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ABSTRACT

Two inexact coarse solvers for Balancing Domain Decomposition by Constraints
(BDDC) algorithms are introduced and analyzed. These solvers help remove a
bottleneck for the two-level BDDC algorithms related to the cost of the coarse
problem when the number of subdomains is large. At the same time, a good
convergence rate is maintained.

BDDC algorithms are also developed for the linear systems arising from flow
in porous media discretized with mixed and hybrid finite elements. Our methods
are proven to be scalable and the condition numbers of the operators with our
BDDC preconditioners grow only polylogarithmically with the size of the subdo-

main problems.
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Chapter 1

Introduction

1.1 An Overview

Usually the first step of solving an elliptic partial differential equation (PDE)
numerically is its discretization. Finite difference, finite element, or other dis-
cretizations reduce the original PDE to an often huge and ill-conditioned linear
or nonlinear system of algebraic equations. Limited by the memory and speed
of the computers, the traditional direct solvers can often not handle such large
linear systems. Moreover, iterative methods, such as Krylov space methods, may
need thousands of iterations to obtain accurate solutions due to large condition
numbers of such systems. Domain decomposition methods provide efficient and
scalable preconditioners that can be accelerated by Krylov space methods and have
become popular in applications in computational fluid dynamics, structural engi-
neering, electromagnetics, constrained optimization, etc. The basic idea of domain
decomposition methods is to split the original huge problem into many small prob-
lems that can be handled by direct solvers, and then solve these smaller problems

a number of times and accelerate the solution of the original problem with Krylov



space methods.

There are two main classes of domain decomposition methods: overlapping
Schwarz methods and iterative substructuring methods. In the overlapping Schwarz
methods, the domain is divided into many overlapping subdomains. In each Krylov
iteration of a one-level Schwarz method we primarily need to solve a local problem
in each subdomain. But the number of iterations will depend on the number of
subdomains. A coarse problem is added in the more powerful two-level overlapping
methods. With a generous overlap, the number of iterations for the two-level meth-
ods can be independent of the number of subdomains and the size of subdomain
problems. An abstract theory of Schwarz type domain decomposition methods has
also been established and successfully applied to several types of methods of this
kind; see [83, Chapters 2,3] and the references therein.

In iterative substructuring methods, the domain is decomposed into nonover-
lapping subdomains. The unknowns in the interior of the subdomains are first
eliminated independently and we then work with the Schur complement with re-
spect to the unknowns associated with the interface. Coarse problems are con-
structed using one or a few degrees of freedom for each subdomain. Among these
algorithms, the Neumann-Neumann and finite element tearing and interconnecting
methods (FETI) families are the best known and they have been tested in many
applications. For a detailed discussion, see Chapter 2 and [83, Chapters 4,5,6] and
the references therein.

Recently, a new family of iterative substructuring methods, the balancing do-
main decomposition by constraints (BDDC) algorithms, has been developed by

Clark Dohrmann in [27]. These methods have a Neumann-Neumann flavor. How-



ever, their coarse problems are given by sets of constraints enforced on the interface,
which are similar to those of the dual-primal FETI (FETI-DP) methods. It has
been proved recently that the preconditioned operators for BDDC and FETI-DP
have identical nontrivial eigenvalues except possibly for 0 and 1, see [63, 59, 20].

However, a shortcoming of both BDDC, FETI-DP, and all other domain de-
composition methods is that the coarse problem needs to be assembled and the
resulting matrix needs to be factored by a direct solver at the beginning of the com-
putation. Usually the size of the coarse problem is proportional to the number of
subdomains. Nowadays some computer systems have more than 100,000 powerful
processors, which allow very large and detailed simulations. The coarse component
can therefore be a bottleneck if the number of subdomains is very large. Motivated
by this fact, we will, in this dissertation, develop two three-level BDDC algorithms
to remove this difficulty. We also successfully adapt the two-level BDDC methods
to flow in porous media.

We will first review some basic function analysis tools in the following sections.

1.2 Functional Analysis Tools

1.2.1 Sobolev Spaces

Let Q be a bounded Lipschitz domain in R? or R3. L?*(Q) is the space of all real

measurable functions u that satisfy

/ lu|? do < oo.
Q

It is a Hilbert space with the scalar product

(u,v)2(0) = /uvdx

Q



and an induced norm

ety = (s )2y = / uf? da.

The space L3(2) is a subspace of L?(§2) of functions with zero average over .

The space H'() is a space of functions such that
/ lu|?dz < oo, and / Vu-Vudr < oo, Yu€ H' ),
Q Q

with the scaled norm

1
Q QJQ

where Hg, is the diameter of €2; this scaling factor is obtained by dilation from a

region of unit diameter. The corresponding H!-seminorm is defined by

|ul(q) = / Vu - Vudz.
Q

The subspace of HJ () is a closure of the C§°(Q) functions in H'(Q).
We also define the divergence operator for a vector function u € R", n = 2,3
as

n
auz-

i =V . u= 1.1
divu=V-u ;89@’ (1.1)

where u; is the i-th component of u. The space H(div; ) is a Hilbert space with

the scalar product and graph norm defined by

(uav)div;Q:/u-le'+/diVlldiVVde, Hu||iiv;Q:(u7u)div;Q'
) Q



1.2.2 Trace and Extension Theorems

Let Q be a bounded Lipschitz domain in R? or R3. We define some Sobolev spaces
on I' C 9N and two extension theorems in this subsection. For a more detailed
discussion, see [45, Section 1.5].

The trace space of H'(Q) is HY/2(08), and, for I' C 09, the corresponding

semi-norm and norm are given by

2
Wl ://Mdm% 1.2
‘ ‘H/(l") . \x—y|d ( )

and
2 2 1 2
HUHH1/2(1") = ‘U‘Hl/Q(F) + H—FHUHLQ(F)a (1.3)
where Hr is the diameter of I' and d is the dimension of 2. We also define the
subspace HééQ (T') of HY2(T"), of functions which can be extended by zero to 9Q\I
and still belong to H/2(9). Hyl*(T') is a proper subspace of H/2(T'). The norm
of H(%Q(F) can be defined as

2
2 1.2 u*()
HUHH(%Q(F) == ‘U‘Hl/Q(F) + /F 7d(x,81“) dl’, (14)

where d(z,0T") is the distance from z to the boundary Or.
Lemma 1.1 (Trace theorem) Let 2 be a Lipschitz region. Then, there is a

bounded linear operator vy : HY(Q)) — HY2(0Q) such that vou = ulgq if u is

continuous in §).

The dual spaces of HY2(9Q) and Hy)*(T) are denoted by H~Y/2(9Q) and

H, &)1/ *(T), respectively.



Given a vector u € H(div, (), we can define its normal component u-n on 952

as an element of H~1/2(9Q), and the following inequality holds

- nl ooy < C (Il + H3 v ulRa, ) (15)

with a constant C that is independent of Hq, the diameter of €). The operator
that maps a vector in H(div,2) into its normal component in H~/2() is thus
continuous, and it can be shown to be surjective; see [39, Ch. I, Th. 2.5 and Cor.
2.8]. The subspace Hy(div;€2) consists of all functions in H(div; Q) with v-n =0
on 0f2.

We also have the following two extension theorems.

Lemma 1.2 Let Q be a Lipschitz domain. Then, there exists a continuous lifting

operator Ry : HY2(9Q)) — HY(Q) such that vo(Rou) = u, u € HY?(08).

Lemma 1.3 For any u € H~'/2(0Q) with mean value zero on OS), there exists an

extension operator H : HY/?(0Q) — L*(Q) such that
divHp = 0,

and
IHllz2) < Cllpll 1200

Here C' is independent of Hg and p.

Proof: Consider a Neumann problem

ANy = 0, in €,

99

n [, on 02,



where n is the outward normal direction of 0. Since we assume that x4 has mean
value zero over 0f), this problem is solvable and we can select the solution ¢ with

mean value zero over (. We then define Hy := ¢ and have

[ Fpll o) = |0l mo) < Cllpll r-172(060

where C' is independent of the diameter of €.

1.2.3 Poincaré and Friedrichs’ Inequalities

In the domain decomposition theory, Poincaré and Friedrichs type inequalities
are powerful tools. We formulate them and some corollaries related to domain

decomposition methods in this subsection. For detailed proofs, see [72].

Lemma 1.4 (Poincaré’s inequality) Let Q@ C R™ be a bounded Lipschitz do-

main. Then, there exist constants Cy and Cs, depending only on €, such that

2

HUH%Q(Q) < Cl‘uﬁql(n) + Cy /udx , Yue HY(Q).
Q

Lemma 1.5 (Friedrichs’ inequality) Let Q2 be the same as in Lemma 1.4 and
let I' C 092 have nonzero (n—1)-dimensional measure. Then, there exist constants

C1 and Cs, depending only on €2 and ', such that
[ullf20) < Chlultig) + Collulliary, Yue H'Y(Q).
In particular, if u=0 on T,

[ull72) < Cilulfng

7



and thus
JulFi ) < llullfng < (Cr+1) [ulfg)-
By simple scaling arguments, we obtain the following corollary, see [83, Corol-

lary A.15].

Corollary 1.6 Let 2 be Lipschitz continuous with diameter Ho and I’ C 0$2 be
defined as in Lemma 1.5 with a diameter of order Hq. Then, there exist constants
Ci, Cy, and Cs, that depend only on the shape of Q0 but are independent of Hq,

such that
ul| 720y < Cy H |ultp gy + Co Ho llul|72my,  Yu € H'(Q).
If u € HY(Q) has a vanishing mean value over Q, then
[ull72q) < Cs Hg |ultq)-

Using the operators 79 and Ry of Lemmas 1.1 and 1.2, we can obtain the
following lemma which is useful in the analysis of some iterative substructuring

methods; see [83, Lemma A.17].

Lemma 1.7 Let Q C R? be a Lipschitz continuous polyhedron. If u € HY?(09Q)
either has a vanishing mean value on OS2 or belongs to the closure of the space
of C*(0R) functions that vanish on a face of Q, there exists a constant Cy, that

depends only on the shape of € and the face, such that
[ul|7200) < C1 Ho ‘“‘?{1/2(39)'

Similarly, if F C 0N is one of the faces of Q of diameter on the order Hg and

u € HY?(F) either has vanishing mean value on F or belongs to Héf(]:), then

8



there exists a constant Cy, that depends only on the shape of F but not on its size,
such that

[ull72(r) < Co Ho \uﬁql/z(ﬂ.

