
BLOCK FETI–DP/BDDC PRECONDITIONERS FOR MIXED
ISOGEOMETRIC DISCRETIZATIONS OF THREE-DIMENSIONAL

ALMOST INCOMPRESSIBLE ELASTICITY

O. B. WIDLUND ∗, L. F. PAVARINO † , S. SCACCHI ‡ , AND S. ZAMPINI §

TR2019-994

Abstract. A block FETI–DP/BDDC preconditioner for mixed formulations of almost incom-
pressible elasticity is constructed and analyzed; FETI–DP (dual primal finite element tearing and
interconnection) and BDDC (balancing domain decomposition by constraints) are two very success-
ful domain decomposition algorithms for a variety of elliptic problems. The saddle point problems of
the mixed problems are discretized with mixed isogeometric analysis with continuous pressure fields.
As in previous work by Tu and Li (2015), for finite element discretizations of the incompressible
Stokes system, the proposed preconditioner is applied to a reduced positive definite system involving
only the pressure interface variable and the Lagrange multipliers of the FETI–DP algorithm. The
novelty of this preconditioner consists in using BDDC with deluxe scaling for the interface pressure
block as well as deluxe scaling for the FETI–DP preconditioner for the Lagrange multiplier block.
A convergence rate analysis is presented with a condition number bound for the preconditioned op-
erator which depends on the inf-sup parameter of the fully assembled problem and the condition
number of a closely related BDDC algorithm for compressible elasticity. This bound is scalable in
the number of subdomains, poly-logarithmic in the ratio of subdomain and element sizes, and robust
with respect to material incompressibility and presence of discontinuities of the Lamé parameters
across subdomain interfaces. Parallel numerical experiments validate the theory and indicate how
the rate of convergence varies with respect to the spline polynomial degree and regularity and the
deformation of the domain. Of particular interest is the development of variants of the algorithm
with a coarse component of small dimension.

Key words. domain decomposition, FETI–DP and BDDC deluxe preconditioners, isogeometric
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1. Introduction. The development of efficient domain decomposition precon-
ditioners for mixed methods with continuous pressure fields and their analysis have
remained an open problem for a number of years. A few years ago, Tu and Li [44],
building on their previous works [31, 32], proposed and analyzed FETI–DP solvers
for incompressible Stokes finite element systems with continuous pressure.

In this paper, we extend the theory developed in [44] in two directions, by con-
sidering i) more general saddle point problems with a nonzero pressure block, such
as for almost incompressible elasticity, (AIE) and ii) isogeometric (IGA) mixed dis-
cretizations, see e.g. [11]. The pressure field in our case will also be continuous and
in our numerical experiments, we use the isogeometric Taylor–Hood mixed methods
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as developed in [10].
The outer structure of our dual-primal solver is a block FETI–DP/BDDC pre-

conditioner for a reduced positive definite system involving only the pressure interface
variable and a Lagrange multiplier. Instead, the inner structure of our solver differs
from that of [44], since the first block of our preconditioner is based on BDDC with
deluxe scaling for the interface pressure scaled by the first Lamé parameter, while the
second block is based on FETI–DP with deluxe scaling of the Lagrange multiplier.

Our choice of working with deluxe variants of both the FETI–DP and BDDC
blocks in our preconditioner is based on our experience with scalar elliptic problems
and compressible elasticity where deluxe variants have given us superior performance
compare to other scalings such as ρ− and stiffness–scaling; see [6, 7, 37]. For previous
work on deluxe scaling for finite elements, we refer to [15, 35, 38, 45, 48, 49, 50]. We
note that while the preconditioner for the interface pressure variables can be quite
simple for lower order finite elements as those considered by Tu and Li, the mass
matrices for isogeometric analysis can be very ill-conditioned and that a non-trivial
preconditioner is required for good performance.

Several arguments in the Tu–Li theory also need to be modified when we turn
to the AIE case because of the presence of the pressure mass matrices in the mixed
formulation. In addition to these modified arguments, our analysis will present a more
direct proof of the main condition number bound for the preconditioned operator.

Our choice of primal constraints for the FETI–DP preconditioner is based on our
recent results on dual-primal solvers for three–dimensional compressible elasticity, see
[37, Theorems 4.3 and 4.5]. We note that these two results are established under
different assumptions on the variation of the Lamé parameters across the interface
between the subdomains. For simplicity, we will consider only fixed choices of primal
constraints, but an adaptive selection of the primal constraints for the FETI–DP
method could be considered as well, see, e.g., the general framework in [38] and
some specific choices for isogeometric discretizations of scalar elliptic problems in [7].
We note that it is well known that the FETI–DP and BDDC algorithms for elliptic
problems are closely related, see, e.g., [33], and that therefore the condition number
bounds for the BDDC algorithms obtained in [37] can be used for our FETI–DP
algorithm when the primal spaces are the same.

Previous work on domain decomposition methods for Stokes discretizations with
continuous pressure can be found in [8, 26, 27, 41], but without a convergence rate
analysis. There has also been earlier work by Pavarino and Scacchi [36] on isogeometric
discretizations of Stokes problems, also based on [44], but some theoretical issues
remained open and the pressure block of the preconditioner was based on the principal
minor of the assembled pressure mass matrix related to the values on the interface.

Research on domain decomposition solvers for IGA is a relatively recent field
compared with the much older field of finite and spectral element solvers. In addition
to our previous works on isogeometric Schwarz and BDDC preconditioners, see [3, 4, 5,
6, 7, 37], we mention [16, 18, 24] on IGA multigrid, [21, 22, 23] on IGA Discontinuous
Galerkin methods, and [30, 39] on other IGA solvers. A recent comparison between
spectral elements and IGA discretizations and solvers can be found in [19].

The rest of the paper is organized as follows. The problem of almost incompress-
ible elasticity is introduced in Section 2 and its isogeometric discretization in Section
3. A dual-primal decomposition leading to a reduced system is described in Section
4, while the block FETI–DP/BDDC preconditioner is described in Section 5. Our
convergence rate analysis is presented in Section 6 and the paper is concluded by
Section 7 with results from some of our numerical experiments.
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2. The almost incompressible elasticity systems. Let Ω be a domain in
R3 which can be represented exactly by the isogeometric analysis system. It is de-
composed into N non-overlapping subdomains Ωi, of diameter Hi, which are images
under the geometric map F , see Eq. (3.5), of a coarse element partition τH of the
reference domain. i.e.,

(2.1) Ω =

N⋃
i=1

Ωi.

The interface of this decomposition (2.1) is given by Γ =
(⋃N

i=1 ∂Ωi

)
\ ∂Ω. In the

next subsection, we will further partition each subdomain into many shape-regular
elements. We will assume that the nodes match across the interface between the
subdomains.

We will use the standard notation L2(Ω) to denote the space of square integrable
functions on any open set Ω, and by H1(Ω) the classical Sobolev space of order 1 of
functions that are in L2(Ω) with first derivatives in L2(Ω).

The boundary ∂Ω is the union of two disjoint sets ∂ΩD and ∂ΩN where ∂ΩD is
of non-zero surface measure. We will work with two load functions g ∈ [L2(Ω)]3 and
gN ∈ [L2(∂ΩN )]3, and the spaces

V := {v ∈ H1(Ω)3 : v|∂ΩD
= 0}, Q := L2(Ω).

The load functions define a linear functional < f ,v >:=

∫
Ω

g · vdx+

∫
∂ΩN

gN · vdA.

