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Abstract. The purpose of this paper is to extend the BDDC (balancing domain decomposition
by constraints) algorithm to saddle-point problems that arise when mixed finite element methods
are used to approximate the system of incompressible Stokes equations. The BDDC algorithms are
iterative substructuring methods, which form a class of domain decomposition methods based on the
decomposition of the domain of the differential equations into nonoverlapping subdomains. They
are defined in terms of a set of primal continuity constraints, which are enforced across the interface
between the subdomains and which provide a coarse space component of the preconditioner. Sets
of such constraints are identified for which bounds on the rate of convergence can be established
that are just as strong as previously known bounds for the elliptic case. In fact, the preconditioned
operator is effectively positive definite, which makes the use of a conjugate gradient method possible.
A close connection is also established between the BDDC and FETI-DP algorithms for the Stokes
case.
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1. Introduction. The BDDC algorithms are domain decomposition methods
based on nonoverlapping subdomains into which the domain of a given partial dif-
ferential equation has been divided. Introduced by Dohrmann [3, 4] and analyzed
in the elliptic case by him, Mandel, and Tezaur [19, 20], these methods represent an
important advance over the balancing Neumann-Neumann methods that have been
used extensively in the past to solve large finite element problems; cf. [25, Section
6.2] where references to earlier work can also be found. Just as the classical bal-
ancing methods have much in common with the original one-level FETI methods,
BDDC is closely related to the more recent dual-primal FETI (FETI-DP) methods.
Each BDDC and FETI-DP method is defined in terms of a set of primal continuity
constraints across the interface Γ formed by the parts of the subdomain boundaries
which are common to at least two subdomains. In addition to, or instead of, point
constraints, it is important to make certain averages over edges or faces of the inter-
face the same. In some applications, we also should have certain first order moments,
over edges, with common values; see [13] for a discussion of such fully primal edges
for three-dimensional elasticity.

In an important contribution to the theory Mandel, Dohrmann, and Tezaur estab-
lished that the preconditioned operators of a pair of BDDC and FETI-DP algorithms,
with the same primal constraints, have the same nonzero eigenvalues; see [20]. We
note that this fact was first observed experimentally by Fragakis and Papadrakakis [7]
for pairs of balancing Neumann–Neumann and one-level FETI methods; these authors
also discussed primal iterative substructuring methods which are close counterparts
to various FETI algorithms. An important consequence of the results in [7, 20] is
that these algorithms, which can be built from the same set of subprograms, have
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very similar performance. The choice of algorithm can therefore be based on other
considerations.

In a recent paper [18], the authors rederived the BDDC and FETI-DP algorithms
for elliptic problems and also gave a short proof of the main result in [20]. A key to
these simplifications is a change of variables so that, e.g., a primal constraint on the
average over an interface edge or face is represented by a single primal variable in the
new coordinate system. Simultaneously, a complementary set of dual displacement
variables is introduced for each of which the edge and face averages vanish; an illus-
trative example of how the change of variables can be carried out is given in [18]. This
leads to a clear separation of the different sets of variables and the description and
analysis of the algorithm is simplified considerably. This approach has also been the
basis for a successful and highly accurate implementation of FETI–DP algorithms; cf.
[13, 10].

In this paper, a BDDC algorithm is developed for mixed finite element approx-
imations of the incompressible Stokes equations in a very similar way. If the set of
primal constraints on the velocity across the interface satisfies a certain assumption,
we are then able to show that the preconditioned saddle-point problem is positive
definite on the subspace that satisfies the primal constraints and that the iterates
stay in this subspace. We are then able to use a preconditioned conjugate gradient
method and we can, if an additional assumption is satisfied, also prove as strong a
bound on the convergence rate as for the standard elliptic case.

We note that the new algorithm has much in common with relatively recent exten-
sions of the classical balancing Neumann-Neumann method to the Stokes equations
and almost incompressible elasticity by Pavarino, Goldfeld, and the second author,
see [22, 9, 8], and extensions of the FETI–DP methods developed by the first author in
[15, 16, 17]. We note that all these methods, in our experience, converge quite rapidly.
Just as in our earlier work, we will work with benign subspaces, i.e., subspaces of the
mixed finite element spaces on which the saddle-point problem is positive definite.
(We note that the same space of functions is called balanced in [25, Section 9.4.2].)
We are also able to prove that any two BDDC and FETI–DP methods, with the same
set of primal constraints and which satisfies our first assumption, have the same set
of nonzero eigenvalues; this is the same result as given in [20, 18] for the elliptic case.

We note that Dohrmann [5], recently has developed and tested a BDDC method
for the related problem of almost incompressible elasticity. We will comment further
on his work in Section 7. For older references to domain decomposition algorithms
for mixed finite element approximations, see [25, Chapter 9].

In addition to deriving and analyzing the algorithms, we also report on some
numerical experiments in the final section.

2. Discretization of a Saddle-point Problem. Let us consider the incom-
pressible Stokes problem on a bounded, polyhedral domain Ω, in two or three dimen-
sions. We denote the boundary of the domain by ∂Ω; for simplicity a homogeneous
Dirichlet boundary condition is enforced. (Generally, in order for a divergence free
extension to exist, the integral of the normal component of the velocity over the
boundary of the region must vanish.) The weak solution has the following saddle-
point formulation: find u ∈ (H1

0 (Ω)
)d = {v ∈ (H1(Ω))d | v = 0 on ∂Ω}, d = 2 or 3,

and p ∈ L2
0(Ω) = {q ∈ L2(Ω) | ∫Ω q = 0}, such that,{

a(u,v) + b(v, p) = (f ,v), ∀v ∈ (H1
0 (Ω)

)d
,

b(u, q) = 0, ∀q ∈ L2
0(Ω) ,

(1)
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where b(u, q) = − ∫
Ω
(∇ · u)q, and

a(u,v) =
∫

Ω

∇u : ∇v or a(u,v) = 2
∫

Ω

ε(u) : ε(v).

Here the strain tensor ε(u) is defined by

εij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
,

and

∇u : ∇v =
d∑

i,j=1

∂ui

∂xj

∂vi

∂xj
and ε(u) : ε(v) =

d∑
i,j=1

εij(u)εij(v).

The operator form of the Stokes problem with Dirichlet boundary conditions is the
same for either choice of the bilinear form a(·, ·), but we will adopt the second which
gives rise to a natural boundary condition of the form

2
d∑

j=1

εijnj − pni = gi on ∂Ω, i = 1, . . . d.(2)

This is the normal component of the stress field. We note that this approach is con-
sistent with that of Quarteroni and Valli [23, Section 5.3] and the derivation of a
physically relevant interface condition in Batchelor’s book [1]. There is the further
advantage that we will develop a theory which is equally valid for almost incompress-
ible elasticity and that we can draw very directly on some recent results by Klawonn
and the second author [13] on compressible elasticity. The following lemma, see [11,
Lemma 4], [8, Lemma 1.3], and [13, Section 2], shows the equivalence between the
Stokes and elasticity bilinear forms and that of H1. Essentially, it is a variant of
Korn’s second inequality.

