
Enhanced Representations for Relations by Multi-task Learning

by

Lisheng Fu

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January 2020

Professor Ralph Grishman

© Lisheng Fu

All Rights Reserved, 2020

Dedication

I want to thank my father for encouraging me to pursue a PhD. He got his

part-time PhD in the age of 40s. It is quite inspiring for me to pursue knowledge.

I want to thank my mother for telling me I can go home whenever I meet

difficulties in my life.

iii

Acknowledgments

There are a lot of people who have helped me in my PhD life. First, I want

to thank my advisor Ralph Grishman. He is the one who led me into the research

community and taught me to come up with my own ideas. I have had quite a few

lab mates. I want to thank Thien Huu Nguyen first who shared a lot of ideas and

discussions with me. I want to thank our previous post-doc Yifan He who helped

me to understand more about research in the early years of my PhD program. I

want to thank our previous graduate Bonan Min who encouraged me to publish

more papers and actively helped me for my papers.

I want to thank Professor Adam Meyers and Professor Satoshi Sekine for shar-

ing high-level ideas. I want to thank my fellow PhD students (Kai Cao, Xiang Li,

Maria Pershina) for having fun in our PhD lives. I want to thank previous gradu-

ates (Shasha Liao and Ang Sun) for guidance at the beginning of my PhD program.

I want to thank previous graduates and now faculties (Wei Xu and Heng Ji). Even

though I never directly work with them, their active work in the research commu-

nity has been very inspiring to me. I have attended quite a few good courses at

NYU. I want to thank Professor Kyunghyun Cho for his course Natural Language

Understanding with Distributed Representations and Doctor Slav Petrov for his

iv

ACKNOWLEDGMENTS

course Statistical Natural Language Processing. Both courses are very helpful for

my PhD research.

During my PhD program, I also did a few internships to work on a variety of

problems. I want to thank all my advisors (Bo Pang, Octavian Popescu, Alexandre

Lacoste, Victoria Fossum, Pablo Barrio) who worked with me in a short period of

time. I have enjoyed all my internships and learned a lot from them.

Last, I want to thank all my committee members (Professor Ralph Grishman,

Professor Adam Meyers, Professor Sam Bowman, Professor Kyunghyun Cho, Pro-

fessor Thien Huu Nguyen) again for their suggestions. Especially, I want to thank

Professor Sam Bowman for his careful review of my thesis.

v

Abstract

A relation describes the relationship between a pair of entities. Relation Ex-

traction is the process of extracting relations from free text and converting them to

structured machine-readable knowledge. This process can facilitate building and

extending knowledge bases, and therefore can benefit a variety of natural language

processing applications such as Question Answering and Summarization.

Typical relation extraction projects start by defining a relation schema: a set

of mutually-exclusive relation types. Based on these definitions, all instances of

these relations in a text corpus are labeled by hand, producing a dataset which

can be used to train a statistical model. Labeling relations in text is difficult and

time-consuming. There only exist limited relation datasets developed in this way.

New applications will give rise to new schemas, so the lack of high-quality labeled

data is almost inevitable for Relation Extraction.

Despite limited labeled samples in relation datasets, neural net models have

been shown to be more effective than traditional methods in learning feature rep-

resentations with pre-trained word embeddings. In the context of representation

learning, this thesis presents multi-task learning frameworks to learn enhanced rep-

resentations for relations. It shows how to learn better feature representations in

vi

ABSTRACT

both unsupervised and supervised ways. First, the dissertation shows how to learn

domain invariant representations using unlabeled entity pairs. Then it shows how

to learn a unified encoder by combining multiple annotated datasets. Finally, it

shows how to learn the relatedness between relation types across different relation

schemas. These techniques improve the relation models without requiring more

annotation from the target dataset. The multi-task learning frameworks could be

an efficient toolkit for relation extraction in general.

vii

Table of contents

Dedication iii

Acknowledgments iv

Abstract vi

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Relation Extraction . 3

1.2 Traditional Methods: Feature-based and Kernel-based 6

1.3 Neural Models . 9

2 Learning Domain-invariant Representations 13

2.1 Introduction . 13

2.2 Related Work . 14

2.3 Model . 15

viii

TABLE OF CONTENTS

2.3.1 CNN-based Encoder-Decoder Model for Relations 17

2.3.2 Domain Adversarial Neural Network 18

2.4 Experiements . 20

2.4.1 Dataset . 20

2.4.2 Configuration and Hyperparameters 21

2.4.3 Evaluation . 21

2.5 Conclusion . 24

3 Learning a Unified Encoder 25

3.1 Introduction . 25

3.2 Related Work . 26

3.3 Supervised Neural Relation Extraction Model 27

3.4 Learning Unified Representation . 30

3.4.1 Multi-task Learning . 30

3.4.2 Regularization by Adversarial Training 31

3.5 Experiments . 32

3.5.1 Datasets . 32

3.5.2 Model Configurations . 33

3.5.3 Augmentation between ACE05 and ERE 34

3.5.4 More Features on ACE05 36

3.6 Conclusion and Future Work . 37

4 Learning Relatedness between Types with Prototypes 38

4.1 Introduction . 38

ix

TABLE OF CONTENTS

4.2 Related Work . 39

4.3 Relation Model with Multi-task Learning 40

4.3.1 Prototypes of Relation Types for Learning Similarity 42

4.4 Experiments . 44

4.4.1 Datasets . 44

4.4.2 Multi-task Learning Baseline 45

4.4.3 Learning the Relatedness between Two Relation Schemas . . 46

4.5 Conclusion . 47

5 Conclusion 49

5.1 Future Directions of Relation Extraction 51

5.2 Applications of Knowledge of Relations 54

Bibliography 56

x

List of Figures

1.1 Shortest dependency path kernel from (Bunescu and Mooney, 2005a) . 9

1.2 Neural Relation Extraction model. 11

2.1 Model architecture . 16

3.1 Multi-task model with regularization 31

4.1 Low-resource setting with N examples for each positive relation type

on ACE05. 48

xi

List of Tables

1.1 ACE 2005 relation schema. 4

2.1 Data split for the experiments. 20

2.2 Adaptation to the bc domain. 21

2.3 F1 scores on adaptation to all three domains at the same time and

adaptation to each domain individually. 23

3.1 Multi-task Learning and Regularization (100% training data). 35

3.2 Multi-task Learning and Regularization (50% training data). 36

3.3 Multi-task Learning with extra features on ACE05 (100% training data). 37

3.4 Multi-task Learning with extra features on ACE05 (50% training data). 37

4.1 Learning the relatedness between types (full training set). 47

4.2 Learning the relatedness between types (50% training). 47

xii

Chapter 1

Introduction

A relation represents the relationship between two entities (E.g., Smith went to

a conference in Brazil). Relation types can be defined based on a certain Ontology

or users’ interests. Relations extracted as structured forms such as a knowledge

graph can serve downstream applications. Relation types can be defined at dif-

ferent levels of granularity. They can be fine-grained and literal such as /busi-

ness/company/place_founded in the NYT10 dataset (Riedel et al., 2010). They

can also be coarse and abstract such as Organization-affiliation in the ACE 2005

datasets,1 which includes a few kinds of relationships such that a person’s working

for a company or a country’s being a member of the United Nations. There can

be a lot of ways to express relations even for the same type, and some of them

domain-specific. For example, different job titles imply the same employment re-

lation. Extracting relations from text is a difficult problem and has been studied
1. ACE 2003-2008 task descriptions are available through LDC at https://www.ldc.upenn.

edu/collaborations/past-projects/ace

1

https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://www.ldc.upenn.edu/collaborations/past-projects/ace

CHAPTER 1. INTRODUCTION

since MUC-7 (1998).2

To solve this relation extraction problem, people developed hand-annotated

datasets (e.g., MUC, ACE, ERE) and distantly supervised datasets (e.g., NYT10).

However, we still only have small high-quality data for learning. Same as many

other natural language processing tasks, it is time-consuming to annotate relations

in text. The distant supervised data is created by aligning entities from a knowl-

edge base to text. It can create larger amount of data but noisy, which yields

limited accuracy. In addition, the relation schema and the definition of relation

types changed from year to year for some existing hand-annotated datasets such

as ACE, which makes it hard to combine directly. Even if we have a large corpus

with a coherent relation schema, people can always define new relation for their

own purposes. The lack of high quality training data for relations seems to be

inevitable in practice despite that there exist multiple resources for relations.

In this thesis, I explore methods to utilize these resources together. I pro-

pose multi-task learning frameworks to cope with the problem of lack of labeled

relations. The multi-task models will benefit from data augmentation and regu-

larization from multiple resources. In the following chapters, I will first review

the history of Relation Extraction from traditional feature-based and kernel-based

methods to more recent neural net based models. Then I will introduce multi-

task learning frameworks in the context of neural models. I will start from the

unsupervised setting where I try to learn domain-invariant representations using

unlabeled entity pairs from different domains. The learned representations can
2. Proceedings for MUC 3-7 are available through the ACL website at https://www.aclweb.

org/anthology/venues/muc/

2

https://www.aclweb.org/anthology/venues/muc/
https://www.aclweb.org/anthology/venues/muc/

CHAPTER 1. INTRODUCTION

be better generalized to new domains. In the supervised setting, I combine two

datasets with similar relation schemas and train them together in a multi-task

model. Thanks to more labeled training data, it can learn feature representations

that work better for both relation tasks. Finally, I try to learn the relationship be-

tween relation types across different datasets. By learning the relatedness between

the relation types, the model obtains more knowledge from the auxiliary types and

learn better representations of the label embeddings. The experiments show larger

improvement in the low-resource settings.

1.1 Relation Extraction

A relation describes a relationship about a pair of entities. E.g.,

• An interviewer from The Patriot Ledger (Employment)

• George Bush traveled to France on Thursday for a summit (Located)

• The U.S. Congress (Subsidiary)

In information extraction, relations typically represent permanent information or

information of extended duration in contrast to events. Relation detection and

classification task was first introduced in MUC-7 (1998). It covered only three types

of relations involving organizations: location_of, employee_of, and product_of.

The types of relations were extended and more extensively studied in ACE. The

annotation guidelines were revised repeatedly every year. Most previous research

published results for ACE 2003-2005 datasets. More recently, the task definition

3

CHAPTER 1. INTRODUCTION

has been further refined in ERE (Song et al., 2015) . Because of the inconsistent

relation schema and annotation guidelines, these datasets can not be combined

directly. The ACE 2005 task had the following types and subtypes (Table 1.1).

Type Subtype
ART (artifact) User-Owner-Inventor-Manufacturer
GEN-AFF (Gen-affiliation) Citizen-Resident-Religion-Ethnicity, Org-Location
ORG-AFF (Org-affiliation) Employment, Founder, Ownership, Student-Alum,

Sports-Affiliation, Investor-Shareholder, Membership
PART-WHOLE (part-whole) Artifact, Geographical, Subsidiary
PER-SOC (person-social) Business, Family, Lasting-Personal
PHYS (physical) Located, Near

Table 1.1: ACE 2005 relation schema.

One property has been consistent in these guidelines. The pair of entities and

the semantic relationship have to be explicitly expressed within a single sentence.

In knowledge base construction, the relationships between entities can be inferred

from multiple sentences, or through an intermediate entity. This would be consid-

ered as a separate step after Relation Extraction. This simplifies the evaluation of

the Relation Extraction task. Given a test corpus annotated with entities and rela-

tions, we run the relation extractor on the entity pairs within a sentence and collect

the system output relations. We count correct, missing and spurious relations and

compute the precision, recall and F1 measure.

