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Abstract

Operator inference learns low-dimensional dynamical-system models with polynomial non-

linear terms from trajectories of high-dimensional physical systems (non-intrusive model

reduction). This work focuses on the large class of physical systems that can be well de-

scribed by models with quadratic and cubic nonlinear terms and proposes a regularizer for

operator inference that induces a stability bias onto learned models. The proposed regular-

izer is physics informed in the sense that it penalizes higher-order terms with large norms and

so explicitly leverages the polynomial model form that is given by the underlying physics.

This means that the proposed approach judiciously learns from data and physical insights

combined, rather than from either data or physics alone. A formulation of operator inference

is proposed that enforces model constraints for preserving structure such as symmetry and

definiteness in linear terms. Additionally, for a system of nonlinear conservation laws, we

enforce model constraints that preserve the entropy stability of the dynamical system. Nu-

merical results demonstrate that models learned with operator inference and the proposed

regularizer and structure preservation are accurate and stable even in cases where using no

regularization and Tikhonov regularization leads to models that are unstable.
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Chapter 1

Introduction
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1.1 Motivation

As simulating high-dimensional dynamical systems is computationally expensive, there is a

need for model reduction to derive low-dimensional reduced models that are quicker to simu-

late [Ant05, RHP07, QRM11, QR14, BGW15, HRS16, ABG21, Peh22]. Classical projection-

based model reduction generates reduced models via projecting the full model operators onto

the reduced space. Thus, classical model reduction is intrusive in nature and cannot be used

when the full model is a gray box model, where full model operators cannot be accessed and

we only have access to data and partial structural information. This motivates non-intrusive,

data-driven model reduction that learns reduced model operators from trajectories of the

full model. Relying on data alone is often insufficient to learn accurate, interpretable, and

robust models. For example, for a dynamical system with a dissipation term, the operator

corresponding to the dissipation term is symmetric positive definite, and not preserving the

structure of this operator can lead to an unstable model. There also typically is inherent

structure to the full model operators, resulting from the physics of the underlying model,

which often cannot be learned from data alone. This motivates using a combination of data

and physical insights to learn the reduced model, which is also the route we go in this thesis.

1.2 Thesis objectives

The thesis objectives are as follows:

1. Combine data and physical insights to learn reduced models in a non-intrusive manner.

2. Increase robustness of non-intrusive model reduction with operator inference via

physics-informed regularization.

3. Improve stability of non-intrusive model reduction with operator inference via structure

preservation.
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4. Preserve entropy conservation and entropy stability for non-intrusive model reduction

with operator inference.

Motivated by the Lyapunov stability analysis of dynamical systems, we design a physics-

informed regularizer that penalizes the norm of the non-linear operators. To preserve the

underlying structure of the dynamical systems, we enforce constraints on the linear operators

of the dynamical system and solve a constrained optimization problem to learn the reduced

model. To preserve the entropy stability and stricter entropy conservation properties of a

system of nonlinear conservation laws, we also enforce constraints on the operators, and solve

a constrained optimization problem when learning the reduced model.

1.3 Thesis outline

In chapter 2, we briefly review intrusive and non-intrusive model reduction techniques in time

and frequency domain and operator inference. In chapter 3, we discuss the motivation behind

the conducted research, propose physics-informed regularization for operator inference, and

demonstrate the proposed regularizer with numerical experiments. In chapter 4, we discuss

the structure preservation for operator inference. In chapter 5, we discuss non-intrusive

entropy conservation and entropy stable model reduction using operator inference and show

numerical results. In chapter 6, we conclude with a brief overview of our findings.
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Chapter 2

Preliminaries

In this chapter, we review selected literature on intrusive and non-intrusive model reduc-

tion in time and frequency domain. Section 2.1 briefly describes the details of the high-

dimensional full models that we consider in the following. Section 2.2 reviews selected

techniques of intrusive and non-intrusive model reduction in time domain, and Section 2.3

reviews a non-intrusive model reduction method in frequency domain. Section 2.4 reviews

operator inference, which is the non-intrusive model reduction approach that we will build on

in the following. The concept of re-projection is discussed in Section 2.5. Operator inference

with re-projection aims to recover intrusive model operators without accessing full-model

operators. We refer to the surveys and textbooks [Ant05, RHP07, QRM11, QR14, BGW15,

HRS16, ABG21, Peh22] for more details on model reduction.
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2.1 High-dimensional numerical models

(“full models”)

Consider a high-dimensional dynamical system of the form

d

dt
x(t;µ) = f(x(t;µ),u(t;µ);µ) , (2.1)

with the state x(t;µ) ∈ RN at time t ∈ [0, T ] and for parameter µ ∈ D in a parameter domain

D. The system can be excited with the input u(t;µ) ∈ Rp. The dynamics are encoded by

the potentially nonlinear function f : RN ×Rp ×D → RN . This is the high-dimensional full

model, and the goal of model reduction is to learn a reduced model of dimension n ≪ N

that is within reasonable accuracy of the full model.

In many cases, the nonlinear function f has structure. In this work, we focus on the

cases where f has polynomial structure so that we can write

d

dt
x(t;µ) = A(µ)x(t;µ) +B(µ)u(t;µ) +

R∑
r=2

F r(µ)x
r(t;µ) , (2.2)

with linear operator A(µ) ∈ RN×N , input operator B(µ) ∈ RN×p, and non-linear operators

F r(µ) for r = 2, . . . , R. For example, we have F 2(µ) ∈ RN×N(N+1)/2 for r = 2, and F 3(µ) ∈

RN×N(N+1)(N+2)/6 for r = 3. For a quadratic system, the vector x2(t;µ) ∈ RN(N+1)/2 is

defined as

x2(t;µ) = [x
(1)
2 (t;µ)T , . . . ,x

(N)
2 (t;µ)T ]T (2.3)

where x
(i)
2 (t;µ) = xi(t;µ)[x1(t;µ), . . . , xi(t;µ)]

T for i = 1, . . . , N. The vector x2(t;µ) contains

all pairwise products of components of the state vector x(t;µ) up to duplicates; see, e.g.,
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[PW16b]. For a cubic system, the vector x3(t;µ) ∈ RN(N+1)(N+2)/6 is defined as

x3(t;µ) = [x
(1)
3 (t;µ)T , . . . ,x

(N)
3 (t;µ)T ]T (2.4)

where x
(i)
3 (t;µ) = [x

(i,i)
3 (t;µ)T , . . . , x

(i,N)
3 (t;µ)T ]T for i = 1, . . . , N , with

x
(i,j)
3 (t;µ) = xi(t;µ)xj(t;µ)[xi(t;µ), . . . , xj(t;µ)]

T for j = i, . . . , N.

A special case is given by linear time-invariant and parameter-free systems so that (2.2)

becomes

E
d

dt
x(t) = Ax(t) +Bu(t) (2.5)

where often an output equation is given as well as

y(t) = Cx(t) .

The output operator is C ∈ Rq×N and output at time t is y(t) ∈ Rq. Notice that there is

a matrix E ∈ RN×N that we assume to have full rank in the following. A system such as

(2.5) can also be represented in the frequency domain by taking the Laplace transform. One

obtains

Y (s) =H(s)U(s), (2.6)

with the transfer function

H(s) = C(sE −A)−1B, (2.7)

at frequency s and the input U(s) in the frequency domain.
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2.2 Reducing models formulated in the time domain

We now describe model reduction techniques that apply to models that are formulated in

the time domain. We start in Section 2.2.1 with intrusive methods. Intrusive means that

the full-model operators have to be available either in assembled form or via a routine that

provides the action of the operator on a function. In Section 2.2.2, we discuss non-intrusive

model reduction techniques.

2.2.1 Intrusive projection-based model reduction methods

Traditionally, model reduction consists of two phases. In the offline phase, a reduced

model is constructed. This is a one-time computationally expensive phase. In the on-

line (test/deployment/evaluation) phase, the reduced model is used to provide predictions

of the full-model solutions; often with greatly reduced costs. We note, however, that there

is a range of methods that break with the classical offline/online splitting, e.g., [PW15a,

AZW15, Car15, PW15b, PW16a, ZPW18, Peh20a, CKMP20, HPR22].

We focus on snapshot-based model reduction techniques. For each parameter µ ∈

{µ1, . . . , µM} in a set of M ∈ N parameters, consider Mb ∈ N input trajectories

Ub
1(µ), . . . ,U

b
Mb

(µ),

and initial conditions xb
1,0(µ), . . . ,x

b
Mb,0

(µ). The full model is simulated at these input tra-

jectories and initial conditions to generate the corresponding state trajectories

Xb
1(µ), . . . ,X

b
Mb

(µ),

where

Xb
j (µ) = [xb

j,1(µ), · · · ,xb
j,K(µ)] ∈ RN×K , j = 1, . . . ,Mb,
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with time steps 0 = t0 < t1 < · · · < tK = T . Thus, state xb
j,i(µ) corresponds to the j-th

trajectory and time step i. The state trajectories for all parameters are concatenated into

the snapshot matrix

Xb = [Xb
1(µ1), . . . ,X

b
Mb

(µ1), . . . ,X
b
1(µM), . . . ,Xb

Mb
(µM)] ∈ RN×KMMb . (2.8)

Intrusive model reduction based on snapshots proceeds in three steps: The first step is

snapshot collection to obtain the snapshot matrix (2.8).

The second step is constructing a reduced basis matrix V n ∈ RN×n. The columns of

the basis matrix V n span a reduced space Vn. There are many techniques for constructing

bases of reduced spaces. We will focus on proper orthogonal decomposition (POD) [Sir87,

BHL93, RP03]. For a POD basis of dimension n≪ N , the POD space Vn is the space that

minimizes the quantity
M∑
i=1

Mb∑
j=1

K∑
k=1

inf
vn∈Vn

∥∥xb
j,k(µj)− vn

∥∥ .
The solution for this minimization problem is constructed from the singular value decompo-

sition (SVD) of the snapshot matrix Xb. We do not scale and center the snapshots before

applying POD. The reduced basis vectors are the first n left singular vectors

V n = [v1, . . . ,vn] ∈ RN×n , (2.9)

corresponding to the n largest singular values of Xb. The basis matrix V n is orthogonal in

the following. We focus on the orthogonality with respect to the Euclidean distance so that

V T
nV n = I, where I is the identity matrix. There is a wide range of heuristics to select the

dimension n. One is observing the decay of the singular values and truncating when 95% or

99% of the energy are retained in the POD modes; see [BGW15].

The third step is constructing the reduced model. We focus here on Galerkin projection,
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but note that Petrov-Galerkin projection is also often used. The reduced model constructed

via Galerkin projection of the full model is given by

d

dt
x̃(t;µ) = V T

nf(V nx̃(t;µ);u(t;µ)) , (2.10)

where the reduced state x̃(t;µ) ∈ Rn is of dimension n and approximates the full-model

state x(t;µ) as x(t;µ) ≈ V nx̃(t;µ). Notice that f is the nonlinear function of the generic

full-model form given in (2.1). Thus, to evaluate the right-hand side of the Galerkin reduced

model given in (2.10), one has to take the reduced state x̃(t;µ) and represent it in the

high-dimensional space V corresponding to the full model and then evaluate the nonlinear

function f at all N components, only to project it back onto the reduced space Vn. This

means that evaluating x̃ 7→ V T
nf(V nx̃) incurs computational costs that are at least as high

as evaluating f in the full model and thus typically no speedups can be achieved. This is

referred to as the “lifting bottleneck” in the model reduction. Various solutions have been

proposed. Especially sampling-based techniques have been very successful, which are based

on gappy POD [ES95, AWWB08, CBMF11, CFCA13] and empirical interpolation [BNMP04,

MM13, MMPY15, CS10, PBWB14, DG16, PDG20, SBK15, MBK17]. In this work, we go

a different route. We exploit the polynomial structure of f as given in (2.2), which allows

pre-computing reduced operators in the offline phase, which then can be used online with

costs that scale independently of the dimension N of the full model [Gu11, BB15, KW19].

This gives us a reduced model of the form

d

dt
x̃(t;µ) = V T

nA(µ)V nx̃(t;µ) + V
T
nB(µ)u(t;µ) +

R∑
r=2

V T
nF r(µ)(V n ⊗ · · · ⊗ V n)x̃

r(t;µ) ,

where the V T
nF r(µ)(V n ⊗ · · · ⊗ V n) is denoting a projection that is described in detail in,

e.g., [KW19, Peh20b]. Thus, for each parameter µ ∈ {µ1, , . . . , , µM}, one obtains a reduced

9



model

d

dt
x̃(t, µ) = Ã(µ)x̃(t;µ) + B̃(µ)u(t;µ) +

R∑
r=2

F̃ r(µ)x̃
r(t;µ) , (2.11)

where

Ã(µ) = V T
nA(µ)V n , B̃ = V T

nB(µ) , F̃ r = V
T
nF r(µ) (V n ⊗ · · · ⊗ V n)︸ ︷︷ ︸

r times

, r = 2, . . . , R.

(2.12)

The reduced model (2.11) can then be used in the online phase to provide predictions at new

initial conditions that have not been used in the training set. Because the reduced system

has states of dimension n ≪ N , it often can be simulated with lower computational costs

than the full model with states of dimension N . If one wants to use the reduced model

to predict at new parameter µ ∈ D \ {µ1, . . . , µM} that are outside of the set of training

parameters {µ1, . . . , µM}, then one can interpolate the reduced operators (2.12) at a new

parameter µ ∈ D. For a test parameter µ, such that

µj < µ < µj+1, j ∈ {1, . . . ,M − 1},

the reduced model operators Â(µi), B̂(µi), F̂ 2(µi), . . . , F̂R(µi), i = i, . . . ,M are interpolated

to compute reduced model operators Â(µ), B̂(µ), F̂ 2(µ), . . . , F̂R(µ) in the following manner:

Â(µ) = I
(
µ; Â(µ1), . . . , Â(µM)

)
,

B̂(µ) = I
(
µ; B̂(µ1), . . . , B̂(µM)

)
,

F̂ r(µ) = I
(
µ; F̂ r(µ1), . . . , F̂ r(µM)

)
, r = 2, . . . , R,

10



where I
(
µ; Â(µ1), . . . , Â(µM)

)
is the linear interpolation around µ defined as,

I
(
µ; Â(µ1), . . . , Â(µM)

)
= Â(µj) + (µ− µj)

Â(µj+1)− Â(µi)

µj+1 − µj

.

Linear interpolation is done in a similar manner for B̂(µ), F̂ 2(µ), . . . , F̂R(µ).

2.2.2 Non-intrusive methods in the time domain

Classical model reduction requires access to the high-dimensional operators, thus it is intru-

sive in nature as described in Section 2.2.1. This can be seen in the projection step shown

in (2.12), where a multiplication with the full-model operator is performed. Non-intrusive

model reduction methods learn reduced models from a gray box model without requiring

access to the full model operators by either circumventing the projection step (2.12) or

replacing it with a non-intrusive calculation.

The are many different methods in literature for non-intrusive model reduction. There

is dynamic mode decomposition (DMD) [Sch10, RMB+09, TRL+14, KBBP16] that best-fits

linear operators to state trajectories in L2 norm. Methods based on Koopman operators have

been developed to extend DMD to nonlinear systems [Mez05, WKR15, BBPK16]. There are

also sparse identification methods such as SINDy [BPK16] and the works [SCHO13, Sch17,

TW17]. Motivated by frequency-domain methods that we will be survey below, there is a

range of time-domain Loewner approaches such as [PGW17, KGA21].

We build upon operator inference [PW16b] that infers reduced models with polyno-

mial nonlinear terms from snapshots data. After generating the reduced basis V ∈

RN×n, operator inference projects the state trajectories onto the reduced basis to gen-

erate low-dimensional projected trajectories. Reduced model operators Â(µ), B̂(µ) and

F̂ 2(µ), . . . , F̂R(µ) are then fitted to these projected trajectories by solving a least squares

problem. We discuss operator inference in detail in section 2.4.
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2.3 Non-intrusive model reduction in the frequency

domain

We focus on briefly reviewing the Loewner framework [AA86, MA07, ABG21] as a method

for non-intrusive model reduction in the frequency domain. Note that there is a range of

other non-intrusive model reduction methods that can be applied in the frequency domain

such as the AAA algorithm [NST18], eigensystem realization algorithm [Vib95, KG16, Qin06,

Rey12], and vector fitting [GS99, DGB15].