We will work with a mixed formulation of linear elasticity for almost incompress-
ible materials as, e.g., in [9, Ch. 1]: find the material displacement u ∈ V and the
pressure p ∈ Q such that

(2.2)


2

∫
Ω

µ ε(u) : ε(v) dx −
∫

Ω

div v p dx = < f ,v > ∀v ∈ V,

−
∫

Ω

div u q dx −
∫

Ω

1

λ
pq dx = 0 ∀q ∈ Q.

Here ε is the symmetric gradient operator and µ(x) and λ(x) the Lamé parameters
of the material that for simplicity, when developing the theory, are assumed to be
constant in each subdomain Ωi, i.e. µ = µi and λ = λi in Ωi. These parameters can
be expressed in terms of the local Poisson ratio νi and Young’s modulus Ei as

(2.3) µi :=
Ei

2(1 + νi)
, λi :=

Eiνi
(1 + νi)(1− 2νi)

.

The material of a subdomain approaches the incompressible limit when νi → 1/2.
Factoring out the constants µi and 1

λi
, we can define local bilinear forms in terms

of integrals over the subdomains Ωi and obtain

µa(u,v) :=

N∑
i=1

µiai(u,v) :=

N∑
i=1

2µi

∫
Ωi

ε(u) : ε(v) dx(2.4)

b(v, q) :=

N∑
i=1

bi(v, q) := −
N∑
i=1

∫
Ωi

divv q dx,(2.5)

1

λ
c(p, q) :=

N∑
i=1

1

λi
ci(p, q) :=

N∑
i=1

1

λi

∫
Ωi

p q dx.(2.6)
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We note that in the general case of piecewise constants parameters, µa(u,v) and
1
λc(p, q) are only symbolic notations representing the bilinear forms defined above,
obtained by sub-assembling of bilinear forms originating from the subdomains. The
mixed elasticity problem (2.2) can then be written: find u ∈ V, p ∈ Q such that

(2.7)

{
µa(u,v) + b(v, p) = < f ,v > ∀v ∈ V,
b(u, q) − 1

λc(p, q) = 0 ∀q ∈ Q.

3. Isogeometric discretization of the mixed elasticity problem. We are
now ready to present the isogeometric approximation of the mixed elasticity problem
(2.2). In the present description, we consider, for simplicity of exposition, only the
homogeneous Dirichlet case ∂ΩD = ∂Ω that can be obtained, as observed for instance
in [2], by eliminating the first and last functions in each coordinate. To simplify the
presentation, we will also only consider the case when the reference domain is a unit
cube rather than the union of more than one cuboid.

We will use univariate B-spline basis functions Lpi (ξ) of degree p associated to the

knot vector {ξ1 = 0, ..., ξ`+p+1 = 1} defined on the parametric interval Î := (0, 1).
Given analogous univariate functions Mq

j (η) and Nr
k (ζ), we define by a tensor product

the three-dimensional (3D) parametric space on Ω̂ := (0, 1)×(0, 1)×(0, 1), the `×m×n
mesh of control points Ci,j,k associated with the knot vectors {ξ1 = 0, ..., ξ`+p+1 = 1},
{η1 = 0, ..., ηm+q+1 = 1}, and {ζ1 = 0, ..., ζn+r+1 = 1}, the trivariate B-spline basis
functions by Bp,q,ri,j,k (ξ, η, ζ) = Lpi (ξ)M

q
j (η)Nr

k (ζ), and the trivariate B-spline discrete
space by

(3.1) Ŝh := span{Bp,q,ri,j,k (ξ, η, ζ), 1 ≤ i ≤ `, 1 ≤ j ≤,m, 1 ≤ k ≤ n}.

The regularity of these basis functions is determined by the multiplicity of the
knots. We note that these basis functions fail to be nodal except for the case of
minimal regularity; this will lead to fat interfaces, cf. [4].

Analogously, the NURBS space is the span of NURBS basis functions defined in
one dimension by

(3.2) Rpi (ξ) :=
Lpi (ξ)ωi∑`
î=1 L

p

î
(ξ)ωî

=
Lpi (ξ)ωi

w(ξ)
,

with the weight function w(ξ) :=
∑`
î=1 L

p

î
(ξ)ωî ∈ Ŝh, and in three dimensions by a

tensor product

(3.3) Rp,q,ri,j,k (ξ, η, ζ) :=
Bp,q,ri,j,k (ξ, η, ζ)ωi,j,k∑`

î=1

∑m
ĵ=1

∑n
k̂=1B

p,q,r

î,ĵ,k̂
(ξ, η, ζ)ωî,ĵ,k̂

=
Bp,q,ri,j,k (ξ, η, ζ)ωi,j,k

w(ξ, η, ζ)
,

where w(ξ, η, ζ) is the weight function and ωî,ĵ,k̂ are positive weights associated with
a `×m× n net of control points. The discrete NURBS space on Ω is then defined as
the span of the push-forward of the NURBS basis function, i.e.

(3.4) Nh := span{Rp,q,ri,j,k ◦ F
−1, with 1 ≤ i ≤ `, 1 ≤ j ≤ m, 1 ≤ k ≤ n},

with F : Ω̂ → Ω, the geometrical map between the parameter and physical spaces
given by

(3.5) F(ξ, η, ζ) =
∑̀
i=1

m∑
j=1

n∑
k=1

Rp,q,ri,j,k (ξ, η, ζ)Ci,j,k.
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We then introduce the spline space on the parameter space V̂h = [Sh ∩H1
0 (Ω̂)]3

as

V̂h := [span{Bp,q,ri,j,k : 2 ≤ i ≤ `− 1, 2 ≤ j ≤ m− 1, 2 ≤ k ≤ n− 1}]3

and the NURBS space defined in physical space Vh = [Nh ∩H1
0 (Ω)]3 as

(3.6) Vh := [span{Rp,q,ri,j,k ◦ F
−1 : 2 ≤ i ≤ `− 1, 2 ≤ j ≤ m− 1, 2 ≤ k ≤ n− 1}]3.

In order to discretize our saddle point problems, we need a proper coupling be-
tween the mapped NURBS displacement space Vh and the pressure space Qh, as for
the finite element case developed in [9, Ch. 8]. Here we consider the following pair of
spaces based on the isogeometric Taylor-Hood elements introduced in [10], that have
proven to be inf-sup stable. The space Vh is built as in (3.6), but with the restrictions
that

• the polynomial degrees satisfy p ≥ 2, q ≥ 2, r ≥ 2;
• all the knots are repeated at least twice, and therefore the space is at most
Cp−2 − Cq−2 − Cr−2 regular across mesh lines.

The space Qh is built as the span

(3.7) Qh = span{Rp−1,q−1,r−1
i,j,k ◦ F−1, with 1 ≤ i ≤ ¯̀, 1 ≤ j ≤ m̄, 1 ≤ k ≤ n̄},

where the basis Rp−1,q−1,r−1
i,j,k is generated from the same knot vectors as for the Vh

space, but with one less repetition for each multiple knot, so that ¯̀, m̄, n̄ are approxi-
mately one half of `,m, n, respectively. Therefore, the space Qh of pressure will have
the same regularity across mesh lines as Vh, but with a polynomial degree one less.
In the case of the same polynomial degree p for each coordinate, we will then con-
sider isogeometric Taylor-Hood elements with displacement basis functions of degree
p, regularity p−2 and pressure basis functions of degree p−1, regularity p−2. Mixed
spaces with lower regularity can be considered as well.

The IGA approximation of our model Stokes or mixed elasticity problem (2.7)
now reads: find uh ∈ Vh, ph ∈ Qh such that

(3.8)

{
µa(uh,vh) + b(vh, ph) = < f ,vh > ∀vh ∈ Vh,
b(uh, qh) − 1

λc(ph, qh) = 0 ∀qh ∈ Qh.

