
CSCI-GA.3520-001: Honors Analysis of Algorithms

Final Exam, Dec 21, 2021, 9:30am-1:30pm

• This is a four hour exam. There are six questions, worth 10 points each. Answer all questions
and all their subparts.

• You can only use course notes. No access is allowed to textbooks, any other written or
published materials, any online materials, and any other materials stored on devices.

• In the past years, to pass this exam, one needed to answer 3 or 4 problems well, instead of
answering all the problems poorly.

• You must submit separate answers for separate questions.

• Read the questions carefully. Keep your answers legible, and brief but precise. Assume
standard results and algorithms (i.e., those taught or referred to in class or homeworks).

• You must prove correctness of your algorithm and prove its time bound unless stated other-
wise. The algorithm can be written in plain English (preferred) or as a pseudo-code.

Best of luck!
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Problem 1

A gene is a string over an alphabet Σ = {A,C,G, T}. Let X[1, . . . , n] denote a new gene that has
been discovered. You wish to determine how closely matched it is with another gene Y [1, . . . ,m].
A simple way to do it is by computing the cost of transforming X to Y . There are three operations:

• δins : Σ→ R+ ∪ {0} which gives the cost of inserting a protein from Y into X.

• δdel : Σ→ R+ ∪ {0} which gives the cost of deleting a protein from X.

• δsub : Σ × Σ → R+ ∪ {0} which gives the cost of substituting a protein in X with a protein
from Y .

You goal is to find the smallest cost way to transform X into Y , by performing operations as above,
starting from the end of X and Y . A convenient way to visualize such “matching” is by drawing an
alignment between X and Y . For example, if X = [A, T ] and let Y = [G,C], a possible alignment
is:

A
∗

∗
G

T
C

This alignment indicates that to go from X to Y , you will substitute T in X with C in Y (indicated
by the alignment of X’s T with Y ’s C), then insert G from Y to X (indicated by the ∗ in X aligned
with G), and finally delete A from X (indicated by A’s alignment with ∗). The cost is given by
δdel(A) + δins(G) + δsub(T,C). As you can see, the top (resp. bottom) row of any alignment is
the string X (resp. Y ), with some ∗’s inserted, and each column corresponds to one of the three
operations mentioned.

In all these parts, you will use a memoization matrix of dimension m+ 1×n+ 1 called c. where
c[i, j] will contain the minimum cost of alignment of substrings X[1, . . . , i] and Y [1, . . . , j], with
cost function defined by δ.

(a) (3 points) Present a high-level specification based on dynamic programming to solve this
problem. You do not need to present an algorithm to compute the algorithm, but instead
merely present a recursive formula, with appropriate base cases of c[0, j] and c[i, 0] (after
assuming that c[0, 0] = 0). An efficient implementation of your algorithm should run in time
O(mn).

One can also define the operation of transposition, which inherently is the sum of two consecutive
substitutions, but with the order of characters in one of the string flipped. For example, if you have
X[1, . . . , i] and Y [1, . . . , j], transposition will substitute X[i] for Y [j − 1], and substitute X[i − 1]
for Y [j]. No further operations can be performed on these indices after the transposition. The cost
of such transposition is simply the cost of the two corresponding substitutions plus 1.

In regards to the previous example, this move would allow the following alignment, of cost
δsub(A,C) + δsub(T,G) + 1.

A
C

T
G

(b) (3 points) Modify your recursive formula from the previous part to account for this transposi-
tion. An efficient implementation of your algorithm should run in time O(mn). For simplicity,
write your formula for c[i, j] assuming i, j > 2 (otherwise, the same formula as in part (a)
works, as no transposition is possible).
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(c) (4 points) In part (b), we looked at a recursive formula which supported transposition of two
characters which can also be considered as a reversal of two adjacent characters. Generalize
the above part to support reversals of arbitrary length, i.e., X[i], . . . , X[i+ k] is now substi-
tuted with Y [j + k], . . . , Y [j] respectively for any valid i, j, k. As before, after invoking the
reverse operation no further operations can be performed on any of these indices, and the
cost is the sum of (k + 1) corresponding substitutions plus k. (Thus, k = 1 is the case of
transposition, and k = 0 is the case of simple substitution.) Notice, the value of k is allowed
to change as you proceed with your matching, and there is no upper bound on k.

Also state and justify the new running time of an efficient implementation of the new recursive
formula. For simplicity of exposition, do not state the base case, and assume that c[i, j] =∞
when i < 0 or j < 0.

Problem 2

Let G = (V,E) be a directed, weighted graph with non-negative edge weights. In addition
to a weight, an edge is also assigned a color. The color is defined by the function c : E →
{red, green, blue}. Finally, you are also given a start vertex s.

(a) (3 points) For each node v, determine the shortest path that starts from s and ends at v such
that the path begins with a red edge and ends with a blue edge. You will do this by giving
a reduction to the single source, shortest path problem and then run Dijkstra’s exactly once.
State and justify the running time of your algorithm.

(b) (3 points) For each node v, determine the shortest path that starts from s and ends at v
such that the colors on the edges of the path alternate as red, blue, green in that order, and
beginning with red and ending with green. We will call such a path as RBG-path. You will
do this by giving a reduction to the single source, shortest path problem then run Dijkstra’s
exactly once. State and justify the running time of your algorithm.