In the pipeline of Information Extraction, entities are usually required in order

to predict relations and events. Most research used hand-annotated entities (per-

fect entities) as input for Relation Extraction. Using entities tagged by an entity

tagger could lead to a significant decrease in performance in practice. Some pre-

4

CHAPTER 1. INTRODUCTION

vious work directly tackled this problem by using joint learning between Named

Entity Recognition and Relation Extraction (Li and Ji, 2014; Miwa and Bansal,

2016), while others dropped some constraints of entities(Nguyen and Grishman,

2014; Plank and Moschitti, 2013) (E.g., assuming knowing the entity boundaries

but not the types). In this thesis, I will use perfect entities as input for simplicity.

There are also other types of Relation Extraction tasks. SemEval-2010 (Hen-

drickx et al., 2009) introduced a relation classification task for nominals. For

example,

• The cup contained tea from dried ginseng.

This sentence contains a Entity-Origin relation which describes an entity as coming

or being derived from an origin. This dataset is substantially different from other

relation datasets. The entities in this dataset are common nouns and do not contain

named entities. The number of negatives is artificially reduced, which makes it

a pure classification task rather than detection and categorization. However, it

became one of the popular datasets in the era of neural network and deep learning.

Various neural models have been proposed and benchmarked on this dataset.

Another type of relation task is Distantly Supervised Relation Extraction (Hoff-

mann et al., 2011; Mintz et al., 2009; Riedel et al., 2010; Surdeanu et al., 2012).

The task provides a knowledge base with a lot of entities and relations instead of

an annotated corpus. The idea is to align the entities from the knowledge base to

the sentences that contain those entities. Then we create a set of positive instances

for which the relations exist in the knowledge base and a set of negative instances

that do not exist in the knowledge base. The supervision of the data is done by

5

CHAPTER 1. INTRODUCTION

the knowledge base instead of human annotation. The benefit of this approach

is that it can create a large amount of training data, but the data can be quite

noisy with both false positives and false negatives. A typical dataset of this task

is the NYT10 dataset (Riedel et al., 2010), which aligns Freebase Bollacker et al.,

2008 to the NYT corpus. It contains 52 relation types. Some examples are the

following:

• /location/neighborhood/neighborhood_of

• /people/person/place_of_birth

• /business/company/place_founded

• /people/person/profession

• /people/person/nationality

• /business/company/major_shareholders

The evaluation would be slightly different, as the ground truth is the knowledge

base instead of annotated corpus. Hand annotation of the test set may be required

for more accurate assessment.

1.2 Traditional Methods: Feature-based and

Kernel-based

To build a relation extractor, people started from hand-crafted patterns from

word sequences to syntactic patterns. E.g.,

6

CHAPTER 1. INTRODUCTION

• person lives in location

• person subject←−−− resides prep_in−−−−→ location

These patterns are easy to explain and can achieve high precision, but give

limited coverage. It is hard to scale the set of patterns when the data grows larger.

People quickly shifted to machine learning approaches when more annotated cor-

pora became available.

Relation Extraction is then converted to a classification problem. The candi-

date set consists of all the entity pairs appearing in the same sentence. The pairs

of entities that are annotated with relation types are the positives, while the rest

are negatives. If there are n relation types, it will be an (n+ 1)-way classification.

Feature-based systems (Jing and Zhai, 2007; Kambhatla, 2004; Zhou et al., 2005)

define a rich feature set for each entity pair and feed the data to a classifier (E.g.,

SVM (Cortes and Vapnik, 1995) or Maximum Entropy(Ratnaparkhi, 1999)). Zhou

et al. (2005) used 60 types of features for the ACE 2004 dataset. E.g.,

• Bag of words of the heads of the entities

• The order of the two entities

• the number of words between the two entities

• The word that the entity depends on along the dependency path

• Entity types of the entities

Because the weights of features are learned from limited training data, it is

not clear which features are more important than the others in general. Given

7

CHAPTER 1. INTRODUCTION

a new dataset, we may have to do feature engineering to find the best feature

set again. Jing and Zhai (2007) did a systematic analysis and showed that word

sequence, constituency parse and dependency features can be comparably effective.

The combination of these features can be slightly better.

While the process of enumerating features can be arbitrary, kernel methods

(Bunescu and Mooney, 2005a,b; Zelenko et al., 2003; Zhao and Grishman, 2005;

Zhou et al., 2007) seek to find a metric to directly measure the similarity between

two relation candidates. Word sequence kernels and syntactic tree kernels are the

two common categories of kernels for Relation Extraction. An effective kernel finds

specific feature space to measure relations. E.g., The shortest dependency path

kernel (Bunescu and Mooney, 2005b) only takes the span between the two entities

in the dependency tree. The feature space is constrained to the Cartesian product

of word, POS, entity type, and dependency direction along the dependency path

(Figure 1.1). The kernel calculates the number of common paths between the entity

pairs.

Overall, the kernel-based methods obtain comparable results to the feature-

based counterparts, while some papers claim the kernel-based models are slightly

better. The composition of different kernels is likely to achieve better results

(Plank and Moschitti, 2013; Zhang et al., 2006) and can also incorporate feature-

like information (Zhao and Grishman, 2005).

8

CHAPTER 1. INTRODUCTION

Figure 1.1: Shortest dependency path kernel from (Bunescu and Mooney, 2005a)

1.3 Neural Models

Neural Relation Extraction was introduced by Zeng et al. (2014), largely in-

spired by the success of neural models for text classification and sentiment analysis.

Initially, the model only added the position embedding to the word embedding to

indicate the positions of the two arguments (entities) in the sentence. Later, the

entity type embedding was added (Nguyen and Grishman, 2015a) to adapt to the

datasets where entity type information can be crucial features. A common neural

Relation Extraction model contains an input layer, an encoder and a decoder.

The input layer contains the concatenation of the word embedding, position

embedding and entity type embedding:

Word embedding: A certain type of pre-trained word embedding is often

used such as Word2vec (Mikolov et al., 2013). The size of the embedding table is

|V | · dw, where |V | is the vocabulary size, and dw is the embedding dimension.

Position embedding: We can use one vector to represent the position relative

to one argument (entity). Thus, we have one embedding table (list of vectors) to

represent all positions relative to one argument in a sentence. For each token,

we look up its two position embeddings from the two position embedding tables

(randomly initialized) with its relative distances to the two arguments, respectively.

9

CHAPTER 1. INTRODUCTION

The final embedding is the concatenation of the two. The size of one embedding

table is (2 · ls − 1) · dp, where ls is the sentence length, and dp is the embedding

dimension.

Entity type embedding: Similarly to word embedding, we can convert the

entity type of a token to its embedding from the entity-type embedding table.

Tokens outside the two entity spans will be randomly initialized to the same non-

entity vector. Tokens within the two arguments will be converted to the vector of

the argument’s entity type. The size of the embedding table is (|E|+1) ·de, where

|E| is the number of entity types, and de is the embedding dimension.

Then the input layer is connected to the encoder which is often a CNN (LeCun

et al., 1998; Nguyen and Grishman, 2015a; Zeng et al., 2014), or a Bidirectional

RNN (Zhou et al., 2016), or their variations (Miwa and Bansal, 2016). The output

of the encoder is often considered as feature representations for relations. This will

be followed by a softmax classifier with or without one hidden layer (Figure 1.2).

This model, however, relies on the pre-trained word embeddings since the re-

lation datasets are all too small to train on their own. The usage of pre-trained

word embeddings for Relation Extraction had been studied earlier by (Nguyen and

Grishman, 2014). While it helps in both feature-based and kernel-based methods

as real-valued features or part of the metrics, it is more natural to use neural nets

on top of the word embeddings. The choice of whether to fine-tune the word em-

beddings seems to depend on the dataset and the choice of the optimizer. More

recently, Soares et al. (2019) showed that models initialized with the representa-

tions from pre-trained language models (BERT)(Devlin et al., 2018) can be even

10

CHAPTER 1. INTRODUCTION

Figure 1.2: Neural Relation Extraction model.

better after fine-tuning on several benchmarks.

Most research on neural relation extraction has previously focused on variations

of encoders (Dos Santos et al., 2015; Liu et al., 2015; Nguyen and Grishman, 2016;

Socher et al., 2012; Xu et al., 2015) using the SemEval dataset (Hendrickx et

al., 2009) as the benchmark, and recently more on developing different attention

mechanisms (Cho et al., 2014) for the multi-instance representations on the distant

supervision dataset (NYT10) (Du et al., 2018; Han et al., 2018b; Lin et al., 2016;

Liu et al., 2018; Zeng et al., 2015). The general idea is basically to learn better

feature representations for classification in supervised learning. While most of this

work focuses on supervised learning on a single dataset, this thesis explores the

possibility of utilizing multiple datasets at the same time.

11

CHAPTER 1. INTRODUCTION

We use multi-task learning to learn the original relation task along with the

auxiliary task and related relation tasks. The multi-task paradigm has been used

in many natural language processing tasks. In relation extraction, previous work

has focused on the task relationship between named entity recognition and relation

extraction. The proposed methods try to learn entities and relations at the same

time to improve end-to-end relation extraction (Li and Ji, 2014; Miwa and Bansal,

2016). In this dissertation, we use annotated entities as input to relation extrac-

tion and focus on the relation task only. Another common multi-task scenario is

the cross-lingual transfer learning by sharing parameters between models trained

on different languages. Min et al. (2017) obtained improvement on bilingual re-

lation extraction under the low-resource setting. In this thesis, we only evaluate

our models on the English tasks and focus on the relationship between different

datasets.

12

Chapter 2

Learning Domain-invariant

Representations1,2

2.1 Introduction

The same type of relations might be expressed differently across diverse doc-

uments, topics and genres. We often observed that a relation extractor’s perfor-

mance degrades when applied to a domain other than the domain it is trained

on. A simple method for domain adaptation (Blitzer et al., 2006; Daume, 2007;

Jing and Zhai, 2007) is to construct a labeled dataset for the target domain, and

then adjust a trained model with it. This is inefficient for relations - annotation

is laborious to obtain, not to mention that relation mentions are sparse in the

text. Take ACE 2004 as an example, Personal/Social relations appear only once
1. This chapter contains the work that has been published at IJCNLP 2017 (Fu et al., 2017).
2. I did the majority of the research and implementation for the chapter. The co-authors

helped provide data, give high-level advice, and refine the paper.

13

CHAPTER 2. LEARNING DOMAIN-INVARIANT REPRESENTATIONS

on average per document. Such a method will not scale to the open-ended set of

possible domains.

Among the features (Zhou et al., 2005) used for relation extraction, shortest de-

pendency path can be applied cross-domain while argument-specific features (e.g.,

entity types, lexical forms) are likely to be more domain-specific. We hypothesize

that it is possible to learn both domain-invariant and domain-specific representa-

tions with neural networks, and use the domain-invariant representation for new

domains.

In this chapter, we propose to use a Domain Adversarial Neural Network

(DANN) (Ajakan et al., 2014; Ganin and Lempitsky, 2015) to learn a domain-

invariant representation for relations. Our contributions are twofold:

• We propose a novel domain adaptation approach for relation extraction that

learns cross-domain features by itself and that requires no label in targets.

• Experiments on the ACE domains show that our approach improves on the

state-of-the-art across all domains.

