An isoperimetric inequality for self-inter secting polygons
Alan Siegel!

COURANT INSTITUTE OF MATHEMATICAL SCIENCES
NEW YORK UNIVERSITY
New York

Abstract

Let P be a non-simple polygon in B2 with segments that are directed by a traversal along its vertices. Let Z be a
multiset of oriented simple polygons (cycles) built from an in-place decomposition and regrouping of the directed located
segments in P.

For any x in ConvHII(P), let w(x) be the maximum of 1 and the number of cycles in Z that contain x in their
convex hulls. For any cycle C'in Z, let W, (C) and W_(C) be the number of cycles in Z that contain C' their convex
hulls and have, respectively the same/opposite orientation as C.. Let & = 2v/2 — 2, and W (C) = W,.(C) + & - W_(C).

Let a be the area of the largest polygon that can be constructed from translations of the segments in P. Then

/ w?(x)dx + Z W(C)(Area(ConvHII(C)) — Area(C)) < a.
x€ConvHII(P) cez

With the exception of &, no subexpression can be increased by a constant factor, and « cannot exceed ‘/f—l = .869.

Previous bounds used the multiplier w(x) rather than w? and set W = 0, or set W = 0 and replaced a with %, where
p = Arclength(P). This latter formulation is elementary, and can be strengthened with, effectively, « set to 1.

1 Introduction

Suppose a string of length [ is wrapped with & full rotations into a circular shape. Evidently, the circumference of the
circle is % and its area is %. Thus, unwinding the string to form a simple circle with circumference [ increases the
enclosed area by a factor of k2. Of course, this rescaling relationship extends to any figure, and we should expect this
property to generalize. Suppose P is a polygon that is not simple. Let R? \ P have k bounded connected components
Py, Ps,..., P Intuitively, the unsigned winding number w; of a component P; is the minimum, among all continuous
paths from P; to the unbounded component of R? \ P, of the number of crossings that the path has with P. This winding

number is used to show that the edges of a polygon P can be rearranged to form a simple polygon whose area is at least

Area(ConvHII(P)) + Z(wl2 —1)Area(F;).

Additional geometric characteristics can strengthen this bound. For example, suppose the string forms a semicircle
that comprises a closed loop with no area. Taking the convex hull of this point-set produces a region with just half the
area of a full circle. Similarly, the flip of a concavity in the boundary of a simple polygon increases the area by twice the
gain that is attained by replacing the errant portion of the boundary with a straight support segment.

However, when the polygon is no longer simple, the flips can become more subtle, and this property can sometimes
fail to hold. Still, a rearrangement of the boundary segments of a polygonal region R ought to yield an area of at least
2(Area(ConvHII(R)) — Area(R)) if, say, R has a consistent orientation. And if R is just part of a more complicated,
overlapping figure, then the factor of 2 should be increased to reflect additional area gains.

1.1 Basic Definitions

Technically, a polygon P is a finite number of segments connected end-to-end to form a closed path. If P is a simple
polygon, let | P| denote the area of the region bounded by P. If P is a region, let | P| also denote its area. If p is a scalar,
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let pPP denote a rescaling (dilation) of P by the magnification factor p, so that |pP| = p?|P)|.

The difficulty with standard winding numbers is that they are signed, and can be zero for points of a region that are
fully enclosed by a fixed boundary. Consequently, we must define a better winding metric. The metric will be relative to
various decompositions of P, including one that is canonical.

Let P be a finite polygonal curve in R2. Let each segment in P be directed according to a fixed traversal of P. We
say that the point-set Py is a simple subcycle of P if Py is a simple cycle, Py is contained in P, and P, becomes an
oriented cycle if each segment of P, is directed in the same direction as its containing segment in P.

The use of the word point-set in this definition is intentional. A segment in P, might comprise only a portion of
a segment that belongs to P. Similarly, the sequencing of edges in P, might not be the same as in P. However, each
subsegment will be oriented in the same direction as the full segment.

An oriented simple subcycle is negative if it winds about its interior in a clockwise direction, and is positive otherwise.
We extend this definition to semisimple cycles, which include two kinds of degenerate limit cases.

The first degeneracy extends a semisimple cycle to include an open chain or even a tree of simple cycles, which all
have the same orientation. Each pair of cycles must either be disjoint or intersect at a single point. This intersection
structure implicitly defines a graph where each simple cycle is represented by a vertex, and an edge represents a pair of
cycles that intersect. The definition of semisimple cycles requires the graph to be acyclic and connected. Indeed, if the
graph were not acyclic, then the edge collection would contain both a positive and a negative subcycle.

The second degeneracy accounts for cycles with an empty interior. The orientation of such a cycle S can be in-
terpreted as being either positive or negative. In this case, we do not care what orientation it has, but do require any
positive-length segment e C S to be covered just twice by elements in S. These degenerate cycles can be subcycles
within a semisimple cycle.

A decomposition of P is a collection of oriented located semisimple cycles whose union defines the same multiset of
directed segments as the those in P.

The canonical decomposition of P is based on maximal semisimple subcycles. An oriented simple subcycle P is
maximal if it is not contained in the boundary plus interior of some other comparably oriented simple subcycle of P.
The decomposition is as follows: Repeatedly identify some maximal subcycle in P and remove it. For completeness, it
should be observed that if several cycles are congruent and overlap perfectly, it suffices to select one copy per iteration.

It is not difficult to show that, apart from the semisimple subcycles with zero area, this decomposition of P is
independent of the ordering of the extraction steps for the maximal positive and negative subcycles. The decomposition
can be made unique by treating subcycles with an empty interior as third cycle type that cannot be combined with
positively or negatively oriented semisimple cycles.

Let Z be a decomposition of P into semisimple subcycles.
Let, unless otherwise stated, x be the constant /2 — 2.

For any x in ConvHII(P), let w(x) be the maximum of 1 and the number of cycles in Z that contain x in their
convex hulls.

For any simple cycle C, let W, (C) and W_(C) be the number of cycles in Z that contain C' their convex hulls and
have, respectively the same/opposite orientation as C. Let W(C) = W, (C) + k- W_(C).

Let Ap be the area of the largest polygon with edges that can be formed from segments having the same multiset of
lengths as P.

Theorem 1. With the parameters as defined:

/ w)?dx + 3 W(C)(|ConuHIU(C)| - |C)) < Ap.
x€ConvHII(P) cez

The proof requires some development that begins in Section 2, where a slightly stronger bound is formulated in terms
of the area of the largest polygon that can be constructed from translations (without rotation) of the segments in P.

1.2 Prior results

The standard Isoperimetric Theorem for polygons with a fixed set of edge lengths is as follows (cf. [4]):



Theorem A. Let P be a simple polygon. Then among all simple polygons with edge lengths that are the same as those
of P, those that can be inscribed in a circle have the greatest area.

This result dates back 22 centuries to the ancient Greeks. On the other hand, the historical record seems to show that
there were no correct proofs until the latter half of the 19¢* Century [4], and generalizations of this bound are still a
matter of interest. For example, suppose that P is a polygon that is not simple. Let the bounded components of R? \ P
be {P;}. In 1947, Radb6 proved a bound of the form [7]:

Z |w;|Area(P;) < A,

where w; is the winding number of points in P; with respect to P and A, is the area of a circle with perimeter equal
to that of P. Osserman [5] points out that the bound is also a special case of an isoperimetric inequality established by
Federer and Fleming [3, 1, Cor. 6.5 and Remark 6.6]. In 1968, Pach [6] showed that Area(ConvHII(P)) < Ap, where
Ap is the area of the largest polygon with sides congruent to those of P, and is as characterized in Theorem A.

In 1986, Bordczky, Barany, Makai, and Pach proved, among other things, a bound [2] of the form

/ w(x)dx < |Sor(P)|,
x€ConvHII(P)

where w(x) is defined in Section 1.1, and |Sor(P)|, as formalized in Section 2, is the area of the largest polygon that
can be constructed from translations (without rotation) of the segments in P. In 1971, Banchoff and Pohl [1] improved
the Radd formulation to use the multipliers w?:

> wiArea(P) < A,

In Theorem 2, we combine the strongest characteristics of both the Banchoff and Pohl bound and that of Bérdczky,
Barany, Makai, and Pach. From a technical perspective, the use of |Sor(P)| as opposed to A, and the inclusion of
the convex hull pose impediments to stronger bounds. For example, the orientation of cycles is irrelevant when the
target area bound is defined in terms of A,, because the direction of a cycle can be reversed, and the new figure with its
new boundary will have the same arclength, and will define the same components in the plane. Such a cut-and-reverse-
connections approach can be combined with the Brunn-Minkowski inequality to prove a bound comparable to that of
Banchoff and Pohl as follows.

Let P, be a polygon that is not simple. An equivalent polygon with positive orientation can be defined in terms of the
following decomposition. Given P;, let U; be the unbounded component of of R2\ P;; set Q; = OU; with the orientation
taken to be counterclockwise. Let P;; comprise P; minus those segments pieces that (apart from orientation) were
combined in-place to produce @;. The equivalent polygon is @ = UQ;.

Then convexifying flips (or the equivalent as formalized in the beginning of Section 2) plus the Brunn-Minkowski
2
inequality can be used to show that 2|ConvHII(Q) N U1 |+ Y~ i*|Qi NUiy1| < 4-, where Py has an arclength equal
to p. Inasmuch as the derivation is straightforward, we omit the details.
However, this inequality and the Brunn-Minkowski inequality by itself seem inadequate to establish Theorems 1
and 2, and the use of cycle reversals seems inappropriate for cycles with crossing edges in this case. These theorems

require that the edge set must be preserved without breaks that might otherwise increase the target area bounds of A p
and |Sor(P)].

2 Preéliminaries

Let X be an oriented simple polygon. If the figure is not convex, we can find a global support line £ =wv;v;, which
intersects X at two vertices and includes all of X in one of its (closed) halfplanes. The vertices v; and v; split X into
two subpaths.



