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Abstract

The recent advancement in computational genomics has largely bene�ted from the explosion of

high-throughput genomic data and equal growth in biological databases. However, as more se-

quencing technologies become available and large genomic consortiums start to crowdsource

data from larger cohorts of research groups, data heterogeneity has become an increasingly

prominent issue. Data integration across multiple data sources and data modalities becomes par-

ticularly important for a greater number of biological systems. High-throughput omics data are

typically highly skewed towards a small number of model organisms, factors, and conditions with

which wet-lab experiments have higher success rates. It further introduces technical challenges

when building machine learning models for problems with limited data. This thesis describes

methods that improve knowledge transfer e�ciency for learning data-limited problems through

e�cient task-speci�c feature representation in the multitask learning setting. We demonstrate

the performance of our methods in two genomic problems – genetic variant calling and cell-type-

speci�c transcription factor binding predictions.
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1 | Introduction

The reductionist’ approach for understanding biological phenomena–where cellular components

are perturbed one at a time, and the responses are observed and analyzed–has been the workhorse

of biology over the last century, resulting in numerous ground-breaking discoveries such as

molecular machinery underlying apoptosis [Sulston and Horvitz 1977; Ellis and Horvitz 1986;

Yuan et al. 1993; Hengartner and Horvitz 1994], the cellular origin of retroviral oncogenes [Ste-

helin et al. 1976], and restriction enzymes [Smith and Welcox 1970; Danna and Nathans 1971].

More recently, however, its role has gradually shifted towards experimentally validating in silico

derived hypotheses amid rapid advancement in high-throughput sequencing technologies and

machine learning algorithms.

As high-throughput biology data grow in ever-increasing volume, variety and complexity, we

see a rapidly increasing number of research studies deriving conclusions from multimodal omics

data, such as genomics, transcriptomics, proteomics, and metabolomics measurements [Sorokina

et al. 2021; Ghosh et al. 2021; Schulte-Sasse et al. 2021]. It has been widely accepted that a com-

prehensive understanding of biological systems can only be derived from joint analyses of data

from di�erent sources and cellular levels [Joyce and Palsson 2006; Gomez-Cabrero et al. 2014; Li

et al. 2018]. The goal of data integration, which consolidates data from disparate sources into one

uni�ed form, is therefore extracting additional biological knowledge that can not be otherwise

obtained from any single dataset alone [Gligorijević and Pržulj 2015].
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1.1 Motivations

1.1.1 The importance of data integration in biology

The motivation behind data integration in biology stems from the observation that biological sys-

tems work organically and cooperatively–on the cellular, tissue, and organism level–to maintain

normal body function. More importantly, technical challenges can sometimes make it di�cult to

learn meaningful biological insights without proper data integration as a prerequisite.

Extracting valuable insights sometimes requires comparative analysis using data from mul-

tiple sources. For instance, integrating data from two public CRISPR-Cas9 cancer screens im-

proves statistical power for identifying cancer lineage subtypes and unveils additional cancer

biomarkers of gene dependency [Pacini et al. 2021]; integrating multiple networks, by learn-

ing both dataset-speci�c and conserved components among networks, improves transcriptional

regulatory network inference accuracy [Castro et al. 2019]; integrating multiple protein-protein

association networks using multimodal deep autoencoders improves protein function predic-

tion e�ciency [Gligorijević et al. 2018]; integrating DNA sequencing data from child-mother-

father trios improves genetic variant calling performance compared to calling from individual

datasets [Kolesnikov et al. 2021].

High-throughput sequencing data are sensitive to batch e�ects caused by non-biological fac-

tors, including di�erences in laboratory conditions, handling personnel, reagent lots, and tech-

nology platforms. It becomes particularly problematic when batch e�ects are correlated with the

experimental outcome of interest, as it can potentially a�ect the validity of the research �nd-

ings [Leek et al. 2010]. Data integration methods for removing batch e�ects focus on disentan-

gling biological variables from technical variables (i.e., batch e�ects). Early methods designed

to correct batch e�ect for microarray data have been reasonably e�ective at handling bulk and

single-cell RNA sequencing data [Smyth and Speed 2003; Johnson et al. 2007b]. However, meth-
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ods such as Harmony [Korsunsky et al. 2019] and LIGER [Welch et al. 2019] are more e�cient at

handling single-cell-speci�c batch correction problems.

More importantly, integrating and transferring knowledge from well-studied research prob-

lems is crucial for e�ectively learning data-limited problems, especially when working with high-

throughput biological data. Over the last two decades or so, specialized biological databases have

collected and generated a large number of omics samples, benchmarking datasets, and genome

annotations for human [Bernstein et al. 2010; Network et al. 2012; Lonsdale et al. 2013; Consor-

tium et al. 2015; Zook et al. 2018] and other model organisms [Bult et al. 2019; Ruzicka et al.

2019; Larkin et al. 2021; Cherry et al. 2012]. Take the Encyclopedia of DNA Elements (ENCODE)

project [Moore et al. 2020] as an example. As of May 2021, ENCODE has collected 13828 next-

generation sequencing datasets from 775 cellular conditions (i.e., cell lines, tissues, whole organ-

isms, primary cell types, and in vitro di�erentiated cells), measuring many aspects of biologi-

cal phenomena, including transcriptome, methylome, chromatin accessibility, chromatin inter-

actions, and 3D chromatin structure. However, certain sequencing technologies, although cost-

e�ective, are prone to sequencing and ampli�cation errors and therefore cannot derive compre-

hensive insights without additional data from other sequencing platforms (Chapter 3 and Barbi-

to� et al. [2020]). Additionally, these datasets are typically highly concentrated towards a smaller

collection of cellular conditions with which wet lab experiments have higher success rates (Chap-

ter 4); we demonstrate this phenomenon by collecting all experiments from nine sequencing

assays with the most number of datasets deposited in ENCODE and calculating the number of

experiments per cellular conditions per assay (Figure 1.1).
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Figure 1.1: The number of experiments per cellular condition in ENCODE Consortium database
stratified by assay type.
chromatin immunoprecipitation followed by sequencing (ChIP-seq) combines chromatin immunoprecip-
itation with DNA sequencing to identify binding sites of DNA-associated proteins [Johnson et al. 2007a].
Depending on the protein antibodies used in a particular ChIP-seq experiment, ChIP-seq can be used to
detect binding sites for transcription factors (TF ChIP-seq) or histones (Histone ChIP-seq). Specialized
ChIP-seq experiments conducted on low-input samples are called multiplexed ChIP-seq (Mint-ChIP-seq).
(Continue on next page.)
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Figure 1.1: (Continued from the previous page.)
Both DNase I hypersensitive sites sequencing (DNase-seq) [Boyle et al. 2008] and Assay for Transposase-
Accessible Chromatin using sequencing (ATAC-seq) [Buenrostro et al. 2013] access genome-wide chro-
matin accessibility (i.e., open chromatin regions). Open chromatin regions are identified by regions sen-
sitive to cleavage by DNase I in DNase-seq, and by regions tagged by hypteractive Tn5 transposase in
ATAC-seq. RNA sequencing (RNA-seq) is a transcriptome profiling technique that measures the pres-
ence and quantity of RNA in biological samples. PolyA+ RNA-seq measures the mRNA level in a cellular
condition, whereas total RNA-seq measures both mRNA and ribosomal RNA levels. Both shRNA RNA-
seq (small hairpin RNA knockdown followed by RNA-seq and CRISPR RNA-seq (CRISPR genome editing
followed by RNA-seq) measure cellular transcriptome a�er blocking the target gene expression. shRNA
silences gene expression by inhibiting the transcription of the target gene mRNA, while CRISPR knockout
the target gene at the DNA level. All data included in this analysis are human samples mapped to GRCh38
genome assembly. Data are obtained from the ENCODE Consortium [Moore et al. 2020] and reflect the
database status as of May 2021.

1.1.2 Data integration versus data augmentation for data-limited

problems

Data augmentation refers to a set of data analysis techniques that increase the amount of data

available to a problem of interest either by adding modi�ed versions of existing data or by gener-

ating simulated data from existing ones [Shorten and Khoshgoftaar 2019]. These techniques help

reduce over�tting when training machine learning models and have been widely applied to im-

prove many machine learning problems [Van Dyk and Meng 2001; Wei and Zou 2019; Kobayashi

2018]. Take image augmentation as an example; basic geometric manipulations–such as �ipping,

scaling, mixing images [Inoue 2018] and random erasing [Zhong et al. 2020]–add new images

by making small modi�cations to existing data. Generative modeling techniques, such as gen-

erative adversarial networks (GANs) and variational autoencoders (VAEs), also create synthetic

images from existing ones [Goodfellow et al. 2014; Hsu et al. 2017; Karras et al. 2020; Antoniou

et al. 2017b]. GANs-based image augmentation techniques are particularly useful for specialized

computer vision problems where access to data is limited, such as medical image analysis [Yi

et al. 2019b]. The quality of the synthesized images can be directly evaluated by accessing the re-

semblance of the generated instances to real-world images or can be indirectly quanti�ed by the
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accuracy achieved by downstream tasks (e.g., image classi�cation and image caption generation).

Computational methods can be benchmarked using empirical and/or simulated data [Escalona

et al. 2016]. Simulating biology data impose domain-speci�c problems as the true underlying data

distribution is unknown, unlike many other machine learning problems mentioned previously.

Empirical observations, which provide truth labels for many computational methods, can only

capture a snapshot of the true data distribution. Nevertheless, many computational methods have

been proposed to simulate DNA sequencing (DNA-seq) [Escalona et al. 2016], RNA-seq [Frazee

et al. 2015; Zappia et al. 2017; Zhang et al. 2019; Gerard 2020], ChIP-seq [Datta et al. 2019; Sub-

khankulova et al. 2020; Zheng et al. 2021], and other types of next-generation sequencing (NGS)

datasets.

Many simulation methods emulate the real-world scenarios by modeling a set of manually

de�ned simulation parameters, such as polymerase chain reaction (PCR) bias [Angly et al. 2012],

base-calling errors [Holtgrewe 2010], sequencing depth [Hu et al. 2012], and mutation rates [McEl-

roy et al. 2012]. These parameters can be estimated from sequencing reads of related samples or

provided by the users. Alternatively, additional signals can be added to the empirical datasets,

resulting in simulated data that exhibit realistic attributes of real data [Gerard 2020]. However,

manually curated simulation parameters can only explain a fraction of the variations in real-

world data. Future collaborative e�orts are necessary to standardize the evaluation pipeline of

NGS simulation methods across available sequencing platforms [Earl et al. 2011].

1.2 Thesis outline

This thesis discusses data integration methods that improve knowledge transfer e�ciency for

learning data-limited problems in genomics. Chapter 1 introduces the concept of data integra-

tion and the importance of data integration when working with high-throughput omics data and

machine learning. We realize this thesis covers a wide range of research topics in machine learn-
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ing and genomics. We, therefore, provide the necessary background knowledge in Chapter 2.

We apply our data integration methods to two genomic problems – genetic variant calling and

cell-type-speci�c transcription factor binding prediction. Our �ndings are presented in Chapter 3

and Chapter 4. Conclusions and future directions are discussed in Chapter 5.
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2 | Background

2.1 Data integration

Data from di�erent sources (e.g., DNA-seq data from di�erent sequencing platforms) or covering

di�erent aspects of the same biological process (genome-wide chromatin accessibility, transcrip-

tome, and methylation pro�les from the same cellular condition) are commonly integrated to

solve one or more biological tasks simultaneously. We can therefore break down the data in-

tegration problems in genomics into two basic forms: 1) the same type of feature from multiple

sources are integrated to learn source-speci�c tasks or objectives, and 2) heterogeneous data mea-

suring di�erent aspects of the same biological phenomenon are integrated to learn the same task

or objective.

Many strategies for data integration have been proposed, such as feature concatenation,

Bayesian models, tree-based methods, and matrix factorization models. For more details on dif-

ferent types of data integration techniques for genomics, I refer readers to Gligorijević and Pržulj

[2015], Li et al. [2018] and Zitnik et al. [2019]. This section will focus on introducing two model

design techniques for data integration–multitask learning and transfer learning–that have be-

come increasingly popular for designing deep learning models due to their e�ciency in handling

a large amount of heterogeneous data.
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2.1.1 Multitask learning and multimodal models

The �rst basic form of data integration problems mentioned above can also be referred to as mul-

titask learning, in which multiple tasks (e.g., classi�cation or regression) are learned jointly to im-

prove the generalization performance of all tasks. Some example tasks are predicting binding sites

of DNA-binding proteins in di�erent cell types, predicting genetic variants from di�erent types

of DNA-seq data, and predicting cell-type-speci�c molecular phenotypes (e.g., chromatin accessi-

bility and gene expression) from DNA sequences. In the multitask learning setting, datasets from

multiple related tasks typically follow distinct data distributions due to their di�erent biological

or technical properties. Therefore, leveraging the cross-dataset commonalities while recognizing

the di�erences is crucial in order for the multitask training strategy to be successful. A typical

multitask learning model contains a set of shared parameters that learn the common properties

from input features of all tasks, as well as a set of task-speci�c parameters that learn task-speci�c

features (Figure 2.1a). Compared to many single-task models, where each task is learned sepa-

rately, multitask learning improves model generalization (by integrating data for multiple tasks)

and prediction e�ciency (by sharing parameters and computation among tasks).

Input

Model

Output Task 1 Task 2 Task 3

Shared

Features

Task-
specific

(a) Multitask

Task 1

Feature B

Feature-
specific

(b) Multimodal

Feature A Feature C

Feature-
specific

Feature-
specific

Shared

Figure 2.1: Multitask learning and multimodal models.

Similar to multitask learning, machine learning models can be extended to take multiple in-
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put data modalities, each measuring a di�erent aspect of the same phenomenon. For instance,

cell-type-speci�c transcription factor binding sites can be predicted from the DNA sequence and

chromatin accessibility data; the amino acid sequence, protein-protein interactions, and 3D pro-

tein structures can all be used as input features to predict protein functions. Apart from the

scenario where raw input features are directly combined, multimodal models typically have a

feature-speci�c component that learns to represent each type of feature separately, followed by

a shared component that integrates the result of the feature-speci�c component and generates

predictions (Figure 2.1b).

