On universal classes of extremely random constant-time hash functions
and their time-space tradeoff

Alan Siegelf
Courant Institute

New York University
New York, NY 10012

TThe work of the author was supported in part by ONR grant N00014-85-K-0046, NSF grants
CCR-8906949, CCR-8902221, CCR-9204202, and CCR-9503793.



On universal classes of extremely random constant-time hash functions and their time-space tradeoff
Abstract

A family of functions F' that map [0, m—1] into [0,2—1] is said to be x-wise independent
if any tuple of k distinct points in [0, m — 1] have a corresponding image, for a randomly
selected f € F, that is uniformly distributed in [0,n — 1]%. This paper shows that
for suitably fixed € < 1, and any k < m¢, there are families of k-wise independent
functions that can be evaluated in constant time for the standard random access model
of computation, and which require a provably necessary storage array of md random
seeds, for a suitable 6 < 1. These seeds can be pseudo-random values precomputed from
an initial O(k) random seeds. A simple adaptation yields n¢-wise independent functions
that require nd storage in many cases where m > n. In addition, lower bounds are
presented to show that neither storage requirement can be materially reduced. Previous
constructions of random functions having constant evaluation time and sublinear storage
exhibited only a constant degree of independence.

Unfortunately, the explicit randomized constructions, while requiring a constant
number of operations, are far too slow for any practical application. However, non-
constructive existence arguments are given, which suggest that this factor might be
eliminated. The problem of eliminating this factor is shown to be equivalent to a
fundamental open question in graph theory.

As a consequence of these constructions, many probabilistic algorithms can for the
first time be shown to achieve, up to constant factors, their expected asymptotic perfor-
mance for a programmable, albeit formal and rather impractical model of computation,
and a research direction is now available that may eventually lead to implementations

that are fast and provably sound.

Categories and Subject Descriptors: E.2 [Data Storage Representation]: Hash-table repre-
sentation; F.1.2 [Modes of Computation]: Probabilistic Computation; F2.3 [Tradeoffs among
Computational Measures]; F.2.1 [Computation in finite fields]; G.3 [Probability and Statis-
tics]: Random number generation.

General terms: Algorithms, Theory.

Additional Key Words and Phrases: Hash functions, universal hash functions, hashing, limited inde-
pendence, storage-time tradeoff.
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1. Introduction

Many probabilistic algorithms and data structures have been proven to work well when
fully random functions are used as unit-time subroutines. For example, it is well known
that for uniform hashing, the expected cost to insert the (an+1)-st item into a table of
size n is 1= —0(1) probes when fully random hash functions are used [11]. Moreover, Yao
proved that in terms of expected retrieval cost for open-address (a.k.a. closed) hashing,
uniform hashing is optimal: up to a factor of (1 + o(1)), no family of hash functions
gives a better average-case performance than the random functions of uniform hashing
(31].

Yet the significance of these performance bounds for real computation is by no means
clear. The difficulty is that they have been proven for hash functions that cannot be
efficiently computed. Suppose, for example, we wish to select a random mapping from
[0,n2 —1] into [0,n—1]. Since there are n® such mappings, it follows that the program
length of such a function must be at least n2logn bits, on average, which is much larger

than the hash table it is intended to service.

On the other hand, results based upon full randomness sometimes translate into
average case performance guarantees for real computation. For example, double hashing
uses the same insertion and retrieval strategies as uniform hashing, but defines the j-th
probe for a key x to be (d(z)+(j-1)f(z)) mod p, where p is prime, the table addresses
range from 0 to p—1, the function d is a random mapping of the key space into [0, p—1],
and f is a comparable mapping into [1,p — 1]. This scheme requires about 2[logp]
random bits per hash key, and we could take these bits to be any fixed portions of the
key itself, provided it is at least 2[logp] bits long. Then a probabilistic performance
bound for the truly random case would hold as an average case performance bound
for this deterministic case, where the averaging is over all possible sequences of data
keys. For uniform hashing, which requires additional randomness, the question of how
to interpret a probabilistic upper bound on performance is even more problematic.
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Yet even where such average case results are meaningful, we would rather establish
randomized performance bounds — which hold, on average, for any set of data — instead
of a bound that cannot be applied to any fixed instance of data.

Many theoretical studies of large scale parallel and distributed computation have
foundational assumptions and performance assurances based on efficient randomization.
For example, storage is often randomized to distribute data, to balance access patterns
to memory modules, and to balance load requirements across networks. While some
forms of randomization can use precomputed and even adaptive methods to achieve
the desired performance, other fundamental computation, and communication prob-
lems have yet to be solved by any provably efficient method that does not depend
on high randomness. Valiant and Brebner were the first to show that randomization
could be used to get high performance in various communication networks, and that
deterministic schemes were bound to have communication bottlenecks [29]. The per-
formance proofs for PRAM emulation as developed by Ranade [18] depend upon fairly
significant amounts of randomized computation. In fact, his address computations re-
quire O(logn) arithmetic operations to map a data reference into a physical memory
address. But while these methods (or the associated performance proofs) might be
viewed as, at present, somewhat restrictive, they represent a significant improvement
over formulations based on the idealized mathematical axioms of fully random func-
tions. Accordingly, it is to these notions of limited randomness that we now turn our

attention.

1.1 Background and overview

Carter and Wegman introduced universal classes of hash functions [4] to provide a the-
oretical and pragmatic framework for methods that exploit computable hash functions
with fixed degrees of freedom. Subsequent work on universal hashing (cf. [30, 15, 16])
have sometimes defined limited randomness with a few extra degrees of freedom, but
all of the formulations are basically as follows:
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Definition 1.
A family of hash functions F' with domain D and range R is (k, u)-wise independent

if it is finite and V yq,v9,...,yx € R,V distinct z1,29,..., 25 € D :

[ € P f@) =y =128} < plecl 1)
Consequently, if a function f € F'is chosen at random with all elements equally likely
to be selected, then f will map any fixed set of h distinct points from D into R* with
a probability that is nearly uniform.

In these definitions, D and R are always finite. It is worth pointing out that any
function is a hash function, and from the perspective of universal hashing, any function
is a bad hash function. What matters are the statistical characteristics of the family
members as quantified in (1). (Of course, we are also concerned with the program size
and operation count associated with evaluating the functions in such a family.) It is
important to notice that (x, z)-wise independence implies (7, ;1)-wise independence for
J < k. Indeed, if we sum both sides of equation (1) over all y, € R, the constraint on
f(zx) becomes the trivial f(zx) € R, and the bound reverts to the exact requirement
for (k — 1, u)-wise independence.

In brief, the various notions of (k, ;)-wise independence are all applicable, more or
less, to statements of the same form: the probability that x or fewer items behave in
any way is, within a factor of u, bounded by the probability of the behavior for the fully
independent case. Formally, a Boolean statement £ about the hashing of z1,x9,...,zx
can be decomposed into a disjoint sum of atomic k-way events:

&= V (/\ f(ﬂﬁi)=yi),

(y1,Y2,---Yr )€ \1<i<K
for some set €2 of k-tuples. Moreover, any such £ has a probability that is, up to the

factor p, bounded by the analogous probability that results from full independence and
a uniform distribution.