(c) (4 points) Modify your solution in part (b) to now computed the shortest relaxed-RBG path.
A relaxed-RBG path is one which requires you to alternate colors between red, blue, green
in that order, but you may choose to begin the alternation at any color, not just at the red
edge. Similarly, you may end having traversed any color, not just green. Solve this problem
by giving a reduction to the single source, shortest path problem then run Dijkstra’s exactly
once. State and justify the running time of your algorithm.
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Problem 3

An undirected graph G = (V,E) with |V | = n vertices, where n is divisible by 5, is said to be
5-balanced-colorable if there is a partition of the set of vertices into five disjoint sets V1, . . . , V5 such
that each Vi is of cardinality n

5 and forms an independent set, i.e., there are no edges between
vertices of Vi.

1. (2 points) Show an algorithm that given a graph G = (V,E), decides if it is 5-balanced-
colorable in time O(5npoly(n)), where poly(n) denotes any polynomial in n. Justify the
correctness of the algorithm and analyze its running time.

2. (2 points) For an integer k > 0, define Ham(k) as the number of 1′s in the binary (base-2)
representation of k. For example, Ham(5) = 2 and Ham(15) = 4. Prove that for all integers
k, ` > 0, it holds that Ham(k + `) 6 Ham(k) + Ham(`).

3. (2 points) For a set S of positive integers, define f(S) as the integer whose binary representa-
tion has 1′s in the positions indicated by S. For example, f({1, 4, 5}) = 1+8+16 = 25. Show
that if S1, . . . , S5 ⊆ {1, . . . , n} are all of cardinality n

5 , then their union equals {1, . . . , n} if
and only if f(S1) + · · ·+ f(S5) = 2n − 1. (You can assume the result in the previous item).

4. (4 points) Show an algorithm that given a graph G = (V,E), decides if it has a 5-balanced-
colorable in time O(2npoly(n)), where poly(n) denotes any polynomial in n. Justify the
correctness of the algorithm and analyze its running time. (You can assume the result in the
previous item).

Hint: Identify V with {1, . . . , n}. First enumerate all integers f(S) such that S ⊆ {1, . . . , n} =
V is an independent set.

Problem 4

1. (4 points) Show an algorithm that given as input a sequence of integers (a1, . . . , an), outputs
a list (r1, . . . , rn) where ri is the number of indices j ∈ {i + 1, . . . , n} satisfying that aj >
ai. Prove your algorithm’s correctness and analyze its running time. For full credit, your
algorithm should run in time O(n log n).

2. (6 points) Given a sequence of integers (a1, . . . , an), a increasing triple is a triple (i, j, k) such
that 1 6 i < j < k 6 n and ai < aj < ak. Show an algorithm that counts the number of
increasing triple in an input sequence. Prove your algorithm’s correctness and analyze its
running time. For full credit, your algorithm should run in time O(n log n).
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Problem 5

Let G(U, V,E) be a random bipartite graph constructed as follows. Let U, V be the sets of left
and right side vertices respectively with |U | = |V | = n. For every pair (u, v), u ∈ U, v ∈ V , we
include the pair (u, v) in the edge set E with probability p, independently for all pairs (u, v). Here
0 < p < 1 is a parameter to be determined (it depends on n).

For any subset X ⊆ U , 1 6 |X| 6 n− 1, let Γ(X) ⊆ V denote the set of its neighbors, i.e.

Γ(X) = {v | v ∈ V such that there is some u ∈ X such that (u, v) ∈ E}.

This problem seeks to determine the value of p, as small as possible, so that the graph G(U, V,E)
has the following property with positive probability: for every subset X ⊆ U, 1 6 |X| 6 n− 1, it
holds that |Γ(X)| > |X|.

1. For fixed sets X ⊆ U, Y ⊆ V, |X| = |Y | = r, 1 6 r 6 n− 1, let EX,Y denote the event that
Γ(X) ⊆ Y . Determine (just write the answer)

Pr[EX,Y ].

2. Let E be the event that for some X ⊆ U, Y ⊆ V, |X| = |Y | = r, 1 6 r 6 n − 1, we have
Γ(X) ⊆ Y . Express the event E in terms of the events EX,Y . Just write the answer.

3. Give an upper bound on Pr[E ]. It is OK to leave the answer in the form of a mathematical
expression.

4. What is the smallest value of p (that you can think of) such that Pr[E ] 6 1
10? It may be a

function of n. For full credit, your answer should be correct up to a constant factor. Give a
justification, but no need to formally prove an upper or lower bound on the value of p.

Hint: Consider the case r = 1. Also, are the cases r and n− r symmetric? Why? If so, one
may assume that r 6 n

2?

5. Assume now that the event E holds, i.e. that the bipartite graph G(U, V,E) has the property
that for every X ⊆ U, 1 6 |X| 6 n − 1, |Γ(X)| > |X|. Do you recall a theorem that holds
under this condition and guarantees existence of a certain structure in the graph?
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Problem 6

Recall that an instance ϕ of 3SAT consists of n Boolean variables x1, . . . , xn and m clauses
C1, . . . , Cm where every clause is of the type `i ∨ `j ∨ `k, i, j, k are distinct, and `i is a literal,
either xi or xi. A Boolean assignment to the variables is called satisfying if it satisfies every clause.

An instance ϕ of 3SAT is called tri-partite if the set of variables V is partitioned into three disjoint
sets X,Y, Z (so that V = X ∪Y ∪Z) and every clause contains one literal from X, one literal from
Y , and one literal from Z. Let

TRI PARTITE 3SAT = { ϕ | ϕ is a tri-partite instance that has a satisfying assignment}.

Show that TRI PARTITE 3SAT is NP-complete.
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