Loewner framework was developed for linear time-invariant systems but since than has

been extended to parameterized [IA14], switched [GPA18], structured [SUBG18], delayed

[SU16], bilinear [AGI16], quadratic [GKA21], quadratic bilinear [GA18], polynomial [BG21],

and parameter-varying [GPA21] systems as well as to learning from time-domain data

[PGW17, KGA21] and noisy data [LIA10, EI22, DP22]. We describe the Loewner framework

in the setting of linear time-invariant systems. Consider the LTI system given in (2.5) with

its frequency-domain representation in (2.6). The aim is to construct a reduced model of

dimension n≪ N of the form

Ê
d

dt
x̂(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t),

(2.13)

with a transfer function

Ĥ(s) = Ĉ(sÊ − Â)−1B̂

that interpolates the full-model transfer function H at interpolation points s1, . . . , s2n. The

interpolation points are partitioned into two sets

[s1, . . . , s2n] = [λ1, . . . , λn] ∪ [π1, . . . , πn].
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The values of the full-model transfer function H evaluated at these interpolation points are

used to construct the Loewner matrix

L =


H(λ1)−H(π1)

λ1−π1
. . . H(λ1)−H(πn)

λ1−πn

...
. . .

...

H(λn)−H(π1)
λn−π1

. . . H(λn)−H(πn)
λn−πn

 ,

and the shifted Loewner matrix

Ls =


λ1H(λ1)−π1H(π1)

λ1−π1
. . . λ1H(λ1)−πnH(πn)

λ1−πn

...
. . .

...

λnH(λn)−π1H(π1)
λn−π1

. . . λnH(λn)−πnH(πn)
λn−πn

 .

The Loewner reduced model matrices of the reduced model (2.13) are

Ẽ = −L, Â = −Ls, B̂ = [H(λ1), . . . ,H(λn)]
T , Ĉ = [H(π1), . . . ,H(πn)], (2.14)

and the corresponding transfer function Ĥ interpolates the full model transfer functionH(s)

at s1, . . . , s2n. The system given by (2.14) can be compressed via the SVD [ABG21]. To

summarize, the data that is used to construct a reduced model consists of pairs of frequencies

and transfer-function values.

2.4 Operator inference

Operator inference [PW16b] learns reduced models from data and physical insights from

the model. A reduced basis matrix V ∈ RN×n is constructed in same way as in clas-

sical intrusive model reduction, as shown in Section 2.2. For each training parame-

ter µ ∈ {µ1, . . . , µM}, consider Mt training input trajectories U 1(µ), . . . ,UMt(µ) with
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initial conditions x1,0(µ), . . . ,xMt,0(µ) and the corresponding training state trajectories

X1(µ), . . . ,XMt(µ).

2.4.1 Basic Operator Inference

Operator Inference proceeds in three steps: In Step 1, the training trajectories are projected

onto the reduced space via

X̄ i(µ) = V
TX i(µ) , i = 1, . . . ,Mt .

The corresponding projected trajectories X̄1(µ), . . . , X̄Mt have columns with dimension n

of the reduced space V , that is spanned by the columns of the basis matrix V .

In Step 2, the operators Â(µ), B̂(µ) and F̂ r(µ), r = 2, . . . , R are fitted via least-squares

regression to the projected training trajectories,

min
Â(µ),B̂(µ),F̂ 2(µ),...,F̂R(µ)

J(Â(µ), B̂(µ), F̂ 2(µ), . . . , F̂R(µ))

with the objective function

J(Â(µ), B̂(µ), F̂ 2(µ), . . . , F̂R(µ))

=
Mt∑
i=1

K∑
k=1

∥∥∥∥∥x̄′
i,k(µ)− Â(µ)x̄i,k(µ)− B̂(µ)ui,k(µ)−

R∑
r=2

F̂ r(µ)x̄
r
i,k(µ)

∥∥∥∥∥
2

2

,

(2.15)

where ui,k(µ) is the input at time step k of the ith training trajectory

U i(µ) = [ui,1(µ), . . . ,ui,K(µ)] ,

for i = 1, . . . ,Mt. The quantity x̄′
i,k ∈ Rn denotes a numerical approximation of the time

derivative of the projected state at time k of the ith trajectory, such as a first-order finite
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difference approximation

x̄′
i,k =

x̄i,k − x̄i,k−1

δt
, (2.16)

or a five-point stencil, with time-step size δt > 0.

In Step 3, the inferred operators Â(µ), B̂(µ), F̂ 2(µ), . . . , F̂R(µ) are then used to assemble

a low-dimensional model

d

dt
x̂(t;µ) = Â(µ)x̂k(t;µ) + B̂(µ)uk(µ) +

R∑
r=2

F̂ r(µ)x̂
r
k(t;µ). (2.17)

For our work, we only consider problems with quadratic and cubic non-linear terms. The

learned model (2.17) can then be used to predict at new initial conditions. For predicting

at a new parameter, the learned operators can be interpolated as described in Section 2.2.1.

2.4.2 Operator Inference as a building block of Scientific Machine

Learning

There is a series of works that build on the basic steps of operator inference outlined above.

First, there is work on “lift & learn” [QFW22, Qia21] that first applies a transformation or

lifting to the snapshots so that the dynamics can be better approximated with low-order

polynomial models. The idea of lifting has a long history; see e.g., [McC76]. In model

reduction, lifting to quadratic model form has been used for a long time, starting with the

work [Gu11] and follow up works in the model reduction that intersects with the systems

and control theory [BB15, BGG18] and snapshot-based, intrusive model reduction with POD

[KW19]. Another line of work has extended operator inference to systems without polynomial

nonlinear terms by integrating the non-polynomial terms into the objective [BGK+20] and to

differential-algebraic equations [KW22]. Additionally, works have built on similar techniques

as operator inference for updating reduced models [PW15a, PW16a, KPW17] and context-
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aware inference [WP22, WP23, FPN+23, SGP22].

A range of works aim to equip operator-inference models with uncertainty quantifica-

tion. There is the work [UP21b] that derives probabilistic a posteriori error bounds for

operator-inference models of systems with linear dynamics. There is a Bayesian formula-

tion of operator inference [GMW22] that poses the task of learning a reduced model as

Bayesian inverse problem with Gaussian prior and likelihood. The resulting posterior distri-

bution characterizes the reduced model operator, thus endowing the reduced model operators

with uncertainty. Another line of work in this direction is given by imposing structure on

operator-inference models as in [SWK22, SK22] as we discuss later in Section 4.

A major challenge is learning from incomplete, perturbed, and noisy data. Active op-

erator inference [UWWP21] deals with noise in the full model trajectories that can dis-

tort the full model dynamics, and affect the reduced model learned via operator inference.

The authors introduce a sampling scheme for querying high-dimension systems for data,

such that under certain conditions the inferred operators are unbiased estimators of in-

trusive model operators obtained via projection of the full model operators. The work

partial observations [UP21a] looks a state histories to account for the loss of informa-

tion due to missing components; this is closely related to concepts developed and used

in [CHK02, LBCK14, LCV17, PD18, TGDW19, LCV17].

Another important topic is regularization, where especially Tikhonov regularization has

been investigated in the context of operator inference in [SKHW20] and [MHW21]. The

work [UHP22] develops operator inference in the context of differentiable solvers and takes

multiple time steps in the operator-inference objective into account. It is shown that this

serves as a regularizer and helps to learn more stable models.

Finally, it is important to note that operator inference is scalable to learning from state

with millions of dimensions. There is the work [SKHW20] that applies operator inference to a

large-scale application from combustion. Because the learning process of operator inference
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relies on standard linear algebra routines, it can be efficiently scaled to high-dimensional

state spaces. The work [QFW22] also considers a combustion example and it is shown that

an operator-inference model with only about 50 dimensions is sufficient to provide acceptable

approximations of a full model with more than 18.5 million degrees of freedom. Similarly,

the works [FGMW23, FMW22] scale operator inference to large-scale problems of rotating

detonation engines.

2.5 Operator inference with re-projection for recovery

guarantees

In this section we review operator inference with re-projection [Peh20b], where the goal is

to exactly recover the intrusive reduced model (2.11), without requiring access to the full

model operators. Consider the projected state trajectory X̄(µ) = V TX(µ) and the state

trajectory X̃(µ) generated via iterating the reduced model generated by projecting the full

model operators onto the reduced space. The two trajectories are different as there is a

non-zero closure error ∥∥∥X̄(µ)− X̃(µ)
∥∥∥
F
,

thus the non-intrusive reduced model fails to approximate the intrusive reduced model. The

goal of re-projection is to generate trajectories X̆(µ) such that the closure error is zero.

Consider a toy example

xk+1 = Axk, k = 0, . . . , K − 1, (2.18)

which is a linear full model with B = 0. The reduced space V is spanned by the columns

of the reduced basis V . Consider that the orthogonal component of V⊥ is spanned by the

columns of matrix V ⊥ ∈ RN×(N−n), such that RN = V ⊕ V⊥. Define x
∥
k = V Txk, and
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x⊥
k = (V ⊥)Txk, so that xk = V x

∥
k + V

⊥x⊥
k . Multiplying (2.18) by V T gives

V Txk+1 = V
TAxk,

= V TAV x
∥
k + V

TAV ⊥x⊥
k .

Similarly, multiplying (2.18) by (V ⊥)T gives

(V ⊥)Txk+1 = (V ⊥)TAxk,

= (V ⊥)TAV x
∥
k + (V ⊥)TAV ⊥x⊥

k .

This leads to the equations

x
∥
k+1 = A

∥∥x
∥
k +A

∥⊥x⊥
k ,

x⊥
k+1 = A

⊥∥x
∥
k +A

⊥⊥x⊥
k ,

(2.19)

where,

A∥∥ = V TAV , A∥⊥ = V TAV ⊥, A⊥∥ = (V ⊥)TAV , A⊥⊥ = (V ⊥)TAV ⊥.

From (2.19), the projected trajectory can be written as

V Txk+1 = x̄k+1 = x
∥
k+1 = A

∥∥x
∥
k +A

∥⊥x⊥
k , k = 0, . . . , K − 1.

Thus the projected state can be written as

x̆k+1 = x
∥
k+1 = A

∥∥x
∥
k +A

∥⊥
k−1∑
i=0

(A⊥⊥)k−1−iA⊥∥x
∥
i +A

∥⊥(A⊥⊥)kx⊥
0 .

The projected state x̆k+1 at time tk+1 depends on the history of the projected states

x
∥
0, . . . ,x

∥
k, instead of only at the last time step x

∥
k. This means that the projected tra-
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jectory cannot be well described by a Markovian model.

Re-projection aims to fix this problem. Instead of iterating the full model, and then

projecting the generated trajectory onto the reduced space, re-projection iterates the full

model for a single time step, projecting the state onto the reduced space and re-projecting

it onto the full model space at every time step.

Consider a non-linear full model

xk+1 = f(xk,uk), k = 0, . . . , K − 1, (2.20)

where

f(xk,uk) = Axk +
R∑

r=2

F rx
r
k +Buk.

Consider an initial condition x0 ∈ V , and x̄0 = V
Tx0. Then V x̄0 = x0, as x0 ∈ V . The

full model is iterated for a single time step to generate

xtmp = f(V x̄0,u0). (2.21)

Then xtmp is projected onto the reduced space to generate x̄1 = V Txtmp. Now the full

model is iterated a single time step with V x̄1 and u1 to generate f(V x̄1,u1) and so on, to

generate the re-projected trajectory

X̄ = [x̄1, . . . , x̄K ].

The work [Peh20b] offers the following proof that the state trajectory obtained by re-

projection is same as the state trajectory generated by iterating the intrusive reduced model.

Proposition 2.1. For the nonlinear model (2.20), consider initial condition x0 ∈ V, and

inputs u0, . . . ,uK. If for the initial condition V Tx0, the intrusive model is iterated to gen-
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erate trajectory X̃, and re-projection is used to generate the re-projected trajectory X̄, then

X̃ = X̄ holds.

Proof. By adding zero columns to the matrices F 2, . . . ,FR one can get matricesH2, . . . ,HR

such that

F rx
r =Hr (x⊗ · · · ⊗ x)︸ ︷︷ ︸

r times

.

Thus, the full model (2.20) can be written as

xk+1 = Axk +
R∑

r=2

Hr (x⊗ · · · ⊗ x)︸ ︷︷ ︸
r times

+Buk.

The first time step of the re-projection iteration (2.21) can be written as

xtmp = Ax0 +
R∑

r=2

F rx
r
0 +Bu0,

= Ax0 +
R∑

r=2

Hr(x0 ⊗ · · · ⊗ x0) +Bu0,

= AV x̃0 +
R∑

r=2

Hr(V x̃0 ⊗ · · · ⊗ V x̃0) +Bu0,

= AV x̃0 +
R∑

r=2

Hr(V ⊗ · · · ⊗ V )(x̃0 ⊗ · · · ⊗ x̃0) +Bu0.

As x̄1 = V
Txtmp, it can be written as

x̄1 = V
TAV x̃0 +

R∑
r=2

V THr(V ⊗ · · · ⊗ V )(x̃0 ⊗ · · · ⊗ x̃0) + V
TBu0,

= Ãx̃0 +
R∑

r=2

H̃r(x̃0 ⊗ · · · ⊗ x̃0) + B̃u0,

= x̃1.

20



Thus, x̃1 = x̄1. With an inductive argument, it can be shown that x̃k = x̄k, k = 2, . . . , K

holds. Thus, X̄ = X̃ holds.

21



Chapter 3

Operator inference with

physics-informed regularization

We first discuss literature on regularization of operator inference in Section 3.1 and then,

in Section 3.2, briefly describe learning low-dimensional models with operator inference and

motivates this work with a synthetic example. Section 3.3 proposes the physics-informed

regularizer based on new upper bounds of stability radii of polynomial models for operator

inference. The computational procedure is discussed in Section 3.4. Numerical results in

Section 3.5 demonstrate that operator inference with the proposed regularizer learns stable

models even when Tikhonov regularization and models learned without regularization are

unstable.
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3.1 Introduction

Our goal is to learn low-dimensional nonlinear dynamical-system models and to penalize

unstable models. We build on operator inference [PW16b] that infers reduced models with

polynomial nonlinear terms from snapshots data. Operator inference comes with recovery

guarantees under certain assumptions [Peh20b, UP21b, UP21a] and it is a building block of

more general learning methods that go far beyond polynomial nonlinear terms and exploit

additional physical insights [QKMW19, QKPW20, BGK+20, KW22, SWK22, UWWP21,

SK22, BGHD22]. In [SKHW20], operator inference is used together with a physics-informed

lifting approach to learn a model of a large-scale combustion system, where it has been

shown that regularization is important for obtaining stable models. A Tikhonov regularizer

is proposed in [SKHW20], which has been further investigated in, e.g., [MHW21, Qia21].

In contrast, we propose a regularizer that goes beyond Tikhonov regularization and that

is explicitly motivated by the nature of the polynomial—in particular, quadratic and cubic

polynomials—model form, which in turn is given by the underlying physics. Building on

the insights from [TVG94, Che07, Kra21], we penalize quadratic and cubic terms with large

norms, which critically and provably influences the stability radius of the learned models and

which is also in agreement with the findings in, e.g., [BB15, GT89]. To formulate the corre-

sponding regularizers for operator inference, we derive novel upper bounds for the stability

radii of cubic and quadratic-cubic models. We present numerical results that demonstrate

improved stability of models learned with the proposed regularization compared to no reg-

ularization and Tikhonov regularization. We expect that similar regularization approaches

can be used when learning reduced models using different non-intrusive model reduction

techniques for the same type of polynomial nonlinear systems.
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3.2 Motivation

We demonstrate operator inference on a toy example. Consider the quadratic dynamical

system

d

dt
x(t) = A(µ)x(t) +Bu(t) + Fx2(t) , (3.1)

where B ∈ RN×1 and F ∈ RN×N(N+1)/2 have entries that are realizations of the uniform

distribution in [0, 1]. The dimension is N = 128. The linear operator in (3.1) is A(µ) =

−µ(As +A
T
s + 2NI), where I is the identity matrix and As ∈ RN×N is a matrix that has

as entries realizations of the uniform distribution in [0, 1]. The matrix A(µ) is symmetric

negative definite with probability 1. The parameter domain is D = [0.1, 1] and end time is

T = 1. We discretize (3.1) with time-step size δt = 10−3 and explicit Euler. For each training

parameter µ ∈ {0.1, . . . , 1.0}, we generate a single (Mb = 1) input trajectory Ub
1(µ),

whose entries are random with a uniform distribution in [0, 2], and an initial condition xb
1,0,

whose entries follow a uniform distribution in [0, 1]. The corresponding state trajectories are

Xb
1(µ1), . . . ,X

b
1(µM). A basis matrix V ∈ RN×n is then constructed from the corresponding

snapshots as described in Section 2.1. The reduced basis is generated for dimension n =

2, . . . , 10. For parameter µ = 0.7, we then construct Mt = 3 training inputs U 1, . . . ,UMt

with training initial conditions x1,0, . . . ,xMt,0, which are sampled from the same distributions

as the inputs and initial conditions for the basis construction. The corresponding training

state trajectories are X1, . . . ,XMt , to which we apply operator inference as described in

Section 2.4. We use a first-order forward difference scheme to approximate the time derivative

as in (2.16). Additionally, for benchmarking purposes, we also construct a reduced model

(2.11) via the intrusive process described in Section 2.2.1.