In the following sections, we will first briefly summarize related work, then

describe the model (Section 2.3). We will present experimental results (Section

2.4) and conclusion at the end.

2.2 Related Work

There has been a lot of research on domain adaptation in natural language

processing (Ajakan et al., 2014; Blitzer et al., 2006; Daume, 2007; Ganin and

14

CHAPTER 2. LEARNING DOMAIN-INVARIANT REPRESENTATIONS

Lempitsky, 2015; Glorot et al., 2011; Jing and Zhai, 2007). Most of the exist-

ing domain adaptation methods are based on discrete feature representations and

linear classifiers. There is also recent work on domain adaptation for relation

extraction including feature-based systems (Nguyen et al., 2014; Nguyen and Gr-

ishman, 2014) and kernel-based system (Plank and Moschitti, 2013). Nguyen and

Grishman (2014) and Nguyen et al. (2014) both require a few labels in the target

domain. Our proposed method can perform domain adaptation without target

labels.

Some other methods also do not have such requirement. Plank and Moschitti

(2013) designed the semantic syntactic tree kernel (SSTK) to learn cross-domain

patterns. Nguyen et al. (2015b) constructed a case study comparing feature-based

methods and kernel-based models. They presented some effective features and

kernels (e.g. word embedding).We share the same intuition of finding those cross-

domain features, but our work differs from such previous work in that they manu-

ally designed those features and kernels while we automatically learn cross-domain

features from unlabeled target-domain examples with neural networks. To our

best knowledge, this is the first work on neural networks for domain adaptation of

relation extraction.

2.3 Model

We formulate the relation extraction task as a classification problem over all

entity pairs (relation candidates) in a sentence. The overall structure of the model

is shown in Figure 2.1. The model will first convert a relation candidate into a

15

CHAPTER 2. LEARNING DOMAIN-INVARIANT REPRESENTATIONS

Figure 2.1: Model architecture

fixed-length matrix, then uses a single-layer Convolutional Neural Network (CNN)

with dropout to learn its hidden representation repr. On top of repr, it uses two

decoders: a fully-connected layer with dropout for predicting the relation type

(Zeng et al., 2014) (Section 2.3.1), and another decoder with domain adversarial

neural network(Ganin and Lempitsky, 2015) to predict its domain. The additional

domain-adversarial decoder is used to enforce the domain-invariance of the feature

layer (Section 2.3.2).

16

CHAPTER 2. LEARNING DOMAIN-INVARIANT REPRESENTATIONS

2.3.1 CNN-based Encoder-Decoder Model for Relations

Each sentence is truncated or padded to a fixed length (ls) of tokens. Each token

of the text is then represented as the concatenation of several types of embeddings.

We follow the previous work as introduced in Chapter 1.3 to use dw-dimension

word embedding, two dp-dimension position embeddings and de-dimension entity

type embedding. To compare to the state-of-the-art results, we also add the chunk

embedding and the on_dep_path embedding from (Nguyen and Grishman, 2016):

Chunk embedding: Similar to entity type, we have chunk embedding accord-

ing to each token’s chunk type. The size of embedding table is (|C|+1)∗dc, where

|C| is the number of chunk types, and dc is the embedding dimension.

On dep path embedding: For each token, we have a vector to indicate

whether the token is on the dependency path between the two entities. We have

two vectors in total. The vector size is dd.

The input layer is a matrix with size (dw +2 · dp+ de+ dc+ dd) · ls. A standard

convolution layer with variable window sizes (feature maps) is applied on this,

following by max-pooling and dropout. Each filter with the same window size has

the same filter size. The output is the feature representation layer (repr) of size

df ·|W |, where df is the filter size, and |W | is the size of the set of window sizes. We

add fully connected layers to this feature representation with softmax to predict

the relation type. The model is similar to that in (Nguyen and Grishman, 2016).

17

CHAPTER 2. LEARNING DOMAIN-INVARIANT REPRESENTATIONS

2.3.2 Domain Adversarial Neural Network

How does domain adaptation work without any labeled examples for the target

domain? Following Ganin and Lempitsky (2015) and Ajakan et al. (2014), we

use DANN to learn a representation that is more general across domains and

eliminating source-only distinctive features that are easily learned with labeled

source data.

It learns domain invariant features by jointly optimizing the underlying feature

layer from the main learning task and the domain label predictor. In this case, the

main learning task is the relation type prediction in Section 2.3.1. The domain

label predictor is a binary classifier that discriminates whether the example is from

source or target. The domain classifier consists of the gradient reversal layer (GRL)

and a few fully connected layers. The GRL is defined as an identity function with

reversed gradient. For input layer x:

GRL(x) = x, d
dx
GRL(x) = −I,

where I is the identity matrix.

We use a binary cross-entropy loss for the domain classifier:

Ldomain =
Ns+Nt∑
i=0

{dilog(d̂i) + (1− di)log(1− d̂i)},

where diϵ{0, 1} is the domain label {source, target}, and Ns, Nt stand for the

number of examples in source and target.

The loss of the whole model is the linear combination of the task loss and the

domain loss:

L = Lrelation + λ · Ldomain,

where λ is the adaptation weight, and Lrelation is the loss of the relation classi-

18

CHAPTER 2. LEARNING DOMAIN-INVARIANT REPRESENTATIONS

fier.

During the training, half of the examples comes from the source and half from

the target in a single batch. Only examples from the source have relation labels,

while both source and target examples have domain labels. As a result, the source

part is used to calculate the relation loss Lrelation. The whole batch is used to

calculate the domain loss Ldomain.

We choose the feature representation layer (repr) from the relation model (Sec-

tion 2.3.1) as the input to GRL. During the training, while the parameters of the

relation and domain decoders are both optimized to minimize their errors, the

parameters of repr are optimized to minimize the loss of the relation decoder and

to maximize (due to GRL) the loss of the domain classifier. The latter encourages

domain-invariant features to emerge for domain adaptation.

In feature-based models, lexicon-level features are often domain-specific such

as a person’s name. e.g. word-level features that contain Obama and US can be

indicators for an employment relation. It is true in many news articles, but not in

general. Instead of manually deciding whether to use the feature or not, we can

use DANN to read the target domain text to make the decision depending on the

domain.

19

CHAPTER 2. LEARNING DOMAIN-INVARIANT REPRESENTATIONS

2.4 Experiements

2.4.1 Dataset

We use the ACE 2005 dataset to evaluate domain adaptation by dividing its

articles from its six genres into respective domains: broadcast conversation (bc),

broadcast news (bn), telephone conversation (cts), newswire (nw), usenet (un) and

weblogs (wl). Previous work (Gormley et al., 2015; Nguyen and Grishman, 2016)

uses newswire (bn & nw) as the training set, half of bc as the development set, the

other half of bc, cts and wl as the test sets. We use the same data split. Our model

requires unlabeled target domain instances. To meet this requirement and avoid

train-on-test, we also split cts and wl when adapting to them. For all three test

domains, we use half of the dataset as the development set, and the other half as

the test set (Table 2.1). †The bc split is the same as several previous work. We

use the same training set and the same preprocessing as the previous work. This

results in 43,497 entity pairs for training. We also use the same label set which is

expanded by creating two relation types for each asymmetric relation.

Split bc† wl cts
train nw & bn nw & bn nw & bn
dev half of bc half of wl half of cts
test half of bc half of wl half of cts

Table 2.1: Data split for the experiments.

20

CHAPTER 2. LEARNING DOMAIN-INVARIANT REPRESENTATIONS

2.4.2 Configuration and Hyperparameters

We use word embedding pre-trained on newswire with 300 dimensions from

word2vec (Mikolov et al., 2013). We fix the word embeddings during the training

because tuning did not show improvement. We follow Nguyen and Grishman

(2016) to set the hyperparameters for CNN: the embedding sizes (Section 2.3.1)

de, dp, dd, dc, dd, = 50, the max sentence length ls = 50, the set of filter window

sizes W = 2, 3, 4, 5, the number of filters for each window size df = 150, and

the dropout rate to be 0.5. We use one fully connected layer with 300 dimensions

for the relation decoder before the softmax layer. We only use a softmax layer

for domain decoder. The learning rate is 0.001. We halve the learning rate every

two epochs. We use Adam as the optimization method. The adaptation weight is

tuned to be 0.1 using the dev set. For all scores, we run experiments 10 times and

take the average.

2.4.3 Evaluation

Method bc wl cts avg
(Gormley et al., 2015) 61.90 50.36 52.93 55.06
(Nguyen and Grishman, 2016) 63.26 53.91 55.63 57.60
CNN 64.44 53.34 55.06 57.61
CNN + DANN 65.16 53.59 55.43 58.06

Table 2.2: Adaptation to the bc domain.

Our baseline CNN model achieved comparable performance to the state-of-

the-art relation extraction methods (Table 2.2). This Table is using the data

21

CHAPTER 2. LEARNING DOMAIN-INVARIANT REPRESENTATIONS

split following previous methods (not Table 2.1). F1 scores are reported on test

sets with the same splits as previous work. Compared to (Gormley et al., 2015;

Nguyen and Grishman, 2016), our baseline model already obtained higher score

on bc. They also reported higher scores by ensemble with other models (feature-

based or multiple neural net models) which is unfair to compare for a single model.

Essentially, our model can also serve as one of the base models in the ensemble.

We trained DANN to read the development set of bc to adapt to this domain.

Although the gain seems to be small, the improvement is statistically significant

(p-value = 0.00289 between CNN and CNN+DANN on bc domain). We ran an

instance-based sign test on the combination of the output of 10 experiments. We

have 10 observations of each instance in the original dataset. We treat them as

independent examples when calculating the significance. While DANN improves bc

significantly, it does not help the other two domains when adapting to this domain.

We also want to find out how it works on other domains. In the original split

used by previous work, wl and cts do not have dev and test split. We, therefore,

created the data split by ourselves (Table 2.1) and compare the results to our own

baseline model . We observe similar improvement on wl, but not on cts (Table 2.3).

This Table is using the data split in Table 2.1. By doing some feature engineering

on the embedding layer, we found that the Chunk embedding and On dep path

embedding improves the cts a lot. The model obtains 52.96 (without) and 57.02

(with) these embedding. With DANN, it obtains 53.74 (+0.78) and 57.19 (+0.17).

The effective hand-designed cross-domain features from the embedding layer could

make the room for improvement smaller.

22

CHAPTER 2. LEARNING DOMAIN-INVARIANT REPRESENTATIONS

Given a group of documents, our setting is to let the DANN read more unla-

beled documents from the same domain and train the relation model along with it.

Then, we obtain a better model for this domain. This also means that we will have

to train different models for different domains. Ideally, we would like to have a

model that can work on all domains at the same time. To test this, we try to adapt

to the three domains in the dataset at the same time. Under this setting, DANN

reads unlabeled data from all three domains along with the supervised relation

model. As the result (Table 2.3), the model tends to learn something in between.

It performs better on bc and wl, but worse on cts. It is not very surprising since

DANN will force the representation layer to be domain-invariant. To really lift the

performance of all the domains with a single model, the model needs to capture

some domain-specific representation as well. This would be hard to achieve with-

out labels from the target domains, but still an interesting direction to investigate.

Under the current situation, it would be better to train separate models that are

adapted to each domain.

Method bc wl cts avg
CNN 64.33 54.58 57.02 58.64
+ DANN (all) 64.94 55.17 56.08 58.73
+ DANN (each) 65.16 55.55 57.19 59.30

Table 2.3: F1 scores on adaptation to all three domains at the same time and
adaptation to each domain individually.

