
NYU-CS-TR2005-879

BDDC Domain Decomposition Algorithms:

Methods with Three Levels

and for Flow in Porous Media

by

Xuemin Tu

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Mathematics

New York University
January, 2006

Approved:
Olof B. Widlund, Advisor

c© Xuemin Tu

All rights reserved, 2006

ACKNOWLEDGMENTS

I would like to give my deepest thank to my advisor Professor Olof Widlund!

Without his guidance and mentoring during these years, this thesis would have

been impossible. From Olof, I not only learned mathematics, but also a serious

attitude towards research, to enjoy his humor, and how to shape my personality.

I also thank my master advisor Professor Marcus Sarkis for his continuous sup-

port and encouragement. Thanks also go to the following scientists for their discus-

sions, support, and help: Jose Cal Neto, Maksymilian Dryja, Edward Givelberg,

Paulo Goldfeld, Bernhard Hientzsch, Hyea Hyun Kim, Jing Li, Michael Overton,

and Barry Smith.

Thanks also to all the faculty, staff, and students of Courant. Special thanks

to Tamar Arnon for her support.

I thank my husband Lijun Liu for his encouragement, support, and understand-

ing. I thank my parents for their continuous support.

This thesis is dedicated to my grandmother, Dejin Xu.

iii

ABSTRACT

Two inexact coarse solvers for Balancing Domain Decomposition by Constraints

(BDDC) algorithms are introduced and analyzed. These solvers help remove a

bottleneck for the two-level BDDC algorithms related to the cost of the coarse

problem when the number of subdomains is large. At the same time, a good

convergence rate is maintained.

BDDC algorithms are also developed for the linear systems arising from flow

in porous media discretized with mixed and hybrid finite elements. Our methods

are proven to be scalable and the condition numbers of the operators with our

BDDC preconditioners grow only polylogarithmically with the size of the subdo-

main problems.

iv

Contents

Acknowledgments iii

Abstract iv

List of Tables . ix

1 Introduction 1

1.1 An Overview . 1

1.2 Functional Analysis Tools . 3

1.2.1 Sobolev Spaces . 3

1.2.2 Trace and Extension Theorems 5

1.2.3 Poincaré and Friedrichs’ Inequalities 7

1.3 Variational Formulations of Second Order Elliptic Boundary-Value

Problems and Finite Element Spaces 9

1.3.1 A Standard Variational Formulation and Finite Element Spaces 10

1.3.2 A Mixed Formulation . 10

1.3.3 A Hybrid Formulation . 13

1.4 Preconditioned Iterative Methods 14

1.4.1 The Conjugate Gradient Method 17

v

1.4.2 The Chebyshev Iteration Method 19

1.5 Organization of the Dissertation . 23

2 Iterative Substructuring Methods 24

2.1 Introduction . 24

2.2 Problem Setting . 28

2.3 Some Useful Operators . 30

2.3.1 Restriction, Extension, and Scaling Operators 30

2.3.2 Average and Jump Operators 32

2.4 Schur Complement Systems and Discrete Harmonic Extensions . . . 33

2.5 Balancing Neumann-Neumann Methods 36

2.5.1 The Algorithm . 36

2.5.2 Condition Number Bound 37

2.6 FETI-DP Methods . 38

2.6.1 The Algorithm . 38

2.6.2 Condition Number Bound 40

2.7 BDDC Methods . 40

2.7.1 The Algorithm . 40

2.7.2 Condition Number Bound 41

2.8 Iterative Substructuring Methods Using Inexact Solvers 44

2.8.1 The Coarse Problems . 44

2.8.2 The Local Solvers . 46

2.8.3 Inexact Coarse and Local Solvers 48

vi

3 Three-level BDDC 50

3.1 The Algorithm . 51

3.2 Technical Tools . 55

3.2.1 Two Dimensions . 55

3.2.2 Three Dimensions . 62

3.3 Condition Number Estimate for the Preconditioned Operator with

the Preconditioner M̃−1 . 76

3.4 Acceleration by the Chebyshev Iteration Method 79

3.5 Numerical Experiments . 87

3.5.1 Two Dimensional Cases . 87

3.5.2 Three Dimensional Cases . 90

3.6 Conclusion . 91

3.7 Future Work . 93

4 A BDDC Algorithm for a Mixed Formulation of Flow in Porous

Media 94

4.1 Introduction . 94

4.2 Reduction to an Interface Problem 96

4.2.1 Obtaining a Divergence Free Correction 98

4.2.2 A Reduced Interface Problem 100

4.3 The BDDC Methods . 101

4.4 Some Auxiliary Results . 106

4.5 Condition Number Estimate for the BDDC Preconditioner 113

vii

4.6 Comparison with an Edge/face-based Iterative Substructuring Do-

main Decomposition Method . 113

4.7 Numerical Experiments . 114

4.8 More General Subdomains . 117

4.8.1 Obtaining a Correction in the Benign Subspace 117

4.8.2 Numerical Experiments . 119

5 A BDDC Algorithm for Flow in Porous Media with a Hybrid

Finite Element Discretization 121

5.1 Introduction . 121

5.2 The Problem Reduced to the Subdomain Interface 123

5.3 The BDDC Preconditioner . 127

5.4 Some Auxiliary Results . 130

5.5 Condition Number Estimate for the BDDC Preconditioner 136

5.6 Numerical Experiments . 136

Bibliography 140

viii

List of Tables

3.1 Condition number estimates and iteration counts for the operator

with the preconditioner M̃ with a change of the number of subre-

gions, Ĥ
H

= 4 and H
h

= 4 . 84

3.2 Condition number estimates and iteration counts for the operator

with the preconditioner M̃ with a change of the number of subdo-

mains, 4 × 4 subregions and H
h

= 4 84

3.3 Condition number estimates and iteration counts for the operator

with the preconditioner M̃ with a change of the size of subdomain

problems, 4 × 4 subregions and 4 × 4 subdomains 84

3.4 Condition number estimates and iteration counts for the operator

with the preconditioner M̃ with a change of the number of subre-

gions, Ĥ
H

= 4 and H
h

= 4 . 85

3.5 Condition number estimates and iteration counts for the operator

with the preconditioner M̃ with a change of the number of subdo-

mains, 4 × 4 subregions and H
h

= 4 85

3.6 Condition number estimates and iteration counts for the operator

with the preconditioner M̃ with a change of the size of subdomain

problems, 4 × 4 subregions and 4 × 4 subdomains 85

ix

3.7 Condition number estimates and iteration counts for the operator

with the preconditioner M̂ , u = 3.2, 4 × 4 subregions, Ĥ
H

= 16 and

H
h

= 4 . 86

3.8 Condition number estimates and iteration counts for the operator

with the preconditioner M̂ , u = 4, 4 × 4 subregions, Ĥ
H

= 16 and

H
h

= 4 . 86

3.9 Condition number estimates and iteration counts for the operator

with the preconditioner M̂ , u = 6, 4 × 4 subregions, Ĥ
H

= 16 and

H
h

= 4 . 86

3.10 Condition number estimates and iteration counts for the operator

with the preconditioner M̃ with a change of the number of subre-

gions, Ĥ
H

= 3 and H
h

= 3 . 88

3.11 Condition number estimates and iteration counts for the operator

with the preconditioner M̃ with a change of the number of subdo-

mains, 3 × 3 × 3 subregions and H
h

= 3 89

3.12 Condition number estimates and iteration counts for the operator

with the preconditioner M̃ with a change of the size of subdomain

problems, 3 × 3 × 3 subregions and 3 × 3 × 3 subdomains 89

3.13 Condition number estimates and iteration counts for the operator

with the preconditioner M̂ , u = 2.3, 3 × 3 × 3 subregions, Ĥ
H

= 6

and H
h

= 3 . 89

3.14 Condition number estimates and iteration counts for the operator

with the preconditioner M̂ , u = 3, 3× 3× 3 subregions, Ĥ
H

= 6 and

H
h

= 3 . 90

x

4.1 Condition number estimates and iteration counts, for a pair of BDDC

and FBA algorithms, with a change of the number of subdomains.

H/h = 8 and c ≡ 1. 115

4.2 Condition number estimates and iteration counts, for a pair of BDDC

and FBA algorithms, with a change of the size of subdomain prob-

lems. 8 × 8 subdomains and c ≡ 1. 115

4.3 Condition number estimates and iteration counts, for a pair of BDDC

and FBA algorithms, with a change of the number of subdomains.

H/h = 8 and c is in a checkerboard pattern. 115

4.4 Condition number estimates and iteration counts, for a pair of BDDC

and FBA algorithms, with a change of the size of subdomain prob-

lems. 8 × 8 subdomains and c is in a checkerboard pattern. 116

4.5 Condition number estimates and iteration counts, for the pair of

BDDC algorithms, with a change of the number of subdomains.

H/h = 8 and c ≡ 1. 119

4.6 Condition number estimates and iteration counts, for the pair of

BDDC algorithms, with a change of the size of subdomain problems.

8 × 8 subdomains and c ≡ 1. 120

4.7 Condition number estimates and iteration counts, for the pair of

BDDC algorithms, with a change of the number of subdomains.

H/h = 8 and c is in a checkerboard pattern. 120

4.8 Condition number estimates and iteration counts, for the pair of

BDDC algorithms, with a change of the size of subdomain problems.

8 × 8 subdomains and c is in a checkerboard pattern. 120

xi

5.1 Condition number estimates and iteration counts for the BDDC

preconditioner with a change of the number of subdomains. H
h

= 8

and a ≡ 1. 137

5.2 Condition number estimates and iteration counts for the BDDC

preconditioner with a change of the size of the subdomain problems.

8 × 8 subdomains and a ≡ 1. 137

5.3 Condition number estimates and iteration counts for the BDDC

preconditioner with a change of the number of subdomains. H
h

= 8

and a is in a checkerboard pattern. 137

5.4 Eigenvalue estimates and iteration counts for the BDDC precondi-

tioner with a change of the size of the subdomain problems. 8 × 8

subdomains and a is in a checkerboard pattern. 138

xii

Chapter 1

Introduction

1.1 An Overview

Usually the first step of solving an elliptic partial differential equation (PDE)

numerically is its discretization. Finite difference, finite element, or other dis-

cretizations reduce the original PDE to an often huge and ill-conditioned linear

or nonlinear system of algebraic equations. Limited by the memory and speed

of the computers, the traditional direct solvers can often not handle such large

linear systems. Moreover, iterative methods, such as Krylov space methods, may

need thousands of iterations to obtain accurate solutions due to large condition

numbers of such systems. Domain decomposition methods provide efficient and

scalable preconditioners that can be accelerated by Krylov space methods and have

become popular in applications in computational fluid dynamics, structural engi-

neering, electromagnetics, constrained optimization, etc. The basic idea of domain

decomposition methods is to split the original huge problem into many small prob-

lems that can be handled by direct solvers, and then solve these smaller problems

a number of times and accelerate the solution of the original problem with Krylov

1

space methods.

There are two main classes of domain decomposition methods: overlapping

Schwarz methods and iterative substructuring methods. In the overlapping Schwarz

methods, the domain is divided into many overlapping subdomains. In each Krylov

iteration of a one-level Schwarz method we primarily need to solve a local problem

in each subdomain. But the number of iterations will depend on the number of

subdomains. A coarse problem is added in the more powerful two-level overlapping

methods. With a generous overlap, the number of iterations for the two-level meth-

ods can be independent of the number of subdomains and the size of subdomain

problems. An abstract theory of Schwarz type domain decomposition methods has

also been established and successfully applied to several types of methods of this

kind; see [83, Chapters 2,3] and the references therein.

In iterative substructuring methods, the domain is decomposed into nonover-

lapping subdomains. The unknowns in the interior of the subdomains are first

eliminated independently and we then work with the Schur complement with re-

spect to the unknowns associated with the interface. Coarse problems are con-

structed using one or a few degrees of freedom for each subdomain. Among these

algorithms, the Neumann-Neumann and finite element tearing and interconnecting

methods (FETI) families are the best known and they have been tested in many

applications. For a detailed discussion, see Chapter 2 and [83, Chapters 4,5,6] and

the references therein.

Recently, a new family of iterative substructuring methods, the balancing do-

main decomposition by constraints (BDDC) algorithms, has been developed by

Clark Dohrmann in [27]. These methods have a Neumann-Neumann flavor. How-

2

ever, their coarse problems are given by sets of constraints enforced on the interface,

which are similar to those of the dual-primal FETI (FETI-DP) methods. It has

been proved recently that the preconditioned operators for BDDC and FETI-DP

have identical nontrivial eigenvalues except possibly for 0 and 1, see [63, 59, 20].

However, a shortcoming of both BDDC, FETI-DP, and all other domain de-

composition methods is that the coarse problem needs to be assembled and the

resulting matrix needs to be factored by a direct solver at the beginning of the com-

putation. Usually the size of the coarse problem is proportional to the number of

subdomains. Nowadays some computer systems have more than 100,000 powerful

processors, which allow very large and detailed simulations. The coarse component

can therefore be a bottleneck if the number of subdomains is very large. Motivated

by this fact, we will, in this dissertation, develop two three-level BDDC algorithms

to remove this difficulty. We also successfully adapt the two-level BDDC methods

to flow in porous media.

We will first review some basic function analysis tools in the following sections.

1.2 Functional Analysis Tools

1.2.1 Sobolev Spaces

Let Ω be a bounded Lipschitz domain in R
2 or R

3. L2(Ω) is the space of all real

measurable functions u that satisfy
∫

Ω

|u|2 dx <∞.

It is a Hilbert space with the scalar product

(u, v)L2(Ω) =

∫

Ω

u v dx

3

and an induced norm

‖u‖2
L2(Ω) = (u, u)L2(Ω) =

∫

Ω

|u|2 dx.

The space L2
0(Ω) is a subspace of L2(Ω) of functions with zero average over Ω.

The space H1(Ω) is a space of functions such that

∫

Ω

|u|2dx <∞, and

∫

Ω

∇u · ∇u dx <∞, ∀u ∈ H1(Ω),

with the scaled norm

‖u‖2
H1(Ω) =

∫

Ω

∇u · ∇u dx+
1

H2
Ω

∫

Ω

|u|2dx,

where HΩ is the diameter of Ω; this scaling factor is obtained by dilation from a

region of unit diameter. The corresponding H1-seminorm is defined by

|u|2H1(Ω) =

∫

Ω

∇u · ∇u dx.

The subspace of H1
0 (Ω) is a closure of the C∞

0 (Ω) functions in H1(Ω).

We also define the divergence operator for a vector function u ∈ R
n, n = 2, 3

as

div u = ∇ · u =
n∑

i=1

∂ui

∂xi
, (1.1)

where ui is the i-th component of u. The space H(div ; Ω) is a Hilbert space with

the scalar product and graph norm defined by

(u,v)div ;Ω =

∫

Ω

u · v dx+

∫

Ω

div u div v dx, ‖u‖2
div ;Ω = (u,u)div ;Ω.

4

1.2.2 Trace and Extension Theorems

Let Ω be a bounded Lipschitz domain in R
2 or R

3. We define some Sobolev spaces

on Γ ⊆ ∂Ω and two extension theorems in this subsection. For a more detailed

discussion, see [45, Section 1.5].

The trace space of H1(Ω) is H1/2(∂Ω), and, for Γ ⊆ ∂Ω, the corresponding

semi-norm and norm are given by

|u|2H1/2(Γ) =

∫

Γ

∫

Γ

|u(x) − u(y)|2

|x− y|d
dxdy, (1.2)

and

‖u‖2
H1/2(Γ) = |u|2H1/2(Γ) +

1

HΓ

‖u‖2
L2(Γ), (1.3)

where HΓ is the diameter of Γ and d is the dimension of Ω. We also define the

subspace H
1/2
00 (Γ) of H1/2(Γ), of functions which can be extended by zero to ∂Ω\Γ

and still belong to H1/2(∂Ω). H
1/2
00 (Γ) is a proper subspace of H1/2(Γ). The norm

of H
1/2
00 (Γ) can be defined as

‖u‖2

H
1/2
00 (Γ)

= |u|2H1/2(Γ) +

∫

Γ

u2(x)

d(x, ∂Γ)
dx, (1.4)

where d(x, ∂Γ) is the distance from x to the boundary ∂Γ.

Lemma 1.1 (Trace theorem) Let Ω be a Lipschitz region. Then, there is a

bounded linear operator γ0 : H1(Ω) → H1/2(∂Ω) such that γ0u = u|∂Ω if u is

continuous in Ω̄.

The dual spaces of H1/2(∂Ω) and H
1/2
00 (Γ) are denoted by H−1/2(∂Ω) and

H
−1/2
00 (Γ), respectively.

5

Given a vector u ∈ H(div ,Ω), we can define its normal component u ·n on ∂Ω

as an element of H−1/2(∂Ω), and the following inequality holds

‖u · n‖2
H−1/2(∂Ω) ≤ C

(
‖u‖2

L2(Ω) +H2
Ω‖div u‖2

L2(Ω)

)
, (1.5)

with a constant C that is independent of HΩ, the diameter of Ω. The operator

that maps a vector in H(div ,Ω) into its normal component in H−1/2(Ω) is thus

continuous, and it can be shown to be surjective; see [39, Ch. I, Th. 2.5 and Cor.

2.8]. The subspace H0(div ; Ω) consists of all functions in H(div ; Ω) with v ·n = 0

on ∂Ω.

We also have the following two extension theorems.

Lemma 1.2 Let Ω be a Lipschitz domain. Then, there exists a continuous lifting

operator R0 : H1/2(∂Ω) → H1(Ω) such that γ0(R0u) = u, u ∈ H1/2(∂Ω).

Lemma 1.3 For any µ ∈ H−1/2(∂Ω) with mean value zero on ∂Ω, there exists an

extension operator H̃ : H1/2(∂Ω) −→ L2(Ω) such that

div H̃µ = 0,

and

‖H̃µ‖L2(Ω) ≤ C‖µ‖H−1/2(∂Ω).

Here C is independent of HΩ and µ.

Proof: Consider a Neumann problem

4φ = 0, in Ω,

∂φ

∂n
= µ, on ∂Ω,

6

where n is the outward normal direction of ∂Ω. Since we assume that µ has mean

value zero over ∂Ω, this problem is solvable and we can select the solution φ with

mean value zero over Ω. We then define H̃µ := 5φ and have

‖H̃µ‖L2(Ω) = |φ|H1(Ω) ≤ C‖µ‖H−1/2(∂Ω),

where C is independent of the diameter of Ω.

�

1.2.3 Poincaré and Friedrichs’ Inequalities

In the domain decomposition theory, Poincaré and Friedrichs type inequalities

are powerful tools. We formulate them and some corollaries related to domain

decomposition methods in this subsection. For detailed proofs, see [72].

Lemma 1.4 (Poincaré’s inequality) Let Ω ⊂ R
n be a bounded Lipschitz do-

main. Then, there exist constants C1 and C2, depending only on Ω, such that

‖u‖2
L2(Ω) ≤ C1|u|

2
H1(Ω) + C2



∫

Ω

u dx




2

, ∀u ∈ H1(Ω).

Lemma 1.5 (Friedrichs’ inequality) Let Ω be the same as in Lemma 1.4 and

let Γ ⊆ ∂Ω have nonzero (n−1)-dimensional measure. Then, there exist constants

C1 and C2, depending only on Ω and Γ, such that

‖u‖2
L2(Ω) ≤ C1|u|

2
H1(Ω) + C2‖u‖

2
L2(Γ), ∀u ∈ H1(Ω).

In particular, if u = 0 on Γ,

‖u‖2
L2(Ω) ≤ C1|u|

2
H1(Ω)

7

and thus

|u|2H1(Ω) ≤ ‖u‖2
H1(Ω) ≤ (C1 + 1) |u|2H1(Ω).

By simple scaling arguments, we obtain the following corollary, see [83, Corol-

lary A.15].

Corollary 1.6 Let Ω be Lipschitz continuous with diameter HΩ and Γ ⊂ ∂Ω be

defined as in Lemma 1.5 with a diameter of order HΩ. Then, there exist constants

C1, C2, and C3, that depend only on the shape of Ω but are independent of HΩ,

such that

‖u‖2
L2(Ω) ≤ C1H

2
Ω |u|2H1(Ω) + C2HΩ ‖u‖2

L2(Γ), ∀u ∈ H1(Ω).

If u ∈ H1(Ω) has a vanishing mean value over Ω, then

‖u‖2
L2(Ω) ≤ C3H

2
Ω |u|2H1(Ω).

Using the operators γ0 and R0 of Lemmas 1.1 and 1.2, we can obtain the

following lemma which is useful in the analysis of some iterative substructuring

methods; see [83, Lemma A.17].

Lemma 1.7 Let Ω ⊂ R
3 be a Lipschitz continuous polyhedron. If u ∈ H1/2(∂Ω)

either has a vanishing mean value on ∂Ω or belongs to the closure of the space

of C∞(∂Ω) functions that vanish on a face of Ω, there exists a constant C1, that

depends only on the shape of Ω and the face, such that

‖u‖2
L2(∂Ω) ≤ C1HΩ |u|2H1/2(∂Ω).

Similarly, if F ⊂ ∂Ω is one of the faces of Ω of diameter on the order HΩ and

u ∈ H1/2(F) either has vanishing mean value on F or belongs to H
1/2
00 (F), then

8

there exists a constant C2, that depends only on the shape of F but not on its size,

such that

‖u‖2
L2(F) ≤ C2HΩ |u|2H1/2(F).

1.3 Variational Formulations of Second Order El-

liptic Boundary-Value Problems and Finite

Element Spaces

We consider the following elliptic problem on a bounded polygonal domain Ω in

two or three dimensions with boundary conditions:





−∇ · (a∇p) = f in Ω,
p = gD in ∂ΩD,
n · (a∇p) = gN in ∂ΩN ,

(1.6)

where n is the outward normal to ∂Ω and a is a positive definite matrix function

with entries in L∞(Ω) and satisfying

ξTa(x)ξ ≥ α‖ξ‖2, for a.e. x ∈ Ω, (1.7)

for some positive constant α.

We assume that the functions f ∈ L2(Ω), gD ∈ H1/2(∂ΩD), and gN ∈ H−1/2(∂ΩN).

Moreover, if ∂ΩN = ∂Ω, f and gN should satisfy the compatibility condition

∫

Ω

fdx +

∫

∂ΩN

gNds = 0.

The equation (1.6) has a unique solution p if ∂ΩD has nonzero measure. Oth-

erwise p is unique up to a constant. Without loss of generality, we assume that

gD = 0.

9

1.3.1 A Standard Variational Formulation and Finite Ele-
ment Spaces

Let

H1
0,D(Ω) = {v|v ∈ H1(Ω), v|∂ΩD

= 0},

and standard variational formulation of (1.6) is: find p ∈ H1
0,D such that

∫

Ω

a∇p · ∇vdx =

∫

Ω

fvdx +

∫

∂ΩN

gNvds, ∀v ∈ H1
0,D. (1.8)

We can use a conforming continuous piecewise linear finite element function

space Ŵ, of functions which vanish on ∂ΩD, to approximate H1
0,D. Then the finite

element discrete problem of (1.8) is: find p ∈ Ŵ such that

∫

Ω

a∇ph · ∇vhdx =

∫

Ω

fvhdx +

∫

∂ΩN

gNvhds, ∀vh ∈ Ŵ, (1.9)

and the matrix form is

Aph = Fh, (1.10)

where A is symmetric and positive definite if ∂ΩD has nonzero measure, otherwise

it is symmetric and positive semidefinite.

1.3.2 A Mixed Formulation

Assume that we are interested in computing −a∇p as is often required in flow in

porous media. If we use the standard formulation (1.8), we could first compute p

and then use finite differences or the gradient to approximate −a∇p. This approach

will introduce additional error for −a∇p. Moreover, −a∇p can be continuous even

if a has large jumps and then ∇p has large jumps too. Therefore, we introduce

the velocity u:

u = −a∇p,

10

and call p the pressure. We compute u directly by rewriting (1.6) for the velocity

u and the pressure p as follows:





u = −a∇p in Ω,
∇ · u = f in Ω,
n · u = 0 in ∂ΩN ,
p = 0 in ∂ΩD.

(1.11)

Let c(x) = a(x)−1. We now introduce a mixed and a hybrid finite element methods.

We assume ∂ΩN = ∂Ω, gN = 0, and f has mean value zero, in this subsection

for convenience.

The weak form of (1.11) is as follows: find u ∈ H0(div ,Ω) and p ∈ L2
0(Ω) such

that {
a(u,v) + b(v, p) = 0, ∀v ∈ H0(div ,Ω),
b(u, q) = −

∫
Ω
fqdx, ∀q ∈ L2

0(Ω),
(1.12)

where a(u,v) =
∫
Ω
uT c(x)vdx and b(u, q) = −

∫
Ω
(∇ · u)qdx.

We can then use the Raviart-Thomas finite element spaces to approximate

H(div). These spaces are conforming in H(div) and were introduced in [75] for

two dimensional cases and extended to three dimensions in [71]. See also [21,

III.3.1].

Let K be a triangle or tetrahedral element of a triangulation Th of Ω. Then we

define

RTk(K) := (Pk(K))n + xP̃k−1(K), k ≥ 1,

where x is the position vector, Pk(K) is the set of polynomials defined on K with

degree at most k, P̃k−1 is the subspace of Pk−1 of homogeneous polynomials, and

n is the dimension of K.

A function u ∈ RTk(K) is uniquely defined by degrees of freedom associated

11

with each edge (n = 2) or face f (n = 3)

∫

f

u · np, p ∈ Pk−1(f).

We add the following degrees of freedom for k > 1

∫

K

u · p, p ∈ Pk−2(K)n.

Then we define

RT h
k (Ω) := {u ∈ H(div ,Ω)|uK ∈ RTk(K), K ∈ Th},

RT h
k;0(Ω) := {u ∈ H0(div ,Ω)|uK ∈ RTk(K), K ∈ Th}.

Let Ŵ = RT h
1,0(Ω) and let Q be the space of piecewise constants with a zero

mean value, which are finite dimensional subspaces of H0(div ,Ω) and L2
0(Ω), re-

spectively. The pair Ŵ, Q satisfies a uniform inf-sup condition, see [21, Chapter

IV. 1.2]. The finite element discrete problem is: find uh ∈ Ŵ and ph ∈ Q such

that {
a(uh,vh) + b(vh, ph) = 0, ∀vh ∈ Ŵ,
b(uh, qh) = −

∫
Ω
fqhdx, ∀qh ∈ Q,

(1.13)

and the matrix form is:

[
A BT

B 0

] [
uh

ph

]
=

[
0
Fh

]
. (1.14)

The system (1.14) is symmetric indefinite with the matrix A symmetric, positive

definite. For details on the range of its negative and positive eigenvalues of (1.14),

see [76].

12

1.3.3 A Hybrid Formulation

We assume ∂ΩD = ∂Ω in this subsection for convenience.

We decompose Ω into N nonoverlapping subdomains Ωi with diameters Hi,

i = 1, · · · , N , and set H = maxiHi.

Let

Ŵ = RT h
1 (Ω) = {v ∈ L2(Ω)2 or L2(Ω)3;v|T = aT + cTx ∀T ∈ Th},

where aT ∈ R
2 or R

3, cT ∈ R, and the normal component of v is continuous across

the inter-element boundary.

Let

Ŵ(i) = RT h
1 (Ωi) = {v ∈ L2(Ωi)

2 or L2(Ωi)
3;v|T = aT + cTx ∀T ∈ Th},

where aT ∈ R
2 or R

3, cT ∈ R, and the normal component of v is continuous across

the inter-element boundaries.

We also define W and W(i) which are similar to Ŵ and Ŵ(i), respectively.

However, they do not have any continuity constraints on the normal components

of the functions, i.e.,

W = {v ∈ L2(Ω)2 or L2(Ω)3;v|T = aT + cTx ∀T ∈ Th},

where aT ∈ R
2 or R

3, cT ∈ R; and

W(i) = {v ∈ L2(Ωi)
2 or L2(Ωi)

3;v|T = aT + cTx ∀T ∈ Th},

where aT ∈ R
2 or R

3 and cT ∈ R.

We thus relax the continuity of the normal components on the element interface

in W and W(i). Instead, we will introduce Lagrange multipliers to enforce the

13

continuity of the Raviart-Thomas space. In an implementation, as in [42, 22], we

only need to use inter-element Lagrange multiplier on the subdomain interfaces.

Let F denote the set of edges/faces in Th and denote by F∂ the subset of F

which contains the edges/faces on ∂Ω. Then the Lagrange multiplier space Λ̂ is

the set of functions on F \F∂ which take constant values on individual edges/faces

of F and vanish on F∂; see [21, Section V1.2].

We can then reformulate the mixed problem (1.13) as follows: find (u, p, λ) ∈

W ×Q× Λ̂ such that for all (v, q, µ) ∈ W ×Q× Λ̂




∑
T∈T

(∫
T
uT cv −

∫
T
∇ · vpdx +

∫
∂T
λv · nTds

)
= 0,

−
∑

T∈T

∫
T
q∇ · u = −

∫
Ω
fqdx,∑

T∈T

∫
∂T
µu · nTds = 0.

(1.15)

The additional function λ is naturally interpreted as an approximation to the trace

of p on the boundary of the elements. A proof of the equivalence of (1.13) and

(1.15) can be found in [2, 15].

Correspondingly, the matrix form of (1.15) is




A BT
1 BT

2

B1 0 0
B2 0 0






u
p
λ


 =




0
Fh

0


 . (1.16)

1.4 Preconditioned Iterative Methods

As we mentioned before in Section 1.1, the discretization of boundary value prob-

lems of elliptic partial differential equations leads to huge sparse linear systems to

solve. Denote by N , the size of the linear system obtained from the discretization

of the Laplacian. The optimal flop bounds for the Cholesky factorization of such

systems are O(N 3/2) in two dimensions and O(N 2) in three dimensions and the

cost of the forward and backward substitutions are O(N logN) and O(N 4/3) in

14

two and three dimensions, respectively; see [38, Section 8.1] for two dimensional

and [31] for three dimensional cases. So usually iterative methods are used for

solving such huge sparse systems when N is very large.

Classical iterative methods are based on splitting the matrix, as in Jacobi,

Gauss-Seidel, and SOR methods. Unfortunately, they usually converge very slowly.

The same is true for conjugate gradient methods without preconditioning if the

condition numbers of the systems are very large.

Multigrid methods provide optimal order algorithms for solving elliptic bound-

ary value problems. In order to obtain errors comparable to the discretization

error of the finite element methods, the number of operations using the full multi-

grid algorithms, for solving the linear systems obtained from the finite element

discretization, only depends linearly on the number of the unknowns. The optimal

convergence of multigrid is independent of the number of levels. Several parallel

multilevel additive Schwartz preconditioners have also been developed and ana-

lyzed. Bramble, Pasciak and Xu [14] established that the condition number of

their multilevel algorithm (the BPX algorithm) grows at most quadratically with

the number of the levels, see also Xu [90]. Dryja and Widlund [29] obtained simi-

lar results with multilevel additive Schwarz preconditioners using abstract Schwarz

theory. Peter Oswald [73] proved that the condition number of the BPX algorithm

in fact is independent of the mesh sizes and the number of levels using Besov space

theory. Bramble and Pasciak [8], Xu [91], and Bornemann and Yserentant [4]

provided alternative proofs of Oswald’s result. A class of multilevel methods was

studied by Zhang, using the Schwarz framework, in [92, 93, 94]. All these results

establish that the condition number of multilevel additive Schwarz operators can

15

be independent of the mesh size and the number of levels. For the general theory

of multigrid algorithms, see the books [48, 70, 6] and the references therein.