1.3 Variational Formulations of Second Order El-
liptic Boundary-Value Problems and Finite
Element Spaces

We consider the following elliptic problem on a bounded polygonal domain €2 in

two or three dimensions with boundary conditions:

-V -(aVp) = f in Q,
p gp in 0Qp, (1.6)
n-(aVp) = gy in 00,

where n is the outward normal to 92 and a is a positive definite matrix function

with entries in L>(2) and satisfying
ra(x)€ > all€))?, forae x€Q, (1.7)

for some positive constant a.
We assume that the functions f € L*(Q), gp € H'?(0Qp), and gn € H™Y2(00).

Moreover, if 00y = 9L, f and gy should satisfy the compatibility condition

/ fdx + / gnds = 0.
Q 00N

The equation (1.6) has a unique solution p if 9Qp has nonzero measure. Oth-

erwise p is unique up to a constant. Without loss of generality, we assume that

gD:0.



1.3.1 A Standard Variational Formulation and Finite Ele-
ment Spaces
Let

Hy p(Q) = {v|v € H'(Q),v]p0,, = 0},

and standard variational formulation of (1.6) is: find p € Hy ;, such that

/an-VvdX:/fvdx—i-/ gyvds, v € Hg . (1.8)
Q Q Il ’

We can use a conforming continuous piecewise linear finite element function
space \/7\\7, of functions which vanish on 0Q2p, to approximate H& p- Then the finite

element discrete problem of (1.8) is: find p € W such that

/ aVpy, - Vopdx = / fopdx +/ gnupds, Vv, € \/7\\7, (1.9)
Q Q 00N

and the matrix form is

App, = Fp, (1.10)

where A is symmetric and positive definite if 92p has nonzero measure, otherwise

it is symmetric and positive semidefinite.

1.3.2 A Mixed Formulation

Assume that we are interested in computing —aVp as is often required in flow in
porous media. If we use the standard formulation (1.8), we could first compute p
and then use finite differences or the gradient to approximate —aVp. This approach
will introduce additional error for —aVp. Moreover, —aVp can be continuous even
if a has large jumps and then Vp has large jumps too. Therefore, we introduce
the velocity u:

u=—aVp,

10



and call p the pressure. We compute u directly by rewriting (1.6) for the velocity

u and the pressure p as follows:

u=—aVp in
Veu=f in Q,
n-u=0 in 0Qy,
pZO in 8QD

(1.11)

Let ¢(x) = a(x)~!. We now introduce a mixed and a hybrid finite element methods.
We assume 02y = 0€), gy = 0, and f has mean value zero, in this subsection
for convenience.
The weak form of (1.11) is as follows: find u € Hy(div, Q) and p € L3(€) such
that

{ a(u,v) +b(v,p) = 0, Vv € Hoy(div, Q), (1.12)

b(u, q) = — [y fadx, Vqe L3(),

where a(u,v) = [, u”c¢(x)vdx and b(u, q) = — [,(V - u)gdx.

We can then use the Raviart-Thomas finite element spaces to approximate
H(div). These spaces are conforming in H(div) and were introduced in [75] for
two dimensional cases and extended to three dimensions in [71]. See also [21,
I11.3.1].

Let K be a triangle or tetrahedral element of a triangulation 73 of 2. Then we
define

RT\(K) = (Pu(K))" +xP,1(K), k>1,

where x is the position vector, Py(K) is the set of polynomials defined on K with
degree at most k, P,_; is the subspace of Py_; of homogeneous polynomials, and
n is the dimension of K.

A function u € RTy(K) is uniquely defined by degrees of freedom associated

11



with each edge (n = 2) or face f (n = 3)

/fu-nn p € Pa(f).

We add the following degrees of freedom for k£ > 1

/u~p, p € P, o(K)".
K
Then we define
RTMQ) == {u € H(div,Q)|ug € RT(K), K € T;,},

RT}0() = {u € Hy(div,Q)|ux € RT}(K),K € T,}.

Let W = RT{fO(Q) and let ) be the space of piecewise constants with a zero
mean value, which are finite dimensional subspaces of Hy(div,) and L3(f2), re-
spectively. The pair \/7\\7, @ satisfies a uniform inf-sup condition, see [21, Chapter

IV. 1.2]. The finite element discrete problem is: find u;, € W and pr € @ such

that
{ a(up, vi) +b(va,pn) = 0, Vv €W, (1.13)
b(Uh, Qh) - - fQ thdX, VQh € QJ
and the matrix form is:
A BT uy 0
ERA IS H R

The system (1.14) is symmetric indefinite with the matrix A symmetric, positive
definite. For details on the range of its negative and positive eigenvalues of (1.14),

see [76].

12



1.3.3 A Hybrid Formulation

We assume 0Q2p = 0N in this subsection for convenience.
We decompose () into N nonoverlapping subdomains €2; with diameters H;,
1=1,---,N, and set H = max; H;.

Let
W = RTMQ) = {v € L*(Q)? or L*(Q)*;v|r = ag + crx VT € Tp},

where ar € R? or R3, ¢ € R, and the normal component of v is continuous across
the inter-element boundary.

Let
WO = RTM,) = {v € L*()? or L*(%)*;v|r = ar + orx VT € Tp},

where a; € R? or R?, ¢; € R, and the normal component of v is continuous across
the inter-element boundaries.

We also define W and W® which are similar to W and \/7\\/'("), respectively.
However, they do not have any continuity constraints on the normal components

of the functions, i.e.,
W = {v e L*(Q)? or L*(Q)%v|r =ar +crx VT € T,},
where ar € R? or R3, ¢p € R; and
WO = {v € L*()? or L*()3;v|r = ap + epx VT € Tp},

where a; € R? or R? and ¢ € R.
We thus relax the continuity of the normal components on the element interface

in W and W@ Instead, we will introduce Lagrange multipliers to enforce the

13



continuity of the Raviart-Thomas space. In an implementation, as in [42, 22|, we
only need to use inter-element Lagrange multiplier on the subdomain interfaces.
Let F denote the set of edges/faces in 7;, and denote by F? the subset of F
which contains the edges/faces on 9€2. Then the Lagrange multiplier space A is
the set of functions on F\ F? which take constant values on individual edges/faces
of F and vanish on F?; see [21, Section V1.2].
We can then reformulate the mixed problem (1.13) as follows: find (u,p, A) €

W x Q x A such that for all (V,q,u)EWxQx/A\

ZTGT (fT ulev — fT V - vpdx + fE)T AV - ans) = 0,
S e gV -u = — [, fedx,  (L.15)
> rer Jop u - npds = 0.

The additional function A is naturally interpreted as an approximation to the trace
of p on the boundary of the elements. A proof of the equivalence of (1.13) and
(1.15) can be found in [2, 15].

Correspondingly, the matrix form of (1.15) is

A B BF7[u 0
Bl 0 0 pl=|F|. (1.16)
B, 0 0 A 0

1.4 Preconditioned Iterative Methods

As we mentioned before in Section 1.1, the discretization of boundary value prob-
lems of elliptic partial differential equations leads to huge sparse linear systems to
solve. Denote by N, the size of the linear system obtained from the discretization
of the Laplacian. The optimal flop bounds for the Cholesky factorization of such
systems are O(N3/2) in two dimensions and O(N?) in three dimensions and the

cost of the forward and backward substitutions are O(N log N) and O(N*3) in
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two and three dimensions, respectively; see [38, Section 8.1] for two dimensional
and [31] for three dimensional cases. So usually iterative methods are used for
solving such huge sparse systems when N is very large.

Classical iterative methods are based on splitting the matrix, as in Jacobi,
Gauss-Seidel, and SOR methods. Unfortunately, they usually converge very slowly.
The same is true for conjugate gradient methods without preconditioning if the
condition numbers of the systems are very large.

Multigrid methods provide optimal order algorithms for solving elliptic bound-
ary value problems. In order to obtain errors comparable to the discretization
error of the finite element methods, the number of operations using the full multi-
grid algorithms, for solving the linear systems obtained from the finite element
discretization, only depends linearly on the number of the unknowns. The optimal
convergence of multigrid is independent of the number of levels. Several parallel
multilevel additive Schwartz preconditioners have also been developed and ana-
lyzed. Bramble, Pasciak and Xu [14] established that the condition number of
their multilevel algorithm (the BPX algorithm) grows at most quadratically with
the number of the levels, see also Xu [90]. Dryja and Widlund [29] obtained simi-
lar results with multilevel additive Schwarz preconditioners using abstract Schwarz
theory. Peter Oswald [73] proved that the condition number of the BPX algorithm
in fact is independent of the mesh sizes and the number of levels using Besov space
theory. Bramble and Pasciak [8], Xu [91], and Bornemann and Yserentant [4]
provided alternative proofs of Oswald’s result. A class of multilevel methods was
studied by Zhang, using the Schwarz framework, in [92, 93, 94]. All these results

establish that the condition number of multilevel additive Schwarz operators can
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be independent of the mesh size and the number of levels. For the general theory
of multigrid algorithms, see the books [48, 70, 6] and the references therein.
Geometric multigrid methods operate on predefined grid hierarchies. It is often
very difficult to use structured geometric grids for large applications with compli-
cated geometries. Domain decomposition methods do not depend on the con-
struction of such grid hierarchies and can easily be implemented on unstructured
meshes. Algebraic multigrid methods are being developed for problems without
a grid hierarchy. They are based on the observation that reasonable interpola-
tion and Galerkin-operator can be obtained from the matrices, instead of the grid
hierarchies. These multigrid methods fix the smoothers such as Gauss-Seidel iter-
ations and coarsen in the directions where the smoothers work best in smoothing
the error. This process can be performed based only on the matrix and therefore
these methods avoid complex geometric meshes. However, effective parallelization
of multigrid methods with Gauss-Seidel smoothers is not an easy task, see [1]. The
recursive smoothers can be implemented in parallel, only in a block sense, but this
can lead to bad performance. Additionally, the communication especially on coarse
levels can dominate the total CPU time for multigrid methods; these methods have
a much lower computation to communication ratio compared with domain decom-
position algorithms. In iterative substructuring algorithms, the communication is
only needed for the coarse problem and the interface nodes. In [47, 46, 80, 81],
and more recently in [60], we have learned to replace the local solvers of iterative
substructuring algorithms by inexact multigrid methods and still keep the good
convergence. This strategy therefore can significantly decrease the communication

needed compared with multigrid methods and, at the same time, such methods can
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take advantage of the fast convergence of the underlying domain decomposition
methods.

In this dissertation, we will mainly use two iterative methods. One is the con-
jugate gradient method, which is one of the Krylov space methods for symmetric
and positive definite problems. The other is the Chebyshev iteration method. We

introduce these two methods and their error analysis in the following subsections.

1.4.1 The Conjugate Gradient Method

The iterates of Krylov methods are constructed from the Krylov subspace and
have optimal properties in different norms for different Krylov methods. For a

symmetric and positive definite problem
Au =0, (1.17)

where A is symmetric and positive definite, the conjugate gradient method is
defined as follows, see [83, Fig C.4].