Suppose that X N7;u; = {v;, v, }, so that T;v; seals off some pocket of X as shown.
Steiner symmetrization flips (reflects) one of the subpaths about £ to increase the area
of the resulting figure while preserving the edge lengths. As a practical matter, it is
simpler to reverse the sequencing of these edges, which effectively rotates the bound-
ary portion about the midpoint of 7;7; (but does not reverse their direction). While
iterations of either operation lead, eventually, to a convex region with increased area,
the virtual rotation operation is easier to analyze. It simply rearranges the segment or-
dering without changing their directions. Since this procedure can produce no more
than (n — 1)! such arrangements, one of these polygons must have a maximal area.
This polygon must be convex, since otherwise this procedure could further increase

the area.

Definition. Let ¢ be a ray or directed line. The angular direction of £ is the measure of the angle formed by £ and a
horizontal ray h that originates at some point on £ and runs to the right.

For specificity, we take the direction of an angle to be counterclockwise as measured from h to £. Thus, angular directions
are unique (mod 27).

Definition. Let X be an oriented polygon. Let Sor(X) be the figure that is formed by translating the edges of X (without
rotation) to produce a connected chain with the edges ordered according to a sorting by their angular direction. If X is
simple, we will require that Sor(X) have the same orientation as X

Since X defines a closed curve (or if X comprises a collection of closed curves), the vectors that represent the edges sum
to zero, and Sor(X) will, therefore, be a closed polygon.

It should be clear that the resulting figure is convex. Evidently, Sor(X) is the only translation-based edge rearrange-
ment that results in a convex polygon (up to a reversal in orientation that is given by reverse sequencing the segments in
Sor(X)).

The Sor transformation can also be applied to any set of directed edges. Formally, if Y is a path, Sor(Y") can be
defined by adjoining, to Y, an additional segment that produces a polygon, applying the Sor, and then deleting the new
edge from the convex figure.

We will actually show that for any decomposition of P:
Theorem 2. With the definitions as stated for Theorem 1,

/ w(x)?dx + Z W(C)(|ConvHI(C)| —|C|) < |Sor(P)|.
x€ConvHII(P) cez

This inequality is a little stronger than our target bound, but is technically preferable to prove. With this formulation,
which prohibits rotations, we are free to break and rearrange individual segments and use each piece any way we please
in intermediate constructions. Once the final edge collection is sorted by direction, all of the pieces will come back
together to reform a translation of original segment.

Definition. Let X and Y be polygons. Let X UY represent both a collection of edges that comprise the union of segment
sets in X and Y, and (when the context is appropriate) the union of the physical point-sets denoted by the polygons X
and Y.

Let X and Y be polygons. Define X @Y to be Sor(X UY).

For convex polygons X and Y, X @ Y is essentially equivalent to the traditional Minkowski sum in the sense that
ConvHII(X ®Y) is the Minkowski sum of ConvHI1(X) and ConvHII(Y'). However, there is one important difference.
If X and Y are directed with opposite orientations, then the definition is ambiguous in that Sor(X U Y’) represents the
corresponding Minkowski sum where one of the two polygons has its edges reverse sequenced. This reversal gives a
polygon with the same collection of directed edges, but an opposite orientation. Then the two polygons can be combined
via the usual definitions for the Minkowski sum. Of course, we never use this construction explicitly, and need not
resolve the ambiguity in terms of what orientation the resulting polygon should have.

Let P be a convex polygon, and let £;, and £g be, respectively, vertical support lines on the left and right sides of
P. These lines split P into an upper boundary and a lower boundary. If a segment of P is collinear with a support line,
we can arbitrarily split the edge into two segments, and declare that the upper piece belongs to the upper boundary, and
likewise for the lower piece. Let P be the upper boundary curve of P and P the lower.

Let the edges of Pbeéy,é,,..., é;, and let the edges of P be defined analogously. A basic fact, which is easily



verified, is that

L1
|ConvHIL(P)| = 5 D len x éil,
h<i<j

where the operator x denotes the vector cross product.
If @ and R represent collections of directed edges, let @ «* R = 2ecq, ferle X fl-

Let @ and R be convex polygons with upper and lower boundaries Q,Q, Rand R. Evidently,
Q@O R|=|Q|+|R|+Q*R+Qx*R.

Similarly, .
Q= §(Q*Q+Q*Q)

The major focus of the proof is to attribute area coverage to the appropriate pairs of edges that belong to different
cycles. The chief difficulties will be to account for the area increases due to the convex hull, and to devise a suitable
organization for the collection of edges that form the region. Once these issues are resolved, the rest of the proof will
be simplified by various inequalities of the Brunn-Minkowski type for two dimensions. The basic Brunn-Minkowski
inequality is as follows:

Theorem B [Brunn,Minkowski] Let @ and R be convex polygons. Then

Q@ R| > Q[ +2V[Q| - |R| + |R].

However, Theorem 2 seems to require a slightly stronger formulation that is stated below in Lemma 1. Theorem B
will be established as a corollary of Lemma 1.

Definition. Let ) be a connected region. Define the horizontal diameter of ) to be the width of the smallest infinite
vertical strip that contains Q.

Lemma 1. Let @ and R be oriented convex polygons with the equal horizontal diameters. Then
|Q ® R| > 2|Q| + 2|R|.

Proof: Suppose the proposition is false for polygons @ and R. The basic idea is to use simple reshaping procedures to
change @ and R in a way that increases A = 2|Q| + 2|R| — |Q @ R| and yields regions where the corresponding A is
easily seen to be zero.

LetU = @ @ R. Letthe edges of @, R, and U be g1,q2,---,qn, 1 -.-Ti, u1,- .., upsq In particular, the edges are
connected in consecutive order to form their respective polygons, and a single side of U might be represented by two
segments u; and us41, if the corresponding edges for @@ and R are parallel.

Suppose ¢; does not intersect a vertical support line of ), and suppose g; is not parallel to any edge in R. Let u,
correspond to ¢;. Remove u, from the figure U while keeping all other segments in place. Extend u,—1 and usy; t0
intersect. Replace ¢ by the two extensions to the original segments u,_1 and us41. Note that if u,_; and us4 fail
to intersect on the remote side of u,, then us must touch a vertical support line of U, whence ¢; must also do the same
with respect to Q. It is easy to see that this construction increases |U| and |@Q| by the same amount, and hence A must
increase.

This procedure can also be applied to an edge that touches a vertical support line provided it is not vertical. Suppose,
for example, that u, touches a vertical support line on the left, and is connected to u, 1 on the right. In this case, the
vertical support line can be treated as w41, with us_; extended to meet it.

These transformations can be applied to produce new regions @ and R where every edge that is not vertical in one
polygon has a corresponding parallel representative in the other.

Now let g5 be an edge in @ that is not vertical, and let r, € R be parallel to ¢gs. Suppose g; is longer than r;. Let
the lines £¢ and £ be parallel to ¢, and r,, have distance e, for sufficiently small €, from their respective segments, and
be located so that £ intersects R and £, is exterior to (). Extend (or shorten) the sides adjacent to g5 and r; so that
they terminate at £ and £g. Let g, and g; be replaced by the corresponding segments of £ and £g, as delineated by the
modified sides of R and Q. These modifications change () and R in a way where ) & R is unchanged, but |Q| + |R)|



has increased, and the two new sides are closer in length. (The construction will fail only if ¢; is connected to a vertical
segment and r, has no vertical connection on the corresponding side in R.)

It follows that wherever this scheme can be applied, corresponding parallel segments can be made to have equal
lengths. By inserting vertical segments of length 1, say, on both sides of @ and R, and corresponding segments of
length 2 for U, the non-issue about non-vertical sides that attach to vertical edges can be resolved. The insertion scheme
preserves A. Consequently, () and R can be transformed so that each pair of parallel segments (that are not vertical) have
equal length. Corresponding vertical segments for () and R need not be equal, but the difference in the heights of the two
corresponding pairs of vertical segments must be the same, since all other pairs of corresponding sides are congruent and
parallel for the upper boundaries of @ and R as well as the lower. Since the diameters are the same, each corresponding
pair of vertical edges can be replaced by the average of their respective heights. The new figures will still be closed and
the sum of their areas will be unchanged. U will also be unchanged. With these modifications, () becomes a translation
of R, and hence |U| = 4|R).

It follows that this optimized A is zero and hence the theorem is true. I

Corollary 1 Let @ be a set of k convex polygons with equal horizontal diameters. Then

|Sor(Ug 5@ = k 3 1.

QeQ

Proof. Lemma 1 says that for Q, R € Q, |Q & R| — |Q| — |R| > |R| + |Q|- And since |Sor(UQ€§Q)| - EQe@ Q| =
® R| - |Q[ - |R]),

0co®@ Z|Q|>— > (QI+IB)= (k-1 0l

QeQ Q,ReQ; Q#R QeQ

1
2 20,red; g+r (1@

|Sor(U

Corollary 2. Suppose @ and R are convex polygons with horizontal diameters in the proportion 1 : p. Then
1
Q& R > QI +|R| +plQ| + Z| B

Proof. According to Lemma 1,

R R, _ 2
(VpQ) & (5 2 20veQl+ 251 =2 2p|Q1 + |,

The corresponding vector formulation for |Q @© R| gives Q—@ cross products that sum exactly to |Q|, R—R cross
products that sum exactly to |R|, and @Q—R cross products that are exactly the same as the \/ﬁQ—% cross product
terms.

Upon identifying equivalent portions, it follows that

1
|Q ® R| > |Q| + |R| + p|Q] + ;IRI- |

If p is unknown, p can be replaced with the value that minimizes p|Q| + %|R|.
Corollary B [Brunn-Minkowski].
Q@ R| > Q[ +2VI[Q|- |R| + |R].

Proof: Solving for the minimum gives p = +/|R|/|Q|. Substituting for p in Corollary 2 gives the Brunn-Minkowski
inequality in 2 dimensions. 1

Corollary 3. Let P and ) be convex open paths with the same orientation. Let P have endpoints p; and p., and let ¢;
and ¢, terminate (). Suppose that p;p2 and g gz are equal in length and parallel. Suppose that P has a total rotation that



is bounded by 7 and likewise for ). Finally, suppose that P and (), when translated to have their endpoints all on one
line, both lie on the same side of the line.

Then
|ConvHII(P @ Q)| > 2(|ConvHII(P)| + |ConvHII(Q)]).

Proof. If P and () have equal diameters with respect to support lines that are all parallel, then the claim follows from
Lemma 1.