23

CHAPTER 2. LEARNING DOMAIN-INVARIANT REPRESENTATIONS

2.5 Conclusion

Our model successfully obtains improvement on all three test domains of re-

lations at ACE 2005. It uses a domain adversarial neural network to learn cross-

domain features. It does not require hand-crafted features for domain adaptation.

It can be a useful tool for relation extraction since labeled data is always hard to

acquire. This work has been extended by (Shi et al., 2018). They add autoencoders

to the model to further improve the domain adaptation capability.

24

Chapter 3

Learning a Unified Encoder1,2

3.1 Introduction

Several relation schemas and annotated corpora have been developed such as

the Automatic Content Extraction (ACE), and the Entities, Relations and Events

(ERE) annotation (Song et al., 2015). These schemas share some similarity, but

differ in details (Aguilar et al., 2014). A relation type may exist in one schema

but not in another. An example might be annotated as different types in different

datasets. For example, Part-whole.Geographical relations in ACE05 are annotated

as Physcial.Located relations in ERE. Most of these corpora are relatively small.

Models trained on a single corpus may be biased or overfitted towards the corpus.

Despite the difference in relation schemas, we hypothesize that we can learn a
1. This chapter contains the work that has been published at the 4th Workshop on Noisy

User-generated Text (W-NUT) at EMNLP 2018 (Fu et al., 2018).
2. I did the majority of the research and implementation for the chapter. The co-authors

helped provide data, give high-level advice, and refine the paper.

25

CHAPTER 3. LEARNING A UNIFIED ENCODER

more general representation with a unified encoder. Such a representation could

have better out-of-domain or low-resource performance. We develop a multi-task

model to learn a representation of relations in a shared relation encoder. We

use separate decoders to allow different relation schemas. The shared encoder

accesses more data, learning less overfitted representation. We then regularize the

representation with adversarial training in order to further enforce the sharing

between different datasets. In our experiments, we take ACE05 3 and ERE 4

datasets as a case study. Experimental results show that the model achieves higher

performance on both datasets.

3.2 Related Work

Relation extraction is typically reduced to a classification problem. A super-

vised machine learning model is designed and trained on a single dataset to predict

the relation type of pairs of entities. Traditional methods rely on linguistic or se-

mantic features (Jing and Zhai, 2007; Zhou et al., 2005), or kernels based on syntax

or sequences (Bunescu and Mooney, 2005a,b; Plank and Moschitti, 2013) to repre-

sent sentences of relations. More recently, deep neural nets start to show promising

results. Most rely on convolutional neural nets (Fu et al., 2017; Nguyen and Gr-

ishman, 2015a, 2016; Zeng et al., 2014, 2015) or recurrent neural nets (Miwa and

Bansal, 2016; Zhang et al., 2015; Zhou et al., 2016). Our supervised base model

will be similar to (Zhou et al., 2016). Our initial experiments did not use syntac-
3. urlhttps://catalog.ldc.upenn.edu/LDC2006T06
4. We use 6 LDC releases combined: LDC2015E29, LDC2015E68, LDC2015E78,

LDC2015R26, LDC2016E31, LDC2016E73

26

CHAPTER 3. LEARNING A UNIFIED ENCODER

tic features (Fu et al., 2017; Nguyen and Grishman, 2016) that require additional

parsers.

In order to further improve the representation learning for relation extraction,

Min et al. (2017) tried to transfer knowledge through bilingual representation.

They used their multi-task model to train on the bilingual ACE05 datasets and

obtained improvement when there is less training available (10%-50% of the whole

training set). Our experiments will show our multi-task model can make significant

improvement on the full training set.

In terms of the regularization to the representation, Duong et al. (2015) used l2

regularization between the parameters of the same part of two models in multi-task

learning. Their method is a kind of soft-parameter sharing, which does not involve

sharing any part of the model directly. In the previous chapter, we applied domain

adversarial networks (Ganin and Lempitsky, 2015) to relation extraction and ob-

tained improvement on out-of-domain evaluation. In this chapter, we attempt to

use it as a regularization tool in a different context and find some improvement.

3.3 Supervised Neural Relation Extraction

Model

The supervised neural model on a single dataset was introduced by Zeng et

al. (2014) and followed by many others (Fu et al., 2017; Miwa and Bansal, 2016;

Nguyen and Grishman, 2015a, 2016; Zhou et al., 2016). We use a similar model

as our base model. It takes word tokens, position of arguments and their entity

27

CHAPTER 3. LEARNING A UNIFIED ENCODER

types as input. Some work (Fu et al., 2017; Nguyen and Grishman, 2016) used

extra syntax features as input. However, the parsers that produce syntax features

could have errors and vary depending on the domain of text. The syntax features

learned could also be too specific for a single dataset. Thus, we focus on learning

representation from scratch, but also compare the models with extra features later

in the experiments. The encoder is a bidirectional RNN with attention and the

decoder is one hidden fully connected layer followed by a softmax output layer.

In the input layer, we convert word tokens into word embeddings with pre-

trained word2vec (Mikolov et al., 2013). For each token, we convert the distance

to the two arguments of the example to two position embeddings. We also convert

the entity types of the arguments to entity embeddings. The setup of word em-

bedding and position embedding was introduced by Zeng et al. (2014). The entity

embedding (Fu et al., 2017; Nguyen and Grishman, 2016) is included for arguments

that are entities rather than common nouns. At the end, each token is converted to

an embedding wi as the concatenation of these three types of embeddings, where

i ∈ [0, T), T is the length of the sentence.

A wide range of encoders have been proposed for relation extraction. Most of

them fall into categories of CNN (Zeng et al., 2014), RNN (Zhou et al., 2016) and

TreeRNN (Miwa and Bansal, 2016). In this work, we follow Zhou et al. (2016)

to use Bidirectional RNN with attention (BiRNN), which works well on both of

the datasets we are going to evaluate on. BiRNN reads embeddings of the words

from both directions in the sentence. It summarizes the contextual information at

each state. The attention mechanism aggregates all the states of the sentence by

28

CHAPTER 3. LEARNING A UNIFIED ENCODER

paying more attention to informative words. Given input wi from the input layer,

the encoder is defined as the following:

−→
hi =

−−−→
GRU(wi,

−−→
hi−1), (3.1)

←−
hi =

←−−−
GRU(wi,

←−−
hi+1), (3.2)

hi = concatenate(
−→
hi ,
←−
hi) (3.3)

vi = tanh(Wvhi + bv), (3.4)

αi =
exp(v⊤i vw)∑
t exp(v

⊤
t vw))

, (3.5)

ϕ(x) =
∑
i

αihi. (3.6)

We use GRU (Cho et al., 2014) as the RNN cell. Wv and bv are the weights

for the projection vi. vw is the word context vector, which works as a query

for selecting important words. The importance of the word is computed as the

similarity between vi and vw. The importance weight is then normalized through

a softmax function. Then we obtain the high level summarization ϕ(x) for the

relation example.

The decoder uses this high level representation as features for relation classifica-

tion. It usually contains one hidden layer (Fu et al., 2017; Nguyen and Grishman,

2016; Zeng et al., 2014) and a softmax output layer. We use the same structure

which can be formalized as the following:

h = ReLU(Whϕ(x) + bh), (3.7)

p = softmax(Woh+ bo), (3.8)

29

CHAPTER 3. LEARNING A UNIFIED ENCODER

where Wh and bh are the weights for the hidden layer, Wo and bo are the weights

for the output layer. We use cross-entropy as the training loss.

3.4 Learning Unified Representation

While the data for one relation task may be small, noisy and biased, we can

learn a better representation combining multiple relation tasks. We attempt to use

multi-task learning to learn a unified representation across different relation tasks.

The method is simple and straightforward. We use the same encoder to learn the

unified feature representation for both relation tasks, and then we train classifiers

for each task on top of this representation. We then apply regularization on this

representation by adversarial training.

3.4.1 Multi-task Learning

Given example x1 from relation schema 1 and x2 from relation schema 2, we

use the same encoder to obtain representation ϕ(x1) and ϕ(x2) respectively. Then

we build separate decoders for them using the same structure (3.7) (3.8). To train

them at the same time, we put examples from both tasks in the same batch. The

ratio of the examples are controlled so that the model reads both datasets once

every epoch. We use linear interpolation to combine the loss from them.

L = (1− λ)L1 + λL2, (3.9)

where λ is used to control the attention to each task. The model may learn the

two tasks at different speed. During optimization, one task can be seen as the

30

CHAPTER 3. LEARNING A UNIFIED ENCODER

Figure 3.1: Multi-task model with regularization

main task, while the other can be seen as the auxiliary task. The benefit of joint

learning to the main task may vary depending on how much attention the model

pays to the auxiliary task.

3.4.2 Regularization by Adversarial Training

Being optimized simultaneously by different decoders, the model could still

learn very different representation for similar examples coming from different tasks.

We want to prevent this and to further push the model to learn similar represen-

tation for similar examples even if they come from different tasks. We attempt to

regularize the representation using adversarial training between the two tasks.

Given the representation ϕ(x1) and ϕ(x2) learned from the two tasks, we build

a classifier to predict which task the examples come from (3.11). We add a gradient

31

CHAPTER 3. LEARNING A UNIFIED ENCODER

reversal layer (Ganin and Lempitsky, 2015) as introduced in Section 2.3.2 at the

input of this classifier (3.10) to implement the adversarial training.

ϕ(x) = GRL(ϕ(x)), (3.10)

p = softmax(Wϕ(x) + b). (3.11)

While the classifier learns to distinguish the sources of the input representation,

the input representation is learned in the opposite direction to confuse the classifier

thanks to GRL. Thus, the input representation (ϕ(x1) and ϕ(x2)) will be pushed

to be close to each other.

We also use the cross-entropy loss for this adversarial training, and combine

the loss Ladv with the two relation tasks.

L = (1− λ)L1 + λL2 + βLadv, (3.12)

where we can use β to control how close the representations are between the two

relation tasks.

3.5 Experiments

3.5.1 Datasets

To apply the multi-task learning, we need at least two datasets. We pick

ACE05 and ERE for our case study. The ACE05 dataset provides a cross-domain

evaluation setting . It contains 6 domains: broadcast conversation (bc), broadcast

news (bn), telephone conversation (cts), newswire (nw), usenet (un) and weblogs

32

CHAPTER 3. LEARNING A UNIFIED ENCODER

(wl). Previous work (Fu et al., 2017; Gormley et al., 2015; Nguyen and Grishman,

2016) used newswire as training set (bn & nw), half of bc as the development

set, and the other half of bc, cts and wl as the test sets. We followed their split

of documents and their split of the relation types for asymmetric relations. The

ERE dataset has a similar relation schema to ACE05, but is different in some

annotation guidelines (Aguilar et al., 2014). It also has more data than ACE05,

which we expect to be helpful in the multi-task learning. It contains documents

from newswire and discussion forums. We did not find an existing split of this

dataset, so we randomly split the documents into train (80%), dev (10%) and test

(10%).

3.5.2 Model Configurations

We use word embedding pre-trained on newswire with 300 dimensions from

Word2vec (Mikolov et al., 2013). We fix the word embeddings during the training.

