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Abstract

We answer the following question: Can a deque (double-

ended queue) be implemented in a purely functional lan-
guage such that each push or pop operation on either end of

a queue is accomplished in 0(1) time in the worst case? The

answer is yes, thus solving a problem posted by Gajewska

and Tarjan [14] and by Ponder, McGeer, and Ng [25], and
refining results of Sarnak [26] and Hoogerwoord [18].

We term such a deque real-time, since its constant worst-
caae behavior might be useful in real time programs (assum-

ing real-time garbage collection [3], etc.) Furthermore, we
show that no restriction of the functional language is neces-

sary, and that push and pop operations on previou$ versions
of a deque can also be achieved in constant time.

We present a purely functional implementation of real-

time deques and its complexity analysis. We then show that

the implementation has some interesting implications, and
can be used to give a real-time simulation of a multihead

Turing machine in a purely functional language.

1 Introduction and Survey

In a functional program, if an aggregate data structure is up
dated then both the original version and the updated version
of the aggregate must be preserved, preferably at a small

cost, to maintain referential transparency. It is generally
regarded es too expensive to make a complete copy of the

aggregate that differs from the original only in the updated
position. There have been various approaches to solve the

aggregate update problem. If compile-time program analy-
sis or run-time tests can determine that the original version

of an aggregate will not be referenced following an update,
then the update can be performed in place [6,7,19,24,28,29],

A functional language can also provide language prim-

itives for writing single-threaded programs such that they
can esaily be recognized and implemented by the compiler.
A program is single-threaded if all operations on aggregates

only refer to their newest versions. Thus, all update op
erations in a single-threaded program can be performed in
place because previous versions of aggregates will never be

needed and can be safely overwritten [2,16,20,31,32].
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Another generaf approach is to design efficient algorithms
to make aggregate data structures fully persistent (i.e., pure-

ly functional), such that after a sequence of updates the
newest version and all previous versions of the aggregate
are still accessible [1,4,5,10,11,17,22,23,26,27].

General techniques for making aggregate data structures

fully persistent are described by Driacoll, Sarnak, Sleator,
and Tarjan [11]. However, the techniques often rely on side-

effects to achieve good time and space performance. It is not

clear how they can be implemented in a purely functional
language without losing their efficiency. For an advocate
of functional programming, the challenge is to demonstrate

that certain aggregates can be implemented efficiently in
purely functional languages.

When discussing and comparing efficient implementa-

tion of fully persistent aggregate data structures, it is help

ful that we ask the foIlowing questione regarding the imple-
ment ations:

● Is the implementation a purdg functional one? Or,

must it use side–eflects and be implemented in a side-
effecting language?

● Is the etated cost of each aggregate operation a worst-

ca~e cost or an amortized one?

. Is the implementation good for multi-threaded appli.
cations? Or is it only suitable for single-thnmded ap

placations?

While a worst-case analysis measures the cost of an opera-

tion in an isolated context, an amortized analysis measures
the cost of an operation averaged over a worst-ease sequence

of operations [30]. Amortized analysis should not be con-

fused with average-caae analysis, which is often baaed on
some probabilistic assumptions. An implementation is said

to be real-time if each operation costs only constant over-

head in the worst case.
Notice that a purely functional implementation of an ag-

gregate data structure automatically makes it fully persis-

tent because no side-effect is used in the implementation
and previous versions of an aggregate are always accessi-
ble. The problem is that the implementation may be ineffi-

cient, even under the assumption that it will only be used for

single-t breaded applications. Also, an implementation (ei-
ther in purely functional or side-effecting languages) with
good amortized performance doee not necessarily mean it

is good for multi-threaded applications, because the amor-
tized cost may be measured over a single-threaded sequence
of operations.
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Hood and Melville [17] show that a FIFO queue can be
implemented in pure Lisp (where no side-effect is allowed)

such that, in the worst case, push or pop operations on the
queue cost only 0(1 ) time and consume 0(1) space, This is

an interesting result for several reasons. First of all, the 0(1)
complexity applies not only to the newest version of a queue”,

but to previous versions as well. This makes their implemen-
t ation suit able for multi-threaded applications. Secondly, it

had not previously been shown, even for languages allow-
ing side-effects, how a fully persistent rea,-time queue could

be implemented. For example, suppose that the queue is
implemented in a side-effecting language as a single-linked

list with access pointers to both ends and the standard tech-
nique of [11] is used to make the single-linked list fully per-

sistent. Each of the pop or push operations to any version
of a queue will need 0(1) amortized time and space.

We extend in this paper the result of Hood and Melville

such that using a purely functional language, each of the

push or pop operations on either end of any version of a

deque costs only O(1) time in the worst case, Efficient im-

plementation of deques in a purely functional language was

considered both by Gajewska and Tarjan [14] and by Pon-

der, McGeer, and Ng [25], but without giving a solution.
Our results show that it can be done.