Figure 3.1a shows the training error of the operator-inference model

etrain =
Mt∑
i=1

∥V X̂ i −X i∥F
∥X i∥F

, (3.2)
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(b) test error (3.3)

Figure 3.1: Synthetic example: (a) The training error for the model learned via operator
inference (OpInf) matches the error of the model obtained with intrusive model reduction.
(b) When tested for a different input and initial condition at the same parameter, the model
learned via operator inference (without regularization) is inaccurate and unstable in this
example.
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which indicates that the operator-inference model achieves a comparable error decay as

the reduced model obtained from intrusive model reduction. However, if we simulate the

operator-inference model at a test input trajectoryU test, whose entries are sampled uniformly

in [0, 10], and test initial condition xtest
0 , with entries sampled uniformly in [0, 1], and plot

the error

etest =
∥V X̂

test
−Xtest∥F

∥Xtest∥F
, (3.3)

in Figure 3.1b, then an instability can be observed, compared to the reduced model from

intrusive model reduction. The results indicate that operator inference is prone to overfitting,

which can result in unstable behavior at test inputs as in this motivating example.

3.3 A physics-informed regularizer for operator infer-

ence

We propose a physics-informed regularizer for operator inference that penalizes unstable

dynamical-system models. In Sections 3.3.1-3.3.3, we recapitulate the definition of the sta-

bility radius of quadratic models and derive new bounds for stability radii of cubic and

quadratic-cubic dynamical-system models with Lyapunov stability criteria. We then pro-

pose a regularizer that penalizes models with small stability radii in Section 3.3.4. In the

following, for each parameter µ ∈ {µ1, . . . , µM} in the training set, an operator-inference

model is learned separately as discussed in Section 2.4. Thus, in this section, the parameter

dependence of quantities is not explicitly denoted.

3.3.1 Stability radius of quadratic models of dynamical systems

We closely follow [TVG94, Kra21] to define the concept of stability radius for quadratic

models of dynamical systems. In fact, the work [Kra21] is the motivation for the proposed
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physics-informed regularizer.

Consider the autonomous quadratic reduced model

d

dt
x̂(t) = Âx̂(t) + Ĥ(x̂(t)⊗ x̂(t)) (3.4)

where ⊗ denotes the Kronecker product. Notice that the quadratic term in (3.4) is denoted

with Ĥ instead of F̂ as in the reduced model (2.11) and the operator-inference model (2.17).

The term Ĥ is of dimension n×n2 and acts on the Kronecker product x̂(t)⊗x̂(t), whereas the

quadratic operator F̂ is of dimension n × n(n + 1)/2 and acts on x̂2(t) without duplicates

due to the commutativity of the multiplication operators, see Section 2.4. However, one

can transform between the two different representations. Thus, the model given in (3.4)

is a different representation of an autonomous version of the reduced model (2.11) and the

operator-inference model (2.17) without a cubic term; cf. Section 3.3.2. See Section 3.3.3

for models with cubic terms. Similarly, we can represent a full model with only a quadratic

term given in the form of (2.2) as (3.4).

Let now without loss of generality x̂e = 0 be an equilibrium point of (3.4), i.e., Âx̂e +

Ĥ(x̂e ⊗ x̂e) = 0. The domain of attraction A(x̂e) of the equilibrium x̂e is then defined as

the set of initial conditions that lead to the equilibrium point x̂e as a steady state, i.e.,

A(x̂e) = {x̂0 : lim
t→∞

x̂(t) = x̂e} ,

where x̂(t) is the state at time t of (3.4) with initial condition x̂0. Directly working with

the stability domain is challenging from an analytic and computational point of view and

thus one typically resorts to deriving subsets D ⊆ A(x̂e). To measure a subset D, we build

on the Lyapunov theory to derive a stability radius. We remark that Lyapunov introduced

the first precise notion of stability of dynamical systems. A short history of the Lyapunov

theory can be found in [HP05, Section 3.1.7]. Since its inception, the Lyapunov theory has
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become an important concept for stability analysis of dynamical systems. In the following,

we build on Lyapunov theory as used in [TVG94, Che07, Kra21].

If there exists a Lyapunov function ν : RN → R+ that is continuously differentiable and

that satisfies

ν(x̂) > 0, ν̇(x̂) < 0, ∀x̂ ∈ A(x̂e) ,

then model (3.4) is locally asymptotically stable about x̂e. Here, ν̇(x̂) means ν̇(x̂) = dν
dx̂
f̂(x̂),

where f̂(x̂) = Âx̂+Ĥ(x̂⊗x̂) is the right-hand side function of the corresponding dynamical

system. As shown in [TVG94, Che07, Kra21], given a Lyapunov function ν, an estimate

D(ρ) ⊆ A(x̂e) of the domain of attraction A(x̂e) is given by

D(ρ) = {x̂ : ν(x̂) ≤ ρ2, ν̇(x̂) < 0} ,

where we refer to ρ as the stability radius.

Consider an autonomous quadratic model (3.4) with Lyapunov function ν(x̂) = x̂TP x̂,

where P ∈ Rn×n is a symmetric positive definite matrix that satisfies

LLT = −Â
T
P − PÂ , (3.5)

for an arbitrary matrix L ∈ Rn×n, and for the linear operator Â, that is Hurwitz. As

a remark, we add that the textbook [HP05] discusses the stability of a linear model with

respect to perturbations in Â and then derives a stability radius for the same. The notion

of stability radius in [HP05] is different to what we derive here, because we are interested

in perturbations in the initial conditions whereas [HP05] considers perturbations in the

matrix Â.
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The derivative of the Lyapunov function along a trajectory is

ν̇(x̂) = ˙̂xTP x̂+ x̂TP ˙̂x .

Building on [Kra21, Proposition 3.1], we obtain the radius

ρ̂ =
σ2
min(L)

2
√
∥P ∥F∥Ĥ∥F

(3.6)

and that D(ρ̂) ⊆ A(x̂e) is a subset of A(x̂e), if Â is Hurwitz, i.e., the real parts of all

eigenvalues of Â are negative. Notice that in contrast to the 2-norm ∥ · ∥2 used in [Kra21,

Proposition 3.1], we state the radius (3.6) with respect to the Frobenius norm ∥ · ∥F , which

leads to an operator inference problem that can be solved more efficiently than when working

with the ∥ · ∥2 norm.

We comment on the bound ρ̂ defined in (3.6) of the stability radius ρ. The same comments

apply to the bounds that are derived in the following sections. We will use the bound ρ̂ to

formulate a regularization terms. Thus, what is important for our approach is that penalizing

a small ρ̂ encourages stabler models that have a larger stability radius ρ, and our numerical

experiments provide empirical evidence of this. This means that for our approach, it is less

critical how close ρ̂ is to ρ in absolute terms and more important that ρ̂ and ρ follow the

same trend in the sense that penalizing the bound ρ̂ leads to a good penalization of ρ.

3.3.2 Stability radius of cubic models of dynamical systems

Consider the autonomous cubic reduced model

d

dt
x̂(t) = Âx̂(t) + K̂(x̂(t)⊗ x̂(t)⊗ x̂(t)) (3.7)
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which is an equivalent representation of an autonomous version of the reduced model (2.11)

and the operator-inference model (2.17) with no input and no quadratic term.

Proposition 3.1. Let ν(x̂) = x̂TP x̂ be a Lyapunov function, where P ∈ Rn×n is a symmet-

ric positive definite matrix that satisfies (3.5). Then an estimate of the domain of attraction

A(x̂e), of the equilibrium point x̂e of (3.7), is given by D(ρ̂) ⊆ A(x̂e), where

ρ̂ =
σmin(L)√
2∥K̂∥F

. (3.8)

Proof. A bound of the derivative for the Lyapunov function ν(x̂) along a trajectory is given

as

ν̇(x̂) = ˙̂xTP x̂+ x̂TP ˙̂x

=
[
Âx̂+ K̂(x̂⊗ x̂⊗ x̂)

]T
P x̂+ x̂TP

[
Âx̂+ K̂(x̂⊗ x̂⊗ x̂)

]
= x̂T [Â

T
P + PÂ]x̂+ (x̂⊗ x̂⊗ x̂)TK̂

T
P x̂+ x̂TPK̂(x̂⊗ x̂⊗ x̂)

= −x̂TLLT x̂+ 2x̂TPK̂(x̂⊗ x̂⊗ x̂)

≤ −σ2
min(L)∥x̂∥2F + 2∥x̂∥4F∥P ∥F∥K̂∥F .

We consider the region where the Lyapunov function gradient is negative, which gives us

∥x̂∥2F <
σ2
min(L)

2∥P ∥F∥K̂∥F
=⇒ ν̇(x̂) < 0 .

Thus, for the Lyapunov function, the inequality

ν(x̂) = x̂TP x̂ ≤ ∥x̂∥2F∥P ∥F <
σ2
min(L)

2∥K̂∥F
= ρ̂2
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holds, and thus the stability radius of the cubic system is

ρ̂ =
σmin(L)√
2∥K̂∥F

.

3.3.3 Stability radius of quadratic-cubic models of dynamical sys-

tems

Consider the autonomous quadratic-cubic reduced model

d

dt
x̂(t) = Âx̂(t) + Ĥ(x̂(t)⊗ x̂(t)) + K̂(x̂(t)⊗ x̂(t)⊗ x̂(t)) (3.9)

which is a different representation of an autonomous version of the reduced model (2.11) and

the operator-inference model (2.17).

Proposition 3.2. Let ν(x̂) = x̂TP x̂ be a Lyapunov function, where P ∈ Rn×n is a symmet-

ric positive definite matrix that satisfies (3.5). Then an estimate of the domain of attraction

A(x̂e), of the equilibrium point x̂e of (3.9), is given by D(ρ̂) ⊆ A(x̂e), where

ρ̂ =

√
∥P ∥F∥Ĥ∥2F + 2σ2

min(L)∥K̂∥F
2∥K̂∥F

−
√
∥P ∥F∥Ĥ∥F
2∥K̂∥F

. (3.10)
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Proof. A bound of the derivative of the Lyapunov function along a trajectory is given as

ν̇(x̂) = ˙̂xTP x̂+ x̂TP ˙̂x

=
[
Âx̂+ Ĥ(x̂⊗ x̂) + K̂(x̂⊗ x̂⊗ x̂)

]T
P x̂+

x̂TP
[
Âx̂+ Ĥ(x̂⊗ x̂) + K̂(x̂⊗ x̂⊗ x̂)

]
= x̂T [Â

T
P + PÂ]x̂+ (x̂⊗ x̂)TĤ

T
P x̂+ (x̂⊗ x̂⊗ x̂)TK̂

T
P x̂+

x̂TPĤ(x̂⊗ x̂) + x̂TPK̂(x̂⊗ x̂⊗ x̂)

= − x̂TLLT x̂+ 2x̂TPĤ(x̂⊗ x̂) + 2x̂TPK̂(x̂⊗ x̂⊗ x̂)

≤ − σ2
min(L)∥x̂∥2F + 2∥x̂∥3F∥P ∥F∥Ĥ∥F + 2∥x̂∥4F∥P ∥F∥K̂∥F ,

where the matrix L is as defined in (3.5). We consider the region where the Lyapunov

function gradient satisfies ν̇(x̂) < 0, which gives us,

−σ2
min(L) + 2∥x̂∥F∥P ∥F∥Ĥ∥F + 2∥x̂∥2F∥P ∥F∥K̂∥F < 0 . (3.11)

Roots of the quadratic equation in (3.11) in ∥x̂∥F are

R1 =
−∥P ∥F∥Ĥ∥F −

√
∥P ∥2F∥Ĥ∥2F + 2σ2

min(L)∥P ∥F∥K̂∥F
2∥P ∥F∥K̂∥F

,

R2 =
−∥P ∥F∥Ĥ∥F +

√
∥P ∥2F∥Ĥ∥2F + 2σ2

min(L)∥P ∥F∥K̂∥F
2∥P ∥F∥K̂∥F

.

Both R1 and R2 are real as ∥P ∥2F∥Ĥ∥2F + 2σ2
min(L)∥P ∥F∥K̂∥F ≥ 0.
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For x̂ with R1 < ∥x̂∥F < R2, we get

(∥x̂∥F −R1)(∥x̂∥F −R2) < 0

=⇒ −σ2
min(L) + 2∥x̂∥F∥P ∥F∥Ĥ∥F + 2∥x̂∥2F∥P ∥F∥K̂∥F < 0

=⇒ ν̇(x̂) < 0.

Because ∥x̂∥F ≥ 0 and R1 ≤ 0, we get,

0 ≤ ∥x̂∥F < R2

as the set of x̂ for which the condition ν̇(x̂) < 0 is satisfied. Thus, for the Lyapunov function,

the inequality

ν(x̂) = x̂TP x̂ ≤ ∥x̂∥2F∥P ∥F < R2
2∥P ∥F = ρ̂2

holds, and thus the stability radius of the quadratic-cubic system is

ρ̂ =
√
R2

2∥P ∥F =

√
∥P ∥F∥Ĥ∥2F + 2σ2

min(L)∥K̂∥F
2∥K̂∥F

−
√

∥P ∥F∥Ĥ∥F
2∥K̂∥F

.

3.3.4 Operator inference with physics-informed regularizer

We now formulate a physics-informed regularizer for learning quadratic, cubic, and quadratic-

cubic models with operator inference.

3.3.4.1 Physics-informed regularizer for quadratic models

For a quadratic nonlinear model, the stability radius ρ̂, which is derived in (3.6), grows

inversely proportional to the norm ∥Ĥ∥F of the quadratic term Ĥ ∈ Rn×n2
in (3.4). Notice
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that other results on stability analysis for quadratic systems, e.g., [BB15, GT89], also show

that a small norm of the quadratic term can increase the stability radius.

The models that we infer with operator inference have the form (2.17) and thus the

quadratic term F̂ is of dimension n×n(n+1)/2. However, models of the form (3.4) with Ĥ

can be transformed into models with the quadratic operator F̂ such that F̂ x̂2 = Ĥ(x̂⊗ x̂)

holds for any x̂ ∈ Rn and ∥Ĥ∥F ≤ ∥F̂ ∥F holds as well. We can construct Ĥ such that

∥Ĥ∥F = ∥F̂ ∥F , by filling the additional columns of Ĥ with zeros. Thus, we obtain that

if we regularize the norm ∥F̂ ∥F , we also regularize the norm ∥Ĥ∥F of a corresponding Ĥ ,

which in turn means that the denominator of the radius ρ̂ is regularized. This leads to the

optimization problem for inferring model (2.17) with operator inference and the proposed

physics-informed regularizer (PIR-OpInf)

min
Â,B̂,F̂

J(Â, B̂, F̂ ,0, λ) + λ∥F̂ ∥2F , (3.12)

with J defined in (2.15), with Ĝ set to the zero matrix because we only infer a quadratic

model, and λ > 0 being a regularization parameter. Notice that increasing λ means more

severely penalizing the norm ∥F̂ ∥F , which in turn leads to a potential increase of the radius

ρ̂ and thus a more stable inferred model in the sense of Lyapunov. We solve the optimization

problem for PIR-OpInf using the SDPT3 solver of the CVX toolbox in MATLAB [GB14,

GB08].

