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Why Another Study? 

The outstanding performance of Japanese students on the Third 
International Math and Science Study (TIMSS) examinations, 
along with the accompanying TIMSS videotape classroom studies, 
have generated widespread interest in Japanese teaching practices.  
Unfortunately, despite this excitement, the majority of ensuing 
education analyses and policy reports seem to be based on 
incomplete portrayals of the actual teaching as documented on 
videotape.  Part of the problem is that the teaching is remarkably 
rich.  As a consequence, short summaries and even quotes from 
original sources sometimes fail to provide a balanced 
characterization of the actual lessons, and can even be just plain 
wrong.  

These are strong words, and especially so if they happen to 
allege serious errors and misunderstandings in widely cited and 
highly respected studies.  However, these works, despite being 
based on common sources of information, sometimes contradict 
each other, so some of the assertions cannot be right.  On the other 
hand, it is only fair to point out that there are just a few such 
contradictions; most of the conclusions are consistent across all of 
the studies.  But we also concur with the overall theme: the lessons 
as recorded in Japan are masterful.  The main—and crucial—
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difference is in understanding the kind of teaching that made these 
lessons so remarkable. 

For example, it is widely acknowledged that Japanese lessons 
often use very challenging problems as motivational focal points 
for the content being taught.1  According to the recent Glenn 
Commission Report,  

In Japan, . . . closely supervised, collaborative work among 
students is the norm.  Teachers begin by presenting 
students with a mathematics problem employing principles 
they have not yet learned.  They then work alone or in 
small groups to devise a solution.  After a few minutes, 
students are called on to present their answers; the whole 
class works through the problems and solutions, uncovering 
the related mathematical concepts and reasoning.2 

This study resolves the crucial classroom question that the 
other reports left unanswered: 

How in the world can Japanese eighth graders, with just a 
few minutes of thought, solve difficult problems employing 
principles they have not yet learned? 

Background.   The Third International Mathematics and Science 
Study comprises an enormously complex and comprehensive effort 
to assess primary and secondary school mathematics and science 
education worldwide.  The examination phase began in 1995 with 

                                                
1. Cf. J. W. Stigler et al., The TIMSS Videotape Classroom Study: Methods 

and Findings from an Exploratory Research Project on Eighth-Grade 
Mathematics Instruction in Germany, Japan, and the United States (National 
Center for Education Statistics (NCES) 1999), p. 134. 

2. J. Glenn et al., Before It's Too Late, A report to the Nation from the 
National Commission on Mathematics and Science Teaching for the 21st 
Century the 21st Century, Report EE0449P, Education Publications Center, U.S. 
Department of Education, (Sept. 27, 2000), p. 16. 
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the testing of over 500,000 students in 41 countries3 and continued 
with repeat testing (TIMSS-R) in 1999,4 additional projects, and 
data analyses that are still a matter of ongoing research. As part of 
the TIMSS project, 231 eighth-grade mathematics lessons in 
Germany, Japan, and the U.S. were recorded on videotape during 
1994–5.  An analysis of these tapes, which includes a variety of 
statistics, findings, and assessments was reported in the highly 
influential TIMSS Videotape Classroom Study5 by James Stigler et 
al. This study also provides a detailed description of the Classroom 
Study’s data acquisition and analysis methodologies.  
Subsequently, James Stigler and James Hiebert published 
additional findings in The Teaching Gap, which emphasizes the 
cultural aspects of teaching and offers suggestions about how to 
improve teaching in the United States.6 

In addition, the project produced a publicly available videotape 
containing excerpts from representative lessons in geometry and in 
algebra for each of the three countries, along with a discussion of 
preliminary findings narrated by Dr. Stigler.7  The excerpts of 
German and American lessons were produced in addition to the 
original 231 lessons, which are not in the public domain due to 
confidentiality agreements.  For the Japanese lessons, disclosure 
permissions were obtained after the fact.  The TIMSS videotape kit 
also includes a preliminary analysis of the taped lessons8 that 
follows the procedures used in the actual study.  In addition, the 

                                                
3. M.O. Martin et al., School Contexts for Learning and Instruction IEA’s 

Third International Mathematics and Science Study (TIMSS International Study 
Center (ISC), 1999). 

4. I.V.S. Mullis et al., TIMSS 1999 International Mathematics Report, 
Findings from the IEA’s Repeat of the Third International Mathematics and 
Science Study at the Eighth Grade (TIMSS ISC, Dec., 2000). 

5. J. W. Stigler et al., “TIMSS Videotape Classroom Study.” 
6. J. W. Stigler and J. Hiebert, The Teaching Gap: Best Ideas from the 

World's Teachers for Improving Education in the Classroom (Free Press, 1999). 
7. Eighth-Grade Mathematics Lessons: United States, Japan, and Germany 

(Videotape, NCES, 1997). 
8. Moderator's Guide to Eighth-Grade Mathematics Lessons: United States, 

Japan, and Germany (NCES, 1997). 
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Figure 1  (letters A and B enhanced) 

TIMSS project produced a CD ROM with the same classroom 
excerpts.9   

What the Video Excerpts Show 

The video excerpts, it turns out, provide indispensable insights 
that complement the more widely cited studies.  They are the 
primary source for the following analysis, which compares the 
assessments and conclusions of the many studies against the actual 
classroom events as documented on tape. 

Geometry.   The tape shows the 
Japanese geometry lesson 
beginning with the teacher 
asking what was studied the 
previous day.  After working to 
extract a somewhat meaningful 
answer from the class, he 
himself gives a summary:  Any 
two triangles with a common 
base (such as AB in Figure 1) 
and with opposing vertices that lie on a line parallel to the base 
(such as the line through C, D, and P) have the same area because 
the lengths of their bases are equal, and10 their altitudes are equal. 

The teacher states this principle and uses his computer graphics 
system to demonstrate its potential application by moving vertex P 
along the line CD. The demonstration shows how to deform 
triangle ABP in a way that preserves its area. Next, he explains that 
this principle or method is to be the foundation11 for the 
forthcoming problem, which he then presents.  It is the following:  

                                                
9. Video Examples from the TIMSS Videotape Classroom Study: Eighth 

Grade Mathematics in Germany, Japan, and the United States (CD ROM, 
NCES, 1998). 