If not, P and () can be translated to have their endpoints on a line £ so that the
curves intersect at a point or segment, but have convex hulls that are otherwise
disjoint, and the endpoint of P that is closest to () is a positive distance from Q’s

o) s} q, g, closest endpoint. Let these two endpoints be p, and ;.

For expositional convenience, let £ be the z-axis, and let P and () be pulled apart so that p- is at the point (—d, 0),
q1 is at (d,0), and let each curve be completely contained in, respectively, the second and the first quadrants. Imagine a
ray that, in physical terms, is attached to a hinge located at the origin; its nominal direction is in an upward direction, but
it is free to rotate in response to exerted torques.

\ Now let P and @ be slowly brought toward each other, with the origin kept as the

midpoint between p, and ¢; . Eventually one of the figures bumps into the ray and

q causes it to rotate. The process stops at moment the second curve makes contact

with the ray. Let this fixed ray be 7. Let p be the point in P N7 that is closest to

n n O q, q the z-axis, and let g be the corresponding point for @ N+ Let P be P with the

? path from p to p, replaced by p, O, where O is the origin. Define Q analogously.

Let each curve have a counterclockwise rotation. By construction, P andA@ have equal diameters with respect to
support lines parallel to 7. By Lemma 1, [ConvHII(P & Q)| > 2(|ConvHII(P)| + |ConvHII(Q)]).

Evidently, the curve Pa& @ will begin with a directed segment that is parallel and congruent to 0_1>) and will likewise

end with a translation of (]6. Similarly, P & @ will begin with a copy of the path connecting p» and p along P, and end
with a copy of the path that connects ¢ and ¢; along Q.

Let a be the area of the region bounded by the z-axis, Op, and the path connecting p» and p. Let b be the analogous
area corresponding to the path connecting ¢ and ¢;.

By construction, L
|ConvHI(P & Q)| = |ConvHII(P & Q)| +a+b,

and by Lemma 1, o
|[ConvHII(P & Q)| > 2(|ConvHII(P)| + a + |ConvHII(Q)| + b).

Substituting for |ConvHII(P & Q)| shows that
|ConvHII(P & Q)| > 2(|ConvHII(P)| + |ConvHIL(Q)|) + a + b.

Several proofs will use simple reshaping procedures that are now formalized for expositional convenience.

Lemma 2 (The Slicing Lemma). Let @ and R be polygons. Let a straight segment split @ into two connected regions
@1 and Q2. Then
Q& R| > |Q1 @ R| +|Q2]-

Proof. Let P = ; @ R. Let P be the union of ConvHII(P) and a translation of ConvHIl(Sor(Q2)) where the two
figures have their corresponding copies of the edge that splits ¢ overlap perfectly. Then |P| = |Q1 & R| + |Q2|. The
lemma follows from noting that |Sor(0P)| > |P|. |

A slight generalization is the following.



Lemma 3 (The Substitution Lemma). Let @) and R be oriented polygons. Let the consecutive vertices of @ be
q1,92,---,qn. Let P be an oriented polygon with consecutive vertices py, ps, - - ., Pm, and suppose that this sequence
contains vertices of () as a (not necessarily contiguous) subsequence but in the natural order as listed.

Then
|P & R| >|Q & R| + [Sor(P)| — |Sor(Q)|-

Proof. For a non-convex polygon X, let X denote the upper boundary of Sor(X), and likewise let X denote the lower.
Since [P @ R| = |Sor(P)| + |Sor(R)| + P« R+ P+ R,and |Q & R| = |Sor(Q)| + |Sor(R)| + Q * R + Q R, the
theorem will follow if we can showthat P+« R+ P+« R > Q xR + Q = R.

Of course area is isotropic; it is independent of the direction of the support lines that we use to define the upper and
lower envelopes of each polygon. Consequently the Q—R cross products Q+ R+QxR = |Q@® R|—|Sor(R)|—|Sor(Q)|
comprise an isotropic sum.

Let e be asegment in Sor(Q), and let g be the (parallel congruent) edge in @ that corresponds to e. Let f1, fo, ..., fx
be consecutive segments of P that form the path that connects the endpoints of g and is in the same direction as g. Let the
endpoints of g be o and 3, and let the endpoints of f; be o and «y. Let X be the polygon formed by taking @, removing
g, and inserting f; and the (suitably) directed segment v3. We must show that the sum of the X—R cross products is
at least as large as the sum of the Q—R cross products, since the replacements can be continued to substitute all of the
edges of P for their counterparts in .

Let support lines parallel to f; be used to define the upper and lower boundaries of Q & R and X & R. We are free to
declare that f; is in either the upper or the lower boundary of X @ R, and select the one that contains y3. By convexity,
it follows that g is also in the corresponding upper or lower boundary for @ @ R. Since all of the other edgesin Q U R
must (or can) be in the corresponding boundary portions of both @ & R and X & R, it follows that the cross products in
Q © R must yield a sum that cannot exceed that for X @ R. 1

Lemma 4. Let P, ), and R be convex polygons with ConvHII(P) D Q. Then
|P®R|—|P|>|Q® R|- Q|

Proof. It suffices to show that [P & R| — |P| — |R| > |Q @ R| — |Q| — |R|. Let P be replaced by a rescaled polygon
aP, where the new polygon is the minimum sized figure that is similar to P and still contains some translate of ). Let
@ be placed in a position of containment.

Since |aP & R| — |aP| — |R| = a(|P & R| — |P| — |R|), it suffices to prove the bound for the reduced P.

Let two or three points in P N @ be selected that split both P and @ into two or three subpaths, where each subpath
has a rotational change in its directed segments of at most 7. Let P; and @; be the resulting subpaths, fori = 1,2,3 or
i = 1,2. Suppose that for each ¢, P; and (Q; have common endpoints and lie on the same side of the line through their
endpoints.

Let the first edge of @; be extended to intersect P; as shown. The extension slices
off an initial portion of P;, which is then reapportioned as to two similar subpaths as
shown. To be specific, let the extended edge have endpoints r and ¢, and let s be the

second vertex of ;. then the two sub paths are %pi and %pi, where p; comprises

the path along P; from r to ¢. The net result is that the new edge arrangement now hits
/ the second vertex in @;, and the procedure can now be applied to the next edge in @;.

Let 131' be the final arrangement that intersects each vertex of @;, and let P be the concatenation of the ]3, The
Substitution Lemma ensures that
|P & R|>|Q & R| +|Sor(P)| - |Sor(Q),
whence [P @ R| — |P| — |R| > |Q @ R| — |Q| — | R|, which gives the desired bound. I

Some applications of Lemma 1 plus a few additional observations will help bound the area that can accrue from the
convex hull of two intersecting convex sets.



Definition. Let ) and R be convex polygons that intersect. Each connected component of ConvHII(Q U R)
(ConvHI(Q)UConvHII(R)) will be a pocket of QU R. Each connected component of (ConvHIIl(Q)UConvHII(R))
(ConvHII(Q) N ConvHII(R)) will be a will be a finger of Q U R.

Lemma 5 Let C and D be simple polygons with the same orientation. Suppose C = 6Coanll(6') and D =
8Coanll( ) are congruent k-gons with correspondlng edges that are paraIIeI Let the edges of C be {e;}5_,. Let

C be partitioned into & edge-disjoint polygonal paths_ 01,02, Ck where C; and e; have the same endpoints, for
i=1,2,...,k SetC} = 8ConvHII(C; Ue;). Let D1, Do, ..., Dy and Di, D ..., D; be defined analogously in

terms of D and D.
Then

-

IC @ D| > 4/C] +2 3 (CH + D} ).

Proof. Fori = 1,2,...,k, let C; = C;j \ e;, provided |C;F| > 0, and otherwise let C; = e;. Let D1, Ds,..., Dy be
defined analogously. Let the vertices of C be vy, va, ... v and e; = T;u;41. Let the vertices of D be wy,ws, ... wy and
fi = wyw; 1. We can assume that e; and f; are parallel and of equal length.

Let C—% = (C'\ e;), and define D% analogously. For convenience, let all vertices, segments and subfigures retain
the names of individual constituents used in their original definitions despite any subsequent processing.

Momentarily fix 4.

Construct a (possibly degenerate) parallelogram that has side 7;v;17, is contained within C'—%, and has as large an area
as possible. Let the figure be v;cf ¢ v; 1. Let ] and ¢ be the additional vertices defining an analogous parallelogram
for C;.

Let ¢ and ¢f cut C~* into the consecutive subpaths o, i and ~;". Let ¢;” and ¢ cut C; into the subpaths ],
pi" and ;.

Let df and dj define comparable locations on D~, and cut D¢ into the consecutive subpaths a;f, b} and g;'.
Similarly, let d and d; be the analogous vertices for D;, and cut D; into the subpaths a;”, b; and g;.

We can adjoin o and v;"; a; and v;. Let the resulting figures be C’_ﬁ and C"'. Let them share the adjoined
endpoints that were originally named v; and v;11. Evidently, ConvHII(C_ H) OC; I . Likewise, adjoin a; and g;", and
adjoin a; and g; to get, respectively, D :"‘ and D, I,

The Brunn-Minkowski inequality ensures that

|C7} @ D7}l =2|C~}| +2|D7|,
since the two figures are translations of each other. It also guarantees that
icie o - lczi > 310N,

Of course the same properties hold for D:Iil and D;”.

Letef =8 @bf,andi; =8, @b; .

To account for twice the area of the parallelograms v;c; cf vy 1, viey € vip1, vidy df viy1, vidy dy viy1, consider
the following figure E;.

Figure E; is formed by adjoining o ®7; @a*@gz , the segment connecting the endpoints of .}, v;F ®a; ®g; ®a],
and the segment connecting the endpomts of ¢; . Itis evident that the parallelogram with vertices defined by the located

endpoints of of L;f and ¢;” have at least twice the area of the four parallelograms. Let H; be the infinite strip formed by
two parallel lines connecting the endpoints of ¢ with the corresponding endpoints of .;". We have already seen that the

area of the pointset that is bounded by E; and is exterior to Hj; is at least 2|C:|i|| + 2|D:ﬁ| + 2|Ci_“| + 2|Dz._“|.

