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Abstract

We answer the following question: Can a deque (double-
ended queue) be implemented in a purely functional lan-
guage such that each push or pop operation on either end of
a queue is accomplished in O(1) time in the worst case? The
answer is yes, thus solving a problem posted by Gajewska
and Tarjan [14] and by Ponder, McGeer, and Ng [25], and
refining results of Sarnak [26] and Hoogerwoord [18].

We term such a deque real-time, since its constant worst-
case behavior might be useful in real time programs (assum-
ing real-time garbage collection [3], etc.) Furthermore, we
show that no restriction of the functional language is neces-
sary, and that push and pop operations on previous versions
of a deque can also be achieved in constant time.

We present a purely functional implementation of real-
time deques and its complexity analysis. We then show that
the implementation has some interesting implications, and
can be used to give a real-time simulation of a multihead
Turing machine in a purely functional language.

1 Introduction and Survey

In a functional program, if an aggregate data structure is up-
dated then both the original version and the updated version
of the aggregate must be preserved, preferably at a small
cost, to maintain referential transparency. It is generally
regarded as too expensive to make a complete copy of the
aggregate that differs from the original only in the updated
position. There have been various approaches to solve the
aggregate update problem. If compile-time program analy-
sis or run—time tests can determine that the original version
of an aggregate will not be referenced following an update,
then the update can be performed in place [6,7,19,24,28,29].
A functional language can also provide language prim-
itives for writing single-threaded programs such that they
can easily be recognized and implemented by the compiler.
A program is single-threaded if all operations on aggregates
only refer to their newest versions. Thus, all update op-
erations in a single-threaded program can be performed in
place because previous versions of aggregates will never be
needed and can be safely overwritten [2,16,20,31,32].
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Another general approach is to design efficient algorithms
to make aggregate data structures fully persistent (i.e., pure-
ly functional), such that after a sequence of updates the
newest version and all previous versions of the aggregate
are still accessible [1,4,5,10,11,17,22,23,26,27).

General techniques for making aggregate data structures
fully persistent are described by Driscoll, Sarnak, Sleator,
and Tarjan [11]. However, the techniques often rely on side-
effects to achieve good time and space performance. It is not
clear how they can be implemented in a purely functional
language without losing their efficiency. For an advocate
of functional programming, the challenge is to demonstrate
that certain aggregates can be implemented efficiently in
purely functional languages.

When discussing and comparing efficient implementa-
tions of fully persistent aggregate data structures, it is help-
ful that we ask the following questions regarding the imple-
mentations:

o Is the implementation a purely functional one? Or,
must it use side—effects and be implemented in a side-
effecting language?

o Is the stated cost of each aggregate operation a worst-
case cost or an amortized one?

¢ Is the implementation good for multi-threaded appli-
cations? Or is it only suitable for single-threaded ap-
plications?

While a worst—case analysis measures the cost of an opera-
tion in an isolated context, an amortized analysis measures
the cost of an operation averaged over a worst—case sequence
of operations [30]. Amortized analysis should not be con-
fused with average-case analysis, which is often based on
some probabilistic assumptions. An implementation is said
to be real-time if each operation costs only constant over-
head in the worst case.

Notice that a purely functional implementation of an ag-
gregate data structure automatically makes it fully persis-
tent because no side—effect is used in the implementation
and previous versions of an aggregate are always accessi-
ble. The problem is that the implementation may be ineffi-
cient, even under the assumption that it will only be used for
single-threaded applications. Also, an implementation (ei-
ther in purely functional or side—effecting languages) with
good amortized performance does not necessarily mean it
is good for multi-threaded applications, because the amor-
tized cost may be measured over a single-threaded sequence
of operations.
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Hood and Melville [17] show that a FIFO queue can be
implemented in pure Lisp (where no side—effect is allowed)
such that, in the worst case, push or pop operations on the
queue cost only O(1) time and consume O(1) space. This is
an interesting result for several reasons. First of all, the O(1)
complexity applies not only to the newest version of a queue,
but to previous versions as well. This makes their implemen-
tation suitable for multi-threaded applications. Secondly, it
had not previously been shown, even for languages allow-
ing side-effects, how a fully persistent real-time queue could
be implemented. For example, suppose that the queue is
implemented in a side-effecting language as a single-linked
list with access pointers to both ends and the standard tech-
nique of [11] is used to make the single-linked list fully per-
sistent. Each of the pop or push operations to any version
of a queue will need O(1) amortized time and space.

We extend in this paper the result of Hood and Melville
such that using a purely functional language, each of the
push or pop operations on either end of any version of a
deque costs only O(1) time in the worst case. Efficient im-
plementation of deques in a purely functional language was
considered both by Gajewska and Tarjan [14] and by Pon-
der, McGeer, and Ng [25], but without giving a solution.
Our results show that it can be done.