10. In Figure 1, the translation shows an “or” instead of an “and.”  This 
mathematical error is due to a mistranslation of the spoken Japanese. 

11. “Moderator’s Guide,” p. 136. 
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Figure 2 

 
Figure 3  (digitally enhanced) 

Eda and Azusa each own a piece of land that lies between 
the same pair of lines.  Their common boundary is formed 

by a bent line segment as shown.  The 
problem is to change the bent line into a 
straight line segment that still divides the 
region into two pieces, each with the same 
area as before. 

Despite the previous review, the problem 
is still going to be a challenge for eighth graders, and it is fair to 
infer that the teacher understands this very well. In geometry, one 
of the most difficult challenges in a construction or proof is 
determining where to put the auxiliary lines.  These lines are 
needed to construct the angles, parallel lines, triangle(s), and so on 
that must be present before a geometry theorem or principle can be 
applied to solve the problem.  For the exercise in Figure 2, the key 
step is to draw two crucial auxiliary lines.  One defines the base of 
a triangle that must be transformed in a way that preserves its area.  
The other is parallel to this base, and runs through its opposing 
vertex.  

So what should a master instructor do?  The answer is on the 
tape.   

After explaining the problem, the teacher asks the students to 
estimate where the solution line 
should go, playfully places his 
pointer in various positions that 
begin in obviously incorrect 
locations and progresses toward 
more plausible replacements for 
the bent line.  Now here is the 
point.  With the exception of two 
positionings over a duration of 
about one second (which come 
shortly after the frame shown in Figure 4), none of his trial 
placements approximate either of the two answers that are the only 
solutions any student will find.  
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Figure 4  (digitally enhanced) 

Rather, they are all suggestive of the orientation for the 
auxiliary lines that must be drawn before the basic method can be 
applied.  He is giving subtle hints, and calling the students' 
attention to the very geometric features that must be noticed before 
the problem can to be solved.  It is surely no accident that the 
teacher reaches two particular pointer placements more often than 
any other. One is shown Figure 4.  
The other is parallel to this 
placement, but located at the 
vertex that forms the bend in the 
boundary between Eda and Azusa. 

Only after this telling warm-
up—the heads-up review of the 
solution technique necessary to get 
the answer, and the seemingly 
casual discussion loaded with visual queues about what must be 
done—are the children allowed to tackle the problem.  

But this is not the end of the lesson, and the students only get 
an announced and enforced three minutes to work individually in 
search of a solution.   

As the children work, the teacher circulates among the students 
to provide hints, which are mostly in the form of leading questions 
such as: “Would you make this the base?  [The question is] that 
somewhere there are parallel lines, ok?”12  

He then allocates an additional 3 minutes where those who 
have figured out the solution discuss it with the other teacher. 
Weaker students are allowed to work in groups or use previously 
prepared hint cards. The tape does not show what happens next. 
The TIMSS documentation reports that students prepare 
explanations on the board (9 minutes).13   

Then a student presents his solution.  The construction is 
clearly correct, and he starts out with a correct explanation.  
However, when the time comes to find the solution, he gets lost 

                                                
12. Ibid., p. 140. 
13. Ibid. 



 7

Figure 5 

 

Figure 7 Figure 6 

and cannot see how to apply the area preserving transformation 
that solves the problem.  The teacher then tells him to use “the red 
triangle” as the target destination. 

The advice turns out to be 
insufficient, and the teacher steps in (as 
shown in Figure 5) to redraw the 
triangle that solves the problem, and 
calls the student's attention to it with the 
words, “over here, over here.” The 
student seems to understand and begins 
the explanation afresh. But he soon 
winds up saying, “Well I don't know 
what I am saying, but . . ..” He then 
regains his confidence, and the presentation comes to an end.  A 
number of students say that they do not understand. Then another 
student explains her answer, but the presentation is omitted from 
the tape.  According to the Moderator's Guide,14 these two student 
presentations take less than three minutes altogether.   

Next, the teacher explains how to solve the problem.  There are 
two equivalent answers that correspond to moving vertex C, in the 
context of Figure 1, to the left or to the right. Both directions solve 
the problem, and he shows this.  Such duality should not be 
surprising, since the word problem is not described in a way that, 
in the context of Figures 1, 6, and 7, can distinguish left from right.  
For completeness, we show the two ways that the triangle 
transformation technique can be used to solve the problem.  In 
order to make the connection between the review material and the 

follow-up Eda-Azusa 
exercise absolutely 
clear, the solution 
with its two versions 
have been rotated to 
present the same 
perspective as in 

                                                
14. Ibid., pp. 139–41. 
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Figure 8 

 

Figure 9 

Figure 1, which introduced this triangle transformation technique.   
No one devised an alternative solution method.   
The lesson continues with the teacher 

posing a new problem that can be solved 
with the same technique. This time the 
figure is a quadrilateral, and the exercise is 
to transform it into a triangle with the 
same area.  At this point, the basic 
solution method should be evident, since 
the previous problem, as the teacher 
explains, also concerned the elimination or 
straightening of a corner in an area preserving way.15  However, 
added difficulty comes from the need to recognize that two 
consecutive sides of the quadrilateral should be viewed as 
representing the bent line of Figure 2.  Notice, by the 
way, that if each of the other two neighboring sides is 
extended as an auxiliary line, then the resulting figure 
is changed into a version of the Eda-Azusa problem.  
(See Figure 9.)  Evidently, this exercise is very well 
chosen.  

The basic line straightening method can be applied so that any 
one of the four vertices can serve as the point where the line bends, 
and this designated vertex can be shifted in either of two directions 
to merge one of its two connecting sides with one of the auxiliary 
lines.  The students again work individually for three minutes, and 
then are allowed to work in groups, use hint cards, or ask the 
teacher.  

The TIMSS documentation indicates that this joint phase lasts 
for 20 minutes, and includes students drawing their answers on the 
board.  There are eight such drawings, which were selected to 
illustrate all eight ways the basic method can be applied: there are 
four vertices that each can be moved two ways.  Then the teacher 
analyzes these eight ways in greater depth, and explains how they 
all use the same idea.  All students remain seated during this 

                                                
15. Ibid., p. 141. 
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portion of the lesson, and he controls the discussion very carefully 
and does almost all of the speaking. 