1. Initialize: ro = b — Auy,

2. Iterate k = 1,2, --- until convergence
Be = <Tp1,Tk-1> /) <Tpo,Th2> (B1=0)
P = Tkt + Bibk—1  (p1=70)
ap = <Tp_1,Tr-1 > [ < Dr, Apr >
Up = Ug—1 + 0Pk
TR = Tro1— apAp

From these formulas, we can see that the matrix A is used only for matrix-vector

products. It is not necessary to form A explicitly.
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We have the following lemma on the convergence of the conjugate gradient

method for a symmetric and positive definite system.

Lemma 1.8 Let A be symmetric and positive definite. Then the conjugate gradi-

ent method satisfies the error bound
le¥]la < 2n3]l€°]]a-

Here the convergence factor is

A = VE(A) =1
VE(A) +17

where k(A), the condition number of A, is the ratio of the largest and smallest

eigenvalues of A, see [83, Lemma C.9)].

Usually the linear systems obtained from discretizing PDEs have huge condition
numbers. According to Lemma 1.8, many conjugate gradient iterations may be
required for a certain accuracy. We therefore try to work with preconditioned
systems to improve the condition number. We solve M1 Au = M~'b instead of
Au = b, where M~! is an approximation of A=1. M ~!A should have a much better
condition number than A and M~! should also be symmetric, positive definite,
and easy to apply to a vector. M ! is called the preconditioner.

The preconditioned conjugate gradient method is given as follows, see [83, Fig
C.5].

1. Initialize: ro = b — Auy,

2. Iterate k = 1,2, --- until convergence

Precondition: zp_1 = M~ 'ry_;

O = < Zg_1,Th_1 > / < 2k—2,Tk—2 > (51 = 0)
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Pk = Zk—1+ Bepk—1  (p1 =T10)

ap = < 2g-1,Tk—1 > /| < i, Apg >
Up = Ugp—1 + QpPg
Ty = Tg—1— OékApk

We have the following lemma:

Lemma 1.9 Let A and M be symmetric and positive definite. Then the precondi-

tioned conjugate gradient method satisfies the error bound
le¥]la < 205 arll€®[la-

Here the convergence factor is

VR A) -1
M A + 1

1.4.2 The Chebyshev Iteration Method

The Chebyshev iteration method is a classical iterative method for solving sym-
metric and nonsymmetric problems. It does not need the computation of inner
products that are necessary, in each iteration, for the conjugate gradient method.
This property will save communication between different processors in parallel
computing. However, in order to find the parameters which are needed for the
algorithm, we need to know upper and lower bounds of the spectrum of the sys-
tem. This is a disadvantage of the Chebyshev iteration method. We will use the
Chebyshev iteration method inside the Conjugate Gradient method in one of our
three-level BDDC methods since it makes analysis possible. See Chapter 3 for

details.
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Algorithm

We can also use Chebyshev iteration with a preconditioner M~!. We need two
input parameters [ and u for this method, where | and u are estimates for the
smallest and largest eigenvalues of M 1A, respectively.

Let a = z%u and pu = Z—J_rg Let ¢; be the value of the k" Chebyshev polynomial

evaluated at p, i.e.,
Cri1 = 2ucy — Cp—1, k=1,2,--+, (1.18)

with

co =1, and ¢; = p. (1.19)

Without loss of generality, we set the initial guess:
ug = 0. (1.20)

The Chebyshev acceleration is defined by, see [44],

up = Uy + oz, (1.21)
Upy1 = Uk—1 + Wk+1(Osz + ug — uk_l), k= 1, 2, teey, (122)

where
2= M"ry, (1.24)

and
Ck
W1 = 20— (1.25)
Ck+1
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Error Analysis

Denote the exact solution of (1.17) by u*. Let ey = u* — uy. Using (1.20), (1.21),

and (1.22), we obtain

Crt1 = Wip1Qer + (1 — wry1)er—1, (1.26)
with
eo = u*, and e; = Qeg, (1.27)
where
Q=1-aM A (1.28)

The symmetrized operator M ~2 AM~ 2 has the following eigenvalue decomposition:
M 2AM™2 = PAPT, (1.29)

where A is a diagonal matrix and the eigenvalues {\;} of M ~2 AM ™2 are its diag-

onal entries. P is an orthogonal matrix, and P7 is its transpose.

Let
P =M:P (1.30)
We note that
M'A=PAP " (1.31)
Then, we have,
Q=PXP (1.32)

where ¥ is a diagonal matrix with the eigenvalues {o;} of ) on the diagonal and
O'j = ]_—Oé/\j. (133)
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Let
fr = e P ey, (1.34)
If we substitute (1.34) into (1.26) and (1.27), we then obtain a diagonal system of

difference equations by using (1.18), (1.19), (1.25), and (1.32):

Jorr =2p2fx — frm1, k=1,2,---, (1.35)
with
fi = uXfo, and fo = P 'u*. (1.36)
Solving this system, see [44], we obtain
fe=0P ', k=12, (1.37)

where © is a diagonal matrix with cosh (k cosh_l(,uaj)) on its diagonal.

Using (1.34), we obtain:

en= (POPT) =, k=1,2---. (1.38)
Ck
Using the definition of e, our approximate solution after £ Chebyshev iterations
is given by
up = Py JP M, (1.39)

where J is a diagonal matrix with 1 — cosh (k cosh™"(uo;)) /ey, on its diagonal.

Using (1.18) and (1.19), we obtain
cx = cosh (kcosh™(p)) .

Therefore, we have 1 — cosh (kcosh™"(uo;)) / cosh (kcosh™(n)) as the diagonal
entries of the matrix J.
From (1.38), we see that the Chebyshev iteration method converges if and only

if [o;] < 1,1e,0<); <l+u.

22



1.5 Organization of the Dissertation

The rest of the dissertation is organized as follows. We discuss several iterative
substructuring methods in Chapter 2. In Chapter 3, we present our three-level
BDDC methods, the corresponding theory, and numerical results, which is based
on our papers [84, 87]. We then extend the two-level BDDC algorithms to flow in
porous media in Chapter 4 and Chapter 5 with a mixed and a hybrid finite element

discretization, which are based on our papers [85, 86], respectively.
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Chapter 2

Iterative Substructuring Methods

2.1 Introduction

It is known that overlapping Schwarz domain decomposition methods with gen-
erous overlap can have a rate of convergence that is independent of the number
of subdomains and the size of subdomain problems, see [83, Chapters 2 and 3].
They have been successfully applied in many fields. However, we cannot just use
standard coarse space for problems with coefficients with jumps across the subdo-
main interfaces for these methods. With proper scaling techniques, it is possible
to remove this difficulty by using iterative substructuring methods. Nonstandard
coarse spaces were introduced in [77, 79] for overlapping methods to remove this
difficulty, which are similar to the coarse problems for iterative substructuring.
Bramble, Pasciak, and Schwarz started the mathematical development of iterative
substructuring methods, for the crucial case when there are cross points of the
interface between the subdomains, with a series of papers [9, 10, 11, 12] in the
mid-1980s. Dryja, Smith, and Widlund in [28] introduced a large class of primal

iterative substructuring methods and analyzed them by using the abstract Schwarz
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theory. Among the iterative substructuring algorithms, Neumann-Neumann and
FETI families are the best known and those methods have been tested in many
applications.

Glowinski and Wheeler [41, 43] first used the Neumann-Neumann idea for a
mixed formulation for elliptic problems. Bourgat, De Roeck, Glowinski, Le Tal-
lec, and Vidrascu [5, 24, 25] then introduced the Neumann-Neumann family in
5, 24, 25| for the standard formulation for elliptic problems without coarse spaces.
Mandel and Brezina [61], Dryja and Widlund [30], and later Le Tallec [57], then in-
troduced coarse levels to the Neumann-Neumann methods, which gave us two-level
Balancing Neumann-Neumann (BNN) methods. BNN is a hybrid Schwarz algo-
rithm (see Section 2.5 for more details) and the second level considerably improves
the performance. The condition number of a well-designed BNN preconditioned

operator can be estimated by:

/<;§C’(1+10g%)2, (2.1)
where H is the diameter and A is the typical mesh size of the subdomains and C' is
constant independent of H, h, and the coefficient a in (1.6), if it varies moderately
in each subdomain. Thus, the rate of convergence can be independent of the
number of subdomains and can grow only slowly with the size of the subdomain
problems.

One-level FETI methods were introduced by Farhat and Roux [36] and the
Dirichlet preconditioners were later introduced by Farhat, Mandel, and Roux in
[35], which makes the number of iterations less sensitive to the number of unknowns
in the local problems. Theoretical work was first carried out by Mandel and Tezaur

in [65], see also [16, 17] and [52]. The condition number of the preconditioned
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FETTI operator can also be bounded as in (2.1). Later, Farhat, Lesoinne, Le Tallec,
Pierson, and Rixen introduced the dual-primal FETT (FETI-DP) in [33] with vertex
constraints and a theoretical analysis was carried out by Mandel and Tezaur [66] for
two dimensions with the same condition number bound (2.1) for the preconditioned
FETI-DP operators.

An advantage of FETI-DP, compared with FETI, is that we never need to solve
singular problems which makes the algorithms more robust. However, in three di-
mensions, vertex constraints alone are not enough to obtain the good polylogarith-
mic condition number bound of (2.1) due to a much weaker interpolation estimate
and constraints on the averages over edges or faces are needed. Farhat, Lesoinne,
and Pierson [34] provided a scalable FETI-DP algorithm for three dimensional
cases using optional admissible constraints of this type. Klawonn, Widlund, and
Dryja [55, 56] provided several different three-dimensional FETI-DP algorithms
and established the condition number bound (2.1).

The BDDC (Balancing Domain Decomposition by Constraints) methods were
first introduced by Dohrmann in [27]. Mandel and Dohrmann in [62] proved that
the preconditioned BDDC operators have the condition number bound (2.1) by
using the abstract Schwarz framework. The BDDC methods are similar to the bal-
ancing Neumann-Neumann algorithms. However, the coarse problem, in a BDDC
algorithm, is given in terms of a set of primal constraints which is similar to that
of a FETI-DP algorithm. Mandel, Dohrmann, and Tezaur in [63] established an
important connection between FETI-DP and BDDC, namely that the precondi-
tioned FETI-DP and BDDC operators have the same eigenvalues except possibly

for 0 and 1. Fragakis and Papadrakakis observed this fact experimentally in [37]
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for certain BNN algorithms and one-level FETI methods. Klawonn and Widlund
also established connections between the one-level FETI and the BNN algorithms
in [53]. Later, Li and Widlund rederived the FETI-DP and BDDC algorithms in
[59] and provided a much shorter proof of the main result in [63] using a change
of variables technique. Brenner and Sung also provided a proof for this result in
[20]. Our presentation of the FETI-DP and BDDC algorithms will be based on
the work by Li and Widlund in [59].