The PIR-OpInf problem (3.12) imposes no constraints on the linear operator Â. In

particular, there is no guarantee that the inferred Â is Hurwitz and thus there can exist

eigenvalues with non-negative real parts. To ensure a linear operator that is Hurwitz, we

apply an eigenvalue reflection as a post-processing step. Let Â = QAΣAQ
−1
A be the eigen-

decomposition of Â. If Â is not diagonalizable, we reduce the dimension n until a matrix

Â is inferred that is diagonalizable. Notice that this process stops in a finite number of
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steps because Â is diagonalizable if n = 1 and Â is non-zero. Without loss of generality,

let σ1, . . . , σr be eigenvalues with non-negative real parts and let σr+1, . . . , σn be all other

eigenvalues. Denote with R(σ) and I(σ) the real and imaginary part, respectively, for a

complex number σ ∈ C. Then, we replace Â with the matrix

QA diag(−ϵ+ I(σ1), . . . ,−ϵ+ I(σr), σr+1, . . . , σn)Q
−1
A ,

which replaces the positive real parts of the eigenvalues with a negative real number given

by the small positive threshold ϵ > 0. Note that the post-processing also needs to be applied

after interpolating at a new parameter µ ∈ D outside of the training set; cf. Section 2.2.1.

In our numerical experiments, when eigenvalues have positive real parts, then they typ-

ically have small magnitude because the underlying systems from which data are sampled

are stable and thus the instability in the learned model is due to, e.g., insufficient data and

other shortcomings of the learning. Because we encounter unstable eigenvalues with small

magnitude only, the reflection described in the previous paragraph is sufficient in our exper-

iments. This is in contrast to other settings where the underlying systems are unstable and

then eigenvalues of learned system matrices have real parts with large magnitudes. In these

cases, other post-processing strategies to obtain Hurwitz linear operators are warranted and

we refer to, e.g., [KvAB14, GA16, Kö14] for additional details.

3.3.4.2 Physics-informed regularizer for cubic models

For a cubic nonlinear model, the stability radius ρ̂, which is derived in (3.8), grows inversely

proportional to ∥K̂∥1/2F of the cubic term K̂ ∈ Rn×n3
in (3.7). The models that we infer

with operator inference have the form (2.17) and thus the cubic term Ĝ is of dimension

n × n(n + 1)(n + 2)/6. Similar to the quadratic model, (3.7) with K̂ can be transformed

into models with cubic operator Ĝ, such that Ĝx̂3 = K̂(x̂(t) ⊗ x̂(t) ⊗ x̂(t)) holds for any
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x̂ ∈ Rn and ∥K̂∥F ≤ ∥Ĝ∥F holds as well. We can construct K̂ such that ∥K̂∥F = ∥Ĝ∥F

by filling the additional columns of K̂ with zeros. Thus, we obtain that if we regularize the

norm ∥Ĝ∥F , we also regularize the norm ∥K̂∥F of a corresponding K̂, which in turn means

that the denominator of the radius ρ̂ is regularized. For the cubic model, this leads to the

optimization problem for inferring model (2.17) with PIR-OpInf

min
Â,B̂,Ĝ

J(Â, B̂,0, Ĝ, λ) + λ∥Ĝ∥F , (3.13)

with F̂ set to the zero matrix because there is no quadratic term. The same post-processing

as for quadratic models in Section 3.3.4.1 is applied to ensure an Â that is Hurwitz.

3.3.4.3 Physics-informed regularizer for quadratic-cubic models

For a quadratic-cubic nonlinear model, by taking derivatives of the stability radius ρ̂, derived

in (3.10), with respect to ∥Ĥ∥F and ∥K̂∥F we get,

∂ρ̂

∂∥Ĥ∥F
=

∥P ∥F∥Ĥ∥F −
√
∥P ∥2F∥Ĥ∥2F + 2σ2

min(L)∥P ∥F∥K̂∥F

2∥K̂∥F
√

∥P ∥F∥Ĥ∥2F + 2σ2
min(L)∥K̂∥F

,

∂ρ̂

∂∥K̂∥F
=

√
∥P ∥F∥Ĥ∥2F

√
∥P ∥F∥Ĥ∥2F + 2σ2

min(L)∥K̂∥F − ∥P ∥F∥Ĥ∥2F − σ2
min(L)∥K̂∥F

2∥K̂∥2F
√

∥P ∥F∥Ĥ∥2F + 2σ2
min(L)∥K̂∥F

.

For ∂ρ̂/∂∥Ĥ∥F we get

∥P ∥2F∥Ĥ∥2F + 2σ2
min(L)∥P ∥F∥K̂∥F > ∥P ∥2F∥Ĥ∥2F

=⇒
√

∥P ∥2F∥Ĥ∥2F + 2σ2
min(L)∥P ∥F∥K̂∥F > ∥P ∥F∥Ĥ∥F

=⇒ ∥P ∥F∥Ĥ∥F −
√

∥P ∥2F∥Ĥ∥2F + 2σ2
min(L)∥P ∥F∥K̂∥F < 0

=⇒ ∂ρ̂

∂∥Ĥ∥F
< 0 .
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For ∂ρ̂/∂∥K̂∥F , squaring the two terms in the numerator gives us

(√
∥P ∥F∥Ĥ∥2F

√
∥P ∥F∥Ĥ∥2F + 2σ2

min(L)∥K̂∥F
)2

= ∥P ∥2F∥Ĥ∥4F + 2∥P ∥F∥Ĥ∥2Fσ2
min(L)∥K̂∥F ,

and

(
∥P ∥F∥Ĥ∥2F + σ2

min(L)∥K̂∥F
)2

= ∥P ∥2F∥Ĥ∥4F + 2∥P ∥F∥Ĥ∥2Fσ2
min(L)∥K̂∥F + σ4

min(L)∥K̂∥2F .

Comparing the two terms, and using the fact that σ4
min(L)∥K̂∥2F and all other terms are

non-negative, leads to the inequality

(
∥P ∥F∥Ĥ∥2F + σ2

min(L)∥K̂∥F
)2

>

(√
∥P ∥F∥Ĥ∥2F

√
∥P ∥F∥Ĥ∥2F + 2σ2

min(L)∥K̂∥F
)2

=⇒ ∥P ∥F∥Ĥ∥2F + σ2
min(L)∥K̂∥F >

√
∥P ∥F∥Ĥ∥2F

√
∥P ∥F∥Ĥ∥2F + 2σ2

min(L)∥K̂∥F

=⇒
√
∥P ∥F∥Ĥ∥2F

√
∥P ∥F∥Ĥ∥2F + 2σ2

min(L)∥K̂∥F − ∥P ∥F∥Ĥ∥2F − σ2
min(L)∥K̂∥F < 0

=⇒ ∂ρ̂

∂∥K̂∥F
< 0 .

That the partial derivatives are negative, ∂ρ̂/∂∥Ĥ∥F < 0 and ∂ρ̂/∂∥K̂∥F < 0, motivates

that decreasing ∥Ĥ∥F and ∥K̂∥F can increase ρ̂, which in turn motivates regularizing with

respect to both ∥Ĥ∥F and ∥K̂∥F . As described in Sections 3.3.4.1 and 3.3.4.2, by regularizing

∥F̂ ∥F and ∥Ĝ∥F , we also regularize ∥Ĥ∥F and ∥K̂∥F respectively. For the quadratic-cubic

model, this leads to the optimization problem for inferring model (2.17) with PIR-OpInf

min
Â,B̂,F̂ ,Ĝ

J(Â, B̂, F̂ , Ĝ, λ) + λ(∥F̂ ∥2F + ∥Ĝ∥F ) . (3.14)
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The same post-processing as for quadratic models in Section 3.3.4.1 is applied to ensure an

Â that is Hurwitz.

A similar approach as described in sections 3.3.1-3.3.3 can be used for models with higher

order nonlinear terms, to derive the expression for the estimated stability radius and to use

it for regularization.

3.4 Computational procedure of physics-informed op-

erator inference

To select a regularization parameter for PIR-OpInf (3.12)–(3.14), we propose a parameter-

selection scheme in Section 3.4.1 and Section 3.4.2. Section 3.4.3 presents Algorithm 1

that summarizes the computational procedure for operator inference with physics-informed

regularization.

3.4.1 A regularization parameter-selection scheme for PIR-OpInf

Let µ1, . . . , µM be the training parameters and recall thatX1(µi), . . . ,XMt(µi) are the train-

ing trajectories with input trajectories U 1(µi), . . . ,UMt(µi), respectively, for i = 1, . . . ,M ;

cf. Section 2.1. Define the minimum λmin and maximum λmax of the regularization parameter

and discretize the interval [λmin, λmax] ⊂ R with m points

λmin = λ1 < · · · < λm = λmax. (3.15)

For each λi, we learn a model Σ̂ij with PIR-OpInf (3.12) for µj, with i = 1, . . . ,m and

j = 1, . . . ,M . In our case, when Σ̂ refers to a model, then we mean the corresponding

matrices that define the model. For example, in the case of a cubic model as in (2.17), the

notation Σ̂ refers to the matrices Â, B̂, F̂ and Ĝ, which is different from the way the symbol
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Σ is typically used in system and control literature where it refers to the system rather than

a realization (model) of the system. Then, for j = 2, . . . ,M − 1 and for i = 1, . . . ,m, we

derive Π̂ij by interpolating between models

Σ̂i,1, . . . , Σ̂i,j−1, Σ̂i,j+1, . . . , Σ̂i,M (3.16)

corresponding to parameters µ1, . . . , µj−1, µj+1, . . . , µM , i.e., the parameter µj corresponding

to model Σ̂ij is left out from the interpolation process. Notice that all models in (3.16) are

trained with the same regularization parameter λi. The interpolated model Π̂ij is integrated

in time with the input trajectories U 1(µj), . . . ,UMt(µj) corresponding to parameter µj to

obtain the trajectories X̂
(i)

1 (µj), . . . , X̂
(i)

Mt
(µj) and the error

evalij =
Mt∑
ℓ=1

∥V X̂
(i)

ℓ (µj)−Xℓ(µj)∥F
∥Xℓ(µj)∥F

(3.17)

is assigned to the pair of regularization parameter λi and parameter µj, where V is the basis

matrix. We then pick λ∗ by solving

argmin
i=1,...,m

1

M − 2

M−1∑
j=2

evalij . (3.18)

Notice that error due to interpolating between models enters the validation error (3.17) and

thus the selection criterion (3.18) for λ∗. This is in contrast to other parameter-selection

schemes for operator inference that are either formulated in parameter-independent settings

or ignore the parameter dependency in the selection process [SKHW20, MHW21].
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3.4.2 Selecting regularization parameters based on initial condi-

tions

In case the operators are independent of a parameter µ, we select the regularization param-

eter based on trajectories generated with multiple initial conditions. For initial conditions

x1
0, . . . ,x

Mt
0 , and inputs U 1, . . . ,UMt , the training trajectories are X1, . . . ,XMt . Define the

minimum λmin and maximum λmax of the regularization parameter and discretize the interval

[λmin, λmax] ⊂ R with m points

λmin = λ1 < · · · < λm = λmax.

We split the training data into L different folds, with the data in each fold being

Xf
l =


[X(l−1)fl+1 . . . X lfl ], for l = 1, . . . , L− 1

[X(l−1)fl+1 . . . XMt ], for l = L

(3.19)

with the rounded value fl =
⌊
Mt

L

⌉
. For fold l, define the validation data as

X̄
f
l =


[Xfl+1 . . . XMt ], for l = 1

[X1 . . . X(l−1)fl X lfl+1 . . . XMt ], for l = 2, . . . , L− 1

[X1 . . . X(l−1)fl ], for l = L .

For each λi, we learn the model Σ̂il with PIR-OpInf (3.12), using the data X̄
f
l , with

i = 1, . . . ,m and l = 1, . . . , L. The learned model Σ̂il is integrated in time with input

trajectories and initial conditions corresponding to Xf
l , to obtain trajectories X̂

f

l (λi), and
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the error

evalil =
∥V X̂

f

l (λi)−X
f
l ∥F

∥Xf
l ∥F

(3.20)

is assigned to the pair of regularization parameter λi and fold l, where V is the basis matrix.

We then pick λ∗ by solving

argmin
i=1,...,m

1

L

L∑
l=1

evalil . (3.21)

3.4.3 Algorithm of operator inference with physics-informed reg-

ularizer

Algorithm 1 summarizes the computational procedure of the proposed approach. Inputs are

the basis matrix V , which is constructed from trajectories as described in Section 2.2.1,

and the training trajectories X1(µi), . . . ,XMt(µi) and inputs U 1(µi), . . . ,UMt(µi) for the

training parameter µi with i = 1, . . . ,M . In the nested for loop, models are generated

with PIR-OpInf (3.12) for all pairwise combinations of regularization parameters defined in

(3.15) and training parameters µ1, . . . , µM . Then, the validation error (3.17) is computed

and the index i∗ of the regularization parameter λi∗ that minimizes the validation error is

determined. The corresponding inferred models are returned.

3.5 Numerical experiments

In this section, we compare operator inference with the proposed physics-informed regular-

izer (PIR-OpInf) to Tikhonov regularization and operator inference without regularization.

Section 3.5.1 revisits the synthetic example from Section 3.2. Sections 3.5.2–3.5.5 show

experiments with the Burgers’ equation, a reaction-diffusion problem in a pipe, phase sep-

aration described by an Allen-Cahn model, and a FitzHugh-Nagumo model. The proposed

approach depends on a small, positive threshold ϵ > 0, e.g., for the post-processing in PIR-
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Algorithm 1: Operator inference with physics-informed regularizer

Input: basis V , inputs U 1(µj), . . . ,UMt(µj) and trajectories X1(µj), . . . ,XMt(µj)
for j = 1, . . . ,M

Output: inferred operators Â(µj), B̂(µj), F̂ (µj), Ĝ(µj) for j = 1, . . . ,M
1 for i = 1, . . . ,m do
2 for j = 1, . . . ,M do

3 Infer operators Â
(i)
(µj), B̂

(i)
(µj), F̂

(i)
(µj), Ĝ

(i)
(µj) with PIR-OpInf (3.12)

and regularization parameter λi defined in (3.15) and training parameter µj

4 Compute validation error (3.17) for i = 1, . . . ,m and j = 2, . . . ,M − 1
5 Pick λ∗ = λi∗ with index i∗ as in (3.18) that minimizes validation error

6 Set Â(µj) = Â
(i∗)

(µj), B̂(µj) = B̂
(i∗)

(µj), F̂ (µj) = F̂
(i∗)

(µj), Ĝ(µj) = Ĝ
(i∗)

(µj) for
j = 1, . . . ,M

7 return Â(µ1), . . . , Â(µM), B̂(µ1), . . . , B̂(µM), F̂ (µ1), . . . , F̂ (µM), Ĝ(µ1), . . . , Ĝ(µM)

OpInf (cf. Section 3.3.4), which we set to ϵ = 10−10 in all of the following experiments.

3.5.1 Synthetic example

Consider again the synthetic example introduced in Section 3.2. We now apply PIR-

OpInf with the parameter selection procedure discussed in Section 3.4.1. For each dimen-

sion n ∈ {2, 4, 6, 8, 10}, we sweep over m = 51 regularization parameters that are log-

uniformly distributed in the interval [10−15, 105]. The selected regularization parameters are

λ∗ = 10−10, 1.58 × 10−7, 10−8, 3.98 × 10−9, 1.58 × 10−9 for dimensions n = 2, 4, 6, 8, 10, re-

spectively. We choose the test parameter set {µtest
1 , . . . , µtest

Mtest
} of Mtest = 7 test parameters

that are equidistantly chosen in D, where for each test parameter a test input trajectory is

constructed with entries sampled uniformly in [0, 10] and a test initial condition with entries

sampled uniformly in [0, 1], cf. Section 3.2.

Figure 3.2a shows the test error

etest =
Mtest∑
i=1

∥V X̄test
(µtest

i )−Xtest(µtest
i )∥F

∥Xtest(µtest
i )∥F

, (3.22)
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where X̄
test

(µtest
i ) is the trajectory obtained at test parameter µtest

i with the correspond-

ing test input trajectory and test initial condition with either PIR-OpInf, OpInf without

regularization, or intrusive model reduction. In contrast to OpInf without regularization,

PIR-OpInf shows stable behavior and yields accurate predictions even for dimensions n > 6

in this example. Figure 3.2b shows the stability radius ρ̂ defined in (3.6) for PIR-OpInf,

OpInf without regularization, and intrusive model reduction. To compute the bound (3.6)

of the stability radius, we draw matrices L with entries uniformly distributed in [0, 1] and

repeat the calculation 100 times. We then show the mean and the 25% and 75% quantile

in Figure 3.2b. The mean of the stability radius of the model obtained with PIR-OpInf is

larger than the mean of the stability radius of OpInf without regularization, which numeri-

cally demonstrates that the proposed physics-informed regularizer indeed induces a stability

bias.