There are, of course, many events that do not satisfy these restrictions. For example,
if f: D — R is selected from a family of (k, u)-wise independent hash functions, then the
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probability that, say f(z;) =1, for i =1,2,...,n might be only l—m”—n, and not nearly as
small as ﬁ, no matter how large n > x might be. Similarly, we cannot use p(1— ‘1?')"
as an estimate for the probability that f(z;) # 1, for ¢ = 1,2,...,n. Nevertheless,
there are standard methods that often give satisfactory estimates for the probability
of events £ that concern the behavior of f on large subdomains. These procedures
typically use collections of k-way events that are implied by &: if £ implies /, e;, then
Prob{&} <, Prob{e;}, and each Prob{e;} can be readily estimated, if each e; concerns
k or fewer items. While more complex formulations are possible, they are unnecessary
for this work.

For expositional simplicity, we will, unless stated otherwise, set p =1, and simply
refer to (k)-wise independence.

The limited randomness provided by such classes of hash functions is frequently
sufficient to achieve an expected performance for many randomized algorithms that is
equivalent to the use of fully random hash functions. For example, Carter and Wegman
exhibited the following universal classes of (k, u)-wise independent hash functions that

map [0,p - 1] into [0,n — 1], where p is prime:

1
F(ﬁ) ={f|f(z)= (HZO aja:j mod p) modn, a; €[0,p—1]}, (2)
j=

and showed that these functions give a performance for hashing with separate chaining
that is effectively indistinguishable from that for fully random functions. In this hashing
scheme, the members of a set X C [0, p—1] are mapped, by a randomly selected function
feFy (independent of R), into linked lists that are accessed by the array B[0,n —1].
When multiple items are mapped to a common address location 7, the items are chained
together in a list with the head list item stored in B[j]. The remaining list members are
kept in auxiliary storage outside of B. Carter and Wegman used the fact that the sum
of the expected j-th moments of the list lengths, when fully random hash functions are
used, is essentially the same as that resulting from the use of random functions in F ()

provided j < k. For hashing with separate chaining, the expected average of the second
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moments of the list lengths determines the expected retrieval time, whence pairwise
independence guarantees an expected performance that is equivalent to that resulting

from fully independent hash functions.

Subsequently, Mehlhorn and Vishkin presented more comprehensive families of uni-

versal hash functions [16].

Ranade used O(logn)-wise independent hash functions to attain optimal expected
performance (up to constant factors) for randomized routing schemes on an n x logn
butterfly network [18]. In this application, the routing delays subsume the O(logn) op-
eration costs that result from hashing each memory reference by a function in Fgiog ))-
However, for (theoretical) PRAM emulation on butterfly networks (cf. [9, 18]), there
would seem to be limited opportunity to use pipelining to mask latency for read in-

tensive algorithms, as long as each address computation requires more than constant

time.

O(logn)-wise independent hash functions have also been shown to give optimal ex-
pected probe performance for double hashing ([19]). But this efficiency is only in terms
of probe counts; the cost to compute a single hash address would be clogn, without
the hash functions and developments that we now present. Thus, the formal results
of [19] are that in various models of closed hashing, dictionaries can be implemented
with traditional (clogn)-wise independent hash functions, which result in an average
case performance of O(logn) operations per data access. This result would have more

theoretical interest if highly independent constant-time hash functions were availaible.

Accordingly, it is reasonable to ask,
Is there an inherent k-time penalty for computing

(k)-wise independent hash functions, or can we do better?

The answer will turn out to be that faster functions are indeed programmable. However,
a complete solution is fairly technical and cannot be stated in terms of the standard
formulations for limited randomness. The definitions must be extended to expose addi-
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tional statistical characteristics that affect the computational resources in cases where

the independence exceeds the number of random seeds used to hash an individual key.

Families of random hash functions are often defined as a three-tier mapping go foh,
where h: D — Dy, f: D1 — D1, and g : D; - R. The underlying domain D might be
huge, in which case a preliminary mapping A is used to map the hash keys into a smaller
domain that is better suited for efficient computation. Thus, D; might be a finite field
with elements that can be represented by a machine word or so, and the actual target
range R might be a table index that is less well suited for defining families of uniformly
distributed hash functions. For example, the Carter-Wegman class (2) actually defines
a (k)-wise independent family f € F' on the field of integers mod p, and then uses g(z) =
z modn to project the hashing onto the intended range [0,n — 1]. Consequently, the
resulting composition fails to achieve (k, 1)-wise independence because the first p mod n
points in [0,n — 1] have [2] preimage points, whereas the remaining n — (p mod n)
points have 2] preimage points. This nonuniform postprocessing was the reason for
introducing the parameter 4 in the definition of (k, u)-wise independence. However, for
the problems we consider, the pathologies associated with g are insignificant, whereas
the irregularities associated with h turn out to have a greater affect on the underlying

computational resources.

Formally, we analyze the computational costs for computing (x)-wise independent
mappings from a domain D into a range R. The underlying parameters are: 1) the
number o of initializing random seeds, 2) the evaluation time 7' < & for the hash func-
tion, and 3) the size of the hashing program and a provably necessary auxiliary storage
array M, which, it will turn out, we can presume to hold pseudo-random numbers that
have been precomputed from o initial seeds. Additional parameters are the domain and
range sizes |D| and |R|. This paper gives a lower bound to show that M must store at
least |D|¢ words from R, for suitable fixed € < 1. We also show how to circumvent this
lower bound. By allowing an asymptotically negligible chance (which is yet another
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parameter) that the hash function will fail to achieve (k)-wise independence, the lower
bound will still apply, but for an effective domain size |D;|, which might be far smaller
than |D].

The exact details include additional parameters, but they play a minor role in the
resource requirements. In all cases, the requisite number of random seeds remains
modest: o0 = @(,{)T

We also present two kinds of algorithmic formulations for such high performance
hash functions. In particular, nonconstructive existence arguments are used to show
that algorithms might, in principle, match the resource constraints predicted by the
lower bound. Our (nonconstructive) hash functions require a precomputation phase
where the o random seeds are used to precompute |D|¢ pseudo-random values that
are stored in an auxiliary array M. Then a suitable algorithm can compute highly
random hash values by using its hash key deterministically to select a small number T'
of elements from M and by simply returning the sum of these elements mod |R|, or, say,
their bitwise exclusive-or. The computation can be formulated to use, say, just twice as
many elements from M as are proved necessary by our bound. Moreover, this count 7T’
turns out to be constant: 7= ©(1). On the other hand, the question of which T words

should be selected from M lies at the heart of the nonconstructive existence argument.

While the question of how to select these T' random words effectively is still open,
we show that hash functions with very high independence are indeed programmable,
provided we accept the less satisfactory evaluation time of T€(T) where T is the 0(1)

operation count predicted by nonconstructive methods.

TFor very large domains, the prehashing in Appendix 1, which is based on [7,16] uses an additional
loglog | D| bits, which are provably necessary (cf. [7, 16]). On the other hand, the convention that

words can be processed in unit time is suspect for domains where such a term would matter.
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1.2 Related Work

A preliminary version of this work appeared as an extended abstract in [21]. The
current presentation includes more efficient existential formulations, better probabilistic
constructions, a stronger and more general lower bound, and an improvement in the
applications. In the interim, several works have appeared that use the properties of

these high performance hash functions [8, 10, 14].

The theory of hashing has also progressed along several independent lines. In par-
ticular, Dietzfelbinger et al. pursued the perfect hashing methods begun by Fredman
et al. [7] to develop hash functions that can locate data without collisions [6]. The pro-
cessing is fully dynamic, with an average insertion time of O(1) steps per insertion, and
a resulting 1 table probe per data request. While these techniques have many useful
properties, and might comprise the methods of choice for many applications, they do
not construct functions with the statistical randomness that is the primary objective
of this work. Further, the functions require auxiliary storage of Q(n) bits, which is in

excess of the storage we will use.