An Analysis of the Teaching and its Content.   This lesson is 
nothing less than a masterpiece of teaching, and the management 
of classroom time was remarkable. Although many students did 
not solve the first problem of the day, the assignment certainly 
engaged everyone’s attention. The second problem was no give-
away, but it afforded students the chance to walk in the teacher's 
footsteps by applying the same ideas to turn a quadrilateral into a 
triangle.  The teacher-led study of all possible solutions masked 
direct instruction and repetitive practice in an interesting and 
enlightening problem space.   

Evidently, no student ever discovered a new mathematical 
method or principle that differed from the technique introduced at 
the beginning of the lesson.  In all, the teacher presented ten 
illustrative applications of that one method.  Yet the lesson is an 
excellent example of how to teach problem solving, because each 
successive problem required an ever deeper understanding of the 
basic proof technique.  For homework, the teacher asked the 
students to transform a five-sided polygon16 into a triangle with the 
same area.  

Notice that this lovely problem variation hints at the use of 
induction: the way to solve it is to transform a five-sided figure 
into a quadrilateral, which can then be transformed into a triangle.  
The basic corner elimination scheme can now be seen to work for 
any (convex) polygon, so that any such n-sided polygon can be 
transformed into one with n – 1 sides and the same area, for n > 3.  

It is also worth pointing out that the solution technique, which 
is a specific application of measure preserving transformations, has 
additional uses.  It appears, for example, in Euclid's proof of the 

                                                
16. The assignment probably should be restricted to convex figures; 

otherwise it includes irregular cases that are difficult to formalize. On the other 
hand, this concern is just a minor technicality that has no affect on the 
pedagogical value of the problem. 
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Pythagorean Theorem (cf. Book I Prop. 47 of Euclid's Elements).17 
More advanced exercises of this type appear on national middle 
school mathematics competitions in China and regional high 
school entrance examinations in Japan.  And it is not much of a 
stretch to suggest that measure preserving transformations lie at the 
heart of those mysterious changes of variables in the study of 
integral calculus.  All in all, the lesson is a wonderful example of 
the importance of a deep understanding of mathematics and its 
more difficult aspects.  

Algebra.   The Japanese algebra lesson begins with student-
presented answers for each of the previous day's six homework 
problems.18  These activities, along with the accompanying 
classroom discussion are omitted from the excerpts.  

Then the teacher presents a more challenging problem that uses 
the same basic calculation method that the students have been 
studying, but needs one commonsense extension.  The problem is 
this: 

 There are two kinds of cake for sale. They must be 
bought in integer multiples; you cannot buy a fraction of a 
cake. The most delicious cake costs 230 yen, and a less 
tasty one is available for 200 yen.  You wish to purchase 
ten cakes but only have 2,100 yen.  The problem is to buy 
ten cakes and have as many of the expensive cakes as 
possible while spending no more than 2,100 yen.  

It is clear that the students had already studied versions of the 
problem that would permit fractional units of cakes to be 
purchased.  The reproduction of the six homework exercises as 
shown in the TIMSS Moderator's Guide confirms that the class 
was already experienced with the technical mechanics necessary to 

                                                
17. In fact, the technique is central to Euclid's development of area in 

general, which is based on transforming any polygon into a square with the same 
area. And the natural extension of this problem became a question for the ages: 
how to square the circle. 

18. “Moderator’s Guide,” p. 114. 
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solve problems with inequalities.19  It is also evident that they had 
been studying word problems and the translation of word problems 
into equations and inequalities that can then be solved. Indeed, the 
teacher introduces the problem with the remarks, “Today will be 
the final part of the sentence problems.”20  Thus, it is fair to infer 
that the only difference between the cake problem and the material 
they had just reviewed is the requirement that the solution must 
comprise integer multiples of each cake.  

After making sure that the students understand the problem, he 
asks them to devise a way to solve it.  They get an announced and 
enforced three minutes.  

Next, the teacher solicits solution approaches from the 
students. A student volunteers that she tried all possibilities.  Her 
approach was to try ten cheap cakes, then nine cheap cakes and 
one expensive cake, and so on., until she had the best answer.  
However, she was unable to finish in the three minutes that the 
teacher allocated for the problem.  The teacher emphasizes the 
point, and it will soon become clear that part of the lesson is to 
show that this unstructured approach is unsound.  

He then briefly discusses another way to solve the problem.  
The approach, which is quite inventive, uses a notion of marginal 
cost.  If we buy ten of the most expensive cakes, we exceed our 
budget by 200 yen.  Trading in an expensive cake for a cheaper 
cake gives a net savings of 30 yen. Obviously, seven cakes have to 
be traded in, which shows that the answer is three expensive cakes 
and seven cheaper ones.  As the teacher expected,21 no student 
solved the problem this way.  

Then he calls on another student, who explains how she set up 
the problem as an inequality, solved it as an equality, and then 
rounded the number of expensive cakes down to the nearest lesser 
integer.  As she explains the equation, he writes it on the board.  
Only a few students understand the explanation, and he asks for 
another explanation of the same process.  In subsequent activities 
                                                

19. Ibid. 
20. Ibid., p. 159. 
21. Ibid., p. 164. 



 12

that are only summarized on the tape and in the Moderator's Guide, 
the teacher then passes out a worksheet and works through a 
detailed analysis of the solution for the class.  

After the detailed presentation, another problem of the same 
type was assigned, but with larger numbers.  The teacher's words 
are telling:  

If you count one by one, you will be in an incredibly 
terrible situation.  In the same way that we just did the 
cake situation, set up an inequality equation by yourself 
and find out . . .[the answer].  Because finding the answers 
one by one is hard, I wonder if you see the numerous good 
points of setting up inequality equations . . ..   

The students work on the problem individually.  After eleven 
minutes, the teacher went over the problem with the class.  The 
video excerpts contain no group-based problem solving in this 
algebra lesson, and the Moderator's Guide confirms that none of 
the class time included problem solving in groups.  

Each class ended with the teacher summarizing the solution 
technique that constituted the lesson of the day.  