Denoting with the same symbols uh, ph both the isogeometric functions and their
vector representations in the isogeometric basis, the matrix form of system (3.8) is

(3.9)

[
µA BT

B − 1
λC

] [
uh
ph

]
=

[
f
0

]
,

where µA,B, and 1
λC are matrices associated with the bilinear forms µa(·, ·), b(·, ·),

and 1
λc(·, ·), respectively, and are obtained by sub-assembling the local contributions

from the subdomains.

4. Domain decomposition and a FETI–DP/BDDC reduced system.

4.1. Dual-Primal decomposition. We will follow [44, Sections 3 and 4] and
the notation therein closely. The displacement variables uh are split into interior
uI , dual u∆, and primal uΠ components, the pressure variables ph into interior pI
and interface pΓ components, and we denote by λ∆ the Lagrange multipliers used to
enforce the continuity of the dual displacements.
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Reordering the variables as uI , pI ,u∆,uΠ, pΓ, and λ∆ and splitting the matrices
µA,B, and 1

λC into appropriate blocks associated with this splitting, we find that the
original system (3.9) is equivalent to

(4.1)


µAII BTII µAI∆ µAIΠ BTΓI 0
BII − 1

λCII BI∆ BIΠ − 1
λC

T
ΓI 0

µA∆I BTI∆ µA∆∆ µA∆Π BTΓ∆ BT∆
µAΠI BTIΠ µAΠ∆ µAΠΠ BTΓΠ 0
BΓI − 1

λCΓI BΓ∆ BΓΠ − 1
λCΓΓ 0

0 0 B∆ 0 0 0




uI
pI
u∆

uΠ

pΓ

λ∆

 =


fI
0
f∆
fΠ
0
0

 ,

where B∆ =
[
B

(1)
∆ B

(2)
∆ . . . B

(N)
∆

]
is a Boolean matrix which enforces the conti-

nuity constraint B∆u∆ = 0 for the dual displacement degrees of freedom u∆ shared
by neighboring subdomains. The resulting, leading 4-by-4 principal minor will be de-
noted by Ã while the subdomain matrix A(i) denotes the 3-by-3 block matrix without
any Lamé parameter, i.e.,

Ã =


µAII BTII µAI∆ µAIΠ
BII − 1

λCII BI∆ BIΠ
µA∆I BTI∆ µA∆∆ µA∆Π

µAΠI BTIΠ µAΠ∆ µAΠΠ

 and A(i) =

 A
(i)
II A

(i)
I∆ A

(i)
IΠ

A
(i)
∆I A

(i)
∆∆ A

(i)
∆Π

A
(i)
ΠI A

(i)
Π∆ A

(i)
ΠΠ

 .
If we confine ourselves to the case where λ∆ belongs to the range of B∆, this matrix,
although indefinite, is nonsingular under the condition that the primal space is large
enough; this simplifies the theory in comparison with that of [44]. We also need to
show that the leading principal minors are nonsingular and we can use Sylvester’s law
of inertia for this purpose. We first look at the subdomain matrices A(i) related to the
displacements only; they are positive semi-definite with rigid body motions spanning
their null spaces, if any. What is needed is to have enough primal constraints to control
the rigid body motions of each subdomain and we also need to use the boundary
conditions on ∂ΩD to be able to conclude that the partially subassembled stiffness
matrix, obtained from the µiA

(i) matrices, is nonsingular. We can then conclude that
we do not need to work with null spaces as in [44] for the Stokes problem.

If the primal space is rich enough to constrain the rigid body motions, we can
conclude that the leading 3-by-3 block matrix of (4.1) is nonsingular. This matrix
can also be written as a direct sum of subdomain matrices, a fact that, of course,
is computationally very attractive. The 4-by-4 leading block matrix, Ã, can also
be shown to be nonsingular, straightforwardly, since the submatrix containing only
multiples of the A sub-matrices is positive definite and so is CII . The non-singularity
of the entire matrix follows using similar arguments.

4.2. The FETI–DP/BDDC reduced system. We will reduce the indefinite
system (4.1) to a symmetric, positive definite system by eliminating the uI , pI ,u∆,
and uΠ variables and changing the sign. We obtain a Schur complement G and the
reduced linear system

(4.2) G

[
pΓ

λ∆

]
= g,
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where

(4.3) G := B̃CÃ
−1B̃TC +

1

λ
C̃, g := −B̃CÃ−1


fI
0
f∆
fΠ

 ,

(4.4) B̃C :=

[
BΓI − 1

λCΓI BΓ∆ BΓΠ

0 0 B∆ 0

]
and C̃ :=

[
CΓΓ 0

0 0

]
.

As in [44, Section 4], we can prove that G is symmetric, positive definite (positive
semidefinite in the Stokes case) by using Sylvester’s law of inertia. We also see that
the following block-Cholesky factorization reveals −G as the Schur complement of
(4.1) with respect to the C̃ block:[

I 0

−B̃CÃ−1 I

][
Ã B̃TC
B̃C − 1

λ C̃

] [
I −Ã−1B̃TC
0 I

]
=

[
Ã 0
0 −G

]
.

The action of G on given vectors and the construction of the right-hand side
g of the reduced system (4.3) require us to compute the action of Ã−1 on vectors.
As shown in [44, Section 4] and below, this can be done, for any vector, by solving a
coarse problem associated with the primal variables once and independent subdomain
saddle point problems with Neumann boundary conditions, for u∆, once. Indeed,

partitioning Ã :=

[
Arr ATΠr
AΠr AΠΠ

]
, into interior-dual and primal blocks where

Arr :=

 µAII BTII µAI∆
BII − 1

λCII BI∆
µA∆I BTI∆ µA∆∆

 , AΠr :=
[
µAΠI BTIΠ µAΠ∆

]
,

and defining the primal Schur complement by SΠΠ := µ(AΠΠ −AΠrA
−1
rr A

T
Πr), we see

that the action of Ã−1 can be computed as

(4.5)

[
Arr ATΠr
AΠr AΠΠ

]−1 [
fr
fΠ

]
=

[
A−1
rr fr −A−1

rr A
T
ΠrS

−1
ΠΠ(fΠ −AΠrA

−1
rr fr)

S−1
ΠΠ(fΠ −AΠrA

−1
rr fr)

]
.

The action of S−1
Π requires one solution of a coarse problem associated with the primal

variables, while the action of A−1
rr requires the solution of independent subdomain

saddle point problems with Neumann boundary conditions for the dual variables;
this last action has to be computed once on fr and once for the second term of the
first component of (4.5). The contribution of the latter term can be obtained as
a by-product of the computation of the coarse problem matrix SΠΠ; in a practical
algorithm, the action of this second solve is thus replaced by a matrix-vector product.

We note that during the iteration, we will always solve the first four block equa-
tions exactly. We can therefore carry out our analysis in a subspace V̂0 corresponding
to vanishing fI ,f∆, and fΠ :

V̂0 :=
{

[wI , qI ,w∆,wΠ, qΓ, λ∆]
T

: µAIIwI +BTIIqI + µAI∆w∆ + µAIΠwΠ +BTΓIqΓ = 0

BIIwI −
1

λ
CIIqI +BI∆w∆ +BIΠwΠ −

1

λ
CIΓqΓ = 0

µA∆IwI +BTI∆qI + µA∆∆w∆ + µA∆ΠwΠ +BTΓ∆qΓ +BT∆λ∆ = 0

µAΠIwI +BTIΠqI + µAΠ∆w∆ + µAΠΠwΠ +BTΓΠqΓ = 0
}
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Note that, in compact form, for all [wI , qI ,w∆,wΠ, qΓ, λ∆]
T ∈ V̂0, it holds

(4.6) ∀ [wI , qI ,w∆,wΠ]
T

= −Ã−1B̃TC

[
qΓ

λ∆

]
.