The techniques we use are not new. We will use two
stacks to represent a deque, with each stack top correspond-
ing to one of the two open ends of the deque. The two stacks
are balanced at all time in that the bigger stack is never more

than three times the size of the smaller stack. A pop opera-
tion on a non-empty deque is performed directly on one of

the stacks. The challenge is to make the design as simple as

possible — such that a purely functional implementation be-
comes straightforward — and to get its complexity analysis

right. The two-stacks represent ation is used by Gries [15,
pages 250–251] to design purely functional queues with con-

st ant amortized cost per operation. Hoogerwoord [18] shows
that the representation can be extended to purely functional

deques with constant amortized cost per operation. How-
ever, these two designs are not suitable for multi-threaded

apphc~tions because the constant cost for each operation is
amortized along a single thread of operations. Hood and

Melville [17] show that, by incrementally copying elements
from one stack to another, real-time queues can be imple-

mented in a purely functioned way. A design for fully persis-
tent deques with constant worst-case time per operation is

described in Sarnak’s Ph.D. thesis [26]. However, his design

is not purely functional because side-effects are used in the
implementation. His method, and the associated complexity
analysis, is also more complicated than ours. Nevertheless,

the basic idea is simiIar in his and our design: a deque is
represented as two stacks and they are kept bslanced by
incrementally moving elements between them.

In section 2, we outline Hood and Melville’s purely func-

tion method for real-time FIFO queues. We then describe in
section 3 a purely functional implementation of deques with
good amortized performance. This design is also described
by both Sarnak and Hoogerwoord. Our purely functional

implementation of deques with real-time performance is pre-
sented in section 4. Section 5 describes its implications in
purely functional Iist processing. It also shows how to sim-
ulate in real-time, in a purely functional language, a mul-

tihead Turing machine by using multiple real-time deques.
Section 6 contains some remarks on real-time processing in

a purely functional setting. Section 7 discusses related work
and future work.

In this paper, we will use the notation P = (PI, P2,. ... pm)
to describe a sequence P of m elements PI, P2, ..., pm. The
concatenation of sequences P and Q is denoted by PQ. The

notation P“ describes a stack consisting of the sequence P,
with pl at the top of the stack and pm at the bottom. Sim-

ilarly, P“ is also a stack consisting of the sequence P, but

with pm at the top of the stack and pl at the bottom. A
deque consisting of the sequence P is denoted by Pe. Notice
that (pi, p2, . . ..p~)4 = (p~, p*_ I,. ... pi)’. The size of a

sequence P is denoted by IPI. Similarly, IP“ 1, IP* 1, and IP“l

are respectively the sizes of stacks P“, P*, and deque PO.

2 Functional Queues with Good Real-Time Perfor-
mance

Hood and Melville [17] describe a pure LISP implementation

of FIFO queues with good amortized performance. They

then modify it to get an implementation, rdso in pure LISP,
with good rerd-time (:. e. worst-case) performance. Their

idea is to represent a queue by two dujoint stacks, where
the input stack 1* is used to receive the sequence of ele-

ments being pushed and the output stack 04 is used to store
the sequence of elements to be popped. We will denote the

configuration of a queue as (O*, I*). The sequence 01 rep
resents the entire sequence of elements of the queue. When
the output stack becomes empty and a pop operation is ex-
ecuted, the sequence of elements in the input stack are all

transferred to the output stack by reversing the sequence in
the input stack to form a new output stack. The input stack

is then replaced by an empty stack. That is, the configura-

tion of the queue is transformed from (()”, lb) into (14, ()’).
The transfer takes time linear to size of the input stack and
can be implemented in a purely functional way.

Starting from an empty queue (with both the input and

out put stacks empty), a singlet breaded sequence ofs queue

operations will transfer at most s elements from the input

stack to the output stack. This is based on the observa-
tion that an element will be transferred at most once from
the input stack to the output stack after it is pushed onto

the queue. Since there are at most s push operations in a

sequence of s queue operations, the total cost of transfer is

bounded by s. This results in 0(s)/s = 0(1) amortized cost

per queue operation for the transfer, in addition to the O(1)

actual cost per queue operation for implementing the push
and pop operations on the input and out stacks respectively.

However, the above implementation has two drawbacks.

It is not real-time, and, more severely, does not suit multi-

threaded applications, where pop or push operations may
be performed not only on the newest version of a queue,
but on previous versions as well. For example, let queue

p = (()”, (Pi, P2, . . . . pm)’) be a queue formed by a sequence
of m push operations. A single pop operation on P will take
O(m) time to get element pl and form a new queue Q =

((pz,ps, . . . . pm)”, ()’). Suppose that the next operation in
the sequence is again a pop operation on P rather than on
the newer version, Q. Then O(m) time has to be spent again

to get element pl and to form a queue identical to Q. Note
that in general we have no way to tell whether or not two

pop operations will be performed on the same queue.
Hood and Melville improve the above naive implementa-

tion by a simple idea, that the transfer of elements from the
input stack to the output stack need not be carried out all
at once when the output stack becomes empty. The transfer
of elements can be carried out incrementally over a sequence
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of queue operations whenever a substantial number of el~

ments have been accumulated in the input stack, even when

the output stack is not empty.

Suppose that aqueuehas the configuration (O”, I*) and

iatobetransformed into theconfiguration (( 01)4, ()"). Sup-

pose also that the transfer of elements from the input stack

I’ to the output stack O“ is initiated only when the invariant
10”l~ll’l is violated. Atthebeginning of thetransfer, we

can assume 10”1 = n and 11”1 = n + 1 for some n ~ O. The
new output stack (01) 4 can be constructed in three stages:

reverse stack lD creating a stack 14, reverse stack 04 creat-
ing a stack O*, and then pop all the elements from stack O*

and push them onto stack 1< one by one. The whole process
will take 3n + 4 steps of time, where each step either moves
the topmost element from one stack to another, or is a test

(at the bottom of the recursion) to see if a stack is empty.