The techniques we use are not new. We will use two
stacks to represent a deque, with each stack top correspond-
ing to one of the two open ends of the deque. The two stacks
are balanced at all time in that the bigger stack is never more
than three times the size of the smaller stack. A pop opera-
tion on a non—empty deque is performed directly on one of
the stacks. The challenge is to make the design as simple as
possible — such that a purely functional implementation be-
comes straightforward — and to get its complexity analysis
right. The two-stacks representation is used by Gries [15,
pages 250-251] to design purely functional queues with con-
stant amortized cost per operation. Hoogerwoord [18] shows
that the representation can be extended to purely functional
deques with constant amortized cost per operation. How-
ever, these two designs are not suitable for multi-threaded
applications because the constant cost for each operation is
amortized along a single thread of operations. Hood and
Melville [17] show that, by incrementally copying elements
from one stack to another, real-time queues can be imple-
mented in a purely functional way. A design for fully persis-
tent deques with constant worst—case time per operation is
described in Sarnak’s Ph.D. thesis [26]. However, his design
is not purely functional because side~effects are used in the
implementation. His method, and the associated complexity
analysis, is also more complicated than ours. Nevertheless,
the basic idea is similar in his and our design: a deque is
represented as two stacks and they are kept balanced by
incrementally moving elements between them.

In section 2, we outline Hood and Melville’s purely func-
tion method for real-time FIFO queues. We then describe in
section 3 a purely functional implementation of deques with
good amortized performance. This design is also described
by both Sarnak and Hoogerwoord. Our purely functional
implementation of deques with real-time performance is pre-
sented in section 4. Section 5 describes its implications in
purely functional list processing. It also shows how to sim-
ulate in real-time, in a purely functional language, a mul-
tihead Turing machine by using multiple real-time deques.
Section 6 contains some remarks on real-time processing in
a purely functional setting. Section 7 discusses related work
and future work.

In this paper, we will use the notation P = (py,p2,...,pm)
to describe a sequence P of m eclements p1,p2,...,Pm.
concatenation of sequences P and @) is denoted by PQ. The
notation P* describes a stack consisting of the sequence P,
with p; at the top of the stack and p,,; at the bottom. Sim-
ilarly, P® is also a stack consisting of the sequence P, but
with p,, at the top of the stack and p; at the bottom. A
deque consisting of the sequence P is denoted by P°. Notice
that (p1,pz,.. ,Pm)" = (pm,Pm—1,...,p1)". The size of a
sequence P is denoted by [Pl Slmllarly, |P“| |P?|, and | P?|
are respectively the sizes of stacks P*, P*, and deque P°.

2 Functional Queues with Good Real-Time Perfor-
mance

Hood and Melville [17] describe a pure LISP implementation
of FIFO queues with good amortized performance. They
then modify it to get an implementation, also in pure LISP,
with good real-time (i.e. worst—case) performance. Their
idea is to represent a queue by two disjoint stacks, where
the input stack I is used to receive the sequence of ele-
ments being pushed and the output stack O is used to store
the sequence of elements to be popped. We will denote the
configuration of a queue as (O, I”). The sequence OI rep-
resents the entire sequence of elements of the queue. When
the output stack becomes empty and a pop operation is ex-
ecuted, the sequence of elements in the input stack are all
transferred to the output stack by reversing the sequence in
the input stack to form a new output stack. The input stack
is then replaced by an empty stack. That is, the configura-
tion of the queue is transformed from (()°, I”) into {I*,()").
The transfer takes time linear to size of the input stack and
can be implemented in a purely functional way.

Starting from an empty queue (with both the input and
output stacks empty), a single—threaded sequence of s queue
operations will transfer at most s elements from the input
stack to the output stack. This is based on the observa-
tion that an element will be transferred at most once from
the input stack to the output stack after it is pushed onto
the queue. Since there are at most s push operations in a
sequence of s queue operations, the total cost of transfer is
bounded by s. This results in O(s)/s = O(1) amortized cost
per queue operation for the transfer, in addition to the O(1)
actual cost per queue operation for implementing the push
and pop operations on the input and out stacks respectively.

However, the above implementation has two drawbacks.
It is not real-time, and, more severely, does not suit multi-
threaded applications, where pop or push operations may
be performed not only on the newest version of a queue,
but on previous versions as well. For example, let queue
P ={()%(p1,p2,.--,pm)") be a queue formed by a sequence
of m push operations. A single pop operation on P will take
O(m) time to get element p; and form a new queue Q =
{(p2, ps3, . ,pm) () }. Suppose that the next operation in
the sequence is again a pop operation on P rather than on
the newer version, Q. Then O(m) time has to be spent again
to get element p, and to form a queue identical to Q. Note
that in general we have no way to tell whether or not two
pop operations will be performed on the same queue.

Hood and Melville improve the above naive implementa-
tion by a simple idea, that the transfer of elements from the
input stack to the output stack need not be carried out all
at once when the output stack becomes empty. The transfer
of elements can be carried out incrementallyover a sequence
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of queue operations whenever a substantial number of ele-
ments have been accumulated in the input stack, ever when
the output stack is not empty.