Geometric multigrid methods operate on predefined grid hierarchies. It is often

very difficult to use structured geometric grids for large applications with compli-

cated geometries. Domain decomposition methods do not depend on the con-

struction of such grid hierarchies and can easily be implemented on unstructured

meshes. Algebraic multigrid methods are being developed for problems without

a grid hierarchy. They are based on the observation that reasonable interpola-

tion and Galerkin-operator can be obtained from the matrices, instead of the grid

hierarchies. These multigrid methods fix the smoothers such as Gauss-Seidel iter-

ations and coarsen in the directions where the smoothers work best in smoothing

the error. This process can be performed based only on the matrix and therefore

these methods avoid complex geometric meshes. However, effective parallelization

of multigrid methods with Gauss-Seidel smoothers is not an easy task, see [1]. The

recursive smoothers can be implemented in parallel, only in a block sense, but this

can lead to bad performance. Additionally, the communication especially on coarse

levels can dominate the total CPU time for multigrid methods; these methods have

a much lower computation to communication ratio compared with domain decom-

position algorithms. In iterative substructuring algorithms, the communication is

only needed for the coarse problem and the interface nodes. In [47, 46, 80, 81],

and more recently in [60], we have learned to replace the local solvers of iterative

substructuring algorithms by inexact multigrid methods and still keep the good

convergence. This strategy therefore can significantly decrease the communication

needed compared with multigrid methods and, at the same time, such methods can

16

take advantage of the fast convergence of the underlying domain decomposition

methods.

In this dissertation, we will mainly use two iterative methods. One is the con-

jugate gradient method, which is one of the Krylov space methods for symmetric

and positive definite problems. The other is the Chebyshev iteration method. We

introduce these two methods and their error analysis in the following subsections.

1.4.1 The Conjugate Gradient Method

The iterates of Krylov methods are constructed from the Krylov subspace and

have optimal properties in different norms for different Krylov methods. For a

symmetric and positive definite problem

Au = b, (1.17)

where A is symmetric and positive definite, the conjugate gradient method is

defined as follows, see [83, Fig C.4].

1. Initialize: r0 = b− Au0,

2. Iterate k = 1, 2, · · · until convergence

βk = < rk−1, rk−1 > / < rk−2, rk−2 > (β1 = 0)

pk = rk−1 + βkpk−1 (p1 = r0)

αk = < rk−1, rk−1 > / < pk, Apk >

uk = uk−1 + αkpk

rk = rk−1 − αkApk

From these formulas, we can see that the matrix A is used only for matrix-vector

products. It is not necessary to form A explicitly.

17

We have the following lemma on the convergence of the conjugate gradient

method for a symmetric and positive definite system.

Lemma 1.8 Let A be symmetric and positive definite. Then the conjugate gradi-

ent method satisfies the error bound

‖ek‖A ≤ 2ηk
A‖e

0‖A.

Here the convergence factor is

ηA =

√
κ(A) − 1√
κ(A) + 1

,

where κ(A), the condition number of A, is the ratio of the largest and smallest

eigenvalues of A, see [83, Lemma C.9].

Usually the linear systems obtained from discretizing PDEs have huge condition

numbers. According to Lemma 1.8, many conjugate gradient iterations may be

required for a certain accuracy. We therefore try to work with preconditioned

systems to improve the condition number. We solve M−1Au = M−1b instead of

Au = b, where M−1 is an approximation of A−1. M−1A should have a much better

condition number than A and M−1 should also be symmetric, positive definite,

and easy to apply to a vector. M−1 is called the preconditioner.

The preconditioned conjugate gradient method is given as follows, see [83, Fig

C.5].

1. Initialize: r0 = b− Au0,

2. Iterate k = 1, 2, · · · until convergence

Precondition: zk−1 = M−1rk−1

βk = < zk−1, rk−1 > / < zk−2, rk−2 > (β1 = 0)

18

pk = zk−1 + βkpk−1 (p1 = r0)

αk = < zk−1, rk−1 > / < pk, Apk >

uk = uk−1 + αkpk

rk = rk−1 − αkApk

We have the following lemma:

Lemma 1.9 Let A and M be symmetric and positive definite. Then the precondi-

tioned conjugate gradient method satisfies the error bound

‖ek‖A ≤ 2ηk
A,M‖e0‖A.

Here the convergence factor is

ηA,M =

√
κ(M−1A) − 1√
κ(M−1A) + 1

.

1.4.2 The Chebyshev Iteration Method

The Chebyshev iteration method is a classical iterative method for solving sym-

metric and nonsymmetric problems. It does not need the computation of inner

products that are necessary, in each iteration, for the conjugate gradient method.

This property will save communication between different processors in parallel

computing. However, in order to find the parameters which are needed for the

algorithm, we need to know upper and lower bounds of the spectrum of the sys-

tem. This is a disadvantage of the Chebyshev iteration method. We will use the

Chebyshev iteration method inside the Conjugate Gradient method in one of our

three-level BDDC methods since it makes analysis possible. See Chapter 3 for

details.

19

Algorithm

We can also use Chebyshev iteration with a preconditioner M−1. We need two

input parameters l and u for this method, where l and u are estimates for the

smallest and largest eigenvalues of M−1A, respectively.

Let α = 2
l+u

and µ = u+l
u−l

. Let ck be the value of the kth Chebyshev polynomial

evaluated at µ, i.e.,

ck+1 = 2µck − ck−1, k = 1, 2, · · · , (1.18)

with

c0 = 1, and c1 = µ. (1.19)

Without loss of generality, we set the initial guess:

u0 = 0. (1.20)

The Chebyshev acceleration is defined by, see [44],

u1 = u0 + αz0, (1.21)

uk+1 = uk−1 + ωk+1(αzk + uk − uk−1), k = 1, 2, · · · , (1.22)

where

rk = b− Auk, (1.23)

zk = M−1rk, (1.24)

and

ωk+1 = 2µ
ck
ck+1

. (1.25)

20

Error Analysis

Denote the exact solution of (1.17) by u∗. Let ek = u∗ − uk. Using (1.20), (1.21),

and (1.22), we obtain

ek+1 = ωk+1Qek + (1 − ωk+1)ek−1, (1.26)

with

e0 = u∗, and e1 = Qe0, (1.27)

where

Q = I − αM−1A. (1.28)

The symmetrized operatorM− 1
2AM− 1

2 has the following eigenvalue decomposition:

M− 1
2AM− 1

2 = PΛP T , (1.29)

where Λ is a diagonal matrix and the eigenvalues {λj} of M− 1
2AM− 1

2 are its diag-

onal entries. P is an orthogonal matrix, and P T is its transpose.

Let

P1 = M− 1
2P. (1.30)

We note that

M−1A = P1ΛP
−1
1 . (1.31)

Then, we have,

Q = P1ΣP
−1
1 , (1.32)

where Σ is a diagonal matrix with the eigenvalues {σj} of Q on the diagonal and

σj = 1 − αλj. (1.33)

21

Let

fk = ckP
−1
1 ek. (1.34)

If we substitute (1.34) into (1.26) and (1.27), we then obtain a diagonal system of

difference equations by using (1.18), (1.19), (1.25), and (1.32):

fk+1 = 2µΣfk − fk−1, k = 1, 2, · · · , (1.35)

with

f1 = µΣf0, and f0 = P−1
1 u∗. (1.36)

Solving this system, see [44], we obtain

fk = ΘP−1
1 u∗, k = 1, 2, · · · , (1.37)

where Θ is a diagonal matrix with cosh
(
k cosh−1(µσj)

)
on its diagonal.

Using (1.34), we obtain:

ek =
(
P1ΘP

−1
1

) u∗
ck
, k = 1, 2, · · · . (1.38)

Using the definition of ek, our approximate solution after k Chebyshev iterations

is given by

uk = P1JP
−1
1 u∗, (1.39)

where J is a diagonal matrix with 1 − cosh
(
k cosh−1(µσj)

)
/ck on its diagonal.

Using (1.18) and (1.19), we obtain

ck = cosh
(
k cosh−1(µ)

)
.

Therefore, we have 1 − cosh
(
k cosh−1(µσj)

)
/ cosh

(
k cosh−1(µ)

)
as the diagonal

entries of the matrix J .

From (1.38), we see that the Chebyshev iteration method converges if and only

if |σj| < 1, i.e., 0 < λj < l + u.

22

1.5 Organization of the Dissertation

The rest of the dissertation is organized as follows. We discuss several iterative

substructuring methods in Chapter 2. In Chapter 3, we present our three-level

BDDC methods, the corresponding theory, and numerical results, which is based

on our papers [84, 87]. We then extend the two-level BDDC algorithms to flow in

porous media in Chapter 4 and Chapter 5 with a mixed and a hybrid finite element

discretization, which are based on our papers [85, 86], respectively.

23

Chapter 2

Iterative Substructuring Methods

2.1 Introduction

It is known that overlapping Schwarz domain decomposition methods with gen-

erous overlap can have a rate of convergence that is independent of the number

of subdomains and the size of subdomain problems, see [83, Chapters 2 and 3].

They have been successfully applied in many fields. However, we cannot just use

standard coarse space for problems with coefficients with jumps across the subdo-

main interfaces for these methods. With proper scaling techniques, it is possible

to remove this difficulty by using iterative substructuring methods. Nonstandard

coarse spaces were introduced in [77, 79] for overlapping methods to remove this

difficulty, which are similar to the coarse problems for iterative substructuring.

Bramble, Pasciak, and Schwarz started the mathematical development of iterative

substructuring methods, for the crucial case when there are cross points of the

interface between the subdomains, with a series of papers [9, 10, 11, 12] in the

mid-1980s. Dryja, Smith, and Widlund in [28] introduced a large class of primal

iterative substructuring methods and analyzed them by using the abstract Schwarz

24

theory. Among the iterative substructuring algorithms, Neumann-Neumann and

FETI families are the best known and those methods have been tested in many

applications.

Glowinski and Wheeler [41, 43] first used the Neumann-Neumann idea for a

mixed formulation for elliptic problems. Bourgat, De Roeck, Glowinski, Le Tal-

lec, and Vidrascu [5, 24, 25] then introduced the Neumann-Neumann family in

[5, 24, 25] for the standard formulation for elliptic problems without coarse spaces.

Mandel and Brezina [61], Dryja and Widlund [30], and later Le Tallec [57], then in-

troduced coarse levels to the Neumann-Neumann methods, which gave us two-level

Balancing Neumann-Neumann (BNN) methods. BNN is a hybrid Schwarz algo-

rithm (see Section 2.5 for more details) and the second level considerably improves

the performance. The condition number of a well-designed BNN preconditioned

operator can be estimated by:

κ ≤ C

(
1 + log

H

h

)2

, (2.1)

where H is the diameter and h is the typical mesh size of the subdomains and C is

constant independent of H, h, and the coefficient a in (1.6), if it varies moderately

in each subdomain. Thus, the rate of convergence can be independent of the

number of subdomains and can grow only slowly with the size of the subdomain

problems.

One-level FETI methods were introduced by Farhat and Roux [36] and the

Dirichlet preconditioners were later introduced by Farhat, Mandel, and Roux in

[35], which makes the number of iterations less sensitive to the number of unknowns

in the local problems. Theoretical work was first carried out by Mandel and Tezaur

in [65], see also [16, 17] and [52]. The condition number of the preconditioned

25

FETI operator can also be bounded as in (2.1). Later, Farhat, Lesoinne, Le Tallec,

Pierson, and Rixen introduced the dual-primal FETI (FETI-DP) in [33] with vertex

constraints and a theoretical analysis was carried out by Mandel and Tezaur [66] for

two dimensions with the same condition number bound (2.1) for the preconditioned

FETI-DP operators.

An advantage of FETI-DP, compared with FETI, is that we never need to solve

singular problems which makes the algorithms more robust. However, in three di-

mensions, vertex constraints alone are not enough to obtain the good polylogarith-

mic condition number bound of (2.1) due to a much weaker interpolation estimate

and constraints on the averages over edges or faces are needed. Farhat, Lesoinne,

and Pierson [34] provided a scalable FETI-DP algorithm for three dimensional

cases using optional admissible constraints of this type. Klawonn, Widlund, and

Dryja [55, 56] provided several different three-dimensional FETI-DP algorithms

and established the condition number bound (2.1).

The BDDC (Balancing Domain Decomposition by Constraints) methods were

first introduced by Dohrmann in [27]. Mandel and Dohrmann in [62] proved that

the preconditioned BDDC operators have the condition number bound (2.1) by

using the abstract Schwarz framework. The BDDC methods are similar to the bal-

ancing Neumann-Neumann algorithms. However, the coarse problem, in a BDDC

algorithm, is given in terms of a set of primal constraints which is similar to that

of a FETI-DP algorithm. Mandel, Dohrmann, and Tezaur in [63] established an

important connection between FETI-DP and BDDC, namely that the precondi-

tioned FETI-DP and BDDC operators have the same eigenvalues except possibly

for 0 and 1. Fragakis and Papadrakakis observed this fact experimentally in [37]

26

for certain BNN algorithms and one-level FETI methods. Klawonn and Widlund

also established connections between the one-level FETI and the BNN algorithms

in [53]. Later, Li and Widlund rederived the FETI-DP and BDDC algorithms in

[59] and provided a much shorter proof of the main result in [63] using a change

of variables technique. Brenner and Sung also provided a proof for this result in

[20]. Our presentation of the FETI-DP and BDDC algorithms will be based on

the work by Li and Widlund in [59].

There is a limitation of the BNN, FETI-DP, BDDC algorithms, and other iter-

ative substructuring algorithms, namely that the matrices of the local and coarse

problems need to be factored by a direct solver at beginning of the computation.

When the number of subdomains or the size of subdomain problem is large, then

these direct solvers will be a bottleneck of these algorithms. The inexact solvers for

iterative substructuring algorithms have been discussed in [3, 47, 46, 80, 13]. Kla-

wonn and Widlund considered inexact solver for the one-level FETI algorithms in

[51]. In [84, 87], we introduced a additional level for the BDDC algorithms to solve

the coarse problem approximately while at the same time maintaining a good con-

vergence, see also Chapter 3 for details. In [60], Li and Widlund considered solving

the local problems in the BDDC algorithms by multigrid methods. Dohrmann has

also developed several versions of approximate BDDC preconditioners in [26]. Kla-

wonn and Rheinbach also recently provided and analyzed approximate FETI-DP

preconditioners in [50]. Dryja also provided some inexact versions of BNN in his

talk at the 16th domain decomposition conference.

The rest of the chapter is organized as follows: we first describe the problem

setting in Section 2.2. Some useful operators are introduced in Section 2.3 and

27

Schur complement systems and discrete harmonic extensions are introduced in

Section 2.4. In Sections 2.5, 2.6, and 2.7, BNN, FETI-DP, and BDDC algorithms

and condition number estimates are discussed. Finally, we discuss some iterative

substructuring methods using inexact solvers in Section 2.8.

2.2 Problem Setting

We again consider the second order scalar elliptic problem (1.6) in a two or three

dimensional region Ω. We assume that ∂ΩD = ∂Ω and, for convenience, we use u

instead of p as the unknown variable in this and the next chapters. We decompose

Ω into N nonoverlapping subdomains Ωi with diameters Hi, i = 1, · · · , N , and set

H = maxiHi. We then introduce a triangulation of all the subdomains. In our

analysis, we also assume that each subdomain is a union of shape-regular coarse

triangles or tetrahedra and that the number of such triangles forming an individual

subdomain is uniformly bounded. Moreover, when developing theory, we assume

that the fine triangulation of each subdomain is quasi uniform.

Definition 2.1 A substructure Ωi is floating if the intersection of its boundary

with ∂Ω is empty.

See also [83, Definition 4.1].

Let Γ be the interface between the subdomains and let the set of interface nodes

Γh be defined by Γh = (∪i∂Ωi,h) \ ∂Ωh, where ∂Ωi,h is the set of nodes on ∂Ωi and

∂Ωh is that of ∂Ω.

Let W(i) be the standard finite element space of continuous, piecewise linear

functions on Ωi. We assume that these functions vanish on ∂Ω. Each W(i) can

28

be decomposed into a subdomain interior part W
(i)
I and a subdomain interface

part W
(i)
Γ . The subdomain interface part W

(i)
Γ will be further decomposed into

a primal subspace W
(i)
Π and a dual subspace W

(i)
∆ , i.e., W(i) = W

(i)
I

⊕
W

(i)
Γ =

W
(i)
I

⊕
W

(i)
Π

⊕
W

(i)
∆ .

We denote the associated product spaces by

W :=
N∏

i=1

W(i), WΓ :=
N∏

i=1

W
(i)
Γ

W∆ :=
N∏

i=1

W
(i)
∆ , WΠ :=

N∏

i=1

W
(i)
Π ,

and

WI :=

N∏

i=1

W
(i)
I .

Correspondingly, we have

W = WI

⊕
WΓ and WΓ = WΠ

⊕
W∆.

We will often consider elements of a product space which are discontinuous

across the interface. However, the finite element approximations of the elliptic

problem are continuous across Γ; we denote the corresponding subspace of W by

Ŵ.

We further introduce an interface subspace W̃Γ ⊂ WΓ, for which certain primal

constraints are enforced. The resulting subspace of continuous functions is denoted

by ŴΠ. The space W̃Γ can be decomposed into W̃Γ = ŴΠ

⊕
W∆.

The global problem is: find (uI , u∆, uΠ) ∈ (WI,Ŵ∆,ŴΠ), such that

A



uI

u∆

uΠ


 =



AII AT

∆I AT
ΠI

A∆I A∆∆ AT
Π∆

AΠI AΠ∆ AΠΠ





uI

u∆

uΠ


 =



fI

f∆

fΠ


 . (2.2)

29

This problem is assembled from subdomain problems

A(i)



u

(i)
I

u
(i)
∆

u
(i)
Π


 =



A

(i)
II A

(i)T

∆I A
(i)T

ΠI

A
(i)
∆I A

(i)
∆∆ A

(i)T

Π∆

A
(i)
ΠI A

(i)
Π∆ A

(i)
ΠΠ






u

(i)
I

u
(i)
∆

u
(i)
Π


 =



f

(i)
I

f
(i)
∆

f
(i)
Π


 . (2.3)

Let u
(i)
r =

[
u

(i)
I u

(i)
∆

]T
and let

A(i)
rr =

[
A

(i)
II A

(i)T

∆I

A
(i)
∆I A

(i)
∆∆

]
. (2.4)

A(i) can then be written as [
A

(i)
rr A

(i)T

Πr

A
(i)
Πr A

(i)
ΠΠ

]
.

We also denote by FΓ, F̂Γ, and F̃Γ, the right-hand side spaces corresponding to

WΓ, ŴΓ, and W̃Γ, respectively.

2.3 Some Useful Operators

2.3.1 Restriction, Extension, and Scaling Operators

In order to describe the iterative substructuring algorithms, we need to introduce

several restriction, extension, and scaling operators between different spaces. The

restriction operator R
(i)
Γ maps a vector of the space ŴΓ to its restriction to the

subdomain subspace W
(i)
Γ . Each column of R

(i)
Γ with a nonzero entry corresponds

to an interface node, x ∈ ∂Ωi,h ∩ Γh, shared by the subdomain Ωi and its next

neighbors. R
(i)

Γ is similar to R
(i)
Γ , and represents the restriction from W̃Γ to W

(i)
Γ .

R
(i)
∆ : W∆ → W

(i)
∆ , is the restriction matrix which extracts the subdomain part, in

the space W
(i)
∆ , of the functions in the space W∆. R

(i)
Π is the restriction operator

from the space ŴΠ to W
(i)
Π . Multiplying each such element of R

(i)
Γ , R

(i)

Γ , and R
(i)
∆

30

with δ†i (x) gives us R
(i)
D,Γ, R

(i)

D,Γ, and R
(i)
D,∆, respectively. Here, we define δ†i (x) as

follows: for some γ ∈ [1/2,∞),

δ†i (x) =
aγ

i (x)∑
j∈Nx

aγ
j (x)

, x ∈ ∂Ωi,h ∩ Γh, (2.5)

where Nx is the set of indices j of the subdomains such that x ∈ ∂Ωj and aj(x)

is the coefficient of (1.6) at x in the subdomain Ωj. They provide a partition of

unity:
∑

i

R
(i)
Γ δ

†
i (x) ≡ 1, x ∈ Γh. (2.6)

Also let the scaling operator D(i) be a diagonal matrix with δ†i (x) on its diagonal,

where the component corresponds to an x ∈ ∂Ωi,h. In this dissertation, we assume

that the coefficient ai varies moderately in each subdomain.

Furthermore, RΓ∆ and RΓΠ are the restriction operators from the space W̃Γ

onto its subspace W∆ and WΠ, respectively. RΓ : ŴΓ → WΓ and RΓ : W̃Γ → WΓ

are the direct sums of R
(i)
Γ and R

(i)

Γ , respectively. R̃Γ : ŴΓ → W̃Γ is the direct

sum of RΓΠ and the R
(i)
∆ RΓ∆. The scaled operators RD,Γ and RD,∆ are the direct

sums of R
(i)
D,Γ and R

(i)
D,∆, respectively. R̃D,Γ is the direct sum of RΓΠ and RD,∆RΓ∆.

We also use the same restriction, extension, and scaled restriction operators for

the right hand side spaces FΓ, F̂Γ, and F̃Γ.

We have several important properties for the restriction, extension, and scaling

operators, namely

RT
ΓRD,Γ = RT

D,ΓRΓ = I, R̃T
Γ R̃D,Γ = R̃T

D,ΓR̃Γ = I. (2.7)

31

2.3.2 Average and Jump Operators

We define two average operators ED,1 : WΓ −→ ŴΓ by ED,1 = RΓR
T
D,Γ and

ED,2 : W̃Γ −→ ŴΓ by ED,2 = R̃ΓR̃
T
D,Γ, which computes the weighted averages

across the subdomain interface Γ and then distributes the averages to the boundary

points of each subdomain.

We define the matrix

B∆ = [B
(1)
∆ , B

(2)
∆ , . . . , B

(N)
∆], (2.8)

which is constructed from {0, 1,−1} such that the values of the function uΓ =

[u∆, uΠ]T ∈ WΓ associated with more than one subdomain coincide when B∆u∆ =

0. Multiplying the entries in B∆, each of which corresponds to a node x on ∂Ωi,

by the scaling constant δ†i (x) in (2.5) gives us BD,∆.

Let BΓ = B∆RΓ∆ and BD,Γ = BD,∆RΓ∆. We define a jump operator by

PD := BT
DΓBΓ, (2.9)

which maps W̃Γ into itself and computes the difference of the values in different

subdomain at the interface nodes.

The average and jump operators satisfy the following important relations:

Lemma 2.1

ED,2 + PD = I; E2
D,2 = ED,2, P

2
D = PD; ED,2PD = PDED,2 = 0.

Proof: See [59, Lemma 1].

�

32

We also have the following property of the average operators ED (ED,1 and

ED,2):

Lemma 2.2

EDuΓ = uΓ, ∀uΓ ∈ ŴΓ.

Proof: This follows the definition of ED and (2.7).

�

2.4 Schur Complement Systems and Discrete Har-

monic Extensions

In a first step of many iterative substructuring algorithms, the interior unknowns

u
(i)
I in each subdomain are eliminated by direct solvers. In this step, the Schur

complements with respect to u
(i)
Γ =

[
u

(i)
∆

u
(i)
Π

]
are formed. The resulting local Schur

complement can be written as

S(i) = A
(i)
ΓΓ − A

(i)
ΓIA

(i)−1

II A
(i)
IΓ,

see (2.3). They are not always be formed, in practice.

We define ŜΓ =
∑N

i=1R
(i)T

Γ S(i)R
(i)
Γ and the reduced global interface problem is

given by

ŜΓuΓ = gΓ, (2.10)

where

gΓ =

N∑

i=1

R
(i)T

Γ

{[
f

(i)
∆

f
(i)
Π

]
−

[
A

(i)
∆I

A
(i)
ΠI

]
A

(i)
II

−1
f

(i)
I

}
.

33

In practice, we never form the matrix ŜΓ explicitly. Instead, we store the A
(i)
IΓ and

the Cholesky factors of A
(i)
II . Whenever we need to do a matrix-vector multiplica-

tion with ŜΓ, we just solve a Dirichlet problem in each subdomain in addition to

doing some sparse matrix-vector multiplications.

The important subspace, which is directly related to the Schur complements,

is the discrete harmonic function space. We say that a function u(i), defined on

Ωi, is discrete harmonic on Ωi if

A
(i)
IIu

(i)
I + A

(i)
IΓu

(i)
Γ = 0. (2.11)

From the definition, we can see that u(i) is fully determined by u
(i)
Γ , the value of

u(i) on ∂Ωi. We use the notation u(i) := Hi(u
(i)
Γ) and call Hi the discrete harmonic

extension operator on Ωi. We denote the piecewise harmonic extension operator

to all of Ω by H(uΓ).

We have the following properties of the discrete harmonic extension and discrete

harmonic functions, see [83, Lemma 4.9 and Lemma 4.10].

Lemma 2.3 Let u
(i)
Γ be the restriction of a finite element function u to ∂Ωi ∩ Γ.

Then, the discrete harmonic extension w(i) = Hi(u
(i)
Γ) of u

(i)
Γ into Ωi satisfies

w(i)T

A(i)w(i) = min
v(i)|∂Ωi∩Γ=u

(i)
Γ

v(i)T

A(i)v(i)

and

u
(i)
Γ

T
S(i)u

(i)
Γ = w(i)T

A(i)w(i).

Analogously, if uΓ is the restriction of a finite element function u to Γ, the piecewise

discrete harmonic extension w = H(uΓ) of uΓ into the interior of the subdomains

34

satisfies

wTAw = min
v|Γ=uΓ

vTAv

and

wTAw = uT
Γ ŜΓuΓ.

Lemma 2.4 Let u be discrete harmonic. Then, for a floating subdomain Ωi, there

exist positive constants c and C, independent of h and H, such that

c ‖uΓ‖
2
H1/2(∂Ωi)

≤ ‖u‖2
H1(Ωi)

≤ C ‖uΓ‖
2
H1/2(∂Ωi)

,

c |uΓ|
2
H1/2(∂Ωi)

≤ |u|2H1(Ωi)
≤ C |uΓ|

2
H1/2(∂Ωi)

.

Consequently,

c ai|uΓ|
2
H1/2(∂Ωi)

≤ u
(i)
Γ

T
S(i)u

(i)
Γ ≤ C ai|uΓ|

2
H1/2(∂Ωi)

,

with u
(i)
Γ the restriction of u to ∂Ωi ∩Γ and the constants independent of h, H, and

the ai. For a subdomain such that ∂Ωi

⋂
∂ΩD has a nonzero measure, we have, by

Friedrichs’ inequality,

c ‖u‖2
H1(Ωi)

≤ |u|2H1(Ωi)
≤ C ‖u‖2

H1(Ωi)
,

c ‖uΓ‖
2

H
1/2
00 (∂Ωi∩Γ)

≤ ‖u‖2
H1(Ωi)

≤ C ‖uΓ‖
2

H
1/2
00 (∂Ωi∩Γ)

,

and

c ai‖uΓ‖
2

H
1/2
00 (∂Ωi∩Γ)

≤ u
(i)
Γ

T
S(i)u

(i)
Γ ≤ C ai‖uΓ‖

2

H
1/2
00 (∂Ωi∩Γ)

.

These two lemmas ensure that we can work equivalently with functions defined

on Γ and with the corresponding discrete harmonic extensions defined on Ω.

35

2.5 Balancing Neumann-Neumann Methods

2.5.1 The Algorithm

Let W0 ⊂ ŴΓ be the coarse space for a Neumann-Neumann algorithm and let RT
0

be the matrix with columns representing the basis functions of W0. R
T
0 provides

a map from ŴΓ to W0. For example, we can choose a minimal coarse space W0

as

W0 = span {RT
i δ

†
i , ∂Ωi ∩ ∂Ω = ∅}. (2.12)

Let

S0 := R0ŜΓR
T
0

and the interface problem (2.10) with the Balancing Neumann-Neumann precon-

ditioner can be written as follows:

M−1
BNN ŜΓuΓ = M−1

BNNgΓ, (2.13)

where M−1
BNN is of the form

RT
0 S

−1
0 R0 +

(
I − RT

0 S
−1
0 R0ŜΓ

)(N∑

i=1

R
(i)T

D,ΓS
(i)†R

(i)
D,Γ

)(
I − ŜΓR

T
0 S

−1
0 R0

)
.

Let

Pi = R
(i)T

D,ΓS
(i)†R

(i)
D,ΓŜΓ, P0 = RT

0 S
−1
0 R0ŜΓ.

We can then write the preconditioned operator as a hybrid Schwarz operator

M−1
BNN ŜΓ = P0 + (1 − P0)

N∑

i=1

Pi(I − P0). (2.14)

We note that, for floating subdomains, S(i) is not invertible. But after the operation

I−P0, the right hand sides of the relevant linear systems always are balanced which

means that the local Neumann problems are solvable, see [83, Section 6.2].

36

2.5.2 Condition Number Bound

Since the preconditioned BNN operator can be written as a hybrid Schwarz opera-

tor, we can follow [83, Section 6.2] and use the abstract theory of Schwarz methods

to estimate the condition number.

For uΓ ∈ ŴΓ, by Lemma 2.2, we have a splitting of uΓ:

uΓ =

N∑

i=1

R
(i)T

Γ vi, vi := Ih(δ†iui) ∈ W
(i)
Γ .

By (2.7), we have the constant C0 = 1 in [83, Assumption 2.12]. Therefore the

lower bound of the eigenvalues is 1.

For the upper bound, we set w ∈ WΓ with wi = D(i)−1
R

(i)
Γ PiuΓ. Then w ∈

range(ŜΓ) and

ED,1w =
N∑

i=1

PiuΓ.

We have the following lemma for the average operator ED,1:

Lemma 2.5

|ED,1w|
2
bSΓ

≤ C(1 + log(H/h))2|w|2bSΓ
, w ∈ range(ŜΓ). (2.15)

Proof. See [83, Lemma 6.3].

�

By using Lemma 2.5 and some algebra, we can obtain

|
N∑

i=1

Pi|bSΓ
≤ C(1 + log(H/h))2;

for details, see [83, Section 6.2.3].

Therefore the following theorem follows by using [83, Theorem 2.13].

37

Theorem 2.6 For any uΓ ∈ ŴΓ,

uT
ΓMBNNuΓ ≤ uT

Γ ŜΓuΓ ≤ C (1 + log(H/h))2 uT
ΓMBNNuΓ,

where C is independent not only of the mesh size and the number of subdomains,

but also of the values ai of the coefficient of (1.6).

2.6 FETI-DP Methods

2.6.1 The Algorithm

We present the FETI-DP algorithm as in [59].

We form a partially assembled operator Ã by assembling at the primal variables.

Ã is then of the form:


A
(1)
II A

(1)T

∆I · · · · · · · · · A
(1)T

ΠI R
(1)
Π

A
(1)
∆I A

(1)
∆∆ · · · · · · · · · A

(1)T

Π∆ R
(1)
Π

...
...

. . .
...

...
...

· · · · · · · · · A
(N)
II A

(N)T

∆I A
(N)T

ΠI R
(N)
Π

· · · · · · · · · A
(N)
∆I A

(N)
∆∆ A

(i)T

Π∆R
(i)
Π

R
(1)T

Π A
(1)
ΠI R

(1)T

Π A
(1)
Π∆ · · · R

(N)T

Π A
(N)
ΠI R

(N)T

Π A
(N)
Π∆

∑N
i=1R

(i)T

Π A
(i)
ΠΠR

(i)
Π




.

(2.16)

Also we can write Ã as [
Arr ÃT

Πr

ÃΠr ÃΠΠ

]
.

Our global system (2.2) can be written as: find (uI, u∆, uΠ) ∈ (WI ,W∆,ŴΠ),

such that

Ã




u
(1)
I

u
(1)
∆
...

u
(N)
I

u
(N)
∆

uΠ




=




f
(1)
I

f
(1)
∆
...

f
(N)
I

f
(N)
∆∑N

i=1R
(i)
Π f

(i)
Π




, (2.17)

38

under the constraints:

B∆u∆ = 0,

where uI =



u

(1)
I
...

u
(N)
I


 and u∆ =



u

(1)
∆
...

u
(N)
∆


 .