Because the original output stack 0“ will become empty af-
ter n pop operations, we must accomplish the 3n + 4 steps

in n regular queue operations. We then allocate 4 steps to

the pop or push operation that initiates the transfer, and
allocate 3 steps to each of the n queue operations that fol-
lows. Since each queue operation performs at most 4 extra

steps to aid the construction of the new output stack, each
queue operation takes O(1) time and O(1) space.

In the actual implementation, a normal queue is repre-
sented by two stacks, one for pop operations and one for

push operations. However, an in-transition queue is repre-
sented by the old output stack (for pop operations), a new

input stack (for receiving elements from push operations),

and additional intermediate stacks for incremental construc-
tion of the new output stack. Once the new output stack is

completely rebuilt, it is paired with the new input stack to
represent a normal queue. The old output stack and those
intermediate stacks are discarded. A normal queue enters
the in-transition mode whenever its output stack becomes

smaller than its input stack.

There are some remaining details in Hood and Melville’s
algorithm, though. In the construction of a new output
stack, we need not copy all the elements in the original

output stack 04 because some of elements may have been
popped during the course of the transfer. A counter is used

to insure that we will not over-copy. Also, it can be shown
that the queue is never empty during its transfer of elements,

and after the transfer of elements, the invariant 1041 z II*1

still holds for the new input stack 1* and the new output

stack O*.

3 Functional Deques with Good Amortized Perfor-
mance

A deque is a linear buffer where push and pop operations

can be performed on either end of the buffer. We can modify
the naive implementation of FIFO queues described in the
above section to get a purely functional implementation of

deque with good amortized performance. Similar schemes
are ZJSOdescribed by Sarnak [26] and Hoogerwoord [18].

A pair of stacks, (L”, R*), is used to represent a deque,
similar to that for a queue. The difference is that pop or

push operations can be performed on stack L“ or stack R’.
We call L“ the the left-hand-side (lhs) stack and R’ the

right-hand-side (rhs) stack, instead of using the terms out-
put stack and input stack previously used. Push and pop
operations on the left side of the deque are performed on
the lhs stack, and operations on the right side of the deque

are performed on the rhs stack. The problem is that an lhs
pop operation may be executed while the lhs stack is empty

and the rhs stack contains some elements, and vice versa.
We solve this problem by transferring the bottom half of

the rhs stack to the empty lhs stack, with the bottommost

elements of the rhs stack becoming the topmost elements in

the lhs stack after the transfer. That is, for an lhs pop opera-

tion on queue (()*, R*J, we first transform the configuration
of the queue from (() , R“) to (RI”, Rz”), where R = RI RZ
and IRI I = [ [R1/2 1. Then we perform an lhs pop operation

on (RI 4, Rz-’). A symmetrical treatment also applies to an
rhs pop operation when the rhs stack is empty but the lhs
stack is not.

Does the above strategy provide a good implementation?

If a sequence of deque operations is single-threaded and
starts with an empty deque, then, by a simple credit-debit

argument [30], itcan be shown that each operation takes
O(1) amortized time and space. For the argument, we asso-
ciate with a deque an imaginary “bank account” of units of
time, whose balance reflects exactly the difference between

the sizes of the two stacks in the the deque, That is, the
balance will be ] IL* I - IR*I I for a configuration of (L”, R*).

We also allocate two units of time for each deque operation,
which will be the amortized cost of the operation.

A pop or push operation will change the diference be-
tween the sizes of the two stacks by one if it does not initiate

the transfer process. For such an operation, one unit of time

is used to pop/push an element from/to its corresponding

stack, and the other unit of amortized time is deposited into

the bank account if the pop or push operation increases the

size difference. If the size difference is decreased by the push
or pop operation, then one unit of time is withdrawn from
the account and is discarded along with the other unit of

time allocated for the deque operation. By doing so, we
make sure that the bank account is consistent with the dif-
ference between the sizes of the two stacks.

On the other hand, an lhs pop operation on the deque
(()”, R*) will have to transfer the bottom half of the rhs
stack R* to the empty lhs stack, before the pop operation

can be performed. The transfer will require IR* I units of

time, which are withdrawn from the bank account. The
bank account will have contained exactly IR* I units before

the transfer. After the transfer, the difference of the stack

sizes is at most one (with the size of the Ihs stack larger than
or equal to the size of the rhs stack) and the bank account

has a balance of zero. The lhs pop operation then proceeds

as if the transfer had never happened. Inconsistency occurs

after the transfer process if the stack size difference is one
but the bank account balance is zero. In such a case, the

lhs pop operation will decrease the size difference by one.
However, it will not withdraw and discard one credit from
the bank account this time, as would be required in the usual

situations. That is, the bank account balance again reflects
exactly the difference between the stack sizes after the lhs
pop operation. A symmetrical analysis also applies to the
case of rhs pop operations.