Many other works use hash functions to ameliorate resource conflicts that arise in
distributed computation. For example, Karp et al. use the highly random constant-
time hash functions described in the preliminary version of this work to resolve various
problems of contention at the memory module level [10]. Their model is designed to
avoid some of the idealized characteristics of PRAMs, where contention only occurs
at the level of memory cells. Additional machine emulation results that rely upon the
hash functions of this paper include developments by Goldberg et al. [8] and Matias
et al. [14]. On the other hand, some machine contention can be resolved with much
simpler hash functions. For example, Kruskal et al. use such an approach to emulate

an (nl*€)-processor PRAM on an n-processor machine [12].
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1.3 The organization

This paper is organized as follows. Section 1 concludes with a brief description of
the computational model and an introduction to the calculus of limited independence.
Section 2 analyzes three random function formulations, which range from the noncon-
structively defined but extremely efficient, to the programmable (with code). They
all run in constant time and can be as much as (|D|%)-wise independent, for different,
suitably small constants § > 0.

Section 3 presents lower bounds for the resource requirements of fast hash functions.
Section 4 discusses the intrinsic resource tradeoffs for the general hashing formulations
of Section 2, their lower bounds, and their equivalence to a fundamental problem in

graph theory. Section 5 gives a few applications and Section 6 presents the conclusions.

1.4 Computational assumptions

The performance results are based on a variety of assumptions that characterically hold
for most hashing problems, as well as some decisions to use problem descriptors aimed
at keeping the parameters at hand as simple as possible. The first point of clarification
is that the underlying problem size, in all hashing problems, will be n. We state this
because n will sometimes be only implicitly represented by, say, a domain size parameter
m, which will later be set to n¢, for suitabe £. Second, we assume that for some constant
r > 2, the family of hash functions we construct need only be (k, u)-wise independent
with a probability exceeding 1 —n~=". Third, there is an underlying set of data that is to
be hashed, which has a size that is at most n. It is easy to adapt the results to larger
data sets, but to avoid clutter, we will perform these adaptations only when necessary.

Fourth, either the domain size |D| is polynomial in n, or there is “no computation
charge” for premapping elements from a very large space D into, say, [0,n¢—1] for some
constant £ > r + 2. It will suffice to use a pairwise independent hash function (i.e., a
randomly selected member of universal class of a pair-wise independent hash functions)
for the premapping h: D — [0, nf - 1].

11
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Fifth, the range R is no larger than n? for some constant . In fact, we sometimes
assume that n < |R|. This assumtion is harmless; if | R| is much less than n, it will suffice
to pick an n that is a multiple of |R|, and postprocess the hash functions mod|R|.

The underlying computational model (once the domain is reduced in size) is the
standard Random Access Machine.

Lastly, we assume that there is a source of truly independent uniformly distributed
random seeds in any interval [0, p—1], and that modest quantites of them are available for
use. In particular, if a hash function is to be (x)-wise independent, then ©(x) random
seeds can be supplied as initializating input to the hashing algorithm. Of course, if
strings of (k) seeds have relative probabilities of occurance that are not equal but
instead differ by as much as a factor of u, then the resulting hash functions will have

statistics that have the same variability.

1.5 A primer on limited independence and the simplest derived inequalities

The probabilistic inequalities used in this paper all follow from a few closely related
formulations. Let X(x): (T, F) — (1,0) be the indicator function, which maps Boolean
expressions into 1 when they are true and 0 otherwise. Let g be a nonnegative increasing

function, and let X be a random variable. Then 9(X) ig at least 1 whenever X > a, and

g(a)
is nonnegative everywhere. Thus Prob{X > a} = Prob{g(X) > g(a)} = E[X(gg(é)) >
1] < E[%(()a())] = E[g((g)]. There are several functions g commonly used for proving
probabilistic inequalities of the form
Elg(z)]
Prob{X > a} < . 3
(X >a) < 258 3)

When X is itself nonnegative, setting g(z) = = gives what is sometimes referred to as
Markov’s inequality.

This scheme also works if g is an increasing multinomial or multivariate function
that is never negative on its domain. Let, for example, the random variable ® be the
sum of n Bernoulli trials: ® = 27 4+ 29 +--- 4+ zp, Where z;, is 1 if, say, the hash function
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f maps z; to memory module 1, and 0 otherwise. In this case z;, is itself the disjoint
sum of many atomic events: z, = \/;(f(z) = j), where the j index ranges over all
addresses in module 1. If f is selected from a (k,p)-wise independent family, then,
as is straightforward to verify, the Bernoulli Trials will be (k,u)-wise independent.

A suitable multinomial g would be g(zy,2y,...,2n) = (), which has a very natural

P

interpretation. In this case, (|

) is the sum of all products of subsets of x different 2’s:
(%) = S1ciy <ip<<inen %y Zin *** Zin-

We recall that the expectation and multiplication commute for independent random
variables: E[Y X| = E[X|E[Y] if X and Y are independent. In the case of (k,u)-wise
independence, Ex[X1 Xy --- Xi] < u]]1<j<x Eco[Xj], for nonnegative (x, u1)-wise indepen-
dent random variables Xy, Xy, ..., X, where E, denotes the expectation under (x, y1)-
wise independence, and E,, denotes the expectation under full randomness. More gen-
erally, we note that if the X;-s are (k, u)-independent, then so are {gi(Xi)};?zl for any
set of functions g;. (These facts can be verified by formulating events as the logical-or of
k-way atomic events that assign each X; fixed values.) Under (&, u)-wise independence,
it follows that

Prob(@>ay < Bl < s, o Bl Bl ] Bacl, )
The bound is useless if a < k, since the denominator would be zero; in such a case, we

might replace x with a smaller value.

In many of our applications, E.[z;] = p for some expression p that is independent

of k. In these cases, E.[(?)] = (")p*, and hence Prob{® > a} < ,u(z)pn.

(%)
These derivations suggest that we will need some basic combinatorial inequalities.

Some use the notation nE=n(n—-1)...(n -k +1). For example, when m > n, then we

K
n

[

m

can write

)
< (Z)%, and Z‘f > (2)k without appealing to any estimate for factorials.

A fairly elementary form of Stirling’s Formula says that n! > n"t1/2e-"_ Sometimes
even more naive formulations such as n! > n”e~" will suffice. For example, the last
inequality implies that nE > nFe—%. (Indeed, to see that the former implies the latter,
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observe that nf > Jone = &0 I > (£)"- (2)" = (2)".) It now follows that
nkek _/m\ _nk
k! = \k) = kI’

and we will bound many combinatorial expressions by replacing (%) by %’;, if the expres-

. . kpo—k ope, o . . . .
sion appears in a numerator, and by 25—, if it is in a denominator. As an immediate

application, we have:

which further simplifies the preceding estimates for Prob{® > a}, when ® is the sum of
n (k, u)-wise independent Bernoulli trials with probability of success p. Although much

better estimates can be derived, they will not be needed.

Many powerful inequalities come from setting g(X) = e*X | in (3), and then solving
for the value of A > 0 that gives the best bound. If X is the sum of n mutually
independent identically distributed random variables z;, then E[e’X] = E[e*#1]?, and
Prob{X > a} < e=2E[erM]n. If X = 2;+29+...+ 2, where {2;}#_, are random variables
that enjoy (k,u)-wise independence, then Ex[e’X] < u[1%_; Ec[e*#]. A more complete
set of these estimates for cases with limited independence can be found in [20].

