Sekitei: An Al planner for Constrained Component Deployment
in Wide-Area Networks
Technical report TR2004-851

Tatiana Kichkaylo, Anca lvan, and Vijay Karamcheti
Department of Computer Science
Courant Institute of Mathematical Sciences
New York University, New York, NY 10012
{kichkay,ivan,vijayk@cs.nyu.edu

March 1, 2004

Abstract integrating functionality embodied in components possi-
bly running across multiple administrative domains. Al-
Wide-area network applications are increasingly beifigough most such frameworks have traditionally relied
built using component-based models, enabling integratiépon a static model of component linkages, a grow-
of diverse functionality in modules distributed across thég number of approaches (e.g., Active Frames [27],
network. In such models, dynamic component selectiG@ger Handlers [39], Active Streams [6], Ninja [36],
and deployment enables an application to flexibly adapt@\NS [15], Smock [17], Conductor [35], and recent work
changing client and network characteristics, achieve lo&h Globus [12]) have advocated a more dynamic model,
balancing, and satisfy QoS requirements. Unfortunatelyhere the selection of components that make up the ap-
the problem of finding a valid component deployment @ication and their location in the network (“deployment”)
hard because one needs to decide on the set of configg-decisions that are deferred to run time.
nents while satisfying various constraints resulting from Dynamic component-based frameworks allow dis-
application semantic requirements, network resource litibuted applications to flexibly and dynamically adapt to
itations, and interactions between the two. variations in both resource availability and client demand.
In this paper, we describe a general model for the cofrPr example, a security-sensitive application may wish
ponent placement problem and present an algorithm tertrade-off concerns of security and efficiency depend-
it, which is based on Al planning algorithms. We valiing on whether or not its execution environment consists
date the effectiveness of our algorithm by demonstratiffjtrusted nodes and links. Similarly, an application that
its scalability with respect to network size and number &glies on high-bandwidth interactions between its com-
components in the context of deployments generated pginents may wish to change the quality of service pro-
two example applications — a security-sensitive mail safided to the client when the available bandwidth on a link
vice, and a webcast service — in a variety of network en@rops or the application is accessed by a resource-limited
ronments. client. Dynamic frameworks enable adaptation to the
above changes by deploying application-aware compo-
nents that can achieve load-balancing, satisfy client QoS
requirements (e.g., by transcoding), and enable higher
throughput (by replicating appropriate components), in

) essence customizing the application to its resource and us
The explosive growth of the Internet and the develogye conditions.

ment of new networking technologies has been acCoM-r . penefits of dynamic component frameworks are

panied by a trend favoring the use of component-basggl, eajizable only if components are automatically de-
models for construction of wide-area network applicd,veq in response to dynamic changes in network con-
tions. This trend, exemplified in grid frameworks suc itions. To enable this, most such approaches rely on

as Globus [10] and more recently OGSA [11], as well #iree elements: (i) declarative specificationf the ap-
component frameworks such as CORBA [31], J2EE [37 lication, (ii) atrigger module, and (iii) planningmod-

and .NET [29], enables the construction of applications by

1 Introduction

ule. Thetrigger module monitors application behaviothe Sekitei algorithm and its extensions. Section 7 evalu-
and network conditions and chooses the momariten ates the performance of the algorithm. We conclude with
adaptation is required. Th#anningmodule makes deci- a discussion of future work.
sions onhowto adapt, by selecting and deploying com-
ponents in the network to best satisfy application require-
ments as dictated by thdeclarative specificationThis 2 Related work
paper focuses on the planning aspect.

In general, the planning problem in dynamic frame2 1 Component-based frameworks
works is complicated by the fact that to compute a valid
deployment, one needs to (i) decide on a set of comggom a planning point of view, there are two classes
nents, and (ii) place these components on network no@églynamic component-based frameworks: (i) systems
in the presence of application (type) constraints (e.ghat assume the existence of an external planner (Active
linked components should consume each other’s outputgames [27], Eager Handlers [39], Active Streams [6]),
resource constraints (e.g. node CPU capacity and liakd (ii) systems that implement their own planner
bandwidth), and interactions between the two (e.g., an (FARA[12], Ninja [36], CANS [15], PSF [17], and Con-
secure link might affect the security characteristics of aguctor [35]).
plication data). The need to simultaneously achieve bothThe second class can be further divided into two sub-
these goals makes the planning problem computationallssses. The first subclass includes systems such as
harder than traditional mapping and optimization prolGARA (Globus Architecture for Reservation and Allo-
lems in parallel and distributed systems, which tend to feation) [12], the planning module in the Globus [10] ar-
cus on a subset of the concerns of requirement (ii) aboghitecture, which assumes a pre-established relationship
This complexity is also the reason that existing dynami@tween application tasks to deploy them to minimize re-
frameworks have either completely ignored the plannisgurce consumption. GARA supports resource discovery
problem [27, 39, 6], or have addressed only a very limitesd selection (based on attribute matches), and allows ad-
case [36, 15, 17, 35, 12]. vance reservation for resources like CPU, memory, and

This paper addresses this shortcoming by presentingamdwidth. However, it does not consider application spe-
model for the general planning problem, referred to as thiéic properties, such as that some interactions need to be
Component Placement Problem (CPP), and describingsmuré-
algorithm for solving it. The model aims for expressive- The second subclass of planners both select and de-
ness: component behavior is modeled in terms of implsloy a subset of components, while satisfying applica-
mented and required interfaces [17], and application, ti#n and network constraints. Systems such as Ninja [36],
source, and their interaction constraints are all represen@&NS [15], and Conductor [35], all of which enable the
using arbitrary monotonic functions. Our algorithm fodeployment of appropriate transcoding components along
solving the CPP, called Sekitei, leverages several decathegsnetwork path between weak clients and servers, sim-
of research on planning techniques developed by the plify the assumptions of the planning problem to per-
tificial Intelligence (Al) community. Sekitei overcomegorm directed search. The Ninja planning module fo-
the scalability restrictions of state-of-the-art Al planninguses on choosing already existing instances of multiple
techniques (e.g., RIPP [24]) by exploiting the specifinput/output components in the network so as to satisfy
characteristics of CPP. The Sekitei planner has been fiimctional and resource requirements on component de-
plemented in Java as a pluggable module to allow its yseyment. Conductor restricts itself to single input, sin-
in several component-based frameworks. We report ongte output components, focusing on satisfying resource
use to generate deployments for two example applicati@umstraints. CANS adopts similar component restrictions,
— a security-sensitive mail service, and a webcast servidsut can handle constraints imposed by the interactions
in a variety of network environments. Our results validatsetween application components and network resources,
the scalability of the algorithm, both with respect to thend additionally can efficiently plan for a range of opti-
network size and the number of application componentsization criteria. For example, the CANS planner [14]

The rest of this paper is structured as follows. Sectiortan ensure that node and link capacities along the path are
discusses existing approaches to the component pldt@i-exceeded by deployed components, while simultane-
ment problem and overviews Al planning techniques. fusly optimizing an application metric of interest (e.g.,
Section 3 we introduce two example applications that aesponse time).
used to illustrate our techniques. Section 4 describes out | _ I

. obus sets up secure connections between appllcatlon components,

model of the CPP. Section 5 gives details on Cor‘npll""tlg{%reby satisfying this particular constraint. However, there is no gen-

of the CPP into a planning problem. Section 6 describ&si mechanism to specify component properties that are affected by the
environment.

More general are systems such as Partitionable Servitssling regression planners using progression techniques;
Framework (PSF) [17], which permit network servicesowever, we are not aware of any implementation of this
to be constructed as a flexible assembly of smaller coidea.

ponents, permitting customization and adaptation to net:Adding resource constraints to a planning or scheduling
work and usage situations. The PSF planner works wiifoblem tremendously increases its complexity [16]. For
very general component and network descriptions: COfRis reason, most planning systems have restricted them-
ponents can implement and require multiple interfacgsives to only simple resource expressions. Most exist-
(these define “ports” for linkages), can specify resour@gy resource planners (e.g., RIPP [24], LPSAT [38], ILP-
restrictions, and additionally impose deployment limitags| AN [20]) limit themselves to linear expressions in pre-
tions based on application-dependent properties (€.g. Rtinditions and effects. Zeno [33] can accept more compli-

vacy of an interface). This generality comes at a cogkted expressions, but delays their processing until vari-
the orginal PSF planning module performed exhaustiggle bindings linearize the expressions.

search to infer a valid deployment. The work described ingcheqyling solutions have accommodated more general
this paper grew out a desire to remedy this situation. regqyrce expressions, given their focus on finding the best
(according to some metric) sequence of actions subject
]) to various constraints. Note that although the problems
2.2 Planning and scheduling of planning and scheduling are nominally different (the
lanning focuses on thehoiceof actions, while schedul-
The component placement problem closely resembigg focuses omrdering), one can extend the tradeoffs and

problems studied in the Al planning and scheduling comschniques for dealing with resource constraints from one
munity. It requires performing dependency-driven choiCgqmain into the other.

