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Basic methods are given to evaluate or estimate the median for various probability
distributions. These methods are then applied to determine the precise median of sev-
eral nontrivial distributions, including weighted selection, and the sum of heterogeneous
Bernoulli Trials conditioned to lie within any centered interval about the mean. These
bounds are then used to give simple analyses of algorithms such as interpolation search and
some aspects of PRAM emulation.
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1. INTRODUCTION

While tail estimates have received significant attention in the probability, statistics, discrete mathematics, and computer
science literature, the same cannot be said for medians of probability distributions, and for good reason. First, the number
of known results in this area seems to be fairly meager, and even they are not at all well known. Second, there seems to
have been very little development of mathematical machinery to establish median estimates for probability distributions.
Third (and consequently), median estimates have not been commonly used in the analysis of algorithms, apart from
the kinds of analyses frequently used for Quicksort, and the provably good median approximation schemes typified by
efficient selection algorithms.

This paper addresses these issues in the following ways. First, a framework (Theorems 2.1 and 2.4) is presented
for establishing median estimates. It is strong enough to prove, as simple corollaries, the two or three non-trivial
median bounds (not so readily identified) in the literature. Second, several new median results are presented, which
are all, apart from one, derived via this framework. Third, median estimates are shown to simplify the analysis of
some probabilistic algorithms and processes. Applications include both divide-and-conquer calculations and tail bound
estimates for monotone functions of weakly dependent random variables. In particular, a simple analysis is given for the
log, logy n + O(1) probe cost for both successful and unsuccessful Interpolation Search, which is less than two probes
worse than the best bound but much simpler. Median bounds are also used, for example, to attain a tail bound to show that
n random numbers can be sorted in linear time with probability 1 —2~<", for any fixed constant c¢. This result supports the
design of a pipelined version of Ranade’s Common PRAM emulation algorithm on an n x 2™ butterfly network with only
one column of 2™ processors, by showing that each processor can perform a sorting step that was previously distributed
among n switches.

The tenor of the majority of median estimates established in Section 2 is that whereas it may be difficult to prove
that some explicit integral (or discrete sum) exceeds % by some tiny amount, it is often much easier to establish global
shape-based characteristics of a function — such as the number of zeros in some interval, or an inequality of the form
f < g — by taking a mix of derivatives and logarithmic derivatives to show that, say, f and g both begin at zero, but g
grows faster than f. This theme characterizes Theorems 2.1 and 2.4, plus all of their applications to discrete random
variables.

*Supported, in part, by NSF grant CCR-9503793.
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1.1. Notation, conventions, and background

By supposition, all random variables are taken to be real valued. A median of a random variable X is defined to be any
value z where Prob{X > z} > 1, and Prob{X < z} > 1. Many random variables—including all of the applications in
this paper—will have essentially unique medians.

The functions X, Y, and Z will be random variables. Cumulative distribution functions will be represented by the
letters F or G, and will have associated density functions f(z) = F'(z), and g(z) = G'(z). The mean of a random
variable X will be represented as E[X], and the variable y will be used to denote the mean of the random variable of
current interest. The variance of X is defined to be E[X 2] — E[X]?, and will sometimes be denoted by the expression
o2, The characteristic function y{event} is defined to be 1 when the Boolean variable event is true, and 0 otherwise.
If X and Y are random variables, the conditional expectation E[X|Y] is a new random variable that is defined on the
range of Y. In particular, if Y is discrete, then E[X|Y] is also discrete, and for any = where Prob{Y = z} # 0,

E[X|Y](z) = —EP%% with probability Prob{Y = z}. Thus, E[X|Y](z) is just the average value of X as restricted
to the domain where Y = x. Conditional expectations preserve the mean: E[F[X|Y]] = E[X]. However, they reduce
variances: E[E[X|Y]?] < E[X?]. Intuitively, averaging reduces uncertainty.

We also would like to define the random variable Z as X conditioned on the event Y = k. More formally, Z is
distributed according to the conditional probability: Prob{Z = s} = Prob{X = s|Y = k} = PLF%(%:}:’“}.
Sometimes Z will be defined with the wording X given Y, and sometimes it will be formulated as Z = [X|Y = k]. Here
the intention is that & is fixed and X is confined to a portion of its domain. The the underlying measure is rescaled to be
1 on the subdomain of X where Y = k. According to the conventions of probability, this conditioning should be stated
in terms of the underlying probability measure for the r.v. pair (X,Y") as opposed to the random variables themselves.
Thus, our definition in terms of X and Y and the notation [X|Y" = k] are conveniences that lie outside of the formal
standards.

These definitions all have natural extensions to more general random variables. Indeed, modern probability supports
the mathematical development of distributions without having to distinguish between discrete and continuous random
variables. While all of the median bounds in this paper concern discrete random variables, almost all of the proofs will
be for continuous distributions. When a result also applies to discrete formulations, we will say so without elaboration,
since a point mass (or delta function) can be defined as a limit of continuous distributions. In such a circumstance, the
only question to resolve would be how to interpret an evaluation at the end of an interval where a point mass is located.
For this paper, the issue will always be uneventful.

If Z is a nonnegative integer valued random variable, its generating function is often defined as G z(z) = E[z?] =
> zIProb{Z = j}. For more general random variables, the usual variant is Gz(\) = E[e*?] = [e**Prob{Z €
[z, z+dx)}. Thisnotation is intended to be meaningful regardless of whether the underlying density for Z comprises point
masses, a density function, etc. One of the advantages of these transformations is that if X and Y are independent, then
Gx+vy = Gx - Gy (where all G’s use the same formulation). Hoeffding-Chernoff tail estimates are based on generating
functions. The basic procedure is as follows. For A > 0: Prob{X > a} = Prob{\X > \a} = Prob{e=%e}X) > 1} =
E[x{e e X) > 1}] < E[e™*eMX)] = e ME[MX)] because x{e e X) > 1} < e *eeAX), This procedure
frequently yields a specific algebraic expression e~ f(\), where by construction Prob{X > a} < e~**f()) for any
A > 0. The task is then to find a good estimate for miny~q e~2*f()) as a function of a, which can often be done. If
X = X1+ X5+ ...+ X, is the sum of n independent random variables X, then the independence can be used to
represent f(\) as a product of n individual generating functions G x, (). If the random variables have some kind of
dependencies, then this procedure does not apply, and an alternative analysis must be sought.

Some of the basic random variables that will be used to build more complex distributions are as follows.

A Boolean variable X with mean p satisfies:

¥ _ 1 with probability p;
~ 1 0 with probability 1 — p.

A random variable X that is exponentially distributed with (rate) parameter X satisfies:
Prob{X <t} =1-¢ t>0.

The density function is f(¢) = Ae™**, and the mean is [ the *dt = 1.
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A Poisson random variable P with (rate) parameter )\ satisfies:
. - N
P = j with probability e*’\T, forj =0,1,2,....
7

A straightforward summation gives

_ Y _ Y
E[P]=e Azmzm Azﬁzx

j>0 j=0

The hypergeometric distribution corresponds to the selection (without replacement) of n balls from an urn containing
r red balls and g green balls, for n < r + g. If R is the number of red balls chosen, then

r g
() G 2)
r+g :
(")
Informally, a stochastic process is a random variable that evolves over time. The processes of interest remain consistent

with their past but do not know their future changes. One of the simplest such processes is a 0-1 switch e(¢) with an
exponential waiting time. A very informal definition might be

Prob{R =k} =

[0, 0<t<P;
(t)_{L P<t

where P is an exponentially distributed random variable. P is the waiting time for e to become 1. The switch e(t) is
consistent with its past in the sense that if e(s) = 1 for some s < ¢, then e(¢) = 1. We will soon review just how poorly
it can predict future changes in the sense that if e(¢) = 0, the future value e(¢ + s) will be random, for s > 0.
The difficulty with our formulation in terms of P, of course, is that the value of P, is unknown as long as e(t) = 0.
The probability distribution for e(t) satisfies

et) = 0 with probability e =**;
~ | 1 with probability 1 — e,

If we have & independent identically distributed copies of such a random variable, then the probability that all & are zero
at time ¢ is e~ **. Thus, the waiting time until the first switching event occurs is exponentially distributed with rate
parameter kA. Evidently, this additivity of rates for the arrival of the first switching event is additive; the individual rate
parameters need not be the same.

The random variable e(t) exhibits a memorylessness that is formalized by observing that for s,¢ > 0, Prob{e(t + s) =
Ole(t) = 0} = Prob{é(s) = 0}, where ¢ is a statistically identical switching function that is independent of e. The
calculations are:

Prob{e(t) =0 A e(t + s) = 0}
Prob{e(t) = 0}

_ Prob{e(t+s) =0} e At

T TProbfe(t) =0} e ¢ -

Prob{e(t + s) = Ole(t) = 0} =

This memorylessness can be combined with the additivity of rate parameters to conclude that if we have & such switches
that are 0 at time ¢, the probability that the first switching of a variable to 1 occurs at time ¢ + s is exponentially distributed
(in s) with rate parameter k.

This random variable is also convenient for turning Bernoulli Trials into a random variable that evolves over continuous
time. If e(¢) has an exponentially distributed waiting time with parameter A, then Prob{e(t) = 0} = e ¢, s0 e(tg) is
statistically equivalent to a Bernoulli Trial with probability of success 1 — e~*o,

A Poisson process P(t) with rate parameter A is a stochastic process where
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Prob{P(t) = j} = eM(/\th')J, forj=0,1,2,---.
We informally summarize the other key properties by noting that P(t) — P(s), for t > s is a stochastic process that
is independent of P(s) (including the history P(h), for h < s), and is statistically identical to an independent copy of
P(t — s). Clearly, E[P(t)] = At.

The waiting time during which a Poisson process remains at a fixed value k is exponentially distributed with parameter
A. The usual term for A is interarrival rate, since these processes are often used to model arrivals of discrete events
(such as packets, parts failures, gamma rays, etc) in many physical systems. In plain English, P(t), for ¢ > 0, defines a
random function that is piecewise constant and has jumps from 0 to 1 to 2 to 3 to .... Each piecewise constant portion
has a random length that is exponentially distributed with mean (waiting time) % and is independent of the other lengths.
Poisson processes give a natural way to define a Poisson random variable that evolves over time.

Lastly, we use a convention to simplify the discussion of inequalities that we seek to prove. Target inequalities that
are not yet established might be expressed with the relation <? to facilitate reformulation without confusion. As long as
every step in a derivation is reversible, we can work in the more intuitive direction to reduce such a target inequality to a
known result, and implicitly recognize that a formal proof would reverse all of the steps.

2. COMPUTING MEDIANS

Some median bounds are straightforward. Perhaps the most elementary is the fact that for any random variable with
mean x and standard deviation o, the median must lie in the interval [ — o, p + o].

There is nothing new about this observation.

The bound follows from considering the extreme case, which must comprise a two-point distribution. To be specific,
let X be a random variable with a bounded mean . and median m where, say, m > u. We seek to change X to have a

smaller variance while keeping the mean at p and without diminishing the median. The way to do this is with conditional
. _ . _ Eixx{x>my -
expectations. Let Z = E[X|x(X > m)]|. By definition, Z(1) = Prob(xm} with probability Prob{X > m}, and
" Elx-x{xX<m . - . . P
similarly, Z(0) = —P[r_o% with probability Prob{X < m}. The median of Z is Z(1), which is the average of all
X -values that are at least m.

Observe that Z has the same mean as X, a variance that is no larger, and a median that is no smaller. Thus this
projection of X shows that some two-point discrete random variable (or limit of two-point random variables) has the
largest median for a given mean and variance. So let Z be a random variable where Z = M + p with probability p > %
and let 7 = —IMT’; + p with probability 1 — p. The median is M + p, the mean is p, the variance is o2 = ]1”_25,
which is minimized by decreasing p to % whence o becomes M. It follows that even for this smallest possible variance,
M+pé€p—op+oal

Even this bound can be useful. For example, if 1+ and o are known, a randomized binary search procedure might, at
each iteration, select one of the two endpoints i + o probabilistically.

In this section, we will determine the precise value of the median for a variety of discrete probability distributions.*
The estimation process begins fairly innocuously; Lemma 2.1 simply states that the cumulative distribution function of a
nonnegative random variable X has an average value of at least 3, over the interval [0, 2E[X]].

LEMMA 2.1. Let X be a nonnegative random variable with distribution function 7' and mean . = E[X].

2u 00

Then F(t)dt = p+ / (t —2u)f(t)dt > pu.
0 A

LSome of our theorems will require that the random variable of interest—such as a sum of heterogeneous Bernoulli Trials—have a mean g that is an
integer. In these cases, including instances where the original random variable is subsequently studied subject to some conditioning, the median will
also be p. If the mean were not an integer, the theory would still be applicable even though we will not say so explicitly, and the median will turn out
to be one of the two consecutive integers |, [].
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Proof. Suppose, for simplicity, that the density f(x) is a function, so that there are no discrete point masses. We can
also assume that . < oo. Integrating by parts gives:

| Far = = 2r [~ [ -2
0 0

0- / (= 20) (t)dt + / (-2

= —(E[X]-2p) +/ (t —2p) f(t)dt

2p

= p+ /Qoo(t —2up) f(t)dt > p.

|
This simple fact suffices to establish the following.