We follow Nguyen and Grishman (2016) to set the position and entity type em-

bedding size to be 50. We use 150 dimensions for the GRU state, 100 dimensions

for the word context vector and use 300 dimensions for the hidden layer in the

decoders. We train the model using Adam (Kingma and Ba, 2014) optimizer with

learning rate 0.001. We tune λ linearly from 0 to 1, and β logarithmically from

5 · 10−1 to 10−4 For all scores, we run experiments 10 times and take the average.

33

CHAPTER 3. LEARNING A UNIFIED ENCODER

3.5.3 Augmentation between ACE05 and ERE

Training separately on the two corpora (row “Supervised” in Table 3.1), we

obtain results on ACE05 comparable to previous work (Gormley et al., 2015) with

substantially fewer features. With syntactic features as (Fu et al., 2017; Nguyen

and Grishman, 2016) did, it could be further improved. In this section, however,

we want to focus on representation learning from scratch first. Our experiments

focus on whether we can improve the representation with more sources of data.

A common way to do so is pre-training. As a baseline, we pre-train the encoder

of the supervised model on ERE and then fine-tune on ACE05, and vice versa (row

“Pretraining” in Table 3.1). We observe improvement on both fine-tuned datasets.

This shows the similarity between the encoders of the two datasets. However, if we

fix the encoder trained from one dataset, and only train the decoder on the other

dataset, we will actually obtain a much worse model. This indicates that neither

dataset contains enough data to learn a universal feature representation layer for

classification. This leaves the possibility to further improve the representation by

learning a better encoder.

We then attempt to learn a multi-task model using a shared encoder. We use

14K words as the vocabulary from ACE05 and 20K from ERE. There are about 8K

words shared by the two datasets (same for both pretrained and multi-task models).

By multi-task learning, we expect the model to conceive the embeddings for words

better and construct more general representation. Experiments determined that

the multi-task learning works best at λ = 0.8 for both ACE05 and ERE datasets

(Table 3.1). It obtains improvement on both the out-of-domain evaluation on ACE

34

CHAPTER 3. LEARNING A UNIFIED ENCODER

ACE05 ERE
Method bc wl cts avg test
Supervised 61.44 52.40 52.38 55.40 55.78
Pretraining 60.21 53.34 56.10 56.55 56.39
Multi-task 61.67 55.03 56.47 57.72 57.29
+ Regularization 62.24 55.30 56.27 57.94 57.75

Table 3.1: Multi-task Learning and Regularization (100% training data).

and in-domain evaluation on ERE. It works especially well on weblogs (wl) and

telephone conversation (cts) domains on ACE, which possibly benefits from the

discussion forum data from ERE.

On the other hand, we use the adversarial training between the two datasets

to further enforce the representation to be close to each other. There is strong

dependency between the schemas of these two datasets. Two examples from differ-

ent datasets could have the same semantics in terms of relation type. We try to

force the representation of these examples to be similar. With appropriate amount

of this regularization (β = 0.001), the model can be further improved (Table 3.1).

The amount of improvement is modest compared to sharing the encoder. This may

show that the multi-task model can already balance representation with enough

labels on both sides. We also artificially remove half of the training data of each

dataset to see the performance in a relatively low-resource setting (Table 3.2). We

observe larger improvement with both multi-task learning and regularization. Be-

cause of the decrease of the training data, the best λ is 0.9 for ACE05 and 0.7 for

ERE. We also use slightly stronger regularization (β = 0.01).

35

CHAPTER 3. LEARNING A UNIFIED ENCODER

ACE05 ERE
Method bc wl cts avg test
Supervised 56.03 47.81 48.65 50.83 53.60
Pretraining 55.39 49.17 52.91 52.49 54.66
Multi-task 57.39 51.44 54.28 54.37 55.72
+ Regularization 57.73 52.30 54.63 54.89 55.91

Table 3.2: Multi-task Learning and Regularization (50% training data).

3.5.4 More Features on ACE05

Since ACE05 has been studied for a long time, numerous features have been

found to be effective on this dataset. (Nguyen and Grishman, 2016) incorporated

some of those features into the neural net and beat the state-of-art on the dataset.

Although representation learning from scratch could be more general across mul-

tiple datasets, we compare the effect of multi-task learning with extra features on

this specific dataset.

We add chunk embedding and on_dep_path embedding (Nguyen and Grishman,

2016). Similar to entity type embedding, chunk embedding is created according to

each token‘s chunk type, we set the embedding size to 50. On_dep_path embedding

is a vector indicating whether the token is on the dependency path between the

two entities. In the multi-task model, the shared encoder is a bidirectional RNN

(BiRNN) without attention (Equation (3.1-3.3)). These two embeddings will be

concatenated to the output of the BiRNN to obtain the new hi and then passed

to Equation (3.4).

As to the result (Table 3.3), our supervised baseline is slightly worse than

the previous state-of-the-art neural model with extra features, but the multi-task

36

CHAPTER 3. LEARNING A UNIFIED ENCODER

Method bc wl cts avg
(Nguyen and Grishman, 2016) 63.07 56.47 53.65 57.73
Supervised 61.82 55.68 55.15 57.55
Multi-task 63.59 56.11 56.78 58.83

Table 3.3: Multi-task Learning with extra features on ACE05 (100% training data).

Method bc wl cts avg
Supervised 56.81 50.49 50.10 52.47
Multi-task 58.24 52.90 53.09 54.37

Table 3.4: Multi-task Learning with extra features on ACE05 (50% training data).

learning can consistently help. The improvement is more obvious with 50% training

data (Table 3.4). It is also worth noting that with 50% training data, the extra

features improve the supervised base model, but not the multi-task learning model.

It shows the effectiveness of the multi-task model when there is less training data.

3.6 Conclusion and Future Work

We attempt to learn unified representation for relations by multi-task learning

between ACE05 and ERE datasets. We use a shared encoder to learn the unified

feature representation and then apply regularization by adversarial training. The

improvement on both datasets shows the promising future of learning representa-

tion for relations in this unified way. This will require less training data for new

relation schemas. It will be interesting future work to further explore the multi-task

learning between different datasets, especially to capture the dependency between

different schemas in the decoder.

37

Chapter 4

Learning Relatedness between

Types with Prototypes1

4.1 Introduction

In this chapter, we focus on the relationships between relation types across

different relation schemas. These relation schemas are mostly pre-defined in ex-

isting datasets. The definition of the relation type depends on the annotation

guide. There is no clear intrinsic Ontology for relation types. In practice, relation

types can be created based on interests. This leaves datasets with similar, related

or overlapping schemas. For example, the annotation guidelines for Automatic

Content Extraction (ACE) 03-05 changed from year to year. The later created En-

tities, Relations and Events (ERE) dataset was similar in the schema, but differs
1. I did the majority of the research and implementation for the chapter. The co-authors

helped provide data, give high-level advice, and refine the paper.

38

CHAPTER 4. LEARNING RELATEDNESS BETWEEN TYPES WITH
PROTOTYPES

in details. Because of the difficulty of annotating relations, these datasets are all

small individually and hard to be utilized together.

However, we can observe the connections between the relation types from dif-

ferent datasets based on relation names or annotation guidelines. This is the prior

knowledge that one relation type in one dataset may have closer relationships to

some types than the others in another dataset. We design a model to recognize

this similarity. We propose to use prototypical examples to represent each rela-

tion type. We rank these representations higher for related types, and lower for

unrelated types using a pair-wise loss function. Our base model is a multi-task

learning model which focuses on learning a strong encoder using multiple datasets

regardless of the relation schemas. We take a step further to explore utilizing the

relatedness between the relation types. Experiments on ACE05 and ERE show

that it can further boost the performance, especially in the low-resource settings.

4.2 Related Work

Relation type dependency: There have been a few ways to model the

relationships between types in a multi-label relation dataset where we can learn

the similarity or dependency from annotated examples. Surdeanu et al. (2012)

used a two-layer hierarchical model. The object-level classifier is able to capture

the label dependency, while the mention-level classifier is focused on multi-label

classification. Riedel et al. (2013) used a neighborhood model to explicitly model

the dependency between the labels in a matrix factorization framework. Both

models are designed to work on multi-label examples, which require annotation

39

CHAPTER 4. LEARNING RELATEDNESS BETWEEN TYPES WITH
PROTOTYPES

to capture the dependency between labels. Among the recent work on neural

methods for relation extraction, most (Lin et al., 2016; Liu et al., 2017; Zeng et

al., 2015) ignores the multi-label setting and does not explicitly model the label

dependency. Ye et al. (2017), on the other hand, ranks the similarity between

feature representation of the instance and the label embedding. In addition to

ranking the positive classes higher than the negative ones, it ranks positive classes

against each other to learn the connections between the positive classes. These

methods all require annotated examples to learn the connections. In the case of

relation types across different datasets, such annotations do not exist. We attempt

to learn the similarity nevertheless using prototypes from each type.

Multi-task learning: Training multiple relation datasets at the same time

could improve the robustness of the model and reduce annotation cost for relation

extraction. In chapter 3, we introduced a shared encoder to learn more general

feature representation. In this chapter, we will use a similar multi-task learning

base model and incorporate the similarity between the relation schemas to further

improve the performance.

4.3 Relation Model with Multi-task Learning

The majority of neural relation models (Lin et al., 2016; Nguyen and Grishman,

2015a; Zeng et al., 2014, 2015) encode a sentence using a deep architecture to a

vector representation followed by a softmax classifier, while the others (Dos Santos

et al., 2015; Ye et al., 2017) use a function to compute the score between label

embedding and sentence representation. In the previous chapter, we have showed

40

CHAPTER 4. LEARNING RELATEDNESS BETWEEN TYPES WITH
PROTOTYPES

that the shared encoder can help in the case of the multi-task learning. Inspired

by this, we choose the latter so that all relation types (including from different

datasets) will share all model parameters except the label embeddings. Suppose

we obtain the sentence representation ϕ(x) with a neural architecture. We define

the label embedding as Wl ∈ RD, a D-dimension vector for each type. We compute

the L1 distance between them and learn a scoring function to estimate the scores

Sθ(x) for every type:

Sθ(x)l = Wo · |ϕ(x)−Wl|+ bo, (4.1)

where Wo ∈ RD and bo ∈ R are shared for all types.

We do not use the dot product (Dos Santos et al., 2015; Ye et al., 2017) as the

scoring function because the L1 distance works slightly better in the multi-task

learning experiments. The probability of every class is computed as the softmax

output of the scores. Similar to (Fu et al., 2018), we jointly train two relation

tasks at the same time with cross-entropy losses.

L = λLr1 + (1− λ)Lr2, (4.2)

where Lr1 and Lr2 are the cross-entropy losses for the two relation tasks. λ is the

hyperparameter to control the learning speed between the two tasks. This would

give a strong baseline of utilizing the two datasets together.

41

CHAPTER 4. LEARNING RELATEDNESS BETWEEN TYPES WITH
PROTOTYPES

4.3.1 Prototypes of Relation Types for Learning

Similarity

For each relation type, we randomly select k examples (Sk) from the training set

as supporting examples. We use the mean of the representations of these examples

as the prototype for the relation type:

x̄c =
1

k

∑
xi∈Sk

ϕ(xi) (4.3)

These prototypes are inspired by the Prototypical Networks (Snell et al., 2017).

However, in the training procedure, these supporting examples are randomly se-

lected for every mini-batch. We have dynamic prototypes during training.