3.5.2 Burgers’ equation

We consider the parameterized Burgers’ equation

∂x

∂t
(ω, t;µ) = µ

∂2x

∂2ω
(ω, t;µ)− x(ω, t;µ)

∂x

∂ω
(ω, t;µ)

with spatial coordinate ω ∈ (0, 1), time t ∈ [0, 1], and viscosity µ ∈ [10, 100]. Dirichlet

boundary conditions x(0, t;µ) = u(t), x(1, t;µ) = 0 are imposed, with input u : [0, 1] → R.

The equation is discretized in space with finite differences on an equidistant grid in [0, 1]

with N = 128 grid points. Time is discretized with the explicit Euler method with time-step

size δt = 10−4.
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Figure 3.2: Synthetic example: The model obtained with the proposed PIR-OpInf shows
stable behavior, in contrast to OpInf without regularization, and achieves a comparable test
error as intrusive model reduction. The estimated stability radius (3.6) of the PIR-OpInf
model is orders of magnitude larger than the estimated stability radius of the OpInf model
without regularization, which is in agreement with the aim of the proposed regularizer to
penalize models with low stability radii.
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3.5.2.1 Problem setup

For each of the M = 10 training parameters µ = {10, 20, 30, . . . , 100}, we derive a single

input trajectory Ub
1(µ), with entries uniformly sampled in [0, 2], and an initial condition

x1(µ) = 0. Thus, Mb = 1. The corresponding state trajectories areXb
1(µ1), . . . ,X

b
1(µM). A

basis matrix V ∈ RN×n is then constructed from the corresponding snapshots as described

in Section 2.1. Furthermore, we sample Mt = 10 training inputs U 1(µ), . . . ,UMt(µ) for each

training parameter µ ∈ {10, . . . , 100}. To generate the initial conditions x1,0(µ), . . . ,xMt,0(µ)

for each training parameter µ ∈ {10, . . . , 100}, we sample n-dimensional random vec-

tors r1(µ), . . . , rMt(µ) with independent entries uniformly distributed in [0, 1] and set

xi,0(µ) = V ri(µ) for i = 1, . . . ,Mt. We apply parameter selection as in Section 3.4.1 to

find regularization parameters for each dimension n ∈ {2, . . . , 10}. Furthermore, we con-

struct an operator-inference model obtained without regularization and a reduced model

with intrusive model reduction.

The process of learning the reduced model via PIR-OpInf requires multiple hours, and

was done on NYU High Performance Computing clusters. The reduced model results in a

considerable reduction in the evaluation time. The full model when iterated 20 times for a

single training parameter, initial condition and input trajectory, results in the run time of

260 seconds, thus on average 13 seconds run time for generating a single state trajectory.

The reduced model of dimension 10 when iterated 20 times for a single training parameter,

projected initial condition and input trajectory, results in the run time of 4 seconds, thus on

average 0.2 seconds run time for generating a single state trajectory. Overall, the reduced

model of dimension 10 achieves ≈ 65 times speed up compared to the full model.

For comparison purposes, we also construct from the same training data an operator-

inference model with the regularization proposed in [MHW21, SKHW20], which is Tikhonov

regularization that regularizes the Frobenius norms of linear, quadratic, and input operators

together, rather than only the norm of the quadratic operator as in the proposed PIR-OpInf.
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We refer to this approach as T-OpInf in the following. The same regularization parameter-

selection procedure is applied as for PIR-OpInf.

3.5.2.2 Results for PIR-OpInf

We test the models at Mtest = 7 test parameters that are equidistantly distributed in the

parameter domain D. For each test parameter µ ∈ {µtest
1 , . . . , µtest

Mtest
}, we generate M ′

test = 5

input trajectories U test
1 (µ), . . . , U test

M ′
test

(µ) and the corresponding test state trajectories

Xtest
1 (µ), . . . ,Xtest

M ′
test

(µ). The test initial conditions are the same as the training initial con-

ditions, i.e, xtest
i,0 (µ) = xi,0(µ), for i = 1, . . . ,M ′

test. The test error is then given by

etest =
Mtest∑
i=1

M ′
test∑

j=1

∥V X̄test
j (µtest

i )−Xtest
j (µtest

i )∥F
∥Xtest

j (µtest
i )∥F

, (3.23)

where the trajectories X̄
test
j (µtest

i ) for i = 1, . . . ,Mtest and j = 1, . . . ,M ′
test are obtained from

either operator inference without regularization, PIR-OpInf, T-OpInf, or intrusive model

reduction.

Figure 3.3a, Figure 3.3c, and Figure 3.4a show the test error (3.23) for test inputs with

entries sampled uniform from the domains [0, 2], [0, 3], and [0, 4], respectively. In all cases,

PIR-OpInf shows stable behavior, whereas OpInf without regularization leads to numeri-

cal instabilities. Even T-OpInf with Tikhonov regularization shows unstable behavior for

many dimensions n. To separate the effect of the regularization from the effect of the

post-processing (cf. Section 3.3.4), we apply the same post-processing as for PIR-OpInf to

T-OpInf. The corresponding results in Figure 3.3b, Figure 3.3d, and Figure 3.4b show that

post-processing helps to stabilize T-OpInf as well; however, as the range of the inputs in-

creases, a similarly unstable behavior as in the case without post-processing is obtained.

Thus, the results indicate that penalizing the quadratic term via the proposed regularizer

is responsible for achieving stabler models, rather than the post processing or penalizing
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(b) input domain (0, 2),
T-OpInf with post-processing

1e-04

1e-03

1e-02

1e-01

1e+00

2 4 6 8 10

av
er
ag
e
re
la
ti
ve

st
at
e
er
ro
r

dimension

PIR-OpInf
T-OpInf
OpInf w/o reg
intrusive

(c) input domain (0, 3)

1e-04

1e-03

1e-02

1e-01

1e+00

2 4 6 8 10

av
er
ag
e
re
la
ti
ve

st
at
e
er
ro
r

dimension

PIR-OpInf
T-OpInf post-proc
OpInf w/o reg, post-proc
intrusive

(d) input domain (0, 3),
T-OpInf with post-processing

Figure 3.3: Burgers’ equation: The proposed PIR-OpInf leads to models that are stable
for a large range of inputs, which is in contrast to OpInf without regularization and OpInf
with Tikhonov regularization (T-OpInf). The results also show that applying the same post-
processing as for PIR-OpInf (cf. Section 3.3.4) to T-OpInf has little effect on the stability
of the learned models, which indicates that indeed the proposed regularizer in PIR-OpInf is
responsible for obtaining more stable models.
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(a) input domain (0, 4)
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(b) input domain (0, 4),
T-OpInf with post-processing

Figure 3.4: Burgers’ equation: Similar results observed for input domain (0, 4), as for input
domains (0, 2) and (0, 3), as seen in Figure 3.3

both the linear and the quadratic term together as in Tikhonov regularization, which is in

agreement with the theoretical motivation outlined in Section 3.3.1.

Consider now Figure 3.5 that shows the validation error, i.e., the objective of (3.18), of

the parameter-selection procedure versus the regularization parameter for dimension n = 8

for PIR-OpInf and T-OpInf. Independent of whether post-processing is applied to T-OpInf

(Figure 3.5b) or not (Figure 3.5a), the error of T-OpInf grows quickly as the regularization

parameter is increased. Thus, if a small regularization parameter is chosen, the validation

error of T-OpInf is small but it also means that no regularization is induced. If instead the

regularization parameter is large, then there might be a stability bias but at the same time it

leads to a distinct increase of the model error. In contrast, the curves corresponding to PIR-

OpInf show that the validation error is small for moderately sized regularization parameters,

where a stability bias is induced without leading to a deterioration of the model accuracy.

Figure 3.6a shows the estimated stability radius (3.6) for various models. The results

indicate that PIR-OpInf achieves a larger stability radius than the models obtained with

T-OpInf and OpInf without regularization. At dimension n = 2, the stability radius of

PIR-OpInf is large because only large regularization parameters lead to stable behavior; see
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Figure 3.5: Burgers’ equation: The validation error (objective of (3.18)) of T-OpInf grows
quickly with the regularization parameter, which means that the regularization has a neg-
ative effect on the model accuracy. In contrast, the validation error corresponding to the
proposed PIR-OpInf is less sensitive to the regularization parameter, which means that large
regularization parameters can be chosen—imposing a stronger stability bias—without dete-
riorating the model accuracy.
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Figure 3.6: Burgers’ equation: The models learned with the proposed PIR-OpInf have larger
estimated stability radii than models obtained without regularization and with Tikhonov
regularization (T-OpInf). The stability radius for n = 2 is high for PIR-OpInf models
because only large regularization parameters λ∗ = 106 lead to stable behavior (see (b)),
which forces the norm of the quadratic term to be close to zero and thus increases the
stability radius by a large amount. Notice that the PIR-OpInf model at n = 2 achieves a
similar accuracy as intrusive model reduction; cf. Figure 3.3.
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Figure 3.6b. The regularization parameter is chosen so large that the norm of the quadratic

term is close to zero, which explains the high estimated stability radius.

3.5.3 Reaction-diffusion problem

Consider the parameterized reaction-diffusion equation

∂

∂t
x(ξ, t;µ) = ∆x(ξ, t;µ) + s(ξ)u(t) + g(x(ξ, t;µ)) , (3.24)

with the spatial coordinate ξ = [ξ1 ξ2]
T ∈ [0, 1]2. We impose homogeneous Neumann

boundary conditions. The parameter domain is D = [1, 1.5] and end time is T = 20. The

source is s(ξ) = 10−1 sin(2πξ1) sin(2πξ2). The nonlinear term is

g(x(ξ, t;µ)) = −(a sin(µ) + 2) exp(−µ2b)

(
1 + (µc)x+

(µc)2

2!
x2
)

which is the second-order Taylor approximation of the source term used in [Peh20b], with

a = 0.1, b = 2.7 and c = 1.8. We discretize in space with a mesh width of h = 1/12 and finite

difference and in time with explicit Euler with time-step size δt = 10−2. The dimension of

the high-dimensional model is N = 144.

The training parameter set contains M = 10 equidistant points in the parameter domain

D. To construct the reduced space, we take a singleMb = 1 input trajectory for each training

parameter, where the inputs are sampled uniformly in [0, 1]. The initial condition is zero.

The corresponding trajectories Xb
1(µ1), . . . ,X

b
1(µM) are used to construct a POD basis.

For each of the M training parameters, we sample Mt = 10 input trajectories with entries

uniformly in [0, 1]. The regularization parameters are selected via our selection procedure

described in Section 3.4.1 by sweeping over the 51 logarithmically equidistant points in

[10−10, 1010]. We test models forMtest = 7 test parameters that are equidistantly distributed
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in the parameter domain D. For every test parameter µtest
1 , . . . , µtest

Mtest
, we generate a single

input trajectory U test, whose entries randomly selected via a uniform distribution in [0, 1],

and initial condition xtest
0 = 0. The test error is then

etest =
Mtest∑
i=1

∥V X̄test
(µtest

i )−Xtest(µtest
i )∥F

∥Xtest(µtest
i )∥F

, (3.25)

where X̄
test

(µtest
i ) is the predicted trajectory at parameter µtest

i by either the PIR-OpInf,

T-OpInf, OpInf without regularization, or intrusive model reduction.

Figure 3.7a shows the test error (3.25). The results indicate that OpInf without any

regularization becomes unstable quickly. In contrast, T-OpInf and PIR-OpInf provide stable

approximations. However, whereas the Tikhonov regularization in T-OpInf leads to a loss of

accuracy at higher dimensions, the proposed physics-informed regularizer used by PIR-OpInf

achieves errors that are comparable to intrusive model reduction. This is in agreement with

the estimated stability radius shown in Figure 3.7b, where PIR-OpInf achieves an orders of

magnitude larger stability radius at higher dimensions n than T-OpInf and OpInf without

regularization.

3.5.4 Phase separation described by Allen-Cahn equation

Consider the cubic nonlinear Allen-Cahn model that is used, for example, for describing

phase transitions:

∂

∂t
x(ω, t) =

∂2

∂2ω
x(ω, t)− x(ω, t)3 + u(t) , (3.26)

with spatial coordinate ω ∈ (0, 1) and time t ∈ [0, 0.1]. The boundary conditions are

x(0, t) = u(t),
∂x

∂t
(1, t) = 0 ,
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Figure 3.7: Reaction-diffusion problem: The PIR-OpInf model shows stable behavior in
this experiment. In contrast to Tikhonov regularization (T-OpInf), the PIR-OpInf model
achieves an accuracy close to intrusive model reduction even for larger n > 6 dimensions.
The estimated stability radius of the PIR-OpInf model is orders of magnitude higher than
the stability radius of the T-OpInf model in this experiment.
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with input u(t) : [0, 1] → R. The equation is discretized in space with finite differences on

an equidistant grid in [0, 1] with N = 128 grid points. Time is discretized with the explicit

Euler method with time-step size δt = 10−5.

To construct the basis of a reduced space, we take a singleMb = 1 input trajectory, where

the inputs are sampled uniformly in [0, 10]. The initial condition is zero. The corresponding

trajectory Xb is used to construct a POD basis. For training the model, we use Mt = 10

input trajectories, with entries uniformly sampled in [0, 10]. The regularization parameters

are selected via our selection procedure described in Section 3.4.2 by sweeping over the 51

logarithmically equidistant points in [10−10, 1010], where the validation data consists of the

training trajectories and the trajectory obtained with inputU val = 10(sin(πt)+1), t ∈ [0, 0.1].

We test models for the test input trajectory U test = 25(sin(πt) + 1), t ∈ [0, 0.1], which is

motivated by the work [BB15]. The reduced model is simulated for the test input and the

generated state trajectory is compared against the corresponding full model trajectory.

Figure 3.8a shows the test error (3.25). The results indicate that OpInf without any

regularization is unstable for all dimensions. T-OpInf is unstable for all dimensions except

dimension 12, whereas PIR-OpInf provides a stable solution for all dimensions, except the

smallest dimension 2. Our parameter selection scheme for PIR-OpInf selects the regulariza-

tion parameters λ∗ = 1012, 1.58× 109, 1.58× 1010, 3.98× 105, 3.98× 106, 3.98× 106, 2.51× 105

for dimensions n = 2, 4, 6, 8, 10, 12, 14, respectively. The selected regularization parameters

show that a strong regularization is necessary in this example. At the same time, the large

values of the selected regularization parameter results in PIR-OpInf result in a higher test

error compared to the intrusive model. As seen in Figure 3.8b, PIR-OpInf achieves a larger

stability radius at all dimensions n than both T-OpInf and OpInf without regularization.
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Figure 3.8: Allen-Cahn model: The PIR-OpInf model shows stable behavior in this experi-
ment, whereas Tikhonov regularization is unstable for all dimensions except 2. The estimated
stability radius of the PIR-OpInf model is higher than the stability radius of the T-OpInf
model.
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3.5.5 FitzHugh-Nagumo equation

Consider the FitzHugh-Nagumo equation with quadratic and cubic nonlinear terms:

ϵ
∂v

∂t
(ω, t) = ϵ2∇2v(ω, t)− v(ω, t)(v(ω, t)−R)(1− v(ω, t))− w(ω, t) + c,

∂w

∂t
(ω, t) = bv(ω, t)− γw(ω, t) + c

(3.27)

with spatial coordinate ω ∈ (0, 1), time t ∈ [0, 8]. The equation is discretized in space

with finite differences on an equidistant grid with N = 128 grid points for both v(ω, t) and

w(ω, t). In time, we use as discretization the the semi-implicit Euler method with time-step

size δt = 10−3. The parameter values for FitzHugh-Nagumo equation are ϵ = 0.05, R =

1, c = 0.05, b = 5 and γ = 20. Parameter values are not varied when learning the model

but different initial conditions (see below) and different inputs are used that enter via the

boundary conditions:

vω(0, t) = −i0t3 exp(−i1t), vω(1, t) = 0, t ≥ 0 ,

where i0 is uniformly sampled in [49500, 50500], and i1 is uniformly sampled in [14, 16],

when generating trajectories for basis generation and training, while constant values i0 =

50000, i1 = 15 is used for testing.