THEOREM 2.1. Let X be a nonnegative random variable, and suppose, for simplicity, that its density is defined by a
function f, so that there are no discrete point masses, and suppose that f is also continuous. In addition, suppose that

1) E[X] = p < o0,
2) f(x) — f(2p — ) has at most one zero for x restricted to the open interval (0, p).
)

3) £(0) < f(2u).

Then Prob{X < pu} > %

Requirement 2) can be replaced by the more applicable albeit slightly less general formulation

2/) The density f is continuously differentiable and ff/((j)) + ’;/((225:;”)) has at most two zeros in (0, 2u).

Proof. Let ﬁ(z) = w By supposition, F' is moustache-shaped on [0,2u]:
1

0

0 M 2u

It is symmetric about x by construction. Since f(0) < f(2u), it is decreasing at the origin from the value ﬁ(o) =
@ < % Since j—mﬁ has at most one zero inside (0, i), this zero must be a minimum for F, which must subsequently
increase to exceed, at = = p, the overall average, which by Lemma 2.1 is at least %

As for the alternative criterion, suppose that f were continuously differentiable. The original requirement for F is
that f(z) = f(2u — ) (i.e., F'(z) = 0) should hold for at most three points in [0,24]. If log f(z) were to equal
log f(21 — x) at four or more locations in the interval, then there would be at least three internal points where the
derivative of log f(x) — log f (21 — x) would be zero, which is precisely what is prohibited by the alternative 27). |

This formulation also extends to the (actually occurring) trivial cases where f(0) > f(2u), and f(x) — f(2u — ) has
no zero (or F'(z) + F(2u — x) has no local maximum) for x restricted to the open interval (0, u1).

2.1. Applicationsof Theorem 2.1

2.1.1. Bernoulli Trials.
We can now give a generic proof of the following result by Jogdeo and Samuels [6]:
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THEOREM 2.2 (Jogdeo and Samuels [6]). Let X,, = 21 +z2+- - - +x,, be the sum of n independent heterogeneous
Bernoulli Trials. Suppose that E[X,,] is an integer.

Then Prob{X,, > E[X,]} < % < Prob{X,, > E[X,]}.

Proof. LetProb{z; =1} =1 — e %, and let E[X,,] = np. It suffices to show that 3 < Prob{X,, > np}, since the
complement of this bound, when the notions of success and failure are reversed, shows that Prob{ X,, > np} < %

Suppose, for the moment, that the \; are all equal to a fixed value \. Let X,,(¢) be the sum of n independent 0-1
random switching functions with exponentially distributed waiting times and rate parameter A. Define the waiting time
T = ming{s : X,,(s) > np}. Then T will have the cumulative distribution function:

n

F(t)=Prob{T <t} = ) _ (’;) (1 — e M) Atn—i)

j=np

We want to show that Prob{T < 1} > % since X, (1) is distributed according to the Bernoulli Trails, and the event
T < 1is equivalent to the event X,,(1) > np.

Straightforward differentiation of F' or an understanding of exponentially distributed waiting times shows that the
density function for 7" is

n

ft) = < >(1 — e_At)"p_le_)‘t("H_"p))\(n +1—np).

np—1

The stopping time 7" and its density function f are suitable for Theorem 2.1 where we set X to be T’

As is standard, we use the memorylessness of switches with exponentially distributed waiting times and the additivity of
the rate parameters to conclude that X, (¢) will switch from j (to j 4 1) according to a waiting time that is exponentially
distributed with rate parameter (n — j)A. Let T,,_; be the waiting time during which X,,(¢) = j. Then T' =
T4+ Tho1+4 ...+ Thoppt1, ad E[T] = E[T,,)] + E[T),—1] + - - - + E[Th—np+1]. We conclude that

1 1 1 1
ET] = —(Z 4+~ +...p_ —
7] /\ n —1 +n+1—np)
1 1 1
< X/ —d:c— lnn—ln(n—np)) X(lnl—p)
<1, becausepzl—e A,andhencelnﬁ:x

Alternatively, E[T'] can also be evaluated directly via integration by parts.
Let o = E[T]. We use Theorem 2.1 to show that Prob{T" < x} > 1, which is sufficient to establish the application,

since p < 1. We need only verify that f(¢) satisfies conditions 1), 2') and 3). The first and last are trivial. As for 2'), let
¢ = e~ ™, and note that

fiy  feu—1t

(np — 1)e™**
ORI

(np —1)¢e
1 —e A

[~ 2o —(n+1—np)].

= )| —(n+1—mnp)|+ A

Multiply the numerator and denominator of the second fraction by e~** so that each term is a rational expression in

—At and substitute z = e~** everywhere. The resulting expression has the form ore T %ﬂ. + g. Expressing this
over a common denominator yields a numerator that is quadratic in 2, and which therefore has at most two zeros. Hence
Prob{X, (1) > np} > 1 when all Trials are identically distributed.
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The general case follows immediately from a very simple but clever convexity analysis that is due to Hoeffding. Let n
and E[X,,] = p be fixed. Let S be the the set of every random variable that is the sum of »n Bernoulli Trials with mean
, and let I be any fixed subset of the integers. Hoeffding showed that Prob{X € I}, for X € S, is minimized by some
extremal distribution (and is likewise minimized by another such extremal distribution) where some of the n Bernoulli
Trials are stuck at 1 (with individual probability of success equal to 1), some are stuck at zero (with probability of success
equal to 0), and all other probabilities of success are set to some identical constant p [4].2 Thus, the special cases where
all probabilities are identical is also the worst case. The constant Trials just have the effect of adjusting n and p. |

For completeness, we note that Jogdeo and Samuels gave a subtle but very elegant argument — specific to Bernoulli
Trials — to attain a slightly but remarkably stronger result. Whereas the mean is the median says that |Prob{X <
np} — Prob{X > np}| < Prob{X = np}, Jogdeo and Samuels showed that the difference is in fact bounded by
%Prob{X = np}, and is positive (without the absolute value) when p < 1/2. They also characterized the behavior of
the difference as n — oo with np fixed [6].

Before presenting some additional probability applications, we give an easy algorithmic application.

2.1.2. Interpolation Search.

Interpolation Search was introduced by Peterson [13], and its performance has been analyzed extensively [19], [3], [11].
Moreover, the underlying scheme has been extended to support search for data generated from unknown probability
distributions [18] and more general data access systems [9]. The basic probing strategy, however, has yet to be analyzed
by elementary means. Indeed, it has been open whether a simple analysis could establish a performance bound of
log, logs m + O(1) [1], [2]. Perl and Reingold, in their presentation of a less efficient (but easily analyzed) search
strategy, speculate that the difficulty of the analysis is responsible for the absence of this remarkable search procedure
from algorithms texts [12].

The basic problem is essentially as follows. Let D comprise n real values randomly (and independently) selected
according to the uniform distribution on the interval [Iy, ug]. Suppose D is stored in sorted order in the array (table)
T'[1..n]. We seek to determine if the search key (number) z isin T'.

Preliminarily suppose, for expositional simplicity, that = actually resides in the table. Let = be in table location s.,
so that T'[s.] = =. We initially use an Interpolation Search procedure that is optimized for successful search, although
alternative strategies are equally amenable to analysis. The search will proceed in rounds indexed by the subscript 7. For
the i-th round, let the search interval comprise the index locations {I; + 1,1; + 2, ..., u; — 1}, so that the keys in locations
l; and u; are known, no interior values have been probed and s, is within this index range. Let n; = u; — I; — 1, and
let p; be the expected fraction of the n; — 1 keys (excluding z) that are less than x, so that p;, = %_%} Thus, the
number of keys in T'[l; + 1..u; — 1] that are less than z is statistically equivalent to the sum of n; — 1 Bernoulli Trials
with probability of success p;. Let s;11 be the interpolated search location computed at round 4, and probed at the next
round, so that s;+1 = I; + p;(n; — 1) + 1. (For unsuccessful search, comparable considerations suggest the formulation
Sit1 =l +pin; + %.) Assume, for the moment, that (n; — 1)p; is an integer, so that s; 1 needs no rounding. At round
1+ 1, location s;, 1 is probed, and the value is used to establish the updated index values [; 1, u;41 for the round ¢ + 1.

We present two analyses that are reasonably elementary, provided we support the premise that a better knowledge
of Bernoulli Trials — including mean-median results — is worthy of dissemination. The more precise of the two, which
comes second, uses some probability that is only infrequently seen in the computer science literature, but the technical
difficulty is otherwise less.

Analysis 1. An easy O(log log n) analysis results from 2 facts:

2Hoeffding’s wonderful proof technique is emulated in the more complicated setting of Lemma 4.1 of Section A.4. The interested reader might
prefer to preview the approach as applied to the simpler context of unconditioned Bernoulli Trials [4]. Hoeffding’s proof is easier to read because he
does not state his lemma in full generality. Incidentally, this simple proof ignited more than a decade of related work in probability and statistics. See,
for example, [8], which comprises some 500 pages of subsequent developments.
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1) A standard Hoeffding tail bound shows that s; 1 will be within, say, v/n; logn; locations of s, with a probability
that exceeds 1 — % > % In particular, the Hoeffding bound [5] states: suppose X, is the sum of m independent Bernoulli

log, m

Trials with mean . = E[X,,,]. Then Prob{|X,, — p| > am} < 2e=20™_ We use this inequality with a =

2) If z has not yet been found by the conclusion of round 4, it will have more than a 50% chance of being in the smaller
subinterval comprising min[s;+1 — l;, u; — s;+1] items, since the median is the mean in this case of implicit Bernoulli
Trials.

Now, two consecutive probes s,; and s2;41 Will both satisfy closeness criterion 1), and s2;41 will also satisfy 2) with
a joint probability exceeding % In this case, the resulting ny; 11 will satisfy

Noit1 < |S2i41 — S2i| < [82i — Su| + [S2i41 — 84| < 2y/n2i—1 logng;_1,

and we call the probe pair very close. It is easy to show that the search interval will comprise at most 8 log n indices after
log log n such pairs of very close probes:
A simple way to formalize this fact is by weakening closeness criterion 1) to be within, say, v/n; logn locations, when
n; > 8logn. It follows that log log n such very close pairs will reduce the size of the index range from (the overestimate)
4n logn down to 8logn or less, because a close pair is certain to reduce an overcount of the form 4(22h') log n down to
the overcount 4(22" ") log n, and A < log, log, n.

Since each subsequent probe has at least a 50% chance of producing a new search range that is no bigger than half the
size of the previous range, termination occurs within log, log, n + 4 additional probes that satisfy criterion 2).

Since very close probe pairs will occur, and later probes will satisfy 2) with respective probabilities exceeding % and
1, the expected probe count must be O(log log n):
This remark can be formalized by viewing disjoint pairs of consecutive probes (s2;, s2;+1) as individual Bernoulli Trials
with probability of success % when n; > 8logn, and subsequent individual probes as Trials with probability of success
%. As is readily calculated by recurrences as well as several other methods, the expected number of Bernoulli Trials
needed to get r successes is just g, where p is the probability of success.

Analysis 2. More interesting is a log, log, n + O(1) bound for the probe count. The proof has two parts. The first
half originates in an elegant, short (but sophisticated) analysis by Perl, Itai, and Avni [11]. These authors presented a
three-part analysis of Interpolation Search that was technically incomplete. The first part uses notions no more advanced
than Jensen’s Inequality in the restricted form E[X]? < E[X 2], conditional expectations for discrete random processes,
plus a few standard facts about Bernoulli Trials. The second and third parts use the Optional Sampling Theorem for
supermartingales, plus some mild technicalities to show that E[P] = log,logs n + O(1), where P is the number of
rounds necessary to reach an index that is exactly two locations away from the actual search key z. The technicalities
use interpolation to formalize P as real valued, since there may be no probe that lands exactly two locations away from
the search key.

The authors note that sequential search can complete the process in the desired performance bound, but do not analyze
the expected number of additional probes that would be used by pure Interpolation Search. Since, as Section 2.1.4 shows,
the expected size of the remaining search interval is about O( %), some additional analysis would seem to be necessary
to bound the performance of the pure algorithm.

We replace the second and third parts, at a cost of about one probe, by a triviality, thanks to the fact that the mean is the
median for Bernoulli Trials. With the parameters as defined, Perl, Itai and Avni showed, in the first part of their proof,
that

St, Stfl] </ EHSt - St,1”.

Section A.1 of the Appendix presents their derivation of this inequality with enhancements to include the effects of
rounding, and the differences between successful and unsuccessful search; an alternative derivation based upon direct
calculation is given in Section A.1.3.