Suppose that a queue has the configuration (0%, I”} and
is to be transformed into the configuration ((OI)*, ()°). Sup-
pose also that the transfer of elements from the input stack
I” to the output stack O" is initiated only when the invariant
|O°] 2 |I”] is violated. At the beginning of the transfer, we
can assume |Q"| = n and |I°| = n + 1 for some n > 0. The
new output stack (OI)° can be constructed in three stages:
reverse stack I creating a stack I, reverse stack O creat-
ing a stack O®, and then pop all the elements from stack O*
and push them onto stack 7 one by one. The whole process
will take 3n + 4 steps of time, where each step either moves
the topmost element from one stack to another, or is a test
(at the bottom of the recursion) to see if a stack is empty.
Because the original output stack O will become empty af-
ter n pop operations, we must accomplish the 3n + 4 steps
in n regular queue operations. We then allocate 4 steps to
the pop or push operation that initiates the transfer, and
allocate 3 steps to each of the n queue operations that fol-
lows. Since each queue operation performs at most 4 extra
steps to aid the construction of the new output stack, each
queue operation takes O(1) time and O(1) space.

In the actual implementation, a normal queue is repre-
sented by two stacks, one for pop operations and one for
push operations. However, an in-transition queue is repre-
sented by the old output stack (for pop operations), a new
input stack (for receiving elements from push operations),
and additional intermediate stacks for incremental construc-
tion of the new output stack. Once the new output stack is
completely rebuilt, it is paired with the new input stack to
represent a normal queue. The old output stack and those
intermediate stacks are discarded. A normal queue enters
the in—transition mode whenever its output stack becomes
smaller than its input stack.

There are some remaining details in Hood and Melville’s
algorithm, though. In the construction of a new output
stack, we need not copy all the elements in the original
output stack O° because some of elements may have been
popped during the course of the transfer. A counter is used
to insure that we will not over-copy. Also, it can be shown
that the queue is never empty during its transfer of elements,
and after the transfer of elements, the invariant |O*| > |I”|
still holds for the new input stack I~ and the new output
stack O°.

3 Functional Deques with Good Amortized Perfor-
mance

A deque is a linear buffer where push and pop operations
can be performed on either end of the buffer. We can modify
the naive implementation of FIFO queues described in the
above section to get a purely functional implementation of
deque with good amortized performance. Similar schemes
are also described by Sarnak [26] and Hoogerwoord [18].

A pair of stacks, (L“, R®), is used to represent a deque,
similar to that for a queue. The difference is that pop or
push operations can be performed on stack L® or stack R®.
We call L® the the left-hand-side (lhs) stack and R" the
right-hand-side (rhs) stack, instead of using the terms out-
put stack and input stack previously used. Push and pop
operations on the left side of the deque are performed on
the lhs stack, and operations on the right side of the deque

are performed on the rhs stack. The problem is that an lhs
pop operation may be executed while the lhs stack is empty
and the rhs stack contains some elements, and vice versa.

We solve this problem by transferring the bottom half of
the rhs stack to the empty lhs stack, with the bottommost
elements of the rhs stack becoming the topmost elements in
the lhs stack after the transfer. That is, for an Ihs pop opera-
tion on queue {()*, R*), we first transform the configuration
of the queue from {()°, R”) to (R1, R2"), where R = R; Rz
and |Ry| = [ |R]/2 ]. Then we perform an lhs pop operation
on (R1*, R;"). A symmetrical treatment also applies to an
rhs pop operation when the rhs stack is empty but the lhs
stack is not.

Does the above strategy provide a good implementation?
If a sequence of deque operations is single-threaded and
starts with an empty deque, then, by a simple credit—debit
argument [30], it can be shown that each operation takes
O(1) amortized time and space. For the argument, we asso-
ciate with a deque an imaginary “bank account” of units of
time, whose balance reflects exactly the difference between
the sizes of the two stacks in the the deque. That is, the
balance will be | |L°| —|R”] | for a configuration of (L, R*).
We also allocate two units of time for each deque operation,
which will be the amortized cost of the operation.

A pop or push operation will change the difference be-
tween the sizes of the two stacks by one if it does not initiate
the transfer process. For such an operation, one unit of time
is used to pop/push an element from/to its corresponding
stack, and the other unit of amortized time is deposited into
the bank account if the pop or push operation increases the
size difference. If the size difference is decreased by the push
or pop operation, then one unit of time is withdrawn from
the account and is discarded along with the other unit of
time allocated for the deque operation. By doing so, we
make sure that the bank account is consistent with the dif-
ference between the sizes of the two stacks.

On the other hand, an lhs pop operation on the deque
{O*, R”) will have to transfer the bottom half of the rhs
stack R” to the empty lhs stack, before the pop operation
can be performed. The transfer will require |R"| units of
time, which are withdrawn from the bank account. The
bank account will have contained exactly |R”| units before
the transfer. After the transfer, the difference of the stack
sizes is at most one (with the size of the lhs stack larger than
or equal to the size of the rhs stack) and the bank account
has a balance of zero. The lhs pop operation then proceeds
as if the transfer had never happened. Inconsistency occurs
after the transfer process if the stack size difference is one
but the bank account balance is zero. In such a case, the
lhs pop operation will decrease the size difference by one.
However, it will not withdraw and discard one credit from
the bank account this time, as would be required in the usual
situations. That is, the bank account balance again reflects
exactly the difference between the stack sizes after the lhs
pop operation. A symmetrical analysis also applies to the
case of rhs pop operations.