which is the focus of planning, and satisfying resource
constraints, which is closely related to scheduling. Thi The algorithms in [26] and [30] describe computation

section provides an overview of the most relevant effortO? resource envelopdsr scheduling problems with con-
P])) Stant changes of resource levels. Both resource envelopes
In classic Al planning, the world is represented by &, temporal networks [8] use graph-theoretic algorithms

set of boolean variables, and a world state is a truth §§rune the search space, and are able to produce gener-
signment to these variables. The system is describedfgyeq optimal schedules.

a set of possibl@perators i.e., atomic actions that can :
' Schedulin ms that n rt complex re-
change the world state. Each operator has a precondl-SC eduling systems that need to support complex re

. . ﬁource functions discretize resources to decrease the
tion expressed by a logical formula and a set of effec Rarch space and use heuristic search to figoa (sub-
(new truth assignments to variables of the world stat

An operator is applicable in a world state if its precondi- timal) solution. For example, the algorithm described
tion epvaluates topt?ue in that state. The result gf an o |nr_[13] uses forward chaining to cope with sequence-
' P %pendent (i.e. non-reversible) resource functions. Pega-

ator application is to change the world state as describe .

by the operator’s effects. A planning oroblem i def'ne?ls [4] relies on external modules for resource-dependent
Y perators S AP INg problem IS AeliNgg, .qions.

by a description of the operator set, an initial state (com- Kitei. the alaorith) i thi i
plete truth assignment to all variables), and a goal (logical>€kitei: the algorithm described in this paper, builds
formula). The planner finds a sequence of applicable JfRon several of the planning an scheduling techniques de-
erators that, when executed from the initial state, brin grlbed above, particularly to deal with the presence of

the system to a state in which the goal formula evaluat %n-reversmle resource funcuons.. _HO\./ve_ver., a challenge
{0 true. it needs to overcome is the scalability limitations of clas-

. . : sical planning approaches. Sekitei addresses the latter is-
Classic planners perform directed search in the space -
Sue by exploiting the structured nature of the component

of situations or partial plans_, and can be divided Intqacement problem to introduce optimizations not possi-
four classes based on their search method: reg % in a general Al planner

sion planners (e.g., Unpop [28], HSPr [5]) search from
the goals, progression planners (e.g., GraphPlan [2],

IPP [25]) start from the initial state, causal-link planners) .

(e.g., UCPOP [34]) perform means-ends analysis, aad EXample applications

compilation-based planners (e.g., SATPLAN [18], ILP-

PLAN [20], BlackBox [19], GP-CSP [9]) reduce the planFrom the perspective of Sekitei, applications are viewed
ning problem to a satisfiability or optimization problemas sets of components interacting with each other by send-
e.g. integer linear programming. Some planners, eigg data streams (referred to as interfaces) over network
BlackBox, use a combination of the above techniqubsks. Components specify their logical and resource re-
to improve performance. McDermott [28] suggests eguirements. These requirements effectively represent the

(possibly infinite) set of possible application configura-
tions. The purpose of the planner is to choose a (mini-
mal) application configuration that satisfies resource con-

straints.

In this paper we use two component-based applications
to illustrate our algorithm.

ViewMailServer

3.1 Mail application Figure 1: Abstract structure of the mail application. Re_ct-
angles represent components, and ovals represent inter-

The first application is a component-based securifyces.

sensitive mail service, originally introduced in [17]. The ViewMail Server

mail service provides expected functionality — user ac-

counts, folders, contact lists, and the ability to send and MSI/

receive e-mail. In addition, it allows a user to asso-

ciate a trust level with each message depending on its

sender or recipient. A message is encrypted accordingyaiiclient Mail Server

to the sender’s sensitivity and sent to the mail server, S

which transforms the ciphertext into a valid encryptiopigure 2: Component deployment of the mail application

corresponding to the receiver’s sensitivity and saves the

new ciphertext into the receiver's account. The encryp-

tion/decryption keys are generated when the user first sapplication requirements and a planning module to gen-

scribes to the service. erate the deployment.

The mail service is constructed by flexibly assem-

bling the following components: (!) BailServer that 5 5 \Nepcast application
manages e-mail accounts, (MailClient ~ components
of differing capabilities, (iii)vViewMailServer ~ compo- The second application models a webcast scenario (Fig-
nents that replicate thdailServer as desired, and (IV) ure 3), where the server pro\/ides a combined media
Encryptor /Decryptor components that ensure confistream consisting of images and text, which needs to be
dentiality of interactions between the other componenilivered to the client. The client issues requests at a
These components allow the mail application to be dgarticular rate, which translates into a minimum band-
ployed in different environments. If the environment is sgvidth requirement. If the network between the client and
cure and has high available bandwidth, thaiClient the server has stable high bandwidth, a direct connec-
can be directly linked to th®ailServer . The existence tion is made. However, in more resource-restricted sit-
of insecure links and nodes triggers deployment of @ations additional components might be injected into the
Encryptor /Decryptor pair to protect message privacynetwork: Figure 3 shows an example of such injection
Similarly, theViewMailServer ~ can serve as a cache tonyolving Splitter , Merger , and compression compo-
overcome links with low available bandwidth. nents Zip andUnzip). Similarly, aFilter ~ component
Figure 1 shows the abstract structure of the mail apptiitay be injected to change parameters of the image stream,
cation, which describes all possible configurations of tilseich as the color depth. In the example shown in the fig-
application. Rectangles correspond to component typese, the network consists of two high-bandwidth LANs
ovals represent interfaces (types of data streams). Singén a low bandwidth link between them. Tiserver lo-
each component consumes at most one data stream¢atid on node 7 produces a media stream, andlidre
legitimate configurations of this application are chainen node 0 wants to consume this stream with a particular
However, it is possible to have more than one instanesuest rate. This goal is achieved by splitting the media
of the same component type in such a chain. stream (M) into text (T) and image (I) components, zip-
Figure 2 illustrates a Simp|e scenario where tm;'ng the text portion of the stream, so that the combined
MailClient can be deployed on nodenly if connected 1+Z bandwidth is less than that of the original M stream,
to aMailServer through aviewMailServer . Directly sending the | and Z streams to the client LAN, and per-
linking theMailClient to theMailServer is not possi- forming the reverse transformations there.
ble because the link between them does not have enoughigure 4 describes the abstract structure of the webcast
available bandwidth to satisfy theailClient ~ require- application. Since the splitter component produces and
ments. Satisfying the requirements implicit in this scéhe merger component requires two interfaces, some con-
nario automatically needs both a better specification figurations of the webcast application might have a DAG

High-bandwidth link

Low-bandwidth link

properties might be represented by boolean values or real
intervals, e.g. security of a link or trust level of a node.

4.2 Application framework

The application is defined by sets of interface types
and component types, similar to the Corba Component
[Server Model [32] and object-oriented languages such as Java.
Each component type specifies setdroplementedand
requiredinterfaces’ the former describe component func-
tionality, while the latter indicate services needed by the
component for correct execution. In addition, each inter-
face is characterized by a set of component-spegitip-
erties From the planning point of view, properties are
defined as functions of other properties and have no se-
mantics attached to them.

In general, applications can propagate properties either
Figure 4: Abstract structure of the webcast applicatiofi) from required to implemented interfacespublish-
Rectangles represent components, and ovals represergiibscribeapplications, or (i) from implemented to re-
terfaces. quired interfaces +equest-replhapplications. Irpublish-
subscribe applications, servers send data streams to
clients. Inrequest-replyapplications, clients make re-
quests to servers and servers send back replies. Although
the planner can work with both types of applications, our
description of the planning algorithm focuses on request-
4 Model of the CPP reply applications.
Many systems solve the Component Placement Problsp%:v:liﬂurifs r5v rShOW(Szorﬁ o?naer:fl O?p?ﬁglca;;gﬂ Zf Itifje
(CPP) in one form or another. However, the specific forcrmarsene . pon : PP
d . . .cation described in Section 3.1. This component
mulation differs along one or more of the following di- : _
.] I - . . . implements and requiresMailServerinterface
mensions: mobility (fixed locations in Ninja [36] vs. ar- " . . .
bi . : . : ailServerinterface is associated with both
ftrary deployments), arity (single input - single outpy lication-specific and application-independent proper-
components in CANS [15] vs. arbitrary arity),supportfot?ps A Iicat?on—s ecific E(? erties includpe the trusF)tIeF\)/el
resource constraints, etc. As one of the contributions 37> PP P prop

this paper, we present a general model for the CPP t ap'st). and message securitysdc), wh|c_h_ |_nd|cate,
. . o . respectively, the maximum message sensitivity level and
unifies different variations of this problem and enabI%Vsh

. . . . ether or not the interface preserves message confiden-
use of the same planning algorithm in various componeﬂg”t Application-independent properties include the
based frameworks. Y. App p prop

. . L number of incoming request®mReq, the maximum
Formally, the CPP is defined by the following five elfesponse size for a requeske@Size), the request

ements: (i) “t.he network topology, (ii) the app",cati(,)'?eduction factor RRP, the amount of CPU consumed

fram_ework, (||.|) the component deployment behavior, (|\Q) process each incoming requeste¢CPY, and the

the link crossing behavior, and (v) the goal of the CPP. maximum number of requests that can be processed by
the componentMaxReqg). The RRF attribute gives the

4.1 Network topology ratio of requests_sent to requir_ed interfaces in response to
requests on the implemented interfaces. The use of these

The network topology is described by a set of nodes aagplication-independent properties is described below.

a set of links. Each node and link has tuples of static and

dynamic properties associated with it. The dynamic prop-

erties are non-negative real values that can be Changeq,rhe counterpart for these concepts in a statically-linked Java/RMI

e.g. node _CPU, ”n.k band_"/idt.h- The static properties Hfplication is as follows: implemented interfaces are identical to their
assumed fixed during the life time of an application. Statiamesake, while required interfaces correspond to remote references.