Inany case, the expected distance between consecutive probes turns out to be less than 2 after i, = log, log, n+1 probes.
This fact does not guarantee that search range size n;, is small on average, but does prove that min{n;,p;,, i, (1 — pi,) }

Ellst+1 — s
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has a small expectation, since, |s¢11 — s¢| is, if termination has not yet occurred, either 72, p; + 1 or 72, (1 — p;) + 1, where
f; = n,; — 1. We now show that the bound E[|s;, — s;,—1|] < 2 is indeed sufficient to prove that the expected number of
probes is no more than log, log, 1 + 3.

It is easy to show that |s; 1 — s;| is nonincreasing in ¢, and since Interpolation Search, in the case of successful
search, has less than a 50% chance of selecting the larger subinterval at each step, the desired bound follows trivially. To
formalize these observations, let p; be the largest number of consecutive probes s; € {s;11, ...}, beginning with s, 1,
where the index sequence s; 1, s;, Sit1,- -, Si4p(i) IS strictly monotone (increasing or decreasing). Once z has been
located, we may view all subsequent probes as stuck at s,. Thus, p; = 0 if 2 has already been found within the first i
probes, or if s; 1 lies between s;_; and s;. Inany case, our definition of p(i) will ensure that s; ;i) —1, Si4p(i)s Sitp(i)+1
is not strictly monotone.

Let P be the random variable that equals number of probes used in the search. We claim that in the case of successful
search,

P<i—1+p;+|si—si-1], 1

for any ¢ > 1. The idea behind the definition of p; is as follows. The probe index s; splits the search interval
[li—1+1,us—1 —1] into the two pieces [I;—1+1, sy —1]and [s; + 1, u:—1 — 1]. One of these pieces has the probabilistically
small size |s; — s;—1 — 1|, and the other might well be much larger. If the value T'[s;] determines that x lies in the
(probabilistically) larger piece for i < ¢ < i + p;, then s; will belong to a monotone sequence of probes that march
monotonically into this “larger” interval. However, s, ,, +1 Will reverse this direction and lie between s;,, 1 and s;4, .

Thus, the bound for P counts the first « — 1 probes as definite. If there is an i-th probe, then |s; — s;—1| # 0, and the
cost of this prove is counted in the probabilistic expression |s; — s;—1|. The subsequent p; probes are viewed as a useless
increase of P. Probes sy, for k > i + p;, will be to different index locations that lie between s;4,,—1 and s;1,,. This
count is bounded by |s;4p, — Sitp,—1| —1 < |s; — s;—1]| — 1, which corresponds to a worst-case exhaustive search.?

The claim E[P] < [log, log, n] + 3 follows by setting ¢ = [log, log, n] + 1, applying the expectation to Display (1)
and noting that E[p;] < 1, for the following reason. Our median bound for Bernoulli Trials says that the key found at
s¢ will exceed x with a probability that is below % and likewise T'[s;] will be less than x with a probability that is less
than % Thus, each probe s;1, s;+2, - .., has less than a 50% chance of continuing a streak of wrongly directed probes
as counted by p;.

Currently, this argument has a minor technical flaw: the analysis assumes that the interpolated location is always an
integer. Section 2.1.3 gives a very simple extension of our median bound, which enables the reasoning about p(:) to
apply exactly as presented above. Section A.1 extends the analysis of Perl, Itai, and Avni to include rounding.

For completeness, we note that the tight upper and lower bound of log, log, n + O(1) for the expected number of
probes in both successful and unsuccessful Interpolation Search originates with Yao and Yao [19]. Gonnet, Rogers and
George also analyze Interpolation Search [3]. Their study is by no means elementary, and uses extensive asymptotics.
Their bound of log, log, 7* + 1.3581 + O(log?l#) for successful search is intended to be a very strong asymptotic
formulation, and the derivation as presented does not prove that a bound of log, log, n + 1.3581, or so, must hold
unconditionally (i.e., for all n). For unsuccessful search, Section A.1.2 gives a fairly elementary median-based approach
to establish an unconditional upper bound of [log, log, n] + 4 for the expected number of probes; Gonnet et al. report a
bound of log, log, %* + 3.6181 in this case.

2.1.3. Interpolated medians.

While the issue of rounding computed indices for Interpolation Search cannot possibly change any of the results by more
than one probe, or so, the algorithmic implications of rounding are nevertheless worthy of consideration.

One possibility might be to round s; to the median, but we would not wish to compute, at each iteration, which value
is the true median. The work of Jogdeo and Samuels (both implicitly and explicitly) establishes classification results to

3We chose to avoid writing the inequality (1) as P < i 4+ p; + |s; — s;_1| — 1 because the random variable |s; — s;_1| — 1 will be negative if =
is found in the first ¢ — 1 probes. Of course, the undercount in this incorrect interpretation is corrected by the overcount in the unconditional count of 4
initial probes, but the truth of this observation is, hopefully more evident because of the formulation we used.
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determine some cases where the exact median can be distinguished from the candidates |np| and [np], but a complete
formulation would seem to be unattainable as long as estimation procedures are employed. An algorithmic perspective
allows us to simplify the objective so substantially that a complete answer becomes easy.

DEeFINITION 2.1. Let p-rnd(z) be the probabilistic rounding

[ |=] with probability 1 — {z},
p-rnd(z) = { '] with probability {x},

where {z} is the fractional part © — |x].

A very convenient way to round an interpolated probe location s, is by replacing the value with p-rnd(s;,1). This
assignment preserves the mean, and it is straightforward to verify that
Eflp-md(s;) — sit1]] = E[[p-rnd(s;) — p-rnd(si11)]].
As Corollary 2.1 shows, this rounding scheme is sufficient to guarantee that the probing will be in a probabilistically
balanced way. Consequently, an analysis of Interpolation Search with probabilistic rounding turns out to require only a
little adaptation of the preceding performance argument, which was somewhat inexact.

COROLLARY 2.1. Let X,, =1 + 22+ - -+ z, be the sum of n independent Bernoulli Trials with mean E[X,,] = p.
Let i = p-rnd(p).

Then Prob{X, < i} < % and Prob{X,, > i} < %

Proof. Lete = {u}. Lety bea Bernoulli Trial that is independent of X,, and has probability of success 1 — ¢, so that
X, + y has an expected outcome of | x| + 1. Then

Prob{X, > i} = (1 —¢€)Prob{X,, > ||} + eProb{X,, > |u| + 1}

= Prob{X,, +y > ] +1}
1
> 5

The complement event satisfies Prob{X,, < i} < i, and the analogous formulation for Prob{X,, > i} follows by

2 L
symmetry. |

2.1.4. The expected size of the Interpolation Search range.

While Interpolation Search converges rapidly toward the search key, it is easy to see that the expected size of the search
interval behaves quite poorly. After all, each probe has a remarkably even chance of discovering that the true key location
s, lies to the left or to the right of the current point. Thus, there is a @(2%) chance that each of the first & probes will all
be to the same side of s,, so that E[n,] > ©(min(gk, s1, n — s1)), which is ©(g;2;) for most keys. We avoid a more
formal analysis, and choose to rest on the insight provided by this example of elementary median tracking. Evidentially,
the left-right distribution of probes does not exhibit asymptotic smoothness because of the overall number of probes is
tiny when compared to n.

For completeness, we note that the above comments about the expected size of the search interval do not apply to
search keys that should be very near locations 1 or n. For these keys, there is a high probability of termination within
a small number of rounds because the number of index locations in the smaller interval of size min(s.,n — s.) will
probably be insufficient to sustain a large number of unsuccessful probes.

2.1.5. The Poisson distribution.
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Since the Poisson distribution can be attained as a limit of sums of Bernoulli Trials, it follows that Theorem 2.1 also
applies to this case. We omit the details.

For completeness, we note that Ramanujan conjectured (in different wording) the following very precise median bound,
and used messy asymptotics to attain a partial proof [14].

THEOREM 2.3 (Ramanujan [14]). Let P, for n > 0, be a Poisson distributed random variable so that Prob{ P,, =
it = e*’“%, and E[P,,] = n, and suppose that n is an integer. Let £ = Prob{P,, < n} + a,,Prob{P, = n}.

1 1
Then 3 <an<§.

His original formulation was as an analysis of how well the first n Taylor Series for ¢™ approximate % The bound
was subsequently viewed in terms of probability, and later served to motivate the exactly analogous generalization to
Bernoulli Trials by Jogdeo and Samuels.

2.2. Additional median estimators

The characterization of Theorem 2.1 has natural extensions. While the following formulation may seem somewhat
abstract, it has, as the subsequent examples show, natural applications. Loosely stated, the intuition is this. Suppose that
Rhoda and George engage in a stochastic race. To make the game fair, there are handicaps. Rhoda wins if she achieves her
target score before George, and likewise George wins if he meets his objective first. In the discrete interpretation, which
has a relaxed notion of time, both sides win if they meet their objectives by the time the game is over. We characterize
some realistic the games where both George and Rhoda win at least half the time.

As an example, let an urn have r red balls and ¢ green balls. Suppose the green balls weigh one ounce, and the red
balls weigh gram. We draw 100 balls without replacement. Each ball is selected with a probability that is in proportion
to its weight among the balls that remain in the urn. George gets the green balls and Rhoda the red. How can we specify
targets for George and Rhoda that sum to 100, and give each a chance of winning that exceeds 50%? The question can
be answered fairly well because of the continuous version of this ball game. On the other hand, if each ball is selected
based on the outcome of a heterogeneous Bernoulli Trial, and the conditioning is based on a fixed number of balls being
selected, different methods seem to be needed.

THEOREM 2.4. Let X and Y be independent nonnegative random variables with respective probability density
functions f and g. Suppose that

al) E[X] = p < .
a2) g(t) is maximized at p > p.
a3) g satisfies the (simplified) right skew condition g(t) < g(2p —t), for t € [0, p], and g(t) is nondecreasing on [0, p].

Furthermore, suppose that f is continuous and

bl) f(z) — f(2u — ), has at most one zero for ¢ in the open interval (0, u).
b2) f(0) < f(2u).

1

Then /000 F(z)g(z)dz > 3

Requirement a3) can be replaced by the more applicable albeit slightly less general formulation

/ P . g’ (t g’ (2p—t)
a3') g is differentiable and ‘]g(—(t)) > — ‘;((254) >0, fort € (0, p).

Another alternative to a2) and a3) is

a2”) [2(1 — G(t) — G(2p — t))dt > 0.
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a3") g(t) + g(2u — t) is increasing for ¢ € (0, ).
a4//) Fort > 2u,g(t) < %

Requirement b1) can be replaced by the more applicable albeit slightly less general

bl') The density f” is continuously differentiable and ff,((;”)) + fgl‘: ;”)) has at most two zeros in (0, 2u).

Remarks. The conditions a2”), a3") and a4”) are intended to capture some cases where g might have a maximum
slightly to the left of ;. There are many simple properties that are sufficient to establish condition a2"); the integrand,

for example, might be nonnegative. Condition ad” is quite mild, has many alternative formulations, and is unlikely to be
an impediment in most applications.

Proof (Proof of Theorem 2.4 (Discussion)). The basic strategy for a1-a3 and b1, 2 is similar to that of Theorem 2.1.
The idea is to create a unimodal symmetrization of g on [0, Qu] via leftward shiftings of area, which is lossy in terms of
the integral. Then F' can be symmetrized into a moustache F asin Theorem 2.1. Now £ can be flattened to its average
on [0, 2u], which is lossy for the integral as symmetrized. The result is at least foo g(m)d . The exact details plus
extensions to the other cases can be found in Section A.2. |

2.2.1. Conditional Poisson distributions.

The following is an illustrative application of Theorem 2.4, although the bound can be established by alternative means
as explained below.

CoOROLLARY 2.2. Let P, and P; be independent Poisson distributions with integer means E[P,] = r, E[P,] = s. Let
@, be the conditional random variable P, given that P. + Ps = r + s.

Then Prob{Q, < r} < % < Prob{Q., <r}.

Proof. By symmetry, we need only show that, say, Prob{Q@, > r} > % Let P.(t) be a Poisson process with

parameter r, so that Prob{ P,.(t) = j} = e~ (”)] ,and E[P,.(1)] = r. Let Ps(¢) be an independent Poisson process with
parameter s. Let 7. be the stopping time deflned by P.(T) becoming r:
T, = min{t : P.(t) =},
and let
TF = ming{t : Ps(t) = s+ 1}.

The intuition behind these definitions is based on a stochastic game. If we play the continuous version of the game via
Poisson processes, then the r side wins iff it has already won by the time P;(¢) first reaches the crushing value of s + 1.

Since this special (crushing) win time is T';", the statement that the r side wins can be formulated as:

Prob{Q, > r} = Prob{T, < T.'}.

Define the cumulative distribution function F..(t) = Prob{T < t}, which is the probability that the = side has already
achieved its goal by time ¢. Let g+ () be the density function 4 £:Prob{T;" < ¢}, which gives the instantaneous probability
that the s side achieves the crushing value of s + 1 at time ¢ exactly

Then the probability that the r side wins is

Prob{Q, > r} — / T F (g ()t
0

where F,.(t) = 327, e—”%, and g (t) = £ 522 ) e—st% — e—st—((ssf)l)l.
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To apply Theorem 2.4, let X be the stopping time 7}, and Y the stopping time T%;".