We define Sθ(x̄c)l as the similarity score to type c for type l. We hypothesize

that if the two relation types are similar in semantics, they should obtain high sim-

ilarity score. Within the dataset, if the relation types in the schema are mutually

exclusive, then we would expect a high similarity score to itself and low scores to

the other types. Across the datasets, the prototypes would obtain high scores for

related types and low scores for unrelated types. We use a pair-wise ranking loss

(Dos Santos et al., 2015) to learn this relatedness across the datasets.

For l ∈ L and c ∈ C, Sθ(x̄c)l gives the score for the similarity between the type

l in the relation schema L and the type c in the relation schema C. Let c+ ∈ C

be a class related to l and c− ∈ C be a class unrelated to l. The similarity scores

would be Sθ(x̄c+)l and Sθ(x̄c−)l respectively. We define the pair-wise ranking loss

42

CHAPTER 4. LEARNING RELATEDNESS BETWEEN TYPES WITH
PROTOTYPES

as:

Ls = log(1 + exp(γ(m+ − Sθ(x̄c+)l))

+log(1 + exp(γ(m− + Sθ(x̄c−)l))

(4.4)

m+ and m− are the margins and γ is the scaling factor. This loss function would

push Sθ(x̄c+)l higher for related type pair between c+ and l and Sθ(x̄c−)l lower for

unrelated type pair between c− and l. We manually create a relatedness matrix

to state whether the two types are related or not between the types in C and L

based on the definition of the relation types. For each step of training, we pick

the highest scored c− from unrelated types and lowest scored c+ for related types

corresponding to type l.

c− = argmax
c∈C−

Sθ(x̄c)l (4.5)

c+ = argmin
c∈C+

Sθ(x̄c)l (4.6)

where C− are types unrelated to l and C+ are types related to l. In experiments,

we use looser margins (m+ = 0.5, m− = 0.5, γ = 1.0) compared to (Dos Santos

et al., 2015) as we are learning the relatedness between types rather than doing

classification for individual instances. The ranking loss is jointly trained as an

auxiliary task with the main relation tasks:

L = λLr1 + (1− λ)Lr2 + βLs, (4.7)

where we use β to control the weight for learning the relatedness. If β is too large,

it could disrupt the learning of main relation tasks. With appropriate weight, it

could help augment the label embeddings for the relation types by considering the

similarity between them.

43

CHAPTER 4. LEARNING RELATEDNESS BETWEEN TYPES WITH
PROTOTYPES

4.4 Experiments

4.4.1 Datasets

We select the same two datasets in the experiments as we did in the previous

chapter. There is overlapping of relation types between ACE05 and ERE, but the

annotation guidelines are different in details for types that have the same name

(Aguilar et al., 2014). Thus, we can not combine the datasets directly as a single

dataset. We have shown that the multi-task learning with the two datasets at

the same time could obtain better feature representation in the previous chapter.

We take a step further and try to learn the similarity between the types. Most

of the types in one dataset can be mapped (similar) to the other as a one-to-one

mapping, while the artifact type does not exist in ERE. We manually reviewed

the relatedness between the relation types in the schemas as the labels (related or

unrelated) for learning similarity. This can be easily done by comparing the names

of the relation types in the two datasets. For preprocessing the data, we follow

previous work (Fu et al., 2017, 2018; Gormley et al., 2015; Nguyen and Grishman,

2016) on ACE05. We use the same document split as theirs and as in the previous

chapter. We also followed their split of the relation types for asymmetric relations

(directionality taken into account except for physcial and person-social types). We

perform the same preprocessing for the ERE dataset, and follow the document

split from the previous chapter.

44

CHAPTER 4. LEARNING RELATEDNESS BETWEEN TYPES WITH
PROTOTYPES

4.4.2 Multi-task Learning Baseline

Following Chapter 3, we use a similar encoder to obtain the feature represen-

tation ϕ(x) as our baseline. Following previous work (Fu et al., 2018; Nguyen and

Grishman, 2016), the input layer is the concatenation of word embedding, entity

embedding and position embeddings. We use pretrained word2vec (Mikolov et al.,

2013) as the word embedding with embedding size dw. The entity embedding

and position embeddings are randomly initialized vectors according to the entity

type of the token and relative distance to the two arguments of the relation. The

embedding sizes are de and dp respectively. We follow previous work for these

input embedding sizes as dw, de, dp = 300, 50, 50. It is followed by Bidirectional

RNN with attention and a fully connected layer to match the size for the label

embedding. We use 150 for the RNN state size and 200 for the label embedding

size. The output of this encoder is ϕ(x). Then we can perform classification using

the scores obtained from Equation 4.1.

In a mini-batch of training step, we randomly select examples from both

datasets proportionally according to the dataset size so that the model can finish

reading both datasets at the same time after every epoch. Because the difference of

the number of examples for the two datasets in the batch, we set λ = λd · |D1|
|D1|+|D2| ,

where |D1| and |D2| are the number of examples for each dataset in a single batch.

In a special case where the two datasets are actually split from one original dataset,

we can set λd = 1.0, and then the two datasets are going to be learned at the same

speed. In our case, we use λd = 0.8 so that the two relation tasks are roughly learn-

ing at the same speed. As the result, our multi-task model using label embedding

45

CHAPTER 4. LEARNING RELATEDNESS BETWEEN TYPES WITH
PROTOTYPES

is comparable to (Fu et al., 2018) (Table 4.1), which serves as a strong baseline

since it is already better than training a single relation task.

4.4.3 Learning the Relatedness between Two Relation

Schemas

By learning the relatedness at the same time (Equation 4.4,4.7, β = 0.001),

we obtain better results at the full training set (Table 4.1). The improvement is

more obvious with a smaller training set (Table 4.2 at 50%). We also set up a

low-resource setting where we only have N examples for each relation type (Figure

4.1 at N = [10, 20, 30, 40, 50]). The negatives are randomly selected according to

the pos/neg ratio. We can observe larger improvement with less training data.

This is also to consider the skewed data distribution in the dataset where there are

far more examples for some types than the others. The k supporting prototype

examples are drawn randomly at every step. We use k = 50 for the experiments

and k = N for the low-resource settings. Overall, the improvement is impressive,

especially for the low-resource settings. It is also worth noting that the single task

models for these low-resource settings obtain virtually zero scores without multi-

task learning as there is not enough data to train the encoder. The multi-task

learning between two relation tasks is better than training on a single task and

more effective for a smaller training set. We now show that learning the relatedness

between the types could further improve the model.

46

CHAPTER 4. LEARNING RELATEDNESS BETWEEN TYPES WITH
PROTOTYPES

ACE05
Method bc wl cts avg
Single-task 60.22 53.77 52.01 55.33
Multi-task 60.60 56.20 56.72 57.84
+ Relatedness 62.05 56.10 59.12 59.08
Fu et al., 2018 61.67 55.03 56.47 57.72

Table 4.1: Learning the relatedness between types (full training set).

ACE05
Method bc wl cts avg
Single-task 54.80 47.27 48.42 50.17
Multi-task 56.67 51.39 55.23 54.43
+ Relatedness 58.31 53.13 56.50 55.98
Fu et al., 2018 57.39 51.44 54.28 54.37

Table 4.2: Learning the relatedness between types (50% training).

4.5 Conclusion

We use prototypes of relation types to learn the relatedness between them. In

the multi-task learning framework, this joint learning incorporates more knowl-

edge of a relation type for classification. It is impressive that the model can obtain

further improvement in addition to sharing the encoder of the sentence. It shows

that learning the relationships between relation types could be useful to handle

different relation schemas from different datasets. In this paper, we separate the

relationships between relation types as related and unrelated. It would be interest-

ing to further explore the relationships between relation types as a more dynamic

metric.

47

CHAPTER 4. LEARNING RELATEDNESS BETWEEN TYPES WITH
PROTOTYPES

Figure 4.1: Low-resource setting with N examples for each positive relation type
on ACE05.

48

Chapter 5

Conclusion

In this dissertation, I present a multi-task toolkit for neural relation extraction.

The frameworks aim to improve the representations of relation models through

different auxiliary resources. With new unlabeled entity pairs in the different

domains, the model can obtain representations that are better generalized to the

target domain. With new labels from different datasets, the model can learn

better feature representations with a unified encoder. With prior knowledge of

the relationships between relation types, the model can learn more general label

embeddings. This set of techniques can be easily applied to relation datasets

and tasks. This toolkit can be an effective module for the relation extraction

community.

This toolkit is also compatible with most of the other techniques in the commu-

nity. If someone wants to extract relations in practice, this toolkit can be directly

applied. Depending on whether the types exist in the current datasets, we might

have to develop a small dataset for the relations first. We can then find the re-

49

CHAPTER 5. CONCLUSION

lated existing datasets to learn a better encoder according to Chapter 3. If there

are multiple related datasets, we would better learn them at the same time to

achieve the best performance. When the number of datasets grows, how to keep

them learning at the same speed might be a challenge in practice. The next step

would be to learn the relatedness between the relation schemas to further improve

the model according to Chapter 4. In this chapter, I did experiments with two

closely related schemas. Thus, the relatedness between the types is relatively easy

to judge. In practice, the decision should be made based on the semantics of the

types. There may not be an easily-found label set for capturing the relatedness of

two complex ontologies. Even though it is easy for people to judge whether two re-

lation types are related, the answers might not be consistent in a large complicated

ontology. Thus, it would be more desirable to have a more flexible or dynamic

metric for the relatedness in practice. If the relation task may be applied to some

domain-specific documents, we can use the adaptation from Chapter 2 to make

the model work better for the target domain. In practice, it might be more ideal

to have a domain embedding for each domain and a unified model that can work

on the target domain automatically after reading the domain embedding. In this

way, the adaptation would focus on learning the domain embedding in the target

domain instead of fine-tuning the original model.

At the time of this thesis, Shi et al. (2018) has extended our model in Chapter 2

by adding autoencoders. This might be currently the state-of-the-art domain adap-

tation model for relation extraction. On the other hand, there have been a variety

of model architectures for relation extraction. Currently, Soares et al. (2019) used

50

CHAPTER 5. CONCLUSION

pretrained language models (BERT) to achieve the best performance on several

datasets. Even though they did not evaluate on datasets such as ACE or ERE,

it is likely that the BERT-based model will achieve state-of-the-art performance

on these datasets in the near future because of the additional knowledge from the

pretrained language models. I would recommend using BERT-based models as the

shared encoder according to Chapter 3.

5.1 Future Directions of Relation Extraction

As discussed in Chapter 1.3, the majority of current research of relation extrac-

tion focuses on how to design a model architecture that better fits the data in the

supervised setting. This research assumes we have enough labeled data, which is

unlikely to be true in practice. Because of the sparsity of relations and the flexibil-

ity of defining relation types, we would better take the opposite assumption that

we would only have limited labeled data. Given this constraint, the directions for

solving the relation extraction problem could be quite different.

First of all, we could have different models from the supervised setting that

better suit low-resource settings or unseen relations. Levy et al. (2017) proposed

to use a reading comprehension model for zero-shot relation extraction. Han et al.

(2018a) released a few-shot dataset for relations. There are some fine-grained rela-

tion types whose names are descriptive enough. Extracting these types of relations

can mostly be converted to answering a question. E.g., place_of_birth→ Where

was X born? These types of relations are more likely to be solved by zero-shot

learning if there is a similar type existing in the training or if there is a rich pre-

51

CHAPTER 5. CONCLUSION

trained model. At least, it would be reasonable to expect good performance from

a few-shot model. Soares et al. (2019) has already shown impressive results on the

few-shot dataset. However, the dataset is a balanced dataset which contains the

same number of negatives as each of the positive relations. In practice, the large

skewed positive to negative ratio for relations would be a challenge for these meth-

ods. There is no clear way to define the semantics of the negative class of relations.

