
CSCI-GA.3520-001: Honors Analysis of Algorithms

Final Exam, Dec 15, 2022, 1:00pm-5:00pm

• This is a four hour exam. There are six questions, worth 10 points each. Answer all questions
and all their subparts.

• No access is allowed to textbooks, course notes, any other written or published materials,
any online materials, and any other materials stored on devices.

• In the past years, to pass this exam, one needed to answer 3 or 4 problems well, instead of
answering all the problems poorly.

• You must submit separate answers for separate questions.

• Read the questions carefully. Keep your answers legible, and brief but precise. Assume
standard results and algorithms (i.e., those taught or referred to in class or homeworks).

• You must prove correctness of your algorithm and prove its time bound unless stated other-
wise. The algorithm can be written in plain English (preferred) or as a pseudo-code.

Best of luck!

1

Problem 1

Let T be a binary tree with n vertices. Assume that the vertices are labeled 1 through n, with the
root labeled as 1. Assume also arrays left(v) and right(v) that denote, respectively, the left and right
children of a vertex (with label) v. The convention is that left(v) = 0 when v has no left child and
similarly right(v) = 0 when v has no right child. For every vertex v, there is a non-negative value
val(v) associated with it. Let 1 6 k 6 n be a given integer. Design a polynomial time algorithm to
find a subtree H with maximum total value such that

• Root 1 ∈ H

• H has k vertices.

The total value of H is the sum of values of all vertices in it. H must contain the root.

We note that a subtree is just a connected subgraph of T . A related but different notion is tree(v),
which, for a vertex v, denotes the entire subtree rooted at v consisting of v and all its descendants
(chidren, their children, and so on).

Problem 2

Suppose you are storing a stack in an array. That is, a stack with elements x1, . . . , xs, from the
bottom to the top, is stored as the first s elements A[1], . . . , A[s] in an array of size k, where s 6 k
and the remaining k − s array locations are empty.

However, you want to be space efficient. So if the stack holds s items it is to be stored in an array
of size O(s). That is, in the above notation, k must be O(s) at all times.

Suppose you can request the memory management system to provide a new empty array of any
requested size and it will do so in O(1) time. You will have to copy the contents of the current
array into the new array (this takes time proportional to the size of the new array) and then return
the previous array to the memory management system (this takes O(1) time).

Show how to maintain an initially empty stack S under a series of n pops and pushes, in time O(n)
in total, while maintaining space efficiency at all times. Each pop and push involves only a single
element.

Hint: Use amortization and an appropriate potential function.

2

Problem 3

1. Consider the recurrence relation (C is a fixed constant)

T (n) 6 2 · T
(n

2

)
+ Cn log n.

Show that T (n) is O(n log2 n).

2. Let A[1], . . . , A[n] be an array of integers; they could be either negative or positive or mixed.

Give an O(n log2 n) algorithm to find a consecutive subarray A[i : j], 1 6 i 6 j 6 n, for which∑j
h=iA[h] is closest to 0, i.e. minimizing

∣∣∣∑j
h=iA[h]

∣∣∣.

Problem 4

You are given a directed graph G = (V,E) with non-negative edge weights wt(u, v) representing
the time it takes to go from a vertex u to v if there is a u to v edge. The graph is given in the
adjacency list representation. Some subset F ⊆ V of vertices are pharmacies, while some other
(disjoint) subset D ⊆ V are doctor’s offices. You live at a node s ∈ V, s 6∈ F ∪D, your mother lives
at a node t ∈ V, t 6∈ F ∪D and she has a medical emergency. You now need to go to some doctor’s
office d ∈ D for a prescription for a drug, then to some pharmacy f ∈ F to purchase the drug, and
finally to t to deliver the drug to your mother.

1. Design an efficient algorithm to find the route with the least total weight. Specifically, design
a weighted graph G′ such that the answer reduces to a single call to Dijkstra algorithm on
G′. Explicitly define G′, and compute upper bounds on its number of vertices n′ and edges
m′ as functions of n = |V | and m = |E| of the original graph. State the final run-time of your
algorithm (as a function of n and m).

2. Now suppose that the graph G(V,E) is acyclic. Design an O(m+ n) time algorithm for the
same task. Replace Dijksta’s algorithm earlier by an appropriate O(m+n) algorithm to solve
the problem (for the special case when G is acyclic, G′ should also be acyclic). Justify why
your algorithm works.

3

Problem 5

A 3-uniform hypergraph H(V,E) consists of a set of vertices V and a set of hyperedges E; let
n = |V | and m = |E|. Each hyperedge e ∈ E is a size 3 subset of V (i.e. it is a triple of vertices).

A {red, blue}-vertex coloring is a map Φ : V → {red, blue}. Given such a coloring, an edge e is said
to be properly colored if it has exactly one red vertex and two blue vertices.

Show that there exists a {red, blue}-vertex coloring Φ that properly colors (at least) 4m
9 hyperedges.

Give a polynomial time randomized algorithm that finds such a coloring. Specifically, your algo-
rithm should output, with probability (at least) 0.99, a coloring that properly colors at least 4m

9
hyperedges.

Problem 6

Recall that an instance ψ of 3SAT consists of n Boolean variables x1, . . . , xn and m clauses
C1, . . . , Cm where every clause is of the type `i ∨ `j ∨ `k, i, j, k are distinct, and `i is a literal,
either xi or xi. A Boolean assignment to the variables is called satisfying if it satisfies every clause.

Let K be a fixed constant (e.g. K = 20). An instance ϕ of K-Bounded Occurrence 3SAT
(K-BO-3SAT for short) is similar except for these conditions:

• Every literal `i occurs in at most K clauses.

• Clauses of size one and two are allowed (i.e. clauses of form `i and of form `i ∨ `j).

Let

K-BO-3SAT = { ϕ | ϕ is a K-BO-3SAT instance that has a satisfying assignment}.

Show that K-BO-3SAT is NP-complete. The specific value of K is not important (i.e. up to you to
choose) as long as it is a fixed constant.

4