Figure 3: The webcast application

Client

structure.

<Componentname =V M S >
<Linkages>
<Implements>
<Interface name =M ST* >
<Properties>
MSI* . Trust — derived
MSI®.Sec — derived
MSI' NumReq — derived
MSI'.ReqSize — derived
MSI'".RRF := 10
MSI*.ReqCPU =2
MSI*.MaxReq := 100
<Requires>
<Interface name =M SI" >

< Conditions>
Node.NodeCPU > (MSI'*.NumReq * MSI*.ReqC PU)
MSI".NumReq > (MSI'*.NumReq * MSI*.RRF)
MSI'* NumReq < MSI‘.MaxReq
MSI".Sec = True
MSI" . Trust > 5

<Effects>

MSI®.Sec := True

MSI . Trust := Node.Trust

MSI'.ReqSize := 1000

MSI'".NumReq := MIN(MSI".NumReq/MSI'.RRF,
MSI'.MazxReq, Node.NodeCPU/MSI'.ReqCPU)

Node.NodeCPU := Node.NodeCPU—
MSI' NumReq * MSI'.ReqC PU

<Interface name =M ST >
<Crosslink>
MSI%.Sec := MSI°.Sec AND Link.Sec
Link.BW := Link.BW —
MIN (Link.BW, MSI°. NumReq x+ M SI°.ReqSize)
MSI*. NumReq :=
MIN(MSI°.NumReq, Link.BW/MSI°.ReqSize)
MSI?% ReqSize := MSI°.ReqSize

V MS =ViewMailServer

M ST = MailServerinterface

Superscripts and: indicate required and implemented
interfacesp andd correspond to interfaces at link origin
and destination.

Figure 5: Component/Interface descriptions.

4.3 Component deployment behavior

A component can be deployed on a node only if the

operating system). After deployment, the implemented
interfaces become available on the node and the dynamic
properties of the node are altered. The Sekitei planner can
find a plan that satisfies both the application-specific and
application-independent constraints. The former are ex-
pected to be supplied by the programmer. To simplify
the task of writing application-independent constraints,
we have introduced a small set of propertiééimReq
MaxRegq, RRF, ReqCPU described in the previous section.
Figure 5 shows how these properties can be used to cap-
ture component resource consumption. The conditions as-
sociated withviewMailServer specify that (i) the node
should have enough capacity to serve incoming requests,
(ii) the number of incoming requests should not exceed a
certain maximum, and (iii) the component should be able
to forward theRRFportion of requests to the required in-
terfaces. The effects of deploying theewMailServer
component are to decrease the node’s CPU capacity and
constrain the number of requests to the implemented in-
terface.

4.4 Link crossing behavior

The link crossing behavior is described by interface spe-
cific functions. For each interface type, these functions
describe how the interface properties are affected by the
link properties when crossing the link, and how dynamic
properties of the link are changed as a result of this op-
eration. For example (see Figure 5), the security (used
here to denote privacy attributes) of an interface after link
crossing can be computed as a conjunction of the security
of the interface at the source and the security of the link;
the link bandwidth after the link crossing is the original
bandwidth minus the consumed bandwidth, which is the
smaller of the original bandwidth and the total bandwidth
requirement of processed requests.

4.5 CPP goal

In the simplest case, the goal is to put a component of a
given type onto a given node. For example, the goal in
Figure 2 is to placavailClient ~ on node0. Other goals
can include, for example, delivering a particular set of in-
terfaces to a given node; this can be useful for repairing
deployments when network resource availability changes.

re-

quired interfaces are present on the node, and the resourcehe above model of the CPP is very flexible and allows

and property constraints of component deployment

dahe expression of a variety of application properties and

satisfied on that node (e.g., that there is sufficient availabéguirements. In particular, most models we have found
memory or that the node has an appropriate version of thditerature can be captured in our formalism.

5 CPP as a planning problem An operator schema (parameterized operator) has the
following sections (line numbers refer to the code frag-
The CPP can be viewed as an Al planning problem withent below):

resource constraints: e logical precondition of the operator, i.e., a set of
_ . _ propositions (boolean variables) that need to be true
e The state of the system is described by the availabil- for the operator to be applicable (line 2);

ity of interfaces on nodes and placement of cOmMpo-4 yesource preconditions described by arbitrary func-
nents on nodes. This information is described by a tjons that return boolean values (line 3%);

set of propositional (boolean) variables. e logical effects, i.e., a set of propositions made true

o Properties of nodes, links, and interfaces on nodes PY an application of the operator (line 7);

are described by real-valued resource variables. ~ ® resource effects represented by a set of assignments
to resource variables (lines 8-15).

* Operators corrgsponq to placing a co_mponent on &-op example, the following schema describes the place-
node and sending an interface over a link. ment of theViewMailServer ~ (VMS) component on a

« The CPP goal is translated into a propositional gorécpde. The preconditions result from the conditions in Fig-
of having a component placed on a node. ure 5 and the fact thatailServerinterface (MSlh)isa

required interface. The effects come from the effects sec-

Figure 6 describes the general structure of the systdifn of Figure 5, withMaxReq providing the upper bound
The compiler module transforms a framework-specifft! t"eNumRegparameter of the implemented interface.

representation of the CPP into an Al-style planning prolf-prS(?n: node)
lem, which can be solved by the planner. The decompiler ppe aymvsi (2n)

performs the reverse transformation, converting the Ad- cpu(?n) > MSIMaxReq*MSIReqCPU
style solution into a framework specific deployment plag. numReq(MSI,?n)>MSIMaxReq*MSIRRF
5 sec(MSI, ?n) = True

trust(MSI, ?n) > 5
EFF. avMSI(?n), plVMS(?n)
numReq(MSI, ?n):=

component

- planning
et

problem

0 ~NO®

planer 9 MIN(numReq(MSI, ?n) / MSIRRF,
10 MSIMaxReq,
plan @ 11 cpu(?n) / MSIReqCPU)
12 cpu(?n):=cpu(?n) -
13 numReq(MSI, ?n)*MSIRRF/MSIReqCPU
Figure 6: Process flow graph for solving CPP. 14 sec(MSI, ?n):=True
15 trust(MSI, ?n):=ntrust(?n)
The rest of this section describes compilation and dis reqSize(MSI, ?n):=1000

compilation modules.) o o
Given the operator definition above, the compilation of

»)) the CPP into a planning problem is straightforward. For
5.1 Compiling CPP into a planning prob- each of the component types, the compiler generates an
lem operator schema for a placement operator. In addition, an

)]) operator for link crossing is generated for each interface
The state of the world in CPP is described by the ng{pe The initial state is created based on the properties

work topology, the existence of interfaces on nodes, agflihe network. The goal of the CPP is translated into a
the availability of resources. This information is mapp&gholean goal of the planning problem.

by the compiler into propositional and resource variables.
For example, the fact thaflailServerinterface is o
available on node O is represented by propositiéh2 Decompilation

avMSlI(0) , and the amount of available CPU on nOd‘?he plan is a sequence of grounded (variable-
1 by areal-valued resource varialsjgu(1) - free) instances ofpl <component (<node-) and

Compilation of the CPP into a planning problem gene: <interface> (<from>, <to>) operators. In ad-

3
ates two operatorgl <component(?n) *placesacom- gision information about logical support is easily
ponent on a node, argdt <interface>(?n1,7n2) sends

an interface across a link. _ 4Sekitei cu_rrently does noF support formulae involving pa_rameter_s of
implemented interfaces, and instead generates a conservative solution by
3|dentifiers prefixed with a question mark denote variables. using upper bounds on the values of such parameters.

extractable from the plan. For example, the factly on reachability analysis, do not remove these opera-
that operatorcrMSI(1,0) depends on propositiontors, because an operator can be included in some (long)
avMSI(1) produced by operatoplVMS(1) means sequence leading from the initial to the goal state. For ex-
that aVviewMailServer ~ component needs to be placedmple, when sending a data stream between two nodes in
on node 1 to produce theMailServerinterface the same LAN, the operator for crossing a network link on
before this interface is sent over the link to node tBe other side of the globe cannot be statically eliminated.
(Figure 2). This information can also be represented &mce we do not expect practical problems to require use
a framework-specific deployment plan, which consistd all possible operators, what distinguishes a good CPP
of (component, nodepairs and linkage directives, e.gsolution is its ability to scale well in the presence of large
(VMS,1,MSI,MC,0) (send theMailServerinterface amounts of irrelevant information. Our solution combines
implemented by the ViewMailServer component multiple Al planning technigues and exploits the problem
located on nodel to the MailClient component on structure to drastically reduce the search space.