A potential problem for multimodal models, however, is incomplete data modalities. Bio-

metric features such as height, weight, and age may not be available for all patients; chromatin

accessibility data may be missing for a particular cell type of interest when predicting cell-type-

speci�c transcription factor binding sites. Multimodal models have a severely limited scope of

applications without proper mechanisms for handling missing features. One simple strategy for

handling missing modalities involves assigning a special value to the missing features and manu-

ally excluding a subset of features periodically when training the model [Jaques et al. 2017b]. An-

other important research direction focuses on e�ective fusion of multimodal data. In addition to

feature concatenation [Wang et al. 2017], methods have been proposed to either learn modality-

speci�c factors [Liu et al. 2018] or reconstruct missing modalities through meta-learning [Ma

et al. 2021].

2.1.2 Transfer learning

Data from a related problem can sometimes be used to facilitate learning of the target problem

of interest. The research problem that focuses on transfering knowledge gained from the source

task to the target task is referred to as transfer learning. Compared to training from scratch, a

model pretrained on a related task converges faster, requires less training data, and in most cases,

improves performance of the target task compared to a model trained from scratch [Eraslan et al.
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2019]. Models pretrained on natural images [Deng et al. 2009] have been successfully adopted

to a rich collection of medical image studies [Morid et al. 2020]. Models pretrained on images

also improves training e�ciency for calling genetic variants [Poplin et al. 2018a], despite the

lack of resemblance between these two research problems. However, the bene�t of pretraining

diminishes with longer training time and more training data [Kornblith et al. 2019].

In the simplest case, transfer learning can be achieved by directly �ne-turning a pretrained

model using data from the target task. When the source and target tasks are related, however,

characterising the task-speci�c features through a task-speci�c model component, in addition

to a shared model component, may be bene�cial for improving transfer learning performance

(Figure 2.2). In practice, relative size of the shared and task-speci�c components will likely depend

on the relatedness of the source and target tasks.

Input

Model

Output Task 1 Task 2 Task 3

Shared

Features

Task-
specific

Shared

Features

Transfer 
parameters

Figure 2.2: Transfer learning.

2.2 Deep learning

Deep learning belongs to the broad family of machine learning methods, which uses arti�cial

neural networks to learn representations of data [LeCun et al. 2015]. The word "deep" in deep

learning refers to the use of multiple layers of elementary operations in the network, each of
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which takes the result from the previous layer as input to the next layer. It reduces the need

to create handcrafted features because the stacking of neural network layers can help learn in-

creasingly more complex features from input data. Di�erent types of neural network layers also

specialize in extracting features from data with distinct topology. Here I brie�y introduce several

common types of neural network layers, followed by discussing widely used deep neural network

architectures for extracting complex features. My goal is to introduce the deep learning concepts

that are important for the foundation of this thesis. I recommend Goodfellow et al. [2016] and

Cho et al. [2014c], from which I get plenty of inspiration.

2.2.1 Common deep learning architectures

Neural networks can be roughly divided into two classes: feedforward neural networks (FFNs)

and recurrent neural networks (RNNs). In feedforward networks, as the name suggests, informa-

tion �ows unidirectionally from the input G to the output ~, possibly through some intermediate

computations. In contrast, RNN contain feedback connections, where the output of the network

is fed back to itself. Gradients for the FFN and RNN can be calculated through the generalized

back-propagation algorithm [Rumelhart et al. 1986], although back-propagation through time

is often used to refer to gradient calculation in recurrent neural networks due to its sequential

nature.

Multilayer perceptron Multilayer perceptron (MLP) is a class of FFNs consists of fully con-

nected layers – each node in one layer connects to every node in the next layer. An MLP contains

one input layer, one output layer, and at least one hidden layer in between. Except for the input

layer, each subsequent layer has a non-linear activation function. An MLP with one hidden layer

can be represented as

~ = f (,G + 1) (2.1)
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where , and 1 are the parameters of the linear transformation, and f is a non-linear activa-

tion function. The sigmoid and hyperbolic tanhgent functions were commonly used activation

functions until the introduction of recti�ed linear unit (ReLU).

~ = max(0, G) (2.2)

ReLU allows the model to obtain sparse representations and has fewer vanishing gradient prob-

lems than the sigmoid and hyperbolic tanhgent functions [Glorot et al. 2011].

Convolutional neural network Convolutional neural networks (CNNs) are a specialized

type of FFN for processing data with grid-like structures, such as time-series data and image

data. The convolution layer in a CNN uses �lters (F ) that perform the convolution operations to

scan the input (G ) with respect to its dimensions. Suppose for 1D time-series data, the time index

C can only take on integer values. Then the discrete convolution operation (∗) can be de�ned as

B (C) = (G ∗F) (C) =
∞∑

0=−∞
G (0)F (C − 0) (2.3)

where the output B (C) is often referred to as the feature map. In many CNN applications, a pooling

layer is usually followed by a convolution layer, which reduces the dimensions of the output

feature maps.

Recurrent neural network RNNs [Rumelhart et al. 1986] refers to a family of neural net-

works specialized to process sequential values G<1> · · · G<C> · · · G<)>. In RNNs, each time step

has a hidden state; the hidden state from the previous time step is used as the input to generate

output for the current time step. At each time step C , the hidden state ℎ<C> and the output ~̂<C>
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are de�ned as
ℎ<C> = f (,ℎℎℎ

<C−1> +,ℎGG
<C>)

~̂<C> = B> 5 C<0G (,~ℎℎ
<C>)

(2.4)

where,ℎℎ,,ℎG ,,~ℎ are coe�cients shared by all time steps and f is an activation function. Such

RNNs can process the input of any length. However, it fails to capture long-term dependencies

due to vanishing (or exploding) gradient problems. To remedy this problem, Cho et al. [2014a]

proposed a variant of RNN, called the gated recurrent unit (GRU). GRU de�nes several gates, each

of which has the form

Γ = f6 (,G<C> +*ℎ<C−1> + 1) (2.5)

where,,* ,1 are coe�cient speci�c to the gate and f6 is the sigmoid function. Speci�cally, GRU

uses two gates: the update gate ΓD that controls how much information the previous hidden state

should pass on to the next, and the reset gate ΓA that controls how much information from the

past should forget. The hidden state ℎ<C> is updated by

ℎ̂<C> = qℎ (,ℎG
<C> +*ℎ (ΓA � ℎ<C−1>) + 1ℎ)

ℎ<C> = (1 − ΓD) � ℎ<C−1> + ΓD � ℎ̂<C>
(2.6)

where ℎ̂<C> is a memory cell parameterized by,ℎ,*ℎ and1ℎ ,qℎ is the hyperbolic tangent function,

and � denotes the element-wise multiplication between two vectors.

2.2.2 Feature extraction

Feature extraction aims at deriving informative and non-redundant information from raw data. It

is closely related to dimensionality reduction, as it becomes necessary when the dimensionality

of the input data is too large or the input data are suspected of having redundant measurements.

One of the most used linear dimensionality reduction techniques is called principal compo-

nent analysis (PCA). The goal of PCA is to transform the original variables to a new set of orthogo-

14



nal variables, called the principal components (PCs), that are ordered so that the �rst PC preserves

the greatest variance in the original variables, the second PC preserves the second greatest vari-

ance, and so on [Jolli�e 1986]. PCA belongs to a class of unsupervised dimensionality reduction

techniques, which also include random projection and independent component analysis (ICA).

ICA aims to decompose original variables into independent non-Gaussian subcomponents that

are statistically independent of each other [Hyvärinen 2013]. Important applications of ICA in-

clude the noisy speech recognition [Hsieh et al. 2009], and separating true signals from noise

in EEG and fMRI scans [Winkler et al. 2011; McKeown et al. 2003]. The idea behind these algo-

rithms also lays the foundation for signal transmission and data compression, where the goal is to

preserve the most information possible from the original data with the least number of variables.

Another family of machine learning algorithms for feature extraction involves learning to

represent input data or entities with low-dimensional vector embeddings. These vector embed-

dings can be learned using self-supervised learning, such as autoencoder (AE) [Kramer 1991].

An AE contains an encoder and a decoder. The encoder compresses the input data into a lower-

dimensional latent vector representation, from which the decoder reconstructs the input data.

An AE with one linear transformation is nearly equivalent to a PCA. However, using non-linear

neural network architectures additionally allow AEs to learn complex features from the input

data [Hinton and Salakhutdinov 2006]. Various regularization techniques have been proposed to

ensure the learned representations are meaningful [Ng et al. 2011; Vincent et al. 2008; Rifai et al.

2011]. Variational autoencoders also allow the model to describe the latent representations in

terms of probability distributions [Kingma and Welling 2013]. In fact, given the appropriate set

of features, any entities can be represented by vector embeddings [Wu et al. 2018; Hamilton et al.

2018; Lerer et al. 2019]. For example, in content recommendation, a vector representation of a

particular user’s preference can be learned from a set of items the user likes (or clicks on); in text

classi�cation, a vector representation of a text label can be learned from a set of documents (or

bags of words) that describe the text label; in knowledge graph link prediction, vector representa-
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tions of nodes and edges can be learned from other nodes and edges in the graph. Such methods

are commonly trained in the supervised fashion using the :-negative sampling strategy [Mikolov

et al. 2013] that minimizes the distance between the learned embeddings and the correct class la-

bel while maximizing the distance between the learned embeddings and : incorrect class labels.

2.3 Genetic variant

If history is passed down through generations in the form of language, what would be the lan-

guage of human evolution? I sometimes like to think that the answer lies in our genetic code – the

over 3 billion base pairs (bp) of nucleotides that constitute our genome. Although we cannot ig-

nore the contribution of environmental factors, our genome plays a vital role in determining our

phenotypic traits, susceptibility to diseases, and in some cases, our habits and behaviors [Breed

and Sanchez 2010]. For example, genomic factors are involved in nine of the ten leading causes

of death in the United States1; though no single gene is thought to be responsible, Schizophrenia

tends to run mostly in families [Gejman et al. 2010].

The �rst two versions of the human reference genomes were published in 2001 [Consortium

et al. 2001; Venter et al. 2001]. However, no two people’s genomes are identical, and the changes

in the genetic makeup of an individual’s genome compared to the human reference genome are

referred to as the genetic variant. It is believed that any two human beings are 99.9% identical in

terms of our DNA. The 0.1% (or 3 million) bp that remain contain the important genetic variants

that contribute to the astonishing variety of individual di�erences in terms of appearance, disease

susceptibility, and aptitude in athletics, math, music, and more.
1https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
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2.3.1 Types of genetic variants

Genetic variants can be broadly divided into two categories according to the size of the genetic

changes: small-scale sequence variation under 1 kilobase (kb) and large-scale structural variation

longer than 1 kb. Sequence variation includes base-pair substitution, and insertion and deletion

(indel). Structural variation includes copy number variation (CNV) and chromosomal rearrange-

ment.

Base-pair substitution It is the most abundant and most studied class of genetic variations

among individuals. The two types of base-pair substitution include single-nucleotide polymor-

phism (SNP) and single-nucleotide variant (SNV); both refer to the substitution of a single nu-

cleotide at a speci�c genomic location. SNP defers from SNV in that SNP exclusively refers to

germline mutation, whereas SNV can be somatic.

Indel Insertion or deletion of bases in the genome is referred to as indel. Within the protein-

coding regions of the genome, an indel likely causes frameshift mutation unless the size of the

indel is a multiple of 3. In human, the indel frequency is also considerably lower than that of

SNP. Calling indel variants, therefore, presents a harder machine learning problem compared to

calling SNP variants.

CNV and chromosomal rearrangement CNV refers to the concept that the number of copies

of a particular gene varies from one individual to another, resulting from sections of the DNA

getting duplicated or deleted. Copy number of a gene a�ects the transcription and subsequently

translation of a particular gene. Although the relationship between protein levels and copy num-

ber varies, CNVs that alter the level of proteins controlling critical cellular functions (e.g., house-

keeping genes, dosage-sensitive genes [Riggs et al. 2012], and genes associated with Mendelian

disorders [Amberger et al. 2019]) can lead to disease susceptibility [Zarrei et al. 2015]. In some lit-
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erature, CNV is also referred to as the imbalanced chromosomal rearrangement that changes the

copies of the part of a�ected chromosomes through either deletion or insertion. Chromosomal

rearrangement refers to the type of mutations that changes the structure of the chromosomes.

The other type of rearrangement, called the balanced chromosomal rearrangement, includes in-

version and reciprocal translocation. Both types of balanced chromosomal rearrangement change

the chromosomal gene order, with the inversion �ipping the chromosome 180 degrees and the

reciprocal translocation exchanging genetic materials in two chromosomes or two parts of the

same chromosome [Gri�ths et al. 1999].

2.3.2 DNA seqencing data for calling genetic variants

Genome-wide detection of genetic variants can be achieved by either DNA microarray or DNA-

seq, although nowadays, the former is mainly used in genome-wide association studies (see Sec-

tion 2.3.4) to identify common SNPs among thousands of individuals in the population of inter-

est. DNA-seq can be conducted on the whole genome level (whole genome sequencing) or on the

whole exome level (whole exome sequencing) that covers the 1-2% of the genome that codes for

proteins. Large sequencing companies–such as Illumina, Paci�c Bioscience (PacBio), and Oxford

Nanopore Technologies (Nanopore)–independently developed multiple DNA-seq platforms. The

choice of platforms will likely depend on the type of variants on which the research projects are

conducted.

Currently, the most widely used technology is Illumina’s sequencing by synthesis. This plat-

form generates short reads (up to 300 bp) with a very low error rate and is commonly used to

detect short SNP and indel variants. Both PacBio and Nanopore belong to the third generation

sequencing technologies for sequencing long DNA reads [Amarasinghe et al. 2020], and are bet-

ter suited for detecting large structural variants. Read length on average is around 10–16 kb for

PacBio, and 10–30 kb for Nanopore. However, longer read length is accompanied by a higher

error rate, and post-sequencing error correction [Fu et al. 2019; Zhang et al. 2020] is mandatory

18



for various downstream analyses.