Sometimes an event £ will have a corresponding predicate Pred(,) and sets U and
W that satisfy the following: if £ occurs, then there exits u,c U and w c W such that
Pred(u,w) is true. This implies that Prob{¢} <3,y wcw El¥ (Pred(u,w))], where X
is the 0—1 indicator function that maps true,false into 1,0. We will take care to ensure
that U and W are suitably restricted so that (k, u)-wise independence can be used to

evaluate the expectations.

Armed with this set of counting arguments, we proceed to the problem of building

fast computable hash functions.
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2. The hash functions

The first step is to formalize a somewhat stronger and occasionally more applicable

notion of restricted randomness.

Definition 2.
A family of hash functions F' with domain D and range R is r-practical (k, p)-wise

independent if for any subset Dy c D, with |Dgy| < v/|R|"/2, there is a subset of functions
(|D20|

F C F where |F| > |F|(1-2"%:

) and the following holds:
Y Y1,Y2,-..,Ys € R, V distinct x1,29,...,25 € Dy :
|F|

PR

<{feF:hlz;)=vy;,i=1,2,... Kk} <

We define F' to be uniformly r-practical (k, u)-wise independent if (4) holds for some
\F| > |F|(1- J) with Dy = D.

Besides accommodating small percentages of faulty hash functions, this definition
differs from the usual formulations by specifying two-sided constraints. This formula-
tion (which becomes an equality when p = 1) is intended to support inclusion-exclusion
arguments based on (k)-wise independent hash functions. (In [19], for example, such a
two-sided bound is essential.) As a practical matter, this additional constraint is not
particularly burdensome. While most constructions of (k,u)-wise independent func-
tion classes have focussed on one-sided constraints as typified by Definition 1, actual
constructions, such as the polynomials F(,i) of equation (2) usually satisfy the more

restrictive standard of Definition 2.

2.1 Existence arguments

We now examine the problem of constructing families of (k)-wise independent hash
functions that map a domain D = [0,m — 1] into a range R = [0,p — 1]. The basic
motivation for the approach comes from considering the following question. Imagine,
for the moment, that D = R, and is of prime size. Then we can use xk random elements
from D as coefficients in equation (2) to construct a (x)-wise independent, hash function.
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Evidently, evaluation requires O(k) time. If m random elements are provided, then table
lookup gives an O(1) time (m)-wise independent hash function. What sort of random

functions can be constructed from m¢ random seeds?

For the purposes of this section, we will require that the underlying storage be
sufficient to hold the random function code, including its random seeds. Our model of
computation is the Random Access Machine, where both memory access and the basic
arithmetic and logic operations can be executed on words in unit time (cf.[1]). Each

word will comprise [logs p] or possibly [log, m] bits.

We temporarily suppress the issue of program size and prove the existence of families
of fast highly independent hash functions that map [0,m — 1] into [0, p — 1] and use m¢
words of random input. We will also initially ignore all preprocessing and postprocessing
steps as well as any the concern associated with huge domains to study the problem of
constructing fully (x, 1)-wise independent hash functions that map D = [0,m —1] into a
suitable R = [0, p — 1], given an auxiliary array of m¢ random words from R, for somet
e < 1. Evidently, any random hash function must have a mechanism to associate each
element in D with a few of these random words, as otherwise no random computation
can result. If the association is not adaptive! then it can be represented by a bipartite
graph G on the vertex sets D and D¢ = [0, m¢—1]. Such a bipartite graph must associate
at least [ random numbers with each set of [ elements from D, for [ < x, as otherwise
there are not enough degrees of freedom to achieve (k)-wise independence. Suitable

graphs are formalized as follows.

TWe will avoid the clutter of floors and ceilings as long as possible, and assume that the exponent

€ has been chosen to make the resulting expression such as m¢ an integer.

YThe lower bound will include adaptive probing, where the location of the next random key to
retrieve can depend on the value of other such data that has already been read. The purpose of
mentioning a nonadaptive approach is because it is more intuitive, and helps explain all of our

constructions, which, it turns out, are nonadaptive.
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Definition 3.

Let an (m, €,d, k) local concentrator be a bipartite graph on sets of vertices I (inputs)
and O (outputs), where |I| = m, |O] = m¢, and the following hold. Each input has
outdegree d. Every set of j inputs, for j < k, has edges to some set of j or more

outputs.

Our next observation is that such graphs exist, even with very small outdegree d. In
the following lemma, the parameter r is extraneous because the existence result holds
for r = 0. It is included to compress two proofs into one. By increasing r from 0
some positive quantity, a suitably structured random graph will be as described with a
probability exceeding 1 —m~"¢ (which can be with overwhelming likelihood) as opposed
to a probability exceeding zero. The same issue applies to the parameter r in Lemma

4.

Lemma 1. Let d, K, m and m¢ be positive integers with ¢ < 1. Suppose that r» > 0
and d > :—ﬁ?ﬁ Let G = (V, FE) be a random bipartite graph with input vertices I,
and output 5ertices O, where |I| = m, and |O] = m¢, and where each vertex in [ has
edges to d distinct randomly selected neighbors in O. Then with probability exceeding

1—-m="4, G is an (m,e,d, k) local concentrator.

Proof: We use standard probabilistic arguments (cf. [24]) to estimate the proba-
bility that G fails to have j outputs for some set of j inputs, for j < k. By construction,
failure cannot occur for j < d. For larger aggregates of size at most k, the probability
of a failure is bounded by the expected number of pairs (v c I, w c O), where |u| = 7,
|lw| =j7—1, and all jd edges from u have destinations within w, for d < j < k. Evidently,

the probability that the jd edges are so selected, for any fixed (u, w), is

(6) <ty

("2) me "o,

(where the inequality is strict because d > 1). The number of candidate (u,w) pairs is
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(7))

rraunve < 2 (5)7) (52)°

d<j<k

just
Thus:

mimie—¢€qid
< X —‘7

l ejd
d<]<l~e m

1 mitiegid
<m~ € .
d§<lﬂ‘7 (]_1) me']d

. . d,n1+
Now, the constraint for d can be written as mde > k4mltetr whence m=" > & pas ‘

Substituting gives:

_frj
Prob{ failure} <m=¢ > T
d<]<n‘] ('7_ )
<m . ]

Setting r = 0, we see that a randomly constructed graph fails to be an (m, €, d, k)-local
concentrator with a probability that is less than 1. It follows that such a construction
will succeed with positive probability and hence these graphs do indeed exist.

We have, as yet, no hash function; but each element, at least, is now associated with
a few random values. The obvious use for these values is as coefficients of a hashing
polynomial. By increasing the number of random values used in this calculation, we
can turn a local concentrator into a calculation procedure for (k,1)-wise independent
hash functions.

Let G be an (m,¢,d, k) local concentrator. Let p be prime. For each input i in G,
let ’s d neighbors in G be stored in the set Adj(i). Let M, be an m¢ x d array of words
in [0, p — 1], whose concatenated contents is the very long word w € [0,p — 1]™"@

Define the random hash function
o= ¥ iéMy(,1)| modp.
O<i<d je Adj(s)
Thus, computing f§ (i) requires d — 1 additions and d — 1 multiplications plus a com-

parable number of modular divisions. The result turns out to be (k)-wise independent
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when the concatenated contents of the storage array M, is equally likely to be any

value in [0,p — 1]4m°.

Theorem 1. Let G be an (m,e€,d, k) local concentrator. Then {fg}we[o’pfl]dme is a
(k, 1)-wise independent family of hash functions mapping [0, m — 1] into [0,p — 1].

