Written Qualifying Exam
Theory of Computing
Spring 2001
Friday, May 18, 2001

This is a three hour examination. All questions carry the
same weight. Answer all of the following six questions.

e Please check to see that your name and address are
correct as printed on your blue-card.

e Please print your name on each exam booklet. Answer
each question in a separate booklet, and number each
booklet according to the question.

Read the questions carefully. Keep your answers legible,
and brief but precise. Assume standard results, except
where asked to prove them.




Problem. 1 New booklet please. [10 points]

1. Consider the language consisting of the set of all strings with sequence
of 0’s followed by the same number of 1’s.

L={0"1"n > 0}.
Show that it’s not regular.

2. Using a homomorphism reduction show that the set of palindromes
PAL(X) over ¥ = {0,1} is not regular either. (DO NOT USE THE
PUMPING LEMMA DIRECTLY.)

PAL({0,1}) = {0 € {0,1}*|0 = 0"}

3. Consider the set of reverse palindromes RPAL(Y) over ¥ =
{A,T,C,G}, defined as follows: The complementation operation is a
homomorphism defined by A =T, T¢ = A, C¢ = G, and G¢ = C.
Show that the language RPAL(X) is not regular. (Again, DO NOT
USE THE PUMPING LEMMA DIRECTLY.)

RPAL({A,T,C,GY) = {0 € {A,T,C,G}*|o" = o},

Solution
1. Consider the string vvw = 0"1" for some fixed n. Since |uv| < n and
lv| >0, we have v = 0---0 and |v| < n. But then, uw = 0"~ *I1" (the string
uv'w, with ¢ = 0) must be in the same language. An impossibility.
2. Let £ = PAL({0,1}). Consider two homomorphisms:
hy : {a,b,c}* — {0,1}"
a— 0;b— 1;¢—0
hy : {a,b,c}*— {0,1}"
ar— 0;b—€c—1

Now consider the language
holhTH (L' N 0*10%) N a*be*]
= hy[h H({0™10"|n > 0}) Na*bc*]
= he[{a"bc"|n > 0}]
{0"1"n > 0} = L]

2



Since 0*10* and a*bc* are regular and regular sets are closed under inter-
section and homomorphisms, we conclude that if PAL({0,1}) is regular then
so is {0"1™|n > 0}.

3. Consider the following surjective homomorphism A

h : {ATCG} — {01}
A= 0;T—0;C—1;,G—1

Thus (X)) = W(X) = 0, if X € {A,T} and h(XY) = h(X) = 1, if
X € {C,G}. Thus for all 0 € {A,T,C,G}*, h(c®) = h(c). And for all
o € RPAL({A,T,C,G}), h(c®) = h(o) = h(o)®. Thus

h(RPAL({A,T,C,G})) = PAL({0,1} = L/,
which is non-regular.

Problem. 2 New booklet please. [10 points]

Graph 3-Colorability: Given an undirected graph G = (V, E), it is
said to be K-colorable, if there is a mapping f : V' — [1..K] such that every
pair of adjacent vertices are assigned distinct colors.

e 3-Colorability(G)
e Input: An undirected graph G = (V, E).
e Output: If G is 3-colorable then return true; Otherwise, return False.

3-Colorability problem is known to be NP-complete. Use this fact, to
show that the following problem is NP-complete: Let n = |V| and m =
|E|. Given: a system of multivariate polynomials over the field of complex
numbers, involving n variables and m + n equations each of degree 3 or less.
Decide whether this system of polynomial equations is solvable.

Solution

Let C denote the field of complex numbers. Let {1, w, w?} denote the
three cube roots of unit. These three constants will be used to represent
three colors. For each vertex v;, associate a variable x; and introduce the
following equations into the system:



This enforces that the vertex v; takes a color in {1, w, w?}. Now the condition
that each pair of adjacent vertices [v;,v,] € E are assigned distinct colors can
be enforced by the following set of equations:

x} + xw; + a5 =0, where [v;,v;] € E.

Note that the graph G is 3-colorable if and only if the constructed system of
equations in C[xzy,...,z,] has a solution in C™.

Problem. 3 New booklet please. [10 points] Show that it is undecid-
able if a Turing Machine with alphabet {0, 1, B} ever prints three consecutive
1’s on its tape.

Solution

For each Turing Machine M;, construct Mi, which on blank tape simulates
M; on blank tape. However, M; uses 01 to encode a 0 and 10 to encode a
1. If M;’s tape has a 0 in cell j, M; has 01 in cells 27 — 1 and 2j. If M;
changes a symbol, M,; changes the corresponding 1 to 0 and then the paired
0 to 1. With this design M; never has three consecutive 1’s on its tape. Now
further modify M; so that if M; accepts, M, prints three consecutive 1’s and
halts. Thus M; prints three consecutive 1’s iff e € £(M;). Thus the question
of whether an arbitrary Turing Machine ever prints three consecutive 1’s is
undecidable.
Please turn over.