We conclude that O(1) amortized time suffices for each
deque operation in a single-threaded sequenced of opera-

tions. However, this implementation suffers the same draw-

backs of the naive amortized implementation for FIFO queues
in section 2. It is not real-time and does not suit multi-
threaded applications. We will address these problems in

the next section.
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4 Functional Deques with Good Real-Time Perfor-
mance

For an implementation of deques to be real-time and func-
tional, the implementation must insure that each of the push
or pop operations on either end of a deque is completed in
O(l) time in the worst case, and that the push or pop oper-

ation returns a new version of the deque without destroying
the old version. This section describes such an implementa-
tion written in a purely functional language.

As in section 3, an lhs stack and an rhs stack together
are used to represent a deque. The lhs pop or push oper-
ations are performed on the lhs stack, and the rhs pop or

push operations are performed on the rhs stack. Problems
arise when a pop operation encounters an empty stack. Our
strategy is to make sure that such problems never arise, To
able to do so, we maint tin the following invariant between

the two stacks:

Pl21s1 2I,and31s12 Id (1)

where 1? is the b~ger stack of two stacks and S is the smaller

stack, That is, each of the two stacks has at least one ele-

ment, and the size of the bigger stack is never larger than
three times the size of the smaller stack,

The above invariant can be violated in two ways. The
first is if one of the stacks becomes empty due to a pop

operation. However, if the invariant has been maintained
all along, we know that the other stack hss at most three

elements. Thus the deque as a whole has at most three ele-
ments. At that point, the usual representation of the deque
is replaced by a list of its elements. This list will contain
at most three elements, and all push and pop operations af-
terward will be handled in an ad hoc way by looking at the

head and tail of the list. If the size of the list grows to four
by subsequent push operations, we then break the list into
equally sized lhs and rhs stacks and usual representation is

subsequently used. It is clear that each of the above ad hoc
treatments consumes only a constant amount of time and

space.

The other case in which the invariant can be violated is
by a pop operation on the smaller stack, or by a push oper-

ation on the bigger stack, such that the size of the resulting

bigger stack is larger than three times the size of the result-
ing smaller stack. Let S be the smaller stack, and B be the

bigger stack, after the violating pop or push operation. If the
invariant has been maintained all along and IS I = m, then
1111= 3rn + k, where m ~ 1 and k is either 1,2, or 3. With-
out loss of generality, we assume that the resulting deque

has the configuration (S, B), with S = (PI, Y.V,.. ., p-)” and

B=(ql, g2,..., gsm+~)’, where k may be 1,2, or 3. we then
transfer the bottommost m + 1 elements of stack B to the

bottom of stack S such that, after the transfer, we have two
new stacks, newS = (Pi, P2, . . ..p”. gI, gZ,..,, qm+I)d and

new B = (q~+z~ q~ts) . . . , 93~+k )-, m the representation of
the deque. It is clear that that transfer needs at most O(m)

time and space. We then distribute the transfer process
evenly over the next m deque operations. Beca&& each of
the following m deque operations need only O(m)/m = O(1)
extra cost to rebuild the new stacks, each of of deque opera-

tions takes only constant time and consumes only constant

space.
We now describe the detaila. The construction of the

new stacks newS and newB can be accomplished by the

following procedures:

a.

b.

c.

d.

e,

Pop and reverse the topmost 2m + k – 1 elements of
stack B into an auxiliary stack auxB such that B =

(91 ?q2, . . . ,qm+l)” and C3UXB = (qm+2, grra+3, . . . ,q3m+k)”.

Reverse stack S into an auxiliary stack auxS such that
auzS = (pi, p2, . . ..p~)*.

Reverse stack auzB into a new stack newB such that

new B = (q~+z, g-+s, . . . . q3m+k)”-

Reverse stack B into a new stack newS such that
newS = (ql, qz, . . ..qm+l)4.

Reverse stack auxS onto stack newS such that newS =

(Pl,P29 . . ..pm. ql, g2, . . ..qrn+l )4.

At the end of the transfer, stacks newS and newll will re-

place the roles of st ack S and B, respectively, in the repre-
sentation of the deque. Note that procedures a and b above

can be carried out concurrently, which takes no more than

2m + 3 steps. A step costs two units of time and space by
moving one element from B to auxB and moving one ele-
ment from S to auzS. Similarly, procedure c can be carried

out concurrently with d and e, taking a total of at most

2m + 3 steps. In total, 4m + 6 steps are sufficient to com-
plete the transfer process. Since the transfer process will
be distributed evenly over the next m deque operations, we

allocate 6 steps to the deque operation that violates the in-
variant, and 4 steps to each of the m deque operations that

follow.
During the course of the transfer, pop operations can

be performed by the user on the original stacks S and B.
Therefore, we must take care not to copy those discarded

elements back onto the new stack newS and newB from the
auxiliary stacks auxS and auxB. A counter is used to keep
track of the number of remaining elements in the original

stack. Push operations during the course of transfer rdso

cause problems. The elements pushed to stack S, for exam-
ple, must be kept in a separate place extrd, to be annexed
with newS at the end of the transfer process to become

the real new stack S. We cannot simply append newS to
eztrd for this will ruin the real-time performance at the

very last step. Instead, we use the pair (ExtraS, new S) as

the representation of the stack S when the transfer process

is completed. ThB complicates pop and push operations on

stacks. Pop and push operations on stack S have to ex-

amine EstraS first to see if it is empty. If it is not empty,
then the pop or push operation is performed on it, otherwise

the operation is performed on newS. But, in exchange, we
maintain real-time performance. This implies that, in the
normal representation of a deque as an Ihs stack and an rhs
stack, each of the two stacks is in fact a pair of lists in our

implement ation.
To summarize, we now describe below the high-level im-

plementation of the deque operations. Only the lhs opera-

tions are described; the rhs cases are symmetrical to the lhs

cases.