Proof: Let x1,29,...,7x be any « distinct values in [0,m — 1], and yq,¥9,.--, Yk
be k arbitrary values in [0,p—1]. We must show that for all  and y assignments, there
are exactly the same number of functions f,, that satisfy the system

fS(z;) =vy; modp, fori=1,2,... k. (5)

Now, the unknowns, in this system, are the word assignments to the array M,,, and
the system is linear in these variables. The equations in (5) comprise x constraints in
dme unknowns. So if the system enjoys linear independence, then the set of k equations
in (5) will have exactly p®m‘~* different w words that are solutions, which ensures
the precise uniformity required of (k)-wise independence. It follows that we need only
establish the linear independence of all systems defined in (5).

We prove the linear independence by contradiction. In the context of Lemma 1,
[0,m — 1] plays the role of I, and [0,m¢ — 1] is O. The linear system f$(Z) =7 mod p

of all m equations has the explicit formulation
d

ST WP x Ax (M) jco = Y0, Y1 - - > Ym-1)T mod p, (6)
k=0

where A is the diagonal matrix with ¥ in location (4,4), for i = 0,1,...,m—1 (with &0
is set to the identity matrix), and A = (a; j)ic1, jeco, i the adjacency matrix for G, which
has has m rows, m¢ columns, and d 1-s in each row. The representation (M;y);c0 is
intended to denote the k-th of d column vectors, which each have |O| = m¢ rows. Taken
together, they comprise the entries in the auxiliary array M of random words.
The proof will exploit the structural characteristic of G to establish the linear in-
dependence of any subsystem of |Ij| < k equations, for Iy c [0,m - 1]:
bi=| Y Y *My(j k)| modp, forie I.
O<k<d je Adj(i)
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Accordingly, suppose that I; names the row indices in a subsystem of (6) is linearly
dependent, and which has no proper subset that is dependent.

By definition, Iy, in the local concentrator, has d|/j| edges, which reach at least |/
outputs. Let Oy comprise the vertices adjacent to Iy in G. Then the average number
of edges received from I by a vertex in Oy is d|Iy|/|Og| which is at least 1 and at most
d, since |Iy| < Oy < d|Iy|. By the pigeonhole principle, there must be an output o € Oy
having exactly ¢ edges that originate in [, for some ¢ where 1 < ¢ < d. Let I; be this
set of neighbors of o in Iy: Iy = {i € Iy : 0 € Adj(i)}. Let Iy = {iy,is,...,iq}, where
1 < q¢ < d. Now consider the linear subsystem with rows indexed by I; and columns
restricted to the variables M (o, k), where £ =0,1,...,d - 1. This system comprises the

following submatrix of a Vandermonde matrix:

1 7 z% e chi X
1 a9 1y ... 15”
i 2 a1
1 i g Iq

As is well known, such a subsystem cannot be linearly dependent since no two rows
are the same, and ¢ < d. Since none of the rows with indices in [j — I; have any of
the variables M(o,0), M (o0,1),...,M(o,d — 1) present, (that is, they are present with
coefficients of zero) the only way a linear combination of the rows can add to the zero
vector is if each row in I; has a coefficient of zero. Thus, the assumption that the
system is dependent and minimal is contradicted. |

So far, we have a probabilistic fast hashing procedure that is (k)-wise independent,
uses dme€ random words of logp bits, and requires ©(d?) operations. The construction
gives a generic transformation from a graph rich in matchings to a family of highly
random functions. We now give a more efficient construction that uses better random
graph properties, with a constant factor degradation in the outdegree d, but where
only one random value is stored per output destination. The construction uses a sparse
bipartite graph where every set of k rows of its adjacency matrix is not only linearly
independent, but also exhibits linear independence over finite commutative groups such
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as the integers modp for any integer p.

Definition 4.

Let G be a bipartite graph on sets of vertices I (inputs) and O (outputs), where
[I| =m, |O| = m¢. Let Adj(i), for i € I, be the set of i’s neighbors in O. We say that G
is (m,e€,d, k) locally peelable if each input node has an outdegree of at most d and the
following holds: if I is an arbitrary set of x or fewer input vertices, then there is an

19 € Iy such that

Adiio) - | Adi() #0.

ielg—{ig}

(Some node in I has a neighbor that is not a neighbor of any other node in Ij.)
Lemma 2. Let D = [0,m — 1], and R = [0,p — 1]. Let @ be denote addition modp
or any other commutative group operator that is closed over R. Let G be (m,e¢,d, k)
locally peelable, with € < 1. For each input ¢ in G, let ¢’s neighbors in G be stored
in the set Adj(i). Let M, be an array of m¢ words from R, where the concatenated
content of My, comprises the very long word w € [0, p — 1]™".

Define the hash function

80 = @ My(j), forieD.
JjeAdj(i)
Then {f§ hwel0,p—1jme 18 @ (k,1)-wise independent family of hash functions mapping D
into R.

Proof: Consider the subsystem (in unknowns w) f§(z;) = y;, for i = 1,2,... k,
which assigns « values in R to x distinct input vertices in D. Since the system is
peelable, it can be permuted into a system where the first £ columns comprise an upper
triangular matrix with 1’s along its diagonal. The first row corresponds to an input z;_
reaching an output op that is not a neighbor of any node in {z;}{_; —{z; }. The columns
are permuted so that the first column corresponds to oy. Then the same reordering is
recursively applied to the remaining x — 1 equations in unknowns O — {oy}. Given such
an upper triangular permutation of the system, there are m¢ — k column variables that
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are not among the columns that contain the x diagonal entries, and we are free to
assign arbitrary values from R to these variables. Then the remaining x variables will
have a unique solution that can be found by back-solving via the @ operator. Thus,
the number of solutions to any x such equations in the m¢ unknowns is exactly p™ —#,

which ensures that the f$ are (k,1)-wise independent. |

We now show that some random graphs are locally peelable.

Definition 5.

Let an (m,€,d, k) local expander be a bipartite graph on sets of vertices I (inputs)
and O (outputs), where [I| =m, and |O| = m¢, and the following hold. Each input has
a positive outdegree bounded by d. Any set of j inputs, for 1 < j < k, has edges to at

least |jd/2| + 1 different outputs.

Lemma 3. An (m,¢,d, k) local expander is (m,€,d, k) locally peelable.

Proof: The proof is by contradiction. Suppose that [; is a smallest set of input
variables that is not peelable. Obviously |Iy| > 1. Suppose |[j] < k. By definition, the
input variables of I have at least |jd/2] + 1 different output variables, which have, on
average, at most jd/(|jd/2]+ 1) < 2 different input neighbors in Iy. By the pigeonhole
principle, some output vertex oy must therefore have just one input neighbor iy in .
We peel off this input, and observe that the subgraph with |Iy| — 1 input variables is
peelable, whence the supposition that |I,| < x must be false. 1

As with Lemma 1, the following existence argument includes an extraneous param-
eter r to increase the likelihood of success from something positive to a probability

overwhelmingly close to 1.

Lemma 4. Let d, K, m and m¢ be positive integers with ¢ < 1. Suppose that r > 0 and
d

€ > a% + % Let G = (V, E) be a random bipartite graph with input vertices

1, and output vertices O, where |I| =m, and |O] = m¢, and where each vertex in I has

edges to d distinct randomly selected neighbors in O. Then with probability exceeding
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1-m~", G is an (m,e€,d, k) local expander.