There is a limitation of the BNN, FETI-DP, BDDC algorithms, and other iter-
ative substructuring algorithms, namely that the matrices of the local and coarse
problems need to be factored by a direct solver at beginning of the computation.
When the number of subdomains or the size of subdomain problem is large, then
these direct solvers will be a bottleneck of these algorithms. The inexact solvers for
iterative substructuring algorithms have been discussed in [3, 47, 46, 80, 13]. Kla-
wonn and Widlund considered inexact solver for the one-level FETT algorithms in
[51]. In [84, 87], we introduced a additional level for the BDDC algorithms to solve
the coarse problem approximately while at the same time maintaining a good con-
vergence, see also Chapter 3 for details. In [60], Li and Widlund considered solving
the local problems in the BDDC algorithms by multigrid methods. Dohrmann has
also developed several versions of approximate BDDC preconditioners in [26]. Kla-
wonn and Rheinbach also recently provided and analyzed approximate FETI-DP
preconditioners in [50]. Dryja also provided some inexact versions of BNN in his
talk at the 16th domain decomposition conference.

The rest of the chapter is organized as follows: we first describe the problem

setting in Section 2.2. Some useful operators are introduced in Section 2.3 and
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Schur complement systems and discrete harmonic extensions are introduced in
Section 2.4. In Sections 2.5, 2.6, and 2.7, BNN, FETI-DP, and BDDC algorithms
and condition number estimates are discussed. Finally, we discuss some iterative

substructuring methods using inexact solvers in Section 2.8.

2.2 Problem Setting

We again consider the second order scalar elliptic problem (1.6) in a two or three
dimensional region 2. We assume that 0€2p = 02 and, for convenience, we use u
instead of p as the unknown variable in this and the next chapters. We decompose
Q2 into N nonoverlapping subdomains €2; with diameters H;, i = 1,---, N, and set
H = max; H;. We then introduce a triangulation of all the subdomains. In our
analysis, we also assume that each subdomain is a union of shape-regular coarse
triangles or tetrahedra and that the number of such triangles forming an individual
subdomain is uniformly bounded. Moreover, when developing theory, we assume

that the fine triangulation of each subdomain is quasi uniform.

Definition 2.1 A substructure €); is floating if the intersection of its boundary

with 0N) is empty.

See also [83, Definition 4.1].

Let I" be the interface between the subdomains and let the set of interface nodes
'y, be defined by I'y, = (U;09; 1) \ 082, where 02, , is the set of nodes on 9€; and
09y, is that of 0S2.

Let W@ be the standard finite element space of continuous, piecewise linear

functions on ;. We assume that these functions vanish on 9Q. Each W® can
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be decomposed into a subdomain interior part W?) and a subdomain interface
part WI@. The subdomain interface part Wl@ will be further decomposed into
a primal subspace WI(IZ') and a dual subspace WX), ie., WO = W?) EBW%” =
W' oWy ewy.

We denote the associated product spaces by

N
W= [[W?, Wp=][WY

=1 i=1

N
Wy = [[WY, Wi=][WY,
=1 i=1

and

N .
W[ = H Wy)
i=1

Correspondingly, we have
W =W, P Wr and Wr = Wy P Wa.

We will often consider elements of a product space which are discontinuous
across the interface. However, the finite element approximations of the elliptic
problem are continuous across I'; we denote the corresponding subspace of W' by
W.

We further introduce an interface subspace Wr C Wr, for which certain primal
constraints are enforced. The resulting subspace of continuous functions is denoted

by \/7\\711. The space Wr can be decomposed into Wp = \/7\\711 P Wa.
The global problem is: find (us, ua,un) € (Wy, WA,\/N\/_H), such that

ur Anr Ag[ Aﬁ[ Uy J1
A UA = AA[ AAA AEA (7N = fA . (2.2)
UTT Anr Ana  Amm ur Ju
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This problem is assembled from subdomain problems

i i )T )T i i
IREEE 1IEIRE:

AY ua | = AL AQL AfL uy | = A (2.3)
ul] AR ARL AR ][ e I

. . T
Let ulY = [uy) u(AZ)} and let

i )T
AR A

A9 =| A A
AG Al

A can then be written as
AW Ay
AR ARy

We also denote by Fr, f‘p, and f‘p, the right-hand side spaces corresponding to

Wr, \/7\\7p, and WF, respectively.

2.3 Some Useful Operators

2.3.1 Restriction, Extension, and Scaling Operators

In order to describe the iterative substructuring algorithms, we need to introduce
several restriction, extension, and scaling operators between different spaces. The
restriction operator RI@ maps a vector of the space \/7\\/} to its restriction to the
subdomain subspace W(FZ ). Each column of R(Fi ) with a nonzero entry corresponds
to an interface node, z € 0€;;, NI, shared by the subdomain (2; and its next
neighbors. E(Fi) is similar to Rl@, and represents the restriction from Wp to WI@.
RX) :Wa — WX), is the restriction matrix which extracts the subdomain part, in
the space WX), of the functions in the space Wa. Rl(;) is the restriction operator

from the space \/7\\711 to WI(IZ'). Multiplying each such element of R(Fi), F(Fi), and RX)
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with 6! () gives us R([?’F, E(Di)f, and Rg), A, respectively. Here, we define §! (z) as

follows: for some v € [1/2,00),

tir) = a; (z)
52‘ ( ) ng/\/’z CL;/(JI) )

where N, is the set of indices j of the subdomains such that € 9Q; and a;(x)

WS 8Qi7h NIy, (25)

is the coefficient of (1.6) at x in the subdomain 2;. They provide a partition of
unity:

STRVSI(x) =1, wzeTl,. (2.6)

Also let the scaling operator D™ be a diagonal matrix with 52 () on its diagonal,
where the component corresponds to an x € 9€);;,. In this dissertation, we assume
that the coefficient a; varies moderately in each subdomain.

Furthermore, Rran and Rrp are the restriction operators from the space Wr
onto its subspace W and Wiy, respectively. Rr : \/7\7} — Wr and Ry : Wp — Wr
are the direct sums of Rl@ and E(Fi), respectively. fip : \/7\\/} — Wp is the direct
sum of Rrr and the RX)RFA. The scaled operators Rpr and Rp a are the direct
sums of Rg)’r and Rg), A, Tespectively. }N%DI is the direct sum of Rryy and Rp aRra.

We also use the same restriction, extension, and scaled restriction operators for
the right hand side spaces Fr, f‘p, and f‘r.

We have several important properties for the restriction, extension, and scaling

operators, namely

RFRpr=RY\Rr=1, RERpr=Rb Rr=1. (2.7)

31



2.3.2 Average and Jump Operators

We define two average operators Ep; : Wr — \/7\\/} by Ep; = RFRzTD,r and
Eps : WF — \/7\\/} by Eps = épégp, which computes the weighted averages
across the subdomain interface I' and then distributes the averages to the boundary
points of each subdomain.

We define the matrix
Ba=[BV,BY,... BM, (2.8)

which is constructed from {0,1, -1} such that the values of the function ur =
[ua, ug]? € Wr associated with more than one subdomain coincide when Baua =
0. Multiplying the entries in Ba, each of which corresponds to a node = on 0€;,
by the scaling constant &' (x) in (2.5) gives us Bp .

Let Br = BaRra and Bpr = Bp ARra. We define a jump operator by
PD = Blj;l—\Bp, (29)

which maps Wr into itself and computes the difference of the values in different
subdomain at the interface nodes.

The average and jump operators satisfy the following important relations:

Lemma 2.1
Eps+ Pp = I; E%Q = Eps, P =Pp; EpsPp=PpEp,=0.

Proof: See [59, Lemma 1].
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We also have the following property of the average operators Ep (Ep; and

ED72):

Lemma 2.2
EDUF = ur, VUF € WF.
Proof: This follows the definition of Ep and (2.7).

O

2.4 Schur Complement Systems and Discrete Har-
monic Extensions

In a first step of many iterative substructuring algorithms, the interior unknowns
uy) in each subdomain are eliminated by direct solvers. In this step, the Schur
complements with respect to u(Fi) = [ Z% ] are formed. The resulting local Schur
complement can be written as !

; i i) 4071 4G
S0 Af) - A A5

see (2.3). They are not always be formed, in practice.

We define Sy = Zf\il R(Fi)TS (i)R(Fi) and the reduced global interface problem is

given by
Srur = gr, (2.10)
where
vesnr [8] [ 45]ra)
i=1 I 17
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In practice, we never form the matrix §p explicitly. Instead, we store the Ag}) and
the Cholesky factors of Ag? Whenever we need to do a matrix-vector multiplica-
tion with §p, we just solve a Dirichlet problem in each subdomain in addition to
doing some sparse matrix-vector multiplications.

The important subspace, which is directly related to the Schur complements,
is the discrete harmonic function space. We say that a function «?, defined on

);, is discrete harmonic on €; if
AP A0 — o (2.11)

From the definition, we can see that v is fully determined by ug), the value of
u® on 99Q;. We use the notation u® := ’Hl(u(rZ )) and call H; the discrete harmonic
extension operator on €2;. We denote the piecewise harmonic extension operator
to all of Q by H(ur).

We have the following properties of the discrete harmonic extension and discrete

harmonic functions, see [83, Lemma 4.9 and Lemma 4.10].

Lemma 2.3 Let u(ri) be the restriction of a finite element function u to 02; N 1T.
Then, the discrete harmonic extension w® = Hi(ug)) of ug) into Q; satisfies
WO ADL®D — i p®F 4Dy

Q)

v(®) ‘Bﬂiﬁl—‘:u[‘l
and

T . . . . .
ui}) S(z)ug) — ,w(l)TA(Z)w(Z)‘

Analogously, if ur is the restriction of a finite element function u to I", the piecewise

discrete harmonic extension w = H(ur) of ur into the interior of the subdomains
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satisfies

w! Aw = min 0" Av
v|p=ur

and

wl Aw = u?Squ.