Lemma 1. There exists a constant c > 0 such that

c‖∇u‖L2(Ω) ≤ ‖ε(u)‖L2(Ω) ≤ ‖∇u‖L2(Ω), ∀u ∈ (H1(Ω))d, u ⊥ ker(ε),

where ker(ε) is the space of rigid body motions of the elasticity problem.
In our mixed finite element methods for solving the saddle-point problem (1), the

velocity solution space, (or the space of displacements for the elasticity problems,)
will be denoted by Ŵ. It consists of vector-valued, low order piece-wise polyno-
mial functions which are continuous across element boundaries. The pressure space
Q ⊂ L2

0(Ω) will consist of scalar, discontinuous functions. A characteristic diameter
of the elements of the underlying triangulation is denoted by h. The finite element
approximation (u, p) of the variational problem (1) satisfies[

A BT

B 0

] [
u
p

]
=
[

f
0

]
,(3)

where the matrices A and B represent the restrictions of the bilinear forms a(·, ·)
and b(·, ·) to the finite-dimensional space Ŵ×Q. (We will use the same notation for
vectors of nodal values and the corresponding finite element functions.)
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We will always assume that the chosen mixed finite element space Ŵ × Q is
inf-sup stable, i.e., that there exists a positive constant β, independent of h, such that

sup
w∈Ŵ

b(w, q)
‖w‖H1

≥ β‖q‖L2 , ∀q ∈ Q.(4)

We note that we will only need this estimate for the subdomains, which we will intro-
duce in the next section. This assumption will guarantee that the local subdomain
problems, as well as the global one, are well posed.

3. Reduced Subdomain Interface Problem. The domain Ω is decomposed
into N nonoverlapping polyhedral subdomains Ωi, i = 1, 2, ..., N , of characteristic
diameter H . We assume that each of them is a union of a number of shape-regular
tetrahedra (or triangles) and that there is a uniform bound on these numbers. Each
subdomain is a union of shape regular elements and the nodes on the boundaries of
neighboring subdomains match across the interface Γ = (∪∂Ωi)\∂Ω; the interface of
an individual subdomain Ωi is defined by Γi = ∂Ωi ∩ Γ. We will denote the set of
nodes on Γ by Γh, etc. We assume, as is customary in domain decomposition theory,
that the triangulation of each subdomain is quasi uniform. Our algorithms are also
well defined for more irregular subdomains such as those that result from a mesh
partitioner, but our theory does not fully cover such cases. The requirements on the
subdomains in our full theory are discussed systematically in [25, Section 4.2].

We decompose the discrete velocity and pressure spaces Ŵ and Q into

Ŵ = WI

⊕
ŴΓ, Q = QI

⊕
Q0.(5)

WI and QI are direct sums of subdomain interior velocity spaces W(i)
I , and subdo-

main interior pressure spaces Q
(i)
I , respectively, i.e.,

WI =
N⊕

i=1

W(i)
I , QI =

N⊕
i=1

Q
(i)
I .

The elements of W(i)
I are supported in the subdomain Ωi and vanish on its interface

Γi, while the elements of Q
(i)
I are restrictions of elements in Q to Ωi which satisfy∫

Ωi
q
(i)
I = 0. ŴΓ is the space of traces on Γ of functions in Ŵ and Q0 is the

subspace of Q with constant values q
(i)
0 in the subdomain Ωi that satisfy

∫
Ω q0dx =∑N

i=1 q
(i)
0 m(Ωi) = 0, where m(Ωi) is the measure of the subdomain Ωi.

We denote the space of interface velocity variables of the subdomain Ωi by W(i)
Γ ,

and the associated product space by WΓ =
∏N

i=1 W(i)
Γ ; generally functions in WΓ are

discontinuous across the interface. R
(i)
Γ is the operator which maps functions in the

continuous interface velocity space ŴΓ to their subdomain components in the space
W(i)

Γ . The direct sum of the R
(i)
Γ is denoted by RΓ.

With this decomposition of the solution space as in (5), the global saddle-point
problem (3) can be written as: find (uI , pI ,uΓ, p0) ∈ (WI , QI ,ŴΓ, Q0), such that

AII BT
II ÂT

ΓI 0

BII 0 B̂IΓ 0

ÂΓI B̂T
IΓ ÂΓΓ B̂T

0Γ

0 0 B̂0Γ 0




uI

pI

uΓ

p0

 =


fI
0
fΓ
0

 .(6)
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In the coefficient matrix, the leading two by two block, by a symmetric permutation,
can be made into a block diagonal matrix with blocks corresponding to independent
subdomain problems. The lower left block is zero since the bilinear form b(vI , q0)
always vanishes for any vI ∈ WI and q0 ∈ Q0. The blocks related to the continuous
interface velocity are assembled from the corresponding subdomain submatrices, e.g.,
ÂΓΓ =

∑N
i=1 R

(i)T

Γ A
(i)
ΓΓR

(i)
Γ , B̂0Γ =

∑N
i=1 B

(i)
0ΓR

(i)
Γ . Correspondingly, the right hand

side vector fI consists of subdomain vectors f (i)
I , and fΓ is assembled from the subdo-

main components f (i)
Γ . We denote the spaces of right hand side vectors fI and fΓ by

FI and FΓ, respectively.
Eliminating the independent subdomain interior variables (uI , pI) from the global

problem (6), we have the global interface problem[
ŜΓ B̂T

0Γ

B̂0Γ 0

][
uΓ

p0

]
=
[

gΓ

0

]
,(7)

where the right hand side vector gΓ is

gΓ =
N∑

i=1

R
(i)T

Γ

f (i)
Γ −

[
A

(i)
ΓI B

(i)T

IΓ

] [ A
(i)
II B

(i)T

II

B
(i)
II 0

]−1 [
f (i)
I

0

] .

ŜΓ is assembled from subdomain Stokes Schur complements S
(i)
Γ , which are defined

by: given w(i)
Γ ∈ W(i)

Γ , determine S
(i)
Γ w(i)

Γ ∈ F(i)
Γ such that

A
(i)
II B

(i)T

II A
(i)T

ΓI

B
(i)
II 0 B

(i)
IΓ

A
(i)
ΓI B

(i)T

IΓ A
(i)
ΓΓ


 w(i)

I

p
(i)
I

w(i)
Γ

 =

 0
0

S
(i)
Γ w(i)

Γ

 .(8)

We see from (8), that the action of S
(i)
Γ on a vector can be evaluated by solving a

Dirichlet problem on the subdomain Ωi. These Dirichlet problems are always well
posed, even without the constraint that the integral of the normal component of the
boundary velocity vanishes, since in (8), we have dropped the constraint associated
with the constant pressure component. We denote the direct sum of the S

(i)
Γ by SΓ.

Then ŜΓ is given by

ŜΓ = RT
ΓSΓRΓ =

N∑
i=1

R
(i)T

Γ S
(i)
Γ R

(i)
Γ .(9)

We denote the operator of the interface problem (7) by Ŝ. Since Ŝ is symmetric
and indefinite, we could use the minimal residual method, possibly with a positive
definite block preconditioner, as in [25, Section 9.2], to solve problem (7). We will
instead propose a different type of preconditioner and show that the preconditioned
operator is positive definite, provided that a suitable set of primal constraints are
chosen; cf. Assumption 1. A preconditioned conjugate gradient method can then be
used.
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4. A BDDC Preconditioner for Stokes Equations. When using a BDDC
or FETI-DP method, we relax most, but not all, of the continuity constraints on the
velocity across the interface; we will always retain sufficiently many primal continuity
constraints to assure that we will never encounter any singular linear systems of
algebraic equations. In a BDDC algorithm, full continuity is restored, at the end of
each iteration step, by using an average operator, while in a FETI-DP algorithm,
continuity will not be fully satisfied until the algorithm has converged. The primal
constraints should also be chosen so that the rate of convergence of the iterative
method is enhanced.

For our purposes, we introduce a partially assembled interface velocity space W̃Γ

W̃Γ = ŴΠ

⊕
W∆ = ŴΠ

⊕(
N∏

i=1

W(i)
∆

)
.