We conclude that O(1) amortized time suffices for each
deque operation in a single-threaded sequenced of opera-
tions. However, this implementation suffers the same draw-
backs of the naive amortized implementation for FIFO queunes
in section 2. It is not real-time and does not suit multi-
threaded applications. We will address these problems in
the next section.
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4 Functional Deques with Good Real-Time Perfor-
mance

For an implementation of deques to be real-time and func-
tional, the implementation must insure that each of the push
or pop operations on either end of a deque is completed in
O(1) time in the worst case, and that the push or pop oper-
ation returns a new version of the deque without destroying
the old version. This section describes such an implementa-
tion written in a purely functional language.

As in section 3, an lhs stack and an rhs stack together
are used to represent a deque. The lhs pop or push oper-
ations are performed on the lhs stack, and the rhs pop or
push operations are performed on the rhs stack. Problems
arise when a pop operation encounters an empty stack. Our
strategy is to make sure that such problems never arise. To
able to do so, we maintain the following invariant between
the two stacks:

|Bl 2 15| 2 1,and 35| > | B| 1)

where B is the bigger stack of two stacks and S is the smaller
stack., That is, each of the two stacks has at least one ele-
ment, and the size of the bigger stack is never larger than
three times the size of the smaller stack.

The above invariant can be violated in two ways. The
first is if one of the stacks becomes empty due to a pop
operation. However, if the invariant has been maintained
all along, we know that the other stack has at most three
elements. Thus the deque as a whole has at most three ele-
ments. At that point, the usual representation of the deque
is replaced by a list of its elements. This list will contain
at most three elements, and all push and pop operations af-
terward will be handled in an ad hoc way by looking at the
head and tail of the list. If the size of the list grows to four
by subsequent push operations, we then break the list into
equally sized lhs and rhs stacks and usual representation is
subsequently used. It is clear that each of the above ad hoc
treatments consumes only a constant amount of time and
space.

The other case in which the invariant can be violated is
by a pop operation on the smaller stack, or by a push oper-
ation on the bigger stack, such that the size of the resulting
bigger stack is larger than three times the size of the result-
ing smaller stack. Let S be the smaller stack, and B be the
bigger stack, after the violating pop or push operation. If the
invariant has been maintained all along and |S| = m, then
|B| = 3m + k, where m > 1 and k is either 1,2, or 3. With-
out loss of generality, we assume that the resulting deque
has the configuration {S, B), with S = (p1,pz,...,pm)" and
B =(q1,92,...,93m+x)", where k may be 1, 2, or 3. We then
transfer the bottommost m + 1 elements of stack B to the
bottom of stack S such that, after the transfer, we have two
new stacks, newS = (Pl;m,nnpm,QI,QL’,u';qm+1)< and
newB = (¢m+2,qm+3,---,93m+x )", as the representation of
the deque. It is clear that that transfer needs at most O(m)
time and space. We then distribute the transfer process
evenly over the next m deque operations. Becaise each of
the following m deque operations need only O(m)/m = O(1)
extra cost to rebuild the new stacks, each of of deque opera-
tions takes only constant time and consumes only constant
space.

We now describe the details. The construction of the
new stacks newS and newB can be accomplished by the
following procedures:

a. Pop and reverse the topmost 2m + k — 1 elements of
stack B into an auxiliary stack auzB such that B =

(91,92, -, gm+1)" and auzB = (qm+2, Gm+3,+ .+, G3m+k)"-

b. Reverse stack S into an auxiliary stack auzS such that
auzS = (p1,P2,---,Pm) -

c. Reverse stack auz B into a new stack newB such that
newB = (gm42,qm43,- -+, @3m4k) -

d. Reverse stack B into a new stack newS such that
newS = (q1,92,- -, qm41)".

¢. Reverse stack auzS onto stack newS such that newS =
(PJ,P% ey Pmyq1,42,. .. 1qm+1)<‘

At the end of the transfer, stacks newS and newB will re-
place the roles of stack S and B, respectively, in the repre-
sentation of the deque. Note that procedures a and b above
can be carried out concurrently, which takes no more than
2m + 3 steps. A step costs two units of time and space by
moving one element from B to auzB and moving one ele-
ment from S to guzS. Similarly, procedure ¢ can be carried
out concurrently with d and e, taking a total of at most
2m + 3 steps. In total, 4m + 6 steps are sufficient to com-
plete the transfer process. Since the transfer process will
be distributed evenly over the next m deque operations, we
allocate 6 steps to the deque operation that violates the in-
variant, and 4 steps to each of the m deque operations that
follow.

During the course of the transfer, pop operations can
be performed by the user on the original stacks S and B.
Therefore, we must take care not to copy those discarded
elements back onto the new stack newS and new B from the
auxiliary stacks auzS and auzB. A counter is used to keep
track of the number of remaining elements in the original
stack. Push operations during the course of transfer also
cause problems. The elements pushed to stack S, for exam-
ple, must be kept in a separate place extraS, to be annexed
with newS at the end of the transfer process to become
the real new stack S. We cannot simply append newS to
ezxtraS for this will ruin the real-time performance at the
very last step. Instead, we use the pair (EziraS, newS) as
the representation of the stack S when the transfer process
is completed. This complicates pop and push operations on
stacks. Pop and push operations on stack S have to ex-
amine Eztra$ first to see if it is empty. If it is not empty,
then the pop or push operation is performed on it, otherwise
the operation is performed on newS. But, in exchange, we
maintain real-time performance. This implies that, in the
normal representation of a deque as an lhs stack and an rhs
stack, each of the two stacks is in fact a pair of lists in our
implementation.