nodeO). The algorithm uses two data structuresregression
graph (RG) and aprogression grapi{PG). RG contains
operators relevant for the goal. An operatoregevant
6 The Sekitei algorithm if it can participate in a sequence of actions reaching the
goal, and is calleghossibleif it belongs to a subgraph of
Sekitei needs to deal with two problems not traditionalfgG rooted in the initial state. PG describes all world states
addressed by Al planning algorithms: the scale of tfi@achablefrom the initial state in a given number of steps.
problem specification and non-reversibility of resourd@nly possible operators of the RG are used in construction
functions. These two problems are closely related, f-the PG.
cause the existence of resource preconditions and effectShe Sekitei algorithm consists of four phases shown in
is the reason why existing preprocessing methods popwWigure 7 and described in detail below. Each of the phases
in state-of-the-art Al planning are unable to remove irredolves a relaxed problem. A solution to the relaxed prob-
evant operators from the problem specification. lem is an argument of a new subproblem, which is passed
Sekitei addresses these problems by combining regr@sthe next phase of the algorithm. Thus, the regression
sion and progression techniques and using layers of pgase of the algorithm finds a smallest set of possible
laxed problems to prune the search space. operators for the original problem with all resource re-

Section 6.1 describes the core algorithm as a sequefigkements ignored. This set of operators is then used by
of layers solving relaxed versions of the original problerff)® Progression phase to determine if the goal is reachable
Since it is easier to find a solution to a relaxed proble@iven this set of operators and an aggregated version of re-
than to the original one, the layers of relaxed problems &@Urce constraints. Ifitis not, the algorithm backiracks to
used to prune the search space. Each new layer takes {Afo'egression phase to obtain a bigger set of possible op-
account more restrictions present in the original probleffators. If the goal is reachable, the PG, which contains an

but needs to consider smaller sets of operators and vaHgregated representation of all plans reaching the goal, is

ables. passed to the third phase of the algorithm, plan extraction.
he plan extraction phase performs a search in the PG,

tion 6.2 intr notion of r rce m IJ .
Section 6 oduces a notion of resource maps qu all candidate plans are passed to the last phase of the

source maps are used to represent possibly achievzﬁ? . . :
values of resource variables (resource envelopes). orithm for symbolic execution. success of the fourth
sipge guarantees that the found plan is correct.

tion 6.3 discusses issues involved in implementation 0
resource maps, and presents a version of the algorithm
which improves performance of the basic algorithm

the CPP. %¥'1.1 Regression phase

The regression phase considers only logical preconditions
and effects of operators in building the RG, an optimistic
representation of all operators that might be useful for

The first issue that an efficient planner for the CPP nedfdieving the goal. RG contains interleaving fact and op-
to address is the size of the problem. A problem igrator levels, starting and ending with a fact level, and is
stance can include hundreds of nodes and dozens of cGRIStructed as follows.

ponent types, which translate into component placement o .

and link crossing operators. However, most of these op-* Fact level 0 is filled in with the goal.

erators will not be used in the shortest plan that achieves Operator level contains all operators that achieve

the goal. Standard preprocessing techniques [2], which some of the facts of level— 1.

6.1 The core algorithm

REGI@ESSI ON

‘ create RG for goal ‘

goal possible

NO
4{ add layer to RG

PROGRESSION |PLAN EXTRACTION SYMBOLIC EXECUTION

replay succeeded

Figure 7: The algorithm. RG stands for “regression graph”, PG for “progression graph”

e Fact leveli contains all logical preconditions of the expression for preconditions or effects of the other
operators of the operator level operator, or (iii) their total resource consumption ex-

N . ceeds the available value.
RG is initially constructed until the goal becomes pos-

sible, but may be extended if required. Figure 8 shows thes Two facts of the same level are marked mutex if all
RG for the problem presented in Section 3.1. Bold, solid, operators that can produce these preconditions are
and dashed lines correspond to possible subgraphs with 3, pairwise mutex.

4, and 5 steps respectively.

In addition to purely logical structure, construction of
the PG takes into account resource preconditions and ef-
fects. For each propositional layer of PG, gptimistic
RG provides a basis for the second phase of the alg@source maps computed as described in Section 6.2. An
rithm, the construction of the progression graph. PG algptimistic resource map describes possible levels of re-
contains interleaving operator and fact levels, starting apurces achievable at a given stage of plan execution, and
ending in a fact level. In addition, this graph contains ifiay contain false positives, but no false negatives. Given
formation about mutual exclusion (mutex) relations [24ihe assumption about monotonicity of resource functions,
e.g., that the placement of a component on a node migtis means that, if an execution of an operator fails in the
exclude placement of another component on the sapfgimistic resource map for some layer of the PG, no valid
node (because of CPU capacity restrictions). BecausePt#n can contain that operator at the position correspond-
this, the PG is less optimistic than the RG. Figure 8(righif)g to the layer. However, success of an operator execu-
shows the PG corresponding to the RG in Figure 8(leftion in the optimistic map does not guarantee existence of
which is constructed as described below. Straight linagalid plan containing that operator. Operators whose ex-
show relations between propositions and operators, gdtion fails in the optimistic map of the preceding propo-
dotted arc corresponds to a mutex relation. sitional layer, are not added to the PG.

Because of this resources-based pruning, it is possible
o) that the last level of the PG does not contain the goal, or
» For each of the propositions of level- 1 a no-0p ggme of the goal propositions are mutually exclusive. In

(frame) operator is added to levethat has that fact yis case, a new step is added to the RG, and the PG is
as its precondition and effect, and consumes no {gxonstructed.

sources (marked with square brackets in the figure).

e For each of the possible operators contained in the
corresponding layer of the RG, an operator nodeéT%l.3 Plan extraction phase
added to the PG if none of the operator’s precondi-

6.1.2 Progression phase

e Fact level O contains facts true in the initial state.

tions is mutex at the previous proposition level. i the PG contains the goal and the goal is not mutex, then
e The union of logical effects of the operators of thghe plan extraction phase is started. This phase exhaus-
leveli forms thei*” fact level of the graph. tively searches the PG [2], using a memoization technique

e Two operators of the same level are marked as nto-prevent reexploration of bad sets of facts in subsequent
tex if (i) some of their preconditions are mutex, (iijterations. The extracted plan is marked in bold lines in
one operator changes a resource variable used inFagure 8(right).

placedMC(0) Level O pl ace(iMC(O)

** Level 5
pl MIC(O) pl M]C(O)
,,,,,,,,,,,,,,,,,,,,,, aMS©) Ledl VT Y
crMS|(2,0 crMSI(1,0
(20 (0) crMSl(2,0) crMSI(1,0)
avM3(2) avM3a (1) Leve 2

pIMS(2) chSl(l,rzjm plVMS(2) pIVMS(l) crMSI(2,1)
L : Level 3

aMS(2) ’ aMSI(1)

pIVMS(2) 7
LamMs@ leveld mmmmmmmeed PVMSE) [aMIE)

}MQQ 7 avM?(l) Level 2

crMSl(2,1)

T aM$i(2) Level 1
pIMS(2) Level 5 pIMS(2)
RG PG
Figure 8: Regression and progression graphs.
6.1.4 Symbolic execution stateis described by a set of name-value pairs for all vari-

ables:
As mentioned above, optimistic resource maps con- S = {(v1,¢4), o (v, Cn)}, where Vi ¢; € R

structed at the second phase of the algorithm can produce . .
false positives. It is also impossible to propagate goaIExeCUt'on of an operatap in a state produces a new
intervals backwards during the plan extraction phase ate where values of some variables are changed:

done in [24] due to non-reversible nature of the resource exec(op, 5) = 5’

functions. Therefore, symbolic execution is the only way A resource mas a mapping of each variable Into a

to ensure soundness of a solution. It is implemented immgnimum and maximum value.

straightforward way: a copy of the initial state is made, An optimistic resource mapnap(l) for a given layer
and then all operators of the plan are applied in sequencef the planning graph is defined recursively as follows.
their preconditions evaluated at the current state, and theip(0) maps each variable into its minimum and maxi-
state modified according to the effect assignments. Net&m value in the initial state. F@r> 0, imap(l) maps
that correctness of the logical part of the plan is guara®source’ to the minimum and maximum value ofover
teed by the previous phases; here, only resource corgli-states that result from applying any operator of layer

tions need to be checked. I of the progression graph to any state consistent with
Imap(l —1).
6.2 Reasoning about resources According to this definition, to compute a map result-

ing from execution of an operator in an optimistic map
The layered structure of the Sekitei algorithm allows itap, we need to execute the operator in a (possibly in-
to prune the search space and thus deal with the sdalée) set of states consistent with theap. However,
of the CPP. The other important feature of this problesince all resource functions are monotonic, it is sufficient
is that the world state contains real-valued resource vdd-construct states using only boundaries of the intervals.
ables and operators have resource preconditions andLet-single(map) be a set of all such states for the map
fects. We assume that all resource functions are momeap:
tonic. For example, if bandwidth of a data stream at the single(map) = {S;}
source increases, the bandwidth at the destination will notvhere
decrease, and if a component can be deployed on a node map = {(v1,cmy,cMy), ..., (Vn, cmp, cMy)}
with less resources, it still can be deployed on that node if S; = {(v1,¢1), ..., (Vn,cn)}, Vi ¢; € {em;, eM;}

more resources become available. These assumptions afow the optimistic resource man can be computed as
true for the applications we are addressing. This secti]p P P P