It is only a complement of the positives. The relation types of the dataset are also

mostly self-descriptive. Extending these models to more abstract types would be

another challenge. Improvement of these methods would give a better practical

baseline for relation extraction.

Secondly, in order to improve relation extraction models with minimal labels,

we have to utilize more prior knowledge and resources. In this thesis, I attempt

to use three kinds of resources: unlabeled entity pairs, multiple labeled datasets,

and relationships between relation types. All three of these directions can be

further explored. The objective would be to optimize the model given the labeled

data plus these additional resources instead of just a single dataset. In addition,

any knowledge that helps to explain the entities or the context could be a useful

resource. For example, it is hard to generalize from professor to include coach.

Pretrained distributional semantics could be helpful in this case, but may not be

sufficient to always link one job title to another one. In the traditional feature-

based systems, we can use a list of words as a dictionary and create a feature

based on whether a word belongs to this job title list. These kinds of features

could be useful for some datasets, but not in general when the list is limited. A

52

CHAPTER 5. CONCLUSION

more comprehensive knowledge resource is needed for better generalization such

as the relational nouns in Nombank (Meyers et al., 2004). With more complete

knowledge resources in the future, this external knowledge could be more effective.

It can also be better utilized with multi-task learning or other methods instead of

just checking the list. The additional knowledge may also not have to be perfect

to be useful (Vashishth et al., 2018). The capability of external knowledge could

be underestimated currently for relation extraction.

Last, the most direct way to improve relation extraction models is still by ac-

quiring more labels, especially positive labels. There is currently not much research

about how to obtain labels more efficiently for relation extraction. ICE (He and

Grishman, 2015) is a tool for acquiring more relation labels interactively. The

assumption is that relation tasks are often domain-specific and require customiza-

tion. it is also based on the research that it is more efficient to obtain labels in a

interactive way (Fu and Grishman, 2013). This kind of research focused on active

learning in a simulated environment. Because of the sparsity of relations, active

learning could help a lot in finding positive relations and thus substantially improve

the model with limited annotations. Nevertheless, there has been little research

about how to acquire more labels interactively. It could be due to the difficulty of

developing better query functions for active learning in a simulated environment.

However, even a basic uncertainty-based active learning strategy would give large

improvement over random or sequential annotation strategy for relations. In real

applications, this interactive approach could be a better choice for acquiring more

labels. It might be more important to address the other concerns of using these

53

CHAPTER 5. CONCLUSION

kinds of interactive tools in practice. Active learning would often give a skewed

sample from large unlabeled data. It is not easy to show that this skewed sample

would be as useful if evaluating in settings different from the original simulated

experiments. The annotation cost for different examples could also be dramati-

cally different in practice, even though they are all counted as one example in a

simulated experiment. Annotators would spend far less time on a short easy sen-

tence than a long ambiguous sentence. Since we have large amounts of unlabeled

data, is it sufficient to just annotate short simple examples? The hidden structures

of relations are often just simple patterns or some keywords. Can we generalize

simple sentences to more complicated context if we have enough labels for simple

examples? In other words, if we change the way we count the annotation cost (e.g.,

use the number of words as the cost instead of the number of sentences), then the

query function could be very different. The potential factors of obtaining labels

interactively for efficient models are not well explored at the moment.

5.2 Applications of Knowledge of Relations

The direct result of extracting relations between entities is adding more edges

in the knowledge graph. Applications could be built based on the knowledge graph

such as question answering or summarization in the form of personal assistants or

search engine results. In addition to the general purpose knowledge base, the ap-

plications of relation tasks are often considered domain-specific. Relation tasks in

the biomedical domain have a long history such as the Protein-Protein Interaction.

There are also potential applications for other specialized areas such as legal doc-

54

CHAPTER 5. CONCLUSION

uments or scientific papers. The automatic tools built in each domain could work

as the assistants for the professionals.

For the biomedical domain, there has been a lot of research and many datasets

(Pyysalo et al., 2008) such as AIMed (Bunescu et al., 2005), BioInfer (Pyysalo et al.,

2007), HPRD50 (Fundel et al., 2006), IEPA (Ding et al., 2001) and more recently

the BioNLP shared tasks. Researchers try to build knowledge bases for medical

entities such as proteins, drugs, and diseases from text. For scientific documents,

finding relations between research projects can potentially predict future directions

of technology (Meyers et al., 2014). For legal documents, automatic extraction of

different parties, judges and other participants in a case could provide enormous

data for quantitative analysis. This could lead to more equal decisions for different

cases and artificial judges in the future. Text in all these domains is hard for an

average person to read. Annotation would require domain experts.

Building knowledge bases for these professional tasks is not an easy job, and

may require substantial manpower to build a real application. There might be

enough funding to support such an effort in the biomedical domain or in legal

document processing to replace doctors and lawyers. It would be hard for people

to build a customized knowledge base for a narrow scope or less profitable domain.

This would only be possible in the future if we can substantially improve the models

and the customization tools without requiring much annotation.

55

Bibliography

Aguilar, Jacqueline, Charley Beller, Paul McNamee, Benjamin Van Durme, Stephanie
Strassel, Zhiyi Song, and Joe Ellis (2014). “A comparison of the events and rela-
tions across ace, ere, tac-kbp, and framenet annotation standards”. In: Proceed-
ings of the Second Workshop on EVENTS: Definition, Detection, Coreference,
and Representation, pp. 45–53.

Ajakan, Hana, Pascal Germain, Hugo Larochelle, François Laviolette, and Mario
Marchand (2014). “Domain-adversarial neural networks”. In: arXiv preprint
arXiv:1412.4446.

Blitzer, John, Ryan McDonald, and Fernando Pereira (2006). “Domain Adaptation
with Structural Correspondence Learning”. In: EMNLP.

Bollacker, Kurt, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor
(2008). “Freebase: a collaboratively created graph database for structuring hu-
man knowledge”. In: Proceedings of the 2008 ACM SIGMOD international
conference on Management of data. AcM, pp. 1247–1250.

Bunescu, Razvan C. and Raymond J. Mooney (2005a). “A shortest path depen-
dency kernel for relation extraction”. In: Proceedings of the Conference on Hu-
man Language Technology and Empirical Methods in Natural Language Pro-
cessing, pp. 724-731. Association for Computational Linguistics.

56

BIBLIOGRAPHY

Bunescu, Razvan C. and Raymond J. Mooney (2005b). “Subsequence kernels for
relation extraction”. In: Advances in Neural Information Processing Systems,
pp. 171-178.

Bunescu, Razvan, Ruifang Ge, Rohit J Kate, Edward M Marcotte, Raymond J
Mooney, Arun K Ramani, and Yuk Wah Wong (2005). “Comparative experi-
ments on learning information extractors for proteins and their interactions”.
In: Artificial intelligence in medicine 33.2, pp. 139–155.

Cho, Kyunghyun, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio (2014). “Learning phrase
representations using rnn encoder–decoder for statistical machine translation”.
In: Proceedings of EMNLP.

Cortes, Corinna and Vladimir Vapnik (1995). “Support-vector networks”. In: Ma-
chine learning 20.3, pp. 273–297.

Daume, Hal (2007). “Frustratingly Easy Domain Adaptation”. In: ACL.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).
“Bert: Pre-training of deep bidirectional transformers for language understand-
ing”. In: arXiv preprint arXiv:1810.04805.

Ding, Jing, Daniel Berleant, Dan Nettleton, and Eve Wurtele (2001). “Mining
MEDLINE: abstracts, sentences, or phrases?” In: Biocomputing 2002. World
Scientific, pp. 326–337.

Dos Santos, Cicero, Bing Xiang, and Bowen Zhou (2015). “Classifying Relations
by Ranking with Convolutional Neural Networks”. In: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1:
Long Papers). Vol. 1, pp. 626–634.

57

BIBLIOGRAPHY

Du, Jinhua, Jingguang Han, Andy Way, and Dadong Wan (2018). “Multi-Level
Structured Self-Attentions for Distantly Supervised Relation Extraction”. In:
arXiv preprint arXiv:1809.00699.

Duong, Long, Trevor Cohn, Steven Bird, and Paul Cook (2015). “Low resource de-
pendency parsing: Cross-lingual parameter sharing in a neural network parser”.
In: Proceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), vol. 2, pp. 845-850.

Fu, Lisheng and Ralph Grishman (2013). “An efficient active learning framework
for new relation types”. In: Proceedings of the Sixth International Joint Con-
ference on Natural Language Processing, pp. 692–698.

Fu, Lisheng, Thien Huu Nguyen, Bonan Min, and Ralph Grishman (2017). “Do-
main Adaptation for Relation Extraction with Domain Adversarial Neural Net-
work”. In: Proceedings of the Eighth International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), vol. 2, pp. 425-429.

Fu, Lisheng, Bonan Min, Thien Huu Nguyen, and Ralph Grishman (2018). “A
Case Study on Learning a Unified Encoder of Relations”. In: Proceedings of the
2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated
Text, pp. 202–207.

Fundel, Katrin, Robert Küffner, and Ralf Zimmer (2006). “RelEx—Relation ex-
traction using dependency parse trees”. In: Bioinformatics 23.3, pp. 365–371.

Ganin, Yaroslav and Victor Lempitsky (2015). “Unsupervised Domain Adaptation
by Backpropagation”. In: ICML.

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio (2011). “Domain adaptation
for large-scale sentiment classification: A deep learning approach”. In: ICML.

58

BIBLIOGRAPHY

Gormley, Matthew R., Mo Yu, and Mark Dredze (2015). “Improved Relation Ex-
traction with Feature-Rich Compositional Embedding Models”. In: EMNLP.

Han, Xu, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao, Zhiyuan Liu, and Maosong
Sun (2018a). “FewRel: A Large-Scale Supervised Few-Shot Relation Classifica-
tion Dataset with State-of-the-Art Evaluation”. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. Brussels,
Belgium: Association for Computational Linguistics, pp. 4803–4809. doi: 10.
18653/v1/D18-1514.

Han, Xu, Pengfei Yu, Zhiyuan Liu, Maosong Sun, and Peng Li (2018b). “Hier-
archical Relation Extraction with Coarse-to-Fine Grained Attention”. In: Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 2236–2245.

He, Yifan and Ralph Grishman (2015). “ICE: Rapid Information Extraction Cus-
tomization for NLP Novices”. In: Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics:
Demonstrations. Denver, Colorado: Association for Computational Linguistics,
pp. 31–35. doi: 10.3115/v1/N15-3007.

Hendrickx, Iris, Su Nam Kim, Zornitsa Kozareva, Preslav Nakov, Diarmuid Ó
Séaghdha, Sebastian Padó, Marco Pennacchiotti, Lorenza Romano, and Stan
Szpakowicz (2009). “Semeval-2010 task 8: Multi-way classification of semantic
relations between pairs of nominals”. In: Proceedings of the Workshop on Se-
mantic Evaluations: Recent Achievements and Future Directions. Association
for Computational Linguistics, pp. 94–99.

Hoffmann, Raphael, Congle Zhang, Xiao Ling, Luke Zettlemoyer, and Daniel S
Weld (2011). “Knowledgebased weak supervision for information extraction of
overlapping relations”. In: Proceedings of ACL.