2.3.3 Genetic variant callers

Genetic variant calling refers to the identi�cation of genetic variations from individuals’ genomes

using DNA sequencing data. The starting point of many genetic variant callers is the DNA se-

quencing reads from an individual. These reads are �rst aligned to the reference genome. The

read alignment is then provided to a machine learning model to predict three types of genotype

likelihood: homozygous reference allele (hom ref), heterozygous allele (het), and homozygous

alternative (hom alt) (Figure 2.3). Read alignment is typically carried out by standard alignment

software such as BWA [Li and Durbin 2009] and Bowtie2 [Langmead and Salzberg 2012], although

local realignment has also been proposed by several methods to improve variant calling accuracy

further [DePristo et al. 2011b; Poplin et al. 2018a].

Reference

Reads
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A
A
A
C
A
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Figure 2.3: A typical variant calling pipeline.

Genome Analysis Toolkit HaplotypeCaller [Poplin et al. 2018b], Strelka2 [Kim et al. 2018],

Freebayes [Garrison and Marth 2012] are all state-of-the-art germline genetic variant calling

methods. Rapid development in deep learning techniques has allowed the development of deep

neural network-based variant callers [Poplin et al. 2018a; Luo et al. 2019]. The InceptionV3 [Szegedy

et al. 2016a] architecture, originally proposed for the image classi�cation problem, has also been

adopted by DeepVariant, a germline variant caller for short SNP and indel variants. DeepVari-

ant consistently shows the best performance compared to many other state-of-the-art meth-

ods [Abasov et al. 2021]. Major concerns, if any, about the DeepVariant model center around
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the intuition behind the choice of model architecture, as natural images show low resemblance

to variant read alignment features. Luo et al. [2019] later proposed a much smaller CNN model

called Clairvoyante. Clairvoyante contains 1.6 million parameters, 13-times fewer than the Deep-

Variant InceptionV3 model, which has 24 million parameters. Deep neural networks, such as

InceptionV3, can be more e�ective at feature representations. However, models with fewer pa-

rameters require fewer data to train and can potentially be more e�ective for learning specialized

variant calling problems with limited data.

High con�dence benchmarking datasets and standardized variant caller evaluation pipelines

have greatly facilitated the translation of variant calling methods to routine research and clinical

practice. Global Alliance for Genomics and Health has also recommended the best practice for

benchmarking germline small-variant calls, and developed hap.py for evaluating variant callers’

performance and stratifying performance by variant type and genome context [Krusche et al.

2019]. Both the Genome in a Bottle Consortium (GIAB) and the National Institute of Standards

have published benchmark variant calls for small variants [Zook et al. 2016, 2018] for several

deeply sequenced human genomes. Zook et al. have also recently developed a benchmark set

for structural variants. However, this structural variant benchmark set mainly includes germline

deletions and insertions. Best practices for evaluating structural variants and high-con�dence

variant calls for complex structural variants–including inversions, duplications, and large CNVs–

are still under active research and development [Zook et al. 2020].

2.3.4 Linking genetic variants to phenotypic traits

Accurately calling genetic variants is merely the �rst step towards identifying functional associ-

ations between variants and complex phenotypic traits. It is important to note that most genetic

variants achieve signi�cant frequencies in the human population simply by chance, and they do

not contribute to phenotypic variations [Kimura et al. 1968; Frazer et al. 2009]. For example,

there are roughly 3-5 million SNPs in each person’s genome; but trait association has only been
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identi�ed in a small fraction of these SNPs [Buniello et al. 2019].

The current advancement in the variant-phenotype association can be largely attributed to

the development of genome-wide association studies (GWAS, McCarthy et al. [2008]). GWAS

detects associations between genetic variants and trait status through genotyping hundreds of

thousands to millions of individuals in the population of interest. As of May 2021, 5037 GWAS has

been published. These studies identi�ed 160,065 SNPs and 257,351 SNP-trait associations; among

the identi�ed associations, 55,058 of them have reached a genome-wide signi�cance threshold

(p-value ≤ 5.0 × 10−8) [Buniello et al. 2019]. These studies provide useful insights into under-

standing the cellular mechanisms that contribute to one’s disease susceptibility and how clinical

care and therapies can be optimized based on individuals’ genotypes [Tam et al. 2019]. For ex-

ample, the �rst GWAS, published by Edwards et al. in 2005, identi�ed that the Try402 →His402

protein polymorphism in the gene encoding complement factor H signi�cantly increases the risk

of age-related mascular degeneration. GWAS identi�ed variants could be used to inform drug

selection and drug dosage: the Clinical Pharmacogenitics Implementation Consortium has estab-

lished guidelines for pegylated inteferon-U-based treatment regimens for chronic interferons C

virus infection based on the IL28 genotype [Muir et al. 2014], as a SNP identi�ed near the IL28

gene increases patients’ response rate to the pegylated interferon-U and ribavirin therapy [Ge

et al. 2009].

GWAS identi�es associations between genetic variants and phenotypic traits. However, the

e�ect of the genetic variants on transcription and gene expression remains to be carefully charac-

terized to �nely-map the regulatory potential of common and rare variants. The e�ect of genetic

variants on gene expressions can be identi�ed using a method called the expression quantitative

trait loci (eQTLs) mapping. A typical eQTL work�ow includes collecting hundreds or thousands

of gene expression datasets (either through microarray or through RNA-seq) and subsequently

identify genetic variants whose presence (and the number of copies) a�ect the level of gene ex-

pressions [Westra and Franke 2014]. Large-scale eQTL studies have collected gene expression

21



data in human [Trynka et al. 2011; Grundberg et al. 2012; Zhu et al. 2016] and many other organ-

isms [Keurentjes et al. 2007; Viñuela et al. 2012; Hasin-Brumshtein et al. 2014; Fair et al. 2020].

Such studies, although providing valuable information connecting genetic variants to their

relevance to disease, are generally limited to common variants that have matched expression

data in relevant tissues and cell types, which can be infeasible or di�cult to obtain. In silico

prediction of molecular phenotypes from biological sequences, therefore, has emerged as a cost-

e�ective way to facilitate quantitative trait loci identi�cation. Several deep learning frameworks–

including DeepSea [Zhou and Troyanskaya 2015], Basenji [Kelley et al. 2018b], ExPecto [Zhou

et al. 2018], Basenji2 [Kelley et al. 2018a], and Enformer [Avsec et al. 2021a]–have been proposed

to predict molecular phenotypes–including transcription factor binding, histone modi�cation,

chromatin accessibility, and gene expression–from DNA sequences. Compared to earlier ones,

newer methods signi�cantly improve models’ capacity in handling 1) longer DNA sequences, 2)

more complex model architectures, 3) higher prediction resolution, and 4) a larger set of molec-

ular phenotypes as target labels. The high-resolution predictions generated from these models

have shown to be bene�cial in disentangling causal variants from associations, which has been

historically di�cult to pinpoint due to linkage disequilibrium that causes nonrandom association

of variants at di�erent loci [Slatkin 2008].

Molecular phenotype datasets used to provide target labels for training these models are unan-

imously mapped to the human reference genome. The e�ect of the genetic variants can be gener-

ated at prediction time by providing the model with input DNA sequences containing the minor

alleles. However, there is no direct gold standard for evaluating the prediction accuracy as gen-

erating molecular phenotype datasets containing the minor alleles can be laborious and costly.

Community e�orts to create benchmarking datasets are necessary to systematically measure the

e�cacy of in silico molecular phenotype prediction methods. Additionally, the current design of

the model architectures makes it di�cult to expand predictions beyond the training set of molec-

ular phenotypes. Future work is necessary to address this shortcoming, e.g., via representation
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learning of cell types and assays [Avsec et al. 2021a], to make such models more transfer-learning-

friendly.

2.4 Transcriptional regulation

Although I advocate for the freedom of speech when it comes to democracy and social justice,

life forms would probably be very chaotic if all the genes in our bodies are free to "express" them-

selves. Di�erent tissues and cell types express di�erent sets of genes during normal organism

development to carry out their designated function. Di�erential gene expression among tissues

and cell types is accomplished primarily through complex regulation of gene transcription, in

which a segment of DNA is converted into RNA. Transcription is tightly regulated by multiple

pieces of cellular machinery, including the formation of promoter initiation complex at the tran-

scription start site, the recruitment of transcription factors and enhancers, and RNA transcripts’

elongation. One of the essential contributors to transcription regulation is transcription factors

(TFs). TFs orchestrate the regulation of transcription by binding to speci�c short DNA sequences

primarily at the promoter and enhancer regions of their target genes and subsequently activate

and repress gene expression.

Transcription regulation requires cooperative activities of many intracellular and extracellu-

lar factors, both spatially and temporally. Here I attempt to provide a brief introduction to the

basics of transcription regulation, emphasizing the involvement of TFs during this process. Our

current understanding of TFs is based on decades of experimental and computational research

on their binding speci�cities and functional properties. I hope to provide su�cient biological

background to motivate future computational modeling of TF binding and functions inspired by

their biological properties.
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2.4.1 Regulation at the level of chromatin state

Chromatin consists of DNA and histone proteins. One hundred and forty-seven bp DNA se-

quences wrap around a histone octamer and form the chromatin’s basic functional unit called the

nucleosome. Each histone octamer consists of two copies of each of the four positively-charged

histone proteins H2A, H2B, H3, and H4. These histones, therefore, attract negatively charged

DNA, forming a tightly wrapped histone-DNA complex. Post-translational modi�cations, pri-

marily located at the (N)-terminus of the histone proteins [Luger et al. 1997], alter chromatin

structure, recruit chromatin remodeling enzymes, and subsequently a�ect chromatin accessibil-

ity, transcription, and other DNA processes [Bannister and Kouzarides 2011]. Common histone

modi�cations include acetylation, methylation, phosphorylation, SOMOylation, and ubiquitina-

tion. Genome-wide histone modi�cations can be pro�led using ChIP-seq (Histone ChIP-seq, Fig-

ure 1.1)

Acetylation of lysine (K) residues in histone proteins reduces their positive charge, weakening

histone-DNA interactions and increasing the propensity for gene transcription. For example,

acetylation at the 9th (H3K9ac) and the 27th (H3K27ac) lysines of H3 has been widely accepted as

a marker for activate promoters [Karmodiya et al. 2012] and enhancers [Creyghton et al. 2010].

Compared to acetylation, methylation of histones have more dynamic functional implications;

methylation can increase or decrease gene transcription, depending on the speci�c amino acid

and the number of added methyl groups [Tessarz and Kouzarides 2014; Hyun et al. 2017]. Tri-

methylation of the 4th lysine in H3 (H3Kme3) is commonly associated with actively transcribed

promoters [Liang et al. 2004]. Methylation in H3K9, H3K20, and H3K27 increases gene silencing

and chromatin compaction and is a major contributor to the X chromosome inactivation in early

female embryonic development in mammals [Kohlmaier et al. 2004; Brinkman et al. 2006].

Various histone modi�cations unpack the chromatin, making it accessible to the transcrip-

tion apparatus [Wang et al. 2012] that orchestrates the transcriptional response. Therefore, open
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chromatin regions provide important insight into which part of the genome are hotspots for the

regulation of gene expression [Klein and Hainer 2020]. High-throughput assays for measuring

DNA accessibility and nucleosome positioning include DNase-seq [Song and Crawford 2010],

FAIRE-seq [Giresi et al. 2007], MNase-seq [Heniko� et al. 2011], and ATAC-seq [Buenrostro et al.

2013], with DNase-seq and ATAC-seq being the most widely used. Exposed DNA structures are

subject to degradation by enzymes, such as Deoxyribonuclease I (DNase I). Therefore, DNase I hy-

persensitive sites in the genome can be captured and sequenced to identify accessible chromatin

regions. Alternatively, in ATAC-seq, hyperactive Tn5 transposase simultaneously fragments and

tags exposed DNA, which can be subsequently sequenced to identify open chromatin. ATAC-seq

has overtaken DNase-seq as the preferred assay to pro�le chromatin accessibility, as it requires

fewer steps and input materials. ATAC-seq has also been adopted to single-cell sequencing [Chen

et al. 2019] to identify accessible chromatin with much-improved granularity.

2.4.2 Regulation through transcription factors

Transcription factors (TFs) are a set of DNA binding proteins involved in regulating transcription

initiation and elongation. More than six percent of human genes are believed to be TFs or cofac-

tors [Lambert et al. 2018]. Each TF contains at least one DNA-binding domain (DBD), with most

TFs containing at least one of the two DBD types – C2H2-ZFs and Homeodomains [Lambert et al.

2018]. TF binding to DNA exhibits strong sequence speci�city. In vitro TF binding sites can be

pro�led through high-throughput assays including protein binding microarray (PBM) and high-

throughput systematic evolution of ligands through exponential enrichment (HT-SELEX). These

assays generate large amount of short DNA sequences preferred by a given TF, which is then

summarized as TF binding motifs. Many de novo motif discovery programs, such as MEME [Bai-

ley 1994; Bailey and Elkan 1995; Bailey et al. 2006, 2009], BEEML-PBM [Zhao and Stormo 2011],

and Seed-and-Wobble [Berger et al. 2006], summarize TF sequence speci�city in motif position

weight matrices (PWMs). A number of TF motif databases, including Cis-BP [Weirauch et al.

25



2014], TRANSFAC [Wingender et al. 1996, 2000], JASPAR [Sandelin et al. 2004; Fornes et al. 2020],

and UniPROBE [Newburger and Bulyk 2009; Hume et al. 2015], have collected a large number of

TF motifs in many model organisms. It is important to note that although motifs represented as

PWMs are easily interpretable, heavy information loss cannot be avoided when condensing TF

binding speci�city in a 2D matrix. Evidence suggests newer deep learning techniques, such as

CNNs [Alipanahi et al. 2015; Avsec et al. 2021b] and vector embeddings (Yuan et al. [2019] and

Section 2.2.2), are more e�ective at capturing complex TF sequence preferences.

Most human TFs contain at least one e�ector domains that recruit cofactors to regulate tran-

scription. Depending on the type of e�ector domains a particular TF possesses, it can 1) bind

to the basal transcription machinery, 2) bind to other TFs, or 3) recruit histone and chromatin

remodeling enzymes [Frietze and Farnham 2011]. Some TFs interact with the core promoter re-

gions, while others can be recruited to distal enhancers and interact with the promoter-bound

proteins via the looping mechanisms [Frietze and Farnham 2011]. It is believed that very few

TFs occupy most of their motifs in vivo. Many transient and low-a�nity binding sites also do

not exhibit motif enrichment. Many TFs work cooperatively to achieve desired cellular function.