An Analysis of the Teaching and its Content.   Students never 
developed new solution methods. In the algebra class, the students 
were given the opportunity to learn first-hand why amorphous 
trial-and-error approaches (which seem to be encouraged by some 
of the latest reform programs) do not work.  Although the tape 
does not explicitly show how many students were able to solve the 
original cake problem in the allotted time, the student responses 
suggest that no more than four or five could have possibly 
succeeded.  But the three minutes of struggle might well have 
served to make the lesson more purposeful.  

From a mathematical perspective, the cake problem was 
designed to require a deep understanding of inequality problems 
and their solution.  Mathematicians would say that when we solve 
a problem, we find all of the answers.  If the cake problem had 
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allowed fractional purchases, and had simply required that 
altogether any mix of ten cakes be purchased for at most 2100 yen, 
then the algebraic formulation would read: 

,2100)10(200230 ≤−+ xx  

where x is the number of expensive cakes purchased, and 10 – x is 
the number of  the inexpensive ones.  The problem would also 
require that x be non-negative, since you cannot buy negative 
quantities of cake. A little algebraic manipulation gives the 
solution as the interval  

.0
3

10≤≤ x  

Now, every x in this interval is a solution to the simplified 
problem, and every solution to the problem is in this interval.  So if 
we want a special answer, the interval [0, 10/ 3] is the place to 
look. If we want the largest x, it is 10/ 3.  If we want the largest 
integer x, it is 3.  And if we wanted the largest even integer, for 
example, we would look nowhere else than into [0, 10/ 3] to 
conclude that this answer is x = 2.  Incidentally, a complete answer 
must also observe that the number of inexpensive items is non-
negative (which is to say that x ≤ 10).  

So this problem variant is more than a matter of common 
sense; it exposes students to a deep understanding of solutions to 
inequalities and the implications of real world constraints. 
Moreover, the problem illustrates the idea of decomposing a 
complex exercise into a more basic problem whose solution can 
then be adapted to achieve the original objective.  

In summary, the video excerpts feature challenge problems that 
cover fundamental principles, techniques, and methods of 
systematic thought that lie at the heart of mathematics and problem 
solving.  As such, they ought to provide experiences that build a 
powerful foundation of intuition and understanding for more 
advanced material yet to come.  As a derivative benefit, these 
problems are so rich they can be readily transformed into follow-
up exercises for use as reinforcement problems in class and as 
homework.  
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Defining Terms: Discovery and Invented Methods 

Many publications claim that the Japanese lessons teach 
students to invent solutions, develop methods, and discover new 
principles.  For example, this view is expressed in the Glenn 
Commission report,22 and is endorsed by the Video Study as well: 
“[In Japan, the] problem . . . comes first [and] . . . the student has . . 
. to invent his or her own solutions.”23  In fact, the Study reports 
that the 50 Japanese lessons averaged 1.7 student-presented 
alternative solution methods per class.24  Yet the excerpts exhibit 
no signs of such activity. They contain just one student-devised 
solution alternative, and it failed to produce an answer.  

These differences are fundamental, and they should be 
reconciled.  Part of the problem is that students are unlikely to 
devise their own solutions when the time is limited, the problems 
are so difficult that hints are needed, and the exercises are (clearly) 
designed to teach the value and use of specific techniques.  
Students would presumably have a better chance of finding 
alternative solution methods for less challenging exercises. And 
they would have an even better chance with problems that can be 
solved by a variety of methods that have already been taught.  
Examples might include geometry problems where different basic 
theorems can be used, and studies of auxiliary lines where the 
exercises are designed so that different auxiliary lines build 
different structures that have already been studied.  The Videotape 
Study illustrates alternative solution methods with the U.S. 
assignment to solve x2 + 43x – 43 = 0 by completing the square 
and by applying the quadratic formula.25  Of course, this problem 
directed students to use different methods they already knew. The 
example contains no hint of any discovery.   

                                                
22. J. Glenn et al., “Commission on Teaching,” p. 4. 
23. J. W. Stigler et al., “TIMSS Videotape Classroom Study,” p. vi. 
24. Ibid., p. 55. 
25. Ibid., p. 97. 
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So the questions remain: where are the alternative solution 
methods, and when do they demonstrate signs of student-
discovery?  

The answers are in the Video Study. It presents actual 
examples that were used to train the data analysts who counted the 
“Student Generated Alternative Solution Methods” (SGSM1, 
SGSM2, . . .) in each lesson.  These examples, it turns out, come 
from the geometry lesson in the video excerpts: the two student 
presentations for the Eda-Azusa problem are coded as SGSM1 and 
SGSM2.26  Similarly, the second problem, where each of four 
vertices could be moved in two directions, has the codings 
SGSM1–SGSM8. Altogether, this lesson is counted as having ten 
student-generated alternative solution methods, even though it 
contains no student-discovered methods whatsoever.  And the 
failed try-all-possibilities approach in algebra excerpts is counted 
as yet another student-discovered solution method.27  

The Videotape Study also contains a partial explanation for the 
source of these judgments.  It reports that the data coding and 
interpretation procedures were developed by four doctoral 
students—none of whom were in mathematics programs.28  
Moreover, the Study states that the project's supporting 
mathematicians only saw coder-generated lesson tables, and were 
denied access to the actual tapes.29  It seems reasonable to infer, 
therefore, that they did not participate in the design of these coding 
practices. As for the question of invention, the Video Study 
explains: “When seatwork is followed by students sharing 
alternative solution methods, this generally indicates that students 
were to invent their own solutions to the problem.”30  Thus, there 
appears to have been a sequence of interpretations based on student 

                                                
26. Ibid., pp. 26–7. 
27. In particular, the “Moderator’s Guide,” pp. 161–163 discusses this one 

unsuccessful approach as the entirety of the section titled: “Students Presenting 
Solution Methods.” 

28. J. W. Stigler et al., “TIMSS Videotape Classroom Study,” p. 24. 
29. Ibid., p. 31. 
30. Ibid., p. 100. 
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presentations being very generously counted as student-generated 
alternative solution methods, as invented, and ultimately as some 
kind of invented discoveries that might even depend on new 
principles the students had not yet learned.31 

On the other hand, the contributions by the Japanese teachers 
received much less generous recognition.  Yet in the defining 
examples of student discovery, the teachers—not the students—
manage the ideas and lead the education process.  