We can now account for all of the pockets C; and D;. The construction logically replaces the it* edge in C @ D with
the reverse sequenced ¢; . Let €2 be the resulting figure when such replacements are done for all . Although © might not
be simple, it follows that

e C @D = [Sor()| > |Ei| > 2|Ds| + 2|Cs| — 2|ConvHII(B )| — 2|ConvHIL(b] ).
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By construction and the Substitution Lemma,
ICe D| > |0auic;ub ).
Hence,

ICoD| > [Sor(@)|+> (2eC; oD -[Sor()))

Y]

Sor(Q)] + 2 (1D | +|C}t| — |ConvHIL(B; )| — |ConvHII(b; )]).

From the Slicing Lemma, the definition of 2, and Lemma 1, we have:

|Sor ()| > 4|C| + > |ConvHIl(1; ).

From Corollary 3, it follows that

|ConvHI(e] )| > 2|ConvHI(B; )| + 2|ConvHIIL(b; ).

Consequently,
|C @ D| > 4|C| + 2 _(|ConvHII(C;)| + |ConvHII(D;))).

Lemma 6 Let C and D be simple polygons with opposite orientations. Suppose C' = 6Coanll(5) and D =
dConvHII(D) are congruent k-gons with corresponding edges that are antiparallel. Then for some k € [2v/2 —
2 \/1371]

b 3 1

IC @ D| > 4|C| + (1 +#)(IC| = |C| + |D| - DJ).
Moreover, the lemma cannot hold for any « that exceeds @ ~ .869.
Proof. From the Brunn-Minkowski inequality,

Ga D] > |Sor(C)| +2y/|Sor(C)]- [Sor(D)| + |Sor(D)]

4/C| + (IC] - €| + D| - |D|) +2(/IC| - 1D|) - |C])

v

~ ~ ~ ~ . 1I4+a)1+0b)—-1
4|/C|+ (IC] = |Cl + D| - |D]) + 2(|C| - |C| + D| - |D|)(O§P5‘E‘51 PR

v

);

whence the lower bound for « follows from the minimizing assignmentsa = 0, b = 1.

The upper bound for « follows from the counterexample as drawn. C is aconvex equian-
gular hexagon whose sides have the alternating lengths 1+6—‘/ﬁ and % Dis actually
degenerate, since it can be viewed as the union of four triangular cycles. It has three
trapezoidal pockets as shown. The figure is illustrated with its edges reverse-sequenced
so that the orientations of C'and D are the same, but the shape of D is effectively rotated
by 7. When this version of D has its pockets reverse sequenced, the resulting figure is
similar to C' and with parallel corresponding sides. The scaling factoris 1 : Hcﬂ Thus, C @ D is similar to C with a

scaling factor of ”T*/ﬁ : % Inasmuch as the calculations are straightforward, they are omitted. i

Lemma 7. Let C be a convex polygon. Suppose that C and D are collections of, respectively ¢ and d polygons whose
convex hulls are translations of ConvHII(C). Suppose that the polygons in C have clockwise orientations, and those in

D have the opposite orientation. Then
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Sor(Ugeg@| 2 (e + d)*|Cl + (c+k-d) Y_(IC] = 1Q) +(d+k-<) Y (IC] = Q).

Qea Qeﬁ

Proof. The inequality is a direct consequence of the derivation in Lemmas 5 and 6, and its decomposition into area-
contributing cross products. i

The proofs in Section 3 use cases based on structural characteristics of intersecting cycles. We conclude the prelimi-
naries by defining these characteristics and identifying a trivial property for one such structure.

Definitions Let  and R be convex polygons that intersect. Let U = ConvexHull(Q) U ConvexHull(R), T =
Convex Hull(Q) N ConvexHull(R), and H = ConvHII(U).

Let F be a finger of U, and set D = (0ConvHII(F)) NI, so that D is the best straight edge
segment that slices F' off of U. Let D have endpoints oy and ;. Let D = 8F N §H, so that
the polygonal curve D comprises the common border between F and the exterior of H. Let
the endpoints of D be ay and 8-, with the naming arranged so that the quadrilateral ay a2 8251

is simple. The finger F is slender if the two infinite rays a;a» and ﬂﬁ@ intersect. Otherwise
the finger is fat.

The Slicing Lemma will enable a finger F" to be trimmed so that the modified F will have a
boundary along the exterior of (the modified) U that comprises two or three edges. A finger
with three edges along this external boundary will be said to have a flat fingertip, and a finger
with just two such edges will be said to have a pointed fingertip.

There are also two types of pockets.

Let P be a pocket of U. Let D = (OP) N &H, so that D is the straight edge segment that
seals off the pocket inside of H. Let d; and d» be the endpoints of D. Let « be the pocket
cusp (OP) N @ N R, so that dy, d, and -y are the strict extreme points of P. Let f; be the

last intersection point of dl_'y> and U, and likewise let f, be the analogous intersection point
for CE/) and U. (To be more precise, f; is the unique point that is contained in cﬁ NU and
maximizes the length |d; fi|.) We say that P is a deep pocket if the infinite rays cm and
ds f1 intersect. If they do not, the pocket is shallow.

Note that convexity ensures that the implicitly defined triangles Adyy f1 and Adyy f» are contained within their respec-
tive fingers, and Ady~yd; contains its pocket P. As a consequence, the following triviality about quadrilaterals can be
used to bound the area of a shallow pocket in terms of the areas of its neighboring fingers.

Lemma 8. Let ds f1 f2d; be a convex quadrilateral as shown. Let its diagonals ds f» and d; f; intersect at the point ~.

1) If dy fy is parallel to d; fo, then

|Adydyy| = V[ Ady fr] - [Ady f2rv].
2)If Ldafifo+ Zdifof1 < m,then

|Adiday| < V/|Ada fir - |Ada fory]-
) If Ldafifo + Zdi fofr > m, then

|Adydyy| > /| Ada firy] - | Ady f27).-
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Proof.
1) The proof is a straightforward consequence of the similarity relationship: Adaf1y ~ A fady7y.

2) Draw a line through d; that is parallel to d» f1. Let it intersect d» f- at g. The proof follows from part 1 as applied
to the quadrilateral ds f1gd; .

3) Draw a line through d; that is parallel to d» f1. Extend da f» to intersect the line at g. The proof follows from part
1 as applied to the quadrilateral ds f1 gd;. |

3 Moreelaborateinequalities

The main result of this section is as follows.
Lemma 9. Let P be a polygon that is decomposed into a set Z of semisimple cycles.
Then

|Sor(Usezs)| > |ConvHII(P)| — | Usez ConvHII(s)|

+ Z |ConvHII(s)| + 2 Z |ConvHII(s) N ConvHIL(t)|.
s€Z {s,t}CZ

s#t
The proof is by induction. A stronger formulation of the base case is first established as a separate lemma.
Definition. Let v and w be located semisimple polygons. Define the function
1 ifv C ConvHIl(w) and v and w have the same orientation;

CHS(v,w) = { k ifv C ConvHII(w) and v and w have oppopsite orientations;
0 otherwise.

Lemma 10. Let @ and R be oriented semisimple cycles where ConvHI1(Q) and ConvHII(R) intersect.
Then

[Q®R| > |ConvHII(QU R)|+ 3|ConvHII(Q) N ConvHII(R)|
+ 1+ CHS(Q, R)(|CowHI(Q)| - |Q) + (1 + CHE(R, Q))(|ConvHIU(R)| - |R|).

Proof. If the pointsets ConvHII(Q) and ConvHII(R) are the same, then the claim follows immediately from Lemmas
5and 6.

So suppose that the convex hulls are different.

If one of the convex pointsets is a proper subset of the other, then the bound follows from Lemmas 4, 5, and 6, and
the Substitution Lemma.

So suppose that neither convex hull is contained within the other. The Slicing Lemma shows that
|Q ® R| > |0ConvHII(Q) ® 0ConvHII(R)| + (|ConvHIU(Q)| — |Q| + |ConvHII(R)| — |R|),

where 0ConvHII(Q) and 0ConvHII(R) are given the same orientations as, respectively, @ and R.

Consequently, it suffices to suppose that neither convex hull contains the other, and to establish the Lemma for convex
Q@ and R.

Let I = ConvHII(Q) N ConvHII(R). Let Q and R be the (unoriented) regions ConvHII(Q), and ConvHII(R).
Let Z = @ & R. The first two cases are straightforward.

Case 1. Both polygons have the same orientation. Let P = 8(Q U R), and let T = 8(Q N R). Both P and I should
have the same orientation as Q. Thus, P is the outer boundary of @ U R, and I the inner. Let P = ConvHII(Sor(P)).
Now, |P| > |ConvHII(QUR)|, and ConvHII(I) = QNR. Thus, this case follows from the Brunn-Minkowski theorem:
|Sor(P) @ I| > |Sor(P)| +2+/|Sor(P)| - |I|+ |I| > |P|+ 3|Q N R, since ConvHII(I) = I,and I C ConvHII(P).

Case 2. The polygons have opposite orientations and Q U R has no deep pockets. Let ConvHII(Q U R) be decom-
posed into the following regions with non-intersecting interiors: the intersection T = QNR; the pockets Py, Ps, . .., Poy;
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and the fingers C1, Cs, . . ., Ca, Where Ca; 1 C Q, C2; C R, and P; lies between the fingers C; and C;4,. For conve-
nience, we allow a finger to be a single point in degenerate cases, so that the desired alternation can always be achieved.