● pus/I ,h$ (e, dq): Depending on the representation of

dq, perform one of the following actions,

– dq is a listof (less than 4) elements ~ “Cons e
d~. If the resulting list has 4 elements, then split
it in half into an lhs stack and an rhs stack.

– dq is a pair of stacks, but is not currently trans-

ferring elements between the two stacks ~ Push
e into the lhs stack. If the resulting lhs stack is
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●

●

●

three times larger than the rhs stack, then initiate
the transfer process.

– dg is a pair of stscka, and is transferring elements

between them ~ Push e into the lhs eztm list,
then perform 4 incremental steps of the transfer
process. If the transfer process is now complete,
then pair-up the eztru list with the new list to
form a new stack, both for the lhs and the rhs.

POPIh, (dq): Depending on the representation of dq,
perform one of the following actions,

– dq is a list of (less than 4) elements s Return

the ‘car” and ‘cdr” of the list.

– dg is a pair of stacks, but is not currently trans-

ferring elements between the two stacks ~ Pop

the lhs stack. If it results in an empty lhs stack,

then the deque is now represented as a list of the
elements in the rhs stack. If the rhs stack is three
times larger than the resulting lhs stack, then ini-

tiate the transfer process.

– dq is a pair of stacks, and is transferring elements
between them ~ Pop the lhs eztro listif it is not

empty, otherwise pop the old lhs stack. Perform
4 incremental steps of the transfer process. If the

transfer process is now complete, then pair-up the

eatra list with the new list to form a new stack,
both for the lhs and the rhs.

new Return an empty list.

empty d~ Return true if dq is an empty list, otherwise,
return false,

The actual code, written in the purely functional subset of

SML (of New Jersey), along with some annotations, is in-
cluded in Appendix A.

Before we conclude this section, it remains to be shown

that the invariant (1) is maintained after the transfer pre

cess. Suppose for the moment that the m deque operations

that carry out the entire transfer process do not interfere

with the rebuilding of the two new stacks, In such a case,

the resulting deque will have one stack of size 2m + 1 and the

other stack of size 2m + k -1 in its representation, where
k may be 1,2, or 3, The sizes of the two stacks will be-
come most unbalanced if the m deque operations that carry
out the transfer process all happen to be pop operations

aimed at the smaller of the above two stacks. This occurs
when k = 1 and the stack of size 2m + k -1 are popped
m times. The resulting smaller stack will have m elements,

and the resulting bigger stack will have size 2m + 1. Since
3. m ~ 2m + 1 for all m ~ 1, the invariant (1) has been

maint amed.

5 Applications

Being able to add real-time deques to a purely functional

language can lead to some interesting results. We show in
this section two applications. The first is some implications
in purely functional list processing. The other is a real-

time simulation of a multihead Turing machine in a purely

functional language.

5.1 Purely Functional List Processing

Here is a quiz: How much time will it take to reverse a list

of n elements in a (sequential) purely functional language?
A conventional method will take O(n) time. But a list can

be implemented, in a purely functional way, zs a real-time

deque without losing its functionality or its constant time
performance. Furthermore, we can reverse a deque in con-
stant time because of its symmetric nature. It turns out that

a list of an arbitrary number of elements can be reversed in
constant worstwase time if it is implemented as a real-time

deque and an additional orientation tag is attached to the

deque.

ThE gives us a new way to concatenate two lists. The
usual method will take O(IXI) time to concatenate a list Y

to the rear of a list X. However, if lists X and Y are imple-
mented as real-time deques with the lhs of the deque as the

front of the list and the rhs ss the rear, then their concatena-
tion can be implemented in the following way: If IYI < 1X1,

then pop elements from the lhs of Y and push them to the

rhs of X; otherwise, pop elements from the rhs of X and
push them to the lhs of Y. This takes O(min(lXl, IYI))

worst-csse time, which is better than the usual O(IXI) time.

5.2 Real-Time Simulation of a Multihead Turing
Machine in a Purely Functional Language

A multihead Turing machine is a Turing machine with a

single two-way linear tape and multiple read/write heads
upon the tape. In one move the multihead Turing machine,

depending on the symbols scanned by the heads and the

state of the finite control, changes its state and either prints
a symbol on the cell scanned by one head or moves one head

left or right one cell. Let Q be the finite set of states in the
machine, Z be the finite set of tape symbols, and K be the

finite set of heads {hi, hz, . . . . h~ }. The next- move function

6 is a mapping from QxZ~ to QxKx(ZU{L, R}), where L

and R will move the head left and right one cell respectively.
Notice that the machhe can move or write using only one of

its heads at a time. The machine starts with an initial state

and an initial sequence of symbols on the tape. It proceeds

according to the next move function, and halts if it reaches
a final state. The resulting sequence of symbols on the tape

is the output of the machme.
We are interested in multihead Turing machines because

they provide a model for limited random access memory. A
k-head Turing machine can be viewed as a linear memory

machine with multiple program count ers. These program
counters differ from the program counter in a ususl ran-

dom access machine in that they cannot be arbitrarily reset
to point to any memory locations. Only increment, decr~

ment, read, and write instructions are available to manipu-
late these program counters. To compensate the loss of the
arbitrary jump instruction, k program counters are made

available such that the machine can memorize k different

locations in the memory. It would be interesting to see how
well the purely functional model (which assumes non-linear

memory and admits no side-effects) can simulate this lim-
ited model of random access memory (which assumes linear
memory and admits side-effects).