Here, ŴΠ is the continuous coarse level, primal interface velocity space which is typ-
ically spanned by subdomain vertex nodal basis functions, and/or by interface edge
and/or face basis functions with constant values, or with values of weight functions,
on these edges or faces. These basis functions correspond to the primal interface
velocity continuity constraints, which will be discussed in Section 7. We will always
assume that the basis has been changed so that each primal basis function corre-
sponds to an explicit degree of freedom. In other words, we will have explicit primal
unknowns corresponding to the primal continuity constraints on edges or faces as
indicated in Section 1, and further described in [18], [13, Section 6], and [10]. The
primal, coarse level degrees of freedom are shared by neighboring subdomains. The
complimentary space W∆ is the direct sum of the subdomain dual interface velocity
spaces W(i)

∆ , which correspond to the remaining interface velocity degrees of freedom
and are spanned by basis functions which vanish at the primal degrees of freedom.
Thus, an element in the space W̃Γ has a continuous primal velocity and typically a
discontinuous dual velocity component.

We need to introduce several restriction, extension, and scaling operators between
a variety of spaces. As in Section 3, R

(i)
Γ is the operator which maps a function in

the space ŴΓ to its component in W(i)
Γ . We define R

(i)
∆ as the operator which maps

functions in the space ŴΓ to its dual component in the space W(i)
∆ . RΓΠ is the

restriction operator from the space ŴΓ to its subspace ŴΠ; R
(i)
Π is the operator

which maps ŴΠ into its Γi−component. R̃Γ is the direct sum of RΓΠ and the R
(i)
∆ ,

and it is a map from ŴΓ into W̃Γ.
In order to define certain scaling operators, which will be used in the definition of

the BDDC preconditioner, see Equation (15), we introduce a positive scaling factor
δ†i (x) for the nodes x on the interface Γi of each subdomain Ωi. For the incompressible
Stokes problems, with Ix the set of indices of the subdomains which have x on their
boundaries, we will only need to use inverse counting functions defined by δ†i (x) =
1/card(Ix), x ∈ Γi,h, where card(Ix) is the number of the subdomains to which x
belongs. It is then easy to see that∑

j∈Ix

R
(i)T
Γ δ†j(x) = 1, x ∈ Γi,h.(10)

Given the scaling factors at the subdomain interface nodes, we can define scaled
restriction operators R

(i)
D,∆. We first note that each row of R

(i)
∆ has only one nonzero
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entry, which corresponds to a node x ∈ Γi,h. Multiplying each such element with the
scaling factor δ†i (x) gives us R

(i)
D,∆. The scaled operator R̃D,Γ is the direct sum of RΓΠ

and the R
(i)
D,∆. For elasticity problems, these scaling factors should depend on the

first Lamé constant µ, which can be allowed to change across the interface between
neighboring subdomains; see [25, Section 8.5.1] and [13].

The interface velocity Schur complement S̃Γ is defined on the partially assembled
interface velocity space W̃Γ by: given wΓ ∈ W̃Γ, S̃ΓwΓ ∈ F̃Γ satisfies

A
(1)
II B

(1)T

II A
(1)T

∆I Ã
(1)T

ΠI

B
(1)
II 0 B

(1)
I∆ B̃

(1)
IΠ

A
(1)
∆I B

(1)T

I∆ A
(1)
∆∆ Ã

(1)T

Π∆

. . .
...

Ã
(1)
ΠI B̃

(1)T

IΠ Ã
(1)
Π∆ . . . ÃΠΠ





w(1)
I

p
(1)
I

w(1)
∆

...
wΠ


=



0
0

(S̃ΓwΓ)(1)∆

...

(S̃ΓwΓ)Π


.(11)

Here ÃΠΠ =
∑N

i=1 R
(i)T

Π A
(i)
ΠΠR

(i)
Π , Ã

(i)
ΠI = R

(i)T

Π A
(i)
ΠI , Ã

(i)
Π∆ = R

(i)T

Π A
(i)
Π∆, B̃

(i)
IΠ =

B
(i)
IΠR

(i)
Π .

From the definition of S̃Γ, we see that it can be obtained from the subdomain
Schur complements S

(i)
Γ by assembling only the primal interface velocity part, i.e., as

S̃Γ = R
T

ΓSΓRΓ.(12)

Here RΓ maps the space W̃Γ into the product space WΓ associated with the set of
subdomains. We recall that the global interface Schur operator ŜΓ is obtained by
fully assembling the S

(i)
Γ across the subdomain interface, cf. (9). ŜΓ can therefore

also be obtained from S̃Γ by further assembling the dual interface velocity part, i.e.,
we have ŜΓ = R̃T

Γ S̃ΓR̃Γ. Correspondingly, we define an operator B̃0Γ, which maps
the partially assembled interface velocity space W̃Γ into F0, the space of right hand
sides corresponding to Q0, and it is obtained from the subdomain operators B

(i)
0Γ by

assembling the primal interface velocity part. The operator B̂0Γ can then be obtained
from B̃0Γ by assembling the dual interface velocity part on the subdomain interfaces,
i.e., B̂0Γ = B̃0ΓR̃Γ. We can therefore write Ŝ, the operator of the global interface
problem (7), as

Ŝ =

[
ŜΓ B̂T

0Γ

B̂0Γ 0

]
=

[
R̃T

Γ S̃ΓR̃Γ R̃T
Γ B̃T

0Γ

B̃0ΓR̃Γ 0

]
= R̃T S̃R̃,(13)

where we use the notation

R̃ =

[
R̃Γ

I

]
, S̃ =

[
S̃Γ B̃T

0Γ

B̃0Γ 0

]
.(14)

The preconditioner for solving the global interface saddle-point problem (7) is

M−1 = R̃T
DS̃−1R̃D,(15)

and the preconditioned BDDC problem is of the form: find (uΓ, p0) ∈ ŴΓ×Q0, such
that

R̃T
DS̃−1R̃DŜ

[
uΓ

p0

]
= R̃T

DS̃−1R̃D

[
gΓ

0

]
.(16)
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Here R̃D is of the same form as R̃ in (14), except that R̃Γ is replaced by the scaled
operator R̃D,Γ. We will show that this preconditioned problem is symmetric, in the
bilinear form defined by Ŝ, and positive definite with respect to a benign subspace of
ŴΓ ×Q0, under a certain assumption; see Definition 1 and Sections 5 and 7.

To determine S̃−1g for any given g = (gΓ, g0) ∈ F̃Γ × F0, we need to solve the
linear system [

S̃Γ B̃T
0Γ

B̃0Γ 0

][
uΓ

p0

]
=
[

gΓ

g0

]
.(17)

Given the definition of S̃Γ in Equation (11), we know that solving (17) is equivalent
to solving

A
(1)
II B

(1)T

II A
(1)T

∆I Ã
(1)T

ΠI

B
(1)
II 0 B

(1)
I∆ B̃

(1)
IΠ

A
(1)
∆I B

(1)T

I∆ A
(1)
∆∆ Ã

(1)T

Π∆ B
(1)T

0∆

. . .
...