The Brunn-Minkowski inequality says that |Q & R| > |Q| + 2+/|Q| - |R| + |R.
By definition,

Q1+ |R| + ) _ |Pi| = [ConvHII(Q U R)| + [1]. 1)
So it suffices to show that

2VIQI-[RI > 211+ 3_ [P, @)

since the desired conclusion follows from combining the Brunn-Minkowski inequality, equality (1) and inequality (2)
and cancelling |Q| + |R| + 2+/]Q| - |R| + X, | P;| term from both sides. Let

Lhs =2v/|Q[-|R|, and Rhs=2|I|+ > _|Pl.
Substituting |I| + >°, [Cai—1]| for |Q|, and |I| 4 Y, |Co;| for | R| in the equation for Lhs and squaring gives

Lhs® = 4|1 + 4113 [Cora| + 4111 Y [Tl + 43 [Coia (Y [Ty
1 1 1 i

Rewriting gives
Lhs = 4|I|” + 4|I|A + 4B,

A=Y (ICi1)? + > (IC2ul)? and B = (3 (y/[C2i-1)*)Q_(1/1C2i)?)-

3 2 3 3

where

Lemma 8 ensures that |P;| < 1/|Ci| - |Ciy1]. Substituting for |P;| in the equation for Rhs and squaring gives

Rhs? < 4112 + 4|1 ,/ICH - /[0t | + (24 /[l - /[Cosal)?. Equivalently,

Rhs < 4|I)* + 4|I|D1 + 4/I|D> + (E + F)?,

where Dy = 55, \/Coi1|/[Cail. D2 = 5,/ [Coil -/ [Corerl, B = 54 /Gl -/ (Gl and F = 52, [ [Coi -

The Cauchy-Schwartz inequality says that VB > E and VB > F, so that 4B > (E + F)2. The law of cosines
says that A — 2D, equals the square of the length of the vector &; — &y, where & = (C3,Cy,...Ca), and 6y =

(C1,Cs,...Cor_1). The analogous property holds for A — 2D,, &, and 35 = (Cag,Cs,Cy, - .. Cor_2). Averaging
ensures that A — Dy — Dy = 1||é1 — 61||* + %||€1 — d2]|* > 0. Consequently, Lhs > Rhs as claimed.

Case 3. The polygons have opposite orientations and deep pockets. A proof by contradiction simplifies the argument.
So suppose P and @ are intersecting convex polygons that fail to satisfy the inequality. Our objective is to transform P
and @ in ways that increase A = |ConvHI(Q U R)| + 3|I| — |Q @ R|, and eventually get regions without any the deep
pockets.

In particular, the Slicing Lemma ensures that each pocket P; can be replaced by P = ConvHII(P;). Since @
and R are convex, P; must be a triangle. Its base equals &(ConvHII(Q U R)) N P; = g, 73, Where ¢; € @Q and
r; € R. The opposing vertex is the point z; = Q N R N P;. This finger slicing of Q and R reduces |@ @ R| but leaves
|ConvHII(Q U R)| + 3|@ N R| unchanged.

Similarly, we can modify each finger C; so that the portion of its boundary that belongs to dConvHII(Q U R) is a
segment. This simplification slices off fingertips of ConvHI1I(Q U R), but the loss of area is easily seen to be the greatest
for |@Q @ R|. (Formally, C; U 8ConvHII(Q U R) is a path ¢; with endpoints p;, g; that belong to the neighboring pockets
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of C;. Slicing the region C; gives (C; \ ConvHII(;)) Upiq;, if pig; does not enter the interior of T. Ifit does, the slicing

cuts are taken as support lines to I, which might split a finger into two fingers in need of tip slicing, or might result in the
exposure of some common boundary along I and the newly resulting 0ConvHII(Q U R).)

This case concludes with two steps. The first transforms the sliced figure into a star-like shape with pointed fingertips.
The second transformation eliminates the deep pockets.

Let U = Q U R be the original figure, and U; the trimmed figure with triangular pockets and sliced star-like fingers.
The trimming almost produces the star-like figures we seek. The difficulty with the fingers is that they can terminate with
flat fingertips rather than pointed tips.

Suppose that F' is a slender finger in U;. Let its terminating segment
be e;(0) = 757, and let the two connecting sides be Tar% and 117,
as shown. Define e;(t) to be the bounded segment formed from inter-
secting extensions of the two connecting sides with a line that is paral-
lel to, and a distance ¢ from e;(0). Let positive distance refer to lines
that are shifted away from the figure. Let I;(¢) and r;(¢) be the exten-
sion of the respective sides that terminate at e(¢). Given these three
modified edges, let Q(t) and R(t) be the modified polygons, U(t) =
Q@) UR(), Z(t) = Sor(U(t)), and let H(t) = ConvHI(U(t)).
It is easy to see that the area change |Z(t)| — |Z(0)| is the sum of
the area of the trapezoid bounded by e(0) and e(t), and a term of the
form at, for some constant a that is independent of ¢. Similarly, the
change |H (t)| — |H(0)]| is the sum of the area for the same trapezoid
and a comparable term bt. So we either increase ¢ until e(%) is a point
or make ¢ so negative that e(¢) hits a point of I. Either way, the re-
duction transforms a slender finger into zero, one, or two pointed fin-
gers.

The bottom figure shows that intermediate transitions can occur.
Here the finger growth from 7173 to rFrJ has changed a neighboring
pocket so that its base forms a straight line with the adjacent fingertip
7-q1- In this case, Ag.qiz; is sliced away, which increases A. All im-
provement operations are applied to the new figure. Then the slender
finger can continue to be changed in whatever direction increases A.
(Actually, is not difficult to see that the direction will not change. A changes in a piecewise linear manner as a function

of |7 r3 |, and these events just turn out to accelerate the change. But this observation is not necessary.)

Now suppose that each slender finger has been so modified so that each slender finger is pointed. The next step is to
eliminate the fat fingers.

Let F be a fat finger that, for specificity, belongs to R. Let F have the flat fingertip 77, and
suppose that F lies between the pockets Aqix171 and Araxaqs. Let £ be a cut parallel to 7175,

Let the upper and lower boundaries of figures ) R and Z, be determined by support lines that are parallel to 71 z7.
Let 7121 belong to the boundary portions that have the same upper/lower designation as ¢;z;. Consequently, the four
directed segments Z27%, 171, £2¢», and 71 all have the same designation. Hence, we can slice off the fingertip of F
with a line parallel to 7173. The line should intersect F" and be a support line of 1. The three sides Firh, 71, and F37%
have their lengths reduced but their directions do not change. There is an area loss for | R| that is reflected in the change
of the R—R crossproducts. The R—( cross products decrease in value that is at least as large as the area loss for the
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two pockets Agy 171 and Agoxars, since they all have their sides in the same boundary portion of Q & R. By choosing
£ to be a support line of @, F" will either split into one or two slender fingers or be trimmed completely away.

Hence all fat fingers can be eliminated without decreasing A. The last step is to show that when all fingers are slender,
all deep pockets can be eliminated.

I Let zorx; and z1q;x, be the envelopes of two fingers with the intervening pocket
| Arziqi, and suppose that the pocket is deep. Let the point z be located on 7Z7.
Replace z17 with Z7z, and replace zz7 with Z3Z. Suppose, for specificity, that 3
represents the direction of the subsegment 7z in the oriented polygon R. The point z
should be as close as possible to ; subject to the constraints that Zzz not enter the
interior of I and no edge of @) or R have a directed slope that lies between the directed

/. slopes of Z>7 and Z52. (Equal slopes are permitted.) These trimmings change the area
-0, ofthe convex hull by §|gigs x 72|. They also reshape Q & R. In particular, |Q & R
is decreased by %|m X r?| + |p'x ﬂ|, where p'is the sum of the directed edges in @
and R with orientations between the directions z57 and 7z7.

Extend 7z to intersect #,¢;. Draw a ray 7'that emanates from g2 and is parallel to 7z1. Draw a line ¢; through ¢,
that is parallel to 7z;. The convexity of R ensures that and ¢; and R lie in opposite halfplanes as defined by the line
through 7z7. Since all fingertips are pointed, it follows that all of @) lies to one side of ¢;. Let o be the portion of @) that
goes backward from g; to z, and continues up to its first intersection with Z(Which need not be ¢5).

By the convexity of @, all segments of o have directions that lie between the orientations of 7and T.q1. Since the
path runs from £ to the parallel line ¢;, the area loss for |Q @ R is at least %|ﬁ x 73| + [giqz x 73|, which exceeds the
loss of %(|W X r_z)| + |71 gz % ﬁ|) for the convex hull H.

The net result is that A does not decrease, and the pocket Agx;z is less deep. The process can be repeated until
either the pocket vanishes altogether or is no longer deep. The reason that this step might have to be repeated is that the
cut, as illustrated, might be along a support line of (9, and the next cut would then start at a different vertex of ().

Eventually each deep pocket will be eliminated and Case 2 will become applicable. Since A never decreases, the
Lemma is established. |

Now the proof of Lemma 9 can be completed.
Lemma 9. Let P be a polygon that is decomposed into a set Z of semisimple cycles.
Then

|Sor(Usezs)] > |ConvHI(P)| — | Uscz ConvHII(s)|

+ Z |[ConvHI(s)| + 2 Z |ConvHIl(s) N ConvHII(t)|. (3)
seZ {s,t}Ccz
s#£t

Proof. Let n be the number of elements in Z. It is clear that the lemma is true forn = 1.
Forn =2, let Z = {Q, R}. Lemma 10 ensures that

|Q ® R| > |ConvHII(Q U R)| + 3|ConvHII(Q) N ConvHII(R)|. 4)
Since
0 = |ConvHII(Q)| + |ConvHII(R)| — |ConvHII(Q) U ConvHII(R)| — |ConvHII(Q) N ConvHII(R)|, (5)

and P = @ U R, the conclusion follows from adding inequality 4 and equation 5.

The proof is completed by inductive contradiction. Suppose the claim is not true. Let P be a polygon with decom-
position Z where the bound fails to hold and the number of elements in Z is as small as possible. Let this count be
n.

We can assume that each set is convex since replacing each cycle by the boundary of its convex hull will not change
the right-hand side of equation 3, but will, according to the Substitution Lemma, decrease the left-hand side.
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Suppose that some pair of distinct cycles u,v € Z have the same orientation and happen to intersect. Let z; =
O(ConvHIl(u) U ConvHIl(v)), and 2z = Sor(0(ConvHIl(u) N ConvHIl(v))). Let Zy = Z \ {u,v}, and Z; =
{#1} U Zy. Then the edge collection in Z is the same as the edges in {21} U {22}.