We introduce a set of Lagrange multipliers λ ∈ V := rangeB∆ to enforce the

constraints and obtain a saddle point formulation of (2.17) as: find (uI , u∆, uΠ, λ) ∈

(WI,W∆,ŴΠ,V), such that




Ã




u
(1)
I

u
(1)
∆
...

u
(N)
I

u
(N)
∆

uΠ




+BT
∆λ =




f
(1)
I

f
(1)
∆

...

f
(N)
I

f
(N)
∆∑N

i=1R
(i)
Π f

(i)
Π




,

B∆u∆ = 0.

(2.18)

After eliminating the variables uI , u∆, and uΠ from (2.18), we obtain the FETI-

DP system for the Lagrangian multipliers λ as

FFETI−DPλ = BΓS̃
−1
Γ BT

Γλ = −
(
dΛ − B̃ΛΠS

−1
Π gΠ

)
,

where

S̃−1
Γ = RT

Γ∆




N∑

i=1

[
0 R

(i)T

∆

] [
A

(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−1 [
0

R
(i)
∆

]
RΓ∆ + ΦS−1

Π ΦT , (2.19)

Φ = RT
ΓΠ −RT

Γ∆

N∑

i=1

[
0 R

(i)T

∆

] [A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−1 [
A

(i)T

ΠI

A
(i)T

Π∆

]
R

(i)
Π , (2.20)

SΠ =
∑N

i=1R
(i)T

Π



A

(i)
ΠΠ −

[
A

(i)
ΠI A

(i)
Π∆

] [
A

(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−1 [
A

(i)T

ΠI

A
(i)T

Π∆

]
R

(i)
Π ,

(2.21)

39

dΛ = −
N∑

i=1

[
0 B

(i)
∆

] [
A

(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−1 [
f

(i)
I

f
(i)
∆

]
,

and

B̃Λ,Π = −
N∑

i=1

[
0 B

(i)
∆

] [A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−1 [
A

(i)T

ΠI

A
(i)T

Π∆

]
R

(i)
Π .

We note that SΠ plays the role of a coarse component and is defined by a set of

constraints.

The preconditioned FETI-DP system with a Dirichlet preconditioner is of the

form

M−1
FETI−DPFFETI−DP = −BD,ΓS̃ΓB

T
D,Γ

(
dΛ − B̃ΛΠS

−1
Π gΠ

)
,

where M−1
FETI−DP = BD,ΓS̃ΓB

T
D,Γ. See [59] for details.

2.6.2 Condition Number Bound

The lower bound of preconditioned FETI-DP operator is 1, also by a simple algebra

argument. The upper bound is obtained by using the upper bound of the jump

operator PD, defined in (2.9), see [63] for two dimensions and [55, 56] for three

dimensions. See also [83, Section 4].

2.7 BDDC Methods

2.7.1 The Algorithm

We define an operator S̃Γ : W̃Γ → F̃Γ, which is of the form: given uΓ = uΠ⊕u∆ ∈

ŴΠ

⊕
W∆ = W̃Γ, find S̃ΓuΓ ∈ F̃Γ by eliminating the interior variables of the

40

system:

Ã




u
(1)
I

u
(1)
∆
...

u
(N)
I

u
(N)
∆

uΠ




=




0

R
(1)
∆ RΓ,∆S̃ΓuΓ

...
0

R
(N)
∆ RΓ,∆S̃ΓuΓ

RΓΠS̃ΓuΓ



. (2.22)

It can be proved that S̃Γ defined in (2.22) is the inverse of S̃−1
Γ which is defined

in (2.19) and which appears in the FETI-DP operator, see [59]. Our definition

therefore makes sense.

Since S̃Γ is a partial assembled Schur complement, we can obtain the fully

assembled Schur complement ŜΓ by a further assembly, i.e., ŜΓ = R̃T
Γ S̃ΓR̃Γ.

Therefore, the reduced interface problem (2.10) can be written as: find uΓ ∈

ŴΓ such that

R̃T
Γ S̃ΓR̃ΓuΓ = gΓ.

The two-level preconditioned BDDC method is of the form

M−1
BDDCR̃

T
Γ S̃ΓR̃ΓuΓ = M−1

BDDCgΓ,

where the preconditioner M−1
BDDC = R̃T

D,ΓS̃
−1
Γ R̃D,Γ has the following form:

R̃T
D,Γ



R

T
Γ∆




N∑

i=1

[
0 R

(i)T

∆

] [
A

(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−1 [
0

R
(i)
∆

]
RΓ∆ + ΦS−1

Π ΦT



 R̃D,Γ.

(2.23)

Here Φ and SΠ are defined in (2.20) and (2.21), respectively.

2.7.2 Condition Number Bound

We assume that the coefficient a(x) of (1.6) varies moderately in each subdomain.

We also assume that each subdomain is a union of shape-regular coarse triangles

41

and that the number of such triangles forming an individual subdomain is uni-

formly bounded. Moreover, we assume that the triangulation of each subdomain

is quasi uniform. We then have a good upper bound of the average operator ED,2:

Lemma 2.7

|ED,2uΓ|
2
eSΓ

≤ C

(
1 + log

H

h

)2

|uΓ|
2
eSΓ
,

for any uΓ ∈ W̃Γ, where C is a positive constant independent of H, h, and the

coefficients of (1.6).

Proof. We can use the upper bound for the jump operator PD; see [66] for

the two dimensional case with vertex constraints and [83, Lemma 6.36] for three

dimensional case with vertex and edge constraints. Then apply Lemma 2.1.

�

Theorem 2.8 For any uΓ ∈ ŴΓ,

uT
ΓMBDDCuΓ ≤ uT

Γ ŜΓuΓ ≤ C (1 + log(H/h))2 uT
ΓMBDDCuΓ,

where C is independent not only of the mesh size and the number of subdomains,

but also of the values ai of the coefficient of (1.6).

Proof. We follow the proofs of [58, Theorem 1] and [87, Lemma 4.7].

Lower bound: Let

wΓ =
(
R̃T

D,ΓS̃
−1
Γ R̃D,Γ

)−1

uΓ ∈ ŴΓ. (2.24)

Using the properties (2.7) and (2.24), we have,

uT
ΓMBDDCuΓ = uT

Γ

(
R̃T

D,ΓS̃
−1
Γ R̃D,Γ

)−1

uΓ = uT
ΓwΓ

42

= uT
ΓR̃

T
Γ S̃ΓS̃

−1
Γ R̃D,ΓwΓ =< R̃ΓuΓ, S̃

−1
Γ R̃D,ΓwΓ >eSΓ

≤ < R̃ΓuΓ, R̃ΓuΓ >
1/2
eSΓ
< S̃−1

Γ R̃D,ΓwΓ, S̃
−1
Γ R̃D,ΓwΓ >

1/2
eSΓ

=
(
uT

ΓR̃
T
Γ S̃ΓR̃ΓuΓ

)1/2 (
wT

Γ R̃
T
D,ΓS̃

−1
Γ S̃ΓS̃

−1
Γ R̃D,ΓwΓ

)1/2

=
(
uT

ΓR̃
T
Γ S̃ΓR̃ΓuΓ

)1/2 (
uT

ΓMBDDCuΓ

)1/2
.

We obtain

uT
ΓMBDDCuΓ ≤ uT

Γ ŜΓuΓ,

by canceling a common factor and squaring.

Upper bound: Using the definition of wΓ, the Cauchy-Schwarz inequality,

and Lemma 2.7, we obtain the upper bound:

uT
Γ ŜΓuΓ = uT

ΓR̃
T
Γ S̃ΓR̃ΓR̃

T
D,ΓS̃

−1
Γ R̃D,ΓwΓ

= < R̃ΓuΓ, ED,2S̃
−1
Γ R̃D,ΓwΓ >eSΓ

≤ < R̃ΓuΓ, R̃ΓuΓ >
1/2
eSΓ
< ED,2S̃

−1
Γ R̃D,ΓwΓ, ED,2S̃

−1
Γ R̃D,ΓwΓ >

1/2
eSΓ

≤ C < R̃ΓuΓ, R̃ΓuΓ >
1/2
eSΓ

(1 + log(H/h)) |S̃−1
Γ R̃D,ΓwΓ|eSΓ

= C (1 + log(H/h))
(
uT

ΓR̃
T
Γ S̃ΓR̃ΓuΓ

)1/2 (
wT

Γ R̃
T
D,ΓS̃

−1
Γ S̃ΓS̃

−1
Γ R̃D,ΓwΓ

)1/2

= C (1 + log(H/h))
(
uT

Γ ŜΓuΓ

)1/2 (
uT

ΓMBDDCuΓ

)1/2
.

Thus,

uT
Γ ŜΓuΓ ≤ C (1 + log(H/h))2 uT

ΓMBDDCuΓ.

�

We have the following relation between the preconditioned FETI-DP and BDDC

operators:

43

Theorem 2.9 The preconditioned FETI-DP operator and the BDDC operator

have the same eigenvalues except possibly for 0 and 1.

Proof. See [63, Section 7], [59, Theorem 1], and [20, Theorem 3.9].

�

2.8 Iterative Substructuring Methods Using In-

exact Solvers

The coarse or the local problems will be bottlenecks of the BNN, FETI-DP, and

BDDC algorithms if the number of subdomains or the size of the subdomain prob-

lems are large. One technique for removing the difficulty related to the coarse

problem is trying to choose small numbers of the primal constraints, but at the

same time keep the good condition number bound. Klawonn, Widlund, and Dryja

in [55] and Klawonn and Widlund in [54] proposed some ways of choosing a small

number of primal constraints while maintaining a good bound for the condition

number. Mandel and Sousedik [64] proposed an approach to choose a small set of

constraints based on solving certain local eigenvalue problems. Another technique

for removing these difficulties is by using inexact solvers for these problems. We

will describe some algorithms for solving coarse or local problems approximately

and still maintain a good rate of convergence.

2.8.1 The Coarse Problems

In the BDDC preconditioners and FETI-DP operators, a coarse problem is to be

solved in each iteration. The size of the coarse problem is proportional to the

number of subdomains and the number of primal constraints we choose. Here we

44

discuss approaches which use inexact solvers. It is easier to deal with the coarse

problem for the BDDC algorithms than the FETI-DP algorithms since it is a part

of the preconditioner. For the FETI-DP algorithms, the coarse problem appears in

the operator. If we solve it inexactly, then we end up solving a different problem. A

successful approach for inexact FETI-DP methods involves a return to the original

saddle point problem for the primal variables and the Lagrangian multipliers and

then consider preconditioners for a saddle point problem, see [50] and earlier work

by Klawonn and Widlund [51] for details. Here we focus on approaches for the

BDDC methods.

One approach is to introduce an additional level (or several additional levels)

and to apply BDDC idea recursively to the coarse problem. This approach, the

three-level BDDC method, was introduced and analyzed in [84, 87]; see also Chap-

ter 3 for details. In that work, we assume that all the local Dirichlet and Neumann

problems are solved exactly and the coarse problem is formed using exact local

Neumann solvers.

We proceed as follows: we group several subdomains together to form a sub-

region. We could first reduce the original coarse problem to a subregion interface

problem by eliminating independently the subregion interior variables, which are

the primal variables on the Γ and interior to the subregions. In one of the three-level

BDDC algorithms, we do not solve the subregion interface problem exactly, but

replace it by one iteration of the BDDC preconditioner; Dohrmann also suggested

this approach in [27]. This means that we only need to solve several subregion

local problems and one coarse problem on the subregion level in each iteration.

We assume that all these problems are small enough to be solved by direct solvers.

45

We will show in Chapter 3 that the condition number estimate for the resulting

three-level preconditioned BDDC operator is bounded by

κ ≤ C

(
1 + log

Ĥ

H

)2(
1 + log

H

h

)2

, (2.25)

where Ĥ, H, and h are the typical diameters of the subregions, subdomains, and

mesh of subdomains, respectively. C is constant independent of Ĥ, H, h, and the

coefficients of (1.6), provided that ai varies moderately in each subregion.

In order to remove the additional factor
(
1 + log Ĥ

H

)2

in (2.25), we can use a

Chebyshev iteration method to accelerate the three-level BDDC algorithms. With

this device, the condition number bound is

κ ≤ CC(k)

(
1 + log

H

h

)2

, (2.26)

where C(k) is a constant which depends on the eigenvalues of the preconditioned

coarse problem, the two parameters chosen for the Chebyshev iteration, and k, the

number of the Chebyshev iterations. C(k) goes to 1 as k goes to ∞. H and h are

the same as before.

2.8.2 The Local Solvers

There are one Dirichlet and two Neumann local solvers (if we store the coarse

basis functions, then only one Neumann local solver) in each BDDC iteration. The

Dirichlet solver are used in the BDDC operator to obtain the Schur complement

for the interface unknowns. We also need local Neumann solvers to assemble the

coarse matrix. We call the Neumann solver for constructing the coarse matrix

Neumann I and the others Neumann II, respectively. They play different roles.

Here we follow Li and Widlund’s work in [60].

46

For the Dirichlet solver, like the coarse problem for FETI-DP, we will end up

solving different problems if we just replace it by an inexact solver. The way

to resolve this difficulty is to use the original matrix A defined in (2.2) as the

operator instead of the Schur complement for the interface. We then need to

construct a BDDC preconditioner for the operator A. Similarly, we can use Ã−1,

the inverse of the partial assembled global matrix defined in (2.16), as a part of

the preconditioner. It has the form:

Ã−1 =

[
A−1

rr 0
0 0

]
+

[
−A−1

rr Ã
T
Πr

I

]
S−1

Π

[
−ÃΠrA

−1
rr I

]
, (2.27)

where SΠ is defined in (2.21).

It turns out that this preconditioner extends the interface jump by zero to the

interior nodes. The condition number of the operator with this preconditioner

cannot be as good as (2.1). Instead, while it is independent of the number of

the subdomains, it grows linearly in H/h. If a discrete harmonic extension of the

interface jump to the interior nodes is added, we recover the exact original BDDC

preconditioner; see [60] for more details. Using inexact Dirichlet solvers will provide

inexact discrete harmonic extensions, which can provide a good bound for the

corresponding average operators. In [60], Li and Widlund use multigrid solvers to

approximate the harmonic extension, which gives good approximation of the exact

Dirichlet solvers.

The Neumann I problems is related to forming the coarse problem. Inexact

solvers should be chosen to guarantee the positive definiteness of the corresponding

coarse matrix. The inexact solver will not only effect the construction of the coarse

matrix, but also the scalability of the preconditioners.

47

For the Neumann II problems, one can replace them by another inexact solver

which is spectrally equivalent to the exact solvers, and the good condition number

bound can then be retained.

2.8.3 Inexact Coarse and Local Solvers

Dohrmann proposed a preconditioner, called M−1
1 in [26], which assumes that the

local Dirichlet solvers are exact and that

α1g
TKg ≤ gT K̃g ≤ α2g

TKg ∀g, (2.28)

where K = diag{A(i)} and K̃ = diag{Ã(i)}. Here A(i) is defined in (2.3) and Ã(i)

is similar to A(i) except we replace A
(i)
rr by an approximation which corresponds to

inexact local Neumann solvers.

We then denote by K̃c the coarse problem, which is constructed by using inexact

Neumann solvers. If the approximate coarse problem Pc satisfies:

β1p
T K̃−1

c p ≤ pTPcp ≤ β2p
T K̃−1

c p ∀p, (2.29)

then the condition number of the preconditioned BDDC operator with the precon-

ditioner M−1
1 has the following bound:

κ ≤ C
α2 max(1, β2)

α1 min(1, β1)

(
1 + log

H

h

)2

. (2.30)

We note that if we use exact Neumann solvers and Pc is provided by the three-level

approach, we then have α1 = α2 = 1, β1 = 1, and β2 = C
(
1 + log Ĥ

H

)2

. We then

obtain the bound (2.25).

We also point out that usually the constant α1 and α2 are not easy to obtain

directly since we can only get estimates for the inexact Neumann solvers and not for

K̃. In [26], Dohrmann suggests obtaining these constants from a Lanczos iteration.

48

Dohrmann also provides two preconditioners M−1
2 and M−1

3 that use inexact

Dirichlet solvers and keep the inexact Neumann and coarse solvers the same as in

M−1
1 .

He uses an assumption for M−1
2 and M−1

3 , namely,

γ1g
TKg ≤ gT K̂g ≤ γ2g

TKg ∀g, (2.31)

where K is the same as in (2.28) and K̂ = diag{Â(i)}. Here Â(i) is similar to A(i)

except that we replace A
(i)
II by an approximation which corresponds to the inexact

local Dirichlet solvers. In M−1
2 , the residual update in the preconditioner also use

the approximate operator Â corresponding to the inexact Dirichlet solvers. Then

the condition number of the preconditioned operator with the preconditioner M−1
2

is

κ ≤ C
α2γ

3
2 max(1, β2)

α1γ3
1 min(1, β1)

(
1 + log

H

h

)2

, (2.32)

see [26]. The constants γ1 and γ2 are in practice estimated in the same way as

α1 and α2. However, it is hard to obtain a condition number estimate for the

preconditioned operator with the preconditioner M−1
3 , where the residual update

in the preconditioner uses A directly, by the approach in [26]. This preconditioner

is quite similar to one in [60] and in that paper the condition number of the

operator, with this preconditioner, is obtained by estimating the bound for the

corresponding average operators.

Dohrmann also points out that all the local inexact solvers should satisfy the

null space property, see [26] for more details.

49

Chapter 3

Three-level BDDC

In this chapter, we introduce two three-level BDDC methods. The BDDC algo-

rithms, previously developed for two levels [27, 62, 63], are similar to the balancing

Neumann-Neumann algorithms. However, their coarse problems, in BDDC, are

given in terms of sets of primal constraints and they are generated and factored by

a direct solver at the beginning of the computation. The coarse components of the

preconditioners can ultimately become a bottleneck if the number of subdomains

is very large. We will try to remove this problem by using one or several additional

levels. We introduce two three-level BDDC methods in two and three dimensional

cases for vertex and edge average constraints, respectively. We also provide esti-

mates of the condition numbers of the system with these two new preconditioners.

Our presentation follows [84, 87].

The rest of the chapter is organized as follows. We introduce our first three-

level BDDC method and the corresponding preconditioner M̃−1 in Section 3.1. We

give some auxiliary results in Section 3.2. In Section 3.3, we provide an estimate

of the condition number for the system with the preconditioner M̃−1 which is of

the form C
(
1 + log Ĥ

H

)2 (
1 + log H

h

)2
, where Ĥ, H, and h are the diameters of the

50

subregions, subdomains, and elements, respectively. In Section 3.4, we introduce a

second three-level BDDC method which uses Chebyshev iterations. We denote the

corresponding preconditioner by M̂−1. We show that the condition number of the

system with the preconditioner M̂−1 is of the form CC(k)
(
1 + log H

h

)2
, where C(k)

is a constant depending on the eigenvalues of the preconditioned coarse problem,

the two parameters chosen for the Chebyshev iteration, and k, the number of

Chebyshev iterations. C(k) goes to 1 as k goes to ∞. Finally, some computational

results are presented in Section 3.5.

3.1 The Algorithm

For the three-level cases, we will not factor the coarse problem matrix SΠ, defined in

(2.21), by a direct solver. Instead, we will solve the coarse problem approximately

using ideas similar to those for the two-level preconditioners.

We decompose Ω into N subregions Ω(j) with diameters Ĥ(j), j = 1, · · · , N .

Each subregion Ω(j) is the union of Nj subdomains Ω
(j)
i with diameters H

(j)
i . Let

Ĥ = maxj Ĥ
(j) and H = maxi,j H

(j)
i , for j = 1, · · · , N , and i = 1, · · · , Nj. We

introduce the subregional Schur complement

S
(j)
Π =

Nj∑

i=1

R
(i)T

Π



A

(i)
ΠΠ −

[
A

(i)
ΠI A

(i)
Π∆

] [
A

(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−1 [
A

(i)T

ΠI

A
(i)T

Π∆

]
R

(i)
Π ,

and note that the coarse problem matrix SΠ can be assembled from the S
(j)
Π .

Let Γ̂ be the interface between the subregions; Γ̂ ⊂ Γ. We denote the vector

space corresponding to the subdomain primal variables (subdomain corners for

two dimensions or subdomain edge average variables for three dimensions) in Ω(i),

by W
(i)
c . Each W

(i)
c can be decomposed into a subregion interior part W

(i)

c,bI and

51

a subregion interface part W
(i)

c,bΓ, i.e., W
(i)
c = W

(i)

c,bI
⊕

W
(i)

c,bΓ , where the subregion

interface part W
(i)

c,bΓ can be further decomposed into a primal subspace W
(i)

c,bΠ and

a dual subspace W
(i)

c, b∆, i.e., W
(i)

c,bΓ = W
(i)

c,bΠ
⊕

W
(i)

c, b∆ . We denote the associated

product spaces by Wc :=
∏N

i=1 W
(i)
c , Wc,bΓ :=

∏N
i=1 W

(i)

c,bΓ, Wc, b∆ :=
∏N

i=1 W
(i)

c, b∆,

Wc,bΠ :=
∏N

i=1 W
(i)

c,bΠ, and Wc,bI :=
∏N

i=1 W
(i)

c,bI . Correspondingly, we have Wc =

Wc,bI
⊕

Wc,bΓ , and Wc,bΓ = Wc,bΠ
⊕

Wc, b∆ . We denote by Ŵc the subspace of Wc

of functions that are continuous across Γ̂.

We next introduce an interface subspace W̃c,bΓ ⊂ Wc,bΓ, for which primal con-

straints are enforced. Here, we only consider vertex constraints for two dimensions

and edge average constraints for three dimensions. For the three dimensional case,

we need to change the variables for all the local coarse matrices corresponding

to the edge average constraints. From now on, we assume all the matrices and

variables have been changed if it is necessary. The continuous primal subspace is

denoted by Ŵc,bΠ. The space W̃c,bΓ can be decomposed into W̃c,bΓ = Ŵc,bΠ
⊕

Wc, b∆ .

In the three-level BDDC algorithm, we need to introduce several restriction,

extension, and scaling operators between different subregion spaces. The restric-

tion operator R̂
(i)
bΓ maps a vector of the space Ŵc,bΓ to a vector of the subdomain

subspace W
(i)
c,Γ. Each column of R̂

(i)
bΓ with a nonzero entry corresponds to an in-

terface node, x ∈ ∂Ω(i) ∩Ω(j), shared by the subregion Ωi and certain neighboring

subregions. R̂
(i)

bΓ is similar to R̂
(i)
bΓ which represents the restriction from W̃c,bΓ to

W
(i)

c,bΓ. R̂
(i)
b∆ is the restriction matrix which extracts the subregion part, in the space

W
(i)

c, b∆, of the functions in the space Wc, b∆. Multiplying each such element of R̂
(i)
bΓ ,

R̂
(i)

bΓ , and R̂
(i)
b∆ with δ̂†i (x) gives us R̂

(i)
bD,bΓ, R̂

(i)

bD,bΓ, and R̂
(i)
bD, b∆, respectively. Here, we

define δ̂†i (x) as follows: for γ ∈ [1/2,∞), δ̂†i (x) =
aγ

i (x)P
j∈Nx

aγ
j (x)

, x ∈ ∂Ω
(i)
H ∩ Γ̂H ,

52

where Nx is the set of indices j of the subdomains such that x ∈ ∂Ω
(j)
H and aj(x)

is the coefficient of (1.6) at x in the subregion Ω(j). (In our theory, we assume

the ai are constant in each subregion.) Furthermore, R̂bΓ b∆ and R̂bΓbΠ are the restric-

tion operators from the space W̃c,bΓ onto its subspace Wc, b∆ and Wc,bΠ respectively.

R̂bΓ : Ŵc,bΓ → Wc,bΓ and R̂bΓ : W̃c,bΓ → Wc,bΓ are the direct sum of R̂
(i)
bΓ and R̂

(i)

bΓ ,

respectively.
̂̃
RbΓ : Ŵc,Γ → W̃c,bΓ is the direct sum of R̂bΓbΠ and the R̂

(i)
b∆ R̂bΓ b∆. The

scaled operators R̂ bD,bΓ and R̂ bD, b∆ are the direct sums of R̂
(i)
bD,bΓ and R̂

(i)
bD, b∆.

̂̃
R bD,bΓ is the

direct sum of R̂bΓbΠ and R̂ bD, b∆R̂bΓ b∆.

We also denote by Fc,bΓ, F̂c,bΓ, and F̃c,bΓ, the right-hand side spaces corresponding

to Wc,Γ, Ŵc,Γ, and W̃c,Γ, respectively, and will use the same restriction, extension,

and scaled restriction operators for Fc,bΓ, F̂Γ, and F̃c,bΓ.

We define our three-level preconditioner M̃−1 by

R̃T
D,Γ



R

T
Γ∆




N∑

i=1

[
0 R

(i)T

∆

] [A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−1 [
0

R
(i)
∆

]
RΓ∆ + ΦS̃−1

Π ΦT



 R̃D,Γ,

(3.1)

cf. (2.23), where S̃−1
Π is an approximation of S−1

Π and is defined as follows: given

Ψ ∈ F̂c,bΓ, let y = S−1
Π Ψ and ỹ = S̃−1

Π Ψ. Here Ψ =
[
Ψ

(1)
bI , · · · ,Ψ(N)

bI ,ΨbΓ

]T
,

y =
[
y

(1)
bI , · · · ,y(N)

bI ,ybΓ

]T
, and ỹ =

[
ỹ

(1)
bI , · · · , ỹ(N)

bI , ỹbΓ

]T

.

To solve SΠy = Ψ by block factorization in the two-level case, we can write




S
(1)
ΠbI bI

· · · · · · S
(1)T

ΠbΓbI
R̂

(1)
bΓ

...
. . .

...
...

· · · · · · S
(N)
ΠbI bI

S
(N)T

ΠbΓbI
R̂

(N)
bΓ

R̂
(1)T

bΓ S
(1)
ΠbΓbI

· · · R̂
(N)T

bΓ S
(N)
ΠbΓbI

∑N
i=1 R̂

(i)T

Γ S
(i)
ΠbΓbΓ

R̂
(i)
bΓ







y
(1)
bI
...

y
(N)
bI
ybΓ


 =




Ψ
(1)
bI
...

Ψ
(N)
bI

ΨbΓ


 .

(3.2)

53

We have

y
(i)
bI = S

(i)−1

ΠbI bI

(
Ψ

(i)
bI − S

(i)
ΠbIbΓ

R̂
(i)
bΓ ybΓ

)
, (3.3)

and

(
N∑

i=1

R̂
(i)T

bΓ (S
(i)
ΠbΓbΓ

− S
(i)
ΠbΓbI

S
(i)−1

ΠbI bI
S

(i)T

ΠbΓbI
)R̂

(i)
bΓ

)
ybΓ = ΨbΓ −

N∑

i=1

R̂
(i)T

bΓ S
(i)
ΠbΓbI

S
(i)−1

ΠbI bI
Ψ(i).

Let T (i) = S
(i)
ΠbΓbΓ

− S
(i)
ΠbΓbI

S
(i)−1

ΠbI bI
S

(i)T

ΠbΓbI
and T = diag(T (1), · · · , T (N)). We then

introduce a partially assembled Schur complement of SΠ, T̃ : W̃c,bΓ → F̃c,bΓ by

T̃ = R̂
T

bΓTR̂bΓ, (3.4)

and define hbΓ ∈ F̂c,bΓ, by

hbΓ = ΨbΓ −
N∑

i=1

R̂
(i)T

bΓ S
(i)
ΠbΓbI

S
(i)−1

ΠbI bI
Ψ(i). (3.5)

The reduced subregion interface problem can be written as: find ybΓ ∈ Ŵc,bΓ, such

that

̂̃
R

T

bΓ T̃
̂̃
RbΓybΓ = hbΓ. (3.6)

When using the three-level preconditioner M̃−1, we do not solve (3.6) exactly.

Instead, we replace ybΓ by

ỹbΓ =
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓhbΓ. (3.7)

We will maintain the same relation between ỹ
(i)
bI and ỹ

(i)
bΓ , i.e.,

ỹ
(i)
bI = S

(i)−1

ΠbI bI

(
Ψ

(i)
bI − S

(i)
ΠbIbΓ

R̂
(i)
bΓ ỹbΓ

)
. (3.8)

54

3.2 Technical Tools

In this section, we will collect a number of results which are needed in our theory.

In order to avoid a proliferation of constants, we will use the notation A ≈ B. This

means that there are two constants c and C, independent of any parameters, such

that cA ≤ B ≤ CA, where C <∞ and c > 0.

3.2.1 Two Dimensions

Lemma 3.1 Let D be a square with vertices A = (0, 0), B = (H, 0), C = (H,H),

and D = (0, H), with a quasi-uniform triangulation of mesh size h. Then, there

exists a discrete harmonic function v defined on D such that ‖v‖L∞(D) = v(A) ≈

1 + log H
h
, v(B) = v(C) = v(D) = 0 and |v|2H1(D) ≈ 1 + log H

h
.

Proof: This lemma follows from a result by Brenner and Sung [19, Lemma 4.2].

Let N be an integer and GN be the function defined on (0, 1) by

GN(x) =

N∑

n=1

(
1

4n− 3
sin ((4n− 3)πx)

)
.

GN is symmetric with respect to the midpoint of (0, 1), where it attains its maxi-

mum in absolute value. Moreover, we have:

|GN |
2

H
1/2
00 (0,1)

≈ 1 + logN,

and

‖GN‖L∞(0,1) = GN(1/2) ≈ 1 + logN ;

see [19, Lemma 3.2].

55

Let [−H, 0] and [0, H] have the mesh inherited from the quasi-uniform mesh

on DA and AB respectively and let gh(x) be the nodal interpolation of GN(x+H
2H

).

Then we have

|gh|
2

H
1/2
00 (−H,H)

≈ 1 + log
H

h
and ‖gh‖L∞(0,1) ≈ 1 + log

H

h
.

See [19, Corollary 3.6]. We point out that in [19, Corollary 3.6], a uniform mesh is

used. But in the proof of the bound for |·|
H

1/2
00 (−H,H)

, we only need the interpolation

error estimate theorem and the fact that H
1/2
00 (−H,H) is the interpolation space

halfway between L2(−H,H) and H1
0 (−H,H). Therefore the result is still valid for

a quasi-uniform mesh.

We can define v as 0 on the line segments CD and CB and by

v(x, 0) = gh(x), for 0 ≤ x ≤ H,

and

v(0, y) = gh(−y), for 0 ≤ y ≤ H.

Since v is a discrete harmonic function in D, we have,

|v|2H1(D) = |v|2H1/2(∂D) ≈ |gh|
2

H
1/2
00 (−H,H)

≈ 1 + log
H

h
.

�

Remark: In Lemma 3.1, we have constructed the function v for the square D.

By using similar ideas, we can easily construct a function v for other shape-regular

polygons which satisfy similar properties.

Lemma 3.2 Let V H
i be the standard continuous piecewise linear finite element

function space for a subregion Ω(i) with a quasi-uniform coarse mesh with mesh

56

size H. And let V h
i,j, j = 1, · · · , Ni, be the space for a subdomain Ω

(i)
j with a

quasi-uniform fine mesh with mesh size h. Moreover, each subdomain is a union

of coarse triangles with vertices on the boundary of the subdomain. Given u ∈ V H
i ,

let û interpolate u at each coarse node and be the discrete V h
i,j-harmonic extension

in each subdomain Ω
(i)
j constrained only at the vertices of Ω

(i)
j , j = 1, · · · , Ni. Then,

there exist two positive constants C1 and C2, which are independent of Ĥ, H, and

h, such that

C1(1 + log
H

h
)

(
Ni∑

j=1

|û|2
H1(Ω

(i)
j)

)
≤ |u|2H1(Ω(i)) ≤ C2(1 + log

H

h
)

(
Ni∑

j=1

|û|2
H1(Ω

(i)
j)

)
.