When working with V̂0, we effectively study the decrease of the error during the
iteration; the only non-zero residuals will be for the two final rows of (4.1).

4.3. Preliminary results. Using the notation w = [wI ,w∆,wΠ]
T
, q =

[
qI
qΓ

]
,

and v := [wI , qI ,w∆,wΠ]
T

, we will modify the discussion at the beginning of [44,

Section 5]. We find by a direct computation that for all [w, q, λ∆]
T ∈ V̂0,

vT Ãv = wT (µA)w + qT (
1

λ
C)q − qTΓ (

1

λ
CΓΓ)qΓ.

Thus, we obtain the following two expressions

(4.7) vT Ãv + qTΓ (
1

λ
CΓΓ)qΓ = wT (µA)w + qT (

1

λ
C)q,

which both define an appropriate norm for the system considered.

Lemma 4.1. Let [v, qΓ, λ∆]
T ∈ V̂0 and x =

[
qΓ

λ∆

]
. Then

xTGx = wT (µA)w + qT (
1

λ
C)q.

Proof. Since [v, qΓ, λ∆]
T ∈ V̂0, it holds v = −Ã−1B̃TCx. Hence,

xTGx = xT B̃CÃ
−1B̃TCx + xT ( 1

λ C̃)x

= (Ã−1B̃TCx)T ÃÃ−1B̃TCx + qTΓ ( 1
λCΓΓ)qΓ

= vT Ãv + qTΓ ( 1
λCΓΓ)qΓ = wT (µA)w + qT ( 1

λC)q. �

Let us now define the matrices

(4.8) B̃ :=

[
BII BI∆ BIΠ
BΓI BΓ∆ BΓΠ

]
, B̃(i) :=

[
B

(i)
II B

(i)
I∆ B

(i)
IΠ

B
(i)
ΓI B

(i)
Γ∆ B

(i)
ΓΠ

]
.

The following two lemmas hold:

Lemma 4.2. For any wi = [wiI ,wi∆,wiΠ]
T
and qi ∈ Qi, it holds

qTi B̃
(i)wi ≤

√
3/2(wT

i A
(i)wi)

1/2(qTi C
(i)qi)

1/2.

This results from the discrete version of the bound∫
Ωi

div (v) div (v) dx ≤ 3

∫
Ωi

ε(v) : ε(v) dx = 3/2 ai(v,v),

which implies |bi(v, q)| = | −
∫

Ωi

div (v)qdx| ≤
√

3/2 ai(v,v)1/2ci(q, q)
1/2.

The following lemma is basically a generalization of [20, Lemma 2.3].
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Lemma 4.3. Let

[
w
q

]
satisfy

[
µA BT

B − 1
λC

] [
w
q

]
=

[
f
g

]
. Then, the fol-

lowing bound holds:

(4.9) (wT (µA)w) + qT (
1

λ
C)q ≤ 4fT (µA)−1f +

2

β2
gT (

1

µ
C)−1g,

where β2 is an inf-sup constant such that qTB(µA)−1BT q ≥ β2qT ( 1
µC)q, ∀q.

Proof. By using a formula for the inverse of the matrix, we find that

(4.10) (µA)1/2w = (I−(µA)−1/2BTS−1B(µA)−1/2)(µA)−1/2f+(µA)−1/2BTS−1g,

where S := B(µA)−1BT + 1
λC. Since S−1 ≤ (B(µA)−1BT )−1, we find that

(4.11) (µA)−1/2BTS−1B(µA)−1/2) ≤ (µA)−1/2BT (B(µA)BT )−1B(µA)−1/2 ≤ I

since (µA)−1/2BT (B(µA)BT )−1B(µA)−1/2 is a projection. Therefore, the `2−norm
of the first term on the right-hand side of (4.10) is bounded by ‖(µA)−1/2f‖`2 .

Similarly, we find that

(4.12) (
1

λ
C)1/2q = (

1

λ
C)1/2S−1B(µA)−1f − (

1

λ
C)1/2S−1g.

The square of the `2−norm of its first term can be estimated as follows:

fT (µA)−1BTS−1(
1

λ
C)S−1B(µA)−1f ≤ fT (µA)−1BTS−1SS−1B(µA)−1f ≤

fT (µA)−1/2((µA)−1/2BT (B(µA)−1BT )−1B(µA)−1/2)(µA)−1/2f ≤ fT (µA)−1f,

by again using (4.11).
Combining the two quadratic forms that operate on g, we find that the sum of

those two terms equals gTS−1g, which can be estimated from above by 1
β2 g

T ( 1
µC)−1g

since S = B(µA)−1BT + 1
λC ≥ β

2( 1
µC). The proof can now be easily completed.

5. The block FETI–DP/BDDC preconditioner. In order to develop our
theory, we consider the isogeometric block FETI–DP/BDDC preconditioner

(5.1) M−1 =

[
M−1
pΓ

0

0 M−1
λ∆

]
.

for the reduced system (4.2) with the coefficient matrix

G =

[
GpΓpΓ

GTλ∆pΓ

Gλ∆pΓ
Gλ∆λ∆

]
.

In a practical algorithm, we can also consider block-triangular preconditioning variants
to accelerate a GMRES solver, and exploit robust and possibly iterative sub-solvers,
built on top of the individual preconditioners introduced in Sections 5.2 and 5.3, and
embedded in a flexible outer Krylov method.

We first review the construction of a deluxe scaling algorithm (see Dohrmann and
Widlund [14]), as it is crucial to obtain a robust solver for our isogeometric problem
given in (2.7), see also Section 7.1, and which we have found to be superior to the more
common ρ− and stiffness-scalings, in our previous studies on isogeometric solvers, see
[6, 7, 37].
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5.1. Deluxe scaling. In BDDC and FETI-DP methods, the average w̄ := EDw
of an element in the partially continuous space is computed separately for the sets of
interface degrees of freedom of vertex, edge, and face equivalence classes. We start by
defining the deluxe scaling in the simplest case of a class F with only two elements,
i, j, as for an edge in two dimensions or a face in three dimensions; for more details
on the fat interface and the definition of the fat equivalence classes, we refer to [6,
Section 4.2] and [7, Section 3]. Let S(i) be the subdomain interface Schur complement

of the matrix µiA
(i) associated with Ωi, and define two principal minors, S

(i)
F and S

(j)
F ,

obtained from S(i) and S(j) by removing all rows and columns which do not belong
to F .

Let w
(i)
F denote the restriction of an element in the dual space to the face F . The

deluxe average across F is then defined as

(5.2) w̄F =
(
S

(i)
F + S

(j)
F

)−1(
S

(i)
F w

(i)
F + S

(j)
F w

(j)
F

)
.

In three dimensions, we also need to define deluxe averaging operators for subdo-
main edges and subdomain vertices. Given the simple hexahedral subdomain geome-
try of the parameter space that we are considering, we find that in all these cases the
equivalence classes will have four and eight elements for any fat subdomain edge and
vertex, respectively, in the interior of Ω. Thus, for a fat subdomain edge E shared by
subdomains Ωi,Ωj ,Ωk, and Ω`, we use the formula

w̄E :=
(
S

(i)
E + S

(j)
E + S

(k)
E + S

(`)
E

)−1(
S

(i)
E w

(i)
E + S

(j)
E w

(j)
E + S

(k)
E w

(k)
E + S

(`)
E w

(`)
E

)
.

An analogous formula holds for the fat vertices and involves eight operators. Edges
and vertices located on the Neumann boundary of the domain will have fewer elements,
depending on the number of subdomain boundaries that share them.