We now describe how to simulate in real-time a multi-

head Turing machine in a purely functional language. The
contents of the tape and the positions of the heads can be
implemented by a sequence of deques with each deque repre-

senting a segment of the tape delimited by its two surround-
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ing heads. Let the entire contents of the tape be described by
a sequence of symbols S = (so, .92, . . , s=) with the k heads

located at symbol Sli, 1 ~ i ~ k. Without loss of generality,
weassume that 0~1, ~li+l <n foralll<i <k-1.

Recall that S0 denotes the deque containing exactly the ele-
ments of sequence S, with elements so and s~ at the two ends

of the deque. The tape, along with the head positions, can
be represented by a sequenc~ of deques (Do, DI,., ., Dk),

where DO = (sO, sl,... s[l-l) , D, = (SI,, SI,+I, . .. W.+l-I)V

for 1 ~ i ~ k-l, and Dk = (slk, slk+l,.. . s~)e. Because sev-
eral heads may be positioned over the same cell on the tape,
some of the deques may be empty. Also, head hi, the ith

head in K, need not be positioned over symbol SZi. Rather,

there is a permutation function ~ over {1, 2,... k} such that
head hi will position at symbol sl,[,) . It is clear that ev-

ery move of a multihead Turing m~hke (printing a symbol
under a head, moving a head left or right one cell), can be

accomplished in real-time by performing the operations at

the corresponding deques,
Given the next move function 6 from Q x ,Xk to Q x A’ x

(X U {L, R}) and the representation of the tape described
above, we can implement in a purely functional way a next

move function A from Q x Tape to Q x Tape such that each
function application of A costs O(k) time and space. Tape

is the data type that describes exactly the current tape con-
figuration of the machine, including the the contents of the

tape, the positions of the heads, and the permutation func-

tion j. The permutation function ~ is needed because if
two heads cross each other on the tape, their ordering on
the tape will change and the permutation function ~ must

be changed accordingly. This results in a real-time simula-
tion in a purely functional language of a multihead Turing

machine, where each move of the machine is accomplished
in O(k) time and space. Note that the complexity of the

simulation, O(k) per move, depends only on k, the num-
ber of heads, not on n, the number of symbols on the tape.
Also note that every configuration of the execution history

of a multihead Turing machine is equally accessible in our

real-time simulation. This means that our real-time sim-
ulation can be multi–threaded, which is very useful if we

want to simulate a nondeterministic multihead Turing ma-

chine where there may be several eligible next moves at any

given machine configuration.

6 Remarks

Throughout our discussion in this paper, we implicitly as-
sume that the purely functional language used to implement
the deques is a strict language rather than non-strict lan-
guage in which the evaluation of function arguments are de-
layed until needed. A strict language is required because the

incremental nature of the algorithm requires that elements
be transferred between stacks well in advance of the use of

those elements. A non–strict language would delay most
of the transfer steps when a deque operation occurs. How-

ever, a subsequent deque operation (such as a popping an
element and performing a strict operation on the element)
would cause many of the delayed transfer steps to execute.

Naturally, this would destroy the real-time nature of the
algorithm.

Are the data structures described in this paper still at-
tractive if implemented in a non–strict language or implem-
ented within a system that does not provide real-time
garbage collection? Even though the resulting program will

not have real-time properties, it is still important to have
efficient implementations of aggregate data structures, such

as deques, which are suitable for multi-threaded applica-
tions. Using a non-strict functional language, the perfor-

mance of the deques described in section 4 wiU degrade to
O(1) amortized time, instead of O(1) real-time, per deque

operation in a multi–threaded program. This is better than

the naive implementation of deques described in section 3,

which achieves 0(1 ) amortized complexity only in single-

threaded programs.

7 Related Work and Future Work

A real-time simulation of a multihead Turing machine in a

purely functional language does not come as a blg surprise.
Fischer, Meyer, and Rosenberg [13] and Leong and Seiferm
[21] has shown that a multihead Turing machine can be sim-

ulated in real-time by a multitape Turing machine with only

one head per tape. A single tape, single head Turing ma-
chine can be simulated in rea,-time in a purely functional
language, by two stacks and a finite control. Thus, it is

clear that a multihead Turing machine can be simulated in
real-time in a purely functional language. Nevertheless, the

simulations of [13] and [21] are complicated, and their result-

ing simulations of a multihead Turing machine in a purely

functional language will probably not be as simple as ours.

Furthermore, our objective is to demonstrate that purely

functional languages can be used to implement non–trivial
aggregate data structures, such as deques and multihead
Turing machines, efficiently and straightforwardly, which is
different from the objectives of [13] and [21].

In our purely functional implementation of real-time de-
ques, two techniques are used: a deque is represented as two

balanced stacks, and incremental method is used to bal-
ance the two stacks. Incremental methods have been used
in many contexts to improve algorithms of amortized per-
formance to worst-case performance. Baker’s algorithm for

real-time garbage collection is a good example [3]. Baker
took a copying garbage collection algorithm which had O(1)
amortized cost per storage allocation (this cost includes the

high cost of the stop-and-copy collection) and modified it

to be O(1) worst-case cost.