Lemma 2.4 Let u be discrete harmonic. Then, for a floating subdomain €);, there

exist positive constants ¢ and C, independent of h and H, such that

cllurllfie oy < lulling < Clurllfe o)

2 2 2
C‘UF|H1/2(aQi) < [ulf, < O‘UF‘HlM(@Qi).
Consequently,
T s
2 g ! 2
Cai‘uF|H1/2(aQi) < u(r) S(Z)“(F) = Oai‘uﬂH”Q(aQi)’

with ug) the restriction of u to 92; NI" and the constants independent of h, H, and
the a;. For a subdomain such that 02; () 0Q2p has a nonzero measure, we have, by

Friedrichs’ inequality,

cllullin, < lultng, < Cllullina,,

llurl o ory < Tl < C llurlo

(68;NT (8Q;nr)’

and

T . .
caiHurHiééz < u(FZ) S(’)u(rz) < C’aiHuFH?{%Q(

(8le‘) - (’mml“) ’

These two lemmas ensure that we can work equivalently with functions defined

on I' and with the corresponding discrete harmonic extensions defined on 2.
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2.5 Balancing Neumann-Neumann Methods

2.5.1 The Algorithm

Let Wy C Wp be the coarse space for a Neumann-Neumann algorithm and let R}
be the matrix with columns representing the basis functions of Wy. R provides
a map from \/7\\/} to Wy. For example, we can choose a minimal coarse space W
as

W, = span {R!6] | 90, N 9Q = 0}. (2.12)

1 1)

Let
SO = Ro:g\ng

and the interface problem (2.10) with the Balancing Neumann-Neumann precon-

ditioner can be written as follows:
nglvNSFuF :nglngF, (213)
where Mgy is of the form

N
RTSS'Ry + <I - R§50—130§F) <Z R%{Tg(i)TRng) <I - §FROTSO—130) .
=1

Let
P, = RYL.SOTRY Sr, Py = RTSy " RoSr.

We can then write the preconditioned operator as a hybrid Schwarz operator

N
MyynSr = Po+ (1= Py) > B(I = Py). (2.14)

i=1
We note that, for floating subdomains, S is not invertible. But after the operation

I— P, the right hand sides of the relevant linear systems always are balanced which

means that the local Neumann problems are solvable, see [83, Section 6.2].
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2.5.2 Condition Number Bound

Since the preconditioned BNN operator can be written as a hybrid Schwarz opera-

tor, we can follow [83, Section 6.2] and use the abstract theory of Schwarz methods

to estimate the condition number.

For ur € \/7\\/}, by Lemma 2.2, we have a splitting of ur:

N
ur = Z Rl(f)TUi, vy = I"(61u;) € Wl(f).
i=1

By (2.7), we have the constant Cy = 1 in [83, Assumption 2.12]. Therefore the

lower bound of the eigenvalues is 1.

For the upper bound, we set w € Wr with w; = D(i)_lRl@Pqu. Then w €

~

range(Sr) and

N
EDJUJ = Z HUF.
i=1
We have the following lemma for the average operator Ep ;:

Lemma 2.5
\ED,lw%F <C(1+ log(H/h))2|w%F, w € range(Sr).

Proof. See [83, Lemma 6.3].

By using Lemma 2.5 and some algebra, we can obtain

> Pils, < C(1+log(H/h))*:

i=1

for details, see [83, Section 6.2.3].

Therefore the following theorem follows by using [83, Theorem 2.13].
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Theorem 2.6 For any ur € \/7\\/},
uf Mpynur < ufSpur < C (1+ log(H/h))* uf Mpyyur,

where C' is independent not only of the mesh size and the number of subdomains,

but also of the values a; of the coefficient of (1.6).

2.6 FETI-DP Methods

2.6.1 The Algorithm

We present the FETI-DP algorithm as in [59).
We form a partially assembled operator A by assembling at the primal variables.

A is then of the form:

1 )T T 51
A(gji A%% A%TR%;
1 1 1 1
Axg ANn Apa Ry
.N N T N T N
N N i i
( )T 1) ( )T 1) (Jé%l (V) (Jé%A(N) AH(A)TRH() (@)
1 1 1 1 N i i i
L RH AHI RH AHA Y RH AHI RH AHA Zi:l RH AHHRH i
(2.16)
Also we can write A as
AT?‘ Agr
A Amm '

Our global system (2.2) can be written as: find (uz, ua, ur) € (Wr, Wa, Wry),

such that -~ ~ ~ _
(1) (1)
U 0
1
U(A) A
Al | = : (2.17)
N )
ANy
N
U(A | N ° (@) £(@)
[ Um L >z B J
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under the constraints:

BAUA = O,
o "
where uy = : and up = :
Y L

We introduce a set of Lagrange multipliers A € V := rangeBa to enforce the
constraints and obtain a saddle point formulation of (2.17) as: find (ur, ua, um, \) €

(W1, Wa, Wp, V), such that

( r N B 1
:
1
U(A) A
Al S| +BA = |
N (N) ’
up” fi (2.18)
(N) f(N)
| un | X READ
BAUA = 0.

\

After eliminating the variables u, ua, and uy from (2.18), we obtain the FETI-

DP system for the Lagrangian multipliers A as

Frerr—ppA = BFS‘}‘lB?A = — <dA - EAHSﬁlgH> ,

where
N G 46
Sct= R [ [o RV | 0 { 0 ] Rra+®S5'®", (2.19)
=1 AAI AAA A
N G 460 17N 4@
)T A A A (4)
® = Rly - R (o R | 0 m | R, (2.20)
— AY, AR ARy
N 60T ) 46 G 40) AP AR AL (i)
Sn=> i1 By < Amn— [AHI AHA] A0 40 40T Ry,
AT AA 1A
(2.21)
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-1

N (@) (4) i)
_ (%) A Al I1
dv=->_0 BY| A0 40 0 |
i=1 AT AA A
and
N 4 , -
- ; AW 4@ AW 0
Ban=->lo BY|| W5 8 .| RY.
= ARy AR Afs |

We note that Sy plays the role of a coarse component and is defined by a set of
constraints.
The preconditioned FETI-DP system with a Dirichlet preconditioner is of the

form

ME}ET]_DPFFETI—DP = —BD,Fgng,p <dA — EAHSHIQH) )
where My by, _pp = BprSrBh . See [59] for details.
2.6.2 Condition Number Bound

The lower bound of preconditioned FETI-DP operator is 1, also by a simple algebra
argument. The upper bound is obtained by using the upper bound of the jump
operator Pp, defined in (2.9), see [63] for two dimensions and [55, 56] for three

dimensions. See also [83, Section 4].

2.7 BDDC Methods

2.7.1 The Algorithm

We define an operator §1" : WF — f‘p, which is of the form: given ur = ugydup €

WH@WA = WF, find ngp € f‘p by eliminating the interior variables of the
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system:

ugl) " 0 T
u(Al) R(AI)RF,AgFUF
A ugN) = 0 . (2.22)
u(AN) R(AN)RF,A§FUF
| um | | RriSrur i

It can be proved that Sp defined in (2.22) is the inverse of S;' which is defined
in (2.19) and which appears in the FETI-DP operator, see [59]. Our definition
therefore makes sense.

Since Sr is a partial assembled Schur complement, we can obtain the fully
assembled Schur complement §1" by a further assembly, i.e., §1" = E%gpfir‘

Therefore, the reduced interface problem (2.10) can be written as: find ur €
\/7\\/} such that

Eggrﬁrur = gr.
The two-level preconditioned BDDC method is of the form
Mé/%DcéngFéFuF = Mpppegr,

where the preconditioner Mg}, = égpgf 1ED7F has the following form:

N

W) 40

~ a1 [ A9D A 0 . -

RE- SR (D j[o RY ] i L { g } Rra + ®S5'07 Y Rpr.
i=1 AAI AAA RA

(2.23)
Here ® and Sy are defined in (2.20) and (2.21), respectively.

2.7.2 Condition Number Bound

We assume that the coefficient a(z) of (1.6) varies moderately in each subdomain.

We also assume that each subdomain is a union of shape-regular coarse triangles
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and that the number of such triangles forming an individual subdomain is uni-
formly bounded. Moreover, we assume that the triangulation of each subdomain

is quasi uniform. We then have a good upper bound of the average operator Ep o:

Lemma 2.7

2
|Epour|: <C 1—1—10E lur|%
D2Ur[g = gh rlg.

for any ur € Wp, where C' is a positive constant independent of H, h, and the

coefficients of (1.6).

Proof. We can use the upper bound for the jump operator Pp; see [66] for
the two dimensional case with vertex constraints and [83, Lemma 6.36] for three

dimensional case with vertex and edge constraints. Then apply Lemma 2.1.

Theorem 2.8 For any ur € Wp,
U%MBDDCUF S uggpulﬂ S C (1 + log(H/h))Qu%MBDDch,

where C' is independent not only of the mesh size and the number of subdomains,

but also of the values a; of the coefficient of (1.6).

Proof. We follow the proofs of [58, Theorem 1] and [87, Lemma 4.7].

Lower bound: Let

~ ~ o~ 1 —
wr = (RgIS;lRD,F) ur € WF. (224)

Using the properties (2.7) and (2.24), we have,

T T(pT Qo-1p T
UFMBppc’lLF = Ur (RD,FSF RDJ*) Ur = UrWr
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TpTa o—-1p D o-1n
= uFRF SFSF RDIUJF =< RFUF, SF RD,FU)F >§F

1/2
Sp
1/2

< < firul“, firul“ >A1§é2< gl:lfiD’er, gl:léD,FwF >
~~ o~ 1/2 ~ ~ o~ o~ o~
= (u%R%SFRFUF> (ng%7FSEISFSElRD,FwF>

1/2

TPTS D 1/2 T
= (uFRFSrRrur> (UFMBDDC“F)

We obtain

T Ta
ur Mpppcur < upSrur,

by canceling a common factor and squaring.
Upper bound: Using the definition of wr, the Cauchy-Schwarz inequality,

and Lemma 2.7, we obtain the upper bound:

Tq TpTa p. . pl Q-1p
Ur SFUF = UFRI‘ SFRFRDISF RD,FwF
~ ~ 1=
= < RFUF, ED,2SF RD,FwF >§F

12

~ ~ 1/2 ~ 1= ~ 1=
< < Rrur, Rrur >§/F < Ep2Sp Rprwr, Ep Sy Rp rwr >Sr

< C < éFUF, éFUF >‘l§{ﬂ2 (1 + log(H/h)) ’glrlépfwﬂgr

~ o~ o~ 1/2 ~ ~ o~~~
= C (1 -+ IOg(H/h)) <U%R%SFRFUF) (ng£7F5515FSElRD7FwF)

1/2

1/2

~ 1/2
= C (1 + IOg(H/h)) <U%SFUF) (u%FMBDDch)

Thus,

u%gqu S C (1 + log(H/h))zu%MBDDch.
0

We have the following relation between the preconditioned FETI-DP and BDDC

operators:
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Theorem 2.9 The preconditioned FETI-DP operator and the BDDC' operator

have the same eigenvalues except possibly for 0 and 1.
Proof. See [63, Section 7], [59, Theorem 1], and [20, Theorem 3.9].

