. Green stars: testing on the 50,000 new QMNIST testing examples.

c=0.01 c=0.1 c=1 c=10 c=100
1

2

3

4

5

6

7

8

Te
st

 E
rro

r %

TM* for g=0.02 & different C
TMTM
TMTQ10
TMTQ50
Best C TMTM
Best C TMTQ10
Best C TMTQ50

g=0.001 g=0.01 g=0.02 g=0.1

2

3

4

5

Te
st

 E
rro

r %

TM* for C=10 & different g

TMTM
TMTQ10
TMTQ50
Best g TMTM
Best g TMTQ10
Best g TMTQ50

Figure 3.2: SVM error rates for various values of the regularization parameter C (left plot)

and the RBF kernel parameter g (right plot) after training on the MNIST training set, using

the same color and symbols as figure 3.1.

14

c=0.01 c=0.1 c=1 c=10 c=100
1

2

3

4

5

6

7

8

Te
st

 E
rro

r %

TQ* for g=0.02 & different C
TQTM
TQTQ10
TQTQ50
Best C TQTM
Best C TQTQ10
Best C TQTQ50

g=0.001 g=0.01 g=0.02 g=0.1

2

3

4

5

Te
st

 E
rro

r %

TQ* for C=10 & different g

TQTM
TQTQ10
TQTQ50
Best g TQTM
Best g TQTQ10
Best g TQTQ50

Figure 3.3: SVM error rates for various values of the regularization parameter C (left plot)

and the RBF kernel parameter g (right plot) after training on the QMNIST training set,

using the same color and symbols as figure 3.1.

100 200 300 400 500 600 700 800 900 1000 1100
hidden units

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Te
st

 E
rro

r %

TM* for different hidden units
TMTM
TMTQ10
TMTQ50
Best Hidden Unit TMTM
Best Hidden Unit TMTQ10
Best Hidden Unit TMTQ50

100 200 300 400 500 600 700 800 900 1000 1100
hidden units

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Te
st

 E
rro

r %

TQ* for different hidden units
TQTM
TQTQ10
TQTQ50
Best Hidden Unit TQTM
Best Hidden Unit TQTQ10
Best Hidden Unit TQTQ50

Figure 3.4: Left plot: MLP error rates for various hidden layer sizes after training on MNIST

(left plot) and on QMNIST (right plot), using the same color and symbols as figure 3.1

15

1.6 1.8 2.0 2.2 2.4 2.6
TMTM Test Error %

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

TM
TQ

50
 T

es
t E

rro
r %

All MLP Experiments

y=x
Best fit

100 200 300 400 500 600 700 800 900 10001100
Hidden Units

0.2

0.0

0.2

0.4

0.6

0.8

Di
ffe

re
nc

e
in

 a
cc

ur
ac

ie
s

Paired Test TMTM
TMTM difference in accuracies

Figure 3.5: Left plot: Scatter plot comparing the MNIST and QMNIST50 testing errors for

all our MLP experiments. Right plot: Paired test of MLPs with different hidden layer sizes

and MLP with 700 hidden units (which performs best on MNIST test set). All of the MLPs

used in this plot were trained and tested on MNIST.

results are consistently higher but still fall within the confidence intervals except maybe for

mis-regularized models. Again the hyperparameters achieving the best MNIST performance

also achieve the best QMNIST50 performance. The same is true for SVMs trained on

QMNIST as shown in figure 3.3.

Figure 3.4 (left plot) provides similar results for a single hidden layer multilayer network with

various hidden layer sizes, averaged over five runs. The QMNIST50 results again appear

consistently worse than the MNIST test set results. On the one hand, the best QMNIST50

performance is achieved for a network with 1100 hidden units whereas the best MNIST

testing error is achieved by a network with 700 hidden units. On the other hand, all networks

with 300 to 1100 hidden units perform very similarly on both MNIST and QMNIST50, as can

be seen in the plot. A 95% confidence interval paired test on representative runs reveals no

statistically significant differences between the MNIST test performances of these networks

as suggested by figure 3.5 right plot.

When we talk about MLPs trained on QMNIST, we observe similar trends except that

the best QMNIST50 performance is achieved for a network with 900 hidden units instead

16

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
TMTM Test Error %

1

2

3

4

5
TM

TQ
50

 T
es

t E
rro

r %
All Experiments

y=x
MLP
SVM
KNN
ConvNet

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
TMTM Test Error %

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

TM
TQ

50
 T

es
t E

rro
r %

KNN

SVM
MLP

LeNet

Best losses in all classifiers

Figure 3.6: Left plot: Scatter plot comparing the MNIST and QMNIST50 testing perfor-

mance of all the models trained on MNIST during the course of this study. Right plot:

Scatter plot comparing the best MNIST and QMNIST50 testing performance of all the

classifiers trained on MNIST during the course of this study.

of 1100 as in the case of training with MNIST. This can be seen in figure 3.4 right plot.

However, the difference between error rates of 900 and 1100 hidden units for TQTQ50 is

extremely minimal. All networks with 300 to 1100 hidden units perform very similarly on

both MNIST/QMIST10 and QMNIST50, as can be seen in the plot. The paired test is

expected to perform similar to TMTM (figure 3.5 right plot).

Each point in figure 3.5 (left plot) gives the MNIST and QMNIST50 testing error rates of

one MLP experiment. This plot includes experiments with several hidden layer sizes and

also several minibatch sizes and learning rates. We were only able to replicate the 1.6% error

rate reported by (Le Cun et al. 1998) using minibatches with five or less examples.