Proof: Without loss of generality, we assume that the subdomains are quadri-

laterals. Denote the vertices of the subdomain Ω
(i)
j by aj, bj, cj, and dj, and denote

the nodal values of u at these four crosspoints by u(aj), u(bj), u(cj), and u(dj),

respectively. Since u is a piecewise linear function, we have,

|u|2H1(Ω(i)) =

Ni∑

j=1

|u|2
H1(Ω

(i)
j)
,

and

|u|2
H1(Ω

(i)
j)

= |u− u(aj)|
2

H1(Ω
(i)
j)

≈ C

(∑

m=b,c,d

(
(u(mj) − u(aj))

2
)
)
. (3.9)

According to Lemma 3.1, we can construct three discrete harmonic functions

φb, φc, and φd on Ω
(i)
j such that

φb(bj) = (u(bj) − u(aj)) (1 + log
H

h
), φb(aj) = φb(cj) = φb(dj) = 0,

φc(cj) = (u(cj) − u(aj)) (1 + log
H

h
), φc(aj) = φc(bj) = φc(dj) = 0,

φd(dj) = (u(dj) − u(aj)) (1 + log
H

h
), φd(aj) = φd(bj) = φd(cj) = 0,

57

and with

|φm|
2

H1(Ω
(i)
j)

≈ (u(mj) − u(aj))
2 (1 + log

H

h
), m = b, c, d. (3.10)

Let vj = 1
1+log H

h

(φb +φc +φd)+u(aj); we then have vj(mj) = u(mj), m = a, b, c, d,

and

|vj|
2

H1(Ω
(i)
j)

= |
1

1 + log H
h

(φb + φc + φd) + u(aj)|
2

H1(Ω
(i)
j)

=

(
1

1 + log H
h

)2

|φb + φc + φd|
2

H1(Ω
(i)
j)

≤ 3

(
1

1 + log H
h

)2 ∑

m=b,c,d

|φm|
2

H1(Ω
(i)
j)

≤

(
1

c1/2(1 + log H
h
)

)2(
1 + log

H

h

) ∑

m=b,c,d

(u(mj) − u(aj))
2

≤
1

C1(1 + log H
h
)
|u|2

H1(Ω
(i)
j)
. (3.11)

Here, we have used (3.9) and (3.10) for the last two inequalities.

By the definition of û, we have,

|û|2
H1(Ω

(i)
j)

≤ |v|2
H1(Ω

(i)
j)

≤
1

C1(1 + log H
h
)
|u|2

H1(Ω
(i)
j)
.

Summing over all the subdomains in the subregion Ω(i), we have,

C1

(
1 + log

H

h

)(Ni∑

j=1

|û|2
H1(Ω

(i)
j)

)
≤

Ni∑

j=1

|u|2
H1(Ω

(i)
j)

= |u|2H1(Ω(i)).

This proves the first inequality.

We prove the second inequality as follows:

|u|2H1(Ω(i)) =

Ni∑

j=1

|u|2
H1(Ω

(i)
j)

=

Ni∑

j=1

|u− u(aj)|
2

H1(Ω
(i)
j)

58

≤ C2

(
Ni∑

j=1

max
m=b,c,d

(
(u(mj) − u(aj))

2
)
)

≤ C2

(
Ni∑

j=1

‖û− u(aj)‖
2

L∞(Ω
(i)
j)

)

≤ C2

(
1 + log

H

h

)(Ni∑

j=1

|û|2
H1(Ω

(i)
j)

)
.

Here, we have used a standard finite element Sobolev inequality [83, Lemma

4.15].

�

We next list several results for the two-level BDDC methods. To be fully

rigorous, we assume that each subregion is a union of shape-regular coarse triangles

and the number of such triangles forming an individual subregion is uniformly

bounded. Thus, there is a quasi-uniform coarse triangulation of each subregion.

Similarly, each subdomain is a union of shape-regular coarse triangles with the

vertices on the boundary of the subdomain. Moreover the fine triangulation of

each subdomain is quasi uniform. We can then get uniform constants C1 and C2

in Lemma 3.2, which work for all the subregions.

We define the interface averages operator Ê bD on W̃c,bΓ as

Ê bD =
̂̃
RbΓ
̂̃
R

T

bD,bΓ, (3.12)

which computes the averages across the subregion interface Γ̂ and then distributes

the averages to the boundary points of the subregions.

We have the following estimate for Ê bD :

Lemma 3.3 Consider the two-level BDDC, we have

|Ê bDubΓ|
2
eSbΓ

≤ C

(
1 + log

Ĥ

H

)2

|ubΓ|
2
eSbΓ

, ∀ubΓ ∈ W̃bΓ,

59

where S̃bΓ and W̃bΓ, which corresponds to a mesh with size H, are analogous to S̃Γ

and W̃Γ, which corresponds to a mesh with size h, respectively.

Proof: See Lemma 2.7.

�

In addition, we have:

Lemma 3.4

|Ê bDwbΓ|
2
eT ≤ C

(
1 + log

Ĥ

H

)2

|wbΓ|
2
eT ,

for any wbΓ ∈ W̃c,bΓ, where C is a positive constant independent of Ĥ, H, and h.

Recall that T̃ is defined in (3.4).

Proof: Denote by H(i) the discrete harmonic extension in the subregion Ω(i) with

respect to S
(i)
Π , given by the values on the boundary of Ω(i), i.e., H(i)(w) ∈ W̃

(i)
c

satisfies:

|H(i)(w)|
S

(i)
Π

= min
v∈fW(i)

c ,v=w on ∂Ωi

ai|v|S(i)
Π
, w ∈ W̃

(i)

c,bΓ.

For w ∈ W̃
(i)

c,bΓ, let Ĥ(i)(w) ∈ W̃
(i)
c satisfy:

|IH
(
Ĥ(i)(w)

)
|H1(Ω(i)) = min

v∈fW(i)
c ,v=w on ∂Ω(i)

|IH (v) |H1(Ω(i)), w ∈ W̃
(i)

c,bΓ,

where IH(·) is the nodal interpolation onto V H
i and V H

i is defined in Lemma 3.2.

Denote by H̃(i)
j the discrete harmonic extension in each subdomain Ω

(i)
j , with

respect to the fine mesh with mesh size h, given the crosspoint nodal values, where

i = 1, · · · , N , and j = 1, · · · , Ni.

60

We have

|Ê bDwbΓ|
2
eT =

N∑

i=1

|H(i)(R̂
(i)

bΓ Ê bDwbΓ)|2
S

(i)
Π

≤
N∑

i=1

|Ĥ(i)(R̂
(i)

bΓ Ê bDwbΓ)|2
S

(i)
Π

=

N∑

i=1

ai

(
Ni∑

j=1

|H̃(i)
j

(
Ĥ(i)(R̂

(i)

bΓ Ê bDwbΓ)

)
|2
H1(Ω

(i)
j)

)
.

Here we have used the definitions of H, Ĥ, H̃, and S
(i)
Π .

By Lemma 3.2,

|Ê bDwbΓ|
2
eT ≤

N∑

i=1

ai

(
Ni∑

j=1

|H̃(i)
j

(
Ĥ(i)(R̂

(i)

bΓ Ê bDwbΓ)

)
|2
H1(Ω

(i)
j)

)

≤
1

C1(1 + log H
h
)

N∑

i=1

ai

(
|IH

(
Ĥ(i)(R̂

(i)

bΓ Ê bDwbΓ)

)
|2H1(Ωi)

)

=
1

C1(1 + log H
h
)
|Ê bDwbΓ|

2
eSbΓ

.

Using Lemma 3.3, we obtain

|Ê bDwbΓ|
2
eT ≤

1

C1(1 + log H
h
)
|Ê bDwbΓ|

2
eSbΓ

≤
C

C1(1 + log H
h
)

(
1 + log

Ĥ

H

)2

|wbΓ|
2
eSbΓ

=
C

C1(1 + log H
h
)

(
1 + log

Ĥ

H

)2(N∑

i=1

ai|IH

(
Ĥ(i)(R̂

(i)

bΓ wbΓ)

)
|2H1(Ω(i))

)

≤
C

C1(1 + log H
h
)

(
1 + log

Ĥ

H

)2(N∑

i=1

ai|IH

(
H(i)(R̂

(i)

bΓ wbΓ)

)
|2H1(Ω(i))

)
.

Here we have used the definition of H and Ĥ again.

By Lemma 3.2 and the definition of H, we have

|Ê bDwΓ|
2
eT ≤

C

C1(1 + log H
h
)

(
1 + log

Ĥ

H

)2(N∑

i=1

ai|IH

(
H(i)(R̂

(i)

bΓ wbΓ)

)
|2H1(Ω(i))

)

61

≤
C

C1(1 + log H
h
)

(
1 + log

Ĥ

H

)2

C2

(
1 + log

H

h

)
·

(
N∑

i=1

ai

Ni∑

j=1

(
|H̃(i)

j

(
H(i)(R̂

(i)

bΓ wbΓ)

)
|2
H1(Ω

(i)
j)

))

=
CC2

C1

(
1 + log

Ĥ

H

)2(N∑

i=1

|H(i)(R̂
(i)

bΓ wbΓ)|2
S

(i)
Π

)

=
CC2

C1

(
1 + log

Ĥ

H

)2

|wbΓ|
2
eT .

�

3.2.2 Three Dimensions

Lemma 3.5 Let D be a cube with vertices A1 = (0, 0, 0), B1 = (H, 0, 0), C1 =

(H,H, 0), D1 = (0, H, 0), A2 = (0, 0, H), B2 = (H, 0, H), C2 = (H,H,H) and

D2 = (0, H,H) with a quasi-uniform triangulation of mesh size h. Then, there

exists a discrete harmonic function v defined in D such that v̄A1B1 ≈ 1 + log H
h
,

where v̄A1B1 is the average of v over the edge A1B1, |v|2H1(D) ≈ H
(
1 + log H

h

)
, and

v has a zero average over the other edges.

Proof: Again we will use a result by Brenner and He [18, Lemma 4.2]. Let N

be an integer and GN the function defined on (0, 1) by

GN(x) =
N∑

n=1

(
1

4n− 3
sin ((4n− 3)πx)

)
.

GN(x) is even with respect to the midpoint of (0, 1), where it attains its maxi-

mum in absolute value. Moreover, we have:

|GN |
2

H
1/2
00 (0,1)

≈ 1 + logN and ‖GN‖L2(0,1) ≈ 1;

62

see [18, Lemma 3.7].

Let [−H, 0] and [0, H] have a mesh inherited from the quasi-uniform meshes on

D1A1 and A1B1, respectively, and let gh(x) be the nodal interpolation of GN(x+H
2H

).

Then, we have ‖gh‖L∞(−H,H) ≈ 1 + log H
h
,

|gh|
2

H
1/2
00 (−H,H)

≈ 1 + log
H

h
and ‖gh‖L2(−H,H) ≈ H; (3.13)

see [18, Lemma 3.7] or [84, Lemma 1].

Let τh(x) be a function on [0, H] defined as follows:

τh(x) =





x
h1

0 ≤ x ≤ h1,

1 h1 ≤ x ≤ H − h2,
H−x
h2

H − h2 ≤ x ≤ H,

where h1 and h2 are the lengths of the two end intervals.

Then the following estimates hold:

‖τh‖
2
L2(0,H) ≈ H and |τh|

2

H
1/2
00 (0,H)

≈ 1 + log
H

h
; (3.14)

see [18, Lemma 3.6].

Define the discrete harmonic function v as 0 on the boundary of D except two

open faces A1B1C1D1 and A1B1B2A2. It is defined on these two faces by

v(x1, x2, 0) = gh(x2)τh(x1), for (x1, x2) ∈ A1B1C1D1,

v(x1, 0, x3) = gh(−x3)τh(x1), for (x1, x3) ∈ A1B1B2A2.

It is clear that v̄A1B1 ≈ 1 + log H
h

and that v has a zero average over the other

edges. Since v is discrete harmonic in D, we have,

|v|2H1(D) = |v|2H1/2(∂D)

≈ |gh|
2

H
1/2
00 (−H,H)

‖τh‖
2
L2(0,H) + |τh|

2

H
1/2
00 (0,H)

‖gh‖
2
L2(−H,H)

≈ H

(
1 + log

H

h

)
,

63

where we have used (3.13), (3.14), and [18, Corollary 3.5].

�

Remark: In Lemma 3.5, we have constructed the function v for a cube D. By

using similar ideas, we can construct functions v for other shape-regular polyhedra

which satisfy similar properties and bounds.

Lemma 3.6 Let Ω
(i)
j be the subdomains in a subregion Ω(i), j = 1, · · · , Ni, and

V h
i,j be the standard continuous piecewise trilinear finite element function space in

the subdomain Ω
(i)
j with a quasi-uniform fine mesh with mesh size h. Denote by

Ek, k = 1 · · ·Kj, the edges of the subdomain Ω
(i)
j . Given the average values of u,

ūEk
, over each edge, let u ∈ V h

i,j be the discrete V h
i,j-harmonic extension in each

subdomain Ω
(i)
j with the average values given on the edges of Ω

(i)
j , j = 1, · · · , Ni.

Then, there exist two positive constants C1 and C2, which are independent of Ĥ,

H, and h, such that

C1

(
1 + log

H

h

)(Ni∑

j=1

|u|2
H1(Ω

(i)
j)

)
≤

Ni∑

j=1

Kj∑

k1,k2=1

H|ūEk1
− ūEk2

|2

≤ C2

(
1 + log

H

h

)(Ni∑

j=1

|u|2
H1(Ω

(i)
j)

)
.

Proof: Without loss of generality, we assume that the subdomains are hexahe-

dral. Denote the edges of the subdomain Ω
(i)
j by Ek, k = 1, · · · , 12, and denote the

average values of u over these twelve edges by ūEk
, k = 1, · · · , 12, respectively.

According to Lemma 3.5, we can construct eleven discrete harmonic functions

φm, m = 2, · · · , 12, on Ω
(i)
j such that

(φm)Ek
=

{
(ūEm − ūE1) (1 + log H

h
) m = k,

0 m 6= k,

64

and with

|φm|
2

H1(Ω
(i)
j)

≈ (ūEm − ūE1)
2H(1 + log

H

h
), m = 2, · · · , 12. (3.15)

Let vj = 1
1+log H

h

(∑12
m=2 φm

)
+ ūE1 ; we then have (v̄j)Ek

= ūEk
, for k = 1, · · · , 12,

and

|vj|
2

H1(Ω
(i)
j)

= |
1

1 + log H
h

(
12∑

m=2

φm

)
+ ūE1 |

2

H1(Ω
(i)
j)

=

(
1

1 + log H
h

)2

|
12∑

m=2

φm|
2

H1(Ω
(i)
j)

≤ 11

(
1

1 + log H
h

)2 12∑

m=2

|φm|
2

H1(Ω
(i)
j)

≤

(
1

C
1/2
1 (1 + log H

h
)

)2

H

(
1 + log

H

h

) 12∑

m=2

(ūEm − ūE1)
2

≤
1

C1(1 + log H
h
)

12∑

k=1

H(ūEk
− ūE1)

2.

Here, we have used (3.15) for the penultimate inequality.

By the definition of u, we have,

|u|2
H1(Ω

(i)
j)

≤ |vj|
2

H1(Ω
(i)
j)

≤
1

C1(1 + log H
h
)

12∑

k=1

H(ūEk
− ūE1)

2.

Summing over all the subdomains in the subregion Ω(i), we have,

C1

(
1 + log

H

h

)(Ni∑

j=1

|u|2
H1(Ω

(i)
j)

)
≤

Ni∑

j=1

12∑

k=1

H(ūEk
− ūE1)

2.

This proves the first inequality.

We prove the second inequality as follows:

Ni∑

j=1

12∑

k=1

H(ūEk
− ūE1)

2 =

Ni∑

j=1

12∑

k=1

H|(u− ūE1)Ek
|2

≤ C2

(
Ni∑

j=1

H
1

H
‖u− ūE1‖

2
L2(Ek)

)
≤ C2

(
Ni∑

j=1

(1 + log
H

h
)|u|2

H1(Ω
(i)
j)

)

≤ C2

(
1 + log

H

h

)(Ni∑

j=1

|u|2
H1(Ω

(i)
j)

)
.

65

Here, we have used a standard finite element Sobolev inequality [83, Lemma

4.30] for the second inequality and [83, Lemma 4.16] for the penultimate inequality.

We complete the proof of the second inequality by using the triangle inequality.

�

We now introduce a new mesh on each subregion; we follow [22, 79]. The

purpose for introducing this mesh is to relate the quadratic form of Lemma 3.6 to

one for a more conventional finite element space.

Given a subregion Ω(i) and subdomains Ω
(i)
j , j = 1, · · · , Ni, let T be a quasi-

uniform sub-triangulation of Ω(i) such that its set of the vertices include the vertices

and the midpoints of edges of Ω
(i)
j . For the hexahedral case, we decompose each

hexahedron into 8 hexahedra by connecting the midpoints of edges. We then

partition the vertices in the new mesh T into two sets. The midpoints of edges

are called primal and the others are called secondary. We call two vertices in the

triangulation T adjacent if there is an edge of T between them, as in the standard

finite element context.

Let UH(Ω) be the continuous piecewise trilinear finite element function space

with respect to the new triangulation T . For a subregion Ω(i), UH(Ω(i)) and

UH(∂Ω(i)) are defined as restrictions:

UH(Ω(i)) = {u|Ω(i) : u ∈ UH(Ω)}, UH(∂Ω(i)) = {u|∂Ω(i) : u ∈ UH(Ω)}.

66

We define a mapping IΩ(i)

H of any function φ, defined at the primal vertices in

Ω(i), to UH(Ω(i)) by

IΩ(i)

H φ(x) =





φ(x), if x is a primal node;

the average of the values at all adjacent primal nodes
on the edges of Ω(i), if x is a vertex of Ω(i);

the average of the values at two adjacent primal nodes
on the same edge of Ω(i), if x is an edge secondary node of Ω(i);

the average of the values at all adjacent primal nodes on the
boundary of Ω(i), if x is a face secondary boundary node of Ω(i);

the average of the values at all adjacent primal nodes
if x is a interior secondary node of Ω(i);

the result of trilinear interpolation using the vertex values,
if x is not a vertex of T .

(3.16)

We recall that W
(i)
c is the discrete space of the values at the primal nodes given

by the subdomain edge average values. IΩ(i)

H can be considered as a map from W
(i)
c

to UH(Ω(i)) or as a map from UH(Ω(i)) to UH(Ω(i)).

Let I∂Ω(i)

H be the mapping of a function φ defined at the primal vertices on the

boundary of Ω(i) to UH(∂Ω(i)) and defined by I∂Ω(i)

H φ = (IΩ(i)

H φe)|∂Ω(i) , where φe

is any function in W
(i)
c such that φe|∂Ω(i) = φ. The map is well defined since the

boundary values of IΩ(i)

H φe only depend on the boundary values of φe.

Finally, let

ŨH(Ω(i)) = {ψ = IΩ(i)

H φ, φ ∈ UH(Ω(i))}, ŨH(∂Ω(i)) = {ψ|∂Ω(i) , ψ ∈ ŨH(Ω(i))}.

I∂Ω(i)

H also can be considered as a map from W
(i)

c,bΓ to ŨH(∂Ω(i)).

67

Remark: We carefully define the IΩ(i)

H and I∂Ω(i)

H so that, if the edge averages

of wi ∈ W
(i)

c,bΓ and wj ∈ W
(j)

c,bΓ over an edge E are the same, we have (I∂Ω(i)

H wi)E =

(I∂Ω(j)

H wj)E . Here we need to use a weighted average which has a smaller weight

at the two end points. But this will not effect our analysis. We could also define

a weighted edge average of wi and wj and obtain (I∂Ω(i)

H wi)E = (I∂Ω(j)

H wj)E for the

usual average.

We list some useful lemmas from [22]. For the proofs of Lemma 3.7 and Lemma

3.8, see [22, Lemma 6.1 and Lemma 6.2], respectively.

Lemma 3.7 There exists a constant C > 0, independent of H and |Ω(i)|, the

volume of Ω(i), such that

|IΩ(i)

H φ|H1(Ω(i)) ≤ C|φ|H1(Ω(i)) and ‖IΩ(i)

H φ‖L2(Ω(i)) ≤ C‖φ‖L2(Ω(i)), ∀φ ∈ UH(Ω(i)).

Lemma 3.8 For φ̂ ∈ ŨH(∂Ω(i)),

inf
φ∈eUH(Ω(i)),φ|

∂Ω(i)=φ̂
‖φ‖H1(Ω(i)) ≈ ‖φ̂‖H1/2(∂Ω(i)),

inf
φ∈eUH(Ω(i)),φ|

∂Ω(i)=φ̂
|φ|H1(Ω(i)) ≈ |φ̂|H1/2(∂Ω(i)).

Lemma 3.9 There exist constants C1 and C2 > 0, independent of Ĥ, H, h, and

the coefficient of (1.6) such that for all wi ∈ W
(i)

c,bΓ,

aiC1|I
∂Ω(i)

H wi|
2
H1/2(∂Ω(i)) ≤

(
1 + log

H

h

)
(T (i)wi, wi) ≤ aiC2|I

∂Ω(i)

H wi|
2
H1/2(∂Ω(i)),

where (T (i)wi, wi) = wT
i T

(i)wi = |wi|2T (i) and T (i) = S
(i)
ΠbΓbΓ

− S
(i)
ΠbΓbI

S
(i)−1

ΠbI bI
S

(i)T

ΠbΓbI
.

68

Proof: By the definition of T (i), we have

(
1 + log

H

h

)
(T (i)wi, wi) =

(
1 + log

H

h

)
inf

v∈W
(i)
c ,v|

∂Ω(i)=wi

|v|2
S

(i)
Π

= inf
v∈W

(i)
c ,v|

∂Ω(i)=wi

ai

(
1 + log

H

h

)(Ni∑

j=1

inf
u∈V h

i,j ,ūE=v,E⊂∂Ω
(i)
j

|u|2
H1(Ω

(i)
j)

)

≈ inf
v∈W

(i)
c ,v|

∂Ω(i)=wi

ai

Ni∑

j=1

Kj∑

k1,k2=1

H|v̄Ek1
− v̄Ek2

|2

≈ inf
v∈W

(i)
c ,v|

∂Ω(i)=wi

ai|I
Ω(i)

H v|2H1(Ω(i)) ≈ inf
φ∈eUH(Ω(i)),φ|

∂Ω(i)=I∂Ω(i)

H wi

ai|φ|
2
H1(Ω(i))

≈ ai|I
∂Ω(i)

H wi|H1/2(∂Ω(i)).

We use Lemma 3.6 for the third bound, the definitions of IΩ(i)

H and I∂Ω(i)

H for the

fourth and fifth bounds, and Lemma 3.8 for the final one.

�

To be fully rigorous, we assume that there is a quasi-uniform coarse triangula-

tion of each subregion. We can then obtain uniform constants C1 and C2 in Lemma

3.9, which work for all the subregions.

We define the interface averages operator Ê bD as in two dimensional case (3.12).

The interface average operator Ê bD in three dimensions also has the following

property:

Lemma 3.10

|Ê bDwbΓ|
2
eT ≤ C

(
1 + log

Ĥ

H

)2

|wbΓ|
2
eT ,

for any wbΓ ∈ W̃c,bΓ, where C is a positive constant independent of Ĥ, H, h, and

the coefficients of (1.6). Here T̃ is define in (3.4).

69

Proof: Let wi = R̂
(i)

bΓ wbΓ ∈ W
(i)

c,bΓ. We rewrite the formula for v := wbΓ − ÊbΓwbΓ for

an arbitrary element wbΓ ∈ W̃c,bΓ, and find that for i = 1, · · · , N ,

vi(x) := (wbΓ(x) − ÊbΓwbΓ(x))i =
∑

j∈Nx

δ†j(wi(x) − wj(x)), x ∈ ∂Ω(i) ∩ Γ̂. (3.17)

Here Nx is the set of indices of the subregions that have x on their boundaries.

We have

|Ê bDwbΓ|
2
eT =

N∑

i=1

|wi − vi|
2
T (i) ≤ 2

N∑

i=1

|wi|
2
T (i) + 2

N∑

i=1

|vi|
2
T (i) and |wbΓ|

2
eT =

N∑

i=1

|wi|
2
T (i) .

We can therefore focus on the estimate of the contribution from a single subregion

Ω(i) and proceed as in the proof of [83, Lemma 6.36].

We will also use the simple inequality

aiδ
†2

j ≤ min(ai, aj), for γ ∈ [1/2,∞). (3.18)

By Lemma 3.9,

(T (i)vi, vi) ≤ C2
1

(1 + log H
h
)
ai|I

∂Ω(i)

H (vi)|
2
H1/2(∂Ω(i)). (3.19)

Let Li = I∂Ω(i)

H (vi). We have, by using a partition of unity as in [83, Lemma

6.36],

Li =
∑

F⊂∂Ωi

IH(θFLi) +
∑

E⊂∂Ωi

IH(θELi) +
∑

V∈∂Ωi

θVLi(V),

where IH is the nodal piecewise linear interpolant on the coarse mesh T . We

note that the analysis for face and edge terms is almost identical to that in [83,

Lemma 6.36]. But the vertex terms are different because of I∂Ω(i)

H . We only need

to consider the vertex term when two subregion share at least an edge. This make

the analysis simpler than in the proof of [83, Lemma 6.36].

70

Face Terms. First consider,

IH(θFLi) = IH(θFI
∂Ω(i)

H (δ†j(wi − wj))).

Similar to [83, Lemma 6.36], we obtain, by using (3.18),

(3.20)

ai|I
H(θFI

∂Ω(i)

H (δ†j(wi − wj)))|
2
H1/2(∂Ω(i))

= aiδ
†2

j |IH(θFI
∂Ω(i)

H (wi − wj))|
2
H1/2(∂Ω(i))

≤ min(ai, aj)|I
H(θF ((I∂Ω(i)

H wi − (I∂Ω(i)

H wi)F) − (I∂Ω(i)

H wj − (I∂Ω(i)

H wj)F) +

((I∂Ω(i)

H wi)F − (I∂Ω(i)

H wj)F)))|2H1/2(∂Ω(i))

≤ 3 min(ai, aj)
(
|IH(θF(I∂Ω(i)

H wi − (I∂Ω(i)

H wi)F))|2H1/2(∂Ω(i))+

|IH(θF (I∂Ω(i)

H wj − (I∂Ω(i)

H wj)F))|2H1/2(∂Ω(i))+

|θF((I∂Ω(i)

H wi)F − (I∂Ω(i)

H wj)F)|2H1/2(∂Ω(i))

)
.

By the definition of I∂Ω(i)

H ,

IH(θF(I∂Ω(i)

H wj)) = IH(θF(I∂Ω(j)

H wj)) and (I∂Ω(i)

H wj)F = (I∂Ω(j)

H wj)F .

By [83, Lemma 4.26], the first and second terms in (3.20) can be estimated as

follows:

min(ai, aj)(|I
H(θF(I∂Ω(i)

H wi − (I∂Ω(i)

H wi)F))|2H1/2(∂Ω(i)) +

|IH(θF (I∂Ω(i)

H wj − (I∂Ω(i)

H wj)F))|2H1/2(∂Ω(i)))

= min(ai, aj)(|I
H(θF(I∂Ω(i)

H wi − (I∂Ω(i)

H wi)F))|2H1/2(∂Ω(i)) +

|IH(θF (I∂Ω(j)

H wj − (I∂Ω(j)

H wj)F))|2H1/2(∂Ω(i)))

≤ C

(
1 + log

Ĥ

H

)2 (
ai|I

∂Ω(i)

H wi|
2
H1/2(∂Ω(i)) + aj|I

∂Ω(j)

H wj|
2
H1/2(∂Ω(j))

)
.

71

Let E ⊂ ∂F . Since the edge averages of wi and wj are the same, by the

definition of I∂Ω(i)

H and I∂Ω(j)

H , we have (I∂Ω(i)

H wi)E = (I∂Ω(j)

H wj)E . As we have

pointed out before, we use the weighted average which has a smaller weight at

the two end points.

We then have

|(I∂Ω(i)

H wi)F − (I∂Ω(j)

H wj)F)|2

≤ 2
(
|(I∂Ω(i)

H wi)E − (I∂Ω(i)

H wi)F |
2 + |(I∂Ω(j)

H wj)E − (I∂Ω(j)

H wj)F |
2
)
.

(3.21)

It is sufficient to consider the first term on the right hand side. Using [83,

Lemma 4.30], we find

|(I∂Ω(i)

H wi)E − (I∂Ω(i)

H wi)F |
2

= |(I∂Ω(i)

H wi − (I∂Ω(i)

H wi)F)E |
2 ≤ C/Ĥi‖I

∂Ω(i)

H wi − (I∂Ω(i)

H wi)F‖
2
L2(E),

and, by using [83, Lemma 4.17] and the Poincaré inequality given as [83, Lemma

A.17],

|(I∂Ω(i)

H wi)E − (I∂Ω(i)

H wi)F |
2 ≤ C/Ĥi

(
1 + log

Ĥ

H

)
|I∂Ω(i)

H wi − (I∂Ω(i)

H wi)F |
2
H1/2(F).

Combining this with the bound for θF in [83, Lemma 4.26], we have:

min(ai, aj)|θF((I∂Ω(i)

H wi)F − (I∂Ω(i)

H wj)F)|2H1/2(∂Ω(i))

≤ C

(
1 + log

Ĥ

H

)2 (
ai|I

∂Ω(i)

H wi|
2
H1/2(∂Ω(i)) + aj|I

∂Ω(j)

H wj|
2
H1/2(∂Ω(j))

)
.

Edge Terms. We can develop the same estimate as in [83, Lemma 6.34]. For

simplicity, we only consider an edge E common to four subregions Ω(i), Ω(j), Ωk,

72

and Ωl.

ai|I
H(θELi)|

2
H1/2(∂Ω(i))

≤ ai

(
|IH(θEI

∂Ω(i)

H (δ†j(wi − wj)))|
2
H1/2(∂Ω(i))+

|IH(θEI
∂Ω(i)

H (δ†k(wi − wk)))|
2
H1/2(∂Ω(i)) + |IH(θEI

∂Ω(i)

H (δ†l (wi − wl)))|
2
H1/2(∂Ω(i))

)
.(3.22)

We recall that δ†j , δ
†
k, and δ†l are constants.

By the definition of I∂Ω(i)

H , I∂Ω(j)

H , I∂Ω(k)

H , and I∂Ω(l)

H , we have

θE(I
∂Ω(i)

H wj) = θE(I
∂Ω(j)

H wj), θE(I
∂Ω(i)

H wk) = θE(I
∂Ω(k)

H wk), θE(I
∂Ω(i)

H wl) = θE(I
∂Ω(l)

H wl),

and,

(I∂Ω(i)

H wi)E = (I∂Ω(j)

H wj)E = (I∂Ω(k)

H wk)E = (I∂Ω(l)

H wl)E .

We assume that Ω(i) shares a face with Ω(j) as well as Ωl, and shares an edge

only with Ωk.