Ã
(1)
ΠI B̃

(1)T

IΠ Ã
(1)
Π∆ . . . ÃΠΠ B̃T

0Π

B
(1)
0∆ B̃0Π





u(1)
I

p
(1)
I

u(1)
∆

...
uΠ

p0


=



0
0

g(1)
∆

...
gΠ

g0


,

where B̃0Π =
∑N

i=1 B
(i)
0ΠR

(i)
Π . As in [18], we obtain by using a block factorization,

S̃−1 =
N∑

i=1

[
0 0 RT

∆,i

]
A

(i)
II B

(i)T

II A
(i)T

∆I

B
(i)
II 0 B

(i)
I∆

A
(i)
∆I B

(i)T

I∆ A
(i)
∆∆


−1  0

0
R∆,i

+ ΦS−1
CCΦT ,

where R∆,i maps F̃Γ×F0 into F(i)
∆ , the set of right hand sides corresponding to W(i)

∆ .
Furthermore,

SCC =
N∑

i=1

R
(i)T

C

{[
A

(i)
ΠΠ B

(i)T

0Π

B
(i)
0Π 0

]
−
[

A
(i)
ΠI B

(i)T

IΠ A
(i)
Π∆

0 0 B
(i)T

0∆

]


A
(i)
II B

(i)T

II A
(i)T

∆I

B
(i)
II 0 B

(i)
I∆

A
(i)
∆I B

(i)T

I∆ A
(i)
∆∆


−1 

A
(i)T

ΠI 0

B
(i)
IΠ 0

A
(i)T

Π∆ B
(i)T

0∆


R

(i)
C ,

where

R
(i)
C =

[
R

(i)
Π

I

]
,

which maps ŴΠ ×Q0 into W(i)
Π ×Q0. The matrix Φ is defined by

Φ = RT
Π0 −

N∑
i=1

[
0 0 RT

∆,i

] 
A

(i)
II B

(i)T

II A
(i)T

∆I

B
(i)
II 0 B

(i)
I∆

A
(i)
∆I B

(i)T

I∆ A
(i)
∆∆


−1 

A
(i)T

ΠI 0

B
(i)
IΠ 0

A
(i)T

Π∆ B
(i)T

0∆

R
(i)
C ,

where RΠ0 maps the space F̃Γ × F0 into F̂Π × F0.
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5. Benign Subspaces. The subdomain Schur complements S
(i)
Γ are symmetric,

positive semi-definite. This is a consequence of a well-known result on the inertia
of Schur complements. We know, e.g., that the number of negative eigenvalues of a
symmetric, two-by-two block matrix equals the sum of the number of negative eigen-
values of the leading block and those of the Schur complement formed by eliminating
the variables of the leading block. We find,

Lemma 2. The subdomain Schur complements S
(i)
Γ , defined in (8), are symmetric,

positive semi-definite, and are singular for any subdomain with a boundary that does
not intersect ∂Ω.

The S
(i)
Γ − and SΓ−seminorms are defined by

|w(i)
Γ |2

S
(i)
Γ

= w(i)T

Γ S
(i)
Γ w(i)

Γ , |wΓ|2SΓ
= wT

Γ SΓwΓ =
N∑

i=1

|w(i)
Γ |2

S
(i)
Γ

.

We define a | · |E(Γi)−seminorm on the space W(i)
Γ by

|w(i)
Γ |E(Γi) = inf

v(i)∈(H1(Ωi))d

v(i)|Γi
=w

(i)
Γ

‖ε(v(i))‖L2(Ωi),

and | · |E(Γ) is defined on the space WΓ by |wΓ|2E(Γ) =
∑N

i=1 |w(i)
Γ |2E(Γi)

.
The following lemma shows the equivalence of the |·|SΓ− and |·|E(Γ)− seminorms.

It can essentially be found in Bramble and Pasciak [2, Theorem 4.1], or Pavarino and
Widlund [22, Lemma 3.1], for incompressible Stokes problem. This same result is also
valid for the incompressible elasticity problems, cf. Lemma 1 and [13].

Lemma 3. There exists a positive constant c, which is independent of H, h, and
the shape of the subdomains, such that

cβ2|w(i)
Γ |2

S
(i)
Γ
≤ |w(i)

Γ |2E(Γi)
≤ |w(i)

Γ |2
S

(i)
Γ

, ∀w(i)
Γ ∈ W(i)

Γ ,

where β is the inf-sup stability constant defined in Equation (4).
The operators ŜΓ and S̃Γ, given in (9) and (12), are both symmetric, positive

definite because of the Dirichlet boundary conditions on ∂Ω and the fact that suffi-
ciently many primal constraints are always chosen. We can then define the ŜΓ− and
S̃Γ− norms on the spaces ŴΓ and W̃Γ, respectively, by

‖wΓ‖2

ŜΓ
= wT

Γ RT
ΓSΓRΓwΓ = |RΓwΓ|2SΓ

, ∀wΓ ∈ ŴΓ,(18)

‖wΓ‖2

S̃Γ
= wT

ΓR
T

ΓSΓRΓwΓ = |RΓwΓ|2SΓ
, ∀wΓ ∈ W̃Γ.(19)

The interface velocity subspaces ŴΓ,B and W̃Γ,B are defined in
Definition 1.

ŴΓ,B = {wΓ ∈ ŴΓ | B̂0ΓwΓ = 0},
W̃Γ,B = {wΓ ∈ W̃Γ | B̃0ΓwΓ = 0}.

We will call ŴΓ,B × Q0 and W̃Γ,B × Q0 the benign subspaces of ŴΓ × Q0 and
W̃Γ×Q0, respectively. The interface problem operator Ŝ of Equation (7) is indefinite
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on the space ŴΓ × Q0. But restricted to the subspace ŴΓ,B × Q0, it is positive
semi-definite, which follows from the fact that, for any w = (wΓ, q0) ∈ ŴΓ,B ×Q0,

wT Ŝw =
[
wT

Γ qT
0

] [ ŜΓ B̂T
0Γ

B̂0Γ 0

][
wΓ

q0

]
= wT

Γ ŜΓwΓ = ‖wΓ‖2

ŜΓ
≥ 0.

The same is also true for the operator S̃ on the space W̃Γ,B ×Q0. The Ŝ− and S̃−
seminorms are defined on the benign subspaces by

|w|2
Ŝ

= wT Ŝw = ‖wΓ‖2

ŜΓ
, ∀w = (wΓ, q0) ∈ ŴΓ,B ×Q0,(20)

|w|2
S̃

= wT S̃w = ‖wΓ‖2

S̃Γ
, ∀w = (wΓ, q0) ∈ W̃Γ,B ×Q0.(21)

Since both Ŝ and S̃ are nonsingular, they are isomorphisms from ŴΓ,B ×Q0 and
W̃Γ,B ×Q0 onto F̂Γ × 0 and F̃Γ × 0, respectively. Here F̂Γ and F̃Γ are the spaces of
right hand sides corresponding to ŴΓ and W̃Γ, respectively.

6. Condition Number Bounds. We first define an average operator ED =
R̃R̃T

D, which maps W̃Γ ×Q0, with generally discontinuous interface velocities, to ele-
ments with continuous interface velocities in the same space. For any w = (wΓ, q0) ∈
W̃Γ ×Q0,

ED

[
wΓ

q0

]
=
[

R̃Γ

I

] [
R̃T

D,Γ

I

] [
wΓ

q0

]
=
[

ED,ΓwΓ

q0

]
∈ W̃Γ ×Q0,(22)

where ED,Γ = R̃ΓR̃T
D,Γ, provides the average of the interface velocities across the

interface Γ. We note that, restricted to the space of vectors with continuous interface
velocity, ED is an identity operator; this follows from (10), cf. [25, Section 6.2.1].
Denoting the primal and dual parts of wΓ by wΠ and w∆, we can write ED,ΓwΓ as
the direct sum of wΠ and ED,∆w∆, where ED,∆w∆ is the dual part of the averaged
vector.