Cooperative TF binding event also a�ects TF sequence preferences [Jolma et al. 2015]. Although

most TFs primarily bind to open chromatin regions, pioneer transcription factors can e�ciently

bind to nucleosomal DNA to a�ect the stability of the nucleosome [Zhu et al. 2018]. Therefore,

assays for identifying open chromatin can only explain a fraction of the in vivo TF binding land-

scape.

2.4.3 Computational modeling of TF functions

TFs control the expression patterns of target genes by �rst binding to regions containing pro-

moters, distal enhancers, and/or other regulatory elements. However, functional interactions

between TFs and target genes are further complicated by TF concentrations and co-occurrence

of other TFs. TF binding to DNA is the �rst step towards TFs’ functional regulation of target gene
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expressions. Functional connections between TFs and genes combine to form a transcriptional

regulatory network (TRN), represented as a directed graph. Determining the valid TRN is neces-

sary to explain how genetic variants can lead to disease susceptibility [Hu et al. 2016], how vari-

ation at the genetic level leads to selectable phenotypic variation [Peter and Davidson 2011], and

how to re-engineer organisms to produce industrial chemicals and enzymes e�ciently [Huang

et al. 2017]. Many machine learning models have been proposed to infer genome-wide TRN

through gene expression data and prior knowledge of the network structure [Liao et al. 2003;

Faith et al. 2007; Marbach et al. 2012; Kamimoto et al. 2020; Pratapa et al. 2020; Gibbs et al. 2021].

Curated databases of regulator-gene interactions culled from domain-speci�c literature are

an excellent source for prior networks. While some model systems have excellent databases of

known interactions, these resources are unavailable for most organisms and cell types [Gibbs et al.

2021]. In these cases, using chromatin accessibility in combination with the known DNA-binding

preferences for TFs to identify putative target genes is a viable alternative. Miraldi et al. [2019]

generated prior networks by identifying open chromatin regions± 10 kb of the transcription start

sites enriched with TF motifs collected from multiple motif databases. Kamimoto et al. [2020] built

on top of this method and further constrained the regulatory regions to be within promoters and

enhancers. However, networks generated from these motif-derived prior networks still perform

considerably worse than the literature-derived ones [Gibbs et al. 2021]. Automatically generating

literature-derived prior network by coupling sentence-based text mining [Han et al. 2015, 2018]

with named-entity linking [Hachey et al. 2013] can potentially provide better solutions to this

problem from a di�erent angle.
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3 | Calling Genetic Variants from

Whole Exome Seqencing Data

3.1 Introduction

Next-generation sequencing (NGS) measures a genome by repeated, semi-random sampling of

short (76-300bp) fragments that have a 1% base error rate. NGS can be used to sample the whole

genome or can attempt to target coverage to the whole exome, the 1-2% of genome which codes

for proteins and their bordering regions. Whole exome sequencing (WES) is a cost-e�ective

method for identifying interpretable, causal variants in Mendelian disorders [Bamshad et al. 2011]

(Figure 3.1).

Whole Genome sequencing (WGS)
● >95% of genome

Whole Exome sequencing (WES)
● 1-2% of genome

Figure 3.1: Genome coverage comparison between whole genome and whole exome sequencing.

After sequencing, variant calling analyzes these fragments relative to a reference genome

to identify the genomic positions that distinguish an individual sample [DePristo et al. 2011a;

Garrison and Marth 2012; Luo et al. 2019; Kim et al. 2018]. Machine learning approaches to variant

calling [Luo et al. 2019; Poplin et al. 2018a] have demonstrated best-in-class accuracy, bene�tting
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from training sets created by extensively sequencing the well-characterized GIAB samples [Zook

et al. 2016, 2018].

WES must contend with greater sources of error (e.g. variation in capture e�ciency and

greater GC bias [Meienberg et al. 2016]), and WES samples generate less training data since WES

covers less of the genome. Although there are a great deal of publicly available WES data, very few

of them are generated on the GIAB truth sets needed for training and evaluating variant calling

models. In this work, we investigate approaches that allow machine learning to bene�t from

the substantially larger body of whole genome sequencing (WGS) training data while retaining

specialized learning from WES training data.

We use DeepVariant [Poplin et al. 2018a] as the foundation for this investigation. DeepVari-

ant performs variant calling in four steps: 1) scanning through NGS read alignments to �nd

candidate variants, 2) local reassembly of reads to reference and candidate variant haplotypes, 3)

creation of a six-channel pileup image that represents the bases, base quality, mapping quality,

strand, and support for reference or variant haplotype over a 221 bp window, and 4) using an

InceptionV3 [Szegedy et al. 2016a] deep neural network to predict the genotype at the candidate

position (Figure 3.2).

Create pileup images

Reference
Read 
bases

Reference

Reads

Find candidate variants

0.01 0.95 0.04

hom
alt

InceptionV3

Call variants

Genotype 
likelihoods

Heterozygous variant

het
hom
ref

Figure 3.2: The DeepVariant workflow.
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WGS WES

Train 320, 662, 815 17, 402, 861
Tune 2, 435, 712 631, 261

Table 3.1: The number of examples in DeepVariant production datasets.

Currently, separate DeepVariant models are trained for WGS and WES data, termed WGS and

WES models, respectively. However, due to the inherent low region coverage, the exome contains

far fewer variants (2 × 105) than the genome (4 × 106), resulting in far fewer training examples

from WES data compared to WGS (Table 3.1). Variant calling performance (measured by F1 score)

achieved using only the WES data is also considerably lower and less stable than that of the WGS

(Figure 3.3).

INDEL
F1

0.92

0.94

0.96

0.98

SNP

F1

0.9850
0.9875
0.9900
0.9925
0.9950SNP

F1

0.9850
0.9875
0.9900
0.9925
0.9950

Data.Config WES Only WGS Only

Figure 3.3: DeepVariant performance using only WES or WGS data. F1 scores are calculated based
on single nucleotide polymorphisms (SNPs) and indels (insertions and deletions) prediction accuracy. The
experimental dataset used for the comparison is described in Section 3.4.1.

3.2 Related Work

Deep neural networks require large amounts of data to achieve high accuracy in computer vi-

sion [Deng et al. 2009; Krizhevsky et al. 2009], natural language processing [Rajpurkar et al.

2016; Williams et al. 2017], and genomics [Consortium et al. 2004; Harrow et al. 2012; Chèneby

et al. 2017] tasks. Data augmentation techniques borrow from data-rich problems or generate

adversarial examples. Image augmentation generates new examples by adding random noise and

30



transformations to existing images [Simard et al. 2003; Cubuk et al. 2018]. This process is ex-

tended by generative adversarial networks [Goodfellow et al. 2014; Karras et al. 2019; Antoniou

et al. 2017a], which are especially useful for highly-skewed data and uncommon cases [Yi et al.

2019b].

Few methods have been proposed to generate adversarial examples for variant calling, as this

research topic has been blessed with the abundance of WGS data. For example, the GIAB Consor-

tium ( [Zook et al. 2016, 2018]) has provided valuable NGS data as well as high-con�dence truth

sets for 7 extensively characterized genomes (HG001-GH007). However, method development for

specialized problems, such as variant calling from WES and nanopore sequencing data, often ex-

perience major hurdles due to low data availability. The incomplete understanding of sequencing

error pro�le and genome content forces strategies to semi-simulate data [Torracinta et al. 2016],

but the faithfulness with which these approximate real-world data has not been comprehensively

evaluated.

3.3 Methods

We establish the baseline for training WES models–training from WES data alone (WES Only),

and we consider three training strategies for improving DeepVariant accuracy on WES data (Fig-

ure 3.4).

We �rst investigate two naive strategies for leveraging WGS data for training WES a Deep-

Variant WES model: 1) training a model from a combination of WGS and WES data (WGS +WES,

Figure 3.4a), and 2) warmstarting a WES model from a trained WGS model (warmstart WGS,

Figure 3.4b).

We further introduce an additional low-dimensional vector to DeepVariant to capture se-

quencing types (SeqType, Figure 3.4c). At the DeepVariant feature generation step, a 6-channel

pileup image (i.e., feature matrix) ? is generated for each candidate variant example. In the Seq-
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(a) WGS + WES

(b) warmstart WGS

(c) SeqType

Feedforward

Figure 3.4: Three training strategies for improving DeepVariant accuracy on WES data.

Type approach, we additionally associate each example with its sequencing type vector B ∈ R< ,

which is a randomly initialized for the two data types (WES or WGS). Similar to DeepVariant, ?

is provided to the InceptionV3 [Szegedy et al. 2016b] to learn the hidden vector `, the output of

the InceptionV3 PreLogit layer. The �nal feature vector l is generated by

l = ` ⊕ a (3.1)

where ⊕ represents the concatenation operation. l is then provided to a feedforward neural

network (FFN) followed by a softmax layer to produce the �nal predicted genotype probabilities

~̂. The feedforward network consists of two linear transformations (parameterized by,1, 11,,2,

and 12) with a ReLU activation and a layer normalization [Ba et al. 2016] in between.

FFN(l) = LayerNorm(max(0,,1l + 11)),2 + 12 (3.2)
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We set the sequencing type vector dimenstion< = 200. The model is trained by minimizing

the negative conditional log-likelihood across # training examples.

L = −
#∑
8=1

log(~̂8 |?8, B8) (3.3)

Training loss is minimized using the Adam [Kingma and Ba 2014] optimizer, just like the

production DeepVariant model.

3.4 Experimental Design

3.4.1 Data

We use a reduced set of DeepVariant’s production dataset to minimize data heterogeneity (Ta-

ble 3.2). This experimental dataset contains three PCR-free WGS BAM �les sequenced on Illumina

HiSeq2500 and 18 WES BAM �les sequenced on Illumina HiSeq4000.

WGS WES

Train 37, 106, 930 2, 641, 013
Tune 1, 024, 080 94, 149

Table 3.2: The number of examples proposed by DeepVariant using the experimental dataset.

The GIAB truth sets [Zook et al. 2016, 2018] provide labels for training and evaluation. We

use HG001 samples for training and hold out HG002 for evaluation. This is the same training and

evaluation strategy used for DeepVariant. The training set for HG001 is the v3.3.2 truth set, while

the evaluation set for HG002 uses the v4-beta truth set newly available for only this sample.
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3.4.2 Experimental setup

For each experiment, the checkpoint that achieves the highest F1 score on the tuning set within

the �rst 2 million steps is selected as the best model checkpoint. The experiments are performed

on TPUs [Jouppi et al. 2017]. We follow the DeepVariant WES case study1 to evaluate the model

performance using fully held-out HG002 WES sample available from GIAB [Zook et al. 2016]. For

each training strategy, the prediction F1 scores reported here are based on 5 replicated training

runs using the same parameter con�gurations and di�erent random seeds. Variant predictions

are bootstrapped 100 times. These bootstrap samples are used to perform statistical analyses, and

?-values are calculated based on student’s t-test.

3.5 Results

We �rst evaluate two strategies–WGS + WES and warmstart WGS–for adding training examples

from WGS relative to a WES only baseline (Figure 3.5). Both strategies improve DeepVariant F1

scores (?WGS + WES = 3.3× 10−173, ?warmstart WGS = 5.4× 10−153). Additionally, the addition of WGS

data reduces the variability in model performance across replicated experiments.

INDEL

F1

0.92
0.93
0.94
0.95

SNP

F1

0.985

0.987

0.989

0.991

0.993
SNP

F1

0.9850.9870.9890.9910.993

Data.Config
WES Only WGS + WES warmstart WGS

Figure 3.5: Performance of two training strategies for directly adding training examples for WGS. We
separately report performance on indels and SNPs, evaluated using the whole exome truth set from sample
HG002.

We stratify performance by variant type. SNPs are substitutions that do not change the se-
1https://github.com/google/deepvariant/blob/r0.8/docs/deepvariant-exome-case-study.md
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quence length, while indels introduce insertions or deletions. Indel variants are harder to accu-

rately predict ([Zook et al. 2016], Figure 3.3), especially in WES due to additional biases in cov-

erage of GC-rich and poor regions [Meienberg et al. 2016]. More importantly, F1 scores achieved

by WGS + WES are signi�cantly di�erent from warmstart WGS, also indicating that calling ge-

netic variants from the WES data presents a di�erent problem compared to that from the WGS

data. We additionally randomly selected 10k DeepVariant proposed examples to investigate WGS

and WES data distributions (Figure 3.6). WES data contains more high quality reads compared

to WGS (Figure 3.6, left). DeepVariant randomly selects 100 reads to construct a pileup image

when more than 100 reads are aligned to a particular 221 bp window centered around a partic-

ular candidate variant site. Due to the mandatory PCR ampli�cation step in exome sequencing,

WES data have signi�cantly more examples that have more than 100 reads mapped to them (Fig-

ure 3.6, right). These �ndings suggest that WGS and WES data exihibit very di�erent sample

distributions, and therefore, methods such as SeqType are necessary for capturing sequencing

type-speci�c features.
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Figure 3.6: Histograms of read count and mean base quality per example, collected from 10k DeepVariant
examples.

We then evaluate DeepVariant performance after adding a sequencing type feature vector

(Figure 3.5). The SeqType model is trained on WGS + WES data con�guration. SeqType signif-

icantly improves indels and SNPs F1 scores as opposed to WES only (?SeqType < 4.1 × 10−288).

Compared with three other methods, SeqType reduces the total number of prediction errors by

6% - 38% on indels (WGS + WES: 6%; warmstart WGS: 13%; and WES only: 38%), and 0.74% - 36%
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on SNPs (WGS + WES: 0.74%; warmstart WGS: 12%; and WES only: 36%). We also note a further

reduction in the variability of trained model accuracy on indels.