We consider the second term in (3.22) first. By [83, Lemma 4.19] and [83,

Lemma 4.17], and (3.18), we have

ai|I
H(θEI

∂Ω(i)

H (δ†k(wi − wk)))|
2
H1/2(∂Ω(i))

≤ Caiδ
†2

k ‖IH(θE(I
∂Ω(i)

H wi − (I∂Ω(i)

H wi)E) − θE(I
∂Ω(k)

H wk − (I∂Ω(k)

H wk)E))‖
2
L2(E)

≤ 2C
(
ai‖I

H(θE(I
∂Ω(i)

H wi − (I∂Ω(i)

H wi)E))‖
2
L2(E)+

ak‖I
H(θE(I

∂Ω(k)

H wk − (I∂Ω(k)

H wk)E))‖
2
L2(E)

)

≤ 2C
(
ai‖I

∂Ω(i)

H wi − (I∂Ω(i)

H wi)E‖
2
L2(E) + ak‖I

∂Ω(k)

H wk − (I∂Ω(k)

H wk)E‖
2
L2(E)

)

≤ 2C

(
1 + log

Ĥ

H

)(
ai|I

∂Ω(i)

H wi|
2
H1/2(F(i)) + ak|I

∂Ω(k)

H wk|
2
H1/2(Fk)

)

≤ 2C

(
1 + log

Ĥ

H

)(
ai|I

∂Ω(i)

H wi|
2
H1/2(∂Ω(i)) + ak|I

∂Ω(k)

H wk|
2
H1/2(∂Ωk)

)
,

73

where F (i) is a face of Ω(i) and Fk is a face of Ωk, and F (i) and Fk share the edge

E .

The first term and the third term can be estimated similarly.

Vertex Terms. We can do the estimate similarly to that of the proof of [83,

Lemma 6.36]. We have

ai|θVLi(V)|2H1/2(∂Ωi)
= ai|θV(I∂Ω(i)

H vi)(V)|2H1/2(∂Ωi)
. (3.23)

By (3.17) and the definition of I∂Ω(i)

H , we see that (I∂Ω(i)

H vi)(V) is nonzero only

when two subregions share one or several edges with a common vertex V.

In the definition of IΩ(i)

H , we denote by Ei,m, m = 1, 2, 3 · · ·, the edges in Ω(i)

which share V. Denote by vi,m the primal nodes on the edges Ei,m which are

adjacent to V.

By the definition of IΩ(i)

H , (3.23), and |θV |2H1/2(∂Ω(i))
≤ CHi, we have,

ai|θV(I∂Ω(i)

H vi)(V)|2H1/2(∂Ω(i)) ≤ Cai|
∑

m

vi(vi,m)|2|θV |
2
H1/2(∂Ω(i))

≤ CaiHi

∑

m

|vi(vi,m)|2. (3.24)

Let us look at the first term in (3.24), the other terms can be estimated in the

same way.

aiHi|vi(vi,1)|
2

= aiHi|
∑

j,Ei,1⊂Ωj

δ†j(wi(vi,1) − wj(vi,1))|
2

≤ C
∑

j,Ei,1⊂Ω(j)

min(ai, aj)Hi|wi(vi,1) − wj(vi,1))|
2

74

= C
∑

j,Ei,1⊂Ω(j)

min(ai, aj)Hi|I
∂Ω(i)

H wi(vi,1) − I∂Ω(j)

H wj(vi,1)|
2

≤ C
∑

j,Ei,1⊂Ω(j)

min(ai, aj)Hi

(
|I∂Ω(i)

H wi(vi,1) − (I∂Ω(i)

H wi)Ei,1
|2+

|I∂Ω(j)

H wj(vi,1) − (I∂Ω(j)

H wj)Ei,1
|2
)

≤ C
∑

j,Ei,1⊂Ω(j)

min(ai, aj)
(
Hi|
(
I∂Ω(i)

H wi − (I∂Ω(i)

H wi)Ei,1

)
(vi,1)|

2+

Hi|
(
I∂Ω(j)

H wj − (I∂Ω(j)

H wj)Ei,1

)
(vi,1)|

2
)

≤ C
∑

j,Ei,1⊂Ω(j)

min(ai, aj)
(
‖I∂Ω(i)

H wi − (I∂Ω(i)

H wi)Ei,1
‖2

L2(Ei,1)+

‖I∂Ω(j)

H wj − (I∂Ω(j)

H wj)Ei,1
‖2

L2(Ei,1)

)

≤ C
∑

j,Ei,1⊂Ω(j)

(
1 + log

Ĥ

H

)(
ai|I

∂Ω(i)

H wi|
2
H1/2(∂Ω(i)) + aj|I

∂Ω(j)

H wj|
2
H1/2(∂Ω(i))

)
.

For the third equality, we use here that vi,1 is a primary node. For the fourth

inequality, we use that (I∂Ω(i)

H wi)Ei,1
= (I∂Ω(j)

H wj)Ei,1
. We use [83, Lemmas B.5] for

the sixth inequality and [83, Lemma 4.17] for the last inequality.

Combining all face, edge, and vertex terms, we obtain

ai|I
∂Ω(i)

H (vi)|
2
H1/2(∂Ω(i)) ≤ C

(
1 + log

Ĥ

H

)2 ∑

j:∂Ω(j)∩∂Ω(i) 6=∅

aj|I
∂Ω(i)

H (wj)|
2
H1/2(∂Ω(j)).

(3.25)

Using (3.25), Lemma 3.9 and (3.19), we obtain

(T (i)vi, vi) = |vi|
2
T (i) ≤ C2

1

(1 + log H
h
)
ai|I

∂Ω(i)

H (vi)|
2
H1/2(∂Ω(i))

≤ CC2

(
1 + log Ĥ

H

)2

(1 + log H
h
)

∑

j:∂Ω(j)∩∂Ω(i) 6=∅

aj|I
∂Ω(i)

H (wj)|
2
H1/2(∂Ω(j))

≤ C
C2

C1

(
1 + log

Ĥ

H

)2 ∑

j:∂Ω(j)∩∂Ω(i) 6=∅

(T (j)wj, wj)

75

= C
C2

C1

(
1 + log

Ĥ

H

)2 ∑

j:∂Ω(j)∩∂Ω(i) 6=∅

|wj|
2
T (j) .

�

3.3 Condition Number Estimate for the Precon-

ditioned Operator with the Preconditioner

M̃−1

We start with a lemma:

Lemma 3.11 Given any uΓ ∈ ŴΓ, let Ψ = ΦT R̃D,ΓuΓ. We have,

ΨTS−1
Π Ψ ≤ ΨT S̃−1

Π ΨT ≤ C

(
1 + log

Ĥ

H

)2

ΨTS−1
Π Ψ.

Proof: Using (3.3), (3.5), and (3.6), we have

(3.26)

ΨTS−1
Π Ψ =

N∑

i=1

Ψ
(i)T

bI y
(i)
bI + ΨT

bΓybΓ

=

N∑

i=1

Ψ
(i)T

bI

(
S

(i)−1

ΠbI bI
(Ψ

(i)
bI − S

(i)
ΠbIbΓ

R̂
(i)
bΓ ybΓ)

)
+

(
hbΓ +

N∑

i=1

R̂
(i)T

bΓ S
(i)
ΠbΓI

S
(i)−1

ΠbI bI
Ψ(i)

)T

ybΓ

=
N∑

i=1

Ψ
(i)T

bI S
(i)−1

ΠbI bI
Ψ

(i)
bI + hT

bΓybΓ =
N∑

i=1

Ψ
(i)T

bI S
(i)−1

ΠbI bI
Ψ

(i)
bI + hT

bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ.

Using (3.8), (3.5), and (3.7), we also have

ΨT S̃−1
Π Ψ =

N∑

i=1

Ψ
(i)T

bI ỹbI(i) + ΨT
bΓ ỹbΓ

=
N∑

i=1

Ψ
(i)T

bI

(
S

(i)−1

ΠbI bI
(Ψ

(i)
bI − S

(i)
ΠbIbΓ

R̂
(i)
bΓ ỹbΓ)

)
+

(
hbΓ +

N∑

i=1

R̂
(i)T

bΓ S
(i)
ΠbΓbI

S
(i)−1

ΠbI bI
Ψ(i)

)T

ỹbΓ

=

N∑

i=1

Ψ
(i)T

bI S
(i)−1

ΠbI bI
Ψ

(i)
bI + hT

bΓ ỹbΓ =

N∑

i=1

Ψ
(i)T

bI S
(i)−1

ΠbI bI
Ψ

(i)
bI + hT

bΓ

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)
hbΓ.

76

We only need to compare hT
bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ and hT
bΓ

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)
hbΓ for any

hbΓ ∈ F̂c,bΓ. The following estimate is established as [58, Theorem 1]. Let

wbΓ =

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ ∈ Ŵc,bΓ and vbΓ = T̃−1 ̂̃R bD,bΓhbΓ ∈ W̃c,bΓ. (3.27)

Noting the fact that
̂̃
R

T

bΓ
̂̃
R bD,bΓ =

̂̃
R

T

bD,bΓ
̂̃
RbΓ = I and using (3.27), we have,

hT
bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ = hT
bΓwbΓ = hT

bΓ
̂̃
R

T

bD,bΓ
̂̃
RbΓwbΓ

= hT
bΓ
̂̃
R

T

bD,bΓT̃
−1T̃

̂̃
RbΓwbΓ =

(
T̃−1 ̂̃R bD,bΓhbΓ

)T

T̃
̂̃
RbΓwbΓ

= vT
bΓ T̃
̂̃
RbΓwbΓ =< vbΓ,

̂̃
RbΓwbΓ > eT≤< vbΓ,vbΓ >

1/2
eT <

̂̃
RbΓwbΓ,

̂̃
RbΓwbΓ >

1/2
eT

=

(
hT

bΓ

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)
hbΓ

)1/2
(

hT
bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ

)1/2

.

We obtain that

hT
bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ ≤ hT
bΓ

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)
hbΓ.

On the other hand,

hT
bΓ

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)
hbΓ = wT

bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)
hbΓ

= < wbΓ,
̂̃
R

T

bD,bΓ

(
T̃−1 ̂̃R bD,bΓhbΓ

)
>„

beR
T

bΓ
eT beRbΓ

«=< wbΓ,
̂̃
R

T

bD,bΓvbΓ >
„

beR
T

bΓ
eT beRbΓ

«

≤ < wbΓ,wbΓ >
1/2„

beR
T

bΓ
eT beRbΓ

«<
̂̃
R

T

bD,bΓvbΓ,
̂̃
R

T

bD,bΓvbΓ >
1/2„

beR
T

bΓ
eT beRbΓ

«

=

(
hT

bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ

)1/2

<
̂̃
RbΓ
̂̃
R

T

bD,bΓvbΓ,
̂̃
RbΓ
̂̃
R

T

bD,bΓvbΓ >
1/2
eT

=

(
hT

bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ

)1/2

|Ê bDvbΓ| eT

77

≤ C

(
1 + log

Ĥ

H

)(
hT

bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ

)1/2

|vbΓ| eT

= C

(
1 + log

Ĥ

H

)(
hT

bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ

)1/2(
hT

bΓ

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)
hbΓ

)1/2

,

where we use Lemma 3.10 for the penultimate inequality.

Finally we obtain that

hT
bΓ

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)
hbΓ ≤ C

(
1 + log

Ĥ

H

)2(
hT

bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)−1

hbΓ

)
.

�

In order to estimate the condition number for the system with the new precondi-

tioner M̃−1, we compare it to the system with the preconditioner M−1
BDDC defined

in (2.23).

Lemma 3.12 Given any uΓ ∈ ŴΓ,

uT
ΓM

−1
BDDCuΓ ≤ uT

ΓM̃
−1uΓ ≤ C

(
1 + log

Ĥ

H

)2

uT
ΓM

−1
BDDCuΓ. (3.28)

Proof: We have, for any uΓ ∈ ŴΓ,

uT
ΓM

−1
BDDCuΓ

= uT
Γ R̃

T
D,Γ



R

T
Γ∆

N∑

i=1

[
0 R

(i)T

∆

] [
A

(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−1 [
0

R
(i)
∆

]
RΓ∆



 R̃D,ΓuΓ

+ uT
Γ R̃

T
D,ΓΦS−1

Π ΦT R̃D,ΓuΓ,

and

uT
ΓM̃

−1uΓ

= uT
Γ R̃

T
D,Γ



R

T
Γ∆

N∑

i=1

[
0 R

(i)T

∆

] [A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−1 [
0

R
(i)
∆

]
RΓ∆



 R̃D,ΓuΓ

+ uT
Γ R̃

T
D,ΓΦS̃−1

Π ΦT R̃D,ΓuΓ.

78

We obtain our result by using Lemma 3.11.

�

Theorem 3.13 The condition number for the system with the three-level precon-

ditioner M̃−1is bounded by C(1 + log Ĥ
H

)2(1 + log H
h
)2.

Proof: Combining the condition number bound, given in Theorem 2.8, for the

two-level BDDC method, and Lemma 3.12, we find that the condition number for

the three-level method is bounded by C(1 + log Ĥ
H

)2(1 + log H
h
)2.

�

3.4 Acceleration by the Chebyshev Iteration Method

Another approach to the three-level BDDC methods is to use an iterative method

with a preconditioner to solve (3.6). Here, we consider a Chebyshev method with

a fixed number of iterations and use

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)
as a preconditioner.

Thus, we do not solve (3.6) directly. Instead, we replace ybΓ by ybΓ,k, where ybΓ,k

is the approximation of ybΓ given by a k-step Chebyshev iteration with zero initial

guess.

We will maintain the same relation between y
(i)
bI,k

and y
(i)
bΓ,k

as in (3.3), i.e.,

y
(i)
bI,k

= S
(i)−1

ΠbI bI

(
Ψ

(i)
bI − S

(i)
ΠbIbΓ

R̂
(i)
bΓ ybΓ,k

)
. (3.29)

Let yk =
[
y

(1)
bI,k
, · · · ,y(N)

bI,k
,ybΓ,k

]T
, and denote the corresponding new coarse prob-

lem matrix by ŜΠ. Then,

ŜΠyk = Ψ, (3.30)

79

and the new preconditioner M̂−1 is defined by:

R̃T
D,Γ





N∑

i=1

RT
Γ∆

[
0 R

(i)T

∆

] [A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−1 [
0

R
(i)
∆

]
RΓ∆ + ΦŜ−1

Π ΦT



 R̃D,Γ.

(3.31)

From Subsection 1.4.2, we know that we need to estimate the smallest and

largest eigenvalues of

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
to set up the Chebyshev itera-

tions. From our analysis above, we know that

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
has a

smallest eigenvalue 1 and a largest eigenvalue bounded by C(1+log Ĥ
H

)2(1+log H
h
)2.

We can use the conjugate gradient method to get an estimate for the largest eigen-

value at the beginning of the computation and to choose a proper u to guarantee

that λj < l + u, where λj are the eigenvalues of

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
.

We apply the error analysis for Chebyshev iterations in Subsection 1.4.2 for our

preconditioned system

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
. We know that the Chebyshev

iteration converges and have

ybΓ,k = P1JP
−1
1 ybΓ, (3.32)

which is from (1.39).

Since we choose u such that λj < l + u, we find that 1 −
cosh(k cosh−1(µσj))
cosh(k cosh−1(µ))

> 0,

i.e., J has positive diagonal elements.

We begin with a lemma for the condition number estimate for the second new

preconditioner M̂−1.

Lemma 3.14 Given any uΓ ∈ ŴΓ, let Ψ = ΦTDΓRΓuΓ. If we choose u such

that λj < u+ l, then there exist two constants C1(k) and C2(k) that

C1(k)Ψ
TS−1

Π Ψ ≤ ΨT Ŝ−1
Π ΨT ≤ C2(k)Ψ

TS−1
Π Ψ, (3.33)

80

where

C1(k) = min
j

(
1 −

cosh(k cosh−1(µσj))

cosh(k cosh−1(µ))

)
, (3.34)

and

C2(k) = max
j

(
1 −

cosh(k cosh−1(µσj))

cosh(k cosh−1(µ))

)
. (3.35)

Proof: Using (3.29), (3.5), and (3.6), we have

ΨT Ŝ−1
Π Ψ =

N∑

i=1

Ψ
(i)T

bI y
(i)
bI,k

+ ΨT
bΓybΓ,k

=

N∑

i=1

Ψ
(i)T

bI

(
S

(i)−1

ΠbI bI
(Ψ

(i)
bI − S

(i)
ΠbIbΓ

R̂
(i)
bΓ ybΓ,k)

)

+

(
hbΓ +

N∑

i=1

R̂
(i)T

bΓ S
(i)
ΠbΓI

S
(i)−1

ΠbI bI
Ψ(i)

)T

ybΓ,k

=

N∑

i=1

Ψ
(i)T

bI S
(i)−1

ΠbI bI
Ψ

(i)
bI + hT

bΓybΓ,k

=

N∑

i=1

Ψ
(i)T

bI S
(i)−1

ΠbI bI
Ψ

(i)
bI + yT

bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
ybΓ,k. (3.36)

Comparing (3.36) with (3.26), we only need to compare yT
bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
ybΓ and

yT
bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
ybΓ,k.

Using (3.32) and (1.30), we obtain

yT
bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
ybΓ,k

= yT
bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
P1JP

−1
1 ybΓ

= yT
bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

) 1
2

PJP−1

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)− 1
2

ybΓ. (3.37)

81

Let YbΓ = P T

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)− 1
2

ybΓ. Using (1.29), we have

yT
bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
ybΓ

= YT
bΓP

T

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

) 1
2
(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

) 1
2

PYbΓ

= YT
bΓP

TPΛP TPYbΓ

= YT
bΓΛYbΓ, (3.38)

and, using (3.37), we have

yT
bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
ybΓ,k

= YT
bΓP

T

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

) 1
2
(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

) 1
2

PJYbΓ

= YT
bΓP

TPΛP TPJYbΓ

= YT
bΓ ΛJYbΓ. (3.39)

Under our assumption, J is a diagonal matrix with positive diagonal entries
(
1 − cosh(k cosh−1(µσj))

cosh(k cosh−1(µ))

)
. Thus, we have,

C1(k)y
T
bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
ybΓ ≤ yT

bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
ybΓ,k ≤ C2(k)y

T
bΓ

(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
ybΓ. (3.40)

�

Lemma 3.15 Given any uΓ ∈ ŴΓ,

C1(k)u
T
ΓM

−1uΓ ≤ uT
ΓM̂

−1uΓ ≤ C2(k)u
T
ΓM

−1uΓ, (3.41)

where C1(k) and C2(k) are defined in (3.34) and (3.35), respectively.

82

Proof: We have, for any uΓ ∈ ŴΓ,

uT
ΓM̂

−1uΓ

= uT
ΓR̃

T
D,Γ





N∑

i=1

RT
Γ∆

[
0 R

(i)T

∆

] [
A

(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−1 [
0

R
(i)
∆

]
RΓ∆ + ΦŜ−1

Π ΦT





R̃D,ΓuΓ

= uT
ΓR̃

T
D,Γ





N∑

i=1

RT
Γ∆

[
0 R

(i)T

∆

] [
A

(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−1 [
0

R
(i)
∆

]
RΓ∆



uΓ

+uT
ΓR̃

T
D,ΓΦŜ−1

Π ΦT R̃D,ΓuΓ. (3.42)

Comparing this expression with (3.29), we obtain the result by using Lemma 3.14.

�

Theorem 3.16 The condition number using the three-level preconditioner M̂−1is

bounded by C C2(k)
C1(k)

(1 + log H
h
)2, where C1(k) and C2(k) are defined in (3.34) and

(3.35), respectively.

Proof: Combining the condition number bound, given in Theorem 2.8, for the

two-level BDDC method and Lemma 3.15, we find that the condition number for

the system with the three-level preconditioner M̂−1 is bounded by

C
C2(k)

C1(k)
(1 + log

H

h
)2.

�

83

Table 3.1: Condition number estimates and iteration counts for the operator with

the preconditioner M̃ with a change of the number of subregions, Ĥ
H

= 4 and H
h

= 4

Num. of Subregions Iterations Condition number
4 × 4 12 3.04
8 × 8 15 3.45

12 × 12 17 3.53
16 × 16 17 3.56
20 × 20 17 3.57

Table 3.2: Condition number estimates and iteration counts for the operator with
the preconditioner M̃ with a change of the number of subdomains, 4×4 subregions
and H

h
= 4

Ĥ
H

Iterations Condition number
4 12 3.04
8 13 4.17
12 13 4.96
16 14 5.57
20 15 6.08

Table 3.3: Condition number estimates and iteration counts for the operator with
the preconditioner M̃ with a change of the size of subdomain problems, 4 × 4
subregions and 4 × 4 subdomains

H
h

Iterations Condition number
4 12 3.04
8 15 4.08
12 16 4.80
16 17 5.36
20 19 5.83

84

Table 3.4: Condition number estimates and iteration counts for the operator with

the preconditioner M̃ with a change of the number of subregions, Ĥ
H

= 4 and H
h

= 4

Num. of Subregions Iterations Condition number
4 × 4 11 1.81
8 × 8 11 1.82

12 × 12 12 1.82
16 × 16 12 1.82
20 × 20 12 1.82

Table 3.5: Condition number estimates and iteration counts for the operator with
the preconditioner M̃ with a change of the number of subdomains, 4×4 subregions
and H

h
= 4

Ĥ
H

Iterations Condition number
4 11 1.81
8 12 1.85
12 12 1.88
16 12 1.89
20 12 1.91

Table 3.6: Condition number estimates and iteration counts for the operator with
the preconditioner M̃ with a change of the size of subdomain problems, 4 × 4
subregions and 4 × 4 subdomains

H
h

Iterations Condition number
4 11 1.81
8 14 2.50
12 16 3.00
16 17 3.35
20 18 3.65

85

Table 3.7: Condition number estimates and iteration counts for the operator with

the preconditioner M̂ , u = 3.2, 4 × 4 subregions, Ĥ
H

= 16 and H
h

= 4

k Iterations C1(k) λmin λmax Condition number
1 20 0.4762 0.4829 2.7110 5.6141
2 13 0.8410 0.8540 1.8820 2.2038
3 11 0.9548 0.9981 1.9061 1.9098
4 11 0.9872 1.0019 1.8663 1.8629
5 11 0.9964 1.0006 1.8551 1.8541

Table 3.8: Condition number estimates and iteration counts for the operator with

the preconditioner M̂ , u = 4, 4 × 4 subregions, Ĥ
H

= 16 and H
h

= 4

k Iterations C1(k) λmin λmax Condition number
1 22 0.4000 0.4053 2.3027 5.6821
2 14 0.7805 0.7909 1.9687 2.4892
3 12 0.9260 0.9781 1.9382 1.9816
4 11 0.9753 1.0028 1.8891 1.8837
5 11 0.9918 1.0026 1.8787 1.8739

Table 3.9: Condition number estimates and iteration counts for the operator with

the preconditioner M̂ , u = 6, 4 × 4 subregions, Ĥ
H

= 16 and H
h

= 4

k Iterations C1(k) λmin λmax Condition number
1 24 0.2857 0.2899 1.8287 6.3086
3 16 0.6575 0.6670 2.3435 3.5134
3 12 0.8524 0.9286 1.9628 3.1136
4 12 0.9377 0.9795 1.9850 2.0266
5 12 0.9738 0.9983 1.9403 1.9437

86

3.5 Numerical Experiments

3.5.1 Two Dimensional Cases

We have applied our two three-level BDDC algorithms to the model problem (1.6),

where Ω = [0, 1]2. We decompose the unit square into N̂ × N̂ subregions with the

sidelength Ĥ = 1/N̂ and each subregion intoN×N subdomains with the sidelength

H = Ĥ/N . Equation (1.6) is discretized, in each subdomain, by conforming

piecewise linear elements with a finite element diameter h. The preconditioned

conjugate gradient iteration is stopped when the norm of the residual has been

reduced by a factor of 10−8.

We have carried out three different sets of experiments to obtain iteration

counts and condition number estimates. All the experimental results are fully

consistent with our theory.

In the first set of the experiments, we use the first preconditioner M̃−1 and take

the coefficient a ≡ 1. Table 3.1 gives the iteration counts and condition number

estimates with a change of the number of subregions. We find that the condition

numbers are independent of the number of subregions. Table 3.2 gives the results

with a change of the number of subdomains. Table 3.3 gives the results with a

change of the size of the subdomain problems.

In the second set of the experiments, we use the first preconditioner M̃−1 and

take the coefficient a = 1 in one subregion and a = 101 in the neighboring sub-

regions, i.e., in a checkerboard pattern. Table 3.4 gives the iteration counts and

condition number estimates with a change of the number of subregions. We find

that the condition numbers are independent of the number of subregions. Table

87

Table 3.10: Condition number estimates and iteration counts for the operator with

the preconditioner M̃ with a change of the number of subregions, Ĥ
H

= 3 and H
h

= 3

Num. of Subregions Iterations Condition number
3 × 3 × 3 9 2.66
4 × 4 × 4 10 2.87
5 × 5 × 5 11 2.97
6 × 6 × 6 11 3.02

3.5 gives the results with a change of number of subdomains. Table 3.6 gives the

results with a change of the size of the subdomain problems.

In the third set of the experiments, we use the second preconditioner M̂−1 and

take the coefficient a ≡ 1. We use the PCG to estimate the largest eigenvalue

of

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
which is approximately 3.2867. And if we have

64 × 64 subdomains and H
h

= 4 for the two-level BDDC, we have a condition

number estimate of 1.8380. We select different values of u and k to see how the

condition number changes. We take u = 3.2 in Table 3.7. We also give an estimate

for C1(k) for k = 1, 2, 3, 4, 5. From Table 3.7, we find that the smallest eigenvalue

is bounded from below by C1(k) and the condition number estimate becomes closer

to 1.8380, the value in the two-level case, as k increases.

We take u = 4 in Table 3.8 and u = 6 in Table 3.9. From these two ta-

bles, we see that if we can get more precise estimate for the largest eigenvalue of(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
, we need fewer Chebyshev iterations to get a condi-

tion number, similar to that of the two-level case. However, the iteration count is

not very sensitive to the choice of u.

88

Table 3.11: Condition number estimates and iteration counts for the operator
with the preconditioner M̃ with a change of the number of subdomains, 3 × 3× 3
subregions and H

h
= 3

Ĥ
H

Iterations Condition number
3 9 2.66
4 9 3.04
5 10 3.36
6 10 3.64

Table 3.12: Condition number estimates and iteration counts for the operator with
the preconditioner M̃ with a change of the size of subdomain problems, 3 × 3 × 3
subregions and 3 × 3 × 3 subdomains

H
h

Iterations Condition number
3 9 2.66
4 9 2.73
5 10 2.84
6 10 2.97

Table 3.13: Condition number estimates and iteration counts for the operator with

the preconditioner M̂ , u = 2.3, 3 × 3 × 3 subregions, Ĥ
H

= 6 and H
h

= 3

k Iterations C1(k) λmin λmax Condition number
1 13 0.6061 0.6167 2.3309 3.7797
2 9 0.9159 0.9255 1.8968 2.0496
3 8 0.9827 1.0000 1.8835 1.8836
4 8 0.9964 1.0016 1.8854 1.8825
5 8 0.9993 1.0009 1.8797 1.8780

89

Table 3.14: Condition number estimates and iteration counts for the operator with

the preconditioner M̂ , u = 3, 3 × 3 × 3 subregions, Ĥ
H

= 6 and H
h

= 3

k Iterations C1(k) λmin λmax Condition number
1 15 0.5000 0.5093 2.0150 3.9562
2 10 0.8571 0.8678 1.9744 2.2753
3 8 0.9615 0.9900 1.8821 1.9012
4 8 0.9897 1.0015 1.8955 1.8927
5 8 0.9972 1.0020 1.8903 1.8866

3.5.2 Three Dimensional Cases

We have applied our two three-level BDDC algorithms to the model problem (1.6),

where Ω = [0, 1]3. We decompose the unit cube into N̂ × N̂ × N̂ subregions with

the sidelength Ĥ = 1/N̂ and each subregion into N × N × N subdomains with

the sidelength H = Ĥ/N . Equation (1.6) is discretized, in each subdomain, by

conforming piecewise trilinear elements with a finite element diameter h. The pre-

conditioned conjugate gradient iteration is stopped when the norm of the residual

has been reduced by a factor of 10−6.

We have carried out two different sets of experiments to obtain iteration counts

and condition number estimates. All the experimental results are fully consistent

with our theory.

In the first set of the experiments, we use the first preconditioner M̃−1 and

take the coefficient a ≡ 1. Table 3.10 gives the iteration counts and condition

number estimates with a change of the number of subregions. We find that the

condition numbers are independent of the number of subregions. Table 3.11 gives

results with a change of the number of subdomains. Table 3.12 gives results with

a change of the size of the subdomain problems.

90

In the second set of the experiments, we use the second preconditioner M̂−1

and take the coefficient a ≡ 1. We use the Preconditioned Conjugate Gradient

(PCG) to estimate the largest eigenvalue of

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
, which

is approximately 2.3249, and if we have 18 × 18 × 18 subdomains and H
h

= 3 for

the two-level BDDC, we have a condition number estimate of 1.8767. We select

different values of u, the upper bound eigenvalue estimate of the preconditioned

system, and k to see how the condition number changes. We take u = 2.3 in Table

3.13. We also give an estimate for C1(k) for k = 1, 2, 3, 4, 5. From Table 3.13, we

find that the smallest eigenvalue is bounded from below by C1(k) and the condition

number estimate becomes closer to 1.8767, the value for the two-level case, as k

increases.

We take u = 3 in Table 3.14. From the tables, we see that if we can get more

precise estimate for the largest eigenvalue of

(
̂̃
R

T

bD,bΓT̃
−1 ̂̃R bD,bΓ

)(
̂̃
R

T

bΓ T̃
̂̃
RbΓ

)
, we need

fewer Chebyshev iterations to get a condition number, close to that of the two-level

case. However, again the iteration count is not very sensitive to the choice of u.

3.6 Conclusion

As we have noted before, the coarse components of the two-level BDDC precon-

ditioners can ultimately become a bottleneck if the number of subdomains is very

large. In three-level algorithms, we alleviate this difficulty by using one additional

level.

Let us look at the cost of the two-level and three-level BDDC methods closely.

We assume that the diameter of the computational domain is O(1). Ĥ, H, and

h are the typical diameters of the subregions, subdomains, and elements of sub-

91

domains, respectively. The numbers of degrees of freedom of the original system,

the subdomain local problems, and the coarse problem are O(1
h2) (O(1

h3)), O(H2

h2)

(O(H3

h3)), and O(1
H2) (O(1

H3)), for two (three) dimensions respectively. Therefore

the optimal flop bounds for the Cholesky factorization of a local matrix and the

coarse matrix are O(H3

h3) (O(H6

h6)) and O(1
H3) (O(1

H6)), respectively; see Section

1.4. In each iteration, the cost of the forward and backward substitutions are

O(H2

h2 log(H2

h2)) (O(H4

h4)) and O(1
H2 log(1

H2) (O(1
H4)). In a parallel computation, we

can assign one subdomain to one processor and the coarse problem to one pro-

cessor also or assign the coarse problem to each processor. We focus on the first

approach here. If we store the coarse basis functions at the beginning of the com-

putation, then the BDDC preconditioner fits an additive framework. This means

that we can solve a few coarse and local problems simultaneously. We denote the

number of the processors by N +1. Then N ∼ 1
H2 (

1
H3). When N is large, then the

size of the coarse matrix is large and all the processors for the local problems are

waiting for the processor for the coarse problem and the coarse problem becomes

a bottleneck of the two-level BDDC methods.

For the three-level BDDC methods, we could first reduce the original coarse

problem to a subregion interface problem by eliminating independently the subre-

gion interior variables, which are the primal variables on the subdomain interface

and interior to the subregions. However, in our three-level BDDC algorithms, we

do not solve the subregion interface problem exactly, but replace it by one iteration

of the BDDC preconditioner. This means that we only need to solve several subre-

gion local problems and one coarse problem on the subregion level in each iteration.