The following two assumptions will be needed in the condition number bound
of the preconditioned operator; recipes will be provided in Section 7 for which the
assumptions hold.

Assumption 1. For any w∆ ∈ W∆,
∫

∂Ωi
w(i)

∆ ·n = 0 and
∫

∂Ωi
(ED,∆w∆)(i) ·n =

0, where n is the unit outward normal of ∂Ωi. Or equivalently, B
(i)
0∆w(i)

∆ = 0 and
B

(i)
0∆ (ED,∆w∆)(i) = 0.

Our second assumption is quite similar to those of [21, 14, 13], for standard elliptic
problems. It concerns the stability of the average operator ED,Γ on the space W̃Γ.

Assumption 2. There exists a positive constant C, which is independent of H,
h, and the number of subdomains, such that

|RΓ (ED,ΓwΓ) |E(Γ) ≤ C

(
1 + log

H

h

)
|RΓwΓ|E(Γ), ∀wΓ ∈ W̃Γ.

With Assumptions 1 and 2, we can prove the following lemmas.
Lemma 4. Let Assumption 1 hold. Then, R̃T

Dw ∈ ŴΓ,B × Q0, for any w ∈
W̃Γ,B ×Q0.
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Proof: We need to show that, given wΓ ∈ W̃Γ,B, B̂0ΓR̃T
D,ΓwΓ = 0. With wΓ =

wΠ ⊕w∆, we have

B̂0ΓR̃T
D,ΓwΓ = B̃0ΓR̃ΓR̃T

D,ΓwΓ = B̃0ΓED,ΓwΓ = B̃0ΠwΠ + B0∆ED,∆w∆ = B̃0ΠwΠ,

where the last step is a result of Assumption 1. Since wΓ ∈ W̃Γ,B and hence B̃0ΓwΓ =
0, we have B̃0ΓwΓ = B̃0ΠwΠ +B0∆w∆ = 0. From Assumption 1, we also know that
B0∆w∆ = 0. Therefore B̃0ΠwΠ = 0 and B̂0ΓR̃T

D,ΓwΓ = 0.
2

Lemma 5. Let Assumptions 1 and 2 hold. There then exists a positive constant
C, which is independent of H, h, and the number of subdomains, such that

|EDw|
S̃
≤ C

1
β

(
1 + log

H

h

)
|w|

S̃
, ∀w = (wΓ, q0) ∈ W̃Γ,B ×Q0,

where β is the inf-sup stability constant of Equation (4).
Proof: Given any w = (wΓ, q0) ∈ W̃Γ,B × Q0, we know, from Lemma 4, that

R̃T
Dw ∈ ŴΓ,B × Q0. Therefore, EDw = R̃R̃T

Dw ∈ W̃Γ,B × Q0. We have, from the
definition of the S̃−seminorm in (21), that

|EDw|2
S̃

= ‖ED,ΓwΓ‖2

S̃Γ
= |RΓ (ED,ΓwΓ) |2SΓ

≤ C
1
β2
|RΓ (ED,ΓwΓ) |2E(Γ),(23)

where the last inequality follows from Lemma 3.
We have, from Assumption 2, Lemma 3, and (19),

|RΓ (ED,ΓwΓ) |2E(Γ) ≤ C

(
1 + log

H

h

)2

|RΓwΓ|2E(Γ)

≤ C

(
1 + log

H

h

)2

|RΓwΓ|2SΓ
≤ C

(
1 + log

H

h

)2

‖wΓ‖2

S̃Γ
.(24)

Then from Equations (23), (24), and (21), we have

|EDw|2
S̃
≤ C

1
β2

(
1 + log

H

h

)2

‖wΓ‖2

S̃Γ
= C

1
β2

(
1 + log

H

h

)2

|w|2
S̃
.

2

We are now ready to prove the condition number bound of the preconditioned
operator R̃T

DS̃−1R̃DŜ, on the benign space ŴΓ,B × Q0. We know that M−1Ŝ is
indefinite on the space ŴΓ × Q0, since both Ŝ and S̃ are indefinite. However, we
know from Section 5, that both Ŝ and S̃ are positive semi-definite, when restricted
to the benign subspaces ŴΓ,B × Q0 and W̃Γ,B × Q0, respectively. We also know,
from Lemma 4, that M−1Ŝ maps ŴΓ,B ×Q0 into itself and that M−1Ŝ is symmetric
with respect to the bilinear form 〈·, ·〉

Ŝ
. In the following, we will prove that M−1Ŝ

is positive definite, when restricted to the benign subspace ŴΓ,B ×Q0. Therefore a
preconditioned conjugate gradient method can be used.

Lemma 6. Any vector of the form u = (0, p0) ∈ ŴΓ,B ×Q0 is an eigenvector of
the preconditioned operator M−1Ŝ with eigenvalue equal to 1.

Proof: From Assumption 1, we know that for any w(i)
∆ ∈ W(i)

∆ , B
(i)
0∆w(i)

∆ = 0. Since
each column of the matrix R

(i)
∆ is an element of the space W(i)

∆ , we have B
(i)
0∆R

(i)
∆ = 0.
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Therefore B̂0Γ = B̃0ΓR̃Γ = B̃0ΠRΓΠ +
∑N

i=1 B
(i)
0∆R

(i)
∆ = B̃0ΠRΓΠ. Then for any

p0 ∈ Q0, B̂T
0Γp0 = RT

ΓΠB̃T
0Πp0, i.e., the dual part of B̂T

0Γp0 is always zero and its primal
part equals B̃T

0Πp0. In the same way, we can also show that B̃T
0Γp0 = R̃ΓRT

ΓΠB̃T
0Πp0,

which equals R̃D,ΓRT
ΓΠB̃T

0Πp0, since its dual part is zero and R̃D,Γ does not change its
primal part. Therefore, for any u = (0, p0), we have, from the form of Ŝ in Equation
(7), the definition of M−1, and the expressions of B̂T

0Γp0 and B̃T
0Γp0, that

M−1Ŝu = M−1

[
B̂T

0Γp0

0

]
= R̃T

DS̃−1R̃D

[
RT

ΓΠB̃T
0Πp0

0

]
= R̃T

DS̃−1

[
B̃T

0Γp0

0

]
.

From the definition of S̃ in Equations (17), we know that the right hand side equals
(0, p0), and therefore M−1Ŝu = u.

2

Theorem 1. Let Assumptions 1 and 2 hold. The preconditioned operator M−1Ŝ
is then symmetric, positive definite with respect to the bilinear form 〈·, ·〉

Ŝ
on the

benign space ŴΓ,B ×Q0. Its minimum eigenvalue is 1 and its maximum eigenvalue
is bounded by

C
1
β2

(
1 + log

H

h

)2

.

Here, C is a constant which is independent of H, h, and the number of subdomains
and β is the inf-sup stability constant defined in Equation (4).

Proof: We know from Lemma 6, that any vector of the form u = (0, p0) ∈
ŴΓ,B × Q0 is an eigenvector of the preconditioned operator M−1Ŝ with an eigen-
value equal to 1. It is then sufficient to find lower and upper bounds of the quotient〈
M−1Ŝu,u

〉
Ŝ

/ 〈u,u〉
Ŝ
, for any u = (uΓ, p0) ∈ ŴΓ,B ×Q0, where uΓ is nonzero and

therefore 〈u,u〉
Ŝ

> 0.