O

2.8 Iterative Substructuring Methods Using In-
exact Solvers

The coarse or the local problems will be bottlenecks of the BNN, FETI-DP, and
BDDC algorithms if the number of subdomains or the size of the subdomain prob-
lems are large. One technique for removing the difficulty related to the coarse
problem is trying to choose small numbers of the primal constraints, but at the
same time keep the good condition number bound. Klawonn, Widlund, and Dryja
in [55] and Klawonn and Widlund in [54] proposed some ways of choosing a small
number of primal constraints while maintaining a good bound for the condition
number. Mandel and Sousedik [64] proposed an approach to choose a small set of
constraints based on solving certain local eigenvalue problems. Another technique
for removing these difficulties is by using inexact solvers for these problems. We
will describe some algorithms for solving coarse or local problems approximately

and still maintain a good rate of convergence.

2.8.1 The Coarse Problems

In the BDDC preconditioners and FETI-DP operators, a coarse problem is to be
solved in each iteration. The size of the coarse problem is proportional to the

number of subdomains and the number of primal constraints we choose. Here we
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discuss approaches which use inexact solvers. It is easier to deal with the coarse
problem for the BDDC algorithms than the FETI-DP algorithms since it is a part
of the preconditioner. For the FETI-DP algorithms, the coarse problem appears in
the operator. If we solve it inexactly, then we end up solving a different problem. A
successful approach for inexact FETI-DP methods involves a return to the original
saddle point problem for the primal variables and the Lagrangian multipliers and
then consider preconditioners for a saddle point problem, see [50] and earlier work
by Klawonn and Widlund [51] for details. Here we focus on approaches for the
BDDC methods.

One approach is to introduce an additional level (or several additional levels)
and to apply BDDC idea recursively to the coarse problem. This approach, the
three-level BDDC method, was introduced and analyzed in [84, 87]; see also Chap-
ter 3 for details. In that work, we assume that all the local Dirichlet and Neumann
problems are solved exactly and the coarse problem is formed using exact local
Neumann solvers.

We proceed as follows: we group several subdomains together to form a sub-
region. We could first reduce the original coarse problem to a subregion interface
problem by eliminating independently the subregion interior variables, which are
the primal variables on the I' and interior to the subregions. In one of the three-level
BDDC algorithms, we do not solve the subregion interface problem exactly, but
replace it by one iteration of the BDDC preconditioner; Dohrmann also suggested
this approach in [27]. This means that we only need to solve several subregion
local problems and one coarse problem on the subregion level in each iteration.

We assume that all these problems are small enough to be solved by direct solvers.
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We will show in Chapter 3 that the condition number estimate for the resulting

three-level preconditioned BDDC operator is bounded by

N 2
a H\®
< — — .
H_C<1+IOgH> <1+logh) ) (2.25)

where H , H, and h are the typical diameters of the subregions, subdomains, and
mesh of subdomains, respectively. C' is constant independent of H, H, h, and the
coefficients of (1.6), provided that a; varies moderately in each subregion.

In order to remove the additional factor (1 + log %)2 in (2.25), we can use a
Chebyshev iteration method to accelerate the three-level BDDC algorithms. With

this device, the condition number bound is

k< CCR) (1 +log %)2 (2.26)

where C(k) is a constant which depends on the eigenvalues of the preconditioned
coarse problem, the two parameters chosen for the Chebyshev iteration, and k, the
number of the Chebyshev iterations. C'(k) goes to 1 as k goes to oo. H and h are

the same as before.

2.8.2 The Local Solvers

There are one Dirichlet and two Neumann local solvers (if we store the coarse
basis functions, then only one Neumann local solver) in each BDDC iteration. The
Dirichlet solver are used in the BDDC operator to obtain the Schur complement
for the interface unknowns. We also need local Neumann solvers to assemble the
coarse matrix. We call the Neumann solver for constructing the coarse matrix
Neumann I and the others Neumann II, respectively. They play different roles.

Here we follow Li and Widlund’s work in [60].
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For the Dirichlet solver, like the coarse problem for FETI-DP, we will end up
solving different problems if we just replace it by an inexact solver. The way
to resolve this difficulty is to use the original matrix A defined in (2.2) as the
operator instead of the Schur complement for the interface. We then need to
construct a BDDC preconditioner for the operator A. Similarly, we can use A1
the inverse of the partial assembled global matrix defined in (2.16), as a part of
the preconditioner. It has the form:

~ -1 _ A-1AT -
A= { Ag” 8 } + { A A } Sit| ~AwA; 1], (@27)

where S is defined in (2.21).

It turns out that this preconditioner extends the interface jump by zero to the
interior nodes. The condition number of the operator with this preconditioner
cannot be as good as (2.1). Instead, while it is independent of the number of
the subdomains, it grows linearly in H/h. If a discrete harmonic extension of the
interface jump to the interior nodes is added, we recover the exact original BDDC
preconditioner; see [60] for more details. Using inexact Dirichlet solvers will provide
inexact discrete harmonic extensions, which can provide a good bound for the
corresponding average operators. In [60], Li and Widlund use multigrid solvers to
approximate the harmonic extension, which gives good approximation of the exact
Dirichlet solvers.

The Neumann I problems is related to forming the coarse problem. Inexact
solvers should be chosen to guarantee the positive definiteness of the corresponding
coarse matrix. The inexact solver will not only effect the construction of the coarse

matrix, but also the scalability of the preconditioners.
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For the Neumann II problems, one can replace them by another inexact solver
which is spectrally equivalent to the exact solvers, and the good condition number

bound can then be retained.

2.8.3 Inexact Coarse and Local Solvers

Dohrmann proposed a preconditioner, called M; ' in [26], which assumes that the

local Dirichlet solvers are exact and that
algTKg < gTI?g < aggTKg Vg, (2.28)

where K = diag{ A®} and K = diag{A®}. Here A® is defined in (2.3) and A®)
is similar to A®) except we replace AW by an approximation which corresponds to
inexact local Neumann solvers.

We then denote by K,  the coarse problem, which is constructed by using inexact

Neumann solvers. If the approximate coarse problem P, satisfies:
Bip' K:'p <p"Pep < Bop" K'p Y, (2.29)

then the condition number of the preconditioned BDDC operator with the precon-

ditioner M; ! has the following bound:

asmax(1, 52) H\?

We note that if we use exact Neumann solvers and P, is provided by the three-level
approach, we then have oy = ap, =1, f1 =1, and G, = C <1 + log %)2 We then
obtain the bound (2.25).

We also point out that usually the constant oy and as are not easy to obtain
directly since we can only get estimates for the inexact Neumann solvers and not for

K. In [26], Dohrmann suggests obtaining these constants from a Lanczos iteration.
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Dohrmann also provides two preconditioners M, ' and M; ' that use inexact
Dirichlet solvers and keep the inexact Neumann and coarse solvers the same as in
Mt

He uses an assumption for M, " and M; ', namely,
Ny Kg<g'Kg<rg"Kg Vg, (2.31)

where K is the same as in (2.28) and K = diag{A®}. Here A® is similar to A®
except that we replace Ag’} by an approximation which corresponds to the inexact
local Dirichlet solvers. In M, the residual update in the preconditioner also use
the approximate operator A corresponding to the inexact Dirichlet solvers. Then
the condition number of the preconditioned operator with the preconditioner M, *

18

3 2
agys max(1, B2) H
< (C 1+ log — 2.32
w a1y3 min(1, ) +log h) '’ ( )

see [26]. The constants ; and 7, are in practice estimated in the same way as
a1 and «y. However, it is hard to obtain a condition number estimate for the
preconditioned operator with the preconditioner M; ', where the residual update
in the preconditioner uses A directly, by the approach in [26]. This preconditioner
is quite similar to one in [60] and in that paper the condition number of the
operator, with this preconditioner, is obtained by estimating the bound for the
corresponding average operators.

Dohrmann also points out that all the local inexact solvers should satisfy the

null space property, see [26] for more details.
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Chapter 3
Three-level BDDC

In this chapter, we introduce two three-level BDDC methods. The BDDC algo-
rithms, previously developed for two levels [27, 62, 63], are similar to the balancing
Neumann-Neumann algorithms. However, their coarse problems, in BDDC, are
given in terms of sets of primal constraints and they are generated and factored by
a direct solver at the beginning of the computation. The coarse components of the
preconditioners can ultimately become a bottleneck if the number of subdomains
is very large. We will try to remove this problem by using one or several additional
levels. We introduce two three-level BDDC methods in two and three dimensional
cases for vertex and edge average constraints, respectively. We also provide esti-
mates of the condition numbers of the system with these two new preconditioners.
Our presentation follows [84, 87].

The rest of the chapter is organized as follows. We introduce our first three-
level BDDC method and the corresponding preconditioner M~ in Section 3.1. We
give some auxiliary results in Section 3.2. In Section 3.3, we provide an estimate
of the condition number for the system with the preconditioner M~! which is of

AN\ 2 A
the form C' <1 + log %) (1 + log %)2, where H, H, and h are the diameters of the
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subregions, subdomains, and elements, respectively. In Section 3.4, we introduce a
second three-level BDDC method which uses Chebyshev iterations. We denote the
corresponding preconditioner by M~!. We show that the condition number of the
system with the preconditioner M~ is of the form CC (k) (1 +log %)2, where C'(k)
is a constant depending on the eigenvalues of the preconditioned coarse problem,
the two parameters chosen for the Chebyshev iteration, and k, the number of
Chebyshev iterations. C'(k) goes to 1 as k goes to oco. Finally, some computational

results are presented in Section 3.5.

3.1 The Algorithm

For the three-level cases, we will not factor the coarse problem matrix Sy, defined in
(2.21), by a direct solver. Instead, we will solve the coarse problem approximately
using ideas similar to those for the two-level preconditioners.

We decompose 2 into N subregions Q) with diameters H@, j = 1,---, N.
Each subregion Q) is the union of N; subdomains QZ(-j ) with diameters HZ-(j ). Let

H = max; HV) andH:maXi,jHl-(j), forj=1, -+, Nyandi=1,---,N;. We

introduce the subregional Schur complement

-1

e () 70) ()"
i1 Al AA 1A

and note that the coarse problem matrix St can be assembled from the Sl(Tj ),

Let T be the interface between the subregions; [ c T. We denote the vector
space corresponding to the subdomain primal variables (subdomain corners for
two dimensions or subdomain edge average variables for three dimensions) in Q)

by WY, Each WY can be decomposed into a subregion interior part Wil)f and
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a subregion interface part Wiz%, ie., wi = Wi’)f@ WS% , where the subregion

interface part Wiz% can be further decomposed into a primal subspace Wi% and
a dual subspace WS)& ie., Wiz)f = WE%EBWS)A . We denote the associated
product spaces by W, := Hf\il ng), W s = Hf;l WEZI)A,, Wz = Hf;l WS)A,
W g = Hf\il Wi%, and W _7 = Hi\il WS)IA . Correspondingly, we have W, =
W :OW, 5, and W 5 =W _ 5@ W,_x . We denote by W, the subspace of W,
of functions that are continuous across L.