Then the sizes of the subregion local problems and the subregion coarse problem

92

are O(Ĥ2

H2) (O(Ĥ3

H3)) and O(1
Ĥ2

) (O(1
Ĥ3

)). Therefore, the optimal flop bounds for

the Cholesky factorization for a subdomain local matrix, a subregion local matrix,

and the coarse matrix are O(H3

h3) (O(H6

h6)), O(Ĥ3

H3) (O(Ĥ6

H6)), and O(1
Ĥ3

) (O(1
Ĥ6

)),

respectively. In each iteration, the cost of the forward and backward substitutions

are O(H2

h2 log(H2

h2)) (O(H4

h4)), O(Ĥ2

H2 log(Ĥ2

H2)) (O(Ĥ4

H4)), and O(1
Ĥ2

log(1
Ĥ2

)) (O(1
Ĥ4

)).

We can assign the subregion local problems to the processors for the subdomain

local problems and the subregion coarse problem to the processor for the two-

level coarse problem. Usually Ĥ is much larger than H, therefore the size of the

subregion coarse problem is much smaller than that of the original coarse problem.

3.7 Future Work

BDDC has been extended to incompressible Stokes equations [58], flow in porous

media [85, 86], and to mortar finite element discretization [49]. I will continue to

work on extending our three-level BDDC algorithms to these problems, successfully

extending the earlier work on two-level BDDC methods.

93

Chapter 4

A BDDC Algorithm for a Mixed
Formulation of Flow in Porous
Media

4.1 Introduction

Mixed formulations of elliptic problems, see Section 1.3 and [21], lead to large,

sparse, symmetric, indefinite linear systems. Such methods have extensive appli-

cations, as in flow in porous media, where a good approximation to the velocity is

required.

Overlapping domain decomposition methods for this kind of problem were de-

veloped in [32, 67, 68, 69]. These additive or multiplicative overlapping Schwartz

alternating methods reduce the problem to a symmetric positive definite problem

for a vector, divergence free in a finite element sense. Then two-level overlapping

methods are applied to the reduced positive definite problem in a benign, diver-

gence free subspace. The algorithms converge at a rate independent of the mesh

parameters and the coefficients of the original equation.

In [42], two non-overlapping domain decomposition algorithms were proposed.

94

They are unpreconditioned conjugate gradient methods for certain interface vari-

ables and are, to the best of our knowledge, the first iterative substructuring meth-

ods. The rate of convergence is independent of the coefficients of the original equa-

tions, but depends mildly on the mesh parameters. The consequence of the singular

local Neumann problems that arise was addressed in [42]. Other non-overlapping

domain decomposition methods were proposed in [40] and [23] with improved rates

of convergence. A BNN version of the Method II of [42] was proposed in [22], see

also [79]. The same rate of convergence is obtained as for simple elliptic cases.

Using mixed formulations of flow in porous media, we will obtain a saddle

point problem which is closely related to that arising from the incompressible

Stokes equations. We note that, in a recent paper [58], the BDDC algorithms have

been applied to the incompressible Stokes equation, where the constraints enforced

across the interface satisfy two assumptions. One assumption forces the iterates

into the benign subspace in which the operator is positive definite and the other

ensures a good bound for the average operator. In general, both these assumptions

are required for a good bound for the condition number.

In this chapter, we extend the BDDC algorithms to mixed formulations of flow

in porous media. This work is directly related to [58], but our situation is also

different. First of all, our problem is not originally formulated in the benign, di-

vergence free subspace, and it will therefore be reduced to the benign subspace, as

in [32, 67, 68, 69], at the beginning of the computation. In addition, only edge/face

constraints are needed to force the iterates into the benign subspace and to ensure

a good bound for the condition number, since Raviart-Thomas finite elements, see

[21, Chapter III], are utilized. These elements have no degrees of freedom asso-

95

ciated with vertices/edges in two/three dimensions. Also, the condition number

estimate for the Stokes case can be simplified since the Stokes extension is equiv-

alent to the harmonic extension, see [7]. However, this is not the case here, and

different technical tools are required. We also note that our BDDC method is

closely related to edge/face-based iterative substructuring methods, see [77, 79]

and [83, Chapter 5]. We will give a detailed description later.

An iterative substructuring method for Raviart-Thomas finite elements for vec-

tor field problems was proposed in [89, 82]. We will borrow some technical tools

from those papers in our analysis of the BDDC algorithms.

The rest of the chapter is organized as follows. We reduce our system to an

interface problem in Section 4.2. In Section 4.3, we introduce the BDDC methods

for our mixed methods. We give some auxiliary results in Section 4.4. In Section

4.5, we provide an estimate of the form C
(
1 + log H

h

)2
of the condition number

for the system with the BDDC preconditioner; H and h are the diameters of the

subdomains and elements, respectively. We also compare the BDDC methods with

an edge/face-based algorithm in Section 4.6. Finally, some computational results

are given in Section 4.7.

Our presentation here is based on [85] and the mixed formulation is based on

Subsection 1.3.2.

4.2 Reduction to an Interface Problem

We decompose Ω into N nonoverlapping subdomains Ωi with diameters Hi, i =

1, · · · , N , and with H = maxiHi. We assume that each subdomain is a union of

shape-regular coarse rectangles/hexahedra and that the number of such rectan-

96

gles/hexahedra forming an individual subdomain is uniformly bounded. We then

introduce quasi-uniform triangulations of each subdomain. The global problem

(1.14) is assembled from the subdomain problems
[
A(i) B(i)T

B(i) 0

][
u

(i)
h

p
(i)
h

]
=

[
0

F
(i)
h

]
. (4.1)

The degrees of freedom of the Raviart-Thomas finite elements are the normal

components on the boundary of each element only.

Let Γ be the interface between the subdomains. The set of the interface nodes

Γh is defined as Γh = (∪i6=j∂Ωi,h ∩ ∂Ωj,h) \ ∂Ωh, where ∂Ωi,h is the set of nodes on

∂Ωi and ∂Ωh is the set of nodes on ∂Ω. We decompose the discrete velocity and

pressure spaces Ŵ and Q into

Ŵ = WI

⊕
ŴΓ, Q = QI

⊕
Q0. (4.2)

ŴΓ is the space of traces on Γ of functions of Ŵ. WI and QI are direct sums of

subdomain interior velocity spaces W
(i)
I , and subdomain interior pressure spaces

Q
(i)
I , i.e.,

WI =

N⊕

i=1

W
(i)
I , QI =

N⊕

i=1

Q
(i)
I .

The elements of W
(i)
I are supported in the subdomain Ωi and their normal compo-

nents vanish on the subdomain interface Γi = Γ ∩ ∂Ωi, while the elements of Q
(i)
I

are restrictions of elements in Q to Ωi which satisfy
∫
Ωi
q
(i)
I = 0. Q0 is the subspace

of Q with constant values q
(i)
0 in the subdomain Ωi that satisfy

N∑

i=1

q
(i)
0 m(Ωi) = 0, (4.3)

where m(Ωi) is the measure of the subdomain Ωi. R
(i)
0 is the operator which maps

functions in the space Q0 to its constant component of the subdomain Ωi.

97

We denote the subdomain velocity space by W(i) = W
(i)
I

⊕
WΓ, the space

of the interface velocity variables by W
(i)
Γ , and the associate product space by

WΓ =
∏N

i=1 W
(i)
Γ .

The subdomain saddle point problems (4.1) can be written as



A
(i)
II B

(i)T

II A
(i)T

ΓI 0

B
(i)
II 0 B

(i)
IΓ 0

A
(i)
ΓI B

(i)T

IΓ A
(i)
ΓΓ B

(i)T

0Γ

0 0 B
(i)
0Γ 0







u
(i)
h,I

p
(i)
h,I

u
(i)
h,Γ

p
(i)
h,0




=




0

F
(i)
h,I

0

F
(i)
h,Γ



, (4.4)

where (u
(i)
h,I, p

(i)
h,I,u

(i)
h,Γ, p

(i)
h,0) ∈ (W

(i)
I , Q

(i)
I ,W

(i)
Γ , Q

(i)
0). We note that, by the diver-

gence theorem, the lower left block of the matrix of (4.4) is zero since the bilinear

form b(v
(i)
I , q

(i)
0) always vanishes for any v

(i)
I ∈ W

(i)
I and a constant q

(i)
0 in the

subdomain Ωi.

4.2.1 Obtaining a Divergence Free Correction

First of all, we seek a discrete velocity u∗
h ∈ Ŵ such that

Bu∗
h = Fh. (4.5)

Let ŴH be the lowest order Raviart-Thomas finite element space on the coarse

triangulation, associated with the subdomains, with zero normal components on

∂Ω and let QH be the space of piecewise constants with vanishing mean value. RT
0

is the natural interpolation operator from ŴH ×QH to Ŵ ×Q. We also use the

same interpolation operator on the corresponding right hand side space. Let
[
A0 BT

0

B0 0

]
= R0

[
A BT

B 0

]
RT

0 , (4.6)

and [
u∗

0

p∗0

]
= RT

0

[
A0 BT

0

B0 0

]−1

R0

[
0
Fh

]
.

98

We note that the coarse grid solution u∗
0 does not necessarily satisfy (4.5), but

that Bu∗
0 − Fh has mean value zero over each subdomain Ωi, see [68, 32]. Then

the local Neumann problems, with u
(i)
h,Γ = 0 and the right hand sides

[
−A(i)u

∗,(i)
0

F
(i)
h −B(i)u

∗,(i)
0

]
, i = 1, · · · , N,

are all well-posed. We can solve
[
A

(i)
II B

(i)T

II

B
(i)
II 0

][
u

(i)
h,I

p
(i)
h,I

]
=

[
−(A(i)u

∗,(i)
0)I

(F
(i)
h − B(i)u

∗,(i)
0)I

]
, i = 1, · · · , N, (4.7)

and set

u∗
i =

[
u

(i)
h,I

0

]
, i = 1, · · · , N.

Let u∗
h = u∗

0 + u∗
1 + · · ·+ u∗

N which satisfies (4.5). We then write the solution of

[
A BT

B 0

] [
uh

ph

]
=

[
0
Fh

]

as [
uh

ph

]
=

[
u∗

h

0

]
+

[
u
p

]
,

where the correction (u, p)T satisfies

[
A BT

B 0

] [
u
p

]
=

[
−Au∗

h

0

]
. (4.8)

This problem can be assembled from the subdomain problems:




A
(i)
II B

(i)T

II A
(i)T

ΓI 0

B
(i)
II 0 B

(i)
IΓ 0

A
(i)
ΓI B

(i)T

IΓ A
(i)
ΓΓ B

(i)T

0Γ

0 0 B
(i)
0Γ 0







u
(i)
I

p
(i)
I

u
(i)
Γ

p
(i)
0




=




f
(i)
I

0

f
(i)
Γ

0


 , (4.9)

where (u
(i)
I , p

(i)
I ,u

(i)
Γ , p

(i)
0) ∈ (W

(i)
I , Q

(i)
I ,W

(i)
Γ , Q

(i)
0) and f

(i)
I = −

(
A(i)u∗(i)

)
I

and

f
(i)
Γ = −

(
A(i)u∗(i)

)
Γ
.

99

4.2.2 A Reduced Interface Problem

We now reduce the global problem (4.8) to an interface problem.

We define the subdomain Schur complements S
(i)
Γ as: given w

(i)
Γ ∈ W

(i)
Γ , deter-

mine S
(i)
Γ w

(i)
Γ such that



A

(i)
II B

(i)T

II A
(i)T

ΓI

B
(i)
II 0 B

(i)
IΓ

A
(i)
ΓI B

(i)T

IΓ A
(i)
ΓΓ







w
(i)
I

p
(i)
I

w
(i)
Γ


 =




0

0

S
(i)
Γ w

(i)
Γ


 . (4.10)

We know from the definition in (4.10), that the action of S
(i)
Γ can be evaluated by

solving a Neumann problem on the subdomain Ωi. We note that these Neumann

problems are always well-posed, even without any constraints on the normal com-

ponent of the velocity since we have removed the constant pressure component

constraints. Furthermore, since the local matrices
[
A

(i)
II A

(i)T

ΓI

A
(i)
ΓI A

(i)
ΓΓ

]

are symmetric, positive definite, we have, by an inertia argument,

Lemma 4.1 The subdomain Schur complements S
(i)
Γ defined in (4.10) are sym-

metric, positive definite.

Given the definition of S
(i)
Γ , the subdomain problems (4.9) are reduced to the

subdomain interface problems
[
S

(i)
Γ B

(i)T

0Γ

B
(i)
0Γ 0

][
u

(i)
Γ

p
(i)
0

]
=

[
g

(i)
Γ

0

]
, i = 1, 2, ..., N,

where

g
(i)
Γ = f

(i)
Γ −

[
A

(i)
ΓI B

(i)T

IΓ

] [
A

(i)
II B

(i)T

II

B
(i)
II 0

]−1 [
f
(i)
I

0

]
.

100

We denote the direct sum of S
(i)
Γ by SΓ. Let R

(i)
Γ be the operator which maps

functions in the continuous interface velocity space ŴΓ to the subdomain compo-

nents in the space W
(i)
Γ . The direct sum of the R

(i)
Γ is denoted by RΓ. Then the

global interface problem, assembled from the subdomain interface problems, can

be written as: find (uΓ, p0) ∈ ŴΓ ×Q0, such that

Ŝ

[
uΓ

p0

]
=

[
ŜΓ B̂T

0Γ

B̂0Γ 0

] [
uΓ

p0

]
=

[
gΓ

0

]
, (4.11)

where gΓ =
∑N

i=1R
(i)T

Γ g
(i)
Γ , B̂0Γ =

∑N
i=1B

(i)
0ΓR

(i)
Γ , and

ŜΓ = RT
ΓSΓRΓ =

N∑

i=1

R
(i)T

Γ S
(i)
Γ R

(i)
Γ . (4.12)

Thus, Ŝ is an interface saddle point operator defined on the space ŴΓ × Q0.

But by Lemma 4.1, this operator is symmetric positive definite on the benign

subspace where B̂0ΓuΓ = 0. From (4.8), we know that the correction (uΓ, p)
T

lies in this benign subspace. We will propose a preconditioner for (4.11) which

keeps all the iterates in this benign subspace. Therefore, the iterates remain in

the benign subspace in which the preconditioned operator is positive definite and

a preconditioned conjugate gradient method can be applied.

4.3 The BDDC Methods

We follow [58, Section 4] closely in this section. We introduce a partially assembled

interface velocity space W̃Γ by

W̃Γ = ŴΠ

⊕
W∆ = ŴΠ

⊕(
N∏

i=1

W
(i)
∆

)
.

Here, ŴΠ is the coarse level, primal interface velocity space which is spanned by

subdomain interface edge/face basis functions with constant values at the nodes

101

of the edge/face for two/three dimensions. We change the variables so that the

degree of freedom of each primal constraint is explicit, see [59] and [54]. The space

W∆ is the direct sum of the W
(i)
∆ , which is spanned by the remaining interface

velocity degrees of freedom with a zero average over each edge/face. In the space

W̃Γ, we have relaxed most continuity constraints on the velocity across the interface

but retained all primal continuity constraints, which has the important advantage

that all the linear systems are nonsingular in the computation. This is the main

difference from an edge/face-based iterative substructuring domain decomposition

method, where we will encounter singular local problems; see Section 4.6.

We need to introduce several restriction, extension, and scaling operators be-

tween different spaces. R
(i)

Γ restricts functions in the space W̃Γ to the components

W
(i)
Γ related to the subdomain Ωi. R

(i)
∆ maps functions from ŴΓ to W

(i)
∆ , its dual

subdomain component. RΓΠ is a restriction operator from ŴΓ to its subspaces

ŴΠ and R
(i)
Π is the operator which maps vectors in ŴΠ into their components in

W
(i)
Π . RΓ : W̃Γ → WΓ is the direct sum of R

(i)

Γ and R̃Γ : ŴΓ → W̃Γ is the direct

sum of RΓΠ and R
(i)
∆ . We define the positive scaling factor δ†i (x) as follows: for

γ ∈ [1/2,∞),

δ†i (x) =
cγi (x)∑

j∈Nx
cγj (x)

, x ∈ ∂Ωi,h ∩ Γh,

where Nx is the set of indices j of the subdomains such that x ∈ ∂Ωj. We assume

that a, the coefficient of (1.6), is a constant in each subdomain. So are the ci(x).

We then note that δ†i (x) is constant on each edge/face since the nodes on each

edge/face are shared by the same pair of subdomains. Multiplying each row of

R
(i)
∆ with the scaling factor δ†i (x) gives us R

(i)
D,∆. The scaled operators R̃D,Γ is the

102

direct sum of RΓΠ and the R
(i)
D,∆. We also use the notation

R̃ =

[
R̃Γ

I

]
and R̃D =

[
R̃D,Γ

I

]
.

We also denote by FΓ, F̂Γ, and F̃Γ, the right hand side spaces corresponding

to WΓ, ŴΓ, and W̃Γ, respectively. We will use the same restriction, extension,

and scaled restriction operators for the spaces FΓ, F̂Γ, and F̃Γ as for WΓ, ŴΓ,

and W̃Γ.

We define the partially assembled interface velocity Schur complement S̃Γ :

W̃Γ → F̃Γ by

S̃Γ = R
T

ΓSΓRΓ. (4.13)

S̃Γ can also be defined by: for any given wΓ ∈ W̃Γ, S̃ΓwΓ ∈ F̃Γ satisfies



A
(1)
II B

(1)T

II A
(1)T

∆I Ã
(1)T

ΠI

B
(1)
II 0 B

(1)
I∆ B̃

(1)
IΠ

A
(1)
∆I B

(1)T

I∆ A
(1)
∆∆ Ã

(1)T

Π∆

. . .
...

Ã
(1)
ΠI B̃

(1)T

IΠ Ã
(1)
Π∆ . . . ÃΠΠ







w
(1)
I

p
(1)
I

w
(1)
∆

...

wΠ




=




0

0

(S̃ΓwΓ)
(1)
∆

...

(S̃ΓwΓ)Π



. (4.14)

Here,

Ã
(i)
ΠI = R

(i)T

Π A
(i)
ΠI , Ã

(i)
Π∆ = R

(i)T

Π A
(i)
Π∆, ÃΠΠ =

N∑

i=1

R
(i)T

Π A
(i)
ΠΠR

(i)
Π , B̃

(i)
IΠ = B

(i)
IΠR

(i)
Π .

Given the definition S̃Γ on the partially assembled interface velocity space W̃Γ, we

can also obtain ŜΓ from S̃Γ by assembling the dual interface velocity part on the

subdomain interface, i.e.,

ŜΓ = R̃T
Γ S̃ΓR̃Γ. (4.15)

We can also define the operator B̃0Γ, partially assembled from the subdomain

operators B
(i)
0Γ , which maps the partially assembled interface velocity to the right

103

hand sides corresponding to the subdomain constant pressures. Then B̂0Γ can

also be obtained from B̃0Γ by assembling the dual interface velocity part on the

subdomain interface, i.e., B̂0Γ = B̃0ΓR̃Γ.

Therefore, we can write the global interface saddle point problem operator Ŝ,

introduced in Equation (4.11), as

Ŝ =

[
ŜΓ B̂T

0Γ

B̂0Γ 0

]
=

[
R̃T

Γ S̃ΓR̃Γ R̃T
Γ B̃

T
0Γ

B̃0ΓR̃Γ 0

]
. (4.16)

The BDDC preconditioner for solving the global interface saddle point problem

(4.11) is then

M−1 =

[
R̃T

D,Γ

I

][
S̃Γ B̃T

0Γ

B̃0Γ 0

]−1 [
R̃D,Γ

I

]
. (4.17)

We use the notation

S̃ =

[
S̃Γ B̃T

0Γ

B̃0Γ 0

]
,

then the preconditioned BDDC algorithm is of the form: find (uΓ,p0) ∈ ŴΓ×Q0,

such that

R̃T
DS̃

−1R̃DŜ

[
uΓ

p0

]
= R̃T

DS̃
−1R̃D

[
gΓ

0

]
. (4.18)

We define two subspaces ŴΓ,B and W̃Γ,B of ŴΓ and W̃Γ, respectively, as in [58,

Definition 1]:

ŴΓ,B = {wΓ ∈ ŴΓ | B̂0ΓwΓ = 0},

W̃Γ,B = {wΓ ∈ W̃Γ | B̃0ΓwΓ = 0}.

We call ŴΓ,B ×Q0 and W̃Γ,B ×Q0 the benign subspaces of ŴΓ×Q0 and W̃Γ×Q0,

respectively. With Lemma 4.1, it is easy to check that both operators ŜΓ and S̃Γ,

given in (4.12) and (4.13), are symmetric, positive definite when restricted to the

benign subspaces ŴΓ ×Q0 and W̃Γ ×Q0, respectively and we also have

104

Lemma 4.2 For any w ∈ W̃Γ,B ×Q0, R̃T
Dw ∈ ŴΓ,B ×Q0.

Proof: We need to show that for any w ∈ W̃Γ,B × Q0, R̃
T
Dw ∈ ŴΓ,B × Q0.

Given w = (wΓ, p0) ∈ W̃Γ,B ×Q0, we have B̃0ΓwΓ = 0 and

R̃T
Dw =

[
R̃T

D,Γ

I

][
wΓ

p0

]
=

[
R̃T

D,ΓwΓ

p0

]
∈ ŴΓ ×Q0. (4.19)

We only need to show that B̂0ΓR̃
T
D,ΓwΓ = 0 and we find that

B̂0ΓR̃
T
D,ΓwΓ = B̃0ΓR̃ΓR̃

T
D,ΓwΓ = B̃0ΠwΠ = 0.

Here we use the definitions of B̂0Γ and B̃0Γ for the first equality. For the second,

we use that the Raviart-Thomas finite element functions only have degrees of

freedom on edges/faces. In our BDDC algorithm, we choose the continuous primal

interface velocity space WΠ and the subdomain dual interface velocity spaces W
(i)
∆

such that if u
(i)
∆ ∈ W

(i)
∆ , then u

(i)
∆ has a zero edge/face average for each edge/face.

In fact, R̃ΓR̃
T
D,Γ computes the average of the dual interface velocities w∆, then

distributes them back to each subdomain and leaves wΠ the same. We recall that

the weights at these nodes are the same for each edge/face since these nodes are

shared by the same pair of subdomains. The averaged dual interface velocity still

has a zero edge/face average for each edge/face. For the third equality, we use that

B̃0ΓwΓ = B̃0ΠwΠ = 0, since w ∈ W̃Γ,B ×Q0.

�

Therefore, we can conclude that the preconditioned BDDC operator, defined

in (4.18), is positive definite in the benign subspace W̃Γ,B ×Q0.

105

4.4 Some Auxiliary Results

We first list some results for Raviart-Thomas finite element function spaces needed

in our analysis. These results were originally given in [89, 82, 88].

We consider the interpolation operator ΠH
RT from Ŵ onto ŴH . Recall that

ŴH is the Raviart-Thomas finite element space on the coarse mesh with mesh size

H, which is defined in terms of the degrees of freedom λF , by

λF(ΠH
RT u) :=

1

|F|

∫

F

u · nds, F ⊂ FH .

We consider the stability of the interpolant ΠH
RT in the next lemma.

Lemma 4.3 There exists a constant C, which depends only on the aspect ratios

of K ∈ TH and of the elements of Th, such that, for all u ∈ Ŵ,

‖div(ΠH
RTu)‖2

L2(K) ≤ ‖divu‖2
L2(K),

‖ΠH
RT u‖2

L2(K) ≤ C

(
1 + log

H

h

)(
‖u‖2

L2(K) +H2
K‖divu‖2

L2(K)

)
.

Proof: See [89, Lemma 4.1].

�

We define N(∂Ωi) as the the space of functions that are constant on each

element of the edges/faces of the boundary of Ωi and its subspace N0(∂Ωi), of

functions that have mean value zero on ∂Ωi. Let NH be the space of functions

µ defined on Γ, such that for each subdomain Ωi and each edge/face F of Ωi, µ

is constant on F . We note that NH is the space of normal components on Γ of

vectors in ŴH.

106

We define a divergence-free extension of boundary data given on ∂Ωi in the

next lemma.

Lemma 4.4 There exists an extension operator H̃i : N0(∂Ωi) −→ W(i), such that,

for any µ ∈ N0(∂Ωi),

divH̃iµ = 0, for x ∈ Ωi,

and

‖H̃iµ‖L2(Ωi) ≤ C‖µ‖H−1/2(∂Ωi). (4.20)

Here C is independent of h, H, and µ.

Proof: See [89, Lemma 4.3].

�

Given a subdomain Ωi, we define partition of unity functions associated with

its edges/faces. Let ζF be the characteristic function of F , i.e., the function that

is identically one on F and zero on ∂Ωi\F . We clearly have

∑

F⊂∂Ωi

ζF(x) = 1, almost everywhere on ∂Ωi\∂Ω.

Given a function µ ∈ N(∂Ωi) and a face F ⊂ ∂Ωi, let

µF := ζFµ ∈ N(∂Ωi).

We have the following estimates for the edge/face components of the particular

functions in N(∂Ωi) with a vanishing average on the subdomain edges/faces.

107

Lemma 4.5 Let µ ∈ N(∂Ωi) with
∫

∂Ωi
µds = 0, and for any F ⊂ ∂Ωi,

∫
F µds =

∫
F
µFds = 0. There then exists a constant C, independent of h and µH , such that,

for any µH ∈ NH ,

‖µF‖
2
H−1/2(∂Ωi)

≤ C

(
1 + log

H

h

)(
(1 + log

H

h
)‖µ+ µH‖

2
H−1/2(∂Ωi)

+ ‖µ‖2
H−1/2(∂Ωi)

)
.(4.21)

Proof: See [89, Lemma 4.4].

�

The following lemma compares norms of traces on the subdomain boundaries

that share an edge/face.

Lemma 4.6 Let Ωi and Ωj be two subdomains with a common edge/face F . Let

µF be a function in H−1/2(∂Ωi), that vanishes outside F . Then, there is a constant

C, that depends only on the aspect ratios of Ωi and Ωj, such that

‖µF‖H−1/2(∂Ωi) ≤ C‖µF‖H−1/2(∂Ωj).

Proof: See [82, Lemma 5.5.2].

�

We next list some results for the benign subspace W̃Γ,B ×Q0.

Let ‖w‖2
eS = wT S̃w and ‖wΓ‖

2
eSΓ

= wT
Γ S̃ΓwΓ. We then have

Lemma 4.7 Given any w ∈ W̃Γ,B ×Q0, we have

‖w‖2
eS = ‖wΓ‖

2
eSΓ
.

108

Proof:

‖w‖2
eS = wT S̃w =

[
wT

Γ qT
0

]
[
S̃Γ B̃T

0Γ

B̃0Γ 0

] [
wΓ

q0

]
= wT

Γ S̃ΓwΓ = ‖wΓ‖
2
eSΓ
.

�

We define the average operator by ED = R̃R̃T
D. We see that for any vector

w = (wΓ, q0) ∈ W̃Γ ×Q0,

ED

[
wΓ

q0

]
=

[
R̃Γ

I

] [
R̃T

D,Γ

I

] [
wΓ

q0

]
=

[
ED,ΓwΓ

q0

]
, (4.22)

where ED,Γ = R̃ΓR̃
T
D,Γ, which computes the average of the interface velocities

across the subdomain interface. Lemma 4.2 shows that after averaging a benign

vector across a subdomain interface the result is still benign.

An estimate of the norm of the ED operator restricted to the benign subspace

W̃Γ,B ×Q0 is given in the next lemma.

Lemma 4.8 There exists a positive constant C, which is independent of H and

h, and the number of subdomains, such that

‖EDw‖2
eS ≤ C

(
1 + log

H

h

)2

‖w‖2
eS, ∀w = (wΓ, q0) ∈ W̃Γ,B ×Q0.

Proof: Given any w = (wΓ, q0) ∈ W̃Γ,B ×Q0, we know, from Lemma 4.2, that

R̃T
Dw ∈ ŴΓ,B × Q0. Therefore, EDw = R̃DR̃

T
Dw ∈ W̃Γ,B × Q0. We have, by

Lemma 4.7, that

‖EDw‖2
eS

≤ 2
(
‖w‖2

eS + ‖w − EDw‖2
eS
)

≤ 2
(
‖w‖2

eS + ‖wΓ − ED,ΓwΓ‖
2
eSΓ

)

109

= 2
(
‖w‖2

eS + ‖RΓ (wΓ − ED,ΓwΓ) ‖2
SΓ

)

= 2

(
‖w‖2

eS +
N∑

i=1

‖R
(i)

Γ (wΓ − ED,ΓwΓ) ‖2

S
(i)
Γ

)
. (4.23)

Let wi = R
(i)

wΓ and set

vi(x) := R
(i)

Γ (wΓ − ED,ΓwΓ)(x) =
∑

j∈Nx

δ†j(wi(x) − wj(x)), x ∈ ∂Ωi ∩ Γ. (4.24)

Here Nx is the set of indices of the subdomains that have x on their boundaries.

Since a fine edge/face only belongs to exactly two subdomains, for an edge/face

F ij ⊂ ∂Ωi that is also shared by Ωj, we have

vi = δ†jwi − δ†jwj, on F ij. (4.25)

We note that the simple inequality

ciδ
†2

j ≤ min(ci, cj), (4.26)

holds for γ ∈ [1/2,∞).

Since vi · n has a vanishing mean value on each face of Ωi, we can define, by

Lemma 4.4, vE
i = H̃i(vi · n). Then

divvE
i = 0, for x ∈ Ωi, (4.27)

and,

‖vE
i ‖

2
L2(Ωi)

≤ C‖vi · n‖
2
H−1/2(∂Ωi)

. (4.28)

We then obtain

‖vi‖
2

S
(i)
Γ

= ci‖v
E
i ‖

2
L2(Ωi)

≤ Cci‖vi · n‖
2
H−1/2(∂Ωi)

≤ Cci
∑

F ij⊂∂Ωi

‖ζF ij(vi · n)‖2
H−1/2(∂Ωi)

. (4.29)

110

Using (4.25), we have, with (wi · n)F ij the average over F ij,

ci‖ζF ij(vi · n)‖2
H−1/2(∂Ωi)

= ci‖ζF ijδ†j(wi − wj) · n‖
2
H−1/2(∂Ωi)

≤ 2ciδ
†2

j

(
‖ζF ij(wi · n − (wi · n)F ij)‖2

H−1/2(∂Ωi)

+ ‖ζF ij (wj · n − (wj · n)F ij)‖
2
H−1/2(∂Ωi)

)

≤ 2ci‖ζF ij (wi · n − (wi · n)F ij)‖2
H−1/2(∂Ωi)

+ 2cj‖ζF ij(wj · n − (wj · n)F ij)‖
2
H−1/2(∂Ωj)

.

Here we use Lemma 4.6 and (4.26) for the last inequality.

We only need to estimate the first term since the second term can be estimated

similarly.

Since w is in the benign space, wi · n has vanishing mean value on ∂Ωi. By

Lemma 5.2, we can construct

wE
i = H̃i(wi · n),

such that

divwE
i = 0, for x ∈ Ωi.

Let wE
0 ∈ Ŵ be defined by

wE
0 =

{
wE

i in Ωi

0 otherwise.

Let uH = ΠH
RT w0 and ¯H = uH · n. By the definition of ΠH

RT , we know that

ζF ijµH = (wi · n)F ij , and for any F ⊂ ∂Ωi,
∫
F (wi · n − µH)ds = 0. Using Lemma

4.5, we have

(4.30)

111

‖ζF ij (wi · n − (wi · n)F ij)‖2
H−1/2(∂Ωi)

= ‖ζF ij (wi · n − µH)‖2
H−1/2(∂Ωi)

≤ C

(
1 + log

H

h

)(
(1 + log

H

h
)‖wi · n‖

2
H−1/2(∂Ωi)

+ ‖wi · n − µH‖
2
H−1/2(∂Ωi)

)

≤ C

(
1 + log

H

h

)(
(1 + log

H

h
)‖wi · n‖

2
H−1/2(∂Ωi)

+ ‖µH‖
2
H−1/2(∂Ωi)

)
,

where we use the triangle inequality for the last inequality.