For each subdomain Ωi, we then define a scaling matrix by its restriction D
(i)
∆ to

subdomain Ωi as the direct sum of diagonal blocks given by the deluxe scaling of the
face, edge, and vertex terms belonging to the interface of Ωi:

- for subdomain faces: D
(i)
F := S

(i)
F

(
S

(i)
F + S

(j)
F

)−1

,

- for subdomain edges: D
(i)
E := S

(i)
E

(
S

(i)
E + S

(j)
E + S

(k)
E + S

(`)
E

)−1

,

- for subdomain vertices: an analogous formula with eight operators.
For the use of these operators, see Subsection 5.3. In terms of the complementary
projection operator PD = I − ED, we find, for a fat face of Ωi, that

PDwF =
(
S

(i)
F + S

(j)
F

)−1

S
(j)
F (w

(i)
F −w

(j)
F ),

and for a fat edge of Ωi, PDwE =(
S

(i)
E +S

(j)
E +S

(k)
E +S

(`)
E

)−1(
S

(j)
E (w

(i)
E −w

(j)
E )+S

(k)
E (w

(i)
E −w

(k)
E )+S

(`)
E (w

(i)
E −w

(`)
E )
)
,

and analogously with eight operators for a fat vertex; see also [6, Section 4.2].

5.2. The pressure sub-solver. In the analysis of our algorithm, the pressure
sub-solver M−1

pΓ
is chosen as the inverse of 1

µS
C
ΓΓ obtained from the subdomain mass

matrices and associated with the interface pressure variables pΓ. This matrix is ob-

tained by sub-assembling the local Schur complements SC
(i)

ΓΓ of the subdomain mass
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matrices C(i) weighted by 1
µi

and defined by

1

µi
SC

(i)

ΓΓ :=
1

µi
(C

(i)
ΓΓ − C

(i)
ΓIC

(i)−1

II C
(i)
IΓ ).

To develop a competitive algorithm, we then replace the inverse of this Schur com-
plement, defining M−1

pΓ
, by a preconditioner, namely a BDDC deluxe variant built

from the subdomain matrices 1
µi
SC

(i)

ΓΓ . In our experience, we do not need any primal
subspace for this preconditioner of the pΓ variable.

5.3. The Lagrange multiplier sub-solver. The preconditioner M−1
λ∆

for the
λ∆ variable is the FETI–DP preconditioner

(5.3) M−1
λ∆

= B∆,DH∆B
T
∆,D,

where H∆ is the direct sum of the local discrete harmonic extension operators H
(i)
∆ ,

i = 1, . . . , N , each defined by a local elliptic problem on each of the subdomains Ωi :

(5.4) µi

[
A

(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

][
u

(i)
I

u
(i)
∆

]
=

[
0

H
(i)
∆ u

(i)
∆

]
,

with given boundary displacement u
(i)
∆ and zero primal displacement, i.e., u

(i)
Π = 0.

Using linearly independent primal constraints and non-redundant multipliers, the
scaling operator B∆,D can be written as in [28, Section 4, p. 65]

(5.5) B∆,D = (B∆D
−1
∆ BT∆)−1B∆D

−1
∆

where D∆ is a diagonal, or block diagonal scaling matrix in the deluxe case, built

from the subdomain matrices H
(i)
∆ . We note that H

(i)
∆ is a Schur complement of the

matrix on the left hand side of (5.4).

5.4. The choice of the primal constraints. As in our previous work on isoge-
ometric solvers for compressible elasticity [37, Section 5.2], we can consider a number
of choices of primal spaces of increasing dimension, employing different combinations
of fat or thin vertex, edge, and face constraints. Constraints can also be built from
rigid body modes by restricting the vectors that represent them to each relevant ver-
tex, edge, or face equivalence class and running a singular value decomposition (SVD)
on these sets of subvectors, in order to eliminate any possible null rotation or linear
dependence. We refer to [37, Section 5.2] for more details and to Section 7 for the
specific primal choices used in our numerical tests. Our previous paper contains two
main results, Theorems 4.1 and 4.2, which provides relatively small primal spaces
which guarantee bounds of the condition numbers of the form C(1 + log(H/h))3 and
C(1 + log(H/h))2, respectively.

6. Convergence rate analysis. The main result of this paper is a bound on
the condition number of the preconditioned operator M−1G, given below in Theorem
6.1. We will need to show that we can work out a proof in the presence of the C
matrices. Of particular importance in the Tu–Li proof is that Ã−1B̃TCx ∈ Ṽ0; see [44,
Section 5] for the definition of this space. In the Stokes case, this easily follows by
applying the second row of the matrix of (4.1) to this expression and noticing that a

certain block matrix of B̃TC equals 0. This is not the case for almost incompressible
elasticity and therefore, we will approach the proof of our main result differently.
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In Lemmas 6.2 and 6.3, we will prove upper and lower bounds of xTGM−1Gx
in terms xTGx. For this, we will use Lemma 4.1, which states that the energy of
the system can be written as xTGx for elements in the space V̂0. These bounds will
provide an upper and a lower bound for the eigenvalues of M−1G in terms of an inf-
sup parameter and condition number of a related algorithm for compressible elasticity.
We can then use our results in [37] to obtain bounds with two or three logarithmic
factors, respectively; see [37, Th. 4.1 and 4.2]. A bound for the condition number of
M−1G can be expressed in terms of the bounds developed in these two lemmas.

6.1. The main result. The condition number of the preconditioned operator
M−1G can be bounded as follows.

Theorem 6.1. ∀x =

[
pΓ

λ∆

]
, it holds

C(β)−1xTGx ≤ xTGM−1Gx ≤ (3 + Φ(H/h))xTGx,

where C(β) := (10 + 12
β2 ), β the inf-sup parameter of the fully assembled saddle-

point system, and Φ(H/h) is the condition number of a related compressible elasticity
problem. Therefore,

κ(M−1G) ≤ C(β)(3 + Φ(H/h)).

6.2. Proof of the upper bound. We will now prove a counterpart to [44,
Lemma 7.2]. We will use the same notation as in subsection 4.3.

Lemma 6.2. ∀y = Gx, let [u, p, λ∆]
T

= [v, pΓ, λ∆]
T ∈ V̂0, satisfy

B̃Cv − 1
λ C̃

[
pΓ

λ∆

]
= Gx. Then

(6.1) xTGM−1Gx ≤ (3 + Φ(H/h))(uT (µA)u + 2 max
i

(
µi
λi

)pT (
1

λ
C)p).

Proof. The existence of [v, pΓ, λ∆]
T ∈ V̂0, satisfying B̃Cv − 1

λ C̃

[
pΓ

λ∆

]
= Gx,

follows directly from the definition of V̂0. We then write the left-hand side of (6.1) as

(B̃Cv −
1

λ
C̃

[
pΓ

λ∆

]
)TM−1(B̃Cv −

1

λ
C̃

[
pΓ

λ∆

]
),

and we will prove an upper bound of this expression in terms of the energy of the
system given in terms of uT (µA)u and pT ( 1

λC)p.

Given [u, p, λ∆]
T

= [uI , pI ,u∆,uΠ, pΓ, λ∆]
T ∈ V̂0, consider the first of the two

components of B̃Cv − 1
λ C̃

[
pΓ

λ∆

]
, namely,

gpΓ
:= BΓIuI − 1/λCΓIpI +BΓ∆u∆ +BΓΠuΠ − 1/λCΓΓpΓ.

Since [u, p, λ∆]
T ∈ V̂0, we also have BIIuI− 1

λCIIpI+BI∆u∆+BIΠuΠ− 1
λCIΓpΓ = 0.