To summarize, we now describe below the high-level im-
plementation of the deque operations. Only the lhs opera-
tions are described; the rhs cases are symmetrical to the lhs
cases.

e pushy, (e, dg): Depending on the representation of
dg, perform one of the following actions,

— dqis a list of (less than 4) elements => “Cons e
dq”. If the resulting list has 4 elements, then split
it in half into an lhs stack and an rhs stack.

— dqis a pair of stacks, but is not currently trans-

ferring elements between the two stacks ==> Push
e into the lhs stack. If the resulting lhs stack is
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three times larger than the rhs stack, then initiate
the transfer process.

— dgis a pair of stacks, and is transferring elements
between them = Push ¢ into the lhs eztra list,
then perform 4 incremental steps of the transfer
process. If the transfer process is now complete,
then pair—-up the ertra list with the new list to
form a new stack, both for the lhs and the rhs.

o popy,, (dg): Depending on the representation of dg,
perform one of the following actions,

— dgis a list of (less than 4) elements =—> Return
the “car” and “cdr” of the list.

~ dgis a pair of stacks, but is not currently trans-
ferring elements between the two stacks = Pop
the lhs stack. If it results in an empty lhs stack,
then the deque is now represented as a list of the
elements in the rhs stack. If the rhs stack is three
times larger than the resulting lhs stack, then ini-
tiate the transfer process.

— dgis a pair of stacks, and is transferring elements
between them = Pop the lhs eztralist if it is not
empty, otherwise pop the old lhs stack. Perform
4 incremental steps of the transfer process. If the
transfer process is now complete, then pair—up the
extra list with the new list to form a new stack,
both for the lhs and the rhs.

¢ new: Return an empty list.

e empty dg: Return true if dgis an empty list, otherwise,
return false.

The actual code, written in the purely functional subset of
SML (of New Jersey), along with some annotations, is in-
cluded in Appendix A.

Before we conclude this section, it remains to be shown
that the invariant (1) is maintained after the transfer pro-
cess. Suppose for the moment that the m deque operations
that carry out the entire transfer process do not interfere
with the rebuilding of the two new stacks. In such a case,
the resulting deque will have one stack of size 2m+1 and the
other stack of size 2m + k — 1 in its representation, where
k may be 1,2, or 3. The sizes of the two stacks will be-
come most unbalanced if the m deque operations that carry
out the transfer process all happen to be pop operations
aimed at the smaller of the above two stacks. This occurs
when k£ = 1 and the stack of size 2m + k — 1 are popped
m times. The resulting smaller stack will have m elements,
and the resulting bigger stack will have size 2m + 1. Since
3-m 2> 2m + 1 for all m > 1, the invariant (1) has been
maintained.

5 Applications

Being able to add real-time deques to a purely functional
language can lead to some interesting results. We show in
this section two applications. The first is some implications
in purely functional list processing. The other is a real-
time simulation of a multihead Turing machine in a purely
functional language.

5.1 Purely Functional List Processing

Here is a quiz: How much time will it take to reverse a list
of n elements in a (sequential) purely functional language?
A conventional method will take O(n) time. But a list can
be implemented, in a purely functional way, as a real-time
deque without losing its functionality or its constant time
performance. Furthermore, we can reverse a deque in con-
stant time because of its symmetric nature. It turns out that
a list of an arbitrary number of elements can be reversed in
constant worst—case time if it is implemented as a real-time
deque and an additional orientation tag is attached to the
deque.

This gives us a new way to concatenate two lists. The
usual method will take O(|X|) time to concatenate a list Y
to the rear of a list X. However, if lists X and Y are imple-
mented as real-time deques with the lhs of the deque as the
front of the list and the rhs as the rear, then their concatena-
tion can be implemented in the following way: If |Y] < | X{,
then pop elements from the lhs of Y and push them to the
ths of X; otherwise, pop elements from the rhs of X and
push them to the lhs of Y. This takes O(min(|X|,|Y]))
worst—case time, which is better than the usual O{|X|) time.

5.2 Real-Time Simulation of a Multihead Turing
Machine in a Purely Functional Language

A multihead Turing machine is a Turing machine with a
single two-way linear tape and multiple read/write heads
upon the tape. In one move the multihead Turing machine,
depending on the symbols scanned by the heads and the
state of the finite control, changes its state and either prints
a symbol on the cell scanned by one head or moves one head
left or right one cell. Let @ be the finite set of states in the
machine, ¥ be the finite set of tape symbols, and K be the
finite set of heads {hi, ko, ..., hx}. The next move function
6 is a mapping from Q@ x £* to @ x K x (ZU{L, R}), where L
and R will move the head left and right one cell respectively.
Notice that the machine can move or write using only one of
its heads at a time. The machine starts with an initial state
and an initial sequence of symbols on the tape. It proceeds
according to the next move function, and halts if it reaches
a final state. The resulting sequence of symbols on the tape
i8 the output of the machine.