We next introduce an interface subspace ch C W,z for which primal con-
straints are enforced. Here, we only consider vertex constraints for two dimensions
and edge average constraints for three dimensions. For the three dimensional case,
we need to change the variables for all the local coarse matrices corresponding
to the edge average constraints. From now on, we assume all the matrices and
variables have been changed if it is necessary. The continuous primal subspace is
denoted by chﬁ. The space ch can be decomposed into ch = Wc,ﬁ &P Wq X -

In the three-level BDDC algorithm, we need to introduce several restriction,
extension, and scaling operators between different subregion spaces. The restric-
tion operator El(;) maps a vector of the space \/7\\7671: to a vector of the subdomain
subspace Wf} Each column of Eg) with a nonzero entry corresponds to an in-
terface node, z € 9Q® N QU shared by the subregion ; and certain neighboring
subregions. ﬁfl is similar to Eg) which represents the restriction from ch to
Wiz% Eg) is the restriction matrix which extracts the subregion part, in the space
Wg)ﬁ’ of the functions in the space W_x. Multiplying each such element of Eg),
ﬁ(fi), and Eg) with gj(a:) gives us E%)f, ﬁ(ﬁi)f, and E%),A’ respectively. Here, we

define Sj(a:) as follows: for v € [1/2,00), gj(x) = %, x € 895? N Ty,
JENz 7
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where N, is the set of indices j of the subdomains such that = € 8Qg) and a;(x)
is the coefficient of (1.6) at z in the subregion QU). (In our theory, we assume
the a; are constant in each subregion.) Furthermore, Efﬁ and Efﬁ are the restric-
tion operators from the space ch onto its subspace W3 and W _ 5 respectively.

—~

~ =~ ~(i = (4)
Ry : W,z — W,z and Ry : W3 — W,_; are the direct sum of B and Ry ,

G,

—

respectively. Ef : WC,F — ch is the direct sum of Efﬁ and the Eg)ﬁfﬁ. The
scaled operators ﬁﬁf and }A%ﬁ x are the direct sums of fi%)f and E%),g‘ R b 1S the

direct sum of ﬁfﬁ and Eﬁ ﬁﬁfﬁ'

)

We also denote by F_#, F_ 7, and f‘c ¢, the right-hand side spaces corresponding
to Wer, WC,F, and WC,F, respectively, and will use the same restriction, extension,
and scaled restriction operators for F g, f‘p, and ﬁcf'

We define our three-level preconditioner M1 by

N

() ()
jaet )T A A 0 ~ ~
Bhed Bia ([0 mY7] | Sl [ @] Rra+®57107 § By,
7 i=1 AAI AAA RA

(3.1)
cf. (2.23), where gﬁ ! is an approximation of S;' and is defined as follows: given

F 1 G - -1 (1) ™ g 1"
WeF,plety =5;'0andy = S;'W. Here ¥ = [\p . ,\I,f] 7

7
N T ~ [~ ~N) ~ 17
y = [yg),---,yé L yp| andy = F . Y ),Yf] :

To solve Sy = ¥ by block factorization in the two-level case, we can write

) W7 B . ,

Ot Stz fip y v

: ) (M) V) ™ | T | g™

pWT g A(NS>Tﬁ<N> NSAff')TRfo so | ) ‘I:If
RS REVSE) SN RYSELRY | L ove r -
3.2
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We have

i i)t i i) D
vy =S () - s RPyr). (33)
and
N T 1 T N T 1
O @ o) o) e®'\NDPO) | . _ w. A@OT ot) o) g 6)
(;Rf (SHff SHffSHff Hff)Rf>yF_\IlF ;Rf SHffSHff v

Let T = S — 50 s

II

g; and T = diag(TY,---, T™)). We then

introduce a partially assembled Schur complement of Sy, T: ch — f‘cf‘ by

~ =T ~
T = R:TR;, (3.4)
and define hy € F_z, by
N ~/\T . N1
he = W — Y RY S S0 w®. (3.5)
=1

The reduced subregion interface problem can be written as: find yp € ch, such

that

2T =~

RfTRfo = hf. (36)

When using the three-level preconditioner M1, we do not solve (3.6) exactly.
Instead, we replace yg by
_ = - =
Yr = Rp 1™ Rpphy. (3.7)

We will maintain the same relation between ?g) and ?g ), ie.,

<@ (i)~! (4) () pl)s
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3.2 Technical Tools

In this section, we will collect a number of results which are needed in our theory.
In order to avoid a proliferation of constants, we will use the notation A ~ B. This
means that there are two constants ¢ and C, independent of any parameters, such

that cA < B < CA, where C' < oo and ¢ > 0.

3.2.1 Two Dimensions

Lemma 3.1 Let D be a square with vertices A = (0,0), B = (H,0), C = (H, H),
and D = (0, H), with a quasi-uniform triangulation of mesh size h. Then, there

exists a discrete harmonic function v defined on D such that ||v||pep)y = v(A) =

1+1log 2, v(B) =v(C) =v(D) =0 and |v|%{1(p) ~1+logi.

Proof: This lemma follows from a result by Brenner and Sung [19, Lemma 4.2].

Let N be an integer and Gy be the function defined on (0, 1) by

Grl(z) = i <4n1_ sin (4n 3)7ms)) |

n=1
Gy is symmetric with respect to the midpoint of (0, 1), where it attains its maxi-

mum in absolute value. Moreover, we have:
2 ~
|GN|H3(§2(071) ~ 1+10gN,

and

HGNHLOO(O,l) =Gn(1/2) = 1+ log N;

see [19, Lemma 3.2].
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Let [—H,0] and [0, H] have the mesh inherited from the quasi-uniform mesh

z-i—H)'

on DA and AB respectively and let g;(z) be the nodal interpolation of G (%

Then we have

; ~ 14 log o and ~14log
|gh|H&(§2(—H,H) ~ + ng an ||gh||L°°(O71) >~ + Ogﬁ
See [19, Corollary 3.6]. We point out that in [19, Corollary 3.6], a uniform mesh is

used. But in the proof of the bound for || 1/2 we only need the interpolation
00

(_HvH)7

error estimate theorem and the fact that HééQ(—H , H) is the interpolation space

halfway between L?(—H, H) and H}(—H, H). Therefore the result is still valid for
a quasi-uniform mesh.

We can define v as 0 on the line segments C'D and C'B and by
v(x,0) = gp(z), for 0<x<H,

and

v(0,y) = gn(-y), for 0<y<H.

Since v is a discrete harmonic function in D, we have,

‘Uﬁ{l(D) = |U‘§11/2(ap) ~ |gh‘i1(%2(_H’H) ~1 +10g E
0J

Remark: In Lemma 3.1, we have constructed the function v for the square D.
By using similar ideas, we can easily construct a function v for other shape-reqular

polygons which satisfy similar properties.

Lemma 3.2 Let V2 be the standard continuous piecewise linear finite element

function space for a subregion QW with a quasi-uniform coarse mesh with mesh
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size H. And let V;};, 7 = 1,---,N;, be the space for a subdomain Qgi) with a
quasi-uniform fine mesh with mesh size h. Moreover, each subdomain is a union
of coarse triangles with vertices on the boundary of the subdomain. Given u € Vi,
let u interpolate u at each coarse node and be the discrete Vh -harmonic extension
in each subdomain ng constrained only at the vertices of Qj ,j=1,--- N;. Then,
there exist two positive constants C7 and Cy, which are independent of lfl, H, and

h, such that

N;

H .

a1 +1og ) (z \uﬁw)) < ol ey < Cal1 +log 2 (z| . )
j=1

Proof: Without loss of generality, we assume that the subdomains are quadri-

laterals. Denote the vertices of the subdomain Qgi) by a;, b;, ¢;, and d;, and denote

the nodal values of u at these four crosspoints by u(a;), u(b;), u(c;), and u(d;),

respectively. Since u is a piecewise linear function, we have,

N;
|u|?{1(§2(i)) = Z |U|§{1(Q§_i))’
j=1

and

[l g0, = = u(a) gl(ggi))w(/*( > <<u<mj>—u<aj>>2)>. (3.9)

m=b,c,d
According to Lemma 3.1, we can construct three discrete harmonic functions

bp, Oc, and ¢g On Qgi) such that
o(bj) = (u(by) — ulay)) (1 + 108;%)7 ov(az) = dp(c;) = dp(d;) =0
6u(cs) = (ule) — ulag)) (L4 Tog ), 6ulay) = bulby) = 6.(d;) =0,

8aldy) = (u(dy) ~ula;)) (1 +1og 7). Balay) = Bulby) = dales) =0,
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and with

H
|¢m H1 Q() (u(m]) - U(Clj))2 (1 + IOg ﬁ)a m = b7 &) d. (310)
Let v; = 1+10g —— (b + P + Pa) +u(a;); we then have v;(m;) = u(m;), m = a,b,c,d,
and
1
|U]|H1 )y = \m(@bb + ¢e + ¢a) + ul(ay)|? @)
2
1
= 151022 \¢b+¢c+¢dH19()
B
) 2
< 3\ oow |
<1+10g%> m:zb;cd Q)
2
1 < H
Lilog ) Y (ulm) - u(a))?
(cl/2(1 + log %)) h m:zb;d
1
< - ; 3.11
~ Ci(l+logl )| uly ey’ (3.11)

Here, we have used (3.9) and (3.10) for the last two inequalities.

By the definition of 4, we have,

~ 12 2
U h, < U i S S U i
) < W) < G oy ey

Summing over all the subdomains in the subregion Q®, we have,

G <1+10g ) (Z\U\mm()) Z\U\Hl o)) \U@p(m))-

This proves the first inequality.

We prove the second inequality as follows:

N; N;
|u|§—ll(ﬂ(i)) = Z ‘uﬁ{l(gg’b)) = Z ‘U/ - u(a])‘21(951))
j=1 7=1
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N; i
S ( Jmax ((u(m;) — U(aj)>2)> <Oy (2 la = U(%)Iliwmgw))
]:
N.
o\ (s,
< Oy (1 + log ﬁ) (Z ‘U|H1(Q§i))> :

Here, we have used a standard finite element Sobolev inequality [83, Lemma

4.15).
0

We next list several results for the two-level BDDC methods. To be fully
rigorous, we assume that each subregion is a union of shape-regular coarse triangles
and the number of such triangles forming an individual subregion is uniformly
bounded. Thus, there is a quasi-uniform coarse triangulation of each subregion.
Similarly, each subdomain is a union of shape-regular coarse triangles with the
vertices on the boundary of the subdomain. Moreover the fine triangulation of
each subdomain is quasi uniform. We can then get uniform constants C'; and Cs
in Lemma 3.2, which work for all the subregions.