The preconditioner for this first component is given by 1
µS

C
ΓΓ. But we can instead

work with 1
µC and let its inverse act on B̃u− 1

λCp since the first row of that matrix
vanishes.
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We then find that

(6.2)

gTpΓ
(

1

µ
SCΓΓ)−1gpΓ

= (B̃u− 1

λ
Cp)T (

1

µ
C)−1(B̃u− 1

λ
Cp)

≤ 2(B̃u)T (
1

µ
C)−1(B̃u) + 2(

1

λ
Cp)T (

1

µ
C)−1(

1

λ
Cp)

The first term on the right-hand side of (6.2) satisfies

2uT B̃T (
1

µ
C)−1B̃u = 2 max

q

((B̃u)T q)2

qT ( 1
µC)q

= 2 max
q

(
∑
i(B̃

(i)ui)
T qi)

2∑
i q
T
i

1
µi
C(i)qi

.

By Lemma 4.2, the terms in the numerator can be bounded by

|(B̃(i)ui)
T qi| ≤

√
3

2
(uTi A

(i)ui)(qTi C
(i)qi) =

√
3

2
(uTi (µiA(i))ui)(qTi (

1

µi
C(i))qi)

and we have

(6.3) 2uT B̃T (
1

µ
C)−1B̃u ≤ 3uT (µA)u.

The second term on the right-hand side of (6.2) satisfies

2(
1

λ
Cp)T (

1

µ
C)−1(

1

λ
Cp) = 2 max

q

(( 1
λCp)

T q)2

qT ( 1
µC)q

= 2 max
q

(
∑
i

1
λi

(C(i)pi)
T qi)

2∑
i q
T
i

1
µi
C(i)qi

≤

≤ 2 max
q

(
∑
i
µi

λ2
i
pTi C

(i)pi)(
∑
i

1
µi
qTi C

(i)qi)∑
i q
T
i

1
µi
C(i)qi

≤ 2 max
i

(
µi
λi

)pT (
1

λ
C)p.

The bound related to the second block of M−1 can be borrowed directly from
work on compressible elasticity. Bounds for Φ(H/h) are provided in [37].

6.3. Proof of the lower bound. We will now prove a counterpart to [44,
Lemma 7.3]. As in the previous subsection, we will use the same notation as in
subsection 4.3. By using similar arguments as in the previous subsection, we can
provide a lower bound in terms of xTGx.

Lemma 6.3. ∀y = Gx :=

[
gpΓ

gλ

]
∈ (QΓ × Λ)′, let [u, p, λ∆]

T
= [v, pΓ, λ∆]

T ∈ V̂0

satisfy B̃Cv − 1
λ C̃

[
pΓ

λ∆

]
= y. Then,

uT (µA)u + pT (
1

λ
C)p ≤ C(β)yTM−1y,

with C(β) = (10 + 12
β2 ) where β is the inf-sup parameter of the fully assembled system.

Proof. Given y =

[
gpΓ

gλ

]
, let u

(1)
∆ = BT∆,Dgλ, u

(1)
Π = 0, p(1) = 0 and λ

(1)
∆ = 0.

On each subdomain Ωi, let u
(1)
I be obtained by solving (5.4) on each subdomain.

Denote then the corresponding global vectors by u(1) and p(1). We find that

B̃Cv
(1) =

[
BΓI − 1

λCΓI BΓ∆ BΓΠ

0 0 B∆ 0

]
u

(1)
I

p
(1)
I

u
(1)
∆

u
(1)
Π

 =

[
BΓIu

(1)
I +BΓ∆u

(1)
∆

gλ

]
,



14 L.F. Pavarino, S. Scacchi, O.B. Widlund, S. Zampini

since p
(1)
I = 0, u

(1)
Π = 0, and B∆u

(1)
∆ = B∆B

T
∆,Dgλ = gλ.

Recall also that u(1)T (µA)u(1) = |u(1)
∆ |2H∆

.

Consider now the solution
[
u

(2)
I , p

(2)
I ,u

(2)
Γ , p

(2)
Γ

]T
of the fully assembled system,

as in (3.9),
µAII BTII µAIΓ BTΓI

BII − 1
λCII BIΓ − 1

λCIΓ

µAΓI BTIΓ µAΓΓ BTΓΓ

BΓI − 1
λCΓI BΓΓ − 1

λCΓΓ




u

(2)
I

p
(2)
I

u
(2)
Γ

p
(2)
Γ

 =


−µAIIu(1)

I − µAI∆u
(1)
∆

−BIIu(1)
I −BI∆u

(1)
∆

−µAΓIu
(1)
I − µAΓ∆u

(1)
∆

gpΓ
−BΓIu

(1)
I −BΓ∆u

(1)
∆


and let u(2) =

[
u

(2)
I

u
(2)
Γ

]
. We now obtain bounds for u(2) and p(2) by using (4.9) after

extracting f and g, the elements of the right-hand side of the system. We also use
(6.3) and obtain

u(2)T (µA)u(2) + p(2)T (
1

λ
C)p(2) ≤ 4(µAu(1))T (µA)−1(µAu(1))+

4

β2

(
(B̃u(1))T (

1

µ
C)−1B̃u(1) + [0 gTpΓ

](
1

µ
C)−1[0 gTpΓ

]T
)

≤ 4(u(1))T (µA)u(1) +
4

β2

(
3

2
u(1)T (µA)u(1) + gTpΓ

(
1

µ
SCΓΓ)−1gpΓ

)
≤ 4u(1)T(µA)u(1)+

6

β2
u(1)T(µA)u(1) +

4

β2
gTpΓ

(
1

µ
SCΓΓ)−1gpΓ ≤

(
4+

6

β2

)
yTM−1y,

where we have used the identity

yTM−1y = [gTpΓ
gTλ ]

[
( 1
µS

C
ΓΓ)−1 0

0 M−1
λ∆

][
gpΓ

gλ

]
= gTpΓ

( 1
µS

C
ΓΓ)−1gpΓ + gλM

−1
λ∆
gλ = gTpΓ

( 1
µS

C
ΓΓ)−1gpΓ + |u(1)

∆ |2H∆

= gTpΓ
( 1
µS

C
ΓΓ)−1gpΓ

+ u(1)T (µA)u(1).

Here β is the inf-sup parameter for the fully assembled saddle-point problem. The

contribution from u(1) can be bounded by using that u(1)T (µA)u(1) ≤ yTM−1y.
A bound for u = u(1) + u(2) and p = p(2) then yields uT (µA)u + pT ( 1

λC)p ≤
(10 + 12

β2 )yTM−1y.

7. Numerical results. We now report the results of numerical experiments
for the almost incompressible elasticity system (2.7) in two and three dimensions,
discretized with isogeometric NURBS spaces with a uniform mesh size h, polynomial
degree p, and regularity k. We use a zero Dirichlet boundary condition on the face
x = 0 of the reference cube, an inhomogeneous Neumann condition of the opposite
face x = 1, and zero Neumann conditions on all the other faces. The domain Ω is
decomposed into N non-overlapping subdomains of characteristic size H.