To construct the reduced space, we take Mb = 5 input trajectories, and zero initial con-

dition. The corresponding trajectory Xb is used to construct a POD basis. For training

the model, we use Mt = 10 input trajectories, and initial conditions with entries uniformly

sampled in [−0.1, 0.1]. The regularization parameters are selected via our selection proce-

dure described in Section 3.4.2 by sweeping over the 51 logarithmically equidistant points in

[10−10, 1010]. We test models for the test input trajectory given above and zero initial condi-

tion, which is different from the training initial conditions. The reduced model is simulated
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for the test input and the generated state trajectory is compared against the corresponding

full model trajectory. Figure 3.9a shows the test error (3.25). The results indicate that

OpInf without any regularization is unstable for all dimensions > 2. For PIR-OpInf, the

solution is stable for all dimensions, and the test error is close to the error of the intrusive

model. T-OpInf is unstable for dimensions > 4. Figure 3.9b shows that among all of the

inferred models, PIR-OpInf gives the model with the largest stability radius. For dimensions

6 and 8, our parameter selection scheme selects regularization parameters λ∗ = 102, 10 for

PIR-OpInf and λ∗ = 108, 1.58× 109 for T-OpInf. T-OpInf regularizes all parameters with a

large regularization parameter, which results in a model with a small ∥Â∥F . As the equation

(3.5) computes the Lyapunov matrix P , a model with a small ∥Â∥F leads to a model with

a large ∥P ∥F . A large ∥P ∥F results in a smaller ρ̂ (3.10), and consequently, a less stable

model, which is in agreement with the numerical results shown in Figure 3.9b.
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Figure 3.9: FitzHugh-Nagumo: PIR-OpInf learns stable models, while OpInf without regu-
larization gives unstable models for dimensions > 2, and T-OpInf is unstable for dimensions
> 4. Of all the inferred models, PIR-OpInf learns the reduced model with the largest es-
timated stability radius (ρ̂), and for dimensions 6 and 8, ρ̂ for PIR-OpInf is considerably
larger compared to the models learned via T-OpInf.
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Chapter 4

Operator inference with structure

preservation

We add constraints to the optimization problem solved by operator inference with physics-

informed regularizer (PIR-OpInf), to preserve the underlying structure of full model in the

reduced model. Section 4.1 proposes the structure preservation constraints for operator

inference. The computational procedure is discussed in Section 4.2. Numerical results in

Section 4.3 demonstrate that operator inference with the proposed regularizer and structure

preservations learns stable models even when Tikhonov regularization and models learned

without regularization are unstable.
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4.1 Operator inference with structure preservation

Structure can be imposed on the linear operator by adding hard constraints to the oper-

ator inference problem. We focus on problems that lead to symmetric negative definite

linear operators, which are present in, e.g., Hamiltonian systems [SWK22]. We consider the

constrained problem

min
Â,B̂,F̂ ,Ĝ

J(Â, B̂, F̂ , Ĝ) + λ(∥F̂ ∥2F + ∥Ĝ∥F ) ,

such that Â+ ϵI ⪯ 0 ,

(4.1)

where Â + ϵI ⪯ 0 means that Â + ϵI is symmetric negative semi-definite. The matrix I

is the identity and ϵ > 0 is a margin that guarantees that Â is definite, rather than semi-

definite. We refer to (4.1) as the SPIR-OpInf problem, where the S stands for “structure.”

Problem (4.1) is in the class of semi-definite programs, which typically are computationally

more expensive to solve than linear least-squares problems as (3.12) with the same number

of unknowns. However, efficient numerical algorithms and software exist for solving semi-

definite programs [Tod01]. Additionally, we are seeking low-dimensional models that have

few degrees of freedom, which means that we focus mostly on optimization problems with a

manageable number of unknowns. We solve the optimization problem for PIR-OpInf using

the SDPT3 solver of the CVX toolbox [GB14, GB08] in MATLAB, with the Â + ϵI ⪯ 0

constraint added to the CVX optimization problem.

Instead of imposing a margin ϵ to guarantee definiteness of Â in (4.1), one can solve prob-

lem (4.1) with the constraint Â ⪯ 0 and subsequently apply an analogous post-processing

step as in Section 3.3.4. Because symmetry is enforced by Â ⪯ 0, it is guaranteed that Â

is diagonalizable. The post-processing described in Section 3.3.4 preserves symmetry and

thus the result is a symmetric negative definite matrix after the post-processing; see also

[Hig88]. However, in the following, we will impose a margin ϵ and therefore do not need a
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post-processing step.

Other structures in the linear operator can be preserved in an analogous way. For ex-

ample, another common structure is skew-symmetry of Â which can be formulated as a

linear constraint; we leave such other constraints to future work. Recall that it is required to

interpolate between inferred operators when a model at a parameter µ outside of the train-

ing set is required; cf. Section 2.2.1. In case of structure-preserving operator inference, the

corresponding operator interpolation schemes have to preserve the operator structure. We

discuss such an interpolation scheme for symmetric negative definite matrices in Section 4.2.

4.2 Computational procedure of physics-informed op-

erator inference

In this section, we briefly recapitulate an interpolation scheme that preserves symmetric

definiteness of matrices, which is critical for constructing operators at new parameters outside

of the training set in SPIR-OpInf.

In SPIR-OpInf introduced in Section 4.1, the definiteness and symmetry constraints in

the optimization problem (4.1) ensure that for each training parameter µ1, . . . , µM a model is

obtained with a linear operator that is symmetric negative definite. When we interpolate the

trained models at a new parameter µ ∈ D\{µ1, . . . , µM} outside of the training set, however,

we have to ensure that the interpolated linear operator is symmetric negative definite as well.

There are various interpolation schemes in model reduction that preserve such structure, see,

e.g., [DVW10, AF08]. We build on the Log-Cholesky averaging method presented in [Lin19].

Given are M symmetric negative definite matrices Â(µ1), . . . , Â(µM) at parameters

µ1, . . . , µM . We compute the Cholesky factors L̂(µi) such that Â(µi) = −L̂(µi)L̂(µi)
T
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for i = 1, . . . ,M . The Cholesky factors L̂(µi) are then split into

L̂(µi) = ⌊L̂(µi)⌋+ diag(L̂(µi)) , i = 1, . . . ,M ,

where diag(L̂(µi)) is the diagonal matrix with the same the diagonal as L̂(µi) and ⌊L̂(µi)⌋

is its remaining strictly lower triangular part. The interpolated matrix Â(µ) at a new

parameter µ is

Â(µ) = −L̂(µ)L̂(µ)T ,

where the Cholesky factor L̂(µ) is obtained as

L̂(µ) =I(µ; ⌊L̂(µ1)⌋, . . . , ⌊L̂(µM)⌋)+

exp
(
I
(
µ; log

(
diag

(
L̂(µ1)

))
, . . . , log

(
diag

(
L̂(µM)

))))
.

The operator I denotes linear interpolation of the matrix entries at µ and exp(·) and log(·)

are the matrix exponential and logarithm, respectively.

The optimal regularization parameter for SPIR-OpInf is selected in the same way as

PIR-OpInf as discussed in sections 3.4.1 and 3.4.2.

4.3 Numerical experiments

In this section, we compare operator inference with the proposed physics-informed regu-

larizer and structure preservation (SPIR-OpInf) to operator inference with the proposed

physics-informed regularizer without structure preservation (PIR-OpInf) and Tikhonov reg-

ularization. Sections 4.3.1 and 4.3.2 revisit the Burgers’ equation and Reaction-diffusion

problem from Sections 3.5.2 and 3.5.3, respectively. The proposed approach depends on a

small, positive threshold ϵ > 0, e.g., for the margin in SPIR-OpInf (4.1), which we set to
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ϵ = 10−10 in all of the following experiments.

4.3.1 Burgers’ equation

We consider again Burgers’ equation with same problem setup as in Section 3.5.2. We now

apply SPIR-OpInf to learn a symmetric and (positive or negative) definite linear operator,

which is in contrast to PIR-OpInf that does not impose any structure on the linear operator;

see Figure 4.1a.

Figure 4.2 shows the test error (3.23) corresponding to SPIR-OpInf. Stable behavior is

obtained in all cases; however, a leveling off of the error as the dimension increases indicates

that restricting to symmetric operators in this example is limiting the accuracy. Operator

inference, independent of the used regularizer, is fitting operators to projected trajectories of

the high-dimensional systems. Projected trajectories are different from reduced trajectories

that are generated with the corresponding reduced model obtained with intrusive model

reduction; see [Peh20b]. The difference between the projected and reduced trajectories is

the closure error. This means that operator inference aims to find operators that well predict

the projected trajectories, and the best operators (in the sense of the objective of operator

inference) do not necessarily have the same structure as the intrusive operators. Thus,

allowing operator inference to break structure can help in terms of accuracy, as can be seen

by comparing Figure 3.3 and 3.4 with Figure 4.2. Additional constraints such as symmetry

that are imposed by SPIR-OpInf on the linear operator mean that the optimization search

space is smaller and thus SPIR-OpInf can lead to models that have a larger error than having

no structure as in PIR-OpInf. However, breaking structure also means that predictions can

become unphysical. Preventing such unphysical behavior is the motivation for structure

preservation with SPIR-OpInf.

The estimated stability radii of the SPIR-OpInf models are compared to the stability

radii of T-OpInf models in Figure 4.3a. For large dimensions n > 4, the estimated stability
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Figure 4.1: Structure such as symmetry in the matrix Â can be imposed via SPIR-OpInf.
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radii of the SPIR-OpInf models is larger than the stability radii of the T-OpInf models.

For small dimensions n ≤ 4, the stability radii of SPIR-OpInf and T-OpInf models is large.

This is reflected by the small regularization parameter selected by the proposed parameter

selection procedure, which selects λ∗ ≈ 3× 10−7 for n = 2.

4.3.2 Reaction-diffusion equation

We consider again Reaction-diffusion problem as in Section 3.5.3. We now apply SPIR-

OpInf to learn a symmetric and (positive or negative) definite linear operator, which is

in contrast to PIR-OpInf that does not impose any structure on the linear operator; see

Figure 4.1b. Figure 4.4a shows the test error (3.25). While T-OpInf and SPIR-OpInf both

provide stable approximations, Tikhonov regularization in T-OpInf leads to a loss of accuracy

at higher dimensions, whereas SPIR-OpInf achieves errors that are comparable to intrusive

model reduction. As seen in figure 4.4b, SPIR-OpInf achieves an orders of magnitude larger

stability radius at higher dimensions n than T-OpInf.
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Figure 4.2: Burgers’ equation: Imposing symmetry and definiteness onto the linear operator
with the proposed SPIR-OpInf (4.1) leads to stable models in this experiment; however, the
additional constraints lead to a lower accuracy than PIR-OpInf that include the proposed
regularizer but no constraints on the linear operator (cf. Figure 3.3).
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Figure 4.3: Burgers’ equation: Models learned with SPIR-OpInf have a larger estimated
stability radius than models learned with Tikhonov regularization for dimensions n > 4 in
this example. The stability radius of the SPIR-OpInf model is similar to the stability radius
of the T-OpInf model for n = 2 because a small regularization parameter is chosen as shown
in plot (b).
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Figure 4.4: Reaction-diffusion problem: Constraining the linear inferred operator to be
symmetric and definite with SPIR-OpInf leads to models with comparable accuracy and
stability radius as PIR-OpInf in this example.

68



Chapter 5

Non-intrusive entropy stable reduced

order modeling

In this chapter, we discuss learning an entropy stable reduced model of nonlinear conservation

laws, in a non-intrusive manner. Section 5.1 provides a literature overview. We closely

base Section 5.2 on [Cha20] to describe details of the full model, which is a system of

nonlinear conservation laws, the entropy conservation and entropy stability properties of

the full model solutions, and the numerical schemes that preserve these properties in the

discretized full model. Section 5.3 proposes constrained operator inference methods to learn

entropy conserving and entropy stable reduced models in a non-intrusive manner from full

model trajectories. The computational procedure is described in Section 5.4. Numerical

results in Section 5.5 demonstrate that the proposed constrained operator inference learns

entropy conserving and entropy stable models, while models learned without the constraints

are unstable.
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5.1 Introduction

Operator inference was developed for polynomial models and it preserves the polynomial

structure of the full model, if present. However, full models can have a range of other

types of structure and it is often beneficial to preserve these structures: There are methods

that preserve Lagrangian [LKM03, CTB15] and Hamiltonian structure [BB12, GPBVDS12,

PM16, CBG16, GWW17, AH17, MAH19] by formulating the projection step accordingly.

There also is a line of work that aims to preserve energy by reducing nonlinear full models

with sampling-based reduction techniques [FACC14, FCA15]. The construction of structure-

preserving reduced models for nonlinear conservation laws however is less well researched.

Some methods that improve stability of the reduced models are Petrov-Galerkin reduced

models that use alternative test bases [MPR01, RV07, SLGB12, AF12, RHM13, BMQR15,

CBA17] and other stabilization techniques [WABI12, KvAB14, CIJS14, BTD16, BKST09,

KB10, KBAvBW14]. Another alternative is enforcing physical conditions such as kinetic

energy preservation [ARWH20], which requires the full model in such a way that nonlinear

terms only involve polynomial nonlinearities.

Our approach follows closely the work [Cha20] that approximates nonlinear terms using

hyper-reduction techniques [AKJ08, HCF17]. This approach discretizes the full model using

entropy stable finite volume schemes [Tad87, Tad03], and then generates entropy stable

reduced models by combining hyper-reduction with modified Galerkin projection. Based

on the ideas presented in [Cha20], we develop an entropy stable reduced modeling method

that operates in a non-intrusive manner. We project the full model trajectories onto the

reduced space, and fit the reduced model operators to the projected trajectories. We enforce

constraints when solving the optimization problem, which ensure that we learn an entropy

stable reduced model, at least on the training data. We reformulate the constraint and

vectorize both the objective function and the constraint so that the optimization problem is
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linear with respect to the reduced model operators.

5.2 Entropy and full models

In this section we discuss the structure of the full model and the numerical schemes that

conserve that structure when discretizing the full model.

5.2.1 Systems of nonlinear conservation laws

We consider nonlinear conservation laws expressed as a system of PDEs

∂q(t, ξi)

∂t
+

d∑
i=1

∂f i(q(t, ξi))

∂ξi
= 0, (5.1)

where q = q(t, ξi) are conservative variables and f i(q(t, ξi)) are nonlinear fluxes. For the

ease of notation, q(t, ξi) is written simply as q in the rest of the chapter.

The entropy function S(q) and entropy variables w(q) for (5.1) are defined as

convex function S(q), w(q) =
∂S(q)

∂q
.

A convex function S(q) is called an entropy function if there exist d functions F i, 1 ≤ i ≤ d,

called entropy fluxes, such that the condition

∂S(q)

∂q

T ∂f i(q)

∂q
=
∂F i(q)

∂q

T

, 1 ≤ i ≤ d, (5.2)

holds. Multiplying (5.1) with wT yields

wT ∂q

∂t
+wT

d∑
i=1

∂f i(q)

∂ξi
= 0. (5.3)
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Multiplying ∂q/∂t by wT gives

wT ∂q

∂t
=
∂S(q)

∂q

T ∂q

∂t
=
∂S(q)

∂t

T

.

Multiplying the flux gradients by wT gives

wT ∂f i(q)

∂ξi
=
∂S(q)

∂q

T ∂f i(q)

∂q

∂q

∂ξi
=
∂F i(q)

∂q

T ∂q

∂ξi
=
∂F i(q)

∂ξi

T

.

Substituting these back into (5.3) gives an additional conservation law

∂S(q)

∂t
+

d∑
i=1

∂F i(q)

∂ξi
= 0. (5.4)

For weak solutions of (5.1), physically relevant solutions can be realized by vanishing viscosity

limits, q = limϵ→0 qϵ, where

∂qϵ
∂t

+
d∑

i=1

∂f i(qϵ)

∂ξi
= ϵ∆qϵ, (5.5)

and ϵ is a small positive real number.