Proof: Rewriting the bound for € gives m¢4/2 > m(kde/2)4/2m"/2, so that

m(jde/2)%?

ed? <m™"/2 for j < k. (7)

Proceeding as in Lemma 1 gives the following estimates for the probability that G is

not a local expander.

Prob{failure} < Y~ (Tjn) <U272J) <%/€2J>jd

1<j<k
) 1<JZ;K 7 (lgd/2])tmeid

whence approximating (|jd/2])! via our two Stirling estimates, and simplifying gives

m(jde/2)4?; 1

Prob{failure} < > ( i )]!.

2<j<k

Applying (7) gives
Prob{failure} < > m-"I2 )5l <mT Z% <m™". 1
2<j<k 2<;
Setting r = 0 shows that such a graph exists. Of course, actual use of this lemma will
require that € be less than 1, which requires that d > 3.

Combining Lemmas 2, 3 and 4 gives the following.

Theorem 2. Let d, ks, m and m¢ be positive integers with ¢ < 1. Suppose that
1>¢€> % + %, there are fixed programs that, for each input from [0,m — 1],
“@” together d words from an array of m¢ random words from [0, p — 1] to compute an
(k,1)-wise independent hash function mapping [0, m — 1] into [0, p — 1].

Proof: Let G be an (m,e,d, k) local expander. Lemma 4 ensures that such a
graph exists, when € > %—l— %. Lemma 3 ensures that G is (m,e€,d, k) locally

peelable. Lemma 2 defines

fSiy= @D Mu(j),

jeAdj()
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and shows that {f§ Ywelo,p-1]me 1S an (k,1)-wise independent family of hash functions
mapping [0,m — 1] into [0,p—1]. 1

In particular, @ can be addition modp, or € can be the bitwise exclusive-or operator,
where p is power of 2 and the integers in [0,p — 1] are regarded as binary strings of

length log p.

It is worth observing that the mef-word seeds w as used in Theorem 2 can be pro-
duced by random members of a universal class H of (dk, pu)-wise independent hash
functions. That is, let h € H map [0,m¢ — 1] into [0,p — 1], and comprise a univer-
sal class of (dk, u)-wise independent has functions. Let wj be the concatenation of
h(0),h(1),...,A(m¢—1). Then the family {fgh}heH as used in Theorem 2 is (k, pu)-wise
independent. To see that this is so, observe that each set of assignments to a j-tuple of
elements in D induces (via a peelable linear system of j constraints) a collection of solu-
tion values in at most dk (not necessarily identical) index locations of the auxiliary array
M. These assignments induce a disjoint partitioning of the set of all w € [0, p — 1]1O/]
when all possible seedings are available, (and where one of the partitions corresponds
to assignments that do not produce the desired h-tuple of values). The sets are disjoint
because they correspond to M-locations and M-location-values read in the process of
computing the desired h-tuple of hash values, and this process is deterministic. So if
these different assignments occur with the weighting that corresponds to all |O] loca-
tions being equally likely to have any seed value in [0, p — 1], the resulting class of hash
functions F' = {f§} will be (k,1)-wise independent by Theorem 2. If each individ-
ual partition subset of dk or fewer assignments has a probability of occurrence that is
reweighted by a factor of pu € [uq, o] then the resulting aggregate probability that F

computes the h-tuple is likewise reweighted by a factor that is within this interval.

Consequently, the space-time tradeoff, for families of fast highly independent hash
functions, is not a function of the number of random seeds that must be specified (which
is just ©(k)) but is really a matter of intrinsic storage requirements for the auxiliary
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storage array M.

While the second construction gives a more efficient family of hash functions, and
also provides a generic procedure that turns a good graph into a family of hash func-
tions, it does not quite supersede the first construction because there are no known
explicit graphs of either type. Should a short (deterministic or effective probabilistic)
algorithm be found, which builds local concentrators where an input’s adjacency list
can be generated in constant time, then fast highly independent hash functions will
follow. Similarly, effective procedures for constructing local expanders will yield even

better hash functions.

2.2 Asymptotically compact constructions and their randomization

From a positive perspective, we have proven that one good graph is all we need: the
contents of the auxiliary random seed array M defines the different members in the
associated family of hash functions. Furthermore, we have shown that good graphs not
only exist, but can even be formulated so that randomized constructions can build them
with very high likelihood.

Unfortunately, no deterministically defined graph has been proven, as yet, to satisfy
either expander-like formulation, and the problem seems to be quite difficult. Worse
still, any such graph would be useless, since its size would be prohibitively large. And
nobody knows how to design an algorithm that can construct, in constant time, the
adjacency list for the input vertices of such graphs.

We now show that from a theoretical perspective (where impractical constants might
be tolerated), there are asymptotically spatially compact programmable formulations
of constant-time (n¢)-wise independent hash functions. In particular, we will show
that Cartesian products can be used to attain compact representations of (wildly) less
efficient hash functions, where we forgo some randomness, increase the O(1) operation
count by an exponentially larger constant, but reduce the overall storage requirements
to n¢, for suitable € < 1. These variations can be applied to either of our nonconstructive
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formulations, but we will focus on those built from peelable graphs, since they appear
to be more efficient.

The first step is to show that such compact representations exist. The second is to
observe that simple changes in the random constructions yield such graphs with a high
probability, so that the graph itself can be part of the random seed specification. The
result is a uniform r-practical family where a good graph need not be found. Instead, a
randomized graph formulation can be used, which will comprise a pool of O(dk) random
seeds, a finite initialization program to decompress the seeds into, for some g < 1, n?
pseudorandom seeds that (are stored in an auxiliary graph array G and) represent a
compact formulation of the graph, which can be processed by a finite program to find,
in constant time, the neighbors of a given input vertex, and the pseudorandom value

associated with each neighbor (and stored in the auxiliary array M.)

Definition 6.

Let the Cartesian product G®H of two bipartite graphs G = (I,O;E) and H =
(J,Q; F) be the graph G = (Z, 0; ), with input vertex set Z = I x J, output set O = OxQ),
and edge set £, which contains the edge from (7,7) € Z to (0,q) € O if and only if
edge(i,0) € E and edge(j,q) € F.

Lemma 5. Let G = (I,0;F) be (m,¢,d,x) locally peelable, and H = (J,Q; F') be
(n,€,¢,k) locally peelable. Then the Cartesian product GeH is (mn, €, cd, k) locally
peelable.

Proof: We need only verify the local peelability property for G®H . The proof
is by contradiction. Let X be a smallest set of input variables for G H that is not
peelable. Obviously |X| > 1. Suppose |X| < k. Let I = {i|35 : (4,5) € X}. Now
|Iq| < K, and hence there is an 7 € I; with a neighbor oy that is not a neighbor of any
node in I — {1}. Now let Jo = {j|3j: (i,7) € X}, and let £ = |Jg|. By definition, Ji is
peelable. So let qq,q9,...,q, be a sequence of outputs peeled one-by-one in order from
Jg. Tt is easy to see that (o1, q1), (01,9),---, (01,q,) now gives a comparable peeling for
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{o1 x Jg} in X. But then the remaining |X| - ¢ variables (if any) are by assumption
peelable, whence the supposition that there is a nonpeelable subgraph with at most s

input vertices must be false. |

Consequently, if G is an (m€, €1, d, k) local expander, then applying Lemma 5 a total
of c= (%1 — 1 times shows that the Cartesian product x]r.lz/ldG is (M, €1,d¢, k) locally

peelable.

Lemma 5 plus the constructions of Theorem 2 establish the following.