Training strategy Variant type F1 Total errors

SeqType Indel 0.955 ± 2.237 × 10−3 260 ± 13.0
WGS + WES Indel 0.948 ± 7.766 × 10−3 299 ± 45.2
warmstart WGS Indel 0.951 ± 5.964 × 10−3 277 ± 32.9
WES Only Indel 0.926 ± 1.075 × 10−2 418 ± 54.6
SeqType SNP 0.99281 ± 7.314 × 10−5 538 ± 5.5
WGS + WES SNP 0.99275 ± 3.955 × 10−5 542 ± 2.9
warmstart WGS SNP 0.99184 ± 1.342 × 10−4 612 ± 10.1
WES Only SNP 0.98878 ± 3.273 × 10−3 843 ± 248.1

Table 3.3: Comparing SeqType training performance with theWGS +WES,warmstartWGS andWESOnly.
Mean ± standard deviation of the F1 and total errors reported here are calculated based on replicated
experiments using the same parameter configurations and di�erent random seeds.

We further measure performance of each model on progressively harder test sets by randomly

downsamping the coverage of the WES samples (Figure 3.7). WGS + WES and warmstart WGS

both outperform WES only. WGS + WES shows higher SNPs F1 scores across all downsample

fractions tested, whereas both WGS + WES and warmstart WGS remain roughly the same for

indels. Adding the sequencing type feature further improves indels F1 scores, while matching or

slightly improving SNPs F1 measures. This result is consistent across all downsample fractions.
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Figure 3.7: Model performances across with di�erent fractions of coverage retained.
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3.6 Conclusion

Variant calling has become increasingly bene�cial for research and clinical diagnoses [Yang et al.

2014; Xue et al. 2015]. Here we present three data augmentation strategies to improve genetic

variant calling from WES data. We show that incorporating WGS data during training by 1)

jointly training on WGS and WES data, and 2) warmstarting the WES model from a WGS model

improve accuracy on WES data. Since WGS and WES data come from di�erent distributions, we

observe further improvements by 3) jointly training on WGS and WES data and including the

sequencing type information through a low-dimensional feature vector. This approach shows

the most improvement on indels. All three approaches are robust to downsampling and perform

well on lower-coverage data.

The sequencing type information can be encoded using fewer dimensions and does not nec-

essarily need to be learned. We experiment with two other variations of the SeqType method: 1)

trainable vectors of 100 dimensions, and 2) replacing the trainable vectors with constant vectors,

where all values are 0 for WGS data or 1 for WES data. Our preliminary results suggest neither of

these attempts successfully improves prediction accuracy. These observations indicate it is ben-

e�cial to use trainable vectors to distinguish sequencing types as these vectors can potentially

learn to encode unique sequencing type features.

The SeqType method naturally extends from the concept of embeddings, which refer to a

set of representation techniques commonly used in natural language processing [Mikolov et al.

2013; Radford et al. 2019; Devlin et al. 2018a; Liu et al. 2019] and genomics [Asgari and Mofrad

2015a; Gligorijević et al. 2018; Yuan et al. 2019]. Unlike other embedding methods which focus on

dimension reduction, SeqType vector embeddings are trained to learn abstract features of their

corresponding data types. We believe this method can be readily applied to other data augmenta-

tion problems. For instance, variant callers trained on Illumina NGS data may not generalize well

to Paci�c Biosciences data due to their vastly di�erent sequencing and error pro�les [Ching et al.
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2018]. Despite both being Illumina high-capacity sequencers, HiSeq and NovaSeq reads have

noticeably di�erent alignment characteristics. We hypothesize learning sequencer-speci�c em-

beddings will be particularly useful in these scenarios, as the embeddings can potentially capture

features unique to each sequencing platform.
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4 | Improving Multitask Transcription

Factor Binding Site Prediction with

Base-pair Resolution

4.1 Introduction

Genome-wide modeling of non-coding DNA sequence function is among the most fundamental

and yet challenging tasks in biology. Transcriptional regulation is orchestrated by transcription

factors (TFs), whose binding to DNA initiates a series of signaling cascades that ultimately de-

termine both the rate of transcription of their target genes, and the underlying DNA functions.

Both the cell-type-speci�c chromatin state and the DNA sequence a�ect the interactions between

TFs and DNA in vivo [Vaquerizas et al. 2009]. Experimentally determining cell-type-speci�c TF

binding sites is made possible through high-throughput techniques such as chromatin immuno-

precipitation followed by sequencing (ChIP-seq) [Johnson et al. 2007a]. Due to experimental lim-

itations, however, it is infeasible to perform ChIP-seq (or related single-TF-focused experiments)

on all TFs across all cell types and organisms [Ching et al. 2018]. Therefore, computational meth-

ods for accurately predicting in vivo TF binding sites are essential for studying TF functions,

especially for less well-known TFs and cell types.

Multiple community crowdsourcing challenges have been organized by the DREAM Consor-
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tium1 to �nd the best computational methods for predicting TF binding sites in both in vitro and

in vivo settings [Weirauch et al. 2013; DREAM 2017]. These challenges also set the community

standard for both processing data and evaluating methods. However, top-performing methods

from these challenges have revealed key limitations in the current TF binding prediction com-

munity. Generalizing predictions beyond the training panels of cell types and TFs can potentially

bene�t from multitask learning and increased prediction resolution. However, many existing

methods still use shallow single-task models. Predictions generated from these methods typi-

cally have low resolution, and they cannot achieve competitive performance for prediction or

binding regions shorter than 50 base pairs (bp), although the actual TF binding sites are consid-

erably shorter [Stewart et al. 2012].

4.1.1 Related work

Early TF binding prediction methods such as MEME [Bailey 1994; Bailey et al. 2006] focused on

deriving interpretable TF motif position weight matrices (PWMs) that characterize TF sequence

speci�city. Amid rapid advancement in machine learning, however, growing evidence has sug-

gested that sequence speci�city can be more accurately captured through more abstract feature

extraction techniques. For example, a method called DeepBind [Alipanahi et al. 2015] used a con-

volutional neural network (CNN) to extract TF binding patterns from DNA sequences. Several

modi�cations to DeepBind subsequently improved model architecture [Hassanzadeh and Wang

2016] as well as prediction resolution [Salekin et al. 2018]. Yuan et al. developed BindSpace, which

embeds TF-bound sequences into a common high-dimensional space. Embedding methods like

BindSpace belong to a class of representation learning techniques commonly used in natural lan-

guage processing [Mikolov et al. 2013; Devlin et al. 2018b] and genomics [Asgari and Mofrad

2015b; Yi et al. 2019a] for mapping entities to vectors of real numbers. New methods also explic-

itly model protein binding sites with multiple binding mode predictors [Gfeller et al. 2011], and
1http://dreamchallenges.org/about-dream/
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the e�ect of sequence variants on non-coding DNA functions at scale [Zhou and Troyanskaya

2015; Zhou et al. 2018; Kelley et al. 2018a].

In general, the DNA sequence at a potential TF binding site is just the beginning of the full

DNA-function picture, and the state of the surrounding chromosome, the TF and TF-cofactor

expressions, and other contextual factors play an equally large role. This multitude of factors

changes substantially from cell type to cell type. In vivo TF binding site prediction therefore

requires cell-type-speci�c data such as chromatin accessibility and histone modi�cations. CNN

as well as TF- and cell-type-speci�c embedding vectors have both been used to learn cell-type-

speci�c TF binding pro�les from DNA sequences and DNase-seq data [Qin and Feng 2017]. The

DREAM Consortium also initiated the ENCODE-DREAM challenge to systematically evaluate

methods for predicting in vivo TF binding sites [DREAM 2017]. Apart from carefully designed

model architectures, top-ranking methods in this challenge also rely on extensively curated fea-

ture sets. One such method, called Catchitt [Keilwagen et al. 2019], achieves top performance by

leveraging a wide range of features including DNA sequences, genome annotations, TF motifs,

DNase-seq, and RNA-seq.

4.1.2 Current limitations

Compendium databases such as ENCODE [Moore et al. 2020] and Remap [Chèneby et al. 2020]

have collected ChIP-seq data for a large collection of TFs in a handful of well-studied cell types

and organisms [Ching et al. 2018]. Within a single organism, however, the ENCODE TF ChIP-seq

collection is highly skewed towards only a few TFs in a small collection of well-characterized cell

lines and primary cell types (Figure. 4.1). Knowledge transfer from well-known cell types and

TFs are crucial for understanding less-studied cell types and TFs.

Top-performing methods from the ENCODE-DREAM Challenge typically adopt the single-

task learning approach. For example, Catchitt [Keilwagen et al. 2019] trains one model per TF
2https://www.encodeproject.org/
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Figure 4.1: ENCODE TF ChIP-seq experiments grouped by TFs and cell types.
Le�: the number of TF ChIP-seq experiments per cell type. Right: the number of cell types in which a TF
has ChIP-seq experiments. Both histograms skew towards the le�, indicating that most cell types only
have ChIP-seq data from a small number of TFs and most TFs only have ChIP-seq data in a small number
of cell types. Data obtained from ENCODE Consortium2 and reflects the database status as of December
2020.

and cell type. Cross cell-type transfer predictions are achieved by providing a trained model with

input features from a new cell type. This approach can be highly unreliable as the chromatin

landscapes between the trained and predicted cell types can be drastically di�erent [Calderon

et al. 2019] and these di�erences can be functionally important [Sijacic et al. 2018]. Alternatively,

each model can be trained on one TF using cell-type-speci�c data across multiple cell types of

interest [Quang and Xie 2019]. However, such models tend to assign high binding probabilities

to common binding sites among training cell types without proper mechanisms to distinguish

cell types. Very few methods have adopted the multitask learning approach in which data from

multiple cell types and TFs are trained jointly in order to improve the overall model performance.

One multitask solution [Zhou and Troyanskaya 2015; Zhou et al. 2018; Kelley et al. 2018a] involves

training a multiclass classi�er on DNA sequences, where each class represents the occurrence of

binding sites for one TF in one cell type. This solution is suboptimal as it cannot generalize

predictions beyond the training TF and cell type pairs.

Sequence context a�ects TF binding a�nity [Siggers and Gordân 2014], and increasing con-

text size can improve TF binding site prediction [Zhou and Troyanskaya 2015]. TF binding sites

42



are typically only 4-20 bp long [Stewart et al. 2012]; increasing the prediction resolution – the

number of predictions a model makes given an input sequence – is therefore bene�cial for exper-

imental validation as well as de novo motif discovery. An ideal TF binding site prediction strategy

therefore involves high context size and high resolution. However, instead of identifying pre-

cise TF binding locations, existing methods mainly focus on determining the presence of binding

sites. Predictions from these models therefore su�er from either low resolution or low context

size, depending on the input sequence length.

In this work, we address the above challenges by introducing NetTIME (Network for TF bind-

ing Inference with Multitask-based condition Embeddings), a multitask learning framework for

base-pair resolution prediction of cell-type-speci�c TF binding sites. NetTIME jointly trains mul-

tiple cell types and TFs, and e�ectively distinguishes di�erent conditions using cell-type-speci�c

and TF-speci�c embedding vectors. It achieves base-pair resolution and accepts input sequences

up to 1 kb.

4.2 Approach

4.2.1 Feature and label generation

The ENCODE Consortium has published a large collection of TF ChIP-seq data, all of which are

generated and processed using the same standardized pipelines [Moore et al. 2020]. We there-

fore collect our TF binding target labels from ENCODE to minimize data heterogeneity. Each

replicated ENCODE ChIP-seq experiment has two biological replicates, from which two sets of

peaks – conserved and relaxed – are derived; peaks in both sets are highly reproducible between

replicates [ENCODE 2020].

Compared to the relaxed peak set, the conserved peak set is generated with a more strin-

gent threshold, and is generally used to provide target labels. However, the conserved peak set
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Figure 4.2: Schematic method overview.
(a) Constructing feature vector F from input sequence G , TF label ? and cell type label @. F consists of
the sequence one-hot encoding, and a set of cell-type-specific features – DNase-seq signals (cyan), and
H3K4me1 (orange), H3K4me3 (green) and H3K4ac (pink) histone ChIP-seq signals – in cell type @.
(b) Feature vector F , TF label ? and cell type label @ are provided to the NetTIME neural network to
predict base-pair resolution binding probability I. An additional CRF classifier is trained to predict binary
binding event ~ from I.

usually contains too few peaks to train the model e�ciently. Therefore, we use both conserved

and relaxed peak sets to provide target labels for training, and the conserved peak set alone for

evaluating model performance.

To collect target labels that cover a wide range of cellular conditions and binding patterns,

we �rst select 7 cell types. The 7 cell types include 3 cancer cell types, 3 normal cell types and

1 stem cell type. The 22 TFs include 17 TFs from 7 TF protein families as well as 5 functionally

related TFs. Conserved and relaxed peak sets are collected from 71 ENCODE replicated ChIP-

seq experiments conducted on our cell types and TFs of interest. Each of these TF ChIP-seq

experiments is henceforth referred to as a condition. All peaks from these conditions form a set

of information-rich regions where at least one TF of interest is bound. We generate samples by

selecting non-overlapping !-bp genomic windows from this information-rich set, where ! is the

context size. We set the context size ! = 1000 as it was previously shown to improve TF binding

prediction performance [Zhou and Troyanskaya 2015].
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In vivo TF binding sites are a�ected by DNA sequences and the cell-type-speci�c chromatin

landscapes. In addition to using DNase-seq, which maps chromatin accessibility, we collect ChIP-

seq data for 3 types of histone modi�cations to form our cell-type-speci�c feature set. The

histone modi�cations we include are H3K4me1, H3K4me3 and H3K27ac, which are often as-

sociated with enhancers [Rada-Iglesias 2018], promoters [Benayoun et al. 2014] and active en-

hancers [Creyghton et al. 2010], respectively.

4.2.2 Methods

NetTIME performs TF binding predictions in three steps: 1) generating the feature vector w =

(F1, · · · ,F!) given a TF label ? , a cell type label @, and a sample DNA sequence x = (G1, · · · , G!)

where each G; ∈ {�,�,�,) }, 2) training a neural network to predict base pair resolution binding

probabilities z = (I1, · · · , I!), and 3) converting binding probabilities to binary binding decisions

y = (~1, · · · , ~!) of ? in @ by either setting a probability threshold or additionally training a

linear-chain conditional random �eld (CRF) classi�er (Figure 4.2).