The discrete positive definite reformulation (4.2) is solved by the preconditioned
conjugate gradient (PCG) method with the isogeometric block FETI–DP/BDDC pre-
conditioner (5.1), with a zero initial guess and a stopping criterion of a 10−8 reduction
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Fig. 7.1. Quarter annulus (left) and twisted pipe (right) geometries.

pΓ block: LU of CΓ,Γ pΓ: BDDC stiff. scaling pΓ: BDDC deluxe
p nit λM λm nit λM λm nit λM λm

Stiffness scaling FETI-DP for λ∆ block
2 23 2.2 2.5e-01 22 2.2 2.8e-1 22 2.2 3.73e-1
3 29 3.0 2.5e-01 25 3.2 3.5e-1 26 3.0 3.57e-1
4 49 6.7 1.5e-01 37 6.8 3.2e-1 39 6.6 3.64e-1
5 117 29.3 7.6e-02 70 73.6 3.3e-1 74 73.6 3.48e-1

Deluxe scaling FETI-DP for λ∆ block
2 25 2.3 2.4e-1 23 2.3 2.8e-1 23 2.3 3.67e-1
3 28 2.7 2.3e-1 24 2.8 3.4e-1 25 2.7 3.45e-1
4 33 2.7 1.5e-1 33 4.8 3.2e-1 26 2.7 3.48e-1
5 51 4.2 7.5e-2 44 9.3 3.2e-1 33 4.2 3.39e-1

Table 7.1
Iteration counts and extreme eigenvalues for FETI–DP/BDDC block preconditioner for in-

creasing p = 2, . . . , 5 and fixed H = 1/8, h = 1/128, E = 1, ν = 0.4999, and using B-splines on the
unit square. The preconditioner for the λ∆ block is FETI–DP with stiffness scaling (top table) and
FETI–DP deluxe (bottom table). The preconditioner for the pΓ block is LU of the pressure mass
sub-matrix CΓ,Γ (left column), BDDC with stiffness scaling (center column), and BDDC deluxe
(right column).

of the Euclidean norm of the PCG residual. The first block M−1
pΓ

of our preconditioner
(5.1) consists in the application of BDDC with deluxe scaling for the interface pres-
sure pΓ, scaled by the first Lamé parameter µ. We have not found any good reason to
use any primal variables for this sub-problem when using the BDDC deluxe variant
and none have been used in any of the experiments reported in this section.

The second block M−1
λ∆

of (5.1) consists in the application of FETI–DP with
deluxe scaling for the multiplier λ∆. For the multiplier blocks, the primal constraints
consists of all the dofs of the fat vertices, augmented, for 3D only, by the edge and
face rigid body modes, orthogonalized with the SVD.

All parallel tests have been performed using PetIGA-MF [12, 40] as a discretiza-
tion package; the solvers used are available in the latest release, 3.10, of the PETSc
library [1], and have been contributed by Stefano Zampini (see also [47]). All the tests
have been run on the parallel machine Shaheen-XC40 at KAUST.

In our tests, we study how the convergence rate of the BDDC preconditioner
depends on h,N, p, and k. Results are reported on the total number of iterations (it)
and the minimal and maximal eigenvalues (λm and λM ) of the PCG operator.
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FETI-DP for λ∆ block alone
stiffness scaling deluxe scaling

p nit λM λm nit λM λm
2 15 2.1 0.6 16 2.2 0.66
3 15 3.0 0.9 16 2.7 0.71
4 22 6.6 0.9 15 2.7 0.77
5 44 29.3 0.9 19 4.1 0.68

BDDC for pΓ block alone
LU stiffness scaling deluxe scaling

p nit λM λm nit λM λm nit λM λm
2 11 0.80 0.37 11 0.9 0.43 11 0.9 0.43
3 14 0.87 0.27 13 1.8 0.62 13 1.0 0.38
4 19 0.96 0.15 27 4.4 0.36 15 1.2 0.35
5 26 0.98 0.07 38 9.3 0.34 15 1.4 0.35

Table 7.2
Iteration counts and extreme eigenvalues for the separate sub-solvers of the FETI–DP/BDDC

block preconditioner for increasing p = 2, . . . , 5. See Table 7.1 for details.

7.1. A comparison with [36]. We first consider the AIE system on the unit
square and compare the performance of our approach with that of [36]. We are close
to the incompressible limit at ν = 0.499 and consider an increasing polynomial order
p with maximal continuity k = p− 2, while keeping the mesh size h = 1/128 and the
subdomain diameter H = 1/8 fixed . The Young’s modulus is set to E = 1.

Different choices for the block solvers are used as indicated in Table 7.1. Specifi-
cally, we work with a stiffness- or a deluxe-scaled FETI-DP multiplier preconditioner,
as well as with three different variants for the pressure sub-system: a LU factorization
of the principal minor of the mass matrix associated with the interface variable pΓ

and scaled by µ, and stiffness- and deluxe-scaled BDDC solvers as outlined in Section
5.2. Detailed results on the convergence of the sub-solvers are reported in Table 7.2,
which were obtained by applying the PCG method to the linear systems GpΓpΓ and
Gλ∆λ∆ , using the preconditioners considered .

The results show that using an LU solver for the pressure block does not result
in a minimal eigenvalue which is bounded from below and independent of p, while a
BDDC pressure solver (using either stiffness or deluxe scaling) prove to be robust in
this respect. In addition, a deluxe scaled FETI-DP method for the multiplier block
seems necessary to mitigate the dependence of the condition number on the polynomial
order. We note that the results for the stiffness scaled variant of the BDDC solver
for the pressure sub-system were obtained by making all the fat vertices dofs primal.
In fact, without a coarse space, the maximal eigenvalue of the pressure sub-system
depended heavily on p, which in turn did not provide a satisfactory convergence rate
for the global problem (data not shown).

7.2. Quasi-optimality test. We next consider the AIE system on the unit
square and the unit cube, and study the performance of our block preconditioner when
refining the mesh size h, while keeping the number of subdomains fixed at N = 64.
Different choices of the spline parameters p and k are tested as indicated in Tables 7.3
and 7.4. The Lamé parameters used in these tests are given by E = 1e6, ν = 0.4999.

The results show that, for both two and three dimensions, our method behaves
as predicted by the theory, since it presents a logarithmic growth in terms of both
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p = 3, k = 0 p = 3, k = 1 p = 4, k = 0 p = 4, k = 2
1/h nit λM λm nit λM λm nit λM λm nit λM λm
32 20 1.6 0.28 21 2.0 0.31 23 2.2 0.27 24 2.8 0.28
48 22 2.0 0.27 22 2.1 0.29 26 2.7 0.27 25 2.8 0.28
64 24 2.3 0.27 23 2.3 0.29 28 3.1 0.27 25 2.8 0.27
128 29 3.3 0.28 25 2.7 0.28 33 4.3 0.27 26 2.8 0.27
256 34 4.6 0.28 29 3.5 0.28 37 5.8 0.27 29 3.5 0.27

Table 7.3
h-quasi-optimality of FETI–DP/BDDC block preconditioner with deluxe scaling for 2D AIE

system with E = 1e + 6, ν = 0.4999, and with B-splines on the unit square. Iteration counts
and extreme eigenvalues for increasing 1/h = 32, . . . , 256, different p, k = 0, . . . , p − 1, and fixed
H = 1/8 (N = 64).

p = 2, k = 0 p = 3, k = 0 p = 3, k = 1
1/h nit λM λm nit λM λm nit λM λm
16 25 2.1 0.23 31 3.1 0.22 29 2.7 0.24
20 25 2.1 0.24 32 3.1 0.22 29 2.7 0.24
24 26 2.4 0.24 33 3.3 0.23 29 2.7 0.23
28 27 2.6 0.24 33 3.6 0.23 29 2.7 0.23
32 28 2.8 0.24 34 3.9 0.23 30 2.7 0.23

Table 7.4
h-quasi-optimality of FETI–DP/BDDC block preconditioner with deluxe scaling for 3D AIE

system with E = 1e+6, ν = 0.4999, and with B-splines on the unit cube. Iteration counts and extreme
eigenvalues for increasing 1/h = 16, . . . , 32, different p, k = 0, . . . , p−1, and fixed H = 1/4 (N = 64).