Theorem 3. Let the positive integers m, m¢, k, d and p be specified with m > p, and
suppose that § < § > 2 4 1lndtlur 5y4 me/2 > 1 Let c=[1] and set ¢; = l_oeglrgg%_
Let G be the set of all graphs G = (V, E)) that are bipartite with m¢ input vertices, m¢1€
output vertices and where each input vertex has edges to d distinct neighbors among
the outputs. Then there is a G € G and a fixed programs ff;;, for w € [0, p — 1] of
size O(e2d)me€logm bits that, for each input from [0,m — 1], use G = éG to retrieve
no more than d'*+/¢ words from an auxiliary storage array of O(m¢) rlaznldom words in

[0,p—1] “@” the words together to compute a (k,1)-wise independent hash function
that maps [0, m — 1] into [0, p — 1].

Proof: Lemma 4 will be used to establish the existence of (m¢,e;,d, k) local ex-
panders. Programmatically, G will be stored and used as part of the hash function.
A value i € [0,m — 1] is hashed by computing the adjacency list for 7 in the implicitly
defined G = é G. Given the peelability of G, Lemma 5 shows that G is (m®, e, d°, k)

j=1
locally peelable, which is adequate for use in Theorem 2, since ce > 1.

It is not difficult to verify that all parameter sizes are as stated. In particular,
there are three issues: the peelability of the GG, the size of the auxiliary array and the

outdegree of each vertex in G.

The parameter €; satisfies 1 < €;. By construction, ¢ < £ +1, whence 1 > & > §.

Hence § < 15 < €1 so €; satisfies the peelability inequality of Lemma 4 since § does.
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By definition,

elnm elnm c elnm c elnm ~c elnm

/ /e ~e/c e/ —€%/2
61:ln(mﬁc1<ln(mf +1) _ 1 In(l1+m=<°) 1+mﬁc<1 m-€

I’

N [=

. 2
whence, since me¢ /2 >

1 1
€1<E+lnm'
So
€ _1<L
1= >Inm’

The word count for the auxiliary array is

meeic — meler—1/c+1/c)e < méminm — me(mﬁ)ce = mEe€C < mee2.

The outdegree is d¢ < d¢+1.

Thus, the hash function has three parts: one part comprises the array M of mc€1 =
O(m¢) random words from [0, p— 1], which requires O(m¢logp) bits. Another stores the
graph G, which requires me strings of d words that are each O(log(m¢”)) bits long. The
requisite storage for G (i.e., part 2) is, therefore, O(¢2dm¢logm) bits. The third part
of the function is the finite program that uses G and M to evaluate the hash function
for an element in [0,m -1]. 1
Remarks. Theorem 3 can be used with m replaced by n*, € replaced by €/k,  replaced
by n®, and d unchanged. The inequality for ¢ then becomes

€ 2 14+Ind+d6lnn

ﬂZEJF elnn ’ (8)

which we can write as € > %—i—?k%. Upon applying the simplification € > a+vb

implies € > a 4 b/e, we see that the requirement for € is met if € > 4% + /2k(5 + 1Hnd),

The corresponding hash functions can be evaluated with O(d*/¢€) operations, and have
a program size of O(n¢) words. It is worth pointing out that (8) can permit € to be
any sufficiently small positive constant provided, say, d > 12k/¢, § < €/6, n > db/¢, and
nk€’/2 > 1 The resulting functions are (n¢/6,1)-wise independent.

For completeness, we state without proof the analogous compaction/expansion for-
mulation for local concentrators.
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Lemma 6. Let G be an (m€,¢,d, k) local concentrator. Then the Cartesian product
% G is an (m,€,d'/¢, k) local concentrator. 1l
- So far, families of hash functions mapping D into R have been “demonstrated”
only in a probabilistic sense; no explicit constructions have been given. However, by
increasing, slightly, the degrees of freedom in our probabilistic constructions, the same
counting arguments ensure that with probability 1 — ﬁ, a randomly selected graph is
a local concentrator or expander. Consequently, we can include, in the initial seeding,
enough random data to build a local expander as well as the array of random words it will
be used to access. The graph will not be prohibitively large if it defines a compact version
as formulated in Theorem 3, and adapted as in (8). The only necessary accommodation
is to keep the probability of failure appropriately tiny in the rescaled parameters, which
can be done by increasing r by a factor of % The resulting randomized construction
F ﬁ(m’e’d) is an explicit family of O(1) time hash functions that is uniformly r-practical
(k)-wise independent as characterized by Definition 2. Lastly, it is worth pointing out
that the graph structure suggests that the number of initializing random seeds need
not change by more than a constant factor; it is sufficient to build G from pseudo-
random numbers generated from a traditional (kd*/€)-wise independent hash function.
To see that this is so, it suffices to observe that the proof of Lemma 4 was based on
expectations of disjunctions of atomic events comprising the conjunction of dx or fewer
random edge assignments.

These observations are formalized in the following theorem, where the bipartite
graph G is just a collection of (kd*/€)-wise independent pseudorandom numbers. A
simple algorithm to process this graph and compute the actual hash function it encodes

is presented after Theorem 4. The construction is randomized and asymptotically com-

pact.

Theorem 4. Let the positive integers n, k, n¢, k, d, p and r and be specified, and

suppose that ;&5 > 2 4 7 + HodHE Tet ¢ = [5] and set ¢ = logn/°] g1 b 08e

elnn elogn
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that € < kLH and ne’/(k+1) > 1 Tet g(d, xd*<) be a set of pseudorandomly generated

bipartite graphs with n€ input vertices, nt output vertices and where each vertex

has edges to d distinct randomly selected neighbors, and these d-tuple assignments of

neighbors are (kdk¢-1)-wise independent. Let M be a collection of long words that are

the concatenation of (kd*¢)-wise independent sequences of n¢€1¢ words that individually

belong to [0, p - 1]. For any G e G(d, kdkc), let G = éG. Given w € M, and G € G, let
i=1

G be the hash function defined by fg as in Lemma 2. Let F§, = {f$}yem, Geg-

Then Fy, is an explicit family of uniformly r-practical (x,1)-wise independent hash
functions that map [0,n% — 1] into [0,p — 1]. Furthermore, each w € M comprises
|w| = ne€1¢ < ekF+1ne from [0, p — 1]. Each w string can be generated from xkd*® random
seeds that belong to [0,p — 1]. Each G € G can be stored as a sequence of n¢ words
of O(%logn) bits, and can be generated from (kd*¢) random seeds that are evenly
distributed among the ranges [0,n1 — 1],[0,n1 —2],...,[0,n1 — d]. The probability
that specific F*a fails to be (k,1)-wise independent is bounded by n-".

Proof: The arguments are just a combination of the reasoning given in Lemma
4, the rescaling listed in (8), and, mutatis-mutandis, the calculations given in the proof
of Theorem 3.

However, a few comments should be made about how to generate the two tables of
pseudorandom data. The potential difficulty is that we need, at initialization time, a
small (traditional) hash function to expand some count ¢ of truly random seeds into
a much larger collection of n? pseudorandom seeds belonging to [0, p — 1], even when

[0, p— 1] cannot define a finite field.

Perhaps the mathematically cleanest solution is to factor p into its product of powers
of distinct primes, and use a (kd*)-wise independent hash function over each of these
fields. Then the Chinese Remainder Theorem can be used to reconstruct the comparably

random (kd*¢, 1)-wise independent pseudorandom seeds as needed.