We calculate that
o0 o0 t)r
E[T, :/ tdF,(t :/ et "y

The maximum of g.f (¢) can be found by setting its derivative to zero, which yields the equation —s + £ = 0, or ¢t = 1.

So al and a2 are satisfied. We now check a3 % > —5;/((22_’;)) > 0, fort € (0,1). The first part of the candidate
inequality reads: —s+ 2 >7s— 5%, 0or + + 7 = t(z%t) > 2, which is true for ¢ € (0, 1), since ¢(2 — ¢) is maximized

att = 1, where equality holds. Similarly, it is clear that s — 5% > 0 for¢ € (0,1).
The b conditions are straightforward to verify. Theorem 2.4 now guarantees that the median results are as claimed. |

For completeness, we note that the memorylessness of Poisson Processes can be used with the Jogdeo-Samuels bound
to establish this bound more directly and with slightly more precision by adapting the following viewpoint. The joint
process < P.(t), Ps(t) > is statistically equivalent to arrivals for the single process P, ,(¢) with a Bernoulli Trial to
type each arrival as being due to P, or P;.

For additional completeness, we reiterate that the same perspectives hold for Poisson Processes.

2.2.2. Weighted Selection.

For the following distribution, alternative approaches (apart from a direct attack via fairly messy asymptotics) are by no
means evident.

COROLLARY 2.3. Letanurn contain R red balls and B black balls. Suppose each red ball has weight w,, and each
black has weight w,. Suppose that the balls are selected one-by-one without replacement where each as yet unselected
ball is given a probability of being selected at the next round that equals its current fraction of the total weight of all
unselected balls. Suppose r and b are integers that satisfy r = R(1 — e~"°?), and b = B(1 — e~ "+?), for some fixed
p > 0.

Let r + b balls be drawn from the urn as prescribed. Let X, be the number of red balls selected by this random process,
and let X, be the number of black, so that X, + X, = r + b. Then r and and b are the medians of X, and X,:

Prob{X, > r} < % < Prob{X, > r}.

Proof (Discussion). It is straightforward to turn this selection process into a time evolution process; each ball is
selected according to an independent exponentially distributed waiting time. Thus, the probability that a given red ball
is selected by time ¢ is set to 1 — e~“e¢, with density function w,e~*°*. Black balls enjoy analogous distributions with
weighting rate w,. It is easy to verify that each waiting ball will be selected next with a probability equal to its fraction
of the weight in the pool of unselected balls.

Let X, (t) be the number of red balls so selected by time ¢, and X, (¢) be the number of black. Let T, be the random
stopping time when X, becomes b + 1: T,F(t) = min{t : Xo(¢) = b+ 1}.

Section A.3 completes the proof via Theorem 2.4 in a manner very similar to that for Corollary 2.2.

Remarks. When w, = w,, X, Will be distributed hypergeometrically, which characterizes selection.

2.2.3. Conditional Bernoulli Trials and Prohibited Outliers: A different approach.

Up to now, we have modeled discrete problems with continuous versions, and have used global formulations that say
if g is suitably bell shaped (with some lopsidedness to the right), and F' is suitably Error Function-like, and if g is not
centered to the left of F, then the integral of gF is at least half the integral of ¢g. This approach uses symmetrization to
replace the function ﬁ(t) by the value £, which represents as naive an asymptotic expansion as possible. The next two
median derivations deviate from this convenient scenario, and there is indeed a concomitant penalty (which is paid in the
Appendix).
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THEOREM 2.5. Let x1,xo,...,x,4, be !+ n independent Bernoulli Trials where Prob{z; = 1} = p;. Let X,, =
1+ o+ +ap,andlety, = x40 + g2+ ...+ xpq. Lety = E[Y]], x = E[X,,], and suppose that both = and y
are integers. Let ¢, be X, conditioned onthe event X,, +Y; = x + y.

Then Prob{¢, < z} < % < Prob{¢, < z}.

Remarks. When p1,po, ..., prrn are all equal, ¢, will also be distributed hypergeometrically. Before outlining portions
of the proof, we take the liberty of formulating a key step in the proof, which is of interest in its own right.

THEOREM 2.6. Let X,, = x1 + x2 + - - - + x,, be the sum of n independent (possibly heterogeneously distributed)
Bernoulli Trials. Let E[X,,] = u, and suppose that y is an integer. Then for any j:

| Prob{—j < X,, — n <0} — Prob{0 < X,, — pu < j} |< %Prob{X = u}.

Remarks. This bound, which does not appear to be implied by any previous work, also applies to the Poisson distribution,
provided equality is allowed. The bound is tight (achieved with equality) for the Poisson distribution with means 1 and 2,
and the maximum difference converges, as the mean goes to infinity, to 673/32“Pr0b{Xn = u}, where L;“ ~ .482.
Theorem 2.6 is similar in content (but not proof) to the strong median estimates of Ramanujan, and Jogdeo and Samuels,

which can be written as

| Prob{—o0 < X,, — pu < 0} —Prob{0 < X,, — pn < o0} |< %Prob{Xn = u}.

A potential application is as follows. Suppose a probabilistic algorithm starts afresh if the underlying Bernoulli Trials
yield a sum that is more than r from the mean, and suppose that this mean is an integer. Then the actual random variable
[X,|r > | X, — p|] is no longer Bernoulli, but an analysis can use the median of the unconditioned Trials without error.
For completeness, we remark that such a symmetric conditioning about the mean cannot shift the mean, for a sum of
Bernoulli Trials, by more than % and this size shift occurs only for the Poisson distribution with mean 1 and restriction
to the symmetric range comprising 0, 1, and 2.

Proof (Proof of Theorem 2.5 (Discussion)). The first step is to show that the probability of any event for X, is extremal
when p; through p,, are restricted to the three values 0, 1, and some fixed « in (0, 1), and similarly p,,; through p,,; are
restricted to the three values 0, 1, and some fixed 3 in (0, 1). The next step is to show that Theorem 2.6 implies Theorem
2.5. See Section A4,

Proof (Proof of Theorem 2.6 (Discussion)). The chief step is to show that the extreme case, among all Bernoulli Trials
with a fixed expectation 1, is always for the Poisson distribution, which reduces the parameters that must be considered to
one. The proof is completed by hand calculations when 1 = 1, 2, asymptotics for x big, say . > 20, 000, and a computer
program for the rest. A program was written to verify Theorem 2.6 for integer 1 < 1000000. It succeeded because of
the gap between the limit value .482 . .. and the bound % See Section A.5.

3. ELIMINATING WEAK DEPENDENCIES

The purpose of this paper is, in part, to outline additional easy-to-use estimation procedures for some probabilistic
events where the underlying random variables are constrained by weak dependencies.

When a sequence of random variables z1, o, ..., z,, is somehow inconvenient to analyze, the desired tail bound or
(related) expectation estimate is often computed by replacing the x-s with a simpler probabilistic sequence y1, y2, ..., yn
that dominates, somehow, the z-s. For example, Hoeffding established the first peakedness properties to show that for
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a sum of Bernoulli Trials, deviations from the mean are maximum when the Trials (apart from some stuck at one or
zero) all have the same probability of success [4]. Hoeffding also showed E[f(X)] < E[f(Y")], for convex f, where X
is a sum of values randomly selected without replacement, and Y is the same with replacement [5]. These formulations
have been widely generalized (principally for symmetric functions that exhibit some kind of convexity) via a variety of
majorization concepts (cf. [8]). Panconesi and Srinivasan gave a related bound for Chernoff-style deviation formulations
[10] of the form E[e?X] < AE[e'Y], where X is a sum of random variables having (essentially negative) correlations that
are, up to a fixed factor A\, bounded by the comparable correlations for the independent random variable comprising Y':
forinteger oy, ... > 0, E[I ], =] < AE[[[, v;"].

We now suppose that z1, o, . .., z,, is a sequence of random variables such as Bernoulli Trials, and suppose that Z is
another random variable that is dependent on and is increasing in the z;-s. Let f(z1,...,,) be a non-negative n-ary
function that is non-decreasing in each coordinate, and let F}; be defined as the conditional random variable f(z1, ..., z,)

given that Z = k. The value of interest is E[F},, ], where & has some fixed value that need not equal E[Z], even though
that is the only case we discuss. A typical formulation for f might be as a Chernoff-Hoeffding bound to estimate a tail
event.

A (possibly promising) procedure for estimating a tail bound of the form E[ F},, ] is: ignore the conditioning by estimating

E[f (21,2, ...,2,)], and multiply the resulting bound by some modest constant to account for the conditioning. The
basic proof strategy is as follows.
Since

Elf(z1,...,2n) - X{Z > ko}]
Prob{Z > ko} ’

Ellf (z1,...,2n)|Z 2 ko]] =

and
E[f (21, 20) - X{Z > ko] < E[f(z1,...,7,)]
Prob{Z > ko} = Prob{Z > ko} ’
the hypothesis
E[[f(x1,...,20)|Z = kol] <TE[[f(21,...,2:)|Z > ko]] (2)
will imply that
E[f(z1,...,2,)]

Thus, bounding E[F},] (from above) can be reduced to estimating the unconditioned E[f] (from above), estimating
Prob{Z > ko} (from below), and showing that F} is non-decreasing (in some sense). For many applications, the
underlying events may represent large deviations, and it may, therefore, suffice to establish these inequalities up to
constant factors.

In practice, we might begin with a dependent sequence w1, wo, . . . , w,, 0f random variables that is statistically equivalent
to a sequence 1, xo, . .., z, Of independent random variables conditioned on some event Z = k. For example, the
w-S might be the multinomial distribution for distributing »n balls among n bins, which is statistically equivalent to n
independent identically distributed Poisson distributions that are conditioned to sum to n.

The inequality in Display (2) can often be established by a variety of approaches. Sometimes the x’s can be modeled
in two ways — as specific random variables, or as the outcome of an increasing random process that evolves over time. In
these cases, the notion of growth over time can give a direct proof of the inequality. In the previous example, for instance,
the Poisson distributions x1, xo, . . ., x,, can be modeled by Poisson processes x1 (t), z2(t), . . . , x, () with arrival rate ),
and the stopping time 7" defined to be the first time ¢ where x(¢) + x2(t) + - - - + 2, (t) = n. Let 7 = E[T]. Since the
resulting distribution is independent of the value of T', we can condition on the subset where T' < 7, so that

E[f (w1, wa,...,w,)] =E[[f(z1(T),...,z,(T)|T < 7]].

Of course,

Ef @1(T), .., 2 (T)IT < 71] < E[[f (21 (7), ..., 2a(7))|T < 7).
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Finally,

B (o1 (7) (T < ) = ST Tl TS,
which shows that the weakly dependent w;’s can be replaced by independent Poisson random variables with mean 1,
provided the resulting bound is doubled.

More abstractly, Inequality (2) can sometimes be established by identifying a mapping o from a subset of the probability
space P, for the unconstrained (or suitably conditioned) z:;-s, onto the probability space P defined by the z;-s conditioned
onthe event Z = k. Typically, the domain is the z:;-s where Z > k. The requirement for the mapping is that for z € P,
for j € o= !(z): f(z) < f(y), and Probs{z} < aProbp{o~'(z)}, for some fixed constant a. The time evolution
view, when it applies, gives this mapping implicitly: o just maps a time evolution process back to its value at the earlier
stopping time 7' = min{t : Z(t) = ko }.

There are also many other methods where simpler random variables can sometimes be substituted in quantifiable ways
to fulfill the function of a more complex family of random variables.

Perhaps the most noteworthy case where time evolution does not seem to apply is when the x;’s are heterogeneous
Bernoulli Trials, and Z is the sum of the x;’s. See Section A.8. In any case, if Inequality (2) can be established, the
resulting estimation problems are unconditioned, and therefore more amenable to analysis by a larger class of standard
probabilistic tools. If kg = E[Z], then the mean-median theory might give a convenient factor of 2. If not, it may be
possible to (non-linearly) rescale the underlying random variables into (statistically) equivalent ones where the new Z
is conditioned to be at its mean. This is easily done, for example, for Bernoulli Trials, which turns out to yield new
Bernoulli Trials. See Section A.9.

Lastly, it is worth noting that if f is the step function

0, ifey+---+x, <ko;
1, otherwise,

flxe,... xn) :{

then the bound is tight. Consequently, this formulation requires the factor Pﬁb{lzT}' although it may actually be
— R0
unnecessary for many applications.

4. OTHER ALGORITHMIC APPLICATIONS
4.1. Concurrent sorting for PRAM emulation

Ranade showed how to emulate a Common PRAM via an n x 2™ butterfly network of processors [15]. The emulation
scheme is roughly structured as follows.

1 Each of the n2™ processors constructs a memory request.

2 Each row of n processors performs a systolic (parallel) bubblesort to sort its n requests.

3 The first processor in each row injects its row’s n requests into the routing network, smallest address first. The
messages are routed to the correct row, whence they pass along the row to the correct column.

4 Each return message backs up along its path to its home processor.

In this algorithm, an n2"-processor machine has a running time, for emulating one parallel step of an n2™-processor
Common PRAM, that is ©(n) with very high probability and on average.