Lower bound: Given u ∈ ŴΓ,B ×Q0, let

w = S̃−1R̃DŜu ∈ W̃Γ,B ×Q0.(25)

We have, from the fact that R̃T R̃D = R̃T
DR̃ = I,

〈u,u〉
Ŝ

= uT ŜR̃T
DR̃u = uT ŜR̃T

DS̃−1S̃R̃u =
〈
w, R̃u

〉
S̃

.(26)

From the Cauchy-Schwarz inequality and the fact that Ŝ = R̃T S̃R̃, we find that〈
w, R̃u

〉
S̃
≤ 〈w,w〉1/2

S̃

〈
R̃u, R̃u

〉1/2

S̃
= 〈w,w〉1/2

S̃
〈u,u〉1/2

Ŝ
.(27)

Therefore, from (26) and (27),

〈u,u〉
Ŝ
≤ 〈w,w〉

S̃
.(28)

Since,

〈w,w〉
S̃

= uT ŜR̃T
DS̃−1S̃S̃−1R̃DŜu =

〈
u, R̃T

DS̃−1R̃DŜu
〉

Ŝ
=
〈
u, M−1Ŝu

〉
Ŝ

,(29)
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we obtain, from Equations (28) and (29), that 〈u,u〉
Ŝ
≤
〈
u, M−1Ŝu

〉
Ŝ

, which gives
a lower bound of 1 for the eigenvalues. Then from Lemma 6, we know that 1 is the
minimum eigenvalue of the preconditioned operator.

Upper bound: Given u ∈ ŴΓ,B ×Q0, take w ∈ W̃Γ,B ×Q0 as in Equation (25).
We have, R̃T

Dw = M−1Ŝu. Since Ŝ = R̃T S̃R̃ and by using Lemma 5, we have〈
M−1Ŝu, M−1Ŝu

〉
Ŝ

=
〈
R̃T

Dw, R̃T
Dw
〉

Ŝ
=
〈
R̃R̃T

Dw, R̃R̃T
Dw
〉

S̃

= |EDw|2
S̃
≤ C

1
β2

(
1 + log

H

h

)2

|w|2
S̃
.

Therefore, from Equation (29), we have

〈
M−1Ŝu, M−1Ŝu

〉
Ŝ
≤ C

1
β2

(
1 + log

H

h

)2 〈
u, M−1Ŝu

〉
Ŝ

.(30)

Using the Cauchy-Schwarz inequality and Equation (30), we have〈
u, M−1Ŝu

〉
Ŝ

≤ 〈u,u〉1/2

Ŝ

〈
M−1Ŝu, M−1Ŝu

〉1/2

Ŝ

≤ C
1
β

(
1 + log

H

h

)
〈u,u〉1/2

Ŝ

〈
u, M−1Ŝu

〉1/2

Ŝ
.

This gives,

〈
u, M−1Ŝu

〉
Ŝ
≤ C

1
β2

(
1 + log

H

h

)2

〈u,u〉
Ŝ

,

and the upper bound of the theorem.
2

7. Satisfying the Assumptions: Choosing Primal Constraints. Assump-
tions 1 and 2 can be satisfied with appropriate choices of the primal continuity
constraints on the interface velocity variables. We first describe a recipe for two-
dimensional problems, and then one for the three-dimensional case.

For two-dimensional problems, it is natural to make all subdomain vertices primal,
i.e, make both components of the velocity continuous at those nodes. In order to
satisfy Assumption 1, some extra edge constraints are necessary. For each interface
edge Γij , which is shared by a pair of subdomains Ωi and Ωj , we make∫

Γij

w(i)
Γ · nij =

∫
Γij

w(j)
Γ · nij ,(31)

for a fixed selection of the normal nij of Γij . After changing the variables, the dual
interface velocity component will vanish at the subdomain vertices and its normal
component will have a weighted zero average over each Γij , i.e.,

∫
Γij w(i)

∆ · nij =∫
Γij w(j)

∆ · nij = 0. For each edge, the weights in the average, i.e., the weights for the
nodal values on the edge, are determined by the integrals of the normal components
of the nodal finite element basis functions on that edge. Assumption 1 can then be
confirmed, given that the average interface velocity ED,∆w∆ equals 1

2 (w(i)
∆ + w(j)

∆ )
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on each edge for the two-dimensional case and hence
∫
Γij (ED,∆w∆)(i) · nij = 0.

Assumption 2 is also satisfied; in fact only the vertex constraints are required, cf. [21].
For three-dimensional problems, the interface Γ is composed of subdomain faces,

denoted by F l, which are shared by two subdomains, edges Ek, which are shared by
more than two subdomains, and vertices which are the end points of the edges. For
each face F l, we denote by θF l the finite element cut-off function on the face F l, which
equals 1 at the interior nodes of the face F l and equals 0 at its boundary nodes; for
each edge Ek of the face F l, we denote θEk(F l) the finite element cut-off function on
the face F l which equals 1 at all the nodes of Ek and 0 at all the other nodes of F l.
For each edge Ek, we denote the set of subdomains which have this edge in common
by NEk , and the set of faces which share this edge by MEk . We also denote by F ij

the face shared by a pair of subdomains Ωi and Ωj . The selected normals of F l and
F ij are denoted by nl and nij , respectively.

Let us now consider a recipe to satisfy Assumption 1 in three dimensions. First
of all, we make all subdomain vertices primal. For any dual velocity component w∆,
we then have∫

Fij

w(i)
∆ · nij =

∫
Fij

(θFijw(i)
∆ ) · nij +

∑
Ek⊂Fij

∫
Fij

(
θEk(Fij)w

(i)
∆

)
· nij ,(32)

and ∫
Fij

(ED,∆w)(i)∆ · nij =
1
2

∫
Fij

(
θFij(w(i)

∆ + w(j)
∆ )
)
· nij(33)

+
∑

Ek⊂Fij

∑
m∈NEk

1
card(NEk )

∫
Fij

(
θEk(Fij)w

(m)
∆

)
· nij .

Here we note that the averaged interface vector, at any nodal point x on an edge Ek,

depend on the values of the w(m)
∆ (x) on all the subdomains Ωm which have this edge

in common. Assumption 1 will be satisfied if all the integrals of the dual velocity
component w∆, on the right sides of Equations (32) and (33), vanish. This can be
achieved by enforcing the following primal continuity constraints: for each face F ij ,∫

Fij

(θFijw(i)
Γ ) · nij =

∫
Fij

(θFijw(j)
Γ ) · nij ,(34)

and for each edge Ek, on each face F l, l ∈ MEk , that∫
F l

(
θEk(F l)w

(m)
Γ

)
· nl,(35)

are the same for all m ∈ NEk . We see that only one primal variable need to be
introduced to enforce the face constraint (34), while the number of primal variables
that results from the constraints (35), for each edge, equals the number of faces
which share that edge. The primal basis functions for the edge constraints (35) are
determined by the integrals of the normal components of the edge nodal finite element
basis functions on the corresponding faces. It can easily happen that these primal
basis functions, of the same edge, are linearly dependent, e.g., this happens in the case
when the subdomains are cubes and an uniform mesh is used. In general, we must
make sure that the primal basis functions maintain linear independence for each edge
separately. This can be done by using a singular value decomposition. This idea for
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eliminating the linearly dependent coarse level primal constraints has previously been
applied for both FETI-DPH and BDDC algorithms; see [6, 5]. This computation is
carried out on each edge independently.