We are interested in multihead Turing machines because
they provide a model for limited random access memory. A
k-head Turing machine can be viewed as a linear memory
machine with multiple program counters. These program
counters differ from the program counter in a usual ran-
dom access machine in that they cannot be arbitrarily reset
to point to any memory locations. Only increment, decre-
ment, read, and write instructions are available to manipu-
late these program counters. To compensate the loss of the
arbitrary jump instruction, & program counters are made
available such that the machine can memorize k different
locations in the memory. It would be interesting to see how
well the purely functional model (which assumes non-linear
memory and admits no side-effects) can simulate this lim-
ited model of random access memory (which assumes linear
memory and admits side—effects).

We now describe how to simulate in real-time a multi-
head Turing machine in a purely functional language. The
contents of the tape and the positions of the heads can be
implemented by a sequence of deques with each deque repre-
senting a segment of the tape delimited by its two surround-
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ing heads. Let the entire contents of the tape be described by
a sequence of symbols S = (30, 32,...,3n) with the k heads
located at symbol s;;,1 <1 < k. Without loss of generality,
we assume that 0 < I, < Liyi < nforalll1 <i<k-1.
Recall that S° denotes the deque containing exactly the ele-
ments of sequence 5, with elements s¢ and s, at the two ends
of the deque. The tape, along with the head positions, can
be represented by a sequence of deques (Do, D1,..., Di),
where Do = (80, 81,...81,-1)°, Dy = (81,, 81,41, - - - S50, 1)°
for1 < i< k—1,and Dx = (31,81, 41,-- - 9n)°. Because sev-
eral heads may be positioned over the same cell on the tape,
some of the deques may be empty. Also, head h;, the ith
head in K, need not be positioned over symbol s;;. Rather,
there is a permutation function f over {1, 2,...k} such that
head h; will position at symbol & 10" It is clear that ev-
ery move of a multihead Turing machine (printing a symbol
under a head, moving a head left or right one cell), can be
accomplished in real-time by performing the operations at
the corresponding deques.

Given the next move function § from Q x =¥ to Q@ x K x
(XU {L,R}) and the representation of the tape described
above, we can implement in a purely functional way a next
move function A from Q x Tape to @ x Tape such that each
function application of A costs O(k) time and space. Tape
is the data type that describes exactly the current tape con-
figuration of the machine, including the the contents of the
tape, the positions of the heads, and the permutation func-
tion f. The permutation function f is needed because if
two heads cross each other on the tape, their ordering on
the tape will change and the permutation function f must
be changed accordingly. This results in a real-time simula-
tion in a purely functional language of a multihead Turing
machine, where each move of the machine is accomplished
in O(k) time and space. Note that the complexity of the
simulation, O(k) per move, depends only on k, the num-
ber of heads, not on n, the number of symbols on the tape.
Also note that every configuration of the execution history
of a multihead Turing machine is equally accessible in our
real-time simulation. This means that our real-time sim-
ulation can be multi-threaded, which is very useful if we
want to simulate a nondeterministic multihead Turing ma-
chine where there may be several eligible next moves at any
given machine configuration.

6 Remarks

Throughout our discussion in this paper, we implicitly as-
sume that the purely functional language used to implement
the deques is a strict language rather than non-strict lan-
guage in which the evaluation of function arguments are de-
layed until needed. A strict language is required because the
incremental nature of the algorithm requires that elements
be transferred between stacks well in advance of the use of
those elements. A non-strict language would delay most
of the transfer steps when a deque operation occurs. How-
ever, a subsequent deque operation (such as a popping an
element and performing a strict operation on the element)
would cause many of the delayed transfer steps to execute.
Naturally, this would destroy the real-time nature of the
algorithm.

Are the data structures described in this paper still at-
tractive if implemented in a non-strict language or imple-
mented within a system that does not provide real-time
garbage collection? Even though the resulting program will
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not have real-time properties, it is still important to have
efficient implementations of aggregate data structures, such
as deques, which are suitable for multi-threaded applica-
tions. Using a non-strict functional language, the perfor-
mance of the deques described in section 4 will degrade to
O(1) amortized time, instead of O(1) real-time, per deque
operation in a multi-threaded program. This is better than
the naive implementation of deques described in section 3,
which achieves O(1) amortized complexity only in single~
threaded programs.

7 Related Work and Future Work

A real-time simulation of a multihead Turing machine in a
purely functional language does not come as a big surprise.
Fischer, Meyer, and Rosenberg [13] and Leong and Seiferas
[21] has shown that a multihead Turing machine can be sim-
ulated in real-time by a multitape Turing machine with only
one head per tape. A single tape, single head Turing ma-
chine can be simulated in real-time in a purely functional
language, by two stacks and a finite control. Thus, it is
clear that a multihead Turing machine can be simulated in
real-time in a purely functional language. Nevertheless, the
simulations of {13] and [21] are complicated, and their result-
ing simulations of a multihead Turing machine in a purely
functional language will probably not be as simple as ours.
Furthermore, our objective is to demonstrate that purely
functional languages can be used to implement non—trivial
aggregate data structures, such as deques and multihead
Turing machines, efficiently and straightforwardly, which is
different from the objectives of [13] and [21].