By the inductive minimality assumption, Lemma 9 holds for Z1, and therefore

|Sor(Usez, s)| — Z |[ConvHII(s)] > |ConvHI(P)|— |Usez, ConvHII(s)|
s€EZy

+2 Z |ConvHII(s) N ConvHIL(t)|

{Sat}CZO
sF#t

+2 Z |ConvHII(s) N ConvHIl(zy)|.
{s}C2o

Now,

|22 ® Sor(Use 2, 5)| — |22] = [Sor(Usez,5)] = Y (122 @ 5| = |2| — |s])
SEZ1

> 2v/Ial T
SEZ1

Z 2|ConvHIl(z2) N ConvHII(s)|

SEZ,

\Y%

\Y%

Combining these two inequalities, with the observation that for all s € Zy:

2|ConvHIl(s) N ConvHIl(z1)] > 2|ConvHIl(s)N ConvHIl(u)| + 2|ConvHII(s) N ConvHIl(v)|
—2|ConvHII(s) N ConvHIl(22)]

gives:

|Sor(Usczs)| — Z [ConvHII(s)| — |22|] > |ConvHIU(P)| —|Uscz, ConvHIl(s)|
SEZ

+2 Z |ConvHII(s) N ConvHII(t)], (6)

{s,t}CZ
s#t

where we used the fact that |ConvHII(z2) N ConvHIl(z)| = |ConvHIl(u) N ConvHII(v)|. Evidently,
|ConvHII(z1)| — |u| — |v| + |22] = |ConvHII(z1) \ (ConvHII(u) U ConvHII(v))].

Combining the left-hand side of this equality with inequality 6, and combining the corresponding sets in a subadditive
manner within —| Uscz, ConvHII(s)| on the right gives:

|Sor(Usezs)| — Z |[ConvHII(s)| > |ConvHI(P)|—|Usez ConvHII(s)|
sEZ

+2 Z |ConvHIIl(s) N ConvHII(t)|.

{s,t}CZ
s#£t

So in the refuting decomposition Z, every pair of intersecting cycles must have opposite orientations.
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Let G = (V, E) and Cy be, respectively, an undirected graph and a 1-to-1 mapping of V' onto the elements of Z
where for u # v € V, (u,v) € E if and only if Cy(v) U Cy(u) # 0. In this case, we say that the pair (G, Cy) is an
incidence representation for Z. For any graph H with vertex set Vg in the domain of Cy, let Cy(H) = Uyey, Cy(v).

Now suppose that G is not a tree, so that it contains a cycle. Letthe G; = (V1, E1) be a cycle in G with the minimum
number of vertices. Evidently G; comprises an even closed loop of four or more intersecting cycles with alternating
orientations. It is easy to see that these cycles can be replaced by two oppositely oriented cycles that each traverse the
full chain. This restructuring actually increases the right-hand side of inequality 3 while preserving the left. Since the
number of cycles has decreased, the bound must again hold as a consequence of the minimality assumption.

The only remaining possibility is where G is a tree, and all intersecting cycles have opposite orientations. In this
case, we say that the incidence representation for Z is a tree of alternating cycles.

Let G be represented by the notation T = (V, Er).
We must show that

|Sor(Usezs)| — Z |ConvHII(s)| > |ConvHII(P)| —|Usez ConvHI(s)|
sEZ

+2 Z |ConvHIIl(s) N ConvHII(t)|. )
(s,t)EET

Definition. Let Z have an incidence representation (7', C'y) that is a tree of alternating convex cycles. Suppose that w
is a leaf of T" and that v is its parent. We say that w is a minimal leaf if only one connected component of Cy(v) \
ConvHII(Cy(w)) has intersections with other cycles.

Of course, some vertices may have leaves but no minimal leaf. However, it is easy to see that as consequence of the
convexity of each cycle, the deepest leaf in 7" must have at least one minimal leaf.

Let w be a minimal leaf of T', and v be its parent. If v has no parentin T, let 4 # w be a child of v, and let T
be restructured so that w is the root of 7'. Thus, we can assume that v has the parent u. Let T"_,, be the tree T" with w
removed.

Definition. Let Z have an incidence representation (7', C'y) that is a tree of alternating cycles. Let w be a minimal leaf
of T, and v be the parent of w. Suppose that v has the parent w in T'. We say that ¢ is a proxy for Cy(w) U Cy(v) in T if
the following hold.

1. ¢ is a located convex polygon that has the same orientation as Cy(v).

2.For z € Vi \ {v,w}, ConvHII(Cy(z)) N ConvHII(Cy(v)) C ConvHII(Cy(z)) N ConvHII(().

3.LetT, = (V,, E,) be the tree T_,, with v replaced by v, where Cy(v) = {. Then the pockets defined by Cy(T,,)
contain the pocket portions defined by Cy(T') that are exterior to ConvHIIl(Cy(v U w)). Formally,

(ConvHI(CyY(T)) \ Usev, ConvHI(Cy(s))) \ ConvHI(Cy(v Uw))

C ConvHII(Cy(T,)) \ Usev, ConvHII(Cy(s))

4. Let ¢ comprise the directed located segments (i, (2, .-.,(x. Then a subset of the directed located segments in
Cy(v) U Cy(w) can be apportioned into edge-wise disjoint subpaths 2, Z», ... Z, . .., where Z; and ¢; have the
same endpoints and equivalent directions, fori = 1,2,..., k.

Intuitively, a proxy can be used to account for all of the area that can be attributed to interactions between Cy(v) U
Cy(w) and the rest of the figure. These interactions appear in two settings: as cross products in |Sor(Cy(T))| that
involve exactly one segment in C'y(v) U Cy(w), and as subregions that belong to intersections or pockets formed from
interactions between ConvHII(Cy(v) U Cy(w)) and the rest of the figure.

Note that 4 implies

5. ConvHII({) C ConvHII(Cy(w) U Cy(v)).

Now suppose that ¢ is a proxy for Cy(w) U Cycle(v) in T. By property 2, Cy(v) N Cy(xz) C ConvHII({) for any
xz € V' \ w. Consequently, T,, is connected. Technically, a cycle Cy(x) might have an intersection with ¢ despite having
no intersection with C'y(v), since ¢ can have located segments in regions where Cy(v) might have none. No matter; the
formula in equation 7 is fixed. The additional intersections are not represented in the area formula we seek to prove.

In any case, the induction hypothesis applies to the located cycles (imperfectly) represented by T, to ensure that
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|Sor(Cy(Ty))| > |ConvHI(Cy(T,))| — | Usev, ConvHII(Cy(s))|
+ Z |ConvHI(Cy(s))| + 2 Z |ConvHIl(s) N ConvHII(t)).

seV, (s,t)EE,
Moreover, proxy property 4 and the Substitution Lemma guarantees that

|Sor(Cy(T))| 2 |Sor(Cy(T,,)) + |Sor(Cy(v U w))| —[¢],

since the convexity of ¢ ensures that |¢| = |Sor(¢)].
Lemma 10 shows that

|Sor(Cy(v Uw))| > |ConvHII(Cy(vUw))| + 3|ConvHII(Cy(v)) N ConvHI(Cy(w))|.

These three inequalities can be combined to give:

|Sor(Cy(T))| > |ConvHI(Cy(T,))| — | Usev, ConvHII(Cy(s))]
+ Z |ConvHII(Cy(s))| — |¢| + 2 Z |ConvHIIl(s) N ConvHII(t)|

sEeV, (s,t)EE,
+ |ConvHII(Cy(v Uw))| + 3|ConvHII(Cy

v

(v)) N ConvHII(Cy(w))|
|ConvHIU(Cy(T,))| — | Usev, ConvHIL(Cy(s))|

+ Z |ConvHII(Cy(s))| — |ConvHII(Cy(v)) U ConvHII(Cy(w))|
seVr

+2 Z |ConvHIl(s) N ConvHII(t)]
(s,t)€E,

+ |ConvHIU(Cy(v U w))| + 2|ConvHI(Cy(v)) N ConvHI(Cy(w))| (8)

Proxy property 2 guarantees that

ConvHII(Cy(z)) N ConvHII(C) > ConvHII(Cy(2)) N ConvHII(Cy(v)),

so the intersections with ¢ can be replaced by intersections with Cy(v). Hence

|Sor(Cy(T))| 2 [ConvHI(Cy(T,))| — | Usev, ConvHII(Cy(s))|

+ Z |ConvHII(Cy(s))| — |ConvHI(Cy(v)) U ConvHI(Cy(w))]
sEVr

+2 Z |ConvHIl(s) N ConvHII(t)| + |ConvHI(Cy(v U w))|. 9)
(s,t)EET

According to property 3,

ConvHII(Cy(T,)) \ Usev, ConvHII(Cy(s))

D (ConvHII(Cy(T)) \ Usevy ConvHII(Cy(s))) \ ConvHII(Cy(v U w)).
It follows that

|ConvHIUI(Cy(T,))| — | Usey, ConvHII(Cy(s))| > |ConvHIUI(Cy(T))| — | Usevy ConvHII(Cy(s))|
— (|ConvHII(Cy(v U w))|
— |ConvHII(Cy(v)) U ConvHII(Cy(w))|). (10)
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Combining inequalities 9 and 10 shows that

[Sor(Cy(T))| > |ConvHI(Cy(T))| — | Usevy ConvHII(Cy(s))| + Z |ConvHII(Cy(s))|
sEVr

+2 Z |ConvHIIl(s) N ConvHII(t)|,
(S,t)EET

which establishes Lemma 9 for C'y(T).

Consequently, it suffices to present proxies for C'y(v) U Cy(w) whenever possible, and to offer remedies for the
instances where none is to be found.

There are several cases. To distinguish among them, let G = ConvHII(Cy(T-,,)\ Cy(v)), and let the line segments
ZT1y1 and Zzy3 comprise (0ConvHII(G U Cy(w))) \ (G U ConvHII(Cy(w))), with y; and y, belonging to Cy(w).

Case 000: y; and y2 do not exist. This occurs only if Cy(w) lies in the interior of ConvHII(Cy(T_,,)). In this
circumstance the induction step is trivial because the inclusion of C'y(w) does not increase the convex hull of the resulting
figure. A suitable proxy is Cy(v).

Case 00: x; = x5. This cases is postponed to the end.

Case 0: Cy(v) intersects both Zygr and Z2y5.
This case is trivial because C'y(u) only interacts with Cy(v). A suitable proxy is Cy(v).

Case 1: Cy(v) intersects exactly one of the two segments Z177, Z273.
For specificity, let Zygy not intersect Cy(v). Then a suitable proxy is defined by ¢ =

path/ 0ConvHII(Cy(v) U y;p) with an orientation consistent with that of C'y(v).

approximated
by ¢

Case 2: Cy(v) intersects neither Z; g7 nor Zzys.
Let V,, be the component of Cy(v) \ Cy(w) that intersects C'y(u), and let its endpoints be v1 and va. Let W, be the
portion of C'y(w) that terminates at endpoints y; and y, and does not intersect V,,. There are several subcases.