Additional Statistics from the TIMSS Projects 

It is worth reiterating that in the Japanese lesson excerpts, each 
of the four exercises began with students working individually to 
solve the problem.  Similarly, the Stigler-Hiebert analysis states, 
“Students rarely work in small groups to solve problems until they 
have worked first by themselves.”32  The detailed TIMSS 
Videotape Classroom Study contains no comparable statement, and 
even implies otherwise: “[After the problem is posed, the 
Japanese] students are then asked to work on the problem . . . 
sometimes individually and sometimes in groups.”33  However, not 
one of its eighty-six figures and bar charts documents instances 
where problems began with students working in groups. Chart 41 
indicates that of the seatwork time spent on problem solving, 
67.2% of the time comprised individual effort and 32.8% of the 
time was spent on group work.34   

Another TIMSS study addressed this issue by collecting 
statistics for carefully balanced samples of eighth graders. For each 
country, the sample base comprised approximately 4000 students.  
Their teachers were queried about their classroom organizations 

                                                
31. Cf. J. W. Stigler et al., “TIMSS Videotape Classroom Study,” p. vi; L. 

Peak et al., Pursuing Excellence: A Study of U. S. Eighth-Grade Mathematics 
and Science Teaching, Learning, Curriculum, and Achievement in International 
Context ((NCES, 1996), p. 9; and J. Glenn et al., “Commission on Teaching,” p. 
16. 

32. J. W. Stigler and J. Hiebert, “The Teaching Gap,” p. 79. 
33. J. W. Stigler et al., “TIMSS Videotape Classroom Study,” p. 134. 
34. Ibid., p. 78. 
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Figure 10  (extracted from Beaton et al., pp. 154-5) 

and whether most of the lessons had students working in small 
groups, individually, and/or as a class.  Teachers were also asked if 
they assisted students in the classroom assignments.  The results, 
which were weighted by the number of students in each responding 
teacher’s class, are reproduced below (Figure 5) for the U.S. and 
Japan.35  

      The results show that Japanese lessons do not have significant 
numbers of small-group activities. In fact, American classes 
evidently contain more that twice as many such lessons, and far 
more where the teachers do not assist the students.  Of course, it 
should be noted that the data is based on questionnaires and 
depends, therefore, on the judgment of each respondent.  The 
meaning of  “most or every lesson” might have cultural biases, as 
might the definitions of “small groups” and “teacher assistance.”  
Still, these TIMSS statistics support the notion that the Japanese 
style of teaching is substantially different from many of the U.S. 
reform practices.  

The Matter of Pedagogy 

One such reform approach relies on discovery-based learning, 
which aims to have the students themselves discover mathematical 

                                                
35. A. E. Beaton et al., Mathematics Achievement in the Middle School 

Years: IEA's Third International Mathematics and Science Study (TIMSS ISC, 
1996), pp. 154–5. 
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principles and techniques.  At first blush, the idea of discovery-
based learning seems attractive.  After all, we are more likely to 
recall what we discover for ourselves, and even if we forget such a 
fact, we should be able to rediscover it at a later date. According to 
Cobb et al,  

It is possible for students to construct for themselves the 
mathematical practices that, historically, took several 
thousand years to evolve.36   

However, as with any idealized theory, the real issues are in the 
implementation practices.  

• Judgments must determine how much classroom time 
should be allocated for students to discover the 
mathematics, and must resolve the necessary tradeoffs 
among allocated time for guided discovery, for direct 
instruction, for reinforcement exercises, and for review. 

• There must be detection and correction mechanisms for 
incorrect and incomplete “discoveries.” 

• There must be allowances for the fact that in even the 
best of circumstances, only a handful of students have 
any likelihood of discovering non-trivial mathematical 
principles.  

The videotaped lessons from Japan show fundamental 
decisions that are startling, and very different from the reform 
practices in the U.S.  In the Japanese classes, the time allotted for 
the first round of grappling with problems was remarkably modest.  
Consequently, the remaining time was sufficient for student 
presentations to help identify conceptual weaknesses, for teacher-
managed assistance and summations, as well as for follow-up 
problems designed to solidify understanding. However, because of 
the time limitations and the difficulty of the problems, most 
students were learning via a model of “grappling and telling.” That 
                                                

36. P. Cobb, E. Yackel, and T. Wood, “A Constructivist Alternative to the 
Representational View of Mind in Mathematics Education,” Journal for 
Research in Mathematics Education 23 (1992), p. 28. 
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is, students would typically struggle with a tough problem in class, 
but not find a solution.  They would then learn by being told how 
to solve it, and would benefit from the opportunity to contrast 
unsuccessful approaches against methods that work.37  There is no 
question that preliminarily grappling with a problem is both 
motivational and educational.38  Similarly, discussion about why 
some approaches fail and why a solution might be incomplete, 
along with the exploration of alternative problem solving 
techniques are all highly beneficial investments of time.  But the 
use of grappling and telling creates yet another implementation 
issue, which is:  

Who should do the telling? 

In some teaching practices, the theory of discovery-based 
learning is extended to include the notion of cooperative learning, 
which holds that the students should teach one another because 
they “understand” each other.  However, both the TIMSS 
videotape and the data in Figure 10 show that Japanese teaching is 
by no means purely or principally based on cooperative learning.  
Although students do get the opportunity to explain their solutions, 
the video excerpts show that Japanese teachers are by no means 
passive participants.  Student explanations frequently need—and 
get—supervision, and students can be remarkably incoherent (cf. 
Figure 5) even when their solutions are absolutely perfect.  When 
all is said and done, the teachers do the teaching—and the most 
important telling—but in an interactive style that is highly 
engaging and remarkably skillful.  

According to Stigler and Hiebert, some lessons feature 
considerably more direct instruction or extended demonstrations, 
whereas others demand that the students memorize basic facts.39  

                                                
37. D. L. Schwartz and J.D. Bransford, “A Time for Telling,” Cognition 

and Instruction, 16(4), (1998), pp. 475–522. 
38. Cf. D. L. Schwartz and J.D. Bransford, “A Time for Telling,” and J. D. 

Bransford et al., How People Learn: Brain, Mind, Experience and School 
(National Research Council, National Academy Press, 2000), p. 11.   