PCG iterations and condition number (given by the ratio λM/λm). For the cases
(p = 4, k = 2) in two dimensions, and (p = 3, k = 1) in three dimensions, the method
has proven optimal, since all these quantities remain almost constant when h is refined.
Such results can be attributed to our choice of using a very rich coarse space for the
multiplier block; minimal coarse spaces, as presented in [37] for the compressible case,
are outside the scope of the present work, and can be the subject of future research.

7.3. Polynomial order dependence test. We next report on the performance
of our algorithm for different values for the spline parameters p and k, while keeping
the number of subdomains (N = 64) and the mesh related quantities h and H fixed:
specifically H = 1/8, h = 1/128 in two dimensions and H = 1/4, h = 1/20 in three.
The Lamé parameters used in the tests are given by E = 1e6, ν = 0.4999.

Results for the parametric domains are given in Tables 7.5 and 7.6 for the two-
and three-dimensional case, respectively. Tables 7.7 and 7.8 contains results obtained
by working on the quarter annulus and the twisted pipe geometries shown in Figure
7.1.

The results show that the number of iterations and the condition numbers of the
proposed method appear to depend logarithmically on the polynomial order p, even
for the case involving geometrical mappings and for both two and three dimensions.

The number of iterations and the maximal eigenvalue of the PCG method cer-
tainly increase for the mapped domains, especially for the quite distorted map of the
cube given in the right panel of Figure 7.1. By looking at the convergence properties
of the sub-solvers for the latter case (see Table 7.9), we see that the slower conver-
gence depends on the multiplier block, while the pressure sub-solver has proven very
efficient. Improvements, with up to 3 times fewer iterations, (data not shown) can be
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k = 0 k = 1 k = 2 k = 3
p nit λM λm nit λM λm nit λM λm nit λM λm
2 23 2.3 0.28
3 29 3.3 0.28 25 2.7 0.28
4 33 4.3 0.27 27 3.2 0.28 26 2.8 0.27
5 36 5.2 0.27 34 4.4 0.28 28 3.6 0.27 33 4.2 0.27

Table 7.5
p-dependence of FETI–DP/BDDC block preconditioner with deluxe scaling for 2D AIE system

with E = 1e + 6, ν = 0.4999, and with B-splines on the unit square. Iteration counts and extreme
eigenvalues for p = 2, . . . , 5, different continuity k = 0, . . . , p− 1, and fixed H = 1/8 (N = 64), h =
1/128.

k = 0 k = 1 k = 2
p nit λM λm nit λM λm nit λM λm
2 25 2.2 0.24
3 32 3.1 0.22 29 2.7 0.24
4 39 4.9 0.20 39 4.8 0.23 63 16.3 0.21

Table 7.6
p-dependence of FETI–DP/BDDC block preconditioner with deluxe scaling for 3D AIE system

with E = 1e + 6, ν = 0.4999, and with B-splines on the unit cube. Iteration counts and extreme
eigenvalues for p = 2, 3, 4, different continuity k = 0, . . . , p − 1, and fixed H = 1/4 (N = 64), h =
1/20.

k = 0 k = 1 k = 2 k = 3
p nit λM λm nit λM λm nit λM λm nit λM λm
3 40 9.4 0.28 30 4.1 0.28
4 44 11.1 0.28 34 5.8 0.28 31 4.0 0.27
5 48 12.9 0.28 40 7.6 0.28 35 5.1 0.27 35 5.2 0.27

Table 7.7
p-dependence of FETI–DP/BDDC block preconditioner with deluxe scaling for 2D AIE system

with E = 1e+6, ν = 0.4999, on the quarter annulus geometry as given in Fig.7.1, left panel. Iteration
counts and extreme eigenvalues for p = 3, 4, 5, different degree of smoothness, k = 0, . . . , p− 1, and
fixed H = 1/8 (N = 64), h = 1/128.

k = 0 k = 1 k = 2
p nit λM λm nit λM λm nit λM λm
3 126 105.3 0.26 122 84.1 0.25
4 143 130.9 0.26 127 100.4 0.26 142 103.1 0.24

Table 7.8
p-dependence of FETI–DP/BDDC block preconditioner with deluxe scaling for 3D AIE system

with E = 1e+ 6, ν = 0.4999, on the twisted pipe geometry as given in Fig.7.1, right panel. Iteration
counts and extreme eigenvalues for p = 3, 4, different degree of smoothness, k = 0, . . . , p − 1, and
fixed H = 1/4 (N = 64), h = 1/20.

obtained by accelerating the multiplier sub-solver with a few Chebyshev iterations.
Adaptive primal spaces for the displacements solver may also be considered in future
work.

7.4. Weak scalability test. We close this Section by reporting, in Table 7.10,
results of a weak scalability test in the parametric domain, obtained by considering
a fixed number of elements in each direction and each subdomain (32x32 elements
in two dimensions, 7x7x7 for three dimensional tests), and by uniformly increasing
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k = 0 k = 1 k = 2
p nit λM λm nit λM λm nit λM λm

λ∆ block
3 93 105.2 0.54 74 83.9 0.66 - - -
4 101 130.6 0.53 84 100.3 0.61 86 102.9 0.74

pΓ block
3 20 2.6 0.33 17 1.7 0.35 - - -
4 27 4.6 0.33 21 2.6 0.35 20 2.4 0.35

Table 7.9
Sub-solvers convergence study for the results provided in Table 7.8. Twisted pipe geometry as

given in Fig. 7.1, right panel.

subd nit λM λm
10x10 29 3.6 0.26
20x20 29 3.6 0.26
30x30 29 3.6 0.26
40x40 29 3.6 0.26
50x50 28 3.6 0.26

subd nit λM λm
4x4x4 29 2.7 0.23
5x5x5 29 2.7 0.23
6x6x6 29 2.7 0.23
7x7x7 29 2.7 0.23
8x8x8 29 2.7 0.23
9x9x9 29 2.7 0.23

10x10x10 29 2.7 0.23
Table 7.10

Weak scalability of FETI–DP/BDDC block preconditioner with deluxe scaling for the AIE sys-
tem with E = 1e+ 6, ν = 0.4999. Iteration counts and extreme eigenvalues for increasing number of
subdomains (subd). Left: 2D case with p = 4, k = 2, H/h = 32. Right: 3D case with p = 3, k = 1,
H/h = 7.

the number of subdomains in each direction. As a result, the mesh parameters H
and h decrease at the same rate, and their ratio is kept constant while the number of
subdomains is increased. The Lamé parameters used in the tests are given by E =
1e6, ν = 0.4999; the spline tuples considered are (p = 4, k = 2) in two dimensions and
(p = 3, k = 1) in three dimensions. The experimental results confirm the algorithmic
scalability of our method, since the number of iterations remains constant as the
number of subdomains, as well as the number of unknowns, is increased.

8. Conclusions. We developed and analyzed a block FETI-DP type domain
decomposition algorithm for the solution of three-dimensional almost-incompressible
elasticity discretized by isogeometric analysis techniques with a continuous pressure
space. This work extends to the case of isogeometric analysis and almost incompress-
ible elasticity the pioneering paper by Tu and Li [44], which focused on standard
finite element discretizations of the Stokes system. We have explored different pre-
conditioners for the pressure block, developing in particular an effective BDDC deluxe
preconditioner without a coarse component. Theoretical results have shown that the
resulting block preconditioner is quasi-optimal, with a polylogarithmic bound with
respect to the ratio H/h, and algorithmically scalable with respect to the number
of subdomains. Extensive parallel numerical results have validated the theoretical
estimates and shown the robustness of the proposed method with respect to the
polynomial order and regularity of the spline space. Future work may consider the
construction and analysis of adaptive techniques for the choice of the primal con-
straints, in order to reduce the computational costs required by the solution of the
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coarse problem.
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