By Lemma 4.3, we know that

‖divuH‖
2
L2(Ωi)

≤ ‖divwE
0 ‖

2
L2(Ωi)

= ‖divwE
i ‖

2
L2(Ωi)

= 0. (4.31)

and

‖uH‖
2
L2(Ωi)

≤ C

(
1 + log

H

h

)(
‖wE

0 ‖
2
L2(Ωi)

+H2‖divwE
0 ‖

2
L2(Ωi)

)

= C

(
1 + log

H

h

)
‖wE

i ‖
2
L2(Ωi)

. (4.32)

Using (4.30), (1.5), (4.31), and (4.32), we obtain:

‖ζF ij(wi · n − (wi · n)F ij)‖2
H−1/2(∂Ωi)

≤ C

(
1 + log

H

h

)(
(1 + log

H

h
)‖wi · n‖

2
H−1/2(∂Ωi)

+ ‖µH‖
2
H−1/2(∂Ωi)

)

≤ C

(
1 + log

H

h

)(
(1 + log

H

h
)‖wE

i ‖
2
H(div,Ωi)

+ ‖uH‖
2
H(div,Ωi)

)

≤ C

(
1 + log

H

h

)(
(1 + log

H

h
)‖wE

i ‖
2
L2(Ωi)

+ (1 + log
H

h
)‖wE

i ‖
2
L2(Ωi)

)

≤ C

(
1 + log

H

h

)2

‖wE
i ‖

2
L2(Ωi)

≤
C

ci

(
1 + log

H

h

)2

‖wi‖
2

S
(i)
Γ

.

Here we use that divwE
i = 0 for the third inequality.

112

Finally, we obtain

ci‖ζF ij (vi · n)‖2
H−1/2(∂Ωi)

≤ C

(
1 + log

H

h

)2

‖wi‖
2

S
(i)
Γ

. (4.33)

Since w is benign, we have, from Lemma 4.7, that ‖w‖eS = ‖wΓ‖eSΓ
; then by

Equations (4.23), (4.24), (4.29), and (4.33), we have

‖EDw‖2
eS ≤ C

(
1 + log

H

h

)2

‖wΓ‖
2
eSΓ

= C

(
1 + log

H

h

)2

‖w‖2
eS.

�

4.5 Condition Number Estimate for the BDDC

Preconditioner

We are now ready to formulate and prove our main result; this follows directly

from the proof of [58, Theorem 1] by using Lemma 4.2 and Lemma 4.8.

Theorem 4.9 The preconditioned operator M−1Ŝ is symmetric, positive definite

with respect to the bilinear form 〈·, ·〉bS on the benign space ŴΓ,B ×Q0 and

〈u,u〉bS ≤
〈
M−1Ŝu,u

〉
bS
≤ C

(
1 + log

H

h

)2

〈u,u〉bS , ∀u ∈ ŴΓ,B ×Q0. (4.34)

Here, C is a constant which is independent of h and H.

4.6 Comparison with an Edge/face-based Itera-

tive Substructuring Domain Decomposition

Method

We define an edge/face-based iterative substructuring method as a hybrid method

(see [83, Section 2.5.2]). Similar to the BNN method, as defined in Section 2.5 and

113

[74, Section 4], the coarse problems and the local problems are treated multiplica-

tively and additively, respectively, in this preconditioner. We use a different coarse

component, i.e., a different choice of the matrix L0 for the coarse problem, but the

same local problems as in [74, Section 4]. Here, each column of L0 corresponds to

an edge/face on the interface of Ω and is given by the positive scaling factor δ†i (x).

It is clear that we can prove that the condition number with this preconditioner is

also bounded by C
(
1 + log H

h

)2
. We will call this method the FBA.

The size and sparsity of the coarse problems of the BDDC and the FBA are the

same. However, the two algorithms are different. The FBA is a hybrid algorithm

and a coarse problem has to be solved before the rest of the iterations. In contrast,

only the variables have to be changed at the beginning of computation with the

BDDC, to accommodate the edge/face constraints. In addition, the FBA requires

two Dirichlet local problems and one singular local Neumann problem in each iter-

ation, whereas the BDDC requires one local Dirichlet problem and two nonsingular

local Neumann problems. In the latter algorithm, singular problems are avoided.

Numerical experiments show that FBA is somewhat slower than BDDC.

4.7 Numerical Experiments

We have applied our BDDC and FBA algorithms to the model problem (1.6),

where Ω = [0, 1]2. We decompose the unit square into N × N subdomains with

the sidelength H = 1/N . Equation (1.6) is discretized, in each subdomain, by the

lowest order Raviart-Thomas finite elements and the space of piecewise constants

with a finite element diameter h, for the velocity and pressure, respectively. The

preconditioned conjugate gradient iteration is stopped when the l2-norm of the

114

Table 4.1: Condition number estimates and iteration counts, for a pair of BDDC
and FBA algorithms, with a change of the number of subdomains. H/h = 8 and
c ≡ 1.

Num. of sub. BDDC FBA
nx × ny Iter. Cond. Num. Iter. Cond. Num.

4 × 4 5 1.66 5 2.43
8 × 8 8 2.95 8 2.90

12 × 12 9 3.08 7 2.75
16 × 16 9 3.13 7 2.72
20 × 20 8 3.15 7 2.71

Table 4.2: Condition number estimates and iteration counts, for a pair of BDDC
and FBA algorithms, with a change of the size of subdomain problems. 8 × 8
subdomains and c ≡ 1.

BDDC FBA
H
h

Iter. Cond. Num. Iter. Cond. Num.
4 8 2.17 7 2.12
8 8 2.95 8 2.90
12 9 3.47 9 3.45
16 9 3.88 9 3.83
20 9 4.20 9 4.15

Table 4.3: Condition number estimates and iteration counts, for a pair of BDDC
and FBA algorithms, with a change of the number of subdomains. H/h = 8 and
c is in a checkerboard pattern.

Num. of sub. BDDC FBA
nx × ny Iter. Cond. Num. Iter. Cond. Num.
4 × 4 3 1.03 5 2.20
8 × 8 3 1.06 7 2.44

12 × 12 3 1.07 7 2.49
16 × 16 3 1.08 7 2.51
20 × 20 3 1.08 7 2.53

115

Table 4.4: Condition number estimates and iteration counts, for a pair of BDDC
and FBA algorithms, with a change of the size of subdomain problems. 8 × 8
subdomains and c is in a checkerboard pattern.

BDDC FBA
H
h

Iter. Cond. Num. Iter. Cond. Num.
4 3 1.04 7 2.00
8 3 1.06 7 2.44
12 4 1.10 8 2.69
16 4 1.11 8 2.88
20 4 1.12 8 3.02

residual has been reduced by a factor of 10−6.

We have carried out two different sets of experiments to obtain iteration counts

and condition number estimates. All the experimental results are fully consistent

with our theory.

In the first set of experiments, we take the coefficient c ≡ 1. Table 4.1 gives

the iteration counts and the estimate of the condition numbers, with a change of

the number of subdomains. We find that the condition number is independent of

the number of subdomains for both algorithms. Table 4.2 gives the results with a

change of the size of the subdomain problems.

In the second set of experiments, we take the coefficient c = 1 in half the

subdomains and c = 100 in the neighboring subdomains, in a checkerboard pattern.

Table 4.3 gives the iteration counts, and condition number estimates with a change

of the number of subdomains. We find that the condition numbers are independent

of the number of subdomains for both algorithms. Table 4.4 gives the results with

a change of the size of the subdomain problems.

116

4.8 More General Subdomains

4.8.1 Obtaining a Correction in the Benign Subspace

In the first step, to obtain a divergence free correction, of the algorithm of Section

4.2, we have assumed that the subdomains form a coarse triangulation of our

domain since we need to define the Raviart-Thomas finite element space at the

subdomain level. This limits the algorithm. However, we only need that the

corrections belong to the benign subspace for the BDDC algorithms. Moreover,

we can obtain such a correction easily by acting with the BDDC precondioner on

a carefully chosen vector. Therefore, the algorithm can be extended to different

types of subdomains.

In a more general case, we can still define faces, regarded as open sets, that

are shared by two subdomains. Two nodes belong to the same face when they are

associated with the same pair of subdomains.

We define gc as follows: 


0

F
(1)
h,Γ
...

F
(N)
h,Γ


 . (4.35)

Let u∗
h,Γ = M−1gc, i.e.,

[
u∗

h,Γ

p∗

]
=

[
R̃T

D,Γ

I

][
S̃Γ B̃T

0Γ

B̃0Γ 0

]−1 [
R̃D,Γ

I

]



0

F
(1)
h,Γ
...

F
(N)
h,Γ


 . (4.36)

Let us calculate B̂0Γu
∗
h,Γ. From the definition of u∗

h,Γ, we know that u∗
h,Γ = R̃T

D,ΓwΓ,

117

where B̃0ΓwΓ =



F

(1)
h,Γ
...

F
(N)
h,Γ


. Then, we have,

B̂0Γu
∗
h,Γ = B̂0ΓR̃

T
D,ΓwΓ = B̃0ΓR̃ΓR̃

T
D,ΓwΓ = B̃0ΠwΠ =



F

(1)
h,Γ
...

F
(N)
h,Γ


 .

Here we use the same argument as for Lemma 4.2 and the definitions of B̂0Γ and

B̃0Γ for the first equality. For the second, we use that the Raviart-Thomas finite

element functions only have degrees of freedom on edges/faces. In our BDDC

algorithm, we choose the continuous primal interface velocity space ŴΠ and the

subdomain dual interface velocity spaces W
(i)
∆ such that if u

(i)
∆ ∈ W

(i)
∆ , then u

(i)
∆ has

a zero edge/face average for each interface edge/face. In fact, R̃ΓR̃
T
D,Γ computes

the average of the dual interface velocities W∆, and then distributes them back

to each subdomain and leaves ŴΠ the same. We recall that the weights at these

nodes are the same for each edge/face since these nodes are shared by the same

pair of subdomains. The averaged dual interface velocity still has a zero edge/face

average for each edge/face. For the third equality, we use that B̃0ΓwΓ = B̃0ΠwΠ.

We obtain u∗
h by a harmonic extension into each subdomain.

As before, we can then write the solution of
[
A BT

B 0

] [
uh

ph

]
=

[
0
Fh

]

as [
uh

ph

]
=

[
u∗

h

0

]
+

[
u
p

]
,

where the correction (u, p)T satisfies
[
A BT

B 0

] [
u
p

]
=

[
−Au∗

h

Fh − Bu∗
h

]
. (4.37)

118

Table 4.5: Condition number estimates and iteration counts, for the pair of BDDC
algorithms, with a change of the number of subdomains. H/h = 8 and c ≡ 1.

Num. of sub. Old Algorithm New Algorithm
nx × ny Iter. Cond. Num. Iter. Cond. Num.

4 × 4 5 1.66 8 2.59
8 × 8 8 2.95 10 3.02

12 × 12 9 3.08 10 3.12
16 × 16 9 3.13 10 3.15
20 × 20 8 3.15 10 3.16

This problem can be assembled from the subdomain problems:




A
(i)
II B

(i)T

II A
(i)T

ΓI 0

B
(i)
II 0 B

(i)
IΓ 0

A
(i)
ΓI B

(i)T

IΓ A
(i)
ΓΓ B

(i)T

0Γ

0 0 B
(i)
0Γ 0







u
(i)
I

p
(i)
I

u
(i)
Γ

p
(i)
0




=




f
(i)
I

F
(i)
h,I

f
(i)
Γ

0



, (4.38)

where (u
(i)
I , p

(i)
I ,u

(i)
Γ , p

(i)
0) ∈ (W

(i)
I , Q

(i)
I ,W

(i)
Γ , Q

(i)
0) and f

(i)
I = −

(
A(i)u∗

h
(i)
)

I
and

f
(i)
Γ = −

(
A(i)u∗

h
(i)
)
Γ
.

We note that for the correction, the divergence of u is not zero anymore, but

that u is in the subspace ŴΓ,B .

The rest of the algorithm is the same as before except that

g
(i)
Γ = f

(i)
Γ −

[
A

(i)
ΓI B

(i)T

IΓ

] [
A

(i)
II B

(i)T

II

B
(i)
II 0

]−1 [
f
(i)
I

F
(i)
h,I

]
.

4.8.2 Numerical Experiments

We have tested our new algorithm and the results in Tables 4.5-4.8 illustrate that

there is only small differences in the performance. We recall that the advantage

of the new algorithm over the old is that it is well defined for quite general subdo-

mains.

119

Table 4.6: Condition number estimates and iteration counts, for the pair of BDDC
algorithms, with a change of the size of subdomain problems. 8 × 8 subdomains
and c ≡ 1.

Old Algorithm New Algorithm
H
h

Iter. Cond. Num. Iter. Cond. Num.
4 8 2.17 9 2.23
8 8 2.95 10 3.02
12 9 3.47 12 3.56
16 9 3.88 12 3.97
20 9 4.20 13 4.30

Table 4.7: Condition number estimates and iteration counts, for the pair of BDDC
algorithms, with a change of the number of subdomains. H/h = 8 and c is in a
checkerboard pattern.

Num. of sub. Old Algorithm New Algorithm
nx × ny Iter. Cond. Num. Iter. Cond. Num.
4 × 4 3 1.03 3 1.05
8 × 8 3 1.06 4 1.08

12 × 12 3 1.07 4 1.08
16 × 16 3 1.08 4 1.08
20 × 20 3 1.08 4 1.08

Table 4.8: Condition number estimates and iteration counts, for the pair of BDDC
algorithms, with a change of the size of subdomain problems. 8 × 8 subdomains
and c is in a checkerboard pattern.

Old Algorithm New Algorithm
H
h

Iter. Cond. Num. Iter. Cond. Num.
4 3 1.04 4 1.04
8 3 1.06 4 1.08
12 4 1.10 4 1.10
16 4 1.11 4 1.12
20 4 1.12 4 1.13

120

Chapter 5

A BDDC Algorithm for Flow in
Porous Media with a Hybrid
Finite Element Discretization

5.1 Introduction

Mixed formulations of elliptic problems, see [21], have many applications, e.g.,

for flow in porous media, for which a good approximation to the velocity, which

involves derivatives of the solution of the differential equations, is required. These

discretizations lead to large, sparse, symmetric, indefinite linear systems.

In our recent paper [85] and Chapter 4, we extended the BDDC algorithm

to this mixed formulation of elliptic problems. There, the original saddle point

problem is reduced to finding a correction pair which stays in the divergence-free,

benign subspace, as in [32, 67, 68, 69]. Then the BDDC method, with edge/face

constraints, is applied to the reduced system. It is similar to the BDDC algorithm

proposed for the Stokes case in [58]. The analysis of this approach is focused on

estimating the norm of the average operator. Several useful technical tools for the

Raviart Thomas finite elements, originally given in [89, 82, 88], are used and the

121

algorithm converges at a rate similar to that of simple elliptic cases.

The hybrid finite element discretization is equivalent to a nonconforming finite

element method. Two-level domain decomposition methods have been developed

for a nonconforming approximation in [79, 78]. The condition number bounds are

independent of the jumps in the coefficients of the original equations and grow

only logarithmically with the number of degrees of freedom in each subdomain, a

result which is the same as for a conforming case.

A non-overlapping domain decomposition algorithm for the hybrid formulation,

called Method II, was proposed already in [42]. It is an unpreconditioned conju-

gate gradient method for certain interface variables. The rate of convergence is

independent of the coefficients, but depends mildly on the number of degrees of

freedom in the subdomains. Problems related to singular local Neumann problems

arising in the preconditioners were addressed also in [42]. In addition, other non-

overlapping domain decomposition methods were proposed with improved rates of

convergence in [40] and [23].

A Balancing Neumann-Neumann (BNN) method was extended and analyzed

in [22] for Method II in [42], see also [79] for a nonconforming case. The same

rate of convergence was obtained as for the conforming case. We will extend the

BDDC algorithm to Method II of [42] in this chapter. In contrast to [22], we need

not solve any singular systems with BDDC.

The method proposed here differs from the one in [85]. We reduce the original

saddle-point problem to a positive definite system for the pressure by eliminating

the velocity in each subdomain. Thus, we need not find a velocity that satisfies

the divergence constraint at the beginning of the computation and then restrict

122

the iterates to the divergence free, benign subspace. Our approach is quite similar

to work on the FETI-DP method, see [83, Chapter 6]. We use the BDDC pre-

conditioner to solve the interface problem for the Lagrange multipliers, which can

be interpreted as an approximation to the trace of the pressure. By enforcing a

suitable set of constraints, we obtain the same convergence rate as for a conforming

finite element case. Our analysis will also focus on the estimate of the norm of

the average operator. However, we cannot use properties of Raviart-Thomas finite

element directly since we work with the Lagrange multipliers. The technical tools,

originally given in [79, 78], and followed by [22], are needed to make a connection

between the hybrid finite element method and a conforming finite element method.

The rest of the chapter is organized as follows. In Section 5.2, we reduce

our problem to a symmetric positive definite interface problem. We introduce

the BDDC preconditioner for the interface system in Section 5.3 and give some

auxiliary results in Section 5.4. In Section 5.5, we provide an estimate of the

condition number for the system with the BDDC preconditioner which is of the

form C
(
1 + log H

h

)2
, where H and h are the diameters of the subdomains and

elements, respectively. Finally, some computational results are presented in Section

5.6.

Our presentation here is based on [86].

5.2 The Problem Reduced to the Subdomain In-

terface

We follow the hybrid formulation introduced in Subsection 1.3.3. We denote the

discrete space of nodal values of Q × Λ̂ by P̂. We note that P̂ has the natural

123

interpretation as the space of values of the pressure p in the interior and on the

edges/faces of the element. By this definition, P̂ is isomorphic to Q × Λ̂; we can

then write an element of P̂ as p̂ = [p, λ].

Let Γ be the interface between the subdomains. The set of the interface nodes

Γh is defined as Γh = (∪i6=j∂Ωi,h ∩ ∂Ωj,h) \ ∂Ωh, where ∂Ωi,h is the set of nodes on

∂Ωi and ∂Ωh is the set of nodes on ∂Ω.

We can write the discrete pressure spaces P̂ as

P̂ = Q
⊕

Λ̂. (5.1)

The space Q is a direct sum of subdomain interior pressure spaces Q(i), i.e.,

Q =
N⊕

i=1

Q(i).

The elements of Q(i) are restrictions of elements in Q to Ωi.

We can further decompose Λ̂ into

Λ̂ = ΛI

⊕
Λ̂Γ,

where Λ̂Γ denotes the set of degrees of freedom associated with Γ and ΛI is a direct

sum of subdomain interior degrees of freedom, i.e,

ΛI =

N⊕

i=1

Λ
(i)
I .

We denote the subdomain interface pressure space by Λ̂
(i)
Γ and the associated prod-

uct space by Λ̂Γ =
∏N

i=1 Λ̂
(i)
Γ . R

(i)
Γ is the operator which maps functions in the con-

tinuous interface pressure space Λ̂Γ to their subdomain components in the space

Λ̂
(i)
Γ . The direct sum of the R

(i)
Γ is denoted by RΓ.

124

The global saddle point problem (1.16) is assembled from subdomain problems




A(i) B
(i)T

1 B
(i)T

2,I B
(i)T

2,Γ

B
(i)
1 0 0 0

B
(i)
2,I 0 0 0

B
(i)
2,Γ 0 0 0







u(i)

p(i)

λ
(i)
I

λ
(i)
Γ


 =




0

F
(i)
h

0
0


 , (5.2)

where (u(i), p(i), λ
(i)
I , λ

(i)
Γ) ∈ (W(i), Q(i),Λ

(i)
I , Λ̂

(i)
Γ).

We define the subdomain Schur complement S
(i)
Γ by: given λ

(i)
Γ ∈ Λ̂

(i)
Γ , determine

S
(i)
Γ λ

(i)
Γ such that




A(i) B
(i)T

1 B
(i)T

2,I B
(i)T

2,Γ

B
(i)
1 0 0 0

B
(i)
2,I 0 0 0

B
(i)
2,Γ 0 0 0







u(i)

p(i)

λ
(i)
I

λ
(i)
Γ


 =




0
0
0

−S(i)
Γ λ

(i)
Γ


 . (5.3)

We note that A(i) is block diagonal, with each block corresponding to an element

T ⊂ T (Ωi). We first eliminate the velocity u(i) and obtain a system for the p(i),

λ
(i)
I , and λ

(i)
Γ . We then eliminate the degrees of freedom interior to the subdomain,

i.e., the p(i) and λ
(i)
I .

As we mentioned before, in practice, for each subdomain Ωi, we only need

to use the inter-element multipliers on the interface of the subdomains. Let

(u(i), p(i), λ
(i)
Γ) ∈ (Ŵ(i), Q(i), Λ̂(i)) and obtain the following subdomain problems



Â(i) B

(i)T

1 B
(i)T

2,Γ

B
(i)
1 0 0

B
(i)
2,Γ 0 0







u(i)

p(i)

λ
(i)
Γ


 =




0

F
(i)
h

0


 . (5.4)

We note that Â(i) is no longer block diagonal by elements. We eliminate the

velocity u(i) and the pressure p(i) and obtain the following Schur complement for

λ
(i)
Γ .

125



Â(i) B

(i)T

1 B
(i)T

2,Γ

B
(i)
1 0 0

B
(i)
2,Γ 0 0







u(i)

p(i)

λ
(i)
Γ


 =




0
0

−S(i)
Γ λ

(i)
Γ


 . (5.5)

Here we use the same notation S
(i)
Γ since this matrix, in fact, is the same as in

(5.3). This follows from the equivalence of (1.13) and (1.15). The action of S
(i)
Γ

can then be evaluated by solving a Dirichlet problem in the variational form: find

{ui, pi} ∈ Ŵ(i) ×Q(i) such that
∫

Ωi

uT
i cvidx −

∫

Ωi

∇ · vidx = −

∫

∂Ωi∂Ω

λ
(i)
Γ vi · nds ∀ vi ∈ Ŵ(i)

∫

Ωi

∇ · uiqi = 0 ∀ qi ∈ Q(i); (5.6)

then set S
(i)
Γ λ

(i)
Γ = −B(i)

2,Γui. We note that these Dirichlet problems are always well

posed and that S
(i)
Γ is symmetric and positive definite. We denote the direct sum

of the S
(i)
Γ by SΓ.

Given the definition of S
(i)
Γ , the subdomain problem (5.4) corresponds to the

subdomain interface problem

S
(i)
Γ λ

(i)
Γ = g

(i)
Γ , i = 1, 2, ..., N,

where

g
(i)
Γ = −

[
B

(i)
2,Γ 0

] [
Â(i) B

(i)T

1

B
(i)
1 0

]−1 [
0

F
(i)
h

]
.

The global interface problem is assembled from the subdomain interface prob-

lems, and can be written as: find λΓ ∈ Λ̂Γ, such that

ŜΓλΓ = gΓ, (5.7)

where gΓ =
∑N

i=1R
(i)T

Γ g
(i)
Γ , and

ŜΓ = RT
ΓSΓRΓ =

N∑

i=1

R
(i)T

Γ S
(i)
Γ R

(i)
Γ . (5.8)

126

Thus, ŜΓ is a symmetric positive definite operator defined on the interface space

Λ̂Γ. We will propose a BDDC preconditioner for solving (5.7) with a preconditioned

conjugate gradient method.

5.3 The BDDC Preconditioner

We introduce a partially assembled interface pressure space Λ̃Γ by

Λ̃Γ = Λ̂Π

⊕
Λ∆ = Λ̂Π

⊕(
N∏

i=1

Λ
(i)
∆

)
.

Here, Λ̂Π is the coarse level, primal interface pressure space which is spanned by

subdomain interface edge/face basis functions with constant values at the nodes of

the edge/face for two/three dimensions. We change the variables so that the degree

of freedom of each primal constraint is explicit, see [59] and [54]. The space Λ∆ is

the direct sum of the Λ
(i)
∆ , which are spanned by the remaining interface pressure

degrees of freedom with a zero average over each edge/face. In the space Λ̃Γ, we

relax most continuity constraints on the pressure across the interface but retain

all primal continuity constraints, which makes all the linear systems nonsingular.

This is the main difference from the BNN method in [22], where we encounter

singular local problems.

We need to introduce several restriction, extension, and scaling operators be-

tween different spaces. R
(i)

Γ restricts functions in the space Λ̃Γ to the components

Λ
(i)
Γ related to the subdomain Ωi. R

(i)
∆ maps functions from Λ̂Γ to Λ

(i)
∆ , its dual

subdomain components. RΓΠ is a restriction operator from Λ̂Γ to its subspace Λ̂Π

and R
(i)
Π is the operator which maps vectors in Λ̂Π into their components in Λ

(i)
Π .

RΓ : Λ̃Γ → ΛΓ is the direct sum of the R
(i)

Γ and R̃Γ : Λ̂Γ → Λ̃Γ is the direct

127

sum of RΓΠ and R
(i)
∆ . We define the positive scaling factor δ†i (x) as follows: for

γ ∈ [1/2,∞),

δ†i (x) =
aγ

i (x)∑
j∈Nx

aγ
j (x)

, x ∈ ∂Ωi,h ∩ Γh,

where Nx is the set of indices j of the subdomains such that x ∈ ∂Ωj . We note

that δ†i (x) is constant on each edge/face, since we assume that the ai(x) is constant

in each subdomain, and the nodes on each edge/face are shared by the same

subdomains. Multiplying each row of R
(i)
∆ , with the scaling factor δ†i (x), gives

us R
(i)
D,∆. The scaled operators R̃D,Γ is the direct sum of RΓΠ and the R

(i)
D,∆.

Furthermore, R̃
(i)
∆ maps functions from Λ̃Γ to Λ

(i)
∆ , its dual subdomain components.

R̃ΓΠ is a restriction operator from Λ̃Γ to its subspace Λ̂Π.

We also denote by F̃Γ, the right hand side space corresponding to Λ̃Γ. We will

use the same restriction, extension, and scaled restriction operators for the space

F̃Γ as for Λ̃Γ.

The interface pressure Schur complement S̃Γ, on the partially assembled inter-

face pressure space Λ̃Γ, is partially assembled from subdomain Schur complements

S
(i)
Γ , i.e.,

S̃Γ = R
T

ΓSΓRΓ. (5.9)

S̃Γ can also be defined by: for any given λΓ ∈ Λ̃Γ, S̃ΓλΓ ∈ F̃Γ satisfies

H




u(1)

p
(1)
I

λ
(1)
∆

...
u(N)

p
(N)
I

λ
(N)
∆

λΠ




=




0

0

(S̃ΓλΓ)
(1)
∆

...
0

0

(S̃ΓλΓ)
(N)
∆

(S̃ΓλΓ)Π




, (5.10)

128

where

H =




A(1) B
(1)T

1 B
(1)T

2,∆ B̃
(1)T

2,Π

B
(1)
1 0 0 0

B
(1)
2,∆ 0 0 0

. . .
...

A(N) B
(N)T

1 B
(N)T

2,∆ B̃
(N)T

2,Π

B
(N)
1 0 0 0

B
(N)
2,∆ 0 0 0

B̃
(1)
2,Π 0 0 . . . B̃

(N)
2,Π 0 0 0




, (5.11)

and

B̃
(i)
2,Π = R

(i)T

Π B
(i)
2,Π.

Given the definition of S̃Γ on the partially assembled interface pressure space

Λ̃Γ, we can also obtain ŜΓ, introduced in (5.7), from S̃Γ by assembling the dual

interface pressure part on the subdomain interface, i.e.,

ŜΓ = R̃T
Γ S̃ΓR̃Γ. (5.12)

The BDDC preconditioner for solving the global interface problem (5.7) is

M−1 = R̃T
D,ΓS̃

−1
Γ R̃D,Γ. (5.13)

Here, from a block Cholesky factorization, we have

S̃−1
Γ = −

N∑

i=1

[
0 0 R̃

(i)T

∆

]



Â(i) B
(i)T

1 B
(i)T

2,∆

B
(i)
1 0 0

B
(i)
2,∆ 0 0




−1 


0

0

R̃
(i)
∆


 + ΦS−1

CCΦT , (5.14)

SCC =
N∑

i=1

R
(i)T

Π





[
B

(i)
2,Π 0 0

]



Â(i) B
(i)T

1 B
(i)T

2,∆

B
(i)
1 0 0

B
(i)
2,∆ 0 0




−1 

B

(i)T

2,Π

0
0







R

(i)
Π ,

129

and the matrix Φ is defined by

Φ = R̃T
ΓΠ −

N∑

i=1

[
0 0 R̃

(i)T

∆

]


Â(i) B

(i)
1 B

(i)T

2,∆

B
(i)
1 0 0

B
(i)
2,Π 0 0




−1 

B

(i)T

2,∆

0
0


R(i)

Π .

The preconditioned BDDC algorithm is then of the form: find λΓ ∈ Λ̂Γ, such

that

R̃T
D,ΓS̃

−1
Γ R̃D,ΓŜΓλΓ = R̃T

D,ΓS̃
−1
Γ R̃D,ΓgΓ. (5.15)

This preconditioned problem is symmetric positive definite and we can use the

preconditioned conjugate gradient method to solve it.

5.4 Some Auxiliary Results

In this section, we will collect a number of results which are needed in our theory.

In order to avoid a proliferation of constants, we will use the notation A ≈ B. This

means that there are two constants c and C, independent of any parameters, such

that cA ≤ B ≤ CA, where C <∞ and c > 0.

In order to connect our hybrid finite element discretization to a conforming

finite element method, we need to introduce a new mesh on each subdomain. The

idea follows [78, 79, 22]. We will use similar techniques as in Chapter 3. In order

to be complete and for the readers unfamiliar with these technical tools, we give

the construction of the new mesh, the definitions of two important maps, and some

useful lemmas, which were originally given in [22, 78, 79].

Given an element τ ∈ T , let τ̂ be a subtriangulation of τ which includes the

vertices of τ and the nodal points in τ for the degrees of the freedom of Q × Λ.

We then obtain a quasi-uniform sub-triangulation T̂ . We partition the vertices in

130

the new mesh T̂ into two sets. The nodes in T are called primary and the rest are

called secondary. We say that two vertices in the triangulation T̂ are adjacent if

there is an edge of T̂ between them.

Let Uh(Ω) be the continuous piecewise linear finite element function space with

respect to the new triangulation T̂ . For a subdomain Ωi, Uh(Ωi) and Uh(∂Ωi) are

defined by restrictions:

Uh(Ωi) = {u|Ωi
: u ∈ Uh(Ω)}, Uh(∂Ωi) = {u|∂Ωi

: u ∈ Uh(Ω)}.

Define a mapping IΩi
h from any function φ defined at the primary vertices in Ωi to

Uh(Ωi) by

IΩi
h φ(x) =





φ(x), if x is a primary node;

the average of all adjacent primary vertices on ∂Ωi,
if x is a secondary vertex on ∂Ωi;

the average of all adjacent primary vertices,
if x is a secondary vertex in the interior of Ωi;

the linear interpolation of the vertex values,
if x is not a vertex of T .

(5.16)

We note that IΩ(i)

H defines a map from Q(Ωi)×Λ(Ωi) to Uh(Ωi) and also a map

from Uh(Ωi) to Uh(Ωi).

Let I∂Ω(i)

H be the mapping from a function φ, defined at the primary vertices

on ∂Ωi, to Uh(Ωi) and defined by I∂Ω(i)

H φ = (IΩ(i)

H p̂)|∂Ωi
, where p̂ is any functions

in Q(Ωi)×Λ(Ωi) such that p̂|∂Ωi
= φ. The map is well defined since the boundary

values of IΩ(i)

H p̂ only depend on the boundary values of p̂.

Let

Ũh(Ωi) = {ψ = IΩ(i)

H φ, φ ∈ Uh(Ωi)} and Ũh(∂Ωi) = {ψ|∂Ω, ψ ∈ Ũh(Ωi)}.