39. J. W. Stigler and J. Hiebert, “The Teaching Gap,” pp. 48–51. 
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Students might even be asked to memorize a mandate to think 
logically.40  Evidently, the lessons do not follow a rigid pattern. If 
any theme is common to these approaches, perhaps it is that 
although the lessons vary depending on the nature of the 
mathematical content, they always engage the students in an effort 
to foster thinking and understanding.  

Placing Japanese Teaching in the Context of U.S. Reform.   The 
video excerpts show Japanese lessons with a far richer content than 
the corresponding offerings from the U.S. and Germany. 
According to the Video Study, the Japanese, German, and U.S. 
eighth-grade classes covered material at the respective grade levels 
9.1, 8.7, and 7.4 by international standards.41  Evidently, the 
interactive nature of the Japanese teaching style and the use of 
challenging problems are managed so well that the content was 
actually enhanced.  We believe that a key reason for this high 
performance level is the efficient use of grappling and telling 
coupled with the benefits of disguised reinforcement exercises.  

Additional analysis shows that 53% of the Japanese lessons 
used proof-based reasoning, whereas the comparable statistic for 
the U.S. lessons—which included both traditional and reform 
programs—stood at zero.42  And in terms of the development of 
concepts, their depth and applicability, as well as in terms of the 
coherence of the material, the quality assessments were much the 
same.43  By all evidence, the use of proof-based reasoning as 
reported in Japan is not at all representative of the reform programs 
in the United States, and the use of such remarkably challenging 
problems seems beyond the scope of any American program past 
or present.  

When comparing U.S. reform practices and Japanese teaching 
methods, the Video Study offers somewhat guarded conclusions 
that are sometimes difficult to interpret.  The report reads:  
                                                

40. Ibid., p. 49. 
41. J. W. Stigler et al., “TIMSS Videotape Classroom Study,” p. 44. 
42. Ibid., p. vii. 
43. J. W. Stigler and J. Hiebert, “The Teaching Gap,” p. 59. 
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Japanese teachers, in certain respects, come closer to 
implementing the spirit of current ideas advanced by U.S. 
reformers than do U.S. teachers. For example, Japanese 
lessons include high-level mathematics, a clear focus on 
thinking and problem solving, and an emphasis on students 
deriving alternative solution methods and explaining their 
thinking.  In other respects, though, Japanese lessons do not 
follow such reform guidelines.  They include more 
lecturing and demonstration than even the more traditional 
U.S. lessons [—a practice frowned upon by reformers], and 
[contrary to specific recommendations made in the NCTM 
Professional Standards for Teaching Mathematics,44] we 
never observed calculators being used in a Japanese 
classroom.45 

Subsequent elaboration on the similarities between U.S. reform 
and Japanese pedagogy recapitulates these ideas in the context of 
various reform goals, but again offers no statistical evidence to 
compare with the data accumulated from the analysis of Japanese 
teaching practices.46  Consequently, it is difficult—absent 
additional context—to compare these reform notions in terms of 
mathematical coherence, depth, international grade level, or the 
preparation of students for more advanced studies and challenging 
problems.  Not surprisingly, “the spirit of current reform ideas” 
seems difficult to measure.  Similarly, the Japanese and U.S. 
reform pedagogies appear incomparable in their management of 
classroom time, their use of proof-based reasoning, their tradeoffs 
between student-discovery and the use of grappling and telling, as 
well as their use of individual and small group activities.  

                                                
44. The bracketed additions are elaborations from page 123 of the. 

Videotape Study, where the discussion of calculator usage is reworded and 
thereby avoids the grammatical misconstruction we have caused with the 
unedited in-place insertion. 

45. J. W. Stigler et al., “TIMSS Videotape Classroom Study,” p. vii. 
46. Ibid., pp. 122–124. 
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These distinctions not withstanding, the notion that Japanese 
teaching might be comparable to U.S. reforms is given even 
greater emphasis in a major Government report, which flatly 
declares: 

Japanese teachers widely practice what the U.S. 
mathematics reform recommends, while U.S. teachers do 
so infrequently.47 

This report on best teaching practices worldwide makes no 
mention of any differences between the U.S. reforms and Japanese 
teaching styles.  Evidently, its perspective differs from that of its 
source of primary information, which is the more cautiously 
worded TIMSS Videotape Study.48  Moreover, the differences that 
the Video Study does manage to mention—which concern direct 
instruction, calculators, and teacher-managed demonstrations—are 
all matters of contention in the U.S. debate over classroom reform.  

Lastly, it is significant (but seldom reported) that the Video 
Study makes a distinction between the idealized goals as 
prescribed in the NCTM Professional Standards for Teaching 
Mathematics, and as embodied in actual classroom practices of 
some reform programs.  In particular, the Study discusses two 
reform-style lessons. One comprises the playing of a game that is 
purported by the teacher as being NCTM compliant, but happens 
to be devoid of mathematical content.  In rather subdued language, 
Stigler et. al, declare: “It is clear to us that the features this teacher 
uses to define high quality instruction can occur in the absence of 
deep mathematical engagement on the part of the students.”49  The 
other lesson was deemed to be compliant with the spirit of NCTM 
reforms. It began with the teacher whirling an airplane around on a 
string. The class then spent the period in groups exploring how to 
determine the speed of the plane, and coming to realize that the 

                                                
47. L. Peak et al., “Eighth-Grade Mathematics in International Context,” p. 

9. See also pp. 41,43. 
48. J. W. Stigler et al., “TIMSS Videotape Classroom Study.” 
49. Ibid., p. 129. 
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key issues were the number of revolutions per second, and the 
circumference of the plane's circular trajectory.  The homework 
was a writing assignment: the students were asked to summarize 
their group's approach, and to write about the role they played in 
the group's work. The Study did not evaluate the content by grade 
level, nor compare the lesson against the qualities that seem 
representative of Japanese teaching practices.  

The Video Study reported that there was, apart from some 
minor differences, “little quantitative evidence that reform teachers 
in the United States differ much from those who claim not to be 
reformers.  Most of the comparisons were not significant.”50  
However, it is not evident how effective the Study's comparison 
categories were at quantifying the key differences in various 
teaching practices. 