Both Sarnak [26] and Hoogerwoord [18] use two stacks to

represent a deque. Sarnak’s design of fully persistent real–
time deques is not purely functional because side-effects

are used. His scheme is also more complicated than ours.

Hoogerwoord’s design is purely functional, but not real-
time, and is not suitable for multi–threaded applications.
While not aware of the above two works, we start with the

result of Hood and Melville [17] on purely functional rea&
time queues, and extend it to purely functional real-time
deques. The underlying idea, that a deque is represented as

two balanced stacks, is the same.

An open problem is whether deque concatenation can

also be implemented in real-time in a purely functional
way, in addition to the real-time pop and push operations.

Buchsbaum and Tarjan [9] recently show that deques can
be made confluently persistent (i.e., concatenateable) with
constant cost for each concatenation and push operation,
but at the cost of O(log * n) for each pop operation, where n
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is the deque size.l All costs are amortized. This improves a

previous result of Drizcoll, Sleator, and Tarjan [12]. Using
our purely functional implementation of real-time deques,
their implementation can be made purely functional, with

amortized complexity improved to worst-case complexit y for
each operation [8]. It would be interesting to see if a purely

functional implementation of deques exists such that each
concatenation, pop, and push operation costs only constant
worst-case time.
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A SM L code with Annotations

The SML signatures for the stack and deque structures are
described in Figure 1. An implementation of the stack struc-
ture is described in Figure 2, where each operation, includ-

ing pack and unpack, costs 0(1 ) time. An implementation
of real-time deques is described in two parts, Figure 3 de-

scribes the local declarations of the deque functor. It in-
cludes the definition of states according to the transfer pre
cedures described in section 4, and the functions to manipu-

late them. The actual implementations of deque operations

are given in Figure 4.
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signature STACK x
s ii

exception Empty

type *a Stack

val new : ~a Stack
Tel empty: Ja Stack -> bool

Tit pneh : ‘a ‘> ‘a Stack -> $a Stack
Val pop : $a Stack -> ‘a * ‘a Stack

Tal pack : Ya list -> Ja liet -> Ja Stack

ml unpack : ‘a Stack -> ‘a list * ‘a list

end

signature DEQUE =

s ig
except ion 5pt y

datatype Side = LES I SSS

type ] a Deque

ml nev : ~a Deqtte

Val eapty : ‘a Deque ‘> bool

val pueh : Side -> ~a -> ~a Deque -> >a Deqne

Val pop : Side ‘> ‘a Deque ‘> ‘a * ‘a Deque

val length : Ja Deque -> int

end

Figure 1: The signatures of the stack and deque struc-

tures in SML.
NOTE, The objective is to implement each of their OP

erations in constant time and constant space. Note that
we will implement a stack by a pair of lists, by using th(

pack and unpack functions. The reason for this is stated
in section 4.

functor Stack () : STiCK =
etxuct

except ion Empty

type ‘a Stack = ‘a liet e ‘a liet

val new = ([1, [1)
fun aapty ([], []) = true

I empty - = false

fun push e (x, y) = (e: :x, y)
fnn pop (X::xs, ys) = (x, (Xs, ys))

I pop ([1, y!!ys) = (y, (ys, [1))
I pop ([1, [1) = raise Empty

furl pack x y = (x, y)
fun unpsck pair = pair

end

Figure 2: SML code for stacks.
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fu.mctor Deque (stack : STACK) : DEWS =
Struct

local

open stack

type ja Current = Ja list * int * ~a Stack ● int

datatypo ‘a State = IOSJI of ~a Stack ● int

fun
fun

fun
fun

I

fun
fun

fun

I

fun

fnn

I

I

fun
I

in

NOTE.

. .
I RevB of ~a Current ● ~a Stack ● ~a list ● int
I RevSl of ~a current ● ~a Stack ● ‘a list

I RerS2 of ‘a Current ● ~a list ● Ja Stack * ~a list e int
I COPY of Ja Current ● ‘a list ● ‘a list ● int

haad stack = let ml (element, .) = pop stack in el~ent end
tail stack = let val (-, stack) = pop stack in stack end

put e (extra, added, oId, remained) = (e: : extra, added+l, old, remained)
get (cl, added, old, remained) = (head old, ( [1, added, tail old, remained-l) )

get (e: :es, added, old, remained) = (e, (es, added-l, old, remained) )

top current = let ral (element, J = get current in element end

bot current = let ml (-, current) = get current in current end

normalize (state as COPY ((extra, added, -, remained), -, nes, =o~ed) ) =

if noved = remained
then EOBH (pack extra new, added + mowed)

else state
nodize atate = state

tick state =
cash state of

IOBH - => state

I RevB (current, Big, aurB, count) =>
BevB (current, tail Big, (head Big): : auzB, count-l)

I aew31 (current, S-1, auaS) =>
if empty s-l

then state
elee BevSl (current, tail small, (head S-all) :: auxS)

I RewS2 (current, auxS, Big, newS, count) =>

if ~ty Big
then normalize (COPY (current, auxS, newS, count))
else RevS2 (current, auxS, tail Big, (head Big) : :newS, count+l)