: . AMows.
introduces a notion of resource maps and shows how they

are used in Sekitei to reason about resources.
1. imap(0) = {(vi, emy, eM;)|v; € V}, whereem;
andcM; are minimum and maximum values for re-

6.2.1 Optimistic resource maps . o
P P sourcev; in the initial state.

Execution of an operator changes values of resource vari-
ables as described by the operator’s resource effects. L&t Letops(l) be the set of operators, including no-ops,
V = {v1,...,u, } be the set of all resource variables. A of layer! > 0 of the planning graph. Then

10

Imap(l) = {(vi, cm;, cM;)| Link BW=100 — Link BW=40
em; = man ¢, cM; = maz c, @ N\ @

(v, ¢) € exec(op, S), op € ops(l), Il;/lglljlcrlésent @Jﬁg
S € single(lmap(l — 1))} MSI.NumReg>7 MSI.NumReg=10
MSI.ReqSize=10

6.2.2 Example Figure 9: A simple example of a mail application.
To illustrate how resource maps are constructed, consider placeﬁlMc(o)
the following simple example of the mail application (Fig- pIM\C(O)
ure 9). The network consists of three nodes connected in amsI(0)
a chain. There is an instance of tiailServer running PIVMS(O) chs\|(1,0)
on node 2 able to serve up to 10 requests per second, i.e., av\M Sl (0) avM Sl (1)
MailServerinterface is available on that node with
MailServerinterface .NumReg10. The link between PIVMSO) orMSI(L,0) aMSI(0.1) pIVMS(L) Cr/Mq(z’l)
nodes 1 and 2 has low bandwidth as shown in the fig- aMS(0) avMsI (1) avMgl(2)

ure. We want to place #ailClient on node O, andPNWWw)
the client needs to be able to issue 7 requests per sec- NS 0) RYVISTEY aNS 2)

ond with request size 10. Suppose now that we can place

a VlewMa|I$erver component on any of the.nOdeSFigure 10: The regression graph for the problem shown in
andViewMailServer reduces the number of client e Liqure 9. Possible subgraph is shown in bold font
quests by a factor of two. Therefore, a good deploymen{J ' '

plan would include two link crossing operations, placing

MailClient on node 0, and placingiewMailServer ple, in both of our applications, all plan prefixes succeed
on node O or 1. up to the placement of the client. The version of the algo-

Figure 10 shows the regression graph for this prolithm presented so far evaluates these plan prefixes for all
lem. Figure 11 shows the corresponding progressipassible plan tails, which leads to a worst case exponen-
graph with resource maps built for each propositidial time spent in the third phase of the algorithm before
layer. The initial map contains intervals for each rehe problem can be detected.

source variable corresponding to values of those vari-n this section we present two modifications to the re-
ables in the initial state. The second map is a union &urce processing algorithm that drastically improve per-
maps resulting from execution of each of the three ofgrmance of Sekitei in such scenarios. The first tech-
erators of the first Operator |ayer in the initial reSOUrqﬂque, referred to as positive memoization, takes advan-
map. For example, the number of requests supportediiye of saving intermediate results during the search. It
MailServerinterface on node 1 MSIL.NumReq(1)) does not add any restrictions to the model of the problem,
can be between 0 (fIVMS(2) or[avMSI(2)] are eX- pyt has high memory requirements. The second modifi-
ecuted) and 4 (itrMsSI(2,1) is executed). As can becation shows good performance without memory explo-
seen from the graph, even though logical preconditigibn, but assumes absence of negative logical precondi-

of placement of theClient on node O (availability of tions. The latter, however, is true for all instances of the
MailServerlnterface) can be achieved in two link cpp we have encountered.

crossing operations, at least three plan steps are required

to satisfy its resource preconditiofSI.NumReq(0) >7.
6.3.1 Positive memoization

6.3 Improving performance of resource One solution to the late resource conflict detection prob-
reasoning lem is to save intermediate results. GraphPlan-based al-

gorithms use a technique called memoization: for each of
The fact that symbolic execution is performed after pldhe layers of the planning graph, sets of propositions not
extraction leads to poor performance of the planner in s@hievable together are memoized, so that they do not get
narios where steps are added to the plan solely becausehgétcked more than once. Similar to this, we pssitive
resource restrictions (see Section 7.3.1 for experimeri@@moizatiorto save good sets of propositions along with
results). In such cases, many resource conflicts are gtresponding resource maps.
tected very late. If the operator that fails during the sym- The high-level goal of positive memoization is to detect
bolic execution is close to the end of the plan, then thesource conflicts earlier during the plan extraction phase
same plan prefixes are evaluated many times. For exdmy-executing plan tails in the optimistic resource maps. In

11

crMSI(2,1) crMSI(1,0) [avMSI(0)]
aVM9(2)<pIVM S2) aMS (l)<p'VMS(1)>aVMS (0)<pIVM &0)>avMS (0)—pIMC(0)—placedMC(0)

[avMSI(2)] avMS (2), \[avM SI(1)]—avMS (1
Legend arMSI(2,0))\C”V'S' (1.0)
Link.BW(0,1) (100, 100) (100, 100) (60, 100) (0, 100) (0, 100)
Link.BW(1,2) (40, 40) (0, 40) (0, 40) (0, 40) (0, 40)
MSI.NumReq(0) | | (O, 0) (0,0 0, 4) (0, 8) (0, 8)
MSI.NumReg(1) | | (0, 0) (0, 4) (0,8 (0, 8) (0, 8)
MSI.NumReq(2) | | (10, 10) (10, 20) (10, 20) (10, 20) (10, 20)

Figure 11: The progression graph with per-layer resource maps for the problem shown in FigmdSI(2)] is
a no-op operator for propositiavMSI(2) .

the Sekitei algorithm described above, the maps are builtntuitively, the use of positive memoization in planning
per layer. To make resource conflict detection more effegith resources is similar to the use of binary mutex rela-
tive, we need to calculate resource maps at finer granutwns in planning graph-based algorithms. Whenever a set
ity. of propositional preconditions is constructed during the

Similar to the optimistic resource map for the wholBlan extraction phase of the algorithm, it is first looked up
layer, we define an optimistic resource mapap(q,) for in a table. The table contains information about whether

a subset of propositiongat layer! of a planning graph: the set is not achievable (the standard memoization) or,
if the set is achievable, then what is the optimistic map
for this set (positive memoization). The recursive call is
performed only when the table contains no information.
r%’new table entry is created upon exit from the recursive

1. smap(q,0) = lmap(0) for all q.

2. Letops(q, 1) be a set of smallest subsets of operato

including no-ops, at laydrthat together achievg
Adding positive memoization to Sekitei resulted in

Let precs(o, 1) be a set of preconditions (proposip,ge (orders of magnitude) speedup on some instances
tions at level — 1) of the set of operators at level ¢ the webcast problem and a small increase of running
L. time on simple problems (see Section 7.3.1 for results).
Then the optimistic resource mamap(q, 1) for i > Note that the use of positive memoization does not put
0 is defined as follows: any additional restrictions on the form of resource func-
tions; only monotonicity is required. Unfortunately, pos-
itive memoization has high memory requirements. Hav-
ing resource maps for all sets of propositions (essentially,
most of the subsets of sets of propositions for each layer
of the planning graph) leads to a worst case exponential

In words, each subset of operators achievjiigex- Mmemory explosion.
ecuted in the optimistic resource map for the union
of preconditions of these operators, and then the M@8.2 Per-proposition resource maps

for ¢ is computed as a union of the resulting maps.
One way to improve memory behavior of positive mem-

After the optimistic map is computed for the goal stat8Zation is to save resource maps per proposition rather
the plan extraction phase proceeds as usual, except e Per set of propositions. We implemented this idea in
time a subset of operatoesis chosen at some levilthe & Version of Sekitei referred to as SekiteiNG.
plan tail includingo is replayed in the optimistic map of In the presence of arbitrary resource functions mutex
o's preconditionssmap(precs(o,1),1 — 1). For example, relations based on resource interference between opera-
three operators of the second layer of the PG shown t@fs do not provide sufficient pruning, and therefore can
Figure 11,crMSI(1,0) , plVMS(1) , and[avMsSI(1)] , be omitted. Note that, since the CPP does not have neg-
have the same logical preconditi@vMSI(1) An op- ative logical preconditions or effects (component place-
timistic resource map for the singleton set containifigent does not require or resultabsencef an interface
this precondition is computed only once, and then reus@iga node), resource interference is the only source of mu-
when other two operators are considered by the plan & relations.
traction procedure. Recall that the purpose of the PG in the Sekitei algo-

smap(q,l) = {(vi, cm;, cM;)|
cm; = man ¢, cM; = maz c,
(Uiac) € GIGC(Op, S)70p € 070 € OpS(q,l),
S € single(smap(precs(0,1),1 — 1))}

12

ANdGoal g -~ - - placedMC(0) 5~ - pIMC(0) 5+ / crMSI(1,0),
GOALY /?VMS(O)z >avMSI(l)lch si2.1),
\ PIVMS(0)5 pIVMS(L), aMs!(2),
AndGoal ,—placedMC(0) ,—pIMC(0) ,—avMSl(0)4 : o :
/‘/avMSI(l)2 avM3(2);~plVMS(2)
' oMLy \ems@y, -
Legend N
Link. BW(0,1) (20, 60) (60, 60) (100, 100) {100, 100) | [(100, 100) | [(100, 100)
Link.BW(1,2) (0, 40) 0,0 (0, 40) (40, 40) (0, 0) (40, 40)
MSI.NumReq(0) (4,8) (4, 4) (0,0) (0,0) (0,0) (0,0)
MSI.NumReq(1) 4,8) 4,9 (4,8) (0,0 4,4 (0,0)
MSI.NumReq(2) (10, 20) (10, 10) (10, 20) (20, 20) (10, 10) (10, 10)