Problem. 4 New booklet please. [10 points]

Let T be a binary tree. For each node v in 7', let h(v) be the length of
the longest downward path from v to a leaf, and let d(v) be the length of the
shortest downward path from v to a leaf. (Thus at a leaf v, d(v) = h(v) =0.)
Define a whole binary tree to be one in which every internal node has two
children, and in addition, h(v) < 2 - d(v) for all nodes v.

Let T'(¢) be the smallest possible number of nodes in a whole binary tree
with h(root) = ¢. Determine T'(¢) exactly.

Solution

Let Tree(¢) denote a whole binary tree with h(root) = ¢ and the smallest
possible total number of nodes. Without loss of generality, assume that the
left-most path of the tree is the longest downward path from the root to a
leaf. Then it is easy to see that the left subtree of Tree(¢) must be Tree(/—1)
and the right subtree must be a complete binary tree of depth [£] —1. Hence
the left subtree has T'(¢ — 1) many nodes and the right subtree has 2/¢/21 — 1
many nodes. Hence the recurrence relation for 7'(¢) is as follows:

T = 14+T@—-1)+2%1 -1
= T(t—1)+ 2%
Solving the above equation by telescoping, we get

¢
T() —T(0) =201,
i=1
The above equation can be simplified as follows:

4.202 _ 4 it ¢ = even;
T -10) = { 3.20H0/2 _ 4 if ¢ = odd.

Note that 7(0) = 1. Hence

4.942 _ 3 if ¢ = even;
T(0) = ’ ’
() {3-2““)/2—3, if ¢ = odd.

Problem. 5 New booklet please. [10 points]
(a) [5 points] The input is a sequence of n elements z1, xs, ..., , that we
can read sequentially. We want to use a memory that can only store O(k)

5



elements at a time. Give a high level description of an algorithm that finds
the kth smallest element in O(n) time.

Hint: Use the linear-time median algorithm.

(b) [5 points] Suppose that you are given an algorithm that finds the kth
smallest element in a given set. Prove that that the comparisons used by
this algorithm are sufficient to partition the set in two groups of elements:
the ones that are smaller than the kth element and the ones that are larger
than the kth element.

Solution

(a) We first store 2k elements and find the median. All the elements greater
than the median are eliminated. We then read the next k elements, find the
median, eliminate the k larger than the median and so on, until all n elements
have been read. Such phases are repeated at most n/k+1 times. Each phase
requires finding a median of at most 2k elements and can be performed in
O(k) time. Thus the complete algorithm algorithm requires O(n) time.

(b) Let x be the kth smallest element. Suppose that it is not possible to
divide the set into the two groups, as required. This implies that there exists
at least one element, say y, such that with the given number of comparisons
we can distinguish whether this element y is smaller or larger than x. Thus,
the outcome of all the comparisons is consistent with both y being larger or
smaller than x. This is possible, as depending on which case we choose, we
will obtain a different kth smallest element.

Problem. 6 New booklet please. [10 points]
Define a common subsequence (not necessarily contiguous) of two strings
V=uv-v,and W =w;---w,, as a pair of sequence of indices:

1< <-- < <n and 1< <---<Jjpg<m,

such that

Vici<ki, = W,
Let s(V,W) = k be the length of a longest common subsequence (LCS)
of V and W. For example, the LCS of two strings V = ATCTGAT and

W =TGCATA is TCTA and s(V,W) = 4. Devise an efficient algorithm to
compute s(V, W).



Solution

A simple dynamic programming algorithm to compute s(V, W) is as fol-
lows: Let s;; be the length of LCS between i-prefix V; = v ---v; of V and
the j-prefix W; = w; ---w; of W. Thus 5,9 = s9; = 0 for all 1 <7 < n and
1 < j <m. Then s;; can be computed by the following recurrence:

Si—1,j
S, = Max Sij—1
S—1,5-1, if U = W

The complete dynamic programming algorithm with trace-back pointers
is as follows:

LCS(V,W)
for 1 =1 ton do
s[i,0] := 0;
for j =1 tomdo
s[0,j] = 0;
for i =1 to n do
for j =1 tomdo
if v[i] = w([j] then
s[i,j] := s[i-1,j-11 + 1;
bli,j]l := [diagl;
else if s[i-1,j] >= s[i,j-1] then

sli,jl := sli-1,j];

bli,jl := [upl;
else

sli,jl := sli,j-11;

bli,jl := [left];

return s and b.