Remark 1. A modified BDDC algorithm was introduced by Dohrmann in [5]
for solving nearly incompressible elasticity problems. Zero divergence constraints were
used on the substructure corrections to keep the volume change of each substructure rel-
atively small in the presence of nearly incompressible materials. For two-dimensional
problems, our constraints (31) are the same as those in [5]; these type of constraints
have also been used in FETI-DP algorithms for Stokes problems, cf. [15]. For three-
dimensional problems, our vertex and face constraints are the same as Dohrmann’s.
But for each edge Ek, Dohrmann requires that on each subdomain Ωi ∈ NEk the
integrals ∑

F l⊂∂Ωi

∫
F l

(
θEk(F l)w

(m)
Γ

)
· nl,(36)

be the same for all m ∈ NEk . While either set of edge constraints (35) and (36),
together with the face and vertex constraints, give rise to a zero divergence constraint
on the substructures, we have adopted the form (35) to facilitate the analysis.

We also have to make sure that we have the right type of constraints so as to
guarantee a stable ED operator as in Assumption 2. We will rely on recent results of
Klawonn and the second author [13]. By examining Section 8 of that paper, we find
that Assumption 2 will be satisfied if all the faces of the interface Γ are fully primal,
cf. [13]; here we have used that the coefficients of the Stokes problem are the same
for each subdomain and that all vertices are primal. For the definition of fully primal
faces, see [13, Section 5]. To decide if a face is fully primal, we have to test if the set
of constraints that are active on that face, excluding the vertex constraints, is rich
enough to make sure that if they all vanish for an arbitrary rigid body mode, then
the rigid body mode must vanish. We can check this condition numerically easily for
each face, but we can also provide some insights a priori.

We recall that the space of rigid body modes on each subdomain Ωi is spanned
by the three translations

r1 :=

 1
0
0

 , r2 :=

 0
1
0

 , r3 :=

 0
0
1

 ,(37)

and the three rotations

r4 :=
1
Hi

 x2 − x̂2

−x1 + x̂1

0

 , r5 :=
1

Hi

 −x3 + x̂3

0
x1 − x̂1

 , r6 :=
1

Hi

 0
x3 − x̂3

−x2 + x̂2

 .(38)

Here x̂ ∈ Ωi and Hi denotes the diameter of Ωi. (The shift of the origin makes the
basis for the space of rigid body modes well conditioned and the scaling and shift
make the L2(Ωi)−norms of these six functions scale in the same way with Hi.)

Let us consider a face which is part of the x1 − x2 plane. Since we have weighted
edge average constraints for the third component over all, i.e., at least three edges
of the face, we can conclude that the third component of the rigid body modes must
vanish at at least three points which are not colinear. Since this third component is a
linear combination of the third component of the three basis elements r3, r5, and r6,
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the rigid body mode cannot have any component involving these three basis elements.
The remaining part is a linear combination of r1, r2, and r4, i.e, effectively a rigid
body mode in two dimensions. It has the form of a first order Nédélec element on the
face,

r =

 a1 + bx2

a2 − bx1

0

 ,

where a1, a2, and b are the three remaining degrees of freedom of the rigid body mode
for this two-dimensional surface. We will now consider the other edge constraints to
see if we can conclude that a1 = a2 = b = 0.

It is easy to see that we have at least one constraint per edge with a vanishing
weighted average of the component of the velocity projected onto the plane of the face
and normal to the edge. If three of these edge constraints are linearly independent,
when restricted to this three-dimensional space of the rigid body modes, we can con-
clude that the rigid body mode on this two-dimensional surface vanish and therefore
that the face is fully primal. However, it is easy to see that this does not always
hold; consider a face with three edges only and with constant weights. Then, by the
divergence theorem and the fact that the rigid body modes are divergence free, we
have linear dependence. A simple computation reveals that the rank is also two for a
rectangular face. In such cases, some extra primal continuity constraints need to be
added on such faces to make them fully primal.

We know that the Nédélec elements have a constant tangential component on each
edge. If there are three vanishing edge tangential components on each face, where
the three edges are in different directions, then the Nédélec element on that face will
be zero, and therefore the rigid body mode will vanish. In fact, combined with the
normal edge constraints, only two tangential edge constraints on two adjacent edges
are needed to have three linearly independent constraints. Therefore we can always
guarantee that a face be fully primal by, in addition, requiring for two adjacent edges
that

∫
Ek w(m)

Γ · tEk takes the same value for all m ∈ NEk , where tEk is a unit vector
tangent to Ek. We note that only one primal variable will result from such a tangential
edge constraint. We recall that these extra edge constraints are only necessary for the
faces which are not fully primal with normal edge constraints only.

For a further discussion of the choices of primal constraints for satisfying Assump-
tion 2, see [13, 10].

8. Connections with the FETI-DP Algorithms. In the FETI-DP algo-
rithms developed in [15] for incompressible Stokes equations, the subdomain problems
are also assembled only at the coarse level, primal velocity degrees of freedom, which
are shared by neighboring subdomains. Lagrange multipliers are then introduced on
the interface to enforce the continuity of the dual velocity variables, by requiring that
B∆u∆ =

∑N
i=1 B

(i)
∆ u(i)

∆ = 0. Here, the subdomain matrices B
(i)
∆ have elements chosen

from the set {0, 1,−1}. The original problem is reduced to a linear system for the
Lagrange multipliers by eliminating the other variables, cf. [15]. The FETI-DP oper-
ator for the Lagrange multipliers λ is B∆S̃−1

∆ BT
∆, where the operator S̃∆ is defined

by S̃−1
∆ = R∆S̃−1RT

∆ and R∆ is the restriction map from W̃Γ ×Q0 to W∆.
The preconditioner used in [15] for the FETI-DP algorithm is BD,∆S∆BT

D,∆ where

BD,∆ is constructed from the subdomain operators B
(i)
D,∆ in the same way as B∆ from

the B
(i)
∆ . Each B

(i)
D,∆ is defined as follows: each nonzero element of B

(i)
∆ corresponds
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to a Lagrange multiplier connecting the subdomain Ωi to a neighboring subdomain Ωj

at a point x ∈ ∂Ωi,h ∩ ∂Ωj,h. Multiplying each such element with the positive scaling
factor δ†j (x) gives us B

(i)
D,∆. S∆ is the direct sum of subdomain Schur operators S

(i)
∆ ,

which are defined on the dual subdomain velocity space W(i)
∆ , as S

(i)
Γ in Equation (8)

except that the operator is restricted to the dual interface velocity variables; S∆ can
be written as the restriction of the operator S̃ to the space W∆, i.e, S∆ = R∆S̃RT

∆.
Therefore, the preconditioned FETI-DP operator can be written as

BD,∆R∆S̃RT
∆BT

D,∆B∆R∆S̃−1RT
∆BT

∆.(39)

Since the diagonal blocks, corresponding to the dual interface velocity part in W∆,
of the matrices S̃ and S̃−1, are positive definite, both R∆S̃RT

∆ and R∆S̃−1RT
∆ are

positive definite. When non-redundant Lagrange multipliers are used, the matrices
BT

∆ and BT
D,∆ are of full rank and the FETI–DP operator (39) is therefore a product

of two positive definite matrices; cf. [25, Section 6.3]. If we use redundant Lagrange
multipliers, see [12, 25], then BT

∆ will not be of full rank. But this does not matter;
the Lagrange multiplier λ is always restricted to range (B∆), which is orthogonal to
the null space of BT

∆, cf. [12]. We can therefore assume that a set of non-redundant
Lagrange multipliers is used in the FETI–DP algorithm; Theorem 2, of this section,
applies equally well to the case of redundant Lagrange multipliers.