Figure 12: Regression graph of SekiteiNG. Proposition nodes are shown in italics, operator nodes in normal font.
Subscripts correspond to the cost of a node. Execution of operator pIMC(0) fails in the resource &g $3r(0)-.
Therefore nodegl M C(0)3, placedM C(0)3, andAndGO AL are dead.

rithm is to compute mutex relations and to provide basisThe nodes of the RG are expanded as follows (the first
for computation of the memoization table. Without mwstep of the algorithm). An OR (proposition) node with
tex relations in SekiteiNG there is no need to explicitlyostr. > 0 has a child AND node with cost for each op-
store the PG. All information contained in the PG can leator that can achieve this proposition. An OR node with
merged into the RG. The regression graph still needscmst0 is achieved by a special INIT node if the proposi-
be constructed, because the resource maps built usingti is true in the initial state. The map of such a node
memoization table are optimistic, and exhaustive seatistequal to the initial map. An OR node is dead if all of
and symbolic execution still need to be performed. Tlits children are dead. Otherwise the map of the node is
version of the core Sekitei algorithm used in SekiteiNG @smputed as a union of the maps of its alive children.

the following: An AND node with costr and a set of preconditions

i . h il the initial S is expanded as follows. A set of aggregate nodes is
1. Build a regression graph RG until the initial state ISreated such that

reached.

2. Propagate resource maps in the RG starting from the AN aggregate node has| child nodes, one for each
initial state. This step has the same purpose as the PG ©f the propositions irb.
construction of the original version, and is described

. . e The cost of each proposition node is between 1
in detail below.

and minimum cost of that proposition (see below).

3. Extractaplan f the RG below). .
xtracta plan from the (see below) ¢ Atleast one of the children of an aggregate node has

4. Perform symbolic execution. costn — 1.

As before, each next step of the algorithm is invoked only e An aggregate node is dead if at least one of its chil-
if the previous step succeeds, and uses the results of the dren is dead. Otherwise the map of the node is com-
previous step as its input. puted as a union of maps of its children.

The regression graph of SekiteiNG contains three types .) . .)
of nodes: AND nodes correspond to operators, OR nod¥sAND node is dead if all of its children are dead, or if
to propositions, and aggregate nodes to collections Bf operator,falls_ in the map computed as a union of maps
propositions. Each of the nodes also hasoat which of the node’s allvg chlldren. The map resulting from a
is the number of operators performed to reach the notFCessful execution is taken as a map of the AND node.
from the initial state. The cost of the node in the RG of Figure 12 shows the regression graph for the example
SekiteiNG Corresponds to the |ayer number of the prmam Section 6.2.2. In this example all operators have ex-
the original algorithm. A node is considere@adif it actly one precondition. Therefore, all AND nodes have
cannot be achieved in the given number of steps (its dgpxactly one aggregate node, which are not shown in the
erator/proposition does not belong to the correspondifigure.
layer of the PG). Otherwise the node is considered aliveThe above algorithm can work even if the minimum
and has an optimistic resource map associated with it.cést of each proposition is assumed tdbé&lowever, ad-
goal node is a special kind of an AND node with all goalitional pruning can be achieved if the minimum cost of a
propositions being its preconditions. proposition is computed using a regression graph for the

13

placedMC(0)=3 7. Execute the plan tail in the working map. If the exe-
cution fails, backtrack.

8. Add children ofAgN to the Queue.

plVMS(0=3 pIMC(0)=3

avM3(0)=2
9. Goto step 3.

crMSI(1,2)=2 plVMS(1)=2 crMSI(1,0)=2 crMSI(1,0)=2 i))
\\\\\ // As experiments presented in Section 7.3.2 show,
SekiteiNG performs similar to Sekitei with positive mem-

avMS(1)=1 o ; : :
~—_ oization, but without the memory explosion side effect.
pIVMS(2)=1 crM$I(2,1)=1 The main restriction of SekiteiNG is that it supports only
/ positive logical preconditions and effects (which is suffi-
avMS(2=0 initial state cient for the CPP), while the original version of Sekitei
(with or without positive memoization) is also capable of
Figure 13: Relaxed graph of SekiteiNG supporting negative preconditions and effects.

relaxed (without resources) problem. Initially, this grapd ~ Evaluation
is constructed for the minimum number of steps necessary
to reach the initial state, and then extended when necksthis section we present experimental results illustrating
sary. Figure 13 shows the relaxed graph for the examplerformance of different versions the Sekitei algorithm.
from Section 6.2.2. The arrows go from preconditions first, we illustrate scalability of the algorithm with re-
operators and from operators to their effects. The costgpiect to the problem size. Second, we show how Sekitei
an operator node is computed as the maximum cost ofdts take advantage of existing component deployments.
preconditions plus 1. The cost of a proposition node is tFénally, we demonstrate effect of our optimizations on the
minimum cost of operator achieving it. planning time and memory requirements of the algorithm.
Since resource maps are unioned at various points dUpe measurements reported in this section were taken on
ing construction of the regression graph, the graph is ofi700MHz Pentium Ill machine running Windows 2000
mistic. This means that even if the goal node is not de&d the 1.3.1 Java HotSpot(TM) Client VM using our Java
the corresponding graph may not contain a solution. foplementation of Sekitei.
extract a solution (or prove its absence), a search is perfo model different wide-area network topologies, we
formed in the regression graph. The basic idea is similaed the GT-ITM tool [7] to generate eight different net-
to that of the plan extraction step with positive memoizarorks N, (for differentk € {22, 33,..., 99} nodes).
tion. A totally ordered plan tail is grown starting from th&ach topology simulates a WAN formed by high speed
goal state. After selection of a new operator, the plan taihd secure stubs connected by slow and insecure links.
is replayed in the corresponding resource map. The f@he initial topology configuration files (.alt) were aug-
lowing describes plan construction for a given aggregateented with link and network properties using the Net-
node of the goal node. work EDitor tool [22].

The performance of the planner was evaluated using the

1. Create a Queue, initialize it with OR nodes of thgyo applications described in Section 3. The goal in both
aggregate node. applications is to deploy the client components on specific
nodes. In both cases, the “best” deployment is defined as

2. Create an empty plan tail. the one with the fewest number of components.

3. Select the most expensive OR nadeN from the
Queue. If the cost is 0, return the plan tail. 7.1 Scalability evaluation

4. Nondetgrministically choose an AND “OQWN We tested scalability of Sekitei (the original version pre-
from children ofOr V. Add the corresponding oper-gented in Section 6.1) by running several experiments.
ator to the plan tail. This subsection presents in more detail the goal, the de-

5. Nondeterministically select an aggregate ndgev SCriPtion, and the results of each experiment.

of AndN.

)) 7.1.1 Planning under various conditions
6. Compute a working resource map as a union of the

maps of OrR nodes from the queue and the map Tfe purpose of the first experiment is to show that the
AgN. planner finds a valid component deployment plan even in

14

"~

hard cases, and usually does so in a small amount of tir o
The experiment, involving the mail service applicatior ™ 9 /\)\’7

2\ Server AN
is conducted as follows. For each network topoldgy, /\ﬂ/%;(\\\\f/ \/
wherek € 22,33, ...,99, and for each node in the net- = / — - Hljé
work Ny, the goal is to deploy KailClient ~ component w \/\\// \/

on the noden given that theMailServer is running on v ”\/ L R e
some node. The algorithm indeed finds a solution wher (70\6 5./ \ clleng/\\\
exists. \/\4_\ A PV

The data points in Figure 14 represent the time needea
to find a valid plan for each of the different networks, and)
correspond to the following cases. When the client and Figure 15: 9-stub networkg
the server are located in the same stub, the algorithm es-
sentially finds the shortest path between two nodes, which g

takes a very short timePlacement of a client in a differ- 16 S
ent stub requires inserting some components into the path,i4 1]
and therefore takes longer. 12 B B
g 10 A I
80 .E 8 S 1 |
70 e F 6 S L 1 |
60 4 S 1
I L]
é 50 2 1 H—— F—- | -
= 40 LELN - 0 ——=]]]
£ a0 A 19 27 43 53 3 70 77 92
S R ¥] - - ° - Number of nodes
013 e SE N ST
? & oo
i — Mgtk G SEIBT it gpeenIess . e . .
O 4 s e 77 88 % Figure 16: Scalability w.r.t. network size for the mail ap-
Network size p“Cat|0n

Figure 14: Planning under various conditions. o
7.1.3 Complex application structure