4.2.2.1 Feature representation

We construct the feature vector w ∈ R ×! from x ∈ R! , where  represents the number of

features. Di�erent types of features are independently stacked along the �rst dimension. For

each element in w,F; is the concatenation of the one-hot encoding of the DNA sequence $ (G; ),

and the cell-type-speci�c feature � (G; ) (Figure 4.2a).

∀; ∈ [1, !], F; =

$ (G; )

� (G; )

 (4.1)

High-dimensional embedding vectors can be trained to distinguish di�erent conditions as well

as implicitly learning condition-speci�c features, and are therefore preferred by many machine
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learning models over one-dimensional condition labels [Yi et al. 2019a; Qin and Feng 2017; Yuan

et al. 2019]. Given TF label ? and cell type label @, NetTIME learns the TF- and cell-type-speci�c

embeddings �C 5 (?) ∈ R3 and �2C (@) ∈ R3
′ , where 3 = 3′ = 50.

4.2.2.2 Binding probability prediction

NetTIME adopts an encoder-decoder structure similar to that of neural machine translation mod-

els [Sutskever et al. 2014; Cho et al. 2014b; Vaswani et al. 2017] ( Figures 4.2b, A.1):

Encoder: the model encoder maps the input feature w to a hidden vector h ∈ R23×! . The

main structure of the encoder, called the Basic Block, consists of a CNN followed by a recurrent

neural network (RNN). CNN uses multiple short convolution kernels to extract local binding

motifs, whereas bi-directional RNN is e�ective at capturing long-range TF-DNA interactions. We

choose the ResBlock structure introduced by ResNet [He et al. 2016] as our CNN, as it has become

a standard approach for training deep neural networks [Vaswani et al. 2017; Huang et al. 2018].

Traditional RNNs are challenging to train due to the vanishing gradient problem [Hochreiter and

Schmidhuber 1997]. We therefore use the bi-directional gated recurrent unit (bi-GRU) [Cho et al.

2014a], a variant of RNN proposed to address the above challenge. The hidden state of bi-GRU is

initialized by concatenating the embedding vectors �C 5 (C) and �2C (2).

Decoder: the model decoder converts the hidden vector h to binding probabilities z. The con-

version is achieved through a fully connected feedforward neural network (FFN), as the relation-

ship between h and z may not be trivial. A softmax function subsequently transforms the decoder

output to the binding probabilities.
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4.2.2.3 Training

We train the model by minimizing the negative conditional log-likelihood of z:

L = − 1
#

#∑
==1

!∑
;=1

log ? (I=
;
|G=
;
, ?, @) (4.2)

where # denotes the number of training samples. The loss function is optimized by the Adam

optimizer [Kingma and Ba 2014].

4.2.2.4 Binding event classification

Binary binding events y can be directly derived from z by setting a probability threshold1 ∈ (0, 1)

such that

∀; ∈ [1, !], ~; =


1, if I; ≥ 1

0, otherwise
(4.3)

Alternatively, a linear-chain CRF classi�er can be trained to achieve the same goal. It computes

the conditional probability of y given z, de�ned as the following:

? (y|z) = 1
/ (z)4G? (

!∑
;=1
(I; )~; +

!∑
;=1

+~; ,~;+1) (4.4)

where

1. / (z) is a normalization factor,

2. + ∈ R?×? is a transition matrix, where ? denotes the number of classes of the classi�cation

problem and each +8, 9 represents the transition probability from class label i to j,

3.
∑!
;=1(I; )~; calculates the likelihood of ~; given I; , and
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4.
∑!
;=1+~; ,~;+1 measures the likelihood of ~; + 1 given ~; .

In CRF, the class label at position ; a�ects the classi�cation at position ; +1 [Sutton and McCallum

2010]. This is potentially bene�cial for TF binding site classi�cation as positions adjacent to a

putative binding site are also highly likely to be occupied by TFs. We train the CRF by minimizing

− log? (y|z) over all training samples. The Adam optimizer [Kingma and Ba 2014] is used to

update the parameter + .

4.2.3 Model selection

We follow the guideline provided by the ENCODE-DREAM Challenge [DREAM 2017] to perform

data split as well as model selection whenever possible. Training, validation and test data are split

according to chromosomes (Supplementary Table A.1). We use the Area Under the Precision-

Recall curve (AUPR) score to select the best neural network model checkpoint.

To access how well our model predictions recover the positive binding sites in the truth target

labels, we evaluate classi�ers’ performance according to Intersection Over Union (IOU) score.

Suppose % and ) are sets of predicted and target binding sites, respectively. Then

�$* =
% ∩)
% ∪) (4.5)

We test 300 random probability thresholds and select the best threshold, i.e., the threshold that

achieves the highest IOU score in the validation set. We also train a CRF using predictions gener-

ated from the best neural network checkpoint. The best CRF checkpoint is selected according to

average loss on the validation set. Model performance reported here is evaluated using the test

set.
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4.3 Results

4.3.1 Multitask learning improves performance by increasing data

availability.

NetTIME can be trained using data from a single condition (single-task learning) or multiple con-

ditions (multitask learning). Jointly training multiple conditions potentially allows the model to

use data more e�ciently and improves model generalization [Caruana 1997]. We therefore eval-

uate the e�ectiveness of multitask learning when jointly training multiple related conditions.

For this analysis, we choose three TFs from the JUN family that exhibit overlapping functions:

JUN, JUNB and JUND [Mechta-Grigoriou et al. 2001]. Combining multiple cell types of JUND

allows the multitask learning model to signi�cantly outperform the single-task learning models,

each of which is trained with one JUND condition (Figure 4.3a). Jointly training multiple JUN

family TFs further improves performance compared to training each JUN family TF separately

(Figure 4.3b). However, we do not observe improved performance when subsampling the mul-

titask models’ training data to match the number of samples in the corresponding single-task

models (Figure 4.3).

This indicates that the multitask learning strategy is more e�cient due to the increased data

available to multitask models rather than to the increased data diversity. Similar results are also

observed when the same analysis is performed on three unrelated TFs (Figure 4.4).

4.3.2 Supervised predictions made by NetTIME achieves superior

performance

Our feature set includes DNA sequence, and cell-type-speci�c features including DNase-seq and

three types of histone ChIP-seq. In practice, however, data for these features are not always
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(a)

(b)

Figure 4.3: Performance comparison between multitask learning and single-task learning ap-
proaches using JUN family TFs.
Models are trained with datasets from (a) JUND across multiple cell types, and (b) multiple TFs in the JUN
family across multiple cell types. MTL: multitask learning; MTL-sampled: multitask learning training data
that has been subsampled to match the number of samples in the corresponding single-task models; STL:
single-task learning. The right panels in (a) and (b) are the averaged AUPR of the models shown in the
corresponding left panels. Error bars represent standard error of the mean across all training conditions.

available for the conditions of interest. Additionally, TF motif enrichment has often been used by

existing methods to provide TF binding sequence speci�city information [Keilwagen et al. 2019;

Quang and Xie 2019]. We therefore evaluate the quality of our model predictions when we vary

the types of input features available during training.

We �rst train separate models after removing cell-type-speci�c features using training data

from all conditions mentioned in Section 4.2.1. Model prediction accuracy is evaluated in the su-

pervised fashion using test data from the same set of conditions. The addition of cell type features

signi�cantly improves NetTIME performance. However, adding TF motif enrichment features

(Section A.1.1.1), either in addition to DNA sequence features or in addition to both sequence

and cell type features, reduces prediction accuracy (Table 4.1). Despite exhibiting high sequence
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Figure 4.4: Performance comparison between multitask learning and single-task learning ap-
proaches using three functionally unrelated TFs.
Models are trained with data from MAFK, SP1 and TAF1 across multiple cell types. Le� panel shows the
average performance measured by AUPR across multiple cell types of the same TF. Right panel averages
performance across multiple TFs shown in the le� panel. We observe marginal benefit to using MTL strat-
egy over STL when training unrelated TFs. However, the average AUPR score achieved by MTL-sampled
is noticeably lower compared to STL. This additional analysis suggests that the relatedness among jointly
trained conditions plays an important role in determining the e�ectiveness of multitask learning models.
Increased data availability improves model generalization, although too much data heterogeneity reduces
model predictability.

speci�city in vitro, TF binding sites in vivo correlate poorly with TF motif enrichment [Chen

et al. 2017]. Motif qualities in TF motif databases vary signi�cantly depending on available bind-

ing data and motif search algorithms. Nevertheless, TF motifs have been the gold standard for

TF binding site analyses due to their interpretability and scale. TF motif enrichment features are

likely redundant when our model can e�ectively capture TF binding sequence speci�city, though

it’s possible our protocol for generating TF motif enrichment features is suboptimal.

We also compare the performance of NetTIME with that of DeepBind, BindSpace and Catchitt.

Given only DNA sequences as the input feature, NetTIME signi�cantly outperforms DeepBind

and BindSpace. NetTIME also doubles the AUPR score achieved by Catchitt when all three types

of features are used for training (Table 4.1).

The AUPR scores for DeepBind and BindSpace are signi�cantly lower than those reported in

the original manuscripts. One possible reason is that Table 4.1 reports model performance under
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Seq Seq + TF Seq + CT Seq + CT + TF

DeepBind 0.025±0.02 NA NA NA
BindSpace 0.035±0.02 NA NA NA
Catchitt NA NA NA 0.260±0.14
NetTIME 0.384±0.15 0.378±0.15 0.534±0.16 0.525±0.15

Table 4.1: Comparing supervised prediction performance for DeepBind, BindSpace, Catchi�
and NetTIME evaluated at 1 bp resolution.
NetTIME models are trained separately under di�erent feature se�ings. Seq: DNA sequence features; CT:
cell type-specific features including DNase-seq, and H3K4me1, H3K4me3 and H3K27ac histone ChIP-seq
data; TF: TF-specific features containing the HOCOMOCO TF motif enrichment scores for plus and minus
strands. We report here the mean±standard deviation of the AUPR scores across all training conditions.

1 bp resolution (Supplementary section A.1.1.2), although none of these competing methods truly

achieves base-pair resolution.

To avoid being biased towards NetTIME, we additionally compare method performance after

reducing our prediction resolutions to match those of other methods. For each 1000 bp input

sequence, we �rst divide NetTIME predictions into =-bp bins (1 ≤ = ≤ 1000). The binding prob-

ability of a particular bin is subsequently obtained by taking the maximum binding probabilities

across all positions within that bin. We set the bin width = = 20, 50, 100, 200, 500, 1000. NetTIME

maintains higher AUPR scores across all bin widths tested (Figure 4.5). We observe a consistent

increase in prediction AUPR scores for DeepBind, BindSpace and NetTIME as we reduce the pre-

diction resolutions. However, Catchitt achieves the highest AUPR score at = = 50. This is the

same bin width Catchitt used for the ENCODE-DREAM challenge, raising the possibility that

Catchitt over�ts parameters for a particular bin width of interest.

4.3.3 TF-specific and cell-type-specific embeddings are crucial for

effective multitask learning strategy.

Although NetTIME outperforms several existing methods, we have yet to dissect the contribu-

tions of di�erent components to our predictive accuracy. We use the TF and cell type embedding
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Figure 4.5: Supervised performance comparison of DeepBind, BindSpace, Catchi� and NetTIME
evaluated at di�erent bin widths.
The Catchi� AUPR score at 20 bp bin width is set to 0 as the the program exited with error when given a
20bp-long input sequence.

vectors to learn condition-speci�c features and biases, and a combination of CNNs and RNNs

to learn the non-condition-speci�c TF-DNA interaction patterns. TF and cell type embedding

vectors can be replaced with random vectors at prediction time and training time to evaluate the

contribution of each component individually.

To evaluate the model’s sensitivity to di�erent TF and cell type labels, TF and cell type embed-

ding vectors are replaced with random vectors at prediction time (Table 4.2). Substituting both

types of embeddings with random vectors reduces our model performance by 54.4% on average.

Although replacing either TF or cell type embeddings with random vectors drastically reduces

AUPR scores, the performance drop is more signi�cant for cell type embeddings. This indicates

that cell type-speci�c chromatin landscape features are more important for de�ning in vivo TF

binding sites, which explains the redundancy of TF motif features and the lack of correlation be-

tween TF ChIP-seq signals and TF motif enrichment mentioned in Section 4.3.2 and Chen et al.

[2017].

We additionally swap both types of embedding vectors for random vectors at training time

to remove the condition-speci�c component, which results in a 2% drop in the mean AUPR score

across all training conditions (Fig 4.6a). This suggests that, while embedding vectors are im-

portant for learning TF and cell type speci�city, the network components for learning common

binding patterns among TFs and cell types are also crucial for maintaining high prediction accu-
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TF embeddings
Cell type embeddings Random Trained
Random 0.244 ± 0.16 0.409 ± 0.16
Trained 0.310 ± 0.18 0.535 ± 0.15

Table 4.2: Evaluating the contribution of condition-specific network components.
Trained TF and cell type embedding vectors (Trained) are replaced by random vectors (Random) at pre-
diction time.

racy.

Visualizing the trained TF embedding vectors in two dimensions using t-SNE [Van der Maaten

and Hinton 2008] reveals that a subset of embedding vectors also re�ect the TF functional similar-

ities. Some TFs that are in close proximity in t-SNE space are from the same TF families, including

FOXA1 and FOXA2, HNF4A and HNF4G, STAT1 and STAT3, ATF3 and ATF7, and JUN, JUNB and

JUND (Figure 4.6b, solid circles). Functionally related TFs including IRF3 and STAT1 [Mogensen

2019] are also adjacent to each other in t-SNE space (Figure 4.6b, dashed circle). However, these

TF embedding vectors are explicitly trained to learn the biases introduced by TF labels. Available

data for TFs of the same protein family are not necessarily from the same set of cell types. As a

result, not all functionally related TFs are close in t-SNE space, such as IRF (IRF3, IRF4 and IRF5)

family proteins and TFs associated with c-Myc proteins (MAX and MAZ).

4.3.4 TF and cell type embeddings allow more reliable transfer

predictions.