Other Characterizations of Japanese Classroom Practices.   
Studies that use human interaction as a primary source of data 
must rely on large numbers of interpretations to transform raw, 
complex, occasionally ambiguous, and even seemingly 
inconsistent behavior into meaningful evidence.  Given the 
complexity of the lessons, it is not surprising that different 
interpretations should arise.  The Video Tape Study—to its 
credit—documents an overview of these decision procedures, 
although their specific applications were far too numerous to 
publish in detail.  Moreover, the Study actually contains a wide 
diversity of observations, ideas, and conclusions, which sometimes 
get just occasional mention, and are necessarily excluded from the 
Executive Summary. Understandably, this commentary is also 
missing—along with any supporting context—from the one-
sentence to one-paragraph condensations in derivative policy 
papers.51  Perhaps the seventh and eighth words in the opening line 
of the Study's Executive Summary explain this issue as succinctly 

                                                
50. Ibid., p. 125. 
51. Cf. L. Peak et al., “Eighth-Grade Mathematics in International Context,” 

and J. Glenn et al., “Commission on Teaching.” 
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as possible: “preliminary findings.”52  It is now appropriate to 
explore these larger-picture observations and to place them within 
the context of actual lessons.  

The Study even offers a couple of sentences that support our 
own observations:  

[Japanese] students are given support and direction through 
the class discussion of the problem when it is posed (figure 
50), through the summary explanations by the teacher 
(figure 47) after methods have been presented, through 
comments by the teacher that connect the current task with 
what students have studied in previous lessons or earlier in 
the same lesson (figure 80), and through the availability of 
a variety of mathematical materials and tools (figure 53).53 

Unfortunately, these insights are located far from the  
referenced figures and the explanations that accompany them.  The 
words are effectively lost among the suggestions to the contrary 
that dominate the report.  It is also fair to suggest that the wording 
and context are too vague to offer any inkling of how powerful the 
“support and direction through class discussion” really was, and 
likewise the value of the connections to previous lessons is left 
unexplored.  This discussion does not even reveal if these 
connections were made before students were assigned to work on 
the challenge problems, or after.  For these questions, the video 
excerpts provide resounding answers: the students received 
masterful instruction.  

The Videotape Study’s Math Content Group analyzed thirty 
classroom lesson tables that were selected to be representative of 
the curriculum.  Their assessments, as sampled in the Video Study, 
agree with our overall observations, apart from the use of hints, 
which were mostly omitted from the lesson tables.  Unfortunately, 
the analyses are highly stylized with abstract representations for 

                                                
52. J. W. Stigler et al., “TIMSS Videotape Classroom Study,” p. v. 
53. Ibid., p. 134. 
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use in statistical processing and were, presumably, not intended to 
be a reference for the actual teaching.54  

Another sentence in the Study begins with the potentially 
enlightening observation that:  

The teacher takes an active role in posing problems and 
helping students examine the advantages of different 
solution methods, [however, rather than elaborating on 
how this takes place, the sentence changes direction with 
the words] but the students are expected to struggle with 
the mathematical problems and invent their own methods.55 

This interpretation of student work as inventive discovery 
appears throughout the TIMSS Videotape Study.  In its analysis of 
the excerpted Japanese geometry lesson, the Video Study 
categorizes the teacher's review of the basic solution method 
(shown in Figure 1) as “Applying Concepts In New Situation,”56 
but inexplicably switches tracks to count the student applications as 
invented student generated alternative solution methods.  Another 
such instance reads, “Students will struggle because they have not 
already acquired a procedure to solve the problem.”57  Similarly, 
the Study never explains how teachers participate in the problem 
solving by teaching the use of methods and by supplying hints.  Its 
only discussion about hinting is to acknowledge the offer of 
previously prepared hint cards.58  And by the time the Glenn 
Commission finished its brief encapsulation of student progress, 

                                                
54. For example, the analysis of the excerpted geometry lesson consists of a 

directed graph with three nodes, two links and nine attributes.  The first node 
represents the basic principle (attribute PPD) for the presentation illustrated in 
Figure 1.  The node's link has the attributes NR (Necessary Result) and C+ 
(Increased complexity). It points to a node representing the Eda-Azusa challenge 
exercise. The representations were used to get a statistical sense of various 
broad-brush characteristics of the lessons, ibid., pp. 58–69. 

55. Ibid., p. 136. 
56. Ibid., Figure 63, p. 101. 
57. Ibid., p. 35. 
58. Ibid., pp. 26–30. 
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even the struggle had disappeared along with proper mention of 
extensive teacher-based assistance.  

Searching for Answers 

Let there be no doubt: the fact that we found no evidence of 
widespread inventiveness or student discovery should not be 
interpreted as a condemnation of exploration by students.  Rather, 
it suggests a need for balance based on a realistic recognition of 
what can and cannot be done in classrooms.  

Creativity and independent mathematical thought should be 
fostered, and alternative solution methods should be encouraged 
and studied.  Students need to know that problems can be solved in 
different ways.  They should learn to step back from a problem and 
think about plausible solution methods.  And they need experience 
selecting the best strategies for plans of first attack.59 Similarly, 
students should learn first-hand how problems are adapted to fit the 
method, and how methods can accommodate new problems.  

The Japanese lessons illustrate master instruction designed to 
foster this higher-level reasoning.  When combined with modeling, 
these activities comprise the essence of problem solving.  

However, despite the wealth of hints, the careful reviews of the 
necessary material and the presumptive benefits accumulated from 
years of exposure to these teaching practices, the students 
discovered no new principles, theorems, or solution methods. And 
despite extensive assistance, many students did not conquer the 
first challenge problem of the day.  These are sobering facts, and 

                                                
59. It is worth noting that the German algebra lesson (unlike either of the 

U.S. lessons) also covered strategy. The excerpted lesson on two equations in 
two unknowns has a review of the three solution methods that had been already 
taught. Then a more difficult problem that has two additional features is 
introduced. First, it requires the collection of like terms. Second, the coefficients 
permit the solution methods to be applied to one of the variables more easily 
than the other. This second issue seems to have been missed by the entire class, 
and is revealed by the teacher only after the class has worked (too hard) to solve 
the problem. There is also some discussion about the advantages and 
disadvantages of each solution method. 
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their implications for mathematics education should not be 
overlooked.  