7/ ,
/ Case 2a: y1 = y». In this circumstance, W,,: = y1. Then a suitable proxy is { =
) //i 0ConvHII(Cy(v) U yp) with an orientation consistent with that of C'y(v).
path /"y
approximated
by ¢
¢ . Case 2b: Cy(v) intersects We,¢. One or more intersections points can be used to

satisfy proxy criterion 4 and construct a proxy as follows. Let Vj be the component of

’ 4 * Cy(v) \ 719z that intersects Cy(w). Then a suitable proxy is defined by
path Y,
Eppzroximated C = 6COTLUH”(% U m);

y

with an orientation consistent with that of Cy(v).

Case 2c: Cy(v) does not intersect We,;. Let Wz be the component of Cy(w) \ C'y(v) that contains W, and let
its endpoints be z; and z9, with 21, y1, y2, 22 lying in sequential order on We ¢+ .

Let

A = |ConvHII(P)| — | Uyevy ConvHI(Cy(v))| + Z |ConvHII(Cy(v))]
vEVr
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+2 Z |ConvHII(Cy(v)) N ConvHI(Cy(y))| — |Sor(U, Cy(v))].

(’U,y)EET

Finger analysis will be used to modify C'y(T') in ways that do not cause A to decrease, and that transform the figure into
cases where proxies or the equivalent can be found. Although the expression for A might seem a little complicated, it
will suffice to modify P in ways that are easy to analyze.

Case 2cl: 71gz intersects Cy(v). The Slicing Lemma ensures that C'y(w) can be trimmed with a segment that begins
atyy, is a support line to Cy(v), and terminates on W,;. The segment is used to replace the boundary path that connects
its endpoints. In this circumstance, the Slicing Lemma ensures that A will not decrease. The resulting figure will satisfy
the conditions of Case 2b.

Case 2cI: 31yz does not intersect C'y(v). As in Case 2cl, the Slicing Lemma is used to trim, via path replacement,
Cy(T) along 71wz Evidently A cannot decrease. The new figure satisfies We,; = 7175.

Let the located segments C'y(T") be viewed as a graph that includes all intersection points of segments as vertices,
and all induced subsegments as directed edges. The figure is connected. It is also the union of oriented cycles. Hence it
is strongly connected. Consequently, y1, y2, 1 and x5 must lie on some closed path of directed subsegments. Evidently
y1 and yo must be on the path in consecutive order. While the orientation of this order is not important, it is possible that
x1 and zo complete the sequence in one of the two orderings y1, y2, €1, T2 Of y1, Y2, T2, 1.

Itis desirable to use path replacement to trim W, along 127, but the replacement segment might intersect Cy(v).
Accordingly, let &, lie on the path connecting v, and z; and be as close to z; as possible, subject to the constraint that
y101 not have any points in the interior of ConvHII(Cy(v)). Let &, be defined analogously for y» and z,. Cy(w) can
be reshaped the have segments 715z, y16: and y»d2. The Slicing Lemma again ensures that A cannot decrease.

Case 2cIS: The finger 6,41 y20- is slender. In this case, the argument used to prove Lemma 10 applies either to grow
the finger to the point where y; = y», which is Case 2a, or to trim it with slices parallel to the base up to the point where
7192 intersects C'y(v), which is Case 2b.

Case 2cIF: The finger 6,y1y20, is fat. The subcases are handled as follows.

Case 2cIF1: The order of vertices comprises an orientation of the sequence &1, y1, y2, d2, =2, z1. Let ¥ be the
polygon formed by connecting these vertices in the order listed.

Since X is simple, 9ConvHII(X) is, in a sense, a virtual proxy. The edges are sums of disjoint collections of edges
in Cy(T). Moreover, if slicing is used to trim edges of Cy(w) in ways that only affect pockets and areas that do not
intersect other cycles, then the area loss for Sor(Cy(T')) must be at least as large as that for ConvHII(Y).

To be specific, let £ be the parallel to 717z, that is a support line for Cy(v), and is as close to y1gz as possible. Let £
intersect y1 61 at e; and y»d- at e5. The figure is sliced along €1€5. Let B be a triangle with sides parallel to 717z, y161
and y20-2 and let the side parallel to g7y have length |[7172| — |erez].

Let S be the located segment pieces (which comprise a non-simple polygon) in Cy(T) that can be grouped as
disjoint collections of subsegments to produce the located collection X (that is simple). Let (the non-simple) S_g and
(the simple) X _ g be the analogous located edge collections that result from the slicing of the fat finger by 2.

Then S_p @ B = Sor(S), and |ConvHII(E_g) ® B| > |ConvHII(E)|.
By the Substitution Lemma,

|Sor(S—g) ® B| — |Sor(S—g)| > |Sor(X2_p)® B|—|Sor(X_B)|
> |ConvHII(X_g) ® B| — |ConvHII(E_B)|
2

|ConvHI(Z)| — |ConvHI(X_g)|,

where the last inequality is due to the previous observation about |ConvHII(X_p) @ B|. So the area loss due to trimming
B from |Sor(Cy(T))| is at least as large as the loss due to the trimming of £, which includes all pocket losses and finger
reductions that result from the actual changes in |ConvHII(Cy(T))|.

Thus, the trimming eliminates the fat finger to produce Case 2b.

Case 2cIF2: The order is 1, y1, y2, 82, o1, T2. Connecting the vertices in this order gives a self-intersecting
polygon. Let £ be parallel to 715z, intersect y, 01, and be a support line for Cy(v). Let £ intersect y; 61 and y»d- at ¢; and
€2, respectively.
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In this case, Cy(w) is trimmed along £. The three finger sides of C'y(w) undergo a reduction in length (of course,
one of the reductions could be zero, if the fat finger has parallel sides), but the directions do not change. Let s; be the
vector trimmed from y, d1, so the vector trimmed from 245, and s3 the vector trimmed from 77 77. Since all cross product
terms for |Sor(Cy(T))| are positive and the slicing just shortens some of the edges, the area loss for [Sor(Cy(T))| is the
sum of the loss induced in |Cy(w)| plus the sum of the appropriate s1, s2, s3—Cy(T_.,) cross products. The trimming
reduces the area in |ConvHII(Cy(T))| by at most L (|s1 x g1@’| + [s2 X 25| + |s1 X §1h| + |82 X §azh|), which
equals & (|s1 x Z1gk| + |s2 X T8 ).

The Substitution Lemma ensures that the actual loss for |Sor(Cy(T))| is at least “12& plus the appropriate cross

product contributions between sq, so, s3 and the six-segment polygon d1, 41, y2, d2, Z1, 2. The Substitution Lemma also
ensures that this latter loss is bounded by appropriate cross products between s1, sz, s3 and the quadrilateral i yo21 25.

X3 X,
X For expositional convenience, let the edge orientations be as shown, so that
AR N s ya y10; is directed as y?q
Y Y

It suffices to show that the vectors y17 , U171, 821, 71> all belong to a range of directions that is bounded by =, since
then a suitable direction to define upper and lower boundaries will include the cross products %(|51 X g@l + 82 % Ta2th )
in the decrease for [Sor(Cy(T))|.

Evidently the (clockwise) rotation of §; 25 to T2 10 aﬁq is less than 7 because the angle of rotation is the supple-
mental to the angle subtending the base of the triangle with base Z1Z3 and opposing vertex located at the intersection

point 122 N z102. Let R represent this range of directions. If the directions of y?q and d»y- lie within R we are done.

So suppose that y;; does not. The definition of this case requires that y;6; lie within the convex boundary yi z1 z>y-,
Hence the rotation from y; 1 t0 §1z2 t0 x102 is less than 7 — Zy12152 < 7. So even if y16; extends the range of R,

it is still less that . If both y;1 and d2y2 extend the range, then the resulting range is from y?q to 712 t0 dayn. But
this range must be at most 7 because these segments belong to the actual finger that is being processed, and it is fat. The
trimming cannot decrease A, and yields a figure where Case 2b is applicable.

Case 000: For completeness, we note that z; can equal x5, in which case the finger is fat and the polygon formed
from connecting y1, y» and z; is simple. i

4 Themain bound

At this point, all of the infrastructure needed to prove Theorem 2 has been established.

Proof of Theorem 2. Let the cycles in Z be partitioned into equivalence classes where s = t if ConvHIl(s) =
ConvHII(t). Let containment define a partial order on the set of equivalence classes: define s < ¢ to mean s C
ConvHII(t). Let Z; contain one representative from each containment-based maximal equivalence class.

Since U, z, ConvHII(s) contains every cycle, it contains P. From Lemma 9, we have:

|Sor(0 Usez, ConvHIl(s))| > |ConvHIU(P)|—|Usez, ConvHII(s)]
+ Z |ConvHIl(s)| + 2 Z |ConvHIIl(s) N ConvHIL(t)|.

s€EZ, {s,t}C21
s#t

It follows that

|Sor(Usez, s)| > Z (|Sor(s)| — |ConvHII(s)|) + |ConvHII(P)| — | Use z, ConvHII(s)]
S€EZ1
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+ Z |ConvHII(s)| + 2 z |ConvHIl(s) N ConvHIL(t)|. (11)
sE€EZ, {s,t}CZ1
s#£t

Leta = |ConvHII(P)| — | Use 2z, ConvHII(s)|. Combining the definition of a with inequality 11 shows that

|Sor(Usez,s)] > a+2 Z |ConvHIl(s) N ConvHII(t)| + z |Sor(s)|.

{37t}czl SEZ,
s#t
So
|Sor(Usez, 8)| — Z |Sor(s)] > a+2 Z |ConvHIl(s) N ConvHII(t)|. (12)
s€EZ, {s,t}C21
sF#t

The bilinear form that evaluates |Sor(Usez, s)| — >_,cz, |Sor(s)| contains no terms for area within an individual
cycle in Z, that is, all products are formed from pairs of segments that belong to different cycles in Z;.