In our purely functional implementation of real-time de-
ques, two techniques are used: a deque is represented as two
balanced stacks, and incremental method is used to bal-
ance the two stacks. Incremental methods have been used
in many contexts to improve algorithms of amortized per-
formance to worst—case performance. Baker’s algorithm for
real-time garbage collection is a good example [3]. Baker
took a copying garbage collection algorithm which had O(1)
amortized cost per storage allocation (this cost includes the
high cost of the stop-and~copy collection) and modified it
to be O(1) worst—case cost.

Both Sarnak [26] and Hoogerwoord [18] use two stacks to
represent a deque. Sarnak’s design of fully persistent real-
time deques is not purely functional because side—effects
are used. His scheme is also more complicated than ours.
Hoogerwoord’s design is purely functional, but not real-
time, and is not suitable for multi-threaded applications.
While not aware of the above two works, we start with the
result of Hood and Melville [17] on purely functional real-
time queues, and extend it to purely functional real-time
deques. The underlying idea, that a deque is represented as
two balanced stacks, is the same.

An open problem is whether deque concatenation can
also be implemented in real-time in a purely functional
way, in addition to the real-time pop and push operations.
Buchsbaum and Tarjan [9] recently show that deques can
be made confluently persistent (i.e., concatenateable) with
constant cost for each concatenation and push operation,
but at the cost of O(log* n) for each pop operation, where n



is the deque size.! All costs are amortized. This improves a
previous result of Driscoll, Sleator, and Tarjan [12]. Using
our purely functional implementation of real-time deques,
their implementation can be made purely functional, with
amortized complexity improved to worst—case complexity for
each operation [8]. It would be interesting to see if a purely
functional implementation of deques exists such that each
concatenation, pop, and push operation costs only constant
worst—case time.
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A SML code with Annotations

The SML signatures for the stack and deque structures are
described in Figure 1. An implementation of the stack struc-
ture is described in Figure 2, where each operation, includ-
ing pack and unpack, costs O(1) time. An implementation
of real-time deques is described in two parts. Figure 3 de-
scribes the local declarations of the deque functor. It in-
cludes the definition of states according to the transfer pro-
cedures described in section 4, and the functions to manipu-
late them. The actual implementations of deque operations
are given in Figure 4.
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signature STACK =
sig
exception Empty

type ’a Stack

val new : ’a Stack

val empty : ’a Stack -> bool

val push : ’a -> ’a Stack -> ’a Stack

val pop : ’a Stack -> ’a * ’a Stack

val pack : ’a list -> ’a list -> ’a Stack

val unpack : ’a Stack -> ’a list * ’a list
end

signature DEQUE =
sig
exception Empty
datatype Side = LHS | RHS

type ’a Deque

val new ¢ 7a Deque

val empty : ’a Deque => bool

val push : Side ~> ’a -> ’a Deque -> ’a Deque
val pop : Side => ’a Deque =-> ’a * ’a Deque

val length : ’a Deque =-> int
ond

Figure 1: The signatures of the stack and deque struc-
tures in SML.

NoTE. The objective is to implement each of their op-
erations in constant time and constant space. Note that
we will implement a stack by a pair of lists, by using the
pack and unpack functions. The reason for this is stated
in section 4.

functor Stack () : STACK =
struct

exception Empty
typé ’a Stack = ’a list * ’a list

val new = ([]1, [1)
fun empty ([1, [1) = true

| empty _ = false
fun push e (x, y) = (e::x, y)
fun pop (x::x8, ya) = (x, (xa, 1ys))
| pop a1, y::ys) = (y, Cy2, 01D

| pop 1, [ = raise Empty

fen packxy = (x,y)

fun unpack pair = pair
end

Figure 2: SML code for stacks.




functor Deque (stack : STACK) : DEQUE =
struct
local

open stack

type ’a Current = ’a list * int * ’a Stack * int

datatype ’a State = NORM of ’a Stack ® int

| RevB of ’a Current = ’a Stack * ’a list » int

| RevS1 of ’a Current * ’a Stack s ’a list

| RevS2 of ’a Current * ’a list * ’a Stack * ’a list » int
| COPY of ’a Current * ’a list s ’a list » int

fun head stack » let val (element, _) = pop stack in element end

fun tail stack = let val (_, stack) = pop stack in stack end

fun put e (extra, added, old, remained) = (e::extra, added+i, old, remained)
fun get ({3, added, old, remained) = (head old, ([], added, tail old, remained-1))
| get (e::es, added, old, remained) = (e, (es, added-1, old, remained))

fun top current = let val (element, _) = get current in element end
fun bot current = let val (_, current) = get current in current end

fun normalize (state as COPY ((extra, added, _, remained), _, nev, moved)) =
if moved = remained
then NORM (pack extra new, added + moved)
else state
| normalize state = state

fun tick state =
case state of
HORM _ => state
| RevB (current, Big, auxB, count) =>
RevB (curremt, tail Big, (head Big)::auxB, count-1)
| RevS1l (current, Small, auxS) =>
if empty Small
then state
else RevSl (current, tail Small, (head Small)::aux$)
| RevS2 (current, auxsS, Big, newS, count) =>
if empty Big
then normalize (COPY (curreat, auxS, newS, count))
else RevS2 (current, auxS, tail Big, (head Big)::newS, count+1)
COPY (current as (_, _, _, remained), aux, new, moved) =>
if moved < remained
then normalize (COPY (curremt, tl aux, (hd aux)::new, moved+1i))
else normalize state

fun ticks (RevB (currentB, Big, auxB, 0), RevSi (currentS, ., aux$)) =

(normalize (COPY (currentB, auxB, [], 0)), RevS2 (current$, auxS, Big, [J, 0))
ticks (RevS1l (curremtS, _, auxS), RevB (currentB, Big, auxB, 0)) =