Just imagine: if the application of principles already learned 
and just reviewed is so difficult, consider how hard it must be to 
devise new principles.  Ask mathematicians what they can do with 
three minutes of original thought.  Chances are your answer will be 
no more than a quizzical look. New principles do not come cheap; 
research mathematics—even when there is strong evidence to 
suggest what might be true—requires enormous amounts of time. 
And eighth graders will find the concepts and principles 
underlying eighth-grade level math just about as difficult to 
develop. In short, there is a fundamental difference between 
problem solving and developing new principles.  There are world-
class mathematicians who are mediocre problem solvers, and vice-
versa.60  Very few mathematical researchers would ever confuse 
the art of problem solving with the development of new 
mathematics.  The implications for K-12 education and 
mathematics pedagogy are clear.  Before we can understand what 
teachers and students should be doing in daily lessons, we must 
have a deep understanding of what they are doing as well as what 
they can and cannot do. These distinctions—profound but 
sometimes subtle—lie at the heart of why modern mathematics 
developed over a period of two centuries or so, and why arithmetic 
and elementary mathematics took even longer. 

Conclusions 

Large-scale video studies must rely on data coding and all 
kinds of preliminary judgments and filterings to encapsulate raw 
data.  To cut through these sources of potential information loss 
and possible confusion, this study did something that the others did 
not.  We supported our observations with a combination of the 
actual video images, a meticulous analysis of the mathematics 

                                                
60. Of course, problem solving is one component of research mathematics, 

but it can have a remarkably minor role in the very complex art of formalizing 
and establishing mathematical frameworks and fundamental principles. 
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lessons, and detailed citations together with a careful presentation 
of the context for each reference.  Similarly, we sought to include 
relevant information regardless of whether or not it supported our 
conclusions.  And whenever inconsistencies surfaced, we 
endeavored to reconcile the differences.  

Of course, we must avoid extrapolating from a few 
“representative” tapings to draw conclusions about a much larger 
set of lessons, much less the national characteristics of classroom 
teaching in the U.S., Germany, and Japan.  But with 229 lessons 
unavailable, and just six representative classes in view, there is 
little choice but to analyze the evidence that is in the public 
domain.  Accordingly, this study should be viewed as a cautionary 
warning about widely cited opinions that might in fact be 
erroneous. 

In summary: 

• The videotapes of Japanese lessons document the 
teaching of mathematical content that is deep and rich.  

• The excerpts do not support the suggestion that in 
Japan, “[The] problem . . . comes first  [and] . . . the 
student has . . . to invent his or her own solutions.”61  

• The evidence does suggest that in Japan, “Students 
rarely work in small groups to solve problems until they 
have worked first by themselves.”62  

• Similarly, the evidence gives little weight to the notion 
that “Japanese teachers, in certain respects, come closer 
to implementing the spirit of current ideas advanced by 
U.S. reformers than do U.S. teachers.”   

• The evidence does confirm that, “In other respects, 
Japanese lessons do not follow such reform guidelines.  
They include more lecturing and demonstration than 
even the more traditional U.S. lessons . . ..”63   

                                                
61. Cf. J. W. Stigler et al., “TIMSS Videotape Classroom Study,” p. vi. 
62. J. W. Stigler and J. Hiebert, “The Teaching Gap,” p. 79. 
63. J. W. Stigler et al., “TIMSS Videotape Classroom Study,” p. vii. 
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• The excerpts show Japanese classes featuring a finely 
timed series of mini-lessons that alternate between 
grappling-motivated instruction on how to apply 
solution methods, and well chosen challenge exercises 
designed to instill a deep understanding of the solution 
methods just reviewed. No other interpretation is 
possible.  

• Some official U.S. Government reports overemphasize 
unsubstantiated claims about Japanese pedagogy, while 
omitting all mention of the remarkably high quality 
instruction that is characteristic of Japanese teaching.  

• Studies of problem solving in the classroom should 
include statistical analyses of as large a variety of 
practices and interactions as possible, including the use 
of grappling and telling, in-progress hints and 
mentoring, and preparatory discussion with hints and 
applicable content.  Similarly, the roles of teacher 
assistance in presentations of all kinds ought to be 
better understood. 

• Research projects in mathematics education should 
strive to maintain open data to support independent 
analyses.  In addition, great care should be exercised to 
ensure that the codings and analyses incur no loss of 
mathematical content or pedagogy. 

It is perhaps fitting to close with a few words that strip away 
the citations, figures, tables, and video images that characterize the 
preceding analysis, and to express some observations in more 
human terms.  

Everyone understands that students must learn how to reason 
mathematically.  The heart of the matter, therefore, is how —not 
whether—to teach problem solving and mathematical 
investigation.  We must not be so desperate for the teaching of 
problem solving that we acclaim all such efforts to be one and the 
same and, therefore, equally promising.  The video excerpts 
document exemplary instances of master teachers instructing 



 30

students in the art of adapting fundamental principles to solve 
problems.  In each sample excerpt, the class had already learned 
the basic method necessary to solve the challenge problems of the 
day.  However, students had to possess a very solid understanding 
of the method before it could be applied successfully.  

This form of teaching requires a deep understanding of the 
underlying mathematics and its difficulty.  Students must be 
properly prepared so that they can master the content at an 
adequate pace.  Whenever hints are necessary, the teacher must be 
sensitive to these needs and stand ready to offer whatever 
assistance is appropriate to open the eyes of each individual 
learner.  More often than not, most students will be unable to apply 
fundamental principles in new settings until they see step-by-step 
examples completed by the teacher.  In these cases, the students 
should then get the opportunity to walk in the teacher's footsteps 
by applying the approach to a new problem that is designed to have 
the same challenges in a slightly different context.  

These are the lessons that must be learned from the videotape 
of Japanese teaching. As the excerpts demonstrate, a master 
teacher can even present every step of a solution without divulging 
the answer, and can, by so doing, help students learn to think 
deeply.  In such circumstances, the notion that students might have 
discovered the ideas on their own becomes an enticing mix of 
illusion intertwined with threads of truth.  Unfortunately, such 
misunderstanding risks serious consequences if it escalates to a 
level that influences classroom practice and education policy. In 
retrospect, it seems appropriate to offer one last cautionary 
recommendation.  Unless lesson studies include a comprehensive 
analysis of the mathematics content and the full range of teaching 
techniques, their conclusions will perforce be incomplete and, as a 
consequence, vulnerable to misconceptions about the very 
practices that best enhance student learning.  
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