59

https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.3115/v1/N15-3007

BIBLIOGRAPHY

Jing, Jiang and ChengXiang Zhai (2007). “Instance weighting for domain adapta-
tion in NLP”. In: ACL.

Kambhatla, Nanda (2004). “Combining lexical, syntactic, and semantic features
with maximum entropy models for information extraction”. In: Proceedings of
the ACL Interactive Poster and Demonstration Sessions.

Kingma, Diederik P. and Jimmy Ba (2014). “Adam: A method for stochastic opti-
mization”. In: ICLR.

LeCun, Yann, Leon Bottou, Yoshua Bengio, and Patrick Haffner (1998). “Gradient-
Based Learning Applied to Document Recognition”. In: Proceedings of IEEE.

Levy, Omer, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer (2017). “Zero-Shot
Relation Extraction via Reading Comprehension”. In: Proceedings of the 21st
Conference on Computational Natural Language Learning (CoNLL 2017). Van-
couver, Canada: Association for Computational Linguistics, pp. 333–342. doi:
10.18653/v1/K17-1034.

Li, Qi and Heng Ji (2014). “Incremental joint extraction of entity mentions and
relations”. In: Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 402–412.

Lin, Yankai, Shiqi Shen, Zhiyuan Liu, Luan Huanbo, and Sun Maosong (2016).
“Neural Relation Extraction with Selective Attention over Instances”. In: Pro-
ceedings of ACL.

Liu, Tianyi, Xinsong Zhang, Wanhao Zhou, and Weijia Jia (2018). “Neural relation
extraction via inner-sentence noise reduction and transfer learning”. In: arXiv
preprint arXiv:1808.06738.

Liu, Tianyu, Kexiang Wang, Baobao Chang, and Zhifang Sui (2017). “A soft-
label method for noise-tolerant distantly supervised relation extraction”. In:

60

https://doi.org/10.18653/v1/K17-1034

BIBLIOGRAPHY

Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, pp. 1790–1795.

Liu, Yang, Furu Wei, Sujian Li, Heng Ji, Ming Zhou, and Houfeng Wang (2015). “A
dependency-based neural network for relation classification”. In: arXiv preprint
arXiv:1507.04646.

Meyers, Adam, Ruth Reeves, Catherine Macleod, Rachel Szekely, Veronika Zielin-
ska, Brian Young, and Ralph Grishman (2004). “Annotating Noun Argument
Structure for NomBank.” In: LREC. Vol. 4, pp. 803–806.

Meyers, Adam, Giancarlo Lee, Angus Grieve-Smith, Yifan He, and Harriet Taber
(2014). “Annotating Relations in Scientific Articles.” In: LREC, pp. 4601–4608.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013). “Efficient
Estimation of Word Representations in Vector Space”. In: ICLR.

Min, Bonan, Zhuolin Jiang, Marjorie Freedman, and Ralph Weischedel (2017).
“Learning Transferable Representation for Bilingual Relation Extraction via
Convolutional Neural Networks”. In: Proceedings of the Eighth International
Joint Conference on Natural Language Processing (Volume 1: Long Papers),
vol. 1, pp. 674-684.

Mintz, Mike, Steven Bills, Rion Snow, and Dan Jurafsky (2009). “Distant supervi-
sion for relation extraction without labeled data”. In: Proceedings of ACL.

Miwa, Makoto and Mohit Bansal (2016). “End-to-end relation extraction using
lstms on sequences and tree structures”. In: arXiv preprint arXiv:1601.00770.

Nguyen, Minh Luan, Ivor W. Tsang, Kian Ming Adam Chai, and Hai Leong Chieu
(2014). “Robust Domain Adaptation for Relation Extraction via Clustering
Consistency”. In: ACL.

61

BIBLIOGRAPHY

Nguyen, Thien Huu and Ralph Grishman (2014). “Employing Word Representa-
tions and Regularization for Domain Adaptation of Relation Extraction”. In:
ACL.

Nguyen, Thien Huu and Ralph Grishman (2015a). “Relation Extraction: Perspec-
tive from Convolutional Neural Networks”. In: Proceedings of the 1st NAACL
Workshop on Vector Space Modeling for NLP (VSM).

Nguyen, Thien Huu and Ralph Grishman (2016). “Combining Neural Networks and
Log-linear Models to Improve Relation Extraction”. In: Proceedings of IJCAI
Workshop on Deep Learning for Artificial Intelligence (DLAI).

Nguyen, Thien Huu, Barbara Plank, and Ralph Grishman (2015b). “Semantic
Representations for Domain Adaptation: A Case Study on the Tree Kernel-
based Method for Relation Extraction”. In: ACL-IJCNLP.

Plank, Barbara and Alessandro Moschitti (2013). “Embedding Semantic Similarity
in Tree Kernels for Domain Adaptation of Relation Extraction”. In: ACL.

Pyysalo, Sampo, Filip Ginter, Juho Heimonen, Jari Björne, Jorma Boberg, Jouni
Järvinen, and Tapio Salakoski (2007). “BioInfer: a corpus for information ex-
traction in the biomedical domain”. In: BMC bioinformatics 8.1, p. 50.

Pyysalo, Sampo, Antti Airola, Juho Heimonen, Jari Björne, Filip Ginter, and Tapio
Salakoski (2008). “Comparative analysis of five protein-protein interaction cor-
pora”. In: BMC bioinformatics. Vol. 9. 3. BioMed Central, S6.

Ratnaparkhi, Adwait (1999). “Learning to parse natural language with maximum
entropy models”. In: Machine learning 34.1-3, pp. 151–175.

Riedel, Sebastian, Limin Yao, and Andrew McCallum (2010). “Modeling relations
and their mentions without labeled text”. In: Proceedings of ECML.

62

BIBLIOGRAPHY

Riedel, Sebastian, Limin Yao, Andrew McCallum, and Benjamin M Marlin (2013).
“Relation extraction with matrix factorization and universal schemas”. In: Pro-
ceedings of the 2013 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pp. 74–
84.

Shi, Ge, Chong Feng, Lifu Huang, Boliang Zhang, Heng Ji, Lejian Liao, and Heyan
Huang (2018). “Genre Separation Network with Adversarial Training for Cross-
genre Relation Extraction”. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 1018–1023.

Snell, Jake, Kevin Swersky, and Richard Zemel (2017). “Prototypical networks
for few-shot learning”. In: Advances in Neural Information Processing Systems,
pp. 4077–4087.

Soares, Livio Baldini, Nicholas FitzGerald, Jeffrey Ling, and Tom Kwiatkowski
(2019). “Matching the Blanks: Distributional Similarity for Relation Learning”.
In: arXiv preprint arXiv:1906.03158.

Socher, Richard, Brody Huval, Christopher D Manning, and Andrew Y Ng (2012).
“Semantic compositionality through recursive matrix-vector spaces”. In: Pro-
ceedings of the 2012 joint conference on empirical methods in natural language
processing and computational natural language learning. Association for Com-
putational Linguistics, pp. 1201–1211.

Song, Zhiyi, Ann Bies, Stephanie Strassel, Tom Riese, Justin Mott, Joe Ellis,
Jonathan Wright, Seth Kulick, Neville Ryant, and Xiaoyi Ma (2015). “From
light to rich ERE: annotation of entities, relations, and events”. In: Proceedings
of the The 3rd Workshop on EVENTS: Definition, Detection, Coreference, and
Representation, pp. 89–98.

63

BIBLIOGRAPHY

Surdeanu, Mihai, Julie Tibshirani Tibshirani, Ramesh Nallapati, and Christopher
D Manning (2012). “Multi-instance multi-label learning for relation extraction”.
In: Proceedings of EMNLP.

Vashishth, Shikhar, Rishabh Joshi, Sai Suman Prayaga, Chiranjib Bhattacharyya,
and Partha Talukdar (2018). “RESIDE: Improving Distantly-Supervised Neu-
ral Relation Extraction using Side Information”. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. Brussels,
Belgium: Association for Computational Linguistics, pp. 1257–1266. doi: 10.
18653/v1/D18-1157.

Xu, Yan, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng, and Zhi Jin (2015). “Classi-
fying relations via long short term memory networks along shortest dependency
paths”. In: proceedings of the 2015 conference on empirical methods in natural
language processing, pp. 1785–1794.

Ye, Hai, Wenhan Chao, Zhunchen Luo, and Zhoujun Li (2017). “Jointly Extracting
Relations with Class Ties via Effective Deep Ranking”. In: Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational Linguistics.

Zelenko, Dmitry, Chinatsu Aone, and Anthony Richardella (2003). “Kernel meth-
ods for relation extraction”. In: Journal of machine learning research 3.Feb,
pp. 1083–1106.

Zeng, Daojian, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao (2014). “Re-
lation Classification via Convolutional Deep Neural Network”. In: COLING.

Zeng, Daojian, Kang Liu, Yubo Chen, and Jun Zhao (2015). “Distant supervision
for relation extraction via piecewise convolutional neural networks”. In: Pro-
ceedings of EMNLP.

64

https://doi.org/10.18653/v1/D18-1157
https://doi.org/10.18653/v1/D18-1157

BIBLIOGRAPHY

Zhang, Min, Jie Zhang, Jian Su, and Guodong Zhou (2006). “A composite kernel
to extract relations between entities with both flat and structured features”. In:
Proceedings of the 21st International Conference on Computational Linguistics
and the 44th annual meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, pp. 825–832.

Zhang, Shu, Dequan Zheng, Xinchen Hu, and Ming Yang (2015). “Bidirectional
Long Short-Term Memory Networks for Relation Classification”. In: Proceed-
ings of the 29th Pacific Asia Conference on Language, Information and Com-
putation.

Zhao, Shubin and Ralph Grishman (2005). “Extracting relations with integrated
information using kernel methods”. In: Proceedings of the 43rd annual meeting
on association for computational linguistics. Association for Computational
Linguistics, pp. 419–426.

Zhou, GuoDong, Jian Su, Jie Zhang, and Min Zhang (2005). “Exploring Various
Knowledge in Relation Extraction”. In: ACL.

Zhou, Guodong, Min Zhang, DongHong Ji, and Qiaoming Zhu (2007). “Tree kernel-
based relation extraction with context-sensitive structured parse tree informa-
tion”. In: Proceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL).

Zhou, Peng, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao, and Bo
Xu (2016). “Attention-based bidirectional long short-term memory networks
for relation classification”. In: Proceedings of ACL.

65

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Relation Extraction
	Traditional Methods: Feature-based and Kernel-based
	Neural Models

	Learning Domain-invariant Representations
	Introduction
	Related Work
	Model
	CNN-based Encoder-Decoder Model for Relations
	Domain Adversarial Neural Network

	Experiements
	Dataset
	Configuration and Hyperparameters
	Evaluation

	Conclusion

	Learning a Unified Encoder
	Introduction
	Related Work
	Supervised Neural Relation Extraction Model
	Learning Unified Representation
	Multi-task Learning
	Regularization by Adversarial Training

	Experiments
	Datasets
	Model Configurations
	Augmentation between ACE05 and ERE
	More Features on ACE05

	Conclusion and Future Work

	Learning Relatedness between Types with Prototypes
	Introduction
	Related Work
	Relation Model with Multi-task Learning
	Prototypes of Relation Types for Learning Similarity

	Experiments
	Datasets
	Multi-task Learning Baseline
	Learning the Relatedness between Two Relation Schemas

	Conclusion

	Conclusion
	Future Directions of Relation Extraction
	Applications of Knowledge of Relations

	Bibliography