(RevS2 (currentS, auxS, Big, [J, 0), normalize (COPY (currentB, auxB, [], 0)))
| ticks (lhs, rhs) = (tick 1hs, tick rhs)

fun steps O pair = pair
steps n pair x steps (n - 1) (ticks pair)

Figure 3: SML code for real-time deques, Part 1.
NoTe. Datatype Current is used to hold the “current” stack when elements are being transferred between the two
stacks of a deque. It has four fields: the list of newly pushed elements and its count, and the old stack and its remaining
count. Datatype State has five states whose functions are described in section 4. They are NORM (when no element is
being transferred), RevB (for performing procedure a), RevS1 (for procedure b), RevS2 (for procedure d), and COPY (for
procedure ¢ or e). Functions put and get perform push and pop operations, respectively, on datatype Current. State
transitions are carried out by function tick, which is called by ticks, which is again called by steps.

297




exception Empty

datatype Side = LHS | RES
datatype ’a Deque = LIST of ’a list
| PAIR of ’a State * ’a State

val new = LIST []
fun empty (LIST []) = true
| empty _ = false

fun swap (LIST 1) = LIST (rev 1)
svap (PAIR (1lhs, rhs)) = PAIR (rhs, lhs)

(head a, NORM (tail a, b-1))

(top a, RevB (bot a, b, c, d))
(top a, RevSi (bot a, b, c))

(top a, RevS2 (bot a, b, c, d, e))
(top a, COPY (bot a, b, c, d))

fun pop’ (NORM (a, b))
| pop’ (RevB (a, b, c, d))
| pop’ (RevS1 (a, b, c))
| pop’ (RevS2 (a, b, c, d, e))
| pop’ (COPY (a, b, c, d))

pop LES (LIST 1) = (hd 1, LIST (t1 1))
pop LES (PAIR (NORM (L, 1), rhs as NORM (R, r))) =
let val (h, L) = stack.pop L in
if 3#(1-1) >=r
then (h, PAIR (NORM (L, 1-1), rhe))
else if 1 >= 2
then (h, PAIR (steps 6 (RevS1 (([], 0, L, 2+«1-1), L, [1),
RevB (([], O, R, r-1), R, 00, r-1))))
else (h, LIST (rev ((op €) (unpack R)))) end
pop LHS (PAIR (L, R)) = let val (e, L) = pop’ L in (e, PAIR (steps 4 (L, R))) end

fun pop . (LIST []) = raise Empty
|
|

| pop RHS deque = let val (e, deque) = pop LES (swap deque) in (e, swap deque) end
fun push’ z (NORM (a, b)) = NORK (push z a, b+1)

| push’ z (RevB (a, b, c, 4)) = RevB (put z a, b, ¢, d)

| push’? z (RevS1i (a, b, ¢)) = RevSl (put z a, b, ¢)

| push? z (RevS2 (a, b, c, d, e)) = RevS2 (put z a, b, c, 4, e)

| push? z (COPY (a, b, c, d)) = COPY (put z a, b, c, d)

fun push LES e (LIST 1) =
if length 1 <= 2
then LIST (e::1)
else PAIR (NORM (pack [e, hd 1] 0, 2,
NORM (pack [hd (t1 (t1 1)), hd (1 1] [I, 2))
push LES e (PAIR (NORM (L, 1), rhs as NORM (R, 1))) =
let val L = stack.push e L in
if 3*r >= 1+1
then PAIR (NORM (L, 1+1), rhs)
else PAIR (steps 6 (RevB (({], 0, L, 1-r), L, (], 1-1),
RevS1 (([1, 0, R, 2#r+1), R, [1))) end
| push LHS e (PAIR (L, R)) = PAIR (steps 4 (push’ e L, R))
| push RAS e deque = guap (push LES e (swap deque))

un length’ (NORM (_, 1)) = 1
| length’ (RevB ((_, a, _, x), _, _, .)) =a+rT
| length’ (RevS1 ((_, a, _, 1), _, _)) =a+r
| length’ (RevS2 ((_, a, ., ), ., _, _, )) =a+r
| length’ (COPY ((_, a, _, x), ., ., .)) =a+r

fun length (LIST 1) = List.length 1
| length (PAIR (L, R)) = length’ L + length’ R
end
end

Figure 4: SML code for real-time deques, Part 2.
NoTE. A Deque datatype is either a list of (less than 4) elements, or a pair of states representing the lhs and rhs stacks.
Function swap exchanges the two sides of a deque. As described in section 4, functions pop and push will initiate the
transfer of elements between the two stacks of a deque iff the resulting bigger stack is more than three times the size of
the resulting smaller stack.
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