By multiplying (5.5) by wT
ϵ , we get

∂S(qϵ)

∂t
+

d∑
i=1

∂F i(qϵ)

∂ξi
= ϵwT

ϵ ∆qϵ. (5.6)

The right hand side term wT
ϵ ∆qϵ can be written as

wT
ϵ ∆qϵ =

∂S(qϵ)

∂qϵ

T ∂2qϵ
∂ξ2

.
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Applying the product rule gives

∂2S(qϵ)

∂ξ2
=

∂

∂ξ

(
∂S(qϵ)

∂ξ

)
=

∂

∂ξ

(
∂S(qϵ)

∂qϵ

T ∂qϵ
∂ξ

)
=
∂S(qϵ)

∂qϵ

T ∂2qϵ
∂ξ2

+
∂qϵ
∂ξ

T ∂S2(qϵ)

∂qϵ∂ξ
.

Substituting this into the expression for wT
ϵ ∆qϵ gives

wT
ϵ ∆qϵ =

∂S(qϵ)

∂qϵ

T ∂2qϵ
∂ξ2

=
∂2S(qϵ)

∂ξ2
− ∂qϵ

∂ξ

T ∂S2(qϵ)

∂qϵ∂ξ
=
∂2S(qϵ)

∂ξ2
− ∂qϵ

∂ξ

T ∂2S(qϵ)

∂q2ϵ

∂qϵ
∂ξ

.

As S(qϵ) is a convex function, ∂2S(qϵ)/∂q
2
ϵ is positive definite, thus,

wT
ϵ ∆qϵ =

∂2S(qϵ)

∂ξ2
− ∂qϵ

∂ξ

T ∂2S(qϵ)

∂q2ϵ

∂qϵ
∂ξ

≤ ∂2S(qϵ)

∂ξ2
.

Substituting this in (5.6) gives

∂S(qϵ)

∂t
+

d∑
i=1

∂F i(qϵ)

∂ξi
≤ ϵ∆S(qϵ).

Thus, for q = limϵ→0 qϵ, we get entropy stability equation

∂S(q)

∂t
+

d∑
i=1

∂F i(q)

∂ξi
≤ 0. (5.7)

A weak solution of (5.1) is called entropy solution, if it satisfies (5.7).

5.2.2 Discretization of full model with entropy conserving schemes

In [Cha20], an entropy conservative finite volume scheme is used for discretizing the full

model. The following closely follows derivation in [Cha20].

A two-point numerical flux fS(qL, qR), for left and right states qL, qR, is entropy con-
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servative if it satisfies the conditions

fS(q, q) = f(q),

fS(qL, qR) = fS(qR, qL),

(wL −wR)
TfS(qL, qR) = ψ(qL)− ψ(qR),

(5.8)

where ψ(q) is the entropy potential given by ψ(q) = w(q)Tf(q)−F (q), where the function

F is as defined in (5.2).

A matrix-based formulation of the scheme is

∆ξ
dqh
dt

+ 2(Q⊙ F )1 = 0, (5.9)

where ∆ξ is the cell size for the finite volume scheme, and qh is the finite volume discretized

solution, the matrix

Q =
1

2



0 1 . . . −1

−1 0 1

−1 0 1

. . .

1 . . . −1 0


,

and

F ij = fS((qh)i, (qh)j).

The matrix formulation for a generalized system with n conservation laws is

∆ξ
dqh
dt

+ 2((In×n ⊗Q)⊙ F )1 = 0,

where F is a block-diagonal matrix, with ith block being the flux matrix corresponding to
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ith flux, for 1 ≤ i ≤ n.

Multiplying (5.9) with entropy variable vector wT
h gives

∆ξwT
h

dqh
dt

+ 2wT
h (Q⊙ F )1 = 0,

which is equivalent to

∆ξ1T dS(qh)

dt
+ 2wT

h (Q⊙ F )1 = 0,

as

wT
h

dqh
dt

=
∂S(qh)

∂qh

T dqh
dt

= 1T dS(qh)

dt
.

Because of (5.4), an entropy conservative model satisfies

∆ξ1T dS(qh)

dt
= 0 ⇐⇒ 2wT

h (Q⊙ F )1 = 0.

For a skew-symmetric matrix Q, the term 2wT
h (Q⊙ F )1 can be expanded as

∑
ij

(wh)
T
i 2QijfS((qh)i, (qh)j) =

∑
ij

(Qij −Qji)(wh)
T
i fS((qh)i, (wh)j)

=
∑
ij

Qij((wh)i − (wh)j)
TfS((qh)i, (qh)j)

=
∑
ij

Qij(ψ((qh)i)− ψ((qh)j))

= ψTQ1− 1TQψ.

As Q1 = 0, we have

ψTQ1− 1TQψ = 0.

This proves that if fS(qL, qR) is entropy conservative as defined in (5.8), Q = −QT and

Q1 = 0, then wT
h (Q⊙ F )1 = 0 is satisfied, and model is entropy conservative.
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5.2.3 Entropy stable numerical schemes

In this section, we again very closely follow [Cha20]. For entropy stability, numerical fluxes

are constructed as before to conserve the entropy, and an artificial viscosity term is added to

the model (5.9) to dissipate entropy. The full model equation with added artificial viscosity

is

∆ξ
dqh
dt

+ 2(Q⊙ F )1+ ϵKqh = 0, (5.10)

where

K =
1

∆ξ



1 −1

−1 2
. . .

. . . . . . −1

−1 1


.

This is equivalent the discrete counterpart of (5.5).

For the entropy function gradient

∆ξ1T dS(qh)

dt
= −ϵwT

hKqh ≤ 0,

holds true. Thus, entropy is dissipated, and (5.10) is entropy stable.

5.3 Non-intrusive entropy stable model reduction us-

ing operator inference

We learn reduced models in a non-intrusive manner from data and physical insights from

the full model using operator inference. We enforce constraints when learning the reduced

models, which ensures that the learned model is entropy stable at least for the training data.
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5.3.1 Non-intrusive reduced model

For a discretized time domain 0 = t0 < t1 < · · · < tK = T , we simulate the full model with

Mb initial conditions q
b
h,1,0, . . . , q

b
h,Mb,0

, to generate basis trajectories Qb
h,1, . . . ,Q

b
h,Mb

, where

Qb
h,i = [qbh,i,1 , . . . , q

b
h,i,K ] ∈ RN×K , for i = 1, . . . ,Mb.

The corresponding entropy variable trajectories are

W b
h,i = [wb

h,i,1 , . . . ,w
b
h,i,K ] ∈ RN×K , for i = 1, . . . ,Mb.

As the projected entropy variables are used as a part of the constraint when learning the

reduced model, it is necessary that they are representable in the reduced basis. Hence,

we combine the conservative variable trajectories and the entropy variable trajectories to

generate the snapshot matrix

Qb
h = [Qb

h,1, W
b
h,1, . . . , Q

b
h,Mb

, W b
h,Mb

] ∈ RN×2KMb .

A POD basis V of dimension n ≪ N is constructed from the singular value decomposition

of the snapshot matrix Qb
h.

We aim to learn a reduced model of the form

d

dt
q̄ −

R∑
r=2

F̂ rq̄
r = 0, (5.11)

where q̄ = V Tqh is the full model data projected onto the reduced space, and F̂ r ∈ Rn×nr

are reduced model nonlinear operators, for a reduced model of dimension n. Our goal is now

to learn reduced model operators F̂ r that fit the projected data.

For the time steps 0 = t0 < t1 < · · · < tK = T , we iterate the full model with Mt initial
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conditions qh,1,0, . . . , qh,Mt,0, to generate training trajectories Qh,1, . . . ,Qh,Mt
, where

Qh,i = [qh,i,1 , . . . , qh,i,K ] ∈ RN×K , for i = 1, . . . ,Mt.

We project them onto the reduced space to generate projected trajectories Q̄1, . . . , Q̄Mt
,

where Q̄i = V
TQh,i for i = 1, . . . ,Mt. The operators F̂ 2, . . . , F̂R are fitted via least-squares

regression to the projected training trajectories

min
F̂ 2,...,F̂R

J(F̂ 2, . . . , F̂R),

with the objective function

J(F̂ 2, . . . , F̂R) =
Mt∑
i=1

K∑
k=1

∥∥∥∥∥q̄′i,k −
R∑

r=2

F̂ rq̄
r
i,k

∥∥∥∥∥
2

2

, (5.12)

where q̄′i,k denotes a numerical approximation of the time derivative of the projected state

at time k of the ith trajectory, such as a first-order finite difference approximation.

5.3.2 Non-intrusive reduced model with entropy conservation

There is no guarantee that the reduced model learned by solving the optimization problem

(5.12) is entropy stable. We derive and impose certain constraints on F̂ r to ensure that

the learned reduced model is entropy conservative, at least on the training data, which is a

stricter constraint than entropy stability. In next section, we derive and impose a constraint

for entropy stability.

Multiplying (5.11) with w̄T , where w̄ = V Twh, we would like that the following holds

w̄T dq̄

dt
− w̄T

R∑
r=2

F̂ rq̄
r !
= 0,
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which is equivalent to

1T dS(q̄)

dt
− w̄T

R∑
r=2

F̂ rq̄
r !
= 0.

For an entropy conserving reduced model

1T dS(q̄)

dt
= 0 ⇐⇒ w̄T

R∑
r=2

F̂ rq̄
r = 0.

Thus, for the reduced model we conserve the entropy by enforcing the entropy preservation

constraint

w̄T

R∑
r=2

F̂ rq̄
r = 0,

on the training data.

For entropy conservation, we solve a constrained optimization problem for operator in-

ference with entropy conservation (EC-OpInf)

min
F̂ 2,...,F̂R

J(F̂ 2, . . . , F̂R), ,

such that w̄T
i,k

R∑
r=2

F̂ rq̄
r
i,k = 0 for i = 1, . . . ,Mt, k = 1, . . . , K,

(5.13)

with the same objective function J(F̂ 2, . . . , F̂R) as (5.12).

5.3.3 Non-intrusive reduced model with entropy stability

For entropy stability, we equip the reduced model with an additional term that serves as

artificial viscosity term,

dq̄

dt
−

R∑
r=2

F̂ rq̄
r − Âq̄ !

= 0. (5.14)
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Multiplying (5.14) by w̄T gives

1T dS(q̄)

dt
− w̄T

( R∑
r=2

F̂ rq̄
r + Âq̄

)
!
= 0 =⇒ 1T dS(q̄)

dt
!
= w̄T

( R∑
r=2

F̂ rq̄
r + Âq̄

)
.

For entropy stability,

1T dS(q̄)

dt
≤ 0 ⇐⇒ w̄T

( R∑
r=2

F̂ rq̄
r + Âq̄

)
≤ 0.

Thus, the entropy stability constraint is

w̄T

( R∑
r=2

F̂ rq̄
r + Âq̄

)
≤ 0.

For entropy stability, we solve the constrained optimization problem for operator inference

with entropy stability (ES-OpInf)

min
F̂ 2,...,F̂R,Â

J(F̂ 2, . . . , F̂R, Â),

such that w̄T
i,k

( R∑
r=2

F̂ rq̄
r
i,k + Âq̄i,k

)
≤ 0 for i = 1, . . . ,Mt, k = 1, . . . , K,

(5.15)

with the objective function

J(F̂ 2, . . . , F̂R, Â) =
Mt∑
i=1

K∑
k=1

∥∥∥∥∥q̄′i,k −
R∑

r=2

F̂ rq̄
r
i,k − Âq̄i,k

∥∥∥∥∥
2

2

. (5.16)

5.4 Computational procedure

We reformulate the optimization problems (5.13) and (5.15) as optimization problems whose

objective function and constraints are linear with respect to the the model operators.
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5.4.1 Snapshot preparation

Consider the projected data trajectories Q̄1, . . . , Q̄Mt
, where

Q̄i = [q̄i,1 , . . . , q̄i,K ] ∈ Rn×K , for i = 1, . . . ,Mt,

and the corresponding projected nonlinear data trajectories

Q̄
r
i = [q̄ri,1 , . . . , q̄

r
i,K ] ∈ Rnr×K , for i = 1, . . . ,Mt,

for r = 2, . . . , R, with n2 = n(n+ 1)/2, n3 = n(n+ 1)(n+ 2)/6, etc.

The entropy variable trajectories are W̄ 1, . . . , W̄Mt , where

W̄ i = [w̄i,1 , . . . , w̄i,K ] ∈ Rn×K , for i = 1, . . . ,Mt.

The snapshot matrices constructed from these trajectories are

Q̄ = [Q̄1 , . . . , Q̄Mt
] ∈ Rn×KMt ,

Q̄
r
= [Q̄

r
1 , . . . , Q̄

r
Mt

] ∈ Rnr×KMt , r = 2, . . . , R,

W̄ = [W̄ 1 , . . . , W̄Mt ] ∈ Rn×KMt .

5.4.2 Entropy conservation

Consider the vector

F̂
v
= [F̂

v

2, . . . , F̂
v

R]
T ∈ RnnR ,

where nR =
∑R

r=2 nr, and F̂
v

r = vec(F̂ r) is the vectorized form of matrix F̂ r, for r = 2, . . . , R.

Proposition 5.1. For the vector F̂
v
, there exists a matrix C that is independent of F̂

v
such
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that CF̂
v
= 0, that represents the same set of equations as the constraint in (5.13).

Proof. Consider a matrix Cf =
∑R

r=2 diag(Dr) ∈ RKMt , where Dr = W̄
T
F̂ rQ̄

r
, with Q̄

r

and W̄ as defined in Section 5.4.1. Comparing the entries of Cf to the equality constraint

in (5.13) gives us

Cf = 0 ⇐⇒ w̄T
i,k

R∑
r=2

F̂ rq̄
r
i,k = 0 for i = 1, . . . ,Mt, k = 1, . . . , K. (5.17)

The vector diag(Dr) can be written as

diag(Dr) =
KMt∑
i=1

eTP iDrP i =
KMt∑
i=1

eTP iW̄
T
F̂ rQ̄

r
P i,

where e = 1 ∈ RKMt , and P i ∈ RKMt×KMt , i = 1, . . . , KMt, such that P i(i, i) = 1, and the

rest of the entries of P i are all zeros.

The vector eTP iW̄
T
F̂ rQ̄

r
P i can be written as

eTP iW̄
T
F̂ rQ̄

r
P i = (Lr,i ⊗Rr,i)F̂

v

r ,

where Lr,i = P T
i (Q̄

r
)T ∈ RKMt×nr , Rr,i = eTP iW̄

T ∈ R1×n, and F̂
v

r = vec(F̂ r) ∈ Rnnr is

the vectorized form of matrix F̂ r.

Substituting this back into the expression for diag(Dr) gives us

diag(Dr) =
KMt∑
i=1

(Lr,i ⊗Rr,i)F̂
v

r .

Substituting this back into the expression for Cf gives us

Cf =
R∑

r=2

(KMt∑
i=1

(Lr,i ⊗Rr,i)

)
F̂

v

r = CF̂
v
,
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where

C =

[∑KMt

i=1 (L2,i ⊗R2,i) . . .
∑KMt

i=1 (LR,i ⊗RR,i)

]
∈ RKMt×nnR .

Thus, from (5.17) we get that for the matrix C and vector F̂
v
, the equation

CF̂
v
= 0,

represents the same set of equations as the constraint in (5.13).

The entropy conservation constraint is linear w.r.t F̂
v
. As nR scales with nR, the con-

straint matrix C scales with nR+1, where n is the reduced model dimension, and R is the

degree of the highest degree nonlinear term. The constraint matrix C also scales linearly

with number of time steps K and number of training trajectories Mt.

As the constraint is a function of F̂
v
, we vectorize the objective function as well, to make

sure it is also a function of F̂
v
. The objective function (5.12) can be rewritten as

∥∥∥∥∥Q̄′ −
R∑

r=2

F̂ rQ̄
r

∥∥∥∥∥
2

F

.

Vectorizing Q̄
′ −

∑R
r=2 F̂ rQ̄

r
yields

vec

(
Q̄

′ −
R∑

r=2

F̂ rQ̄
r

)
= vec(Q̄

′
)−

R∑
r=2

((Q̄
r
)T ⊗ In)F̂

v

r ,

= vec(Q̄
′
)−CoF̂

v
,

where

Co =

[
(Q̄

2
)T ⊗ In . . . (Q̄

R
)T ⊗ In

]
∈ RnKMt×nnR .

The data matrix Co scales with n
R+2, and it also scales linearly w.r.t. number of time steps

K and number of training trajectories Mt.
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The updated optimization problem for EC-OpInf (5.13) is

min
F̂

v
J(F̂

v
),

such that CF̂
v
= 0 ,

(5.18)

with the objective function

J(F̂
v
) =

∥∥∥vec(Q̄′
)−CoF̂

v
∥∥∥2

2
.