In the fast hashing work [16], steps 1,3, and 4 were shown to work in O(n) expected time for a machine comprising
n x 2™ switches, but with only one column of 2™ processors, where each processor runs n virtual processes, so that the
n2™ parallel computations can still be executed in O(n) time. However, step 2 was not done locally by each individual
processor when combining was needed. Rather, each processor used its row of n smart switches to perform a bubblesort
as in Ranade’s original scheme. We now show that step 2 can also be done locally, with the slowest of the 2" sortings
completing in O(n) expected time (and with high probability).

The sorting is accomplished in three steps, where all memory accesses and processing are local to each individual
processor.
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Step 1) Hashing is used to group together the memory references to identical locations. This is necessary because
combining operations generate common addresses that are therefore not independent. The common references within
each pipeline are then combined.

This step runs in O(n) time, both in the expected case and with high probability. The requisite resources for this step
also turn out to be modest.

Step 2) Each processor’s set of memory references (with one representative for each of the k¥ < n combined address
references) is partitioned among n local buckets. Simply stated, a reference with the hashed address (¢, x) with
t € [0,n—1]and z € [0,2™m — 1] (where m is the number of words per memory module), is placed in Bucket][t].

This step clearly runs in O(n) time.

Step 3) The contents of each Bucket (with an expected count of just O(1)) are then sorted locally with an efficient
sorting algorithm such as mergesort. Lastly, the n sorted sequences are concatenated to produce the desired result.

Step 3 requires a performance proof, since we must assert that each of the 2™ processors can complete its individual task
of sorting its own n numbers in O(n) time.

THEOREM 4.1. Let [0, m — 1)™ comprise all sequences of n values selected uniformly from [0, m — 1).
Then for any fixed ¢ > 0, there is a fixed d such that Step 3 sorts a fraction exceeding 1 — 2e <" ofall D € [0, m — 1)"
in dn steps, where ¢ = d — 2 — Ind.

Proof.  Given an instance D € [0,m — 1)", let b;, for j = 1,2,...,n, be the number of items in D that are
placed in Bucket[j] by step 2). Then the running time for the n caIIs to a fast sorting algorithm is proportional to
T(D)=mn+3_,In(b;!). Let g be the generating function for 7 = 7" — n:

1 n N
2)=E[T] = — < )zzw In(ast),
g( ) [ ] n" aﬁ_.;n:n a1, Q9,...,0p
Standard formulations of Chernoff probability estimates give
Prob{7 > dn} <e Mng(er), X >0,
and we seek a A that (roughly) minimizes e 9" g(e*), and need an estimate for the resulting value.
Let (1, (o, - .., G, be n independent identical Poisson distributions with mean 1, so that Prob{(; = ¢} = & Flnally,

define V. = ZFl In(¢;!), and let G(z) = E[zY]. We have replaced the random mapping of n items into n buckets
(where Bucket([j] receives b; items with E[b;] = 1) by n independent assignments where Bucket[j] has ¢; items, with
an average count that is still E[¢;] = 1 item per bucket, for j = 1,2,...,n. As is well known, the ¢;’s and the b;’s have

the same joint statistics if we condition the (’s on the event 2?21 ¢; = n. Since n is the expectation for the sum of the
n (;-S, and the mean is the median for the Poisson distribution, we can simply compute the tail bound for the (;-s and
double the resulting bound since the expected work is increasing in the total number of bucket items.

Since the unconditioned ¢’s are i.i.d., we have:

G(e) = E[eM (@I - i j'))\
=0

j!

[

('b

Hence G can be used in the overestimate

—Prob{T —n>dn} < ( Z
7:0

We claim that for 0 < A\ < 1,

> 1 1
Z S—)\Z'_lzli/\‘

J:O Jj=0
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The proof is given in Lemmas 6.1 and 6.2 of Section A.6. Now let A minimize the estimate (%)”, whence d = 1.

1
Substituting gives
1
5Prob{T —n > dn} < (de* =),

soc=d—2-—1Ind. |

Interestingly, quadratic sorting, for each of these O(1) (expected) sized data sets is just too slow. Fairly large deviations
will probably occur in too many local bins for some of the 2™ sorting experiments.
For completeness, we observe that a little more work can eliminate the factor of 2 in Theorem 4.1. In particular,

Lemma 7.1 of Section A.7 shows that the function f (k) = E[zzjzl () | G4+ Gl (k) where ¢ + -+ + G, = k,
is convex in k, so that Jensen’s Inequality can be used as a substitute for the mean-median step in the derivation to attain
the same bound without the extra factor of 2.

4.2. DoubleHashing

In an analysis of double hashing by Lueker and Molodowitch [7], a subproblem arose that can be abstracted as follows.
Let .S be a collection of some subsets of U = {x1, z, ..., 2, }, where each element z; is a Boolean variable. Interpret
each s € S as a Boolean conjunction over its elements. Compute a tail bound for the number of subsets that evaluate
to true, subject to the weak dependency condition that exactly m of xz; are true, with all possibilities equally likely.
Their specific function count was not symmetric in the xz;’s but was trivially monotone. In this case, a very easy first
step is to exploit mean-median bounds by allowing each z; to be true with probability m/n, and then compute (via
additional observations) a tail bound for the Bernoulli case, and finally double the resulting bound. Instead, Lueker and

Molodowitch used a Chernoff-Hoeffding estimate to make each a:; a Bernoulli Trial with probability (1 4- 4/ loﬁn ), or

so, and accounted for the error where fewer than m of the z’s are set to 1. While this is not at all difficult, it was a bit
more trouble and slightly (but immaterially) less sharp.

5. CONCLUSIONS

This paper may have a bit more than doubled the number of non-trivial cases where the mean of a probability
distribution is known to be the median, and has given a framework for establishing strong median estimates. We have
also shown how to use median estimates to get yet another approach for attaining large deviation bounds for problems
with weak dependencies. The results have, en passant, also contributed to the structural analysis of such basic probability
distributions as Bernoulli Trials.

In a sense, divide-and-conquer was used mostly as an analytic tool, as opposed to an algorithmic device. From this
perspective, the target of mean-median results can be seen to be much too restrictive. For example, approximate medians
that are i - % splitters of the probability measure would be perfectly adequate for the performance bounds as presented.
On the other hand, the methods in this paper can be used to attain such results — sometimes quite easily — and median
bounds can sometimes be combined to attain multiplicatively weaker estimates for more complex processes.

Finally, these methods were applied in several performance analyses that were new, either in content or simplicity.
We also note that median bounds might find application in statistics, since median computations can be less sensitive to
outliers than means.

APPENDIX

A.1. ANALYZING INTERPOLATION SEARCH

This subsection presents a mildly enhanced version of the first part of an analysis originally given by Perl, Itai, and
Avni [11]. In particular, it includes the issue of rounding, distinguishes between successful and unsuccessful search, and
does not require the algorithm to abandon logical interpolation at any point.
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It should be noted that the following derivation would be simplified if the issue of rounding were ignored. Probably
the easiest way to accommodate rounding is as an after the fact modification that adds 1 to the right hand side of the
recurrence relation A.2 below. Such an approach would give a bound that is about 1.5 probes more than the analysis we
now present.

Let the search parameters be as defined in Section 2.1.2. A probing under the assumption of successful search would
require that at round ¢, one of the n; keys be conditioned to be z, and take the rest to be random. A probing that expects
the search to be unsuccessful would allow all n,; to be random. For this latter case, we can imagine a (virtual) key z to be
in location j + 3, where j is the unique index satisfying 7'[j] < = < T'[j + 1]. According to the assumptions underlying
the two search schemes, the next interpolated probe location, which is computed at round ¢ and probed at round ¢ + 1,
should be, provided z has not been found in the first ¢ probes,

1
St41 = lg + peny + B

for unsuccessful search, and
Sip1 =l +pe(ng — 1)+ 1

in the case of successful search.

Actual probing will be probabilistic when s; is not an integer, so that |s;| is probed with probability 1 + [s:] — st,
and |s;] + 1 is probed with probability s; — |s:|. Let s} denote a probe that includes the probabilistic rounding of the
exact interpolation calculation s;, and let ¢, = s} — s;, o that € is the probabilistic rounding adjustment for s;. By
construction, E[e;] = 0.

In the case of unsuccessful search, the interpolation scheme can yield probe locations satisfying s;+; — I < 1 or
us — s¢+1 < 1, where probabilistic rounding would be senseless. In these circumstance, s;+; must be rounded to the
nearest integer. This issue is revisited at the end of this subsection.

An advantage of probabilistic rounding is that it does not disturb our basic expectations:

Ellserr — si| | 57, pe—1,ne—1) = E[|s{y1 — si| | sty pe—1,m0-1],

because adding the rounding fraction ¢, cannot change the sign of s;;1 — s} from positive to negative nor vice versa.
Thus, the average of the absolute value of s,11 + €:+1 — s} is simply the average of the positive values minus the average
of the negative values, and each average has a zero contribution from e, ;. Furthermore, Corollary 2.1 ensures that such
a rounding yields a good probabilistic splitting of the search interval.

Let the “true” location of x be s, as quantified by each scheme. Of course, s, is a random variable, which equals one
(or %) plus the number of data items in the table T'[1..n] that are less than «. Similarly, it is convenient to let 72, be n; or
n; — 1, depending on whether the search is designed for failure or success, and let A be % or 1 as dictated by the respective
schemes. Let ¢, be the rounding increment as used by each algorithm. For ¢ indices that are larger than the number of
probes actually used, we adopt the convenience of setting 7, to zero, and freeze all such [;, u; and s; to equal the last
location actually probed. Finally, let F'(¢) be 1 if 2 has not yet been located (or not yet determined to be absent from the
table) in the first ¢ probes, and 0 otherwise. Given these definitions, the interpolation scheme can be write written as:

St+1 = lt +ptﬁt + AtF(t)

Let the state information S(¢) comprise the values I, u., T[l;], T'[u.] and the derived interpolation fraction p, as well
as the computed index s.-, A, and rounding fraction e, for the rounds =, where 0 < 7 < ¢t. Atround ¢ + 1, of course,
€¢+1 1S evaluated to compute s7 ;. Then T'[s}_ ;] is probed and either the algorithm terminates, or sy , is assigned to one
of I;+1 or u;y1 and the other variables are updated according to the new state information.

Perl, Itai, and Avni use the fact that the error (s:4+1 — s.) in the index selection is just the difference between number
of items, among the 74, that are actually less than x, and the expected count. Furthermore, this difference is statistically
the same as the difference between 7,p, and the sum of 7, Bernoulli trials, each with probability of success p;.
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Thus, (s;11 — s4)? is, in expectation, the variance for the sum of 7, Bernoulli trials, each with mean p;, so that
E[(st+1 — 5*)2|5(t)] = nype(1 — py).
Similarly,

El(si41 — $:)°[S()] = fupe(1 — pi) + varles1] < fupe(1 —pe) + %F(t),

since the variances of independent random variables are additive, and the variance of a Bernoulli Trial is bounded by %.
The factor F'(t) is a 0-1 multiplier to account for the fact that e, will not exist if the search has already terminated.
On the other hand,

sit1 = Els.[S(t)];

since s¢y1 is by construction and by definition the expected location for the search key = when the known information
comprises the state data in S(t).

We need to use a fundamental fact about conditional expectations, which is that E[E[f|S(¢)]|S(s)] = E[f]S(s)], for
s < t. Further, for any function H, E[H (¢;)|S(¢)] = H(q;) when ¢, is known information in the state set S(¢).

We also exploit Jensen’s Inequality, which states that for any convex function G, such as G(x) = 2 or G(z) = ||,
E[G(f)IS] > G(E[f]S]).

Putting all this together gives:

Ellsf — sial[S(E—1]* = Ells] — E[S*IS(t)]I‘S(t - 1P

= E[Els; — s IS@)[S( — 1))

IN

E[E]ls] — .|

SWi[st -1

IN

Eflsf — s./|S(t — 1)

IN

El(s} — 5.)2[S(t = 1)

R 1
ntflptfl(l —ptfl) + ZF(t - 1)-

IN

Now, s7_, is either I,y or u;_1; hence |s]_; — s| is either p;_17—1 + AF(t — 1) or (1 — py_1)fie—1 + AF(t — 1).
Consequently,

R 1 r
fe—1pe—1(1 —pe—1) + ZF(t —1) < s} 1 — 54|
Thus,
Efls; — seal| S = DJ* < [si_y — s4- (A1)
Taking the expectation of both sides, letting
dy = E[ls; — sp1all,
recalling that

Ellst — siqall = Ellst — se4al],

and applying Jensen’s inequality once more gives:
di = Ellsy = se1])* = E[E[lse — seal|S(t = 1)]]?