The mail application used in the above experiments re-
7.1.2 Scalability w.r.t. network size quires only a chain of components. An important fea-
]] ture of our algorithm is that it can support more compli-
To see how the performance of the algorithm is affectggieq application structures, i.e., DAGs and even loops.
by the size of the network, we ran the following expefrg verify that planner behavior is not negatively affected
iment. Taking theNog network topology (Figure 15) aspy pAG-like structures, we generated deployments for
our reference and starting with a small network with onfye webcast service (the DAG structure arises because of
two stubs, we added one stub at a time until the Or'g"?élitting and merging the image and text streams). The
99-node configuration was achieved. For each of the %Qial for the planner was deployment of tent com-
_tained networks we ran the planner yvith the goal of plaﬁOnent on a specific node, given that $ever was sep-
ing MailClient on a fixed node. Figure 16 shows thgrated from it by links with low available bandwidth. Fig-
planning time as a function of the network size. ure 17 illustrates the running time of the algorithm as a
As shown in Figure 16, the running time of the plannéanction of the network size and validates our assertion.
increases very little with the size of the network. More-
over, the graph tends to flatten. Such behavior can ;)
explained by the fact that the regression phase of the &

gorithm considers only stubs reach_able in the numb_er-|qjc analyze the scalability of the planner when the applica-
steps bounded by the length of the final plan. Even this §gf, framework consists of a large number of components,
is further pruned at the progression stage. Therefore, Qi classify components into three categories: (i) abso-
algorithm is capable of identifying the part of the networ}ﬁtdy useless components that can never be used in any
relevant to the solution, without additional preprocessingppﬁcation configuration; (i) components useless given
availability of interfaces in the network, and (iii) useful

5The algorithm does not distinguish any special cases. “The short@?(nponems_v i-_e-: those that implement an _intefface rele-
path” is only a characterization of the result. vant for achieving the goal and whose required interfaces

ﬁ.4 Scalability w.r.t. irrelevant components

15

3 7.2 Reusability of existing deployments.

30 -

25 __ || In practical scenarios, by the time a new client requests
& 20 _ _— | | a service, the network may already contain some of the
g 15 . | | | | required components. To see how the planning time is
TS I | | | affected by reuse of existing deployments, we ran the fol-
5 :I_F I | | | lowing experiment. Starting with the webcast application

0 | ‘ B I B and theNyg topology where th&erver was present on a
19 27 43 53 63 70 77 92 fixed node, we analyzed the planning costs for the goal of

Number of nodes putting theClient on each of the network nodes in turn.

The x-axis in Figure 19 represents the order in which the
Figure 17: Scalability w.r.t. network size for webcast aprodes were chosen. The network state is saved between
plication. the runs, so that clients can join existing paths. We assume
that clients are using exactly the same data stream, and
there is no overhead for adding a new client to a server.
As expected, it is very cheap to add a new client to a
stub that already has a client of the same type deployed
(this corresponds to the majority of the points in Fig-
ure 19), because most of the path can be reused. The
I VVW‘,M ‘\W}M ol M ﬁlm.fw, nJﬂwm Wil | problem in this case is effectively reduced to finding the
. ff‘ ‘ closest node where the required interfaces are available.

=
__—

Ratio to the base case

900
Absolutely useless components >
Components with unavailable required interfaces 800

0 w 700 |
600 |
500
400
300 A
200 -

Figure 18: Scalability w.r.t. increasing number of irrel
vant components.

Planning tifne (ms)

1
are either already present or can be provided by other use-,
ful components.

Figure 18 shows the performance of the planner in the
presence of irrelevant components. The two plots cor-
respond to two situations: the mail service application
augmented first with ten absolutely useless components,
and then with ten components that implement interfaces
meaningful to the application, but require interfaces thdt3 Benefits from optimizations
cannot be provided. The absolutely useless components L
are rejected by the regression phase of the algorithm dnd:1 ~ Planning time

do not affect its performance at liComponents whose i ire 20 shows the performance of the original planner
implemented interfaces are useful, but required 'nterfamhout optimizations) with increasing number of useful
cannot be provided can be pruned out only during the S%B'mponents.

ond phase, which also takes into account the initial state]n this experiment, the webcast client is placed in tumn

of the network (the required mtg ”‘f"ces might be a_lvangbcl)% each of the nodes of th¥y9 network given a fixed
somewhere from the very beginning). The running t|rqe

. . . lqcation of the server. The graph shows average plan-
increases as a result of processing these components intfie . ;

! e ning time per client per stub. The four bars correspond
first phase (polynomial in the number of components).

o] " to four different network conditions and application con-
Scalability with respect to relevant components is d'ﬁgurations

cussed in Section 7.3.

Node index

Figure 19: Reuse of existing deployments.

Cfg 1. In the first case the transit links have high band-
width, so that theClient can be directly connected
63light fluctuations are a result of artifacts such as garbage collection. to theServer .

16

Cfg 2. In the second case, the bandwidth of transit links s
is slightly lower, so that theClient ’'s quality re- 5
qguirements, which are originally specified in termg N
of the request rate, cannot be satisfied by a diregt
connection. However, it is sufficient to reduce th§ 1 PO
color depth of the image portion of the stream to r& 2 1 2
solve the problem. Therefore, the planner decides to- |
insertSplitter , Merger , andFilter ~ components |
into the data path. 1 2

¢ Stubi5ndex 6
Cfg 3. In the third case the bandwidth of transit links
is even lower, but using compression of the text pdrigure 20: Scalability of the original Sekitei algorithm
tion of the stream solves the problem. The plannetr.t. increasing number of relevant components. The
decides to ad@plitter , Merger , Zip , andUnzip highest peaks correspond to about 15 min.
components into the data path. Note that this planre-4
quires more components then the previous scenario.
Therefore, even though the quality of the resulting)

stream is better in this case than when Hieer £
is used, the planner’s decision to ugger inthe £ 31
previous scenario instead @afp andUnzip is cor- 28’ 2
rect. T
Cfg 4. Finally, the fourth configuration includes five 0
additional componentsSplitter , Merger , Zip , o2 3 e s 678
Unzip , andFilter) Stub index

The choice of whether a useful component is actua'ﬁigure 21: Scalability W.r.t. increasing number of rele-
used in the final plan is made during the third phase of th@nt components with positive memoization. The highest
algorithm, which in the worst case takes time exponentRgaks correspond to about 10 seconds
in the length of the plan. Larger numbers of useful com- e
ponents increase the branching factor of PG, and theres |
fore the base of the exponent. This means that in hayd, |
cases (very strict resource constraints, multiple compp-
nent types implementing the same interface, highly c0r§-3 |
nected networks) the planning can take a longtime. 3 21

Figure 21 shows the planning time for the same exper-1 1
iment presented above for the planner with the positiveo |
memoization technique discussed in Section 6.3.1. The 1 2 3 4 5 6 7 8 9
modified version of the planner takes about the same time Stub index
on simple problems (Configuration 1), and scales much
better on harder instances. Figure 22 shows the additioR@jure 22: Scalability of SekiteiNG w.r.t. increasing num-
improvements of SekiteiNG discussed below. ber of relevant components. The highest peaks correspond

to about 2.3 seconds

7.3.2 Memory consumption

The main source of memory consumption in all versioti®ns of the webcast application discussed above. Sekite-
of Sekitei is the values of resource intervals stored iNG scales much better with respect to memory consump-
resource maps. To evaluate the memory behavior timih as compared to the positive memoization version of
Sekitei, we recorded the maximum number of such inteekitei. In fact, as shown in Figure 24, memory consump-
vals present in memory at any given moment during plaiimn of SekiteiNG is comparable to that of the original ver-
ning. Although this number is affected by the garbagéon of the algorithm. The number of constants generated
collection behavior of a Java VM, it is a reasonable eshy SekiteiNG on configurations 3 and 4 is less than three
mate of the memory consumption of the algorithm. times bigger than that of the original algorithm.

Figure 23 shows the average number of constants genthe fact that SekiteiNG considers much fewer resource
erated by the three versions of Sekitei on four configunaalues also affects the planning time. Figure 22 shows the

17

1000000

0 Original Sekitei change in resource availability.

100000 |- g Positive Memoization Extensions to Sekitei need to focus on two principal
10000 | SekiteiNG directions. First, we believe that the performance of the
algorithm can be further improved. In particular, it seems
reasonable to explore only the most promising paths. One
100 4 possible way to identify such paths in the component
placement problem is to start by building a direct connec-
tion between the client and the server along the shortest
1 path in the network (the cheapest path in the relaxed re-

1 2 8 4 gression graph), and then deviate from this path and add
Configuration components only in case of a resource conflict.
Another way to improve performance of Sekitei is to
Figure 23: The average number of constants generategsBysome properties of resources to prune search. It is
the three versions of Sekitei on four configuration of fen possible to distinguish between monotonic and gen-
webcast application eral resources. A resourcermnotonicif application of
25 any operator changes its value in the same direction. If

1000 +

Number of constants

10

Config 1 ;
) Config 2 some operators can increase and others can decrease the
Config 3 value of a resource, we refer to such a resourcgess

Config 4 eral.” For example, available CPU is always a decreasing

resource in the CPP, but the bandwidth of a data stream
may be general if a caching component can be injected
into the data path. We are currently investigating use of
resource monotonicity information for early resource con-

N ——— {00 (5] (Ioi{[oe] 0

PES SR EBLERRGS The second direction is improving expressiveness of

the model of the CPP. This includes a better model for

ublish-subscribe applications and support for global pre-

Bhditions. The latter may be used, for example, for par-

allel applications where all copies of the same component
need to be deployed with the same parameters.