Finally, Figure 3.6 summarize all the experiments reported above, including the convolutional

network experiment reported in Table 2.3. This scatter plot shows that the QMNIST50

error rates are consistently higher and also shows that comparing the MNIST testing set

performances of various models provides a surprisingly good ranking of the corresponding

QMNIST50 performances. Hence classfier ordering remains preserved.

These experiments unianimously show us that while there is a drop in performance when

17

one goes from testing on MNIST to QMNIST, total classifier ordering and best model (hy-

perparameter) selection remain the same between MNIST and QMNIST. Hence the ‘testing

set rot’ problem is not as severe as feared. This is consistent with the results of (Recht et al.

2018; Recht et al. 2019), albeit on a different dataset in a controlled setting.

The exact misclassification rates of KNN with k=3, SVM with C=10 & g=0.02 and MLP

with hidden units = 800 have been provided in tables 3.1, 3.2 and 3.3 respectively.

Table 3.1: Misclassification rates of the best KNN model obtained when k is set to 3. Model

trained on both the MNIST and QMNIST training sets and tested on the MNIST test set,

and the two QMNIST test sets of size 10,000 & 50,000 each.

Test on MNIST QMNIST10K QMNIST50K

Train on MNIST 2.95% (±0.34%) 2.94% (±0.34%) 3.19% (±0.16%)

Train on QMNIST 2.94% (±0.34%) 2.95% (±0.34%) 3.19% (±0.16%)

Table 3.2: Misclassification rates of an SVM when hyperparameters C = 10 & g = 0.02.

Training and testing schemes are similar to Table 3.1.

Test on MNIST QMNIST10K QMNIST50K

Train on MNIST 1.47% (±0.24%) 1.47% (±0.24%) 1.8% (±0.12%)

Train on QMNIST 1.47% (±0.24%) 1.48% (±0.24%) 1.8% (±0.12%)

Table 3.3: Misclassification rates of an MLP with a hidden layer of 800 units. Training and

testing schemes are similar to Table 3.1.

Test on MNIST QMNIST10K QMNIST50K

Train on MNIST 1.61% (±0.25%) 1.61% (±0.25%) 2.02% (±0.13%)

Train on QMNIST 1.63% (±0.25%) 1.63% (±0.25%) 2% (±0.13%)

18

Conclusion

We have recreated a close approximation of the MNIST preprocessing chain. Not only did we

track each MNIST digit to its NIST source image and associated metadata, but also recreated

the original MNIST test set, including the 50,000 samples that were never distributed. These

fresh testing samples allow us to precisely investigate how the results reported on a standard

testing set suffer from repeated experiments over a long period of time. Our results confirm

the trends observed by (Recht et al. 2018; Recht et al. 2019), albeit on a different dataset and

in a substantially more controlled setup. All these results essentially show that the “testing

set rot” problem exists but is far less severe than feared. Although the practice of repeatedly

using the same testing samples impacts the absolute performance numbers, it also delivers

pairing advantages that help model selection in the long run.

19

Bibliography

[1] Carlo E. Bonferroni. Teoria statistica delle classi e calcolo delle probabilità. Pubbli-

cazioni del R. Istituto superiore di scienze economiche e commerciali di Firenze. Libre-

ria internazionale Seeber, 1936.

[2] Léon Bottou, Corinna Cortes, et al. “Comparison of classifier methods: a case study in

handwritten digit recognition”. In: Proceedings of the 12th IAPR International Con-

ference on Pattern Recognition, Conference B: Computer Vision & Image Processing.

Vol. 2. Jerusalem: IEEE, Oct. 1994, pp. 77–82.

[3] Léon Bottou and Yann Le Cun. “SN: A Simulator for Connectionist Models”. In:

Proceedings of NeuroNimes 88. Nimes, France, 1988, pp. 371–382.

[4] Léon Bottou and Yann LeCun. The Lush programming language. http : / / lush .

sourceforge.net. 2001.

[5] Patrick J. Grother and Kayee K. Hanaoka. NIST Special Database 19: Handprinted

Forms and Characters Database. https://www.nist.gov/srd/nist- special-

database-19. SD1 was released in 1990, SD3 and SD7 in 1992, SD19 in 1995, SD19

2nd edition in 2016. 1995.

[6] Yann Le Cun et al. “Gradient Based Learning Applied to Document Recognition”. In:

Proceedings of IEEE 86.11 (1998), pp. 2278–2324.

[7] Yann LeCun, Corinna Cortes, and Christopher J. C. Burges. The MNIST database of

handwritten digits. http://yann.lecun.com/exdb/mnist/. MNIST was created in

1994 and released in 1998. 1994.

20

http://lush.sourceforge.net
http://lush.sourceforge.net
https://www.nist.gov/srd/nist-special-database-19
https://www.nist.gov/srd/nist-special-database-19
http://yann.lecun.com/exdb/mnist/

[8] Benjamin Recht et al. “Do CIFAR-10 Classifiers Generalize to CIFAR-10?” In: arXiv

preprint arXiv:1806.00451 (2018).

[9] Benjamin Recht et al. “Do ImageNet Classifiers Generalize to ImageNet?” In: Proceed-

ings of the 36th International Conference on Machine Learning. PMLR, 2019.

[10] Chhavi Yadav and Léon Bottou. Cold Case: The Lost MNIST Digits. Tech. rep.

arxiv:1905.10498, May 2019. url: https://arxiv.org/abs/1905.10498.

21

https://arxiv.org/abs/1905.10498

	Acknowledgements
	Abstract
	List of Figures
	Introduction
	Recreating MNIST
	An iterative process
	Evaluating the reconstruction quality
	MNIST trivia

	Generalization Experiments
	About confidence intervals
	Results

	Conclusion
	Bibliography