< E[E[lse — sl |S(E = DI S Ellsi 4 — sil] = di—1,
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so that

2 <dy . (A2)

A.1.1. Successful search

For successful search, we can take dg = %, since df < fgpo(1 — po) + 1 < noz(1 — 1). Writing n = 2", we see
that after log, A iterations, we attain diog, 10g, » < 2, Which shows that

EHSI‘og2 logon — S§+Iog2 log, n” < 27

which includes, in this averaging, ranges of size zero due to earlier termination.
As before, let iy = log, log, n + 1. The reasoning of Section 2.1.2 applies to bound the expected number of probes
for successful search in this more detailed analysis, and gives, as we now show, the same bound of

[log, logy ] + 3.

The only issue that remains to be addressed is the effect of rounding at the (log, log, n + 1)-th probe, because a rounding
that increases the size of |s;, — sj | is more likely to have z in the interval of indices delineated by these two probe
values. While it suffices to increase the resulting probe estimate by 1, no increase is needed.

The reasoning is as follows. Let

Fe(t) = x{z is not found in the first ¢ — 1 probes},

which indicates if a ¢-th actually probe takes place. Let the random variable 7 to be the smallest index > iy for which
s” 1 lies between s7 and s, or sI = x. By definition, 7 is i¢ if the search terminates prior to the iy-th probe.

For expositional simplicity, suppose that s;,—1 < s;,, where ig = 1 + [log, log, n]. Given these formulations, and
assuming that s;, 1 < s;,, the number of probes is bounded by

io — 1+ Felio) + (r — i0) + 0 x{(s] = [s,] + Dyand (T[s7] = 2)} + (|5} — 74| — Fe(T)x{TlLs.]] > a}.

This formulation is correct because first, the count is at least 7 — 1 + F¢(io) if « is found among the first 7 probes.
Second, the T'[s-] must be greater than z if the next probe location is to be less than s,. Then the reasoning is exactly
as before. The decomposition via y serves to strip away the dependency of the rounding for s’ from the definition of 7.
The pointis that E[(|s] — s7_;| — Fe(T))x{T[ls+]] > «}] = E[(|sr — s7_1| — Fe(7))x{T[|s-]] > x}], because both
candidate indices for the rounding of s have values that are larger than x. Hence the definition of ~ does not condition
the rounding of s,. Taking expectations of relevant terms gives:

E[r —io] < 1;
El(ls7 — st 1l = Fe(m))x{T[ls-]] =2 2} = E[(lsr — s7 1| = Fe(m))x{T'[[s-]] = «}]
El(lsr — s71| = Fe(7))]
Ellsiy — siy—1l] = F(io — 1),

IN N

where the very last line follows from the inequality [s, — s ;| — Fe(7) < |si, —sj, 1| — F(io — 1). Thus, the expected
number of probes is bounded by io — 1 + E[7 — o] + E[|si, — sk _;]] < [log, logy 1] + 3 as before.

K

A.1.2. Unsuccessful search
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For unsuccessful search, the reasoning is almost the same as for successful search. Only two adaptations must be made
to the derivation, which was conceptually organized as

io —1+F(’L() — 1)—1—,010 + (diofl _F(’L() — 1))

The first problem is that, in the case where balanced rounding occurs, it is not true that the probe to s} will find a
value that has, say, at least a 50% chance of being greater than x. Rather, it has at least a 50% chance of being greater
than or equal to the largest entry less than x. This issue can be resolved by adding 1 to our previous estimate for the
expected number of additional probes necessary to determine, after probe i, that s, is between the two most recent probe
locations.

Second, the issue of unbalanced rounding must be addressed. Suppose, for example, that the search interval comprises
the n unprobed locations 3, 4, . . ., n+ 2 with values bounded by 5.1 and 6. The next probe locationis s = 2+n””f—§'1 + %
If s < 3, probabilistic rounding can give location 2, which has already been probed. The rounding must be to 3, in
this case. In reality, this rounding is advantageous, since it moves the computed index in a direction that will hasten
termination.

A brief formalization of this observation is as follows. According to the interpolation scheme for unsuccessful search,
the probe s7,; will have such an unbalanced rounding if and only if n:p; < % or ng(1 —py) < % It is easy to see
that in such a case, s}, ; will be the terminating probe precisely when no value among the n; is less than z if nyp; < %
or when no value among the n; is greater than z if n,(1 — p;) < % Thus, the probability that s;1 is the terminating
probe (conditioned on termination not having occurred earlier and the rounding being unbalanced) is (1 — "n—ttp)"f, where
p = min(p¢, 1 — pi). Now, (1 — ”n—ttp)"f > % because the expression is increasing in the variable n; when n;p is held
fixed, and because np is bounded by % Consequently, each such probe will terminate with a probability that is at
least (1 — ﬁ)"f >(1- 2—?1)1 = % which is good. Moreover, once unbalanced rounding occurs, it continues for each
subsequent probe, and the distance between consecutive probes, in these cases, will be fixed at 1, up to termination.
Evidentially, termination occurs, on average, in less than two such steps, since the probability of completion is so high.

We can apply this observation to the first iy + 1 probes. Let U(t) be the event that an unbalanced rounding
occurs among the computations for the first ¢ probes. Let u = Prob{U(ip + 1)}. Let P be the probe count. Then
E[P - {Ulio + 1)}] < (i +2)u.

As for E[P - x{notU(ip + 1)}], our previous counting applies to get the overestimate (io + 2)(1 — u) + 1. The
(i0 + 2) represents i probes followed by an expected count of 2 to get three consecutive probes where the last lies
between the previous two. The last term is a bound for E[|s;, — s;,—1|x{notU (i + 1)}], which comes from setting
dy = E[|s} — sy 1|x{notU(t + 1)}]. This d, satisfies the same recurrence as its predecessor; nothing changes. Notice,
however, that there is no factor of 1 — w in the answer.

The resulting sums give P < [log, log, n| + 4.

For completeness, we note that E[[s;11 — s.| | S()] can also be computed directly by straightforward elementary

combinatorics to get: E[[s;y1 — s.| | S(i)] = 2(7;)pi(1 — pz-)(fﬁ?;,lj)p}mm (1 — p;)™i—1=Lril which can give an
(insignificant) improvement to the recurrence for d;. On the other hand, tighter bounds for the probe count would have to
come from an analysis such as that given by Gonnet et al, where recurrences are derived that account for the possibility

of termination at each step of the probe procedure.

A.13. ComputingE[|s; — s.| | S(i — 1)] exactly
For convenience, we change notation and compute E[| X,, — np|], where X, is the sum of n independent Bernoulli
Trials which each have probability p of success.
Since E[X,, — np] = 0, the negative and positive contributions must have the same magnitude, whence E[| X ,, — np|] =
2E[X,, — npand X,, > np]. So

E[[ X, —npl] = 2 ) (?) (j —np)p’ (1 =p)" ™7

j>np
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IR o

3>Lnp] 3>|np]
-1\ - -1 .
X G (60 P
. J—1 , J—1 J
3>Lnp] 3>|np]
" (n—1 , -1
= 2(1-p)n Z (,_1> I(1—p)" 7 —2np Z ( )pﬂ
3>|np] J 3> [np] J
- n—1\ ;1 j n—j—1
=2pn<1—p>_§J(j_1)p-f (1= p)" — 2np(1 - p) Z ( ) —pyd
J>Inp Lnp

2pn(1 —p) (Tn_pj)ptnm (1—p)n il

While this derivation is simple, it is not clear how easily the resulting expression can be bounded by \/np(1 — p). The
following naive but slightly tedious derivation is probably far from the simplest. It gives, for n > 1, the rather meticulous
estimate:

n—1 . 2 1
2pn(1 —p)( 1mp) )pt"’” (1—p)ntlml < “np(L=p)(1+ ).
Define

-1
Factor(n,p) = v/2enp(1 — p) <n|_’n,pJ )anPJ (1— p)nflanpJ’

so that

El1X, — npl = 2LE=D)

Factor(n,p).

We wish to show that Factor(n,p) <1+ 7% and that for p near 1 (or zero), Factor is asymptotic to 1.

The first issue is to let np = k + ¢, where k = |np], and determine, for n and & fixed, the value of e that maximizes
Factor(n, ’“:;5). Taking the logarithmic derivative of Factor will show that e = % independent of k and n.

Next, let x = np. For the x-s of interest, define

Factor(n, &tL)
n

Rati = .
a Zo(n7 l‘) Fa,CtOT(n7 %)
Then
1 1 x _ 1 _ - _1 o
Ratioln,z) = :v—i—l (:c—i— ) n—3 I(n x )
T+ 35 t e o
_ g(x)
g(n —x—1)

where g(z) = =7 (=H)”.

We need to show that g(x) is increasing in «, which will ensure that the ratios are initially less than 1, and are increasing,

which will guarantee that Factor(n, p) is maximum for the extreme cases p = % 1-— %

Taking the logarithmic derivative of g gives 9((96)) log(x + 1) — log(z) — # which is the difference between
2

f;“ %dm and the area under the trapezoid defined by the line tangent to the curve y = % at location x + % with left and
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right vertical sides at z and = + 1, and base along the horizontal axis. Evidentially, this difference is positive since the
function y = % is convex. Hence g is increasing.

Setting p = 5=, 1 — o, shows that Factor(n,p) < v/e(1 — 5=)"%. Finally, \/e(1 — 5~)"~% can be shown to be
less than 1 + %n for n > 2, by taking the logarithm of both expressions and expanding each in a Taylor’s Series.

Gonnet et al show that E[n;+1p;+1(1 — piy1)|S(1)] < ,/%nipi(l — p;). Evidentially, each step in their derivation
involves complicated asymptotics. In this case too, straight forward computation can yield an exact somewhat semiclosed
combinatorial form, but turning the resulting identity into the desired inequality appears to be rather unappealing.
However, it is tempting to conjecture that some such approach ought to be competitive with the current alternative.

A.2. PROOF OF THEOREM 2.4

Proof. Let o(t) be a measure preserving transformation on [0, 2] such that o(t) = ¢ for ¢t < u, and g(o(t)) is
nonincreasing for i1 < ¢ < 2u. Set h(t) = 1(g(t) + g(o(2u — t))). Then h is symmetric with respect to the midpoint s,
and has one local maximum, which is at x. Intuitively, h represents a rearrangement of “mass” density that defines g to
achieve the desired symmetry. It is easy to see that a2 and a3 ensure that i represents a left shifting of the mass of g.

Since F(t) is monotone increasing, foz“ F(t)g(t)dt > fOQ“ F(t)h(t)dt. Now,

N F(H)h(t)dt = /;H F() + Z(Qu - t)h(t)dt > /02H @dt,

0

where the last integral represents a lossy shifting of mass the mass density for w away from the midpoint

i, since we know from Lemma 2.1 that the mean of F', over [0, 2u], exceeds % and the region where the symmetrized
w exceeds % comprises a connected interval, because of the b) criteria, just as in the proof of Theorem 2.1.

Finally, since h is defined by a measure preserving transformation and symmetric averaging, we have:

> () > Fgt) 1
/0 F(t)g(t)dt>/0 Tdt+ . F(2u)g(t)dt2/0 Tdt—i,

since g is a probability density function.

Condition a3") simply states that log(g(t)) is growing at least as fast as log(g(2p—1t)), for ¢t € (0, p), which is sufficient
to ensure the skew condition a3).

The conditions a2””) a3"") and a4’’) can be established as follows. First, note that

o0

20 20
| swrmar e [ g - [ geu-nrom

= (G(t) - DF(t) | + / "= G F@)dt + F@u)(1 - GEw) + G2 — F () [

- G(2u —1t)f(t)dt
0

2p
- /0 (1-G(t) — G(2u—t) f(t)dt

> 0, accordingt0a2",

whence dividing by 2 and rearranging terms shows that

2u 21 o 00
/0 g(t)f(t)de/o 92 2t)F(t)dt_F(§u) /QH o) dt.
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Adding [ 2070t + [ g(t)F (¢)dt to both sides gives:

/ T FWdt > / Y o)+ 9@ 1) p / T o) — E2 g (A3)
0 0 2 21

Now,

L,

2 2
and the unimodality and symmetry of M ensures, by the reasoning used for Theorem 2.1, that replacing
w by its average value on [0, 2] WI|| be lossy for the integral, since mass will be shifted away from the center
t = p. Thus, appealing to Lemma 2.1 to attain the exact mean 1 + i f;: (t — 2u) f(t)dt gives the inequality:

/ T g0 9 =) b gy /2“ 9(t) + 920 — ) F(t) + F2p —1)
0 2 0

2p —
/0 MF(t)dt > G(j oy %ﬂ’”/@ (t — 20) f(1)dt. (A4)
Substituting (A.4) in (A.3) gives:
= Gep  Gew [~ o F(2u)
|| swra = TE L S o s [ g - S5
> (%JF/Q# @(LF ))dt+/2# g(t)(F(t)_@)dt
> L 9() 4

I
2u 2

A.3. PROOF OF COROLLARY 2.3

Proof. Let X, (t) be the number of red balls so selected by time ¢, and X (¢) be the number of black. Let T," be the
random stopping time when X, becomes b + 1: T,F(t) = min{t : Xo(t) = b+ 1}.
By symmetry, it suffices to prove that Prob{ X, (T,") > r} > % This probability is formulated as

/mﬂ@ﬂ@@
0
R . )
where Fo(t) — . (1 _ e—th)j (e—wot)R—]’
z.0)
and gj_(t) = (f) (1 _ e—w.t)b(e—w.t)B—bw.(B _ b)

For simplicity, we can take p = 1 by rescaling (time or) the weights w, and w, by the factor p. Theorem 2.4 is

applicable with conditions a1, b1" and b2 used for f = 4= In particular,

o0 11 1 1
= WFR{t) = —(5+—— 4t
K /0 W= taat e
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< i(lnR—ln(R—b)) =1

Wo

The remaining conditions a2 and a3', are checked as follows. The function gd(t) is maximized at the time satisfying
A (B — b)w,. Substituting w for w,, and using the fact that b = B(1 — e~ **) gives I‘j;—f;t = -

T—e—w!