We solve the optimization problem (5.18) with a linear conservation constraint, using the

linear least-squares solver ’lsqlin’ [CL96, GMW19] in MATLAB.

5.4.3 Entropy stability

Consider the vector

F̂
v

A = [Â
v
, F̂

v

2, . . . , F̂
v

R]
T ∈ Rn2+nnR ,

where Â
v
= vec(Â) is the vectorized form of matrix Â.

Proposition 5.2. For the vector F̂
v

A, there exists a matrix C that is independent of F̂
v

A

such that CF̂
v

A ≤ 0 represents the same set of equations as the constraint in (5.15).

Proof. Consider a matrix Cf = diag(DA) +
∑R

r=2 diag(Dr) ∈ RKMt , where DA = W̄
T
ÂQ̄

andDr = W̄
T
F̂ rQ̄

r
, with Q̄, Q̄

r
and W̄ as defined in Section 5.4.1. Comparing the entries

of Cf to the constraint in (5.15) gives us

Cf ≤ 0 ⇐⇒ w̄T
i,k

( R∑
r=2

F̂ rq̄
r
i,k + Âq̄i,k

)
≤ 0 for i = 1, . . . ,Mt, k = 1, . . . , K . (5.19)
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The vector diag(DA) can be written as

diag(DA) =
KMt∑
i=1

eTP iDAP i =
KMt∑
i=1

eTP iW̄
T
ÂQ̄P i,

where e = 1 ∈ RKMt , and P i ∈ RKMt×KMt , i = 1, . . . , KMt, such that P i(i, i) = 1, and the

rest of the entries of P i are all zeros. The vector diag(Dr) is as defined in Proposition 5.1.

The vector eTP iW̄
T
ÂQ̄P i can be written as

eTP iW̄
T
ÂQ̄P i = (LA,i ⊗RA,i)Â

v
,

where LA,i = P T
i Q̄

T ∈ RKMt×n, RA,i = eTP iW̄
T ∈ R1×n, and Â

v
= vec(Â) ∈ Rn2

is the

vectorized form of matrix Â.

Substituting this back into the expression for diag(DA) gives us

diag(DA) =
KMt∑
i=1

(LA,i ⊗RA,i)Â
v
.

Substituting this, and the expression for diag(Dr) computed in Proposition 5.1, back into

the expression for Cf gives us

Cf =

(KMt∑
i=1

(LA,i ⊗RA,i)

)
Â

v
+

R∑
r=2

(KMt∑
i=1

(Lr,i ⊗Rr,i)

)
F̂

v

r = CF̂
v

A,

where matrix C ∈ RKMt×(n2+nnR) is given by

C =

[∑KMt

i=1 (LA,i ⊗RA,i)
∑KMt

i=1 (L2,i ⊗R2,i) . . .
∑KMt

i=1 (LR,i ⊗RR,i)

]
.
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Thus, from (5.19) we get that for the matrix C and vector F̂
v

A, the equation

CF̂
v

A ≤ 0,

represents the same set of equations as the constraint in (5.15).

The entropy stability constraint is linear w.r.t. to F̂
v

A. The constraint matrix C scales

with nR+1, and scales linearly with number of time steps K and number of training trajec-

tories Mt.

The objective function (5.16) can be rewritten as

∥∥∥∥∥Q̄′ −
R∑

r=2

F̂ rQ̄
r − ÂQ̄

∥∥∥∥∥
2

F

.

Vectorizing Q̄
′ −

∑R
r=2 F̂ rQ̄

r − ÂQ̄ yields

vec

(
Q̄

′ −
R∑

r=2

F̂ rQ̄
r − ÂQ̄

)
= vec(Q̄

′
)− ((Q̄

r
)T ⊗ In)F̂

v

r − (Q̄
T ⊗ In)Â

v
,

= vec(Q̄
′
)−CoF̂

v

A,

where

Co =

[
Q̄

T ⊗ In (Q̄
2
)T ⊗ In . . . (Q̄

R
)T ⊗ In

]
∈ RnKMt×(n2+nnR).

The data matrix Co scales with n
R+2, and it also scales linearly w.r.t. number of time steps

K and number of training trajectories Mt.

The updated optimization problem for ES-OpInf (5.15) is

min
F̂

v
A

J(F̂
v

A),

such that CF̂
v

A ≤ 0

(5.20)
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with the objective function

J(F̂
v

A) =
∥∥∥vec(Q̄′

)−CoF̂
v

A

∥∥∥2

2
,

We solve the optimization problem (5.20) with a linear stability constraint, using the linear

least-squares solver ’lsqlin’ [CL96, GMW19] in MATLAB.

5.5 Numerical experiments

We consider two test cases to demonstrate entropy conserving and entropy stable operator

inference. First, we demonstrate operator inference on the Burgers’ equation, which has a

quadratic flux, and where we impose the entropy stability constraint. Second, we demon-

strate operator inference on the shallow water equation that has a quadratic-cubic flux, and

where we impose the entropy conservation constraint.

5.5.1 Burgers’ equation

The conservative form of the Burgers’ equation is

∂q(t, ξ)

∂t
+
∂(q2(t, ξ)/2)

∂ξ
= 0, ξ ∈ [−1, 1], t ∈ [0, 4],

with

Entropy function S(q) =
q2

2
,

Entropy variable v(q) = q,

Entropy flux F (q) =
q3

3
,

Entropy potential ψ(q) =
q3

6
.
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The entropy conserving numerical flux is

fS(qL, qR) =
q2L + qLqR + q2R

6
.

As shock discontinuities are observed, we add an artificial viscosity term with ϵ = 10−3 to the

model. We discretize the spatial domain [−1, 1] using ∆ξ = 10−2 and finite volume scheme

(5.10) and the time domain [0, 4] using explicit Euler with time-step size δt = 5× 10−3. The

dimension of the high-dimensional model is N = 200. To construct the reduced space, we

generate Mb = 5 basis trajectories with initial conditions qi,0 = (−0.5 i/5) sin(πx), for i =

1, . . . , 5. Figure 5.1a plots the normalized singular values for the model, to show the decay.

To train the model, we generate Mt = 10 training trajectories with initial conditions

qi,0 = ci sin(πx), for i = 1, . . . , 10, where ci are randomly generated via a uniform dis-

tribution in [−0.1,−0.5]. We test the model on a test trajectory with initial condition

qtest0 = −0.3 sin(πx). Figure 5.1b plots the test error. The reduced model learned via uncon-

strained operator inference is unstable for all dimensions except 8 and 12, while the reduced

model learned via ES-OpInf is stable for all dimensions.

The reduced model is iterated with the projected test initial condition q̄test0 = V Tqtest0 , to

generate reduced test state trajectory Q̂
test

and corresponding reduced test entropy variable

trajectory Ŵ
test

. The trajectories Q̂
test

and Ŵ
test

are then used to generate entropy trajec-

tory S(Q̂
test

). Figures 5.2 and 5.3 plot entropy function summed over all nodes 1TS(Q̂
test

),

and entropy gradient 1TdS(Q̂
test

)/dt, at all time steps, for the reduced models of dimension

10, 14, 16, 18 and 20. For the reduced model learned via ES-OpInf, the entropy value goes

down with time, and the entropy gradient satisfies 1TdS(Q̂
test

)/dt ≤ 0 at all times, which

indicates an entropy stable model. For the reduced model learned via unconstrained operator

inference, the entropy blows up, thus the model is unstable.

Figure 5.4 plots the test state trajectory for full and reduced model at t = 0 and t = 4.
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For the reduced model with dimension 10, the reduced state trajectory projected back onto

the full model space V Q̂
test

is plotted. As seen in Figure 5.4, the state trajectory for the

reduced model is similar to the full model, thus showing that the reduced model accurately

captures the full model behavior.

5.5.2 Shallow water equation

A conservative form of shallow water equation is

∂h(t, ξ)

∂t
+
∂(h(t, ξ) ϕ(t, ξ))

∂ξ
= 0,

∂(h(t, ξ) ϕ(t, ξ))

∂t
+
∂(h(t, ξ) ϕ2(t, ξ) + h2(t, ξ)/2)

∂ξ
= 0,

with ξ ∈ [−10, 10], t ∈ [0, 5], and

Entropy function S(h, ϕ) =
1

2
hϕ2 +

1

2
h2,

Entropy variable v(h, ϕ) =

h− ϕ2/2

ϕ


Entropy flux F (h, ϕ) =

1

2
hϕ3 + h2ϕ,

Entropy potential ψ(h, ϕ) =
1

2
h2ϕ.

The entropy conserving numerical flux is

fS

(
[hL ϕL], [hR ϕR]

)
=

 (hLϕL + hRϕR)/2

(hLϕL + hRϕR)(ϕL + ϕR)/4 + hLhR/2

 .
Shallow-water equations describe the kinetic behavior of a thin inviscid fluid layer flowing

over a variable topography. The variable h is the height of the free-surface, and the variable
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Figure 5.1: Burgers’ equation: The reduced model learned via unconstrained OpInf is un-
stable for all dimensions except 8 and 12, while the reduced model learned via ES-OpInf is
stable for all dimensions, with accuracy improving with increasing reduced model dimension.
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Figure 5.2: Burgers’ equation: For dimensions 10, 14 and 16, the reduced model learned via
unconstrained OpInf is unstable, while the reduced model learned via ES-OpInf seems to
satisfy entropy dissipation with time.
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Figure 5.3: Burgers’ equation: Continuation of Figure 5.2 for dimensions 18 and 20.
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Figure 5.4: Burgers’ equation: State at time t = 0 and end time t = 4 is plotted for the
full model and the reduced model with dimension 10, which is projected back onto the full
model space. Results show that the reduced model learned via ES-OpInf when simulated
forward in time generates test state trajectories similar to the full-model trajectories.
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ϕ is the scalar potential of the fluid. We discretize spatial domain [−10, 10] using ∆ξ = 0.2

and finite volume scheme (5.9), with N = 100 grid points for both h and hϕ, and time

domain [0, 5] using explicit Euler with time-step size δt = 10−3. We use parameter domains

D1 = [ 1
10
, 1
7
] and D2 = [ 2

10
, 15
10
] for generating the initial conditions for the model. We

select Mb = 6 equidistant parameters αi ∈ D1, βi ∈ D2, for i = 1, . . . ,Mb, and use initial

conditions hb
i,0 = 1 + αie

−βix
2
, ϕb

i,0 = 0, for i = 1, . . . ,Mb, to generate basis trajectories

used to construct the reduced space. Figure 5.5a plots the normalized singular values for the

model.

For Mt = 10, we select Mt + 2 equidistant parameters αi ∈ D1, βi ∈ D2, for i =

1, . . . ,Mt + 2, and use initial conditions hi,0 = 1 + αie
−βix

2
, ϕi,0 = 0, for i = 2, . . . ,Mt + 1,

to generate training trajectories. For the training trajectories, we use snapshots at every 10

time steps when training the reduced model. We test the model on a test trajectory with

initial condition htest
i,0 = 1 + αe−βx2

, ϕtest
i,0 = 0, where α = 0.1676, β = 2.25 lie outside the

training and basis parameter range. As seen in Figure 5.5b, the reduced model learned via

unconstrained operator inference is unstable for all dimensions except 2 and 14, while the

reduced model learned via EC-OpInf is stable for all dimensions.

The reduced model is iterated with the projected test initial condition

q̄test0 = V T

htest
i,0

ϕtest
i,0

 ,

to generate reduced test state trajectory Q̂
test

and corresponding reduced test entropy vari-

able trajectory Ŵ
test

. Figures 5.6 and 5.7 plot the entropy function summed over all nodes

1TS(Q̂
test

) and the entropy gradient 1TdS(Q̂
test

)/dt, at all time steps, for reduced models of

dimension 4 to 12. For the reduced model learned via EC-OpInf, the entropy value hardly

changes with time and we obtain 1TdS(Q̂
test

)/dt ≈ 0; which indicates that the model is

94



entropy conserving. For the reduced model learned via unconstrained operator inference,

the entropy blows up, thus the model is unstable.

Figure 5.8 plots the test state trajectory for both h and hϕ variables, for the full and

reduced model at t = 0 and t = 5. For the reduced model with dimension 14, the reduced

state trajectory projected back onto the full model space V Q̂
test

is plotted. As seen in

Figure 5.8, the state trajectory for the reduced model is similar to the full model, thus

showing that reduced model accurately captures the full model behavior.
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Figure 5.5: Shallow water equation: The reduced model learned via unconstrained OpInf is
unstable for all dimensions except 2 and 14, while the reduced model learned via EC-OpInf
is stable for all dimensions.
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Figure 5.6: Shallow water equation: For dimensions 4 to 8, the reduced model learned via
unconstrained OpInf is unstable, while the reduced model learned via EC-OpInf satisfies
shows little growth in the entropy over time.
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Figure 5.7: Shallow water equation: Continuation of Figure 5.6 for dimensions 10 and 12.
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Figure 5.8: Shallow water equation: State at time t = 0 and end time t = 5 is plotted for
the full model and the reduced model with dimension 14, which is projected back onto the
full model space. Results show that the reduced model learned via EC-OpInf when iterated
generates test state trajectories similar to the full model.
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Chapter 6

Summary of contributions and

outlook
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6.1 Summary of contributions

For high-dimensional dynamical systems that are computationally expensive to evaluate,

model reduction derives low-dimensional reduced models that are quicker to simulate. Clas-

sical projection-based model reduction is intrusive in nature as it requires access to full

model operators. We used operator inference, which is non-intrusive in nature, to learn re-

duced models from data trajectories and physical insights from a gray box model. Based on

the Lyapunov stability analysis of nonlinear differential equations, we developed a physics-

informed regularizer that penalizes the norm of nonlinear operators of the reduced model,

to increase its estimated stability radius. We demonstrated operator inference with physics-

informed regularizer (PIR-OpInf) on dynamical systems with quadratic and cubic terms,

and showed that PIR-OpInf increases the stability radius of the reduced models, and learns

more stable and accurate reduced models compared OpInf without regularization and OpInf

with Tikhonov regularization (T-OpInf).

We added constraints to PIR-OpInf to preserve the underlying structure of the dynamical

system in the reduced model, and implemented operator inference with physics-informed

regularizer and structure preservation (SPIR-OpInf). We showed that SPIR-OpInf preserved

the symmetric negative definiteness property of the linear operators, which PIR-OpInf, T-

OpInf and OpInf without regularization failed to do. We demonstrated SPIR-OpInf on

dynamical systems with quadratic and cubic terms, and showed that SPIR-OpInf learns more

stable and accurate reduced models compared to T-OpInf and OpInf without regularization.

We preserved the entropy stability and entropy conservation properties of a dynamical

system of nonlinear conservation laws. We implemented operator inference with entropy

conservation (EC-OpInf) with equality constraints to conserve the entropy for the training

trajectories, and operator inference with entropy stability (ES-OpInf) with ≤ 0 constraints

to dissipate the entropy for the training trajectories. We demonstrated EC-OpInf and ES-
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OpInf on dynamical systems with quadratic and cubic fluxes, and showed that EC-OpInf

conserved the reduced model entropy and ES-OpInf dissipated the reduced model entropy,

and both learned a more stable model compared to OpInf without any entropy constraints.

6.2 Outlook

For EC-OpInf and ES-OpInf, we conserve and dissipate the entropy only for the training data,

and thus we cannot guarantee that the entropy constraints will hold true for the test data. For

the numerical examples we studied, entropy conservation for the test trajectories holds true

for reduced model learned via EC-OpInf, and entropy stability for the test trajectories holds

true for the reduced model learned via ES-OpInf, however it is not provably guaranteed. A

possible solution would be identifying certain structure in the model operators that enforces

entropy conservation and entropy stability and preserving this structure using constraints

when learning the reduced model via operator inference and also when interpolating the

operators at new parameters for a parameterized full model.

For both ES-OpInf and EC-OpInf, the constraint matrix and the data matrix scale with

nR+1 and nR+2 respectively, where n is the dimension of the reduced model, and R is the

degree of the highest degree nonlinear term in the system. Thus, ES-OpInf and EC-OpInf

do not scale well because the constraint and data matrices grow exponentially in model

dimension. One possible solution is using the lift & learn approach [QFW22, Qia21] to

transform a system of nonlinear conservation laws with higher degree nonlinear fluxes into

a quadratic system, to limit the scaling with respect the reduced model dimension.
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