131

We list some useful lemmas from [22].

Lemma 5.1 There exists a constant C > 0 independent of h and |Ωi| such that

|IΩ(i)

H φ|H1(Ωi) ≤ C|φ|H1(Ωi), ∀φ ∈ Uh(Ωi), (5.17)

‖IΩ(i)

H φ‖L2(Ωi) ≤ C‖φ‖L2(Ωi), ∀φ ∈ Uh(Ωi). (5.18)

Proof: See [22, Lemms 6.1].

�

Lemma 5.2 For φ̂ ∈ Ũh(∂Ωi),

inf
φ∈eUh(Ωi)φ|∂Ωi

=φ̂
‖φ‖H1(Ωi) ≈ ‖φ̂‖H1/2(∂Ωi), (5.19)

inf
φ∈eUh(Ωi)φ|∂Ωi

=φ̂
|φ|H1(Ωi) ≈ |φ̂|H1/2(∂Ωi). (5.20)

Proof: See [22, Lemms 6.2].

�

Lemma 5.3 There exists a constant C > 0 independent of h and |Ωi| such that

‖I∂Ω(i)

H φ̂‖H1/2(∂Ωi) ≤ C‖φ̂‖H1/2(∂Ωi) ∀ φ̂ ∈ Uh(∂Ωi). (5.21)

Proof: See [22, Lemms 6.3].

�

Lemma 5.4 There exist constants C1, C2 > 0 independent of H, h, and the coef-

ficient of (1.6), such that for all λi ∈ Λ
(i)
Γ ,

aiC1|I
∂Ω(i)

H λi|
2
H1/2(∂Ωi)

≤ |λi|
2

S
(i)
Γ

≤ aiC2|I
∂Ω(i)

H λi|
2
H1/2(∂Ωi)

. (5.22)

132

Proof: See [22, Theorem 6.5].

�

We define the interface averages operator ED by

ED = R̃ΓR̃
T
D,Γ, (5.23)

which computes a weighted average across the subdomain interface Γ and then

distributes the averages to the boundary points of the subdomain.

The interface average operator ED has the following property:

Lemma 5.5

|EDλΓ|
2
eSΓ

≤ C

(
1 + log

H

h

)2

|λΓ|
2
eSΓ
,

for any λΓ ∈ Λ̃Γ, where C is a positive constant independent of H, h, and the

coefficient of (1.6),

Proof: Given any λΓ ∈ Λ̃Γ, we have

|EDλΓ|
2
eSΓ

≤ 2
(
|λΓ|

2
eSΓ

+ |λΓ − EDλΓ|
2
eSΓ

)

≤ 2
(
|λΓ|

2
eSΓ

+ |RΓ (λΓ − EDλΓ) |2SΓ

)

= 2

(
|λΓ|

2
eSΓ

+

N∑

i=1

|R
(i)

Γ (λΓ − EDλΓ) |2
S

(i)
Γ

)
. (5.24)

Let λi = R
(i)
λΓ and set

vi(x) := R
(i)

Γ (λΓ − EDλΓ)(x) =
∑

j∈Nx

δ†j(λi(x) − λj(x)), x ∈ ∂Ωi ∩ Γ. (5.25)

133

Here Nx is the set of indices of the subdomains that have x on their boundaries.

Since a fine edge/face only belongs to exactly two subdomains, we have, for an

edge/face F ij ⊂ ∂Ωi that is also shared by Ωj,

vi = δ†jλi − δ†jλj, on F ij. (5.26)

We note again that the simple inequality

aiδ
†2

j ≤ min(ai, aj), (5.27)

holds for γ ∈ [1/2,∞).

Given a subdomain Ωi, we define partition of unity functions associated with

its edges/faces. Let ζF be the characteristic function of F , i.e., the function that

is identically one on F and zero on ∂Ωi\F . We clearly have

∑

F⊂∂Ωi

ζF(x) = 1, almost everywhere on ∂Ωi\∂Ω.

Let ϑF be the partition of unity functions associated with the edges/faces for a

function in the space Uh(Ωi), which is defined in [83, Lemma 4.23].

We have

|vi|
2

S
(i)
Γ

≤ C
∑

F ij⊂∂Ωi

|ζF ijvi|
2

S
(i)
Γ

. (5.28)

By Lemma 5.4, with λi,F ij the average over F ij,

|ζF ijvi|
2

S
(i)
Γ

≤ C2ai|I
∂Ω(i)

H (ζF ijvi)|
2
H1/2(∂Ωi)

= C2ai|I
∂Ω(i)

H

(
ζF ijδ†j(λi − λj)

)
|2H1/2(∂Ωi)

= C2aiδ
†2

j |I∂Ω(i)

H (ζF ij (λi − λj)) |
2
H1/2(∂Ωi)

134

≤ 2C2aiδ
†2

j

(
|I∂Ω(i)

H

(
ζF ij(λi − λi,F ij)

)
|2H1/2(∂Ωi)

+ |I∂Ω(i)

H

(
ζF ij (λj − λj,F ij)

)
|2H1/2(∂Ωi)

)
. (5.29)

We estimate these two terms in (5.29) separately.

The first term is estimated as follows:

aiδ
†2

j |I∂Ω(i)

H

(
ζF ij (λi − λi,F ij)

)
|2H1/2(∂Ωi)

≤ ai|I
∂Ω(i)

H

(
ϑF ij I∂Ω(i)

H (λi − λi,F ij)
)
|2H1/2(∂Ωi)

≤ ai|ϑF ijI∂Ω(i)

H (λi − λi,F ij)|2H1/2(∂Ωi)

≤ ai|ϑF ij (I∂Ω(i)

H λi − (I∂Ω(i)

H λi)F ij)|2H1/2(∂Ωi)

≤ Cai

(
1 + log

H

h

)2

|I∂Ω(i)

H λi|
2
H1/2(∂Ωi)

, (5.30)

where we use (5.26) and the definition of I∂Ω(i)

H for the first inequality. Using

Lemma 5.3, we obtain the second inequality. We use I∂Ω(i)

H (λi,F ij) = (I∂Ω(i)

H λi)F ij

and [83, Lemma 4.26] for the penultimate and final inequalities.

For the second term in (5.29), similarly as for the first term. We have,

aiδ
†2

j |I∂Ω(i)

H

(
ζF ij(λj − λj,F ij)

)
|2H1/2(∂Ωi)

≤ aj|I
∂Ω(i)

H

(
ϑF ijI∂Ω(j)

H (λj − λj,F ij)
)
|2H1/2(∂Ωi)

≤ aj|ϑF ijI∂Ω(j)

H (λj − λj,F ij)|2
H

1/2
00 (F ij)

≤ aj|ϑF ij (I∂Ω(j)

H λj − (I∂Ω(j)

H λj)F ij)|2
H

1/2
00 (F ij)

≤ Caj

(
1 + log

H

h

)2

|I∂Ω(j)

H λj|
2
H1/2(∂Ωj)

, (5.31)

where we use (5.26) and the definition of I∂Ω(i)

H and I∂Ω(j)

H for the first inequal-

ity. Using Lemma 5.3, we obtain the second inequality. We use I∂Ω(j)

H (λj,F ij) =

(I∂Ω(j)

H λj)F ij and [83, Lemma 4.26] for the penultimate and final inequalities.

135

Combining (5.30), (5.31), (5.29), and (5.28), we have

|vi|
2

S
(i)
Γ

≤ CC2

(
1 + log

H

h

)2 (
ai|I

∂Ω(i)

H λi|
2
H1/2(∂Ωi)

+ aj|I
∂Ω(j)

H λj|
2
H1/2(∂Ωj)

)

≤ C
C2

C1

(
1 + log

H

h

)2 (
|λi|

2

S
(i)
Γ

+ |λj|
2

S
(j)
Γ

)
, (5.32)

where we use Lemma 5.4 again for the final inequality.

Using (5.24), (5.25), and (5.32), we obtain

|EDλΓ|
2
eSΓ

≤ C

(
1 + log

H

h

)2

|λΓ|
2
eSΓ
.

�

5.5 Condition Number Estimate for the BDDC

Preconditioner

We are now ready to formulate and prove our main result; it follows exactly in the

same way as the proof of [58, Theorem 1] by using Lemma 5.5.

Theorem 5.6 The preconditioned operator M−1Ŝ is symmetric, positive definite

with respect to the bilinear from 〈·, ·〉bS on the space Λ̂ and

〈λ, λ〉bSΓ
≤
〈
M−1ŜΓλ, λ

〉
bSΓ

≤ C

(
1 + log

H

h

)2

〈λ, λ〉bSΓ
, ∀λ ∈ Λ̂Γ. (5.33)

Here, C is a constant which is independent of h and H.

5.6 Numerical Experiments

We have applied our BDDC algorithms to the model problem (1.6), where Ω =

[0, 1]2. We decompose the unit square into N ×N subdomains with the sidelength

136

Table 5.1: Condition number estimates and iteration counts for the BDDC pre-
conditioner with a change of the number of subdomains. H

h
= 8 and a ≡ 1.

Number of Subdomains Iterations Condition number
4 × 4 7 2.53
8 × 8 10 3.01

12 × 12 10 3.06
16 × 16 10 3.06
20 × 20 10 3.06

Table 5.2: Condition number estimates and iteration counts for the BDDC precon-
ditioner with a change of the size of the subdomain problems. 8 × 8 subdomains
and a ≡ 1.

H
h

Iterations Condition number
4 8 2.23
8 10 3.01
12 11 3.54
16 11 3.95
20 11 4.29

Table 5.3: Condition number estimates and iteration counts for the BDDC pre-
conditioner with a change of the number of subdomains. H

h
= 8 and a is in a

checkerboard pattern.

Number of Subdomains Iterations Condition number
4 × 4 8 2.98
8 × 8 10 2.97

12 × 12 11 2.98
16 × 16 11 2.98
20 × 20 10 2.98

137

Table 5.4: Eigenvalue estimates and iteration counts for the BDDC preconditioner
with a change of the size of the subdomain problems. 8 × 8 subdomains and a is
in a checkerboard pattern.

Ĥ
h

Iterations Condition number
4 9 2.19
8 10 2.97
12 11 3.51
16 12 3.92
20 13 4.26

H = 1/N . Equation (1.6) is discretized, in each subdomain, by the lowest order

Raviart-Thomas finite elements and the space of piecewise constants with a finite

element diameter h, for the velocity and pressure, respectively. The preconditioned

conjugate gradient iteration is stopped when the l2-norm of the residual has been

reduced by a factor of 10−6.

We have carried out two different sets of experiments to obtain iteration counts

and condition number estimates. All the experimental results are fully consistent

with our theory.

In the first set of experiments, we take the coefficient a ≡ 1. Table 5.1 gives the

iteration counts and the estimate of the condition numbers, with a change of the

number of subdomains. We find that the condition number is independent of the

number of subdomains for both algorithms. Table 5.2 gives results with a change

of the size of the subdomain problems.

In the second set of experiments, we take the coefficient a = 1 in half the

subdomains and a = 100 in the neighboring subdomains, in a checkerboard pattern.

Table 5.3 gives the iteration counts, and condition number estimates with a change

of the number of subdomains. We find that the condition numbers are independent

138

of the number of subdomains. Table 5.4 gives results with a change of the size of

the subdomain problems.

139

Bibliography

[1] Mark F. Adams. A distributed memory unstructured Gauss-Seidel algorithm

for multigrid smoothers. In ACM/IEEE Proceedings of SC2001: High Perfor-

mance Networking and Computing, 2001.

[2] Douglas N. Arnold and Franco Brezzi. Mixed and nonconforming finite ele-

ment methods: implementation, postprocessing and error estimates. RAIRO

Modél. Math. Anal. Numér., 19(1):7–32, 1985.

[3] Christoph Börgers. The Neumann–Dirichlet domain decomposition method

with inexact solvers on the subdomains. Numer. Math., 55:123–136, 1989.

[4] Folkmar Bornemann and Harry Yserentant. A basic norm equivalence for the

theory of multilevel methods. Numer. Math., 64(4):455–476, 1993.

[5] Jean-François Bourgat, Roland Glowinski, Patrick Le Tallec, and Marina

Vidrascu. Variational formulation and algorithm for trace operator in do-

main decomposition calculations. In Tony Chan, Roland Glowinski, Jacques

Périaux, and Olof Widlund, editors, Domain Decomposition Methods. Sec-

ond International Symposium on Domain Decomposition Methods, pages 3–

16, Philadelphia, PA, 1989. SIAM. Los Angeles, California, January 14–16,

1988.

140

[6] James H. Bramble. Multigrid Methods, volume 294 of Pitman Research Notes

in Mathematics. John Wiley and Sons, 1993.

[7] James H. Bramble and Joseph E. Pasciak. A domain decomposition technique

for Stokes problems. Appl. Numer. Math., 6:251–261, 1989/90.

[8] James H. Bramble and Joseph E. Pasciak. New estimates for multilevel algo-

rithms including the V -cycle. Math. Comp., 60(202):447–471, 1993.

[9] James H. Bramble, Joseph E. Pasciak, and Alfred H. Schatz. The construction

of preconditioners for elliptic problems by substructuring, I. Math. Comp.,

47(175):103–134, 1986.

[10] James H. Bramble, Joseph E. Pasciak, and Alfred H. Schatz. The construction

of preconditioners for elliptic problems by substructuring, II. Math. Comp.,

49(179):1–16, 1987.

[11] James H. Bramble, Joseph E. Pasciak, and Alfred H. Schatz. The construction

of preconditioners for elliptic problems by substructuring, III. Math. Comp.,

51(184):415–430, 1988.

[12] James H. Bramble, Joseph E. Pasciak, and Alfred H. Schatz. The construction

of preconditioners for elliptic problems by substructuring, IV. Math. Comp.,

53(187):1–24, 1989.

[13] James H. Bramble, Joseph E. Pasciak, and Apostol Vassilev. Non-overlapping

domain decomposition preconditioners with inexact solves. In Petter E.

Bjørstad, Magne Espedal, and David E. Keyes, editors, Domain Decompo-

sition Methods in Sciences and Enginnering. Ninth International Conference

141

on Domain Decomposition Methods, pages 40–52. DDM.org, 1998. Ullensvang

at the Hardanger Fjord, Norway, June 4–7, 1996.

[14] James H. Bramble, Joseph E. Pasciak, and Jinchao Xu. Parallel multilevel

preconditioners. Math. Comp., 55:1–22, 1990.

[15] Susanne C. Brenner. A multigrid algorithm for the lowest-order Raviart-

Thomas mixed triangular finite element method. SIAM J. Numer. Anal.,

29(3):647–678, 1992.

[16] Susanne C. Brenner. A new look at FETI. In Naima Debit, Marc Gar-

bey, Ronald H.W. Hoppe, David E. Keyes, Yuri A. Kuznetsov, and Jacques

Périaux, editors, Domain Decomposition Methods in Sciences and Engineer-

ing. Thirteenth International Conference on Domain Decomposition Methods,

pages 41–51, Barcelona, 2002. CIMNE. Lyon, France, October 9–12, 2000.

[17] Susanne C. Brenner. An additive Schwarz preconditioner for the FETI

method. Numer. Math., 94:1–31, 2003.

[18] Susanne C. Brenner and Qingmi He. Lower bounds for three-dimensional

nonoverlapping domain decomposition algorithms. Numer. Math., 93:445–

470, 2003.

[19] Susanne C. Brenner and Li-yeng Sung. Lower bounds for nonoverlapping

domain decomposition preconditioners in two dimensions. Math. Comp.,

69:1319–1339, 2000.

[20] Susanne C. Brenner and Li-yeng Sung. BDDC and FETI-DP without matrices

or vectors. Preprint, 2005.

142

[21] Franco Brezzi and Michel Fortin. Mixed and hybrid finite element, volume 15

of Springer Series in Computational Mathematics. Springer Verlag, Berlin-

Heidelberg-New York, 1991.

[22] Lawrence C. Cowsar, Jan Mandel, and Mary F. Wheeler. Balancing domain

decomposition for mixed finite elements. Math. Comp., 64(211):989–1015,

July 1995.

[23] Lawrence C. Cowsar and Mary F. Wheeler. Parallel domain decomposition

method for mixed finite elements for elliptic partial differential equations. In

Roland Glowinski, Yuri A. Kuznetsov, Gérard A. Meurant, Jacques Périaux,

and Olof Widlund, editors, Fourth International Symposium on Domain De-

composition Methods for Partial Differential Equations, Philadelphia, PA,

1991. SIAM.

[24] Yann-Hervé De Roeck. Résolution sur Ordinateurs Multi-Processeurs de

Problème d’Elasticité par Décomposition de Domaines. PhD thesis, Université

Paris IX Daupine, 1991.

[25] Yann-Hervé De Roeck and Patrick Le Tallec. Analysis and test of a local do-

main decomposition preconditioner. In Roland Glowinski, Yuri A. Kuznetsov,

Gérard A. Meurant, Jacques Périaux, and Olof Widlund, editors, Fourth In-

ternational Symposium on Domain Decomposition Methods for Partial Dif-

ferential Equations, pages 112–128, Philadelphia, PA, 1991. SIAM. Moscow,

Russia, May 21–25, 1990.

143

[26] Clark Dohrmann. An approximate BDDC preconditioner. Technical Report

SAND2005-5424, Sandia National Laboratory, 2005.

[27] Clark R. Dohrmann. A preconditioner for substructuring based on constrained

energy minimization. SIAM J. Sci. Comput., 25(1):246–258, 2003.

[28] Maksymilian Dryja, Barry F. Smith, and Olof B. Widlund. Schwarz analysis of

iterative substructuring algorithms for elliptic problems in three dimensions.

SIAM J. Numer. Anal., 31(6):1662–1694, December 1994.

[29] Maksymilian Dryja and Olof B. Widlund. Multilevel additive methods for

elliptic finite element problems. In Wolfgang Hackbusch, editor, Parallel Al-

gorithms for Partial Differential Equations, Proceedings of the Sixth GAMM-

Seminar, Kiel, January 19–21, 1990, pages 58–69, Braunschweig, Germany,

1991. Vieweg & Son.

[30] Maksymilian Dryja and Olof B. Widlund. Schwarz methods of Neumann-

Neumann type for three-dimensional elliptic finite element problems. Comm.

Pure Appl. Math., 48(2):121–155, February 1995.

[31] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman. Applications of an element

model for Gaussian elimination. In Sparse matrix computations (Proc. Sym-

pos., Argonne Nat. Lab., Lemont, Ill., 1975), pages 85–96. Academic Press,

New York, 1976.

[32] Richard E. Ewing and Junping Wang. Analysis of the Schwarz algorithm

for mixed finite element methods. RAIRO Modél. Math. Anal. Numér.,

26(6):739–756, 1992.

144

[33] Charbel Farhat, Michel Lesoinne, Patrick Le Tallec, Kendall Pierson, and

Daniel Rixen. FETI-DP: A dual-primal unified FETI method – part I: A

faster alternative to the two-level FETI method. Internat. J. Numer. Methods

Engrg., 50:1523–1544, 2001.

[34] Charbel Farhat, Michel Lesoinne, and Kendall Pierson. A scalable dual-primal

domain decomposition method. Numer. Linear Algebra Appl., 7(7–8):687–714,

2000.

[35] Charbel Farhat, Jan Mandel, and François-Xavier Roux. Optimal convergence

properties of the FETI domain decomposition method. Comput. Methods

Appl. Mech. Engrg., 115:367–388, 1994.

[36] Charbel Farhat and François-Xavier Roux. A Method of Finite Element Tear-

ing and Interconnecting and its Parallel Solution Algorithm. Internat. J. Nu-

mer. Methods Engrg., 32:1205–1227, 1991.

[37] Yannis Fragakis and Manolis Papadrakakis. The mosaic of high performance

domain decomposition methods for structural mechanics: Formulation, in-

terrelation and numerical efficiency of primal and dual methods. Comput.

Methods Appl. Mech. Engrg, 192(35–36):3799–3830, 2003.

[38] Alan George and Joseph W. H. Liu. Computer solution of large sparse positive

definite systems. Prentice-Hall Inc., Englewood Cliffs, N.J., 1981. Prentice-

Hall Series in Computational Mathematics.

[39] Vivette Girault and Pierre-Arnaud Raviart. Finite Element Method for

Navier-Stokes Equations. Springer Verlag, New York, 1986.

145

[40] Roland Glowinski, Wendy A. Kinton, and Mary F. Wheeler. Acceleration

of domain decomposition algorithms for mixed finite elements by multi-level

methods. In Tony Chan, Roland Glowinski, Jacques Périaux, and Olof

Widlund, editors, Third International Symposium on Domain Decomposition

Methods for Partial Differential Equations, held in Houston, Texas, March

20-22, 1989. SIAM, Philadelphia, PA, 1990.

[41] Roland Glowinski and Mary F. Wheeler. Domain decomposition and mixed

finite element methods for elliptic problems. Technical Report 87-11, Rice

University, 1987.

[42] Roland Glowinski and Mary F. Wheeler. Domain decomposition and mixed

finite element methods for elliptic problems. In Roland Glowinski, Gene H.

Golub, Gérard A. Meurant, and Jacques Périaux, editors, First International

Symposium on Domain Decomposition Methods for Partial Differential Equa-

tions, Philadelphia, PA, 1988. SIAM.

[43] Roland Glowinski and Mary F. Wheeler. Domain decomposition and mixed

finite element methods for elliptic problems. In Roland Glowinski, Gene H.

Golub, Gérard A. Meurant, and Jacques Périaux, editors, First International

Symposium on Domain Decomposition Methods for Partial Differential Equa-

tions, pages 144–172, Philadelphia, PA, 1988. SIAM. Paris, France, January

7–9, 1987.

[44] Gene Golub and Michael Overton. The convergence of inexact Chebyshev

and Richardson iterative methods for solving linear systems. Numer. Math.,

53:571–593, 1988.

146

[45] Pierre Grisvard. Elliptic problems in nonsmooth domains. Pitman Publishing,

Boston, 1985.

[46] Gundolf Haase, Ulrich Langer, and Arnd Meyer. The approximate Dirich-

let domain decomposition method. I. An algebraic approach. Computing,

47(2):137–151, 1991.

[47] Gundolf Haase, Ulrich Langer, and Arnd Meyer. The approximate Dirichlet

domain decomposition method. II. Applications to 2nd-order elliptic BVPs.

Computing, 47(2):153–167, 1991.

[48] Wolfgang Hackbush. Multigrid Methods and Applications. Springer Verlag,

Berlin, 1985.

[49] Hyeahyun Kim, Maksymilian Dryja, and Olof Widlund. Three-level BDDC

in two dimensions. Technical Report TR2005-871, Department of Computer

Science, New York University, 2005.

[50] Axel Klawonn and Oliver Rheinbach. Inexact FETI-DP methods. Technical

Report SM-E-609, University Duisburg-Essen, 2005.

[51] Axel Klawonn and Olof B. Widlund. A domain decomposition method with

Lagrange multipliers and inexact solvers for linear elasticity. SIAM J. Sci.

Comput., 22(4):1199–1219, October 2000.

[52] Axel Klawonn and Olof B. Widlund. FETI and Neumann–Neumann Iterative

Substructuring Methods: Connections and New Results. Comm. Pure Appl.

Math., 54:57–90, January 2001.

147

[53] Axel Klawonn and Olof B. Widlund. FETI and Neumann-Neumann iterative

substructuring methods: Connections and new results. Comm. Pure Appl.

Math, 54:57–90, January 2001.

[54] Axel Klawonn and Olof B. Widlund. Dual-Primal FETI methods for linear

elasticity. Technical Report TR2004-855, Department of Computer Science,

Courant Institute, September 2004.

[55] Axel Klawonn, Olof B. Widlund, and Maksymilian Dryja. Dual-primal FETI

methods for three-dimensional elliptic problems with heterogeneous coeffi-

cients. SIAM J. Numer. Anal., 40(1):159–179, April 2002.

[56] Axel Klawonn, Olof B. Widlund, and Maksymilian Dryja. Dual-Primal FETI

methods with face constraints. In Luca Pavarino and Andrea Toselli, editors,

Recent Developments in Domain Decomposition Methods, Lecture Notes in

Computational Science and Engineering, Volume 23, pages 27–40. Springer,

2002.

[57] Patrick Le Tallec. Domain decomposition methods in computational mechan-

ics. In J. Tinsley Oden, editor, Computational Mechanics Advances, volume

1 (2), pages 121–220. North-Holland, 1994.

[58] Jing Li and Olof B. Widlund. BDDC algorithms for incompressible Stokes

equations. Technical Report TR-861, Department of Computer Science, New

York University, 2005.

[59] Jing Li and Olof B. Widlund. FETI–DP, BDDC, and Block Cholesky Meth-

ods. Internat. J. Numer. Methods Engrg., 2005. To appear.

148

[60] Jing Li and Olof B. Widlund. On the use of inexact subdomain solvers for

BDDC algorithms. Technical Report TR-871, Department of Computer Sci-

ence, New York University, 2005.

[61] Jan Mandel and Marian Brezina. Balancing domain decomposition for prob-

lems with large jumps in coefficients. Math. Comp., 65:1387–1401, 1996.

[62] Jan Mandel and Clark R. Dohrmann. Convergence of a balancing domain de-

composition by constraints and energy minimization. Numer. Linear Algebra

Appl., 10(7):639–659, 2003.

[63] Jan Mandel, Clark R. Dohrmann, and Radek Tezaur. An algebraic theory for

primal and dual substructuring methods by constraints. Appl. Numer. Math.,

54(2):167–193, 2005.

[64] Jan Mandel and Bedřich Sousedik. Adaptive coarse space selection in the

BDDC and the FETI-DP iterative substructuring methods: Optimal face

degrees of freedom. In Sixteenth international Conference of Domain Decom-

position Methods, 2005.

[65] Jan Mandel and Radek Tezaur. Convergence of a Substructuring Method with

Lagrange Multipliers. Numer. Math., 73:473–487, 1996.

[66] Jan Mandel and Radek Tezaur. On the convergence of a dual-primal sub-

structuring method. Numer. Math., 88(3):543–558, January 2001.

[67] Tarek P. Mathew. Domain Decomposition and Iterative Refinement Methods

for Mixed Finite Element Discretizations of Elliptic Problems. PhD thesis,

149

Courant Institute of Mathematical Sciences, September 1989. TR-463, De-

partment of Computer Science, Courant Institute.

[68] Tarek P. Mathew. Schwarz alternating and iterative refinement methods for

mixed formulations of elliptic problems, part I: Algorithms and Numerical

results. Numer. Math., 65(4):445–468, 1993.

[69] Tarek P. Mathew. Schwarz alternating and iterative refinement methods

for mixed formulations of elliptic problems, part II: Theory. Numer. Math.,

65(4):469–492, 1993.

[70] Stephen F. McCormick. Multigrid Methods. Frontiers in applied mathematics.

Society for Industrial and Applied Mathematics, 1987.

[71] Jean-Claude Nédélec. Mixed finite elements in R3. Numer. Math., 35:315–341,

1980.

[72] Jindřich Nečas. Les méthodes directes en théorie des équations elliptiques.

Academia, Prague, 1967.

[73] Peter Oswald. On discrete norm estimates related to multilevel precondition-

ers in the finite element method. In K. Ivanov and B. Sendov, editors, Proc.

Int. Conf. Constructive Theory of Functions, Varna 91, pages 203–241, 1992.

[74] Luca F. Pavarino and Olof B. Widlund. Balancing Neumann-Neumann meth-

ods for incompressible Stokes equations. Comm. Pure Appl. Math., 55(3):302–

335, March 2002.

150

[75] Pierre-Arnaud Raviart and Jean-Marie Thomas. A mixed finite element

method for 2-nd order elliptic problems. In A. Dold and B. Eckmann, editors,

Mathematical Aspects of Finite Element Methods. Springer, 1975. Lecture

Notes of Mathematics, Volume 606.

[76] Torgeir Rusten and Ragnar Winther. A preconditioned iterative method for

saddlepoint problems. SIAM J. Matrix Anal. Appl., 13(3):887–904, 1992.

Iterative methods in numerical linear algebra (Copper Mountain, CO, 1990).

[77] Marcus V. Sarkis. Two-level Schwarz methods for nonconforming finite ele-

ments and discontinuous coefficients. In N. Duane Melson, Thomas A. Man-

teuffel, and Steve F. McCormick, editors, Proceedings of the Sixth Copper

Mountain Conference on Multigrid Methods, Volume 2, number 3224, pages

543–566, Hampton VA, 1993. NASA.

[78] Marcus V. Sarkis. Schwarz Preconditioners for Elliptic Problems with discon-

tinuous Coefficients Using Confoming and Non-Conforming Elements. PhD

thesis, Courant Institute of Mathematical Sciences, September 1994. TR-671,

Department of Computer Science, Courant Institute.

[79] Marcus V. Sarkis. Nonstandard coarse spaces and Schwarz methods for ellip-

tic problems with discontinuous coefficients using non-conforming elements.

Numer. Math., 77(3):383–406, 1997.

[80] Barry F. Smith. A parallel implementation of an iterative substructuring

algorithm for problems in three dimensions. SIAM J. Sci. Comput., 14(2):406–

423, March 1993.

151

[81] Barry F. Smith, Petter E. Bjørstad, and William Gropp. Domain Decompo-

sition: Parallel Multilevel Methods for Elliptic Partial Differential Equations.

Cambridge University Press, 1996.

[82] Andrea Toselli. Domain decomposition methods for vector field problems. PhD

thesis, Courant Institute of Mathematical Sciences, May 1999. TR-785, De-

partment of Computer Science.

[83] Andrea Toselli and Olof B. Widlund. Domain Decomposition Methods - Al-

gorithms and Theory, volume 34 of Springer Series in Computational Mathe-

matics. Springer Verlag, Berlin-Heidelberg-New York, 2004.

[84] Xuemin Tu. Three-level BDDC in two dimensions. Technical Report TR2004-

856, Department of Computer Science, Courant Institute, November 2004.

[85] Xuemin Tu. A BDDC algorithm for a mixed formulation of flows in porous

media. Electron. Trans. Numer. Anal., 20:164–179, 2005.

[86] Xuemin Tu. A BDDC algorithm for flow in porous media with a hybrid

finite element discretization. Technical Report TR2005-865, Department of

Computer Science, Courant Institute, May 2005.

[87] Xuemin Tu. Three-level BDDC in three dimensions. Technical Report

TR2005-862, Department of Computer Science, Courant Institute, April 2005.

[88] Barbara I. Wohlmuth. Discretization Methods and Iterative Solvers Based on

Domain Decomposition, volume 17 of Lecture Notes in Computational Science

and Engineering. Springer Verlag, 2001.

152

[89] Barbara I. Wohlmuth, Andrea Toselli, and Olof B. Widlund. Iterative sub-

structuring method for Raviart-Thomas vector fields in three dimensions.

SIAM J. Numer. Anal., 37(5):1657–1676, 2000.

[90] Jinchao Xu. Theory of Multilevel Methods. PhD thesis, Cornell University,

May 1989.

[91] Jinchao Xu. Iterative methods by space decomposition and subspace correc-

tion. SIAM Review, 34(4):581–613, December 1992.

[92] Xuejun Zhang. Studies in Domain Decomposition: Multilevel Methods and

the Biharmonic Dirichlet Problem. PhD thesis, Courant Institute, New York

University, September 1991. TR-584, Department of Computer Science.

[93] Xuejun Zhang. Domain decomposition algorithms for the biharmonic Dirich-

let problem. In David E. Keyes, Tony F. Chan, Gérard A. Meurant, Jef-

frey S. Scroggs, and Robert G. Voigt, editors, Fifth International Symposium

on Domain Decomposition Methods for Partial Differential Equations, pages

119–126, Philadelphia, PA, 1992. SIAM.

[94] Xuejun Zhang. Multilevel Schwarz methods. Numer. Math., 63(4):521–539,

1992.

153