0= bwee —w

1—e wet

which has the unique solution ¢ = 1 > p, and thereby fulfills requirement a2.
Requirement a3’ states that

/ (o _
g0 -0,
g(t) 9(2—1)
for ¢ € (0,1). The chief target inequality reads:
bwee We? bweewe(2—1)
P (B_ o _ e  © _
= (B —b)we >7 = + (B — b)we.,
which can be simplified to
e—wt e—w(2—t) e~ W
>72
1—ewt * 1 —e w@=t) =771 —e-w’

where we again substituted b = B(1 — e~™), and set w = w,.
The target inequality achieves equality when ¢t = 1. Differentiating (and noting that we have equality on the right)
gives the new objective:

—wt 2—t)

—we n we~w( <20
(I—ewt)2 " (1-— efw(27t))2 =

Equality again occurs at ¢t = 1. Differentiating once more gives the clearly achieved objective:

—wt —2wt —w(2—t) —2w(2—t)
5€ +e %€ +e
w (1 —e—wt)3 +w (1— 67w(27t))3 >0,

which holds since each term is positive. Integrating this inequality down from 1 twice establishes the original inequality
as valid.

Finally, we must show that —gg/g—:f)) >0, fort € (0,1), which translates to
bw.e—w.(Q—t)
- 1— efw.(th)

+ (B —b)we >70.

Substituting for B and w,, and simplifying gives:

e—w(2—t)

e—w

‘?
[—e w0 = [_ew

This relation holds as an equality when ¢ = 1. But since == is increasing for = € (0, 1), it follows that % must
—e

be decreasing as ¢ decreases from 1, since e (2~ is decreasing as ¢ decreases, which verifies the bound.
As a sufficient set of requirements for Theorem 2.4 have been satisfied, it follows that

1 1
Prob{X, > r} > 3 and Prob{X, > b} > 3

as claimed. |
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A.4. PROOF OF THEOREM 2.5

Proof. By definition,

n+l c; 1—c;
Z €1,C2,Cny1€{0,1} Hi:l piT(l_pi)
citcot-ten=Fk

Prob{(,, = k} = —Steettonnzety : (A5)

n+l ¢; 1—c;
Z €1,C2,Cny1€{0,1} Hi: D;' (1 - pi) e
citcottenpi=r+y

We now show that it suffices to establish the bound when p; through p,, are the same, and p,,+1 through p,,.; are also all
equal (to a possibly different value). Let

¢; = Prob{¢{, =i}.

LEmMmA 4.1. LetS, , bethesetofall vectorsv € R+t where0 < v; < 1,fori =1,2,...,14+n, vi4+ve+- - -+v, =z,
and vp41 + Vnyo + - - + vnq = y. Let By, be the set of all conditional random variables ¢ defined by equation (A.5)
with the underlying (p1,p2, . . ., pi+n) belonging to S, .. We can form the real linear functionals on ¢ by evaluating, for
each vector £ =< (y,0s,..., L, >€ R", 0(C) = D1 lihi.

Then £(¢), for ¢ € B, ,, achieves its extremal values on some random variables ¢ defined by vectors in .S ,, where
p1 through p,, are restricted to the three values 0, 1, and some fixed « in (0, 1), and similarly p,,+1 through p,,1; are
restricted to the three values 0, 1, and some fixed g in (0, 1).

Proof. Consider ¢ fori =0,1,...,n, defined over the set of free variables

<p1,p2,-.. y Pn+l >e Sm,y-

Since S, is closed and bounded, the extrema are achieved in S .

Equation A.5 shows that the ¢; are symmetric in py, ..., p, and in p,, 41, ..., pro. Furthermore, they are first order
rational functions (i.e., of the form (ap, + b)/(cpn, + d)) in any single py,. Since the denominator does not depend on ¢,
£(¢) is also a rational function that is symmetric in p1, ..., p, and in p,,41,. .., pnyi, and is first order in each p. Thus,

the dependence on p; and py, for, say, j, k < n can be exposed as follows: for some constants a, b, ¢, d, e, f,

0(¢) = a(p; + pr) + bpjpr + ¢
d(p; +pr) +epjpr + f

The extreme points (in S, ,,) for this expression can be located by freezing all variables other than p; and p;, and seeking
the extrema subject to the constraint that p; + py, is held fixed, so that the p vector remains in .S, ,,. Now, first order
rational functions of the form f;jjif have just one local extremum, which occurs at w = —~/4. But ¢(¢) is bounded, so
its the extreme values must occur when the one free variable w = p;py, is itself at an extreme value, which is to say that
either p; = py, or at least one of the p’s is set to an extreme value (0 or 1). (If b and e are zero, then these assignments
cause no harm). It follows that these conclusions about p; and p;, can/must hold for all such pairs 1 < j < k < n, and

the same holds for n < j < k < n + [. Consequently, lemma is established. |

Clearly, probability evaluations such as Prob{¢, < z} = >"7 , ¢; are linear functionals on ¢. Thus, Lemma 4.1
restricts the probabilities that must be considered to establish our basic median bound. For completeness, we note that
Hoeffding introduced this approach to analyze unconditioned Bernoulli Trials, which gives rise to linear expressions in
p; and py, rather than first order rational fractions [4].

We can now drop all Bernoulli Trials that are not random and adjust the integers z, y, n and [ accordingly, so that it
sufficestoset p;, = p, forl < i < n,and p, = ¢q, forn <i < n +[. Inthis case,

R e
Do<jen ()7 (1 —p)n=i (Hf}_j)qﬁy—jg — )iy’

Prob{¢, =k} =



28 A. SIEGEL

where z = npandy = lq. Letay = (Z)pk(l —p)" % and by, = (é)qk(l —q)F,
We need to show that

| (@np—kbigik = nprrbig—k)| < anpbiq,
0<k

for when we divide by the correct normalizing denominator

E akbnp+lq—k7

0<k<n

the resulting inequality says that

|Prob{¢,, < np} — Prob{¢,, > np}| < Prob{¢, = np},

which ensures that = np is the median value of (,,.
Now,

Y (anp-kbigrk — Anprkbig—r) = > anp—k(bigsk — big—k) + O big—k(@np—r — dnprs).
o<k o<k o<k

Consequently, it suffices to prove that each of the summations on the right is bounded in absolute value by “”#b“? The proof
is completed below with the proof of Theorem 2.6, which shows that for any K: \ Y 0<kerc @np—k — Gnpyk) |< “TP
Indeed,

| Z big—k(Anp—k — nptr)| < big m}z{xx| Z (@np—k — Anp+i)l;
0<k O<k<K
since the b, are monotonic, and Theorem 2.6 shows that
blqanp

big m}z{ix| Z (Gnp—k = Anpti)| < 5
0<k<K

Comparable arguments apply to > ;. @np—k (bigsr — big—x). |

A.5. PROOF OF THEOREM 2.6

Proof. In view of Hoeffding’s extremal bound for Bernoulli Trials and Lemma 4.1, we can suppose that the x;’s are
identically distributed with probability of success p = £. We can also assume that p < %: the case where p > % follows
from replacingp by 1 — p.

LEMMA 5.1. Letp, i, n, and a; be defined as in Theorem 2.6. Then the following are true.

1) Forp < %: Z u—k > Z Cptk-

0<k<p 0<k<(1—p)n
1 55 e Qu—j—1 _ Qutjtl Au—j—2 _ Op+j+2
2)Forp < 3,5 >0: if < then < )
Gp—j Qptj Ou—j—1  Qu+j+1

Proof. 1) This follows from the Jogdeo-Samuels bound for Bernoulli Trials.

- k

Qp—k—1 1—p pn—k T Quiktl 17m P
2) Note that au_k ( P )(n(lfp)+k+1) H_%,and by symmetry, Gk T TpEL Thus etk —
Gputhtl ﬁ*ﬁ*k(kﬂ)(ﬁfm)

o denominator , which has a numerator that is strictly decreasing in k. Hence, once the
difference becomes negative, it stays negative for larger k. |
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Consequently, once a,—; — a,+; is negative, the expression will remain negative for larger j. Suppose p < % and let
x =max{k :ay_r — ayqr > 0}. Itfollowsthat y ", x(au—r — auqr) is maximized at K = k.

The difficulty with the current inequality we now seek to establish is that it depends on two parameters, n and . We
now show that the worst case for the inequality occurs in the limit where we have the Poisson distributions with the single
parameter u. That is,

K K
Z Qp—k — Quik <9 Z Pu—k — Pu+k ’
k=1 O k=1 P

where k = max{k : ay,_ —aur > 0}, andp, =€ —n)- “) . Then the proof can be completed by establishing the bound
for the pj, values.

LEMMA 5.2. Suppose that p < .5 and let x = max{k : a;,—r — auyr > 0}. Letp, = e*“%.

Qu—k — Qu+k < Pu—k — Pu+k

Thenfor 0 < k < k: <
Ap Pu

Proof. A little manipulation gives the following:

Au—k Hg 0(1 - _)

)

U H 1(1+ (1- p)n)
k—1
aeer oo - o)
= - , :
Ay Hj:l(l + %)
k-1 .
Du—k _ (1- l)
Pp =0 H
Put+k 1
B
Py Hj:l(l + fj)
Thus, since
k .
Pu—k _ Putk _ ap. k H )_ (a,u+k) 1

Pu Pu =1

the conclusion
K K
Z Qp—k — Qutk <? Z Pu—k — Pu+k
k=1 ap k=1 Pu

will be established if the “magnifier” ]_[;?:1(1 + ) can be shown to exceed the “magnifier” 1/ 1‘[’C 1(1 - —), for

_J
(I-p)n
k=1,2,...,k. Multiplying both magnifiers, for k = 1,2,..., s, by ]_[7 0 "1 - —) gives the target inequalities:

k J
O L= 1

for k < k.
From the definition of , it follows that for k£ < x,

L0 -2 o0 - o)
IT;- O+ 5m) H§:1(1+%)

3
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whence
k—1 2 k
Hj:O(l - ft_2) > 1+ (1—-p)n .

k-1 2 = e
[[=0 (1 — a2 T+

Applying the expansion 1 — z = elo8(1=#) = ¢~ 2iss #13 for || < 1 with z setto j/pand j/((1 — p)n) gives:

o o ag .
0" Do S(29)/ () 1+ 555
o oy Sk /(AP T T E
where
k—1
hé
h=1 J
Combining the two exponentials gives
k

oo SE(2)((A-p)% —p2) 1+
e Zj:l 23 p23 (1—p)23 > _ (-pn

- k
1+%

Observe that the factor “‘p’?# =(1 —;9)(1%”)“1 —pisincreasing inr, since p < 1 —p. When r = 1, the expression
equals 1 — 2p. Therefore the factor (1”’;# can be replaced by (1%”), which will increase the exponent (since it is
negative) to get

_k

oo Sp(24)(1—2p) 1+
e 2 np(1-p)2 > 7(1_;)" .
1+ m

Raising both sides to the power p/(1 — 2p) gives

~ k__\p/(1-2p)
s Sy (24) 1 p
e_ j=1 n2j(k17]p)2j > ( + (171’)”)

- k 1-2
(1+ #)p/( D)

Now, (1 + %)P/(l—%) =1+ %)ﬁ(f;_zg) < (1+ ﬁ)ﬁ—fp, where we used the inequality (1 + z)* < 1 + ax,
which is valid for for0 < o < landz > —1.
Applying this last inequality gives

3 ke . 1+ (17kp)n)p/(1—2p) a4 k -
T+ (1_’“p)n)(l—p)/(1—2p) 1-pn”

Reversing the expansion to present the exponential as a finite product gives

k—1

h2 1
H(l_ 2 2)> k0
R G O R

which is our target inequality for k < x. |

We could have set » = 2 in this derivation, thereby attaining the slightly stronger

2

L k—1
O+ T —P)n)pg(l ~ T _jp)w) > 1.
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LeEMMA 5.3. Letthe p;-s and p be asin Lemma 5.2. Let & = max{k : p,—r — pu+r > 0}. Then

\/g 3 73/2
1
T L i T / e 2 (g — %)dw = % ~ 48209.
oo 2 Pu 0

Proof. We will see that that x =~ /3, which allows the dominant errors to be readily identified. Formally, we could
restrict  to satisfy, say, < 24/3u. There follows:

. Pu—j —Putj “ T _E . 1
;T a Z(H(l P (1+’“))

k=1 m

j=1 k=0 m
O DN — ) — 1
‘; mawn “o

_ U= 1)](21 1) —0O(

612

J(J+1) EIEESDIERER)) 54
1()”4) 1)6 + 122 O(l2u3 )>

=i

-0
= 2 (6,LL3 10p4 €

( J (-1 (2] -1) i) o 3° ) SEIETAN (1+O(j<j+112>(#22j+1>)))
U

G- (229—1) 0(6%)_0( 5° ))e%@w(j@“)(%“))))

2. ((
3
:/ewﬂ = L+ 02 ),

32

10p* 122

which confirms that « ~ /3.
Rescaling = = y,/; gives (1 + o(l))fo‘/g e 2 (g — ””—;)d:c. Evaluating the integral gives (2¢=%/2 +1)/3 ~
48208677, |

LEMMA 5.4. Letthe p;-s, pand « be as in Lemma 5.3. Then

‘ Z Pu—j — Ppti pu+7 _/\/58—12/2(:6_95_3)(117 <@
3 Iz

0<j<k 0

Proof. From (A.6), the requirement for  can be formulated as the largest integer satisfying (1+ ﬁ) Z;é (1— ﬁ—z) > 1.