planning time of SekiteiNG for the four configurations of The current Sekitei implementation does not take into
the webcast application (compare to Figures 20 and 21§onsideration the actual load on components, e.g. the

We also tested the scalability of SekiteiNG with respeR/MPer of clients connected to a server. One way of
to irrelevant operators. The behavior of the planner is sif2Pturing such incremental resource consumption in our

ilar to that reported in Section 7.1, and we do not presé?‘r{”ent model is by introducing artificial components that
the detailed results here. can support a limited number of additional clients. A

more general scheme may include changing the formu-
lae describing component placement to consider parame-

8 Discussion and future work ters of implemented interfaces (as opposed to their upper
bounds).

Sekitei achieves good scalability on the CPP in presence '€ current version of our planner, as many other Al

of non-reversible resource functions by using a COmlﬂl_anners, minimizes the total number of parallel steps. In

nation of regression and progression techniques. Sucrﬁgl world problems, such as the CPP, application of an

combination is beneficial when it is impossible to prun%oer.at.or.usually involves some cost. It is more desirable
the set of operators using standard preprocessing tdQminimize the total cost of a plan rather than its parallel

niques. On classic planning problems (without resourcé89th- Supporting a notion of resource-dependent opera-

this technique does not give any speedup, even thoughlffef0St may help realize this objective.

size of the progression graph is smaller than that of theAnother interesting research direction is allowing un-

standard GraphPlan approach. certainty in the resource values of the initial state and pro-
The examples presented in this paper describe plati€ing sensitivity information for a plan.

ment of a single component on a given node. The samé/Ve are working on adding distributed planning capa-

algorithm can be used for placing multiple components,

or for fixing existing deployments after a failure due to 7[1] proposes a classification of resource variables.

Figure 24: Ratio of constants generated by SekiteiNG v\g
the original algorithm.

18

bilities to Sekitei. The reason for this is that it is desirablepresenting the official policies or endorsements, either
for each administrative domain to have its own plann@xpressed or implied, of DARPA, Rome Labs, SPAWAR
which plans for nodes in its domain collaborating onl$YSCEN, or the U.S. Government.

when necessary.

In addition to improving the presented algorithms,
also plan to evaluate the effectiveness of other approac
for solving the CPP. For example, the progression pha?ﬁ
of the four-phase algorithm can be replaced with compila-
tion into an optimization problem. Such an approach will
require putting tighter restrictions on the form of expres-
sions used in preconditions and effects. The right balan

W

between the expressiveness of the expressions and the per-

formance of the algorithm is an interesting long-term re-
search question.

9 Summary

In this paper, we have presented the Sekitei algorithm f g]
solving the component placement problem and possibte
ways to improve its performance. The CPP is a real-

world problem, whose compilation into a planning probIG]
lem is characterized by simple logical structure and ar-

bitrary non-reversible monotonic resource functions. 7]
addition, a planner for the CPP needs to cope with large
number of irrelevant operators that cannot be removed by

static preprocessing techniques. [8]

Sekitei addresses the scaling problem by using a com-
bination of regression and progression techniques to limji@]
the search space. The positive memoization technique sig-
nificantly increases performance of Sekitei by allowingg)
early detection of resource conflicts. The main drawback
of positive memoization is its high memory requirements.
We presented a refined version of the algorithm that a4y
dresses this problem.

Sekitei is designed and optimized specifically for the
component placement problem. However, techniques de-
veloped for the CPP may be useful for other problems @g)
well. We plan to extend our resource planner to support
more general planning problems, namely, those contain-
ing operators with negative logical preconditions and gf3;
fects.

(14]

10 Acknowledgements (1]
This research was sponsored by DARPA agreements
N66001-00-1-8920 and N66001-01-1-8929; by NSF

grants CAREER:CCR-9876128, CCR-9988176, aftf!
CCR-0312956; and Microsoft. The U.S. Government is

authorized to reproduce and distribute reprints for Goj-7]
ernment purposes notwithstanding any copyright annota-
tion thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as

19

2] A. Blum and M. Furst.

Eg}gferences

T. Bedrax-Weiss, C. McGann, and S. Ramakrishnan. For-
malizing resources for planning. IRroc. of ICAPS'03
Workshop on PDDLTrento, Italy, June 2003.

Fast planning through planning
graph analysis. Artificial Intelligence 90(1-2):281-300,
1997.

[3] J. Blythe, E. Deelman, and Y. Gil. Planning for Workflow

Construction and Maintenance on the Grid. Rroc. of
ICAPS’03 Workshop on Planning for Web Servj@803.

[4] J. Blythe, E. Deelman, Y. Gil, C. Kesselman, A. Agarwal,

G. Mehta, and K. Vahi. The role of planning in grid com-
puting. InICAPS 2003.

B. Bonet and H. Geffner.
New results. IFECP, 1999.

F. Bustamante and K. Schwan. Active Streams: An ap-
proach to adaptive distributed systemsHotOS-8 2001.

K. Calvert, M. Doar, and E. Zegura. Modeling Internet
topology. IEEE Communications Magazin&5(6):160—
163, June 1997.

R. Dechter, |. Meiri, and J. Pearl. Temporal constraint net-
works. Artificial Intelligence 49:61-95, 1991.

M. B. Do and S. Kambhamepati. Solving planning-graph
by compiling it into CSP. IRAIPS pages 82-91, 2000.

I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit.Intl. J. of Supercomputer Applications
and High Performance Computin@1(2):115-128, 1997.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The phys-
iology of the grid: An Open Grid Services Architecture for
distributed systems integration. Open Grid Service Infras-
tructure WG, Global Grid Forum, 2002.

I. Foster, A. Roy, and V. Sander. A quality of service archi-
tecture that combines resource reservation and application
adaptation. IfWQOS 2000.

J. Frank and E. Kurklu. SOFIA’s choice: Scheduling ob-
servations for an airborne observatory.|GAPS 2003.

Planning as heuristic search:

X. Fu and V. Karamcheti.
paths. InProc. of DAIS 2003.

X. Fu, W. Shi, A. Akkerman, and V. Karamcheti. CANS:
Composable, Adaptive Network Services infrastructure.
USITS-32001.

M. Helmert. Decidability and undecidability results for
planning with numerical state variables. AtPS 2002.

Planning for network-aware

A. Ivan, J. Harman, M. Allen, and V. Karamcheti. Par-
titionable Services: A framework for seamlessly adapting
distributed applications to heterogenous environments. In
HPDC-11, 2002.

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

H. Kautz and B. Selman.
ECAI 1992.

H. Kautz and B. Selman. BLACKBOX: A new approach
to the application of theorem proving to problem solvind39]
In AIPS 1998.

H. Kautz and J. Walser. Integer optimization models of
Al planning problems. Knowledge Engineering Review
15(1):101-117, 2000.

T. Kichkaylo. Planning with Arbitrary Monotonic Re-
source Functions. IRrinted Notes of ICAPS’03 Doctoral
Consortium 2003.

T. Kichkaylo and A. Ivan. Network EDitor.
http://www.cs.nyu.edu/pdsg/projects/partitionable-
services/ned/ned.htm, 2002.

Planning as satisfiability.

Ii88]

T. Kichkaylo, A. Ivan, and V. Karamcheti. Constrained
component deployment in wide-area networks using Al
planning techniques. IiPDPS 2003.

J. Koehler. Planning under resource constraintE @A,
1998.

J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos.
Extending planning graphs to an ADL subset. HEP,
1997.

P. Laborie. Algorithms for propagating resource con-
straints in ai planning and scheduling: Existing approaches
and new results.Artificial Intelligence 143(2):151-188,
2003.

J. Lopez and D. O’Hallaron. Support for interactive heavy-
weight services. ItHPDC-1Q 2001.

D. McDermott. Using regression-match graphs to control
search in planningArtificial Intelligence 109(1-2):111—
159, 1999.

Microsoft Corporation. Microsoft .NET.
http://www.microsoft.com/net/default.asp.

N. Muscettola. Computing the envelope for stepwise-
constant resource allocations. Pmoc. of Principles and
Practice of Constraint Programming (CR)ages 139-154,
2002.

Object Management Group. Corba. http://www.corba.org.

Object Management Group. CORBA Component Model.
http://www.omg.org/2003.

J. Penberthy and D. Weld. Temporal planning with conti-
nous change. 1AAAI 1994.

J. S. Penberthy and D. Weld. UCPOP: A sound, complete,
partial order planner for ADL. KR, 1992.

P. Reiher, R. Guy, M. Yarvis, and A. Rudenko. Automated
planning for open architecture©PENARCH 2000.

S. Gribble et al. The Ninja architecture for robust
Internet-scale systems and servic€&mputer Networks
35(4):473-497, 2001.

Sun Microsystems, Inc. Java(TM) 2 platform, Enterprise
Edition.

20

S. Wolfman and D. Weld. Combining linear programming
and satisfiability solving for resource plannin¢nowledge
Engineering Reviey2000.

D. Zhou and K. Schwan. Eager Handlers - communi-
cation optimization in Java-based distributed applications
with reconfigurable fine-grained code migration. 3rd

Intl. Workshop on Java for Parallel and Distributed Com-
puting 2001.