I COPY (current as (-, -, -, remained) , anx, new, moved) =>

if noved < remained

ticks

ticks

ticks

then normalize (COPY (current, tl aux, (hd aux) : :new, rnored+l) )

alsa normalize state

(RewB (currentB, Big, auxB, O), ItevSl (curents, -, a~s) ) =
(normalize (COPY (currentB, auxB, [], O)), RerS2 (cnrrentS, auxS, Big, [1, O))
(ItevSl (currentS, ., auzS), IterB (currentB, Big, aurB, 0)) =

(RevS2 (currents, auxs, Big, [1, O), nor=aIize (Copy (c~rentB, a~B, [1, 0)))
(lha, rha) = (tick lhs, tick rhs)

steps O pair = pair
steps n pair = steps (n - 1) (ticks pair)

Figure 3: SML code for real-time deques, Part 1.
DatatvDe Current is used to hold the “current” stack when elements are being transferred between the twf. .

stacks of a deque. It has four fields: the list of newly pushed elements and its count, and ~he old stack and its remaining

count. Datatype State has five states whose functions are described in section 4. They are NORM (when no element is
being transferred), RevB (for performing procedure a), RevSl (for procedure b), RevS2 (for procedure d), and COPY (for

procedure c or e). Functions put and get perform push and pop operations , respectively, on datatype current. State

transitions are carried out by function tick, which is called by ticks, which is again called by steps.
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except ion Empty

dat atype Side = LHS I SSS

datatype ‘a Deque = LIST of >a list

Vrd
fon

I

fun

I

fun
I
I
I
I

fun
I
I

I
I

fun
I

i

I

I
I

fun

I
I
I

I

fuu

I
end
end

I PAIB of ~a State ● ?a State

new = LIST []
~ty (LIST []) = true

empty . = false

suap (LIST 1) = LIST (rer 1)

swap (PAIR (lhs, rhs) ) = PAIR (rhs, lhs)

pop} (IOBH (a, b)) = (head a, IORH (tail a, b-l))
pop ~ (RevB (a, b, c, d)) = (top a, ItevB (bet a, b, c, d))
pop> (RevSl (a, b, c)) = (top a, RerSl (bet a, b, c))
pop’ (RevS2 (a, b, c, d, e)) = (top a, Ee~S2 (bet a, b, c, d, e))
pop} (COPY (a, b, c, d)) = (top a, COPY (bet a, b, c, d))

pop _ (LIST [1) = raise Empty
pOp LES (LIST 1) = (hd 1, LIST (tl 1))
pop LES (PAIR (IORH (L, 1), rhs as IOBH (R, r))) =

let val (h, L) = stack .pop L in
if 3*(1-1) >= r

then (h, PAIR (IOM (L, l-l), rhe) )
else if 1 >= 2

then (h, PAIR (stepe 6 (RevSl (([1, O, L, 2*1-I), L, [1),

BevB (([1, O, R, r-l), It, [], r-l))))
else (h, LIST (rev ( (op @ (unpack R)))) end

pop LHS (PAIR (L, R)) = let VSL (e, L) = pop) L in (e, PAIR (eteps 4 (L, R))) end
pop RES deque = let vel (e, deque) = pop LliS (swap deque) in (e, svap deque) end

push} z (IORH (a, b)) = IORH (push z a, b+l )

push’ z (RevB (a, b, c, d)) = IlevB (put z a, b, c, d)
push; z (RevSl (a, b, c)) = RevSl (put z a, b, c)
puah J z (RevS2 (a, b, c, d, e)) = RemS2 (put z a, b, c, d, e)
push; z (COPY (a, b, c, d)) x COPY (put z a, b, c, d)

push Lm e (LIST 1) =

if length 1 <= 2
then LIST (e: :1)
else PAIR (IORH (pack [e, hd 1] cl, 2),

IORH (pack [hd (tl (tl 1)), hd (tl 1)1 [1, 2))
pnsh LES e (PAIR (IORll (L, 1), rhs as IORH (R, r))) =

let val L = stack .pnsh e L in
if 3*r >= 1+1

then PAIR (IORH (L, 1+1) , rhs)

else PAIR (steps 6 (RevB (([1 , 0, L, l-r), L, [], l-r),
RevSl (([], O, R, 2er+i), R, []))) end

push LES e (PAIR (L, R)) = PAIR (steps 4 (push> e L, R))

push SSS e deque = swap (pnsh LIIS e (swap deque ) )

length) (IORH (_, 1)) =1
length’ (ReFB ((-, a, -, r), _, _, _)) =a+r
length~ (RevSl ((-, a, -, r), -, _)) =a+r
length> (RevS2 ((_, a, -, r), -, -, -, -)) = a + r

length’ (COPY ((_, a, _, r), -, -, J) =a+r

length (LIST 1) = Liet.length 1
length (PAIR (L, R)) = length~ L + length> R

Figure4: SMLcode forreal-time deques, Part 2.
NOTE. A Deque datatype is either a list of (less than 4) elements, or a pair of states representing the lhs and rhs stacks.
Function swap exchanges the two sides of a deque. As described in section 4, functions pop and push will initiate the
transfer of elements between the two stacks of a deque iff the resulting bigger stack is more than three times the size of
the resulting smaller stack.
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