1 sk<2> _ 5@

Sincel —z < e~ ** forz >0, (1 + o1 — ﬁ—i) < elog(+3) »T, and therefore x < k, where the k
is any value satisfying:

Sk<2> S(4)
T < 1.

plos(1+5)
Expanding the logarithm up to three terms and taking the log of this inequality gives a sufficiency condition of

koK (k=DkRk-1) K/5-k'/24+k/3-k/30

k
o ot <0.
PR TERE 62 2ut -

Simplifying gives

2k?2 6k*/5 — 3k 4+2k%2—1/5
61— 3k + 22 1)k -1y - S ha /
1% 2p

<0,
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and
2k%  3k* k3 —2k% +1
3k + ST 2k +1/5 2k
po 5u? 2u2

It follows that x < +/3u provided
2]{32 4 3
CIE R Y
po 5u? 2 k=3
which holds if . > 450. For smaller ., direct calculation verifies that indeed, x < /3u for small 1 as well as large.
Now that « is tightly bounded, asymptotic expansions can be used to bound

‘/ —12/2 55 Zpu j — Putj

We get:

‘/ *I2/2 L Zpu i~ Pu+j

< Pu—j —Pu+j e*‘(jJrl)/Q;L( (J —1)j (223 - 1)) ‘
Pu 1 6

+\/

v/l —1)j(2j - 1
‘Z —i+1)/ Y )6;23 ))"

It is not difficult to show that

Pu—j — Pu+j —i(i+1)/2u (J—-1j2j-1) ‘_ 0
il SRH e M Uy = 0(1/ ),
| B - L= |- oa/w

and that

V3 2 1‘3 u i(4 -
| /O 120 = Ly - Ze—gmn/zu(ﬂ %) = o0/n).
=1

Casual assessment of the coefficients shows that the coefficients each are less than 100. |
To complete the proof of Theorem 2.6, we have to show that

Zpug pquS

0<j<r P

N =

for 11 < 20000, say, since the asymptotics of Lemma 5.3 and error bound of Lemma 5.4 ensure that the summation is at
most .483 + 230 < £, when 12 > 20000.
For i = 1, 2 direct calculation gives

Z pu g p;ﬁ-] :l
5
0<j<k

For larger values of 1, a computer program was written to verify Theorem 2.6 for Poisson distributions with integer
means up to 1,000,000. |

A.6. ESTIMATING Z

o ()7
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LEMMA 6.1. Supposethaty =1 — >\ is in the interval [0, 1], and letyj = k + 6, where 0 < §,; < 1,and j > 1 and

k are integers. Then ﬁ < (k+1)'

Proof. For notational S|mpI|C|ty, let § = 9;. Solvmg for v gives v = ’“’L‘; Substituting gives the target inequality

(j.)l’“j—*-“ <710 4 oy oF — (’6”1 o <7 1k,5+ ey The lefthand side of this expression is maximized when j is
as small as possible, which is to say that j = &£+ 1. Thus it suffices to prove that 7,”5 <? T + W' Multiplying
(k+1)lk+1 : )

by (k + 1)! gives (k + 1)1 1 <? (1 =06)(k+1)+6=(1—-08)k+ 1, which has the form (k + 1)! =1 <? kz + 1. Now
the function (k + 1)!%7 satisfies (k + 1)!%7 < kz + 1 for z = 0 and z = 1. Butsince kxz + 1 is a straight line and the
exponential (k 4 1)!%7 is convex, the inequality must hold for all z in [0,1]. |

LEMMA 6.2. Let wy be the sum of the weights derived for - according to Lemma 6.1, so that, in the notation of
Lemma 6.1, we = 3" oty (1 = 65) + 22 jep—1.0) 950 Then for £>1,

¢
> v
k=0

1-4; &5

Proof. Letj = [%1 == + 5, where 0 < § < 1. From Lemma 6.1 — + @ where §; = d, since

~vj = £+ o67. Then

! (J‘)” =

(+y+6(1-9)

3
Yowp<jH1-0; =

Y
_ 1 N2
< C+y+~(1 'y)zé—i—l (1—7) §€+1-
Y Y aé

We can now write ZJ 0 j,v < > is o ¥k, where wy, is the sum of the (appropriate subset of) interpolation weights
1 —4; and §; as derived for the factor - in Lemmas 6.1 and 6.2.

Evidentially, wy < % In view of Lemma 6.2 and the definition of wy, it follows that for 0 < \ <1, Zogj (J,)% <
Zogk < Zogk % = 155, since the wy-s constitute a skew of the uniform coefficient weightings % toward larger
denominators.

A.7. A CONVEXITY CLAIM

LemMaA 7.1 (Folklore). Let (1,¢s. .., ¢, be n independent identically distributed Poisson random variables with
mean 1 and let V' = 3. In((;!). Sety = >_ ., ¢;, and define f(y) = E[2V|y], for z > 0 and y a non-negative integer.
Then f is strictly convex: f(y) —2f(y+1) + f(y +2) > 0.

Proof. We model < ¢1,¢>...,¢, > as the outcome of a Poisson Process that distributes balls among n bins over
time. Let b;(y) be the number of balls in bin j after y balls have been randomly dispersed among the » bins, with each
bin equally likely to receive any ball, and define the random variable (a function in z that depends on the outcome of the
experiments with y balls)

() = 5o W00,

As defined, the random variables W (y) and W (y + 1) are quite dependent, since the actual ball distributions only differ
by the placement of the (y 4 1)-st ball. By construction and the properties of Poisson processes, f(y) = E[W (y)]. Direct
computation gives:

fly)=2f(y+ 1)+ fly+2) = EEW () —2W(y+1)+W(y+2) | b1(y),b2(y), - -, bu()]]
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n ) n 2
- E ) =1 (b (W) 1— Z £ In(b;(y)+1)
z TLZ

J=1

+ Z Z ﬁzln(by‘ W+ +n(bi(y)+1) 4 Z ﬁzln(bj (¥)+1)+In(b; (y)+2)
i=1 j>i j=1

2
n

1
> E [W(y) 1—Zﬁzln<ba‘<y>+1>

Jj=1

since W > 0. The positivity of the discrete second derivative is thus established. |

Consequently, E[zV] = E,[E[zV|y]] = E,[f(y)] > f(E,[y]) = f(n), where E, denotes the expectation over the
probability space defined by y. In plain English, E[z"] is formed when the (1, (s . . ., ¢, are i.i.d. Poisson distributed
random variables with mean 1. If, instead, we use the uniform multinomial distribution that corresponds to distributing
n balls among n bins, we get f(n), which is a smaller function in .

A.8. CONDITIONING ON THE NUMBER OF BERNOULLI SUCCESSES

We first establish the following auxiliary fact.

LemMA 8.1 (Folklore). Let &, = Prob{by = 1]b; + by + - - - + b, = k}. Then & is monotone increasing in k.
Proof. Let(y = Prob{bs + b3+ ---+ b, = k}. Recall that p; = Prob{b; = 1}. Evidentially, &, = plckjfﬁ,

o > SE=1 Thus we must show that ¢2 > Cy1Gro1-

and we therefore have the following equivalence: &1 > & iff o ¢

Puty = [[{(1 —p;),and letr; = p; /(1 — p;). Then

=7 E TigTig * 0 Tiges

11 <ig<---<ig

whence

b 2% — 2j
52722 Z ( iy )Tilﬂ'g"'ﬁ%j Z T Tsy " Ts,

j=0 i1<iz<
c<igk—j {i1,eens igk—j}

However, (;_1(x11 IS equal to

b 2k — 2j

J=0 i1<ia<
<ok {i1vigp—j}

2k—2j§

Thus ¢? contains a superset of the terms in ¢,—1(x+1, and with corresponding coefficients of 72( b

) as opposed to

2(,35;331) which shows that the inequality is in fact strict, unless ¢, = 0. ||
LEmMA 8.2 (Folklore). Letby,bo,...,b, ben independent Bernoulli trials with E[b;] = p;. Let f be a real valued
n-ary function that is increasing in each coordinate. Let k = by + - - - + b, Then E[f (b1, ..., by)|k] is increasing in k.

Proof. The proof will be by induction on (n, k). The base cases are n = k — 1, and & = 0. In either instance,
it is trivially seen that E[[f(b1,...,bn)|b1 + b2 + -+ + b, = k + 1]] > E[[f(b1,...,bn)|b1 + b2 + -+ + b, = K]].
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So we may suppose that the inequality holds for (n — 1,k + 1) and (n — 1, k). Let f denote f(by,b2,...,b,) and let
B:b1+b2—|—+bn Then

EllfIB=Fk+1]] = E[[flbr = 1,02+ + by = k[|&k1 + E[[f]br = 0,ba + -+ + by =k + 1]J(1 — §k41)
= E[[f[b1 = 1,02+ - + by = K][&
+E[[f[b1 = 1,02 + -+ + by = K] (§xt1 — k)
+E[[fb1 = 0,02 + -+ + by = k + 1]](1 — &pp1)
> E[[flby =1,ba+ -+ by = k — 1]J ()
+E[[f1b1 = 0,b2 + -+ - + by = k] (Ek+1 — &) )
+E[[f[b1 = 0,b2 + - + bp = K]J(1 = Egt1) (1)

> E[[flbr =1,ba+ -+ by =k —1])& + E[[f]b1 = 0,b2 + - + b, = K]J(1 — &)
> E[[f|by +bo+ -+ b, = K]].

Notes:
(1): by the induction hypothesis for n — 1 Bernoulli Trials.
(1): since f is nondecreasing and &;+1 — &, > 0 as established in Lemma 8.1 |

As a consequence, if f is a non-negative function that is increasing in each coordinate, and E[by + ba + - - - 4 b,,] is the
integer &, then

IN

E[[f(b1,...,bn)|b1 + -+ +bp = K] E[[f(b1,...,bn)|b1 + -+ + by > K]

E[f]
= Prob{b; +---+b, > k} < 2E[f].

A

A.9. RESCALING BERNOULLI TRIALS

Let X,, = 21 + 2 + --- + x, be the sum of n independent Bernoulli Trials with mean p, and let and Y,, =
Tnt+1 + Tnao + -+ + Tnpm DE an analogous sum with mean v.

We demonstrate the standard fact that the probability distribution of X conditioned on X + Y = k is statistically
equivalent to the outcome of some )A(n conditioned on )A(n + ?m = k, where )A(n and f’m, where are analogously defined
Bernoulli Trials with E[)A(n + f’m] =k.

Let Prob{x; = 1} = p; and let Prob{Z; = 1} = ¢;, where X and Y are the corresponding sums of the #;-s. Let p be

a constant. Define g; so that 131'% = plf—;i.

Evidentially, assigning p values in the interval (0, co) maps E[X,, + ¥;,] onto (0, n +m), so there is a suitable p where
E[X, + Y,.] = k. To see that the conditional statistics are unchanged for all p € (0, 00), let Q(a1, o, . .., o) be the
(unconditioned) probability that z,, = 1 fori =1,2,..., kwhere 1 < oy < ag < -+ < a, < n + m, and all other
x;-S are set to zero. Similarly, let Q(al, aa, ..., ax) be the (unconditioned) probability that z,, = 1fori =1,2,... k
wherel < a1 < ag < -+ < ag < n+ m, and all other 3;-s are set to zero. Then

k n+m
Qlon,0a,...,ax) = ( 1fL;[)(Hu—ql-))
i=1 @i =1

n+m

1—gq
= Q(a17a27"'7ak)pk H ?;,
i=1 ’
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which shows that k-way successes for X, +Y,, have an unconditioned probability that is the same as that for X + Y, apart
from a uniform rescaling factor of p* H?jlm }__—Zq) Consequently, both X + Y and X + Y exhibit the same conditional
probability statistics.
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