Since both RT
∆ and BT

∆ are of full rank, the preconditioned FETI–DP operator
(39) has the same nonzero eigenvalues as the operator

RT
∆BT

∆BD,∆R∆S̃RT
∆BT

D,∆B∆R∆S̃−1.(40)

We now introduce the operator PD = RT
∆BT

D,∆B∆R∆, which maps the space
W̃Γ×Q0 into itself. It computes the jump across the subdomain interface of the dual
interface velocity component, and maps any element in the primal space ŴΠ×Q0 to
zero; cf. [18]. The operator (40) can then be written as

P T
D S̃PDS̃−1.(41)

The preconditioned BDDC operator in Equations (16) is

R̃T
DS̃−1R̃DR̃T S̃R̃.(42)

When Assumption 1 is satisfied, this preconditioned operator is symmetric with re-
spect to the bilinear form < ·, · >

Ŝ
and all its eigenvalues are real and positive, cf.

Theorem 1. Since R̃ is of full column rank, the nonzero eigenvalues of the precondi-
tioned BDDC operator (42) are the same as those of

EDS̃−1ET
DS̃,(43)

where the average operator ED is defined in Equation (22). It can be verified that
both ED and PD are projectors with ED +PD = I and EDPD = PDED = 0. We can
then prove, just as in the elliptic case, see [18], that the operators (41) and (43) have
the same nonzero eigenvalues for the same set of primal constraints. We obtain,

Theorem 2. Let Assumption 1 hold. The preconditioned FETI–DP and BDDC
operators, given by (39) and (42), respectively, then have the same nonzero eigenval-
ues.
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Table 1
Spectral bounds and iteration counts for a pair of BDDC and FETI–DP algorithms, with dif-

ferent number of subdomains, for H/h = 8 and a primal space spanned by both corner and normal
edge basis functions.

Num. of subs BDDC FETI–DP
nx × ny λmin λmax iter. λmin λmax iter.
4× 4 1.00 3.14 11 1.00 3.14 11
8× 8 1.00 3.88 12 1.00 3.88 12

12× 12 1.00 4.02 12 1.00 4.02 13
16× 16 1.00 4.06 12 1.00 4.07 13
20× 20 1.00 4.08 12 1.00 4.08 13

9. Numerical Experiments. We solve a lid-driven-cavity problem on the do-
main Ω = [0, 1]× [0, 1] with Dirichlet boundary condition, where the velocity is (1, 0)
on the upper side, and vanishes on the other three sides. We use a uniform mesh, as
in Figure 1. The mixed finite elements is also indicated in Figure 1; the velocity is
continuous and linear in each element and the pressure is constant on macro elements
which are unions of four triangles. The inf-sup stability of this mixed finite elements
can easily be proved by using the macro element technique developed in [24].

Fig. 1. The mesh and the mixed finite elements.

Both the BDDC and FETI–DP algorithms, as in (16) and (39), have been tested.
The preconditioned conjugate gradient method is used and the iteration is halted
when the L2-norm of the residual has been reduced by a factor 10−6. In our exper-
iments, we have used three different sets of primal constraints. The first two satisfy
both Assumptions 1 and 2 and we see that both the BDDC and FETI–DP operators
are positive definite and that the results are fully consistent with our theory. Our
third choice violates Assumption 1 and the BDDC operator is then no longer positive
definite.

In the first case, the primal velocity space is spanned by the subdomain vertex
nodal basis functions for both components and by a constant vector in the direction
normal to the edge for each interface edge as in (31). From Tables 1 and 2, we see
that the preconditioned BDDC and FETI–DP operators are both positive definite
and quite well-conditioned as established in Theorems 1 and 2. We observe that the
extreme eigenvalues and the iteration counts of the BDDC and FETI–DP algorithms
match very well, and that the condition numbers of both algorithms are independent
of the number of subdomains, and increases only slowly with the number of elements
across each subdomain, all as predicted by the theory. In our experiments, the extreme
eigenvalues are estimated by using the tridiagonal Lanczos matrix generated by the
preconditioned conjugate gradient method.
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Table 2
Spectral bounds and iteration counts for a pair of BDDC and FETI–DP algorithms, with dif-

ferent H/h, for 4× 4 subdomains and a primal space spanned by both corner and normal edge basis
functions.

BDDC FETI–DP
H/h λmin λmax iter. λmin λmax iter.

4 1.00 2.17 8 1.00 2.17 9
8 1.00 3.14 11 1.00 3.14 11
16 1.00 4.22 13 1.00 4.22 12
32 1.00 5.42 14 1.00 5.42 14

Table 3
Spectral bounds and iteration counts for a pair of BDDC and FETI–DP algorithms, with dif-

ferent number of subdomains, for H/h = 8 and a primal space spanned by both corner and two edge
basis functions for each edge.

Num. of subs BDDC FETI–DP
nx × ny λmin λmax iter. λmin λmax iter.
4× 4 1.00 2.32 8 1.00 2.32 9
8× 8 1.00 2.58 9 1.00 2.58 9

12× 12 1.00 2.63 9 1.00 2.63 10
16× 16 1.00 2.65 9 1.00 2.65 10
20× 20 1.00 2.65 9 1.00 2.65 10

Table 4
Spectral bounds and iteration counts for a pair of BDDC and FETI–DP algorithms, with dif-

ferent H/h, for 4 × 4 subdomains and a primal space spanned by both corner and two edge basis
functions for each edge.

BDDC FETI–DP
H/h λmin λmax iter. λmin λmax iter.

4 1.00 1.66 7 1.00 1.65 7
8 1.00 2.32 8 1.00 2.32 9
16 1.00 3.07 10 1.00 3.07 10
32 1.00 3.93 11 1.00 3.93 12

In the experiments of Tables 3 and 4, the integral of both velocity components
are required to have common values across each interface edge. The subdomain cor-
ner degrees of freedom are also chosen as primal variables as in the first case. Both
Assumptions 1 and 2 are again satisfied and we observe similar, slightly faster con-
vergence compared with the first experiments since the coarse level problem has been
enlarged.

In Tables 5 and 6, the primal velocity space is spanned only by the corner basis
functions; Assumption 1 then does not hold. In this case, the preconditioned BDDC
operator (16) is no longer positive definite and the iterates will no longer stay in the
benign space of the saddle-point problem. However, the FETI–DP operator (39) is
still positive definite. The interface problems of both the BDDC and the FETI–DP
algorithms are solved by a preconditioned conjugate gradient method, but the residual
norm of the BDDC methods is no longer strictly decreasing. We see that the iteration
counts of the BDDC and FETI–DP algorithms still match very well, but that for both
algorithms, this count will now depend on both the number of subdomains as well as
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Table 5
Spectral bounds and iteration counts for a pair of BDDC and FETI–DP algorithms, with dif-

ferent number of subdomains, for H/h = 8 and a primal space spanned only by the corner basis
functions.

Num. of subs BDDC FETI–DP
nx × ny λmin λmax iter. λmin λmax iter.
4× 4 17 0.49 3.61 16
8× 8 21 0.37 4.01 21

12× 12 N/A N/A 21 0.33 4.08 23
16× 16 21 0.31 4.10 22
20× 20 22 0.29 4.10 24

Table 6
Spectral bounds and iteration counts for a pair of BDDC and FETI–DP algorithms, with dif-

ferent H/h, for 4×4 subdomains and for a primal space spanned only by the corner basis functions.

BDDC FETI–DP
H/h λmin λmax iter. λmin λmax iter.

4 13 0.51 2.34 13
8 N/A N/A 17 0.49 3.61 16
16 19 0.48 5.13 19
32 21 0.48 6.99 21

on the number of elements across each subdomain. These results are less satisfactory
than those of the previous two choices.
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