Transfer learning allows models to make cross-TF and cross-cell type predictions beyond training

conditions. Most existing methods achieve transfer learning by providing input features from a

new cell type to a model trained on a di�erent cell type. If multiple trained cell types are available

for the same TF, the �nal cross-cell type predictions are generated by averaging predictions from

all trained cell types (Average Trained). Suppose we wish to make transfer predictions for TF ?

in cell type @, denoted [?, @]. This approach allows us to take advantage of all available data for
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Figure 4.6: Properties of trained embedding vectors.
(a) Evaluating the e�ect of replacing TF and cell type embeddings (TF/CT) with random vectors (Random)
at training time.
(b) t-SNE visualization of the TF embedding vectors. Orange circles indicate related TFs that are in close
proximity in t-SNE projection space: solid circles illustrate TFs from the same protein family, and dashed
circles illustrate TFs having similar functions.

TF ? ([?, ∗]). However, the TF and cell type embedding approach (Embedding Transfer) allows

our model to leverage all available data for both TF ? and cell type @ ([?, ∗] ∪ [∗, @]). Since the

multitask learning paradigm bene�ts from having more training data (Section 4.3.1) and in vivo TF

binding sites mostly correlate with cell type-speci�c features (Section 4.3.3), the latter approach

can potentially improve our model’s transfer predictive performance.

To evaluate the prediction quality of these two approaches, we pretrain a NetTIME model

by leaving out 10 conditions for transfer learning. For each transfer condition [?, @], we use the

pretrained model to derive both the Average Trained and the Embedding Transfer predictions.

Transfer learning predictions are generally less accurate compared to supervised predictions (Su-

pervised). However, transfer predictions generated by Embedding Transfer still signi�cantly out-

perform those of the Average Trained (Figure 4.7a). Transfer predictions derived from NetTIME

also achieves considerably higher accuracy compared to those from Catchitt (Figure 4.7b). Aver-
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age Trained and Embedding Transfer predictions can also be obtained after �ne-tuning the pre-

trained model with data from [?, ∗]\ [?, @] and [?, ∗]∪[∗, @] \ [?, @], respectively. This �ne-tuning

step additionally introduces marginal improvement measured by average AUPR score across all

leave-out conditions (Figure 4.7c).

Using trained TF and cell type embeddings allows models to perform binding predictions be-

yond the training panels of TFs and cell types. We therefore test our model’s robustness when

making predictions on unknown conditions using 6 conditions from 6 new TFs in 3 new cell types.

Starting from a NetTIME model pretrained on all original training conditions (Section 4.2.1), we

�ne-tune the pretrained model for each transfer condition [?′, @′] by collecting available samples

from [?′, ∗] ∪ [∗, @′] \ [?′, @′]. Transfer predictions generated from models trained with TF and

cell type embeddings signi�cantly outperform those from models trained with random embed-

dings that cannot distinguish di�erent TF and cell type identities (Figure 4.8a). TF binding motifs

derived from predicted binding sites also show a strong resemblance to those derived from con-

served ChIP-seq peaks (Figure 4.8b).

4.3.5 A CRF classifier post-processing step effectively reduces

prediction noise.

Summarizing the binding strength, or probability, along the chromosome at each discrete binding

site is an important step for several downstream tasks ranging from visualization to validation.

To make binary binding decisions from binding probability scores, we �rst test the predictive

performance of 300 probability thresholds and �nd that at threshold 0.143, our model achieves

the highest IOU score of 35.6% on the validation data (Figure 4.9).

We alternatively train a CRF classi�er, as a manually selected probability threshold is poorly

generalizable to unknown datasets. These two approaches achieve similar predictive performance

as evaluated by IOU scores (Figure 4.10a). However, prediction noises manifested as high prob-
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Figure 4.7: Transfer learning with NetTIME using 10 leave-out conditions within the training
set of conditions.
(Continue on next page.)
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Figure 4.7: (Continued from previous page.)
(a) Comparing the prediction e�iciency of two transfer learning strategies. Both types of transfer pre-
dictions are derived from a pretrained model trained without the 10 leave-out conditions shown on the
x-axis. We denote each leave-out condition as [?, @], where p denotes the TF label and q denotes the cell
type label. Average Trained: for each [?, @], we first generate transfer predictions using trained embedding
vectors from a di�erent cell type A , where [?, A ] refers to any condition containing TF ? in the training set
of conditions. Multiple such transfer predictions are then averaged to predict the final transfer predictions
for condition [?, @]. Embedding Transfer predictions are generated using trained embedding vectors of ?
and @.
(b) Comparing transfer learning accuracy of Catchi� and NetTIME. NetTIME Average Train and Embed-
ding Transfer predictions are generated using procedures described in (a). Transfer learning in Catchi�
is achieved using the Average Trained method, where input features for the transfer conditions are given
to models trained on di�erent cell types of the same TF. The final prediction probabilities are derived
by averaging all models’ predictions if multiple trained models exist. Transfer predictions derived from
Catchi� are significantly less accurate compared to NetTIME. Catchi�’s supervised predictions achieve
lower average AUPR scores compared to transfer predictions obtained from both NetTIME transfer learn-
ing strategies.
(c) Comparing transfer learning accuracy in pretrained and fine-tuned models. Average Trained and Em-
bedding Transfer predictions are generated using procedures described in (a). Average Trained Tune and
Embedding Transfer Tune: transfer predictions derived a�er fine-tuning the pretrained model with rel-
evant datasets. Supervised: supervised predictions derived from a model where training data from the
above 10 conditions are included during training. Marginal improvements are observed for both transfer
learning approaches a�er the fine-tuning step. However, the Embedding Transfer approach consistently
outperforms the Average Trained regardless of fine-tuning.

ability spikes are likely to be classi�ed as bound using the probability threshold approach. To

evaluate the e�ectiveness of reducing prediction noises using the probability threshold and the

CRF approaches, we calculate the percentage of class label transitions per sequence within the

target labels and within each of the predicted labels generated by these two approaches. The

transition percentage using CRF is comparable to that of the true target labels, and is also sig-

ni�cantly lower than the percentage obtained using the probability threshold approach. This

indicates that CRF is more e�ective at reducing prediction noise, and therefore CRF predictions

exhibit a higher degree of resemblance to target labels.
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Figure 4.8: Transfer learning with NetTIME using 6 conditions beyond the training set of condi-
tions.
(a) Transfer predictions using models trained with either TF and cell type embedding vectors (Trained
Embedding Transfer) or random vectors (Random Embedding Transfer).
(b) Comparison of de novo discovered motifs derived from transfer predictions and from target ChIP-seq
conserved peaks. Predicted motifs are derived from Trained Embedding Transfer predictions using data
from 6 conditions beyond the original training panels of TFs and cell types. De novo motif discovery is
conducted using STREME [Bailey 2020] so�ware. Motif similarity p-values shown in the top right corner
of the Prediction column are derived by comparing predicted and target motifs using TOMTOM [Gupta
et al. 2007].
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(0.143, 0.356)

Figure 4.9: Testing binary prediction performance with 300 probability thresholds.
All thresholds are chosen randomly within the interval [0, 1]. Performance is evaluated using the IOU
score; the predictions achieve the highest IOU score of 0.356 on validation data when we set the threshold
at 0.143.
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Figure 4.10: Binary classification performance using the probability threshold and CRF.
Performance evaluated by mean IOU score (top) and the percentage of class label transitions per sequence
(bo�om), both calculated over all training conditions.

4.4 Conclusions

In this work we address several challenges facing many existing methods for TF binding site

predictions by introducing a multitask learning framework, called NetTIME, that learns base-

pair resolution TF binding sites using embeddings. We �rst show that the multitask learning

approach improves our prediction accuracy through increasing the amount of data available to

the model. Both the condition-speci�c and non-condition-speci�c components in our multitask

framework are important for making accurate condition-speci�c binding predictions. The use

of TF and cell type embedding vectors additionally allows us to make accurate transfer learning
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predictions within and beyond the training panels of TFs and cell types. Our method also sig-

ni�cantly outperforms previous methods under both supervised and transfer learning settings,

including DeepBind, BindSpace and Catchitt.

Although DNA sequencing currently can achieve base-pair resolution, the resolution of ChIP-

seq data is still limited by the size of DNA fragments obtained through random clipping. A con-

siderable fraction of the fragments are therefore false positives, whereas many transient and low

a�nity binding sites are missed [Park 2009]. Additionally, ChIP-seq requires suitable antibodies

for proteins of interest, which can be di�cult to obtain for rare cell types and TFs. Alternative

assays have been proposed to improve data resolution [Rhee and Pugh 2011; He et al. 2015; Rossi

et al. 2018] as well as to eliminate the requirement for antibodies [van Steensel and Heniko� 2000;

Southall et al. 2013]. However, datasets generated from these techniques are rare or missing in

data consortiums such as ENCODE [Moore et al. 2020] and ReMap [Chèneby et al. 2020]. Base-

pair resolution methods for predicting binding sites from these assays [Salekin et al. 2018; Avsec

et al. 2021b] have largely been limited to characterizing TF sequence speci�city. NetTIME can

potentially provide base pair resolution solutions to more complex DNA sequence problems as

labels generated from these alternative assays become more widely available in the future.

ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing [Buenrostro et al.

2013]) has overtaken DNase-seq as the preferred assay to pro�le chromatin accessibility, as it re-

quires fewer steps and input materials. However, these two techniques each o�er unique insights

into the cell type-speci�c chromatin states [Calviello et al. 2019], and it is therefore potentially

bene�cial to incorporate both data types for TF binding predictions. In fact, extensive feature en-

gineering has been the focus of many recent in vivo TF binding prediction methods [Chen et al.

2017; Quang and Xie 2019; Keilwagen et al. 2019]. It is also important to note that, without strate-

gies for handling missing features, increasing feature requirements signi�cantly restricts models’

scope of application (Figure 4.1). Comprehensive evaluation of data imputation methods [Troy-

anskaya et al. 2001; Howie et al. 2009; Van Dijk et al. 2018; Amodio et al. 2019] can be di�cult
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due to the lack of knowledge of the true underlying data distribution. We plan to extend our

model’s ability to learn from a more diverse set of features, and investigate more e�cient ways

to handle missing data. We also plan to explore other neural network architectures to improve

model performance while reducing model’s feature requirement.
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5 | Conclusion and Future Directions

5.1 Conclusions

In this thesis, we have discussed methods for integrating data from data-rich problems to im-

prove deep learning solutions for data-limited problems in genomics. Theoretical and technical

advances in deep learning (e.g., the invention of more complex neural network architectures

for data with complex topology [Goodfellow et al. 2014; Vaswani et al. 2017; Tan and Le 2019;

Zhou et al. 2020; Zaheer et al. 2020], and the expansion of cloud computing using GPUs and

TPUs [Jouppi et al. 2017]) have allowed more e�ective representation learning from an increas-

ingly larger amount of genomics data. Computational modeling for genomics problems requires

an e�ective combination of multitask learning and transfer learning to learn from data with mul-

tiple modalities. Biological systems are integrative, and omics data measuring di�erent aspects of

the same biological phenomenon can provide unique insight to improve the accuracy of machine

learning models. Information sharing among multiple related problems also provides the bene�t

of implicit data augmentation and better model generalization. This is particularly important for

a wide range of genomics problems with limited data due to technical and practical di�culties.

Both multitask learning and transfer learning strategies require task-speci�c parameters, in

addition to shared parameters, in order to learn common representation among tasks while main-

taining sensitivity to individual tasks. In search of an e�ective and easily generalizable approach

to learning task-speci�c features, we turn to a family of feature extraction methods, includ-
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ing Word2Vec [Mikolov et al. 2013], AEs [Kramer 1991; Hinton and Salakhutdinov 2006], and

StarSpace [Wu et al. 2018]. The goal of these methods is uniformly attempting to identify a set of

low-dimensional vector representations for entities, although some methods are trained in a self-

supervised fashion while others are supervised. Such techniques are readily extendable to new

entities and more complex feature extraction problems and can be particularly suited for multi-

task learning and transfer learning strategies when the number of tasks and the complexity of

the tasks are not �xed. We, therefore, investigate the e�ect of using entity vector representations

as a task-speci�c model component in multitask learning and transfer learning problems.

In Chapter 3, we use entity vector representations to improve genetic variant calling accuracy

using WES data. Genetic variant calling refers to the computational techniques for identifying

genetic variants, including SNPs and indels from NGS experiments. NGS can be used to sample

the whole genome or the 1-2% of the genome that codes for proteins called the whole exome.

Machine learning approaches to variant calling achieve high accuracy in whole genome data, but

the signi�cantly fewer training examples cause training with whole exome data alone to achieve

lower accuracy. However, building an accurate whole exome variant caller is crucial as WES re-

mains cost-e�ective for identifying genetic variants. We found that integrating whole genome

data improves the exome variant caller performance, either by the multitask learning approach

that jointly trains with whole genome and whole exome data or by the transfer learning ap-

proach that warmstarts the whole exome model from a trained whole genome model. However,

neither of these straightforward data integration strategies includes a task-speci�c model com-

ponent that learns sequencing type-speci�c feature representations. Additional speci�cation of

sequencing type when joint training with whole genome and whole exome data further improves

exome caller performance, suggesting the ability of models to generalize insights from the greater

whole genome data while retaining performance on the specialized whole exome problem. Such

techniques may be applied to other problem areas in genomics, where several specialized models

would each see only a subset of the genome.
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In Chapter 4, we additionally evaluate the improvement of using entity vector representa-

tions in a more complex problem that predicts base-pair resolution cell type-speci�c TF binding

sites. Machine learning models for predicting cell type-speci�c TF binding sites have become in-

creasingly more accurate thanks to the increased availability of NGS data and more standardized

model evaluation criteria. However, knowledge transfer from data-rich to data-limited TFs and

cell types remains crucial for improving TF binding prediction models because available binding

labels are highly skewed towards a small collection of TFs and cell types. Transfer prediction of

TF binding sites can potentially bene�t from a multitask learning approach; however, existing

methods typically use shallow single-task models to generate low-resolution predictions. Here

we propose NetTIME, a multitask learning framework for predicting cell type-speci�c transcrip-

tion factor binding sites with base-pair resolution. We show that the multitask learning strategy

for TF binding prediction is more e�cient than the single-task approach due to the increased data

availability. NetTIME trains high-dimensional embedding vectors to distinguish TF and cell type

identities. We show that this approach is critical for the success of the multitask learning strat-

egy and allows our model to make accurate transfer predictions within and beyond the training

panels of TFs and cell types. We also train a CRF to classify binding predictions and show that

this CRF eliminates the need to set a probability threshold and reduce classi�cation noise. We

compare our method’s predictive performance with several state-of-the-art methods, including

DeepBind, BindSpace, and Catchitt, and show that our method outperforms previous methods

under supervised and transfer learning settings.