We define the interface averages operator Ef) on ch as

o~

~ ~ 2T
b = rRp s (3.12)
which computes the averages across the subregion interface [ and then distributes
the averages to the boundary points of the subregions.

We have the following estimate for E R

Lemma 3.3 Consider the two-level BDDC, we have

2
~ i __
\Eﬁuf%f <C (1 + log E) |uf|2§f, Vup € W,
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where gf and Wf, which corresponds to a mesh with size H, are analogous to §p

and WF, which corresponds to a mesh with size h, respectively.

Proof: See Lemma 2.7.

In addition, we have:
Lemma 3.4 )
n 2 H 2
[Epwilz < O (1+log o | [welZ,

for any wg € ch, where C' is a positive constant independent of ]:], H, and h.

Recall that T is defined in (3.4).

Proof: Denote by H® the discrete harmonic extension in the subregion Q) with

respect to Sg), given by the values on the boundary of Q| ie., H(w) € w(

satisfies:
IHO (w)] o) = min ailv|ww, we WL
St uve),v:w on a0 St ol
For w € WS%, let HO(w) € W satisfy:
‘[H <7‘A{(Z) (’lU)) |H1(Q(i)) = min |IH (’U) |H1(Q(i)), w e WS%‘,

veW p=w on 90
where Iy(+) is the nodal interpolation onto V;¥ and V7 is defined in Lemma 3.2.
Denote by 7:{52) the discrete harmonic extension in each subdomain Qgi), with
respect to the fine mesh with mesh size h, given the crosspoint nodal values, where

i=1,---,N,andj=1,---, N
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We have

. )~
|Epwelz = ) [HY(Ry Epwe)

Here we have used the definitions of H, H, H, and Sg).

By Lemma 3.2,
Al ~ (i)
n 2 YON Y OYs A 2
‘Eﬁwﬂf“ S zl:ai <2; |Hj (H()(RF Ef)wf“)) Hl(Qgi)))
= j=
1 XN: <|I (,’_A{(l)(R(')E )) 2 )
a; H T HWp 1(Q)i
Ci(1+log &) — L =D | et @)
1 ~
= Eswe|%
C1(1 + log %)‘ rl iy
Using Lemma 3.3, we obtain
Bpwel | Bpwil
brrT = Ci(1+log ) b™Tls
N\ 2
C
< 1+ log — |Wf\2§f

N2 /N ‘
C H nn (1)
= . — ) @) (D ke 2
N Ci(1+ log %) L+log H (Z a;|lg (H (Rp Wr)) |H1(Q(i))>

=1

A\ 2 N .
C H 5 =0

Cy(1+ log %) H —

Here we have used the definition of H and H again.

By Lemma 3.2 and the definition of H, we have

5\2 /N ,
\Eﬁwp% < #H (1 + log E) (Z a;| Iy <'H(i)(§¥)wf)) |?;11(Q(i))>
Cl(]. + log F) H i1

61



3.2.2 Three Dimensions

Lemma 3.5 Let D be a cube with vertices A; = (0,0,0), By = (H,0,0), C; =
(H,H,0), D, = (0,H,0), Ay = (0,0,H), By = (H,0,H), Co = (H,H,H) and
Dy = (0,H, H) with a quasi-uniform triangulation of mesh size h. Then, there
exists a discrete harmonic function v defined in D such that va,p, ~ 1 + log %,
where V4, g, s the average of v over the edge A1 B, \U|%{1(D) ~ H (1+1log®), and

v has a zero average over the other edges.

Proof: Again we will use a result by Brenner and He [18, Lemma 4.2]. Let N

be an integer and Gy the function defined on (0, 1) by

Gn(z) = i <4n1_ ~ sin (40 — 3)m)) |

n=1
Gy (z) is even with respect to the midpoint of (0, 1), where it attains its maxi-

mum in absolute value. Moreover, we have:
2 ~ .
|GN|H362(0’1) ~1+logN and |Gn/| 20,1y = 1;
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see [18, Lemma 3.7].

Let [—H,0] and [0, H] have a mesh inherited from the quasi-uniform meshes on

D1 A; and A; By, respectively, and let g, () be the nodal interpolation of GN(%).
Then, we have ||gp|| oo m,m) ~ 1+ log 2,
9 H
|gh‘H(%2(—H,H) ~ 1+ log 7 and ||gpll 2—mm ~ H; (3.13)
see [18, Lemma 3.7] or [84, Lemma 1].
Let 7,,(z) be a function on [0, H] defined as follows:
hil 0 S T S h17
Th(.CE): 1 hlgfL’SH—hg,
Bz H —hy <z <H,
2
where h, and hy are the lengths of the two end intervals.
Then the following estimates hold:
rularo sy ~ H and |mal2re A~ 1+ log 22 (3.14)
L*0.H) Hgh? (0.H) h’

see [18, Lemma 3.6].
Define the discrete harmonic function v as 0 on the boundary of D except two

open faces A1 B1C1D; and A;B;ByA,. 1t is defined on these two faces by
U(ZL’l,xQ,O) = gh(IEQ)Th(ZEl), fOI' (5131,1’2) € AIBICIDh
v(z1,0,x3) = gn(—x3)mH(21), for (x1,x3) € A1 B1ByAs.

It is clear that 4,5 ~ 1+ logZ and that v has a zero average over the other

edges. Since v is discrete harmonic in D, we have,

|U‘§{1(D) = ‘Uﬁ{l/?(aD)

2 2 2 2
|9h|H352(_H7H) 17 HL?(O,H) + |Th|H352(07H) l9n HL?(—H,H)

H
= H(l—i—logﬁ),
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where we have used (3.13), (3.14), and [18, Corollary 3.5].
0

Remark: In Lemma 3.5, we have constructed the function v for a cube D. By
using similar ideas, we can construct functions v for other shape-reqular polyhedra

which satisfy similar properties and bounds.

Lemma 3.6 Let Qgi) be the subdomains in a subregion QW, j = 1,---, N;, and
Vzhj be the standard continuous piecewise trilinear finite element function space in
the subdomain Qg-i) with a quasi-uniform fine mesh with mesh size h. Denote by
&, k=1---Kj, the edges of the subdomain le) Given the average values of u,
ug,, over each edge, let u € Vlhj be the discrete V;fl]-—harmom'c extension in each
subdomain Qg-i) with the average values given on the edges of Qg-i), j=1,---,N;.
Then, there exist two positive constants C; and Cs, which are independent of H,

H, and h, such that

H Ni Ni Kj
Ch (1 + log ﬁ) ( |u|§{1(ﬂ§i))) < ' Z Hlug, — ﬂgk2|2
j

A
S
VR
—_
+
o
oQ
>
N——
N
M
e
2
N

Proof: Without loss of generality, we assume that the subdomains are hexahe-
dral. Denote the edges of the subdomain Qgi) by &, k=1,---,12, and denote the
average values of u over these twelve edges by g, , k =1, -+, 12, respectively.

According to Lemma 3.5, we can construct eleven discrete harmonic functions

Om, m=2,---,12, on Qgi) such that

— e — 1 H —
e S L
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and with

H

_ 2

|¢m|H1(Q()) (Ugm Ugl) H(1+10g ﬁ)? m = 27712 (315)
Let v; = — (Zm:2 gbm) + ug,; we then have (7;)g, = ug,, for k =1,---,12,

1+log 4

and

1
\UJ|H1 @) = = \m <Z ¢m> +U€1\H1(Q<>

m=2

2 12
- <1+10g ) ‘qumHl(Q() <1+logh) Zmel(Q())

m=2

1 2 7\ L2
H{1+1o —) g, — g, )
(Cl/2(1+log h)) < ®h 2 (m )

m=2

< Hu U
- 1+logh kz; e~ )’

Here, we have used (3.15) for the penultimate inequality.

By the definition of u, we have,

2 2
|u|H1(Q_i)) < |UJ‘H1(Q;i)) S +10g ZH Ug, — u51

Summing over all the subdomains in the subregion Q@ we have,

H N; N; 12
i (14100 ) <Z ol ) <3 Has, e,

7=1
This proves the first inequality.

We prove the second inequality as follows:

N; 12 N;
> D Hlug —ug) ZZm ~ g, |’

j=1 k=1 j=1 k=1

N N,
2 1 B 1
& ( Hﬁ““‘“&”%?(gk)) <C (Z +log — ‘“‘Hl(gu))

o) )

IA

N
9
7/ N
—_
+
<3
OQ



Here, we have used a standard finite element Sobolev inequality [83, Lemma
4.30] for the second inequality and [83, Lemma 4.16] for the penultimate inequality.

We complete the proof of the second inequality by using the triangle inequality.
O

We now introduce a new mesh on each subregion; we follow [22, 79]. The
purpose for introducing this mesh is to relate the quadratic form of Lemma 3.6 to
one for a more conventional finite element space.

Given a subregion Q® and subdomains Qgi), j=1,---,N;, let T be a quasi-
uniform sub-triangulation of Q® such that its set of the vertices include the vertices
and the midpoints of edges of QEZ) For the hexahedral case, we decompose each
hexahedron into 8 hexahedra by connecting the midpoints of edges. We then
partition the vertices in the new mesh 7 into two sets. The midpoints of edges
are called primal and the others are called secondary. We call two vertices in the
triangulation 7" adjacent if there is an edge of 7 between them, as in the standard
finite element context.

Let Uy (Q2) be the continuous piecewise trilinear finite element function space
with respect to the new triangulation 7. For a subregion Q@ Uy(Q®) and

Up (09®) are defined as restrictions:

UH(Q(Z)) = {U|Q(i) Luc UH(Q)}, UH(ﬁQ(Z)) = {u|aQ(i) u e UH(Q)}
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We define a mapping I}}(i) of any function ¢, defined at the primal vertices in
QW to Uy (QW) by

( ¢(x), if x is a primal node;

the average of the values at all adjacent primal nodes
on the edges of QW if z is a vertex of Q®;

the average of the values at two adjacent primal nodes

on the same edge of Q| if x is an edge secondary node of Q®:

117 ¢(x) = . .
the average of the values at all adjacent primal nodes on the

boundary of Q| if x is a face secondary boundary node of Q®;

the average of the values at all adjacent primal nodes
if = is a interior secondary node of Q®);

the result of trilinear interpolation