Let, for s € 21, Z} = {t € Z : sandt have the same orientation and ConvHIl(s) = ConvHII(t)}. Let w}
equal the number of elements in Z}. Define Z; and w; analogously for the orientation opposite to that of s, and let

wi = wh +w;. Let Zy = Usez, Upez+,z- {t}-
From Lemma 7, the fact that Z; contains no equivalent cycles, and since the form [Sor(Usez, 8)| — >, 2, |Sor(s)|
contains no cross products with edges from the same cycle, it follows that

|[Sor(Usez,8)] > |[Sor(Usez,s)| — Z |Sor(s)| + Z (w} +w;)?|ConvHII(s)]

s€Z1 s€Z1
+ 303 (wi + 5 wy)(|ConvHIL(E)| — |t])
s€Z1 ez
+ 30N (wy + k5w ([ConvHIL(E)| — [t])
s€EZ1 tez;
+ Z Z wEwit —1)|ConvHII(s) N ConvHII(t)). (13)
s€EZ1 tE#Zl
t#£s

Combining inequalities 12 and 13 gives:

|Sor(Usez,8)] > a+ Z(wJr 7)?|ConvHII(s)| + Z z wEwiF|ConvHII(s) N ConvHII(t)|

€24 SEZy tEZ
t#s
+ Z Z F+k-w;)(|ConvHI(E)| — |t])
sezlteZ+
+ 30 3 (wy + - w)([ConvHU)| ~ [t]),
S€21 tez]

whence

[Sor(Usez,s)] > a+ Z Z wEwiE|ConvHII(s) N ConvHII(t)|

sEZ1 tEZ
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+ 30> (i + 5wy )(|ConvHILE)| — |t])

s€Z1tezf

+ 30> (wy + - wh)(|ConvHIL(E)| — [t]). (14)

s€Z1¢eZ;

Evidently, the right-hand side of inequality 14 is equivalent to

/ wx)Pdx+ 3 Wa(C)(|ConvHILC)] — |CY), (15)
x€ConvHII(P2) CeZs

where P, = Uscz, 8, and wo and W5 are defined as in Theorem 2 for the polygon Ps.

To complete the argument, it suffices to include, via the Sor operation, each of the remaining cycles in Z \ Z, one
equivalence class at a time. Lemma 7 gives sufficient area to permit the bilinearity of area as a function of the edges plus
the Brunn-Minkowski inequality to account for all of the remaining terms in Theorem 2. ||

5 Conclusions and Extensions

Our purpose was to formulate a notion of area causality where the consequences of overlapping boundaries and non-
convexity are quantified in terms of the convex hull operation, the footprint sizes of variously defined subregions, and
the winding of boundary curves around them. From this perspective, containment and membership in the convex hull are
the geometric properties that characterize various subregions of P. It is not difficult to show that Theorem 2 will be false
if any term is increased by a fixed multiplicative factor, apart from the uncertainty built into the definition of «. In this
sense, at least, the bounds are reasonably tight.

Of course, the bounds can be improved by including additional characteristics of the polygon. The Brunn-Minkowski
inequality, for example, gives minimum estimates for area contributions that are caused by the interaction among any
collection of edges or cycles, even if their convex hulls have no overlap. In addition, the notion of an unsigned winding
number can be extended to some areas that are included in the convex hull of the polygon P. For example, let z be a
point inside a pocket of P that is sealed off by a line £ on its convex hull. The formulas presented do not take account
of the possibility that among all continuous curves that connect z to the unbounded component of k2 \ P, and which do
not cross £, the minimum number of crossings of P might exceed 2.

There are also some immediate extensions to Theorem 2. It should be noted that in Lemma 5, an actual pocket of,
say, C can be replaced by its in-place Sor, provided this convexification leaves it contained within ConvHII(C). This
strengthening is a departure from the naive use of containment and convex hulls, but is helpful for broadening the range
of figures where the area estimate is tight.

Similarly, it is possible to extend the analysis that accounted for area lying outside of the individual cycles. Theorem
2 was based on an initial decomposition that created Z;, which contained one representative from each maximal cycle
class. While the approach accounts fairly accurately for instances of overlapping intersections of cycles, it fails to account
for an analogous overlap of pockets formed from chains of cycles that do not belong to Z;. An enhanced approach would
repeat the top-level decomposition at subsequent rounds and thereby give a much better result for, say, a figure composed
of multiple superimposed copies of a polygon.

The following illustrate some of the cases where Theorem 2 and its extensions are strong. In all cases, the multiple
figures have the same convex hull, and overlap perfectly.
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X

Theorem 2 is strong enough to account for most of the area from a single copy of the
non-simple quadrilateral, but multiple copies need an analysis based on the repeated selection
of maximal semisimple cycle representatives.

1 copy n overlapping

copies
Because the pockets use edges that have the same orientation (and a single flip convex-
ifies each pocket), Theorem 2 is exact in this case, and also applies to multiple copies.

Likewise, Theorem 2 is tight if both cycles have the same orientation. The idea is that a flip of
each pocket creates a circle. Multiple copies are again handled correctly.

exact result. Tightness requires the multiple regions to have the same orientation, the same
convex hulls and the same figures when Sor-ed.

LU

' @
In this case, the area for each pocket has to be computed from the Sor extension to get an
' @

It is also interesting to examine a case where the bound cannot be exact, but ought to be very good. Let P comprise
two superimposed cycles a half-disk, and a folded-over circle that has no area. Let the two semicircular curves overlap
perfectly. Let h = ’”” be the area of the half-disk. Then Theorem 2 gives an area estimate of 4h + 2h = 6h. The actual
area of the Sor of the two figures (as formalized below for piecewise smooth curves) isdh+h/2+2r2+h/2 = (5+ )h,
which is rather close. All previous bounds yield an estimate of h. Of course, “opening up” the folded-over disk permlts
a substantial improvement for the Banchoff and Pohl bound, which returns an estimate of 54 for the case of a half-disk
superimposed on top of a disk. The Brunn-Minkowski inequality improves the estimate to (3 + 2v/2)h ~ 5.8h. On the
other hand, the estimate provided by Theorem 2 decreases to 5h because the convex hull enhancement fails to reveal any
hidden area, and the one-way containment of the two regions does not impart enough information to “deduce” that the
cycles have equal directional diameters.

In retrospect, we see that the notion of causality is, in part, an illusion. If cause is to be apportioned locally, then we
expect aggregate contributions to be additive. The Brunn-Minkowski inequality, plus simple convexification says that

(> V2IConvHII(s)[ - |s])* < [Sor(P)|,

SEZ
which ignores overlap, and casts a blind eye to pockets formed from different cycles. Theorem 2 can beat this bound only
under special circumstances. One case is when large amounts of area comprise external pockets as in the case of a self-
intersecting quadrilateral. For this particular example, Theorem 2 is sharper, as are the bounds of Pach, and Boroczky,
Barany, Makai and Pach. The other circumstance is when different cycles have equal directional diameters, whence the
formulations of Lemma 1 and its consequences can be used instead of the Brunn-Minkowski inequality. Of course, there
must be sufficient information for Theorem 2 to “know” that the diameters are the same, and our containment primitive
is adequate when cycles have identically superimposed convex hulls.

On the other hand, inequalities are typically a tradeoff between expressiveness and precision, and the bounds in this
paper give a semantics for identifying certain kinds of area contributions that had heretofore been unquantified.

In closing, we note that the Sor has a natural interpretation when passing to the limit. Let £( ) measure arclength
and be defined on countable unions of rectifiable curves. Let ~;(s) be a family of oriented piecewise smooth simple
cycles, where s is the arclength parameter for ;, so that £({v;(s) : 0 < s < z}) = min(z, L(7;)). Let 6;(s) be the
angle that the outward normal to ; at 7;(s) makes with respect to a ray running horizontally from ~;(s) to the right. Let
f(s) be the unique convex curve with with an outward normal whose comparably defined angle 6 (s) satisfies:

L({f(s):0<85(s) <a}) = Zﬁ{% 10 < 6;(s) < a})

for 0 < a < 2. Let Ay be the area of the region bounded by I
Then the natural extension is to replace |Sor(P)| with Ay in the strong formulation for Theorem 2.

Theorem 3. Suppose - is a closed oriented rectifiable curve in the plane, and Z is a decomposition of + into oriented
semisimple cycles. Let A; be as defined above and W and w be as in Theorem 1. Then

/ x)2dx+ Y W(C)(|ConvHII(C)| - |C]) < As. 1
xEC’oanll('y) cez
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Alternatively, a simpler version can be stated in terms of arclength.

Theorem 4. Let  be a closed curve with finite arclength £. Let Q1,Q2, .. . be the layered reoriented decomposition of
7 as described at the end of Section 1.2. Let Qo = R%. Let w(x) = max;{i : x € ConvHII(Q;)}. Foracycle Q;, let
W(Q;) = max;{i: Q; C ConvHII(Q;)}. Then

/ wE0dx + 37 W(Q:) (Conv ()] — [Q4l) < L1S0r(Q) @ Sor(@)| < =,

47
i>1

where QF¢v is Q with its orientation reversed. It follows trivially from Lemma 1 that a half-sized scaled down version of
Sor(Q) ® Sor(QFe?) has the greatest area among all rearrangements of the infinitesimal segments comprising @, when
rotations are not allowed and the orientation of each element is ignored. I

This formulation gives all external pockets of v a weighting of 2 or more, rather than a weighting of one as Theorem 2
does for the external pockets that have edges with opposite orientations. Similarly, this version is more elegant since it
eliminates the possibility of weak area contributions as formalized in Lemma 6.

There are also some extensions that are worth posing as conjectures and open questions.

Let F be a finite collection of segments located in the R? For any z € R?, let N(x) be the smallest number of
segments intersected by any line through z. Given a simple polygon C, let C " denote the region bounded by C.

Conjecture. Theorems 2, 3 and 4 still hold if w(x) is replaced by § N (x).

Conjecture. Theorem 1 still holds if w(x) is replaced by %N(x), the second term is dropped, and P is redefined to
comprise a finite collection of segments in the plane.

Open questions.
What is the correct value for x?
Suppose, for simplicity, that all cycles have the same orientation.
Can Y oz W(C)(|ConvHII(C)| — |C]) in Theorem 2 be replaced by >z fxECoanll(C)\C"“"’ w(x)?

Can Y oz W(C)(|ConvHII(C)| — |C]) in Theorem 2 be replaced by 3" » fxecomml(o)\mim IN(x)?
Some related questions can be found in [8].
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