Our contributions is threefold. First, we have shown that entity vector representations are

e�ective methods to extract task-speci�c features in, and subsequently improve the performance

of, multitask learning and transfer learning frameworks. Second, our vector representation ap-

proach signi�cantly improves DeepVariant exome calling accuracy. This method can be readily

applied to other data augmentation problems, such as calling variants from NGS data generated

using di�erent DNA sequencing platforms. Last but not least, we developed a multitask learn-
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ing framework for predicting base-pair resolution cell type-speci�c transcription factor binding

sites. Our model, called NetTIME, shows a signi�cant improvement in prediction accuracy and

prediction resolution compared to existing state-of-the-art methods, and is e�ective at predicting

binding sites for less-studied TFs and cell types.

5.2 Future directions

5.2.1 Improving strategies for learning entity vector representations.

Task-speci�c vector representations can be incorporated into neural networks in di�erent ways

depending on the network architectures. In Chapter 3, we append the sequencing type-speci�c

vector to the output of the InceptionV3 network, whereas in Chapter 4, TF- and cell type-speci�c

vectors are incorporated as the initial hidden state of the recurrent neural network layer.

Depending on the relatedness of the tasks, these vector representations can be incorporated

at the early or late stages of the network. However, we believe the concatenation of the vector

representations and the output of the network components should only be used when the output

of other network components is unstructured (e.g., the output of the InceptionV3 PreLogit layer).

For instance, appending vector representations to the end of an input sequence to a recurrent

neural network, such as those described in Chapter 4, is likely suboptimal as it would disrupt the

structure of the input data. Future work on vector representation incorporation is required for

identifying e�ective incorporation strategies for structured data.

5.2.2 Improving strategies for handling missing modalities.

Biological systems are integrative. Therefore, it is common practice to leverage multimodal data

to study biological processes, both experimentally and computationally, as they are often in-

�uenced by multitude of factors [Gligorijević and Pržulj 2015]. Integrating genomic as well as
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clinical data improve disease diagnosis and phenotyping [Alipanahi et al. 2021]. Integrating large

scale genomic datasets in hundreds of cell types can greatly improve the e�ectiveness of identify-

ing causal variants from GWAS studies [Boix et al. 2021]. However, increasing the data modalities

required by machine learning models can greatly decrease the model’s scope of application. Take

the NetTIME model (Section 4) and cell-type-speci�c TF binding as an example. Incorporating

chromatin accessibility and histone modi�cation sequencing data improve NetTIME TF binding

prediction accuracy (Figure 5.1, green). However, as we incorporate more data modalities into the

training regimen, the number of cell types for which data modalities are available in ENCODE

decreases drastically (Figure 5.1, red).
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Figure 5.1: Leveraging multple data modalities for improving cell-type-specific TF binding pre-
dictions. NetTIME model performance when progressively adding more data modalities is shown in
green. The number of cell types for which the ENCODE Consortium hosts sequencing data (i.e., DNase-
seq, and H3K4me1, H3K4me3 and H3K27ac histone ChIP-seq experiments) as we increase the number of
data modalities considered is shown in red.

Several approaches have been proposed to handle the missing modality problem. A straight-

forward approach is to randomly drop data modalities when training the model [Jaques et al.

2017a]. Missing modalities can also be imputed using autoencoders [Wang et al. 2018]. However,

data imputation may introduce undesired noise when the true underlying data distribution is un-

known [Wang et al. 2018], which is common for many genomic problems. The quality of genomic

data imputation methods are commonly evaluated based on the similarity between imputed and
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real data [Hou et al. 2020]. However, high-throughput sequencing data, especially single-cell se-

quencing data, only capture snapshots of the dynamic cell states, which partially explains the

signi�cance of batch e�ect when handling biological data [Leek et al. 2010]. Being able to sim-

ulate data that resemble any particular real dataset is therefore not an accurate measurement of

computational models’ ability to more comprehensively capture dynamic cell states.

Missing modality methods that focus on incorporating both complete and incomplete data

modalities is therefore particularly suited for handling genomics data as large scale data consor-

tiums have collected large amount of high-throughput sequencing data; but most of them are

highly concentrated towards a small collection of well-studied factors and conditions (Figure 1.1

and Boix et al. [2021]). Semi-supervised learning can be deployed to allow di�erent objectives for

datapoints having complete and incomplete data modalities [Yang et al. 2018]. Using the notion

of knowledge distillation, one can �rst train separate models for each data modality to generate a

set of soft labels that impute labels for missing modalities. The soft labels, as well as the true tar-

get labels from multiple data modalities can then be used to train multimodal model for a speci�c

objectives of interest [Wang et al. 2020]. Such methods, although not designed for genomic prob-

lems, can provide useful insights from which specialized missing modality methods for genomics

can be developed.

5.2.3 Biophysically motivated modeling of biological systems.

It has always been my goal to build machine learning models for biological systems motivated

by their biophysical properties. For instance, in Chapter 4, we trained a CRF to convert base-

pair resolution binding probabilities to binary binding decisions. This work is inspired by the

observation that positions immediately adjacent to a binding site are also likely bound by the same

TF. CRF, therefore, is advantageous compared to logistic-regression-based classi�ers because the

class label at the previous position a�ects the classi�cation at the current position (Figure 4.10).

Constructing TRNs (see Section 2.4.3) using TF motifs can be problematic, as the source of the

68



motif library can have a signi�cant e�ect on predicted network structure [Gibbs et al. 2021]. More

importantly, motifs that specify TF sequence speci�city only explain a fraction of the in vivo TF

binding landscape. TF motifs indicate strong in vitro binding sites. However, in vivo TF binding

sites are highly in�uenced by chromatin accessibility and show a low correlation to TF motif

enrichment [Chen et al. 2017]. Many functionally important low-a�nity and transient binding

sites do not show motif enrichment. These observations have important functional implications.

In fact, TF-regulated tissue- and cell type-speci�c gene expressions are often indicative of tissue-

and cell type-speci�c functions. Methods for predicting base-pair resolution in vivo TF binding

sites, such as NetTIME proposed in Chapter 4, can serve as a more �exible approach to generating

prior network structure as it bypasses the aforementioned unnecessary TF motif constraints. In

future work, we hope to adapt the NetTIME framework to explore more e�cient approaches for

generating prior knowledge for more biophysically motivated TRN inference.
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A | Appendix

A.1 Supplementary information for Chapter 4

A.1.1 Supplementary method

A.1.1.1 Data retrieval and preprocessing

The list of 71 TF-focused ChIP-seq experiments we use to generate target labels are provided

in Supplementary Data 1. Combined peak set are �rst generated by merging the conserved and

relaxed peak sets from the above experiments. Peaks that are longer than 1000 bp are removed.

Two overlapping peaks are merged when 1) they overlap for more than 200 bp, and 2) the resulting

merged peak is shorter than 600 bp. Each interval in the merged peak set is used to create one

1000 bp example sequence where the midpoints of the example and the interval are the same.

For TF ? in cell type @, a nucleotide = is classi�ed as bound if = is within any ChIP-seq peaks for

condition [?, @], and unbound otherwise.

The ENCODE experiments used to generate cell type-speci�c features are provided in Supple-

mentary Data 2. We download the narrowPeak BED �les for all DNase-seq and histone ChIP-seq

experiments, read-depth normalized signal bigWig �les for all DNase-seq experiments, and the

signal p-value bigWig �les for all histone ChIP-seq experiment from the ENCODE Consortium 1.

The genomic interval of each example sequence is intersected with DNase-seq and Histone ChIP-
1https://www.encodeproject.org/
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seq bigWig �les to retrieve the corresponding example cell-type-speci�c feature signals. To re-

duce noise, only positive signals that fall within peak regions, de�ned in the DNase-seq and his-

tone ChIP-seq narrowPeak BED �les, are retrieved to generate the example feature signal tracks.

Each cell-type-speci�c feature signal track across all examples are further zscore normalized be-

fore being used as input to the NetTIME model.

To test our model’s ability to make transfer predictions beyond the training panels of TFs and

cell types, we additionally collect target labels from 40 ENCODE TF-focused ChIP-seq experi-

ments (Supplementary Data 3) and cell type-speci�c features from 10 cell types (Supplementary

Data 4). These additional datasets are processed using the same procedures described above to

generate additional �ne-tuning examples.

To compare NetTIME performance with that of Catchitt, and to evaluate whether precom-

puted TF motif PWMs can improve in vivo TF binding predictions, we additionally obtain the v11

TF motif PWMs 2 from the HOCOMOCO [Kulakovskiy et al. 2018] motif database. If multiple

motif PWMs exist for a particular TF in the database, we select the motif PWM with the high-

est quality rating. To generate TF motif features for the NetTIME model, we run FIMO [Grant

et al. 2011] for each example sequence using the collected TF motif PWMs to �nd regions in the

example sequence that exhibit TF motif enrichment. FIMO motif search is conducted by setting

the p-value threshold to 1e-2 while leaving all other parameters as default. The motif enrich-

ment scores for each DNA strand are mapped to the corresponding regions in the example se-

quence. Regions in the example sequence that are not enriched by the TF of interest is set to zero.

As a result, two additional TF-speci�c features–TF motif enrichment for plus and minus DNA

strands–can be added along the feature dimension of the NetTIME input. For each strand, raw

motif enrichment scores are zscore normalized across all examples before being used as NetTIME

input.
2https://hocomoco11.autosome.ru/downloads_v11
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A.1.1.2 Method comparison

We divide each 1000 bp example sequence in our test set into =-bp bins (1 ≤ = ≤ 1000). To test

model performance under di�erent resolutions, we set the bin width= = 20, 50, 100, 200, 500, 1000.

These binned sequences, along with other necessary input features, are provided to DeepBind,

BindSpace and Catchitt to generate predictions under di�erent resolutions. We describe below

in detail how predictions are generated from these three methods.

DeepBind We directly use pretrained DeepBind ChIP-seq models3 to generate predictions on

our test data. Among all DeepBind models pretrained on ChIP-seq data, we found 11 conditions

that overlap with our training set of conditions. DeepBind performance is therefore evaluated

against our test data using the 11 pretrained models.

BindSpace BindSpace provides pretrained models for 243 TFs, 6 of which overlap with our

training set of TFs. We �rst generate test data predictions for these 6 TFs. As BindSpace’s predic-

tions are not cell-type-speci�c, model performance is assessed by comparing predictions made

for each TF with the target labels of the same TF across all available cell types. Among our train-

ing set of conditions, target labels are available for 22 conditions containing the above 6 TFs.

BindSpace performance is therefore evaluated using test data generated for these 22 conditions.

Catchitt We separately train 71 Cachitt models for all conditions we included in our training

set, as pretrained Catchitt models are not publicly available. Both DNase-seq data and the HO-

COMOCO TF motifs are used as features and these models are trained by following the Catchitt

documentation4. Training, validation, and test data are split the same way as our model (Ta-

ble A.1). Catchitt performance achieved on test dataset are reported here.

For all of the above methods, we use predictions generated using the lowest applicable bin
3http://tools.genes.toronto.edu/deepbind/
4http://www.jstacs.de/index.php/Catchitt
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width = (= = 20 for DeepBind and BindSpace, and = = 50 for Catchitt) to compare models’ base-

pair level performance. For any method � , if � (x) = 2 for input sequence G of =-bp, then we set

�1? (G8) = 2,∀8 ∈ [1, =], where �1? is the base-pair level prediction derived from original method

prediction.
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A.1.2 Supplementary Tables

Number of samples
Dataset Chromosomes Peak set(s) Number of conditions Per condition Total

Training 3-7, 10-20 Conserved + Relaxed 71 937, 676 66, 574, 996
Validation 2, 9, 22 Conserved 71 101, 644 7, 216, 724
Test 1, 8, 21 Conserved 71 102, 178 7, 254, 638

Table A.1: The number of samples in training, validation and test datasets used to train and evaluate NetTIME supervised performance.
Data splits are performed according to chromosomes. Both the ENCODE TF ChIP-seq conserved and relaxed peak sets are used for training,
whereas only the conserved peak set is used to construct the validation and test datasets. A condition specifies a single TF-focused ChIP-
seq experiment conducted in a particular cell type. All training, validation and test data are generated from the same set of 71 ChIP-seq
conditions spanning 22 TFs and 7 cell types.
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A.1.3 Supplementary figures
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Figure A.1: NetTIME architecture. Detailed view of the NetTIME architecture shown in Figure 4.2b.
Three main parameters of the model are the number of input features  , example sequence length !, and
embedding dimension 3 .
(Continue on next page.)

75



Figure A.1: (Continued from the previous page.)
Output dimensions for di�erent model layers are shown on the right side of the architecture blocks.
Linear(0, 1) denotes the linear transformation of input size 0 and output size 1; Conv(4 , 5 , 6, ℎ) denotes
the 1D convolution operation of 4 output channels, kernel size 5 , stride6 and paddingℎ. Bi-GRU(8) denotes
bi-directional GRU layer of hidden size 8 . Dropout probability % = 0.1 for the first pass of the Basic Block,
and % = 0.0 for the second pass.
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A.1.4 Supplementary data

Supplementary Data 1 A list of ENCODE replicated TF ChIP-seq experiments used to gen-

erate target labels and train the NetTIME model.

SupplementaryData2 A list of ENCODE DNase-seq, and H3K4me1, H3K4me3 and H3K27ac

ChIP-seq experiments used to generate cell type-speci�c features to train NetTIME model.

Supplementary Data 3 An additional list of ENCODE replicated TF ChIP-seq experiments

used to �ne tune pretrained NetTIME model for transfer learning.

Supplementary Data 4 An additional list of ENCODE DNase-seq, and H3K4me1, H3K4me3

and H3K27ac ChIP-seq experiments used to �ne tune pretrained NetTIME model for transfer

learning.
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