Lastly, we need a (pseudo)randomized construction of, say, a local expander graph,
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which comprises |I| (kd¥¢-1)-wise independent selections of d distinct random destina-
tions from the output set |O] = [0, p—1]. One solution to the distinctness problem is to
use an adaptive process to remap the range of the hash function to exclude, when the
j-th destination, 0 < j < d—1, is to be computed for input vertex i, the previously com-
puted j — 1 destinations. Let hg,hq,...,hz 1 be (kdF¢-1)-wise independent, and let h;
map I into [0,|O| -7 —1]. The j-th output destination for vertex i, for j =0,1,...,d -1,
0<j<|I|-1,is assigned Adj(7,j) = s, where s = h;(i)+7(4, j), and (i, j) has the prop-
erty that r(7,7) equals the number of vertices among Adj(i,0), Adj(i,1),...,Adj(i,7—1)

that are less than s, and none of the vertices in the list equals s. |

. . . . 2(k+1
The first requirement for e is satisfied if € > % + \/ (k+1)(4 + Hadtlur)

For applications of Theorem 4, a new hash function family (which might have to be
found in case F*a fails to be (k,1)-wise independent) would include new seeds to select

a new pseudorandom graph G € G as well as new pseudorandom seeds to select a new

we M.

For completeness, this subsection closes with a rather crudely transparent iterative
version of the hashing algorithm, which is presented below, where the use of % is for
conceptual transparency and lack of clutter.

function Hash(i: in [0,n* — 1]): in [0,nF - 1];

Global M: array of n¢ words in [0, p — 1];

Global G: n¢ x d array of words in [0,n¢"/k — 1];

Local Iy,ly,..., 1/ In [0,d - 1];

Local 11,1, ... ,7: in [0,n¢ —1];

Local j: in [0,n¢ - 1];

Local val: in [0,nF - 1];

val + 0;

(41,19, - - .,z’k/e) « i; {Distribute i as £ different packets of ¢logn bits.}
for l; +0tod-1do
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for [+ 0tod-1do

for [}, < 0tod-1do
j + (Glir, 1], Glig, la], - . -, Glig e L))
val + (M[j] @ val)
endallfors; {Altogether, d¥/¢ @-s take place.}

return(val).

3. Lower bounds

We now show that the size of our random word array cannot be materially reduced
without affecting the running time of the hash function. A family of (k,pu)-wise in-
dependent hash functions Fy; = {fm(z)}meyr where fm : D — R will be modeled as
follows. Each fy, is defined by the same algorithm, which inputs x and then reads d
locations in an array A[l..z| that contains z values belonging to R. The index m is a
very long word comprising the concatenated data contained in A. We can suppose that
each computation of f examines exactly d entries in the array A. The randomness in
the system comes from the choice of input seed strings m € MCR?. The set M need
not contain all possible sequences of z words from R, and can be a multiset, which
means that some strings could have several copies present in M. More generally, it is
worth remarking that the bounds we present would apply equally well if the strings
were assigned real weights, and each m € M were then selected with a probability that
equals m’s fraction of the total weight of elements in M, but we will not address this
issue any further. The algorithm can even be viewed as adaptive since we allow a key
x to be hashed by a scheme that, for j = 0,1,...,d — 1, uses x and the first j values
found in A to determine which A location to read for the (j+ 1)-st value. These values
and x are then used deterministically to compute the random function value in R.
The forthcoming lower bound argument will exploit the following independence con-
straint. Let X = {x1,x9,...,2x} be a set of k keys in D, and let, for j =1,2,...,k, the
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sequence of seed values read to compute fy/(x;) be sj1,5;9,...,5;4- Then the hashing
of X, over all possible seed strings in M, cannot cause the same fixed sequence of xkd seed
values to be read with a probability that exceeds l—b/{l—,i as otherwise X will be mapped
into the same k-tuple with a probability that is too high. Since the determination of the
sequence of seed locations can be adaptive, we are obliged to formulate the proof with
respect to the triples (C,Mf,D(C, i)), where ( is a subset of x — 1 locations in the seed
array A, 7 is a string that can result from concatenating the seed values in {, M f is the
subset of seed data sets m € M for which the concatenation of the seed values on ( is ¢,
and D((,1) is the subset of keys in D that are hashed by seeds read solely from ¢, when
the seed data is restricted to M f . Given these triples, the proof proceeds by summing
their respective weights, and bounding the respective sums. Bounds are attained by
selecting the “good” triples, where |Mf| is large enough to ensure that |D((,1)| < k.

The lower bound quantifies the intuition that if most |D((,7)| are small, then A must

be big.

Theorem 5. Let Fy; = {fm}menr denote a family of (k,p)-wise independent hash
functions mapping D into R, where M C R?. Then the number of probes 7' that must
be used to evaluate f € Iy, satisfies either 7' > k or

T T-1 1
27> (k-2 D|(1-—=5).
(-2 DI(1- )
Proof: Let every evaluation of f examine exactly d entries in the array A. We
show that d satisfies the constraint for 7. We can also suppose that p < |R| as otherwise

there is nothing to prove.

For each set ( of k — 1 locations in the z-element array A, let the locations in ( be
sorted by the value of their indices in A, so that each ¢ imparts a fixed sequencing to
the values stored in its locations. Then any string m € M will have, on its restriction to
(, k—1 values in a fixed order. We can view the concatenation of this subsequence as a
number in [0, |R* 1 —1], so that any such { defines an implicit projection of any m e M
into [0,|R%1 —1]. Given (, let M be partitioned into M¢ = <M1C,M2C,...,M|CR|H_1>,
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where Mf is the set of strings in M that have projections equal, on (, to the value
ie[0,|R51-1]. Let D((,4) be the set of domain elements x € D that, when computing

fm(x) forme M f , have their d A-locations read from within (. Let

. [D(¢,i), provided |M¢| > ulM|/|RF;

Do(c,z)={ (G), - provided M| > ulM|/|F: 9)
0, if [M7| < plM|/|R[".

Given an z € D((,1), fm(z) will be computed by probing the same d-tuple of locations

within ¢ for all m ¢ Mf It follows that |Dy((,7)| < k since otherwise there are k
elements in D that hash to some x-tuple of values in R with a probability that exceeds
/1R,

There are (,,%;) subsets (, and each subset induces a partition of M indexed by the
m-values restricted to (. Let ¥ =33, |Mf| [D(C,9)|- Let g =3¢ 3, |M§| |Do(C, 1))
Since [Dy((, )| < K, X < 3¢ 3i(k — 1)|M§| =Y ¢ (k= 1)|M|, whence

Zo<(r=1)(, 2, )Ml (10)

On the other hand, > has an alternative description, which gives a precise combi-
natorial formulation. Let D*((,4) be the set of pairs (m,z), with z € D and m € M,
such that, when computing fm(z) for m € Mf, all d probes to A-locations lie within
¢. By definition, |D*((,i)| = |Mi<| |D(,4)|- Furthermore, since the probing for = uses
exactly d locations, is clear that each pair (m,x) is counted in exactly (nﬁfl ) different

D+((,4). Hence

Y= (Kfzfd)|D||M|. (11)

Finally, the hashing of an z € D uses d probes that retrieve d specific values in a
fixed order from d locations in A. There are at most |R|? different sequences that can
be retrieved, and each sequence corresponds to d distinct locations (since the program
need not reread a location when hashing an individual key). Consequently, for a given
key x, each possible probe data tuple in R? could correspond to a specific sequence of d
probe locations in A, which can belong to at most (Kff ) different ¢ sets, which would
have x — 1 — d unprobed locations that could have up to |R|%~1-¢ different assignments.
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Thus, any x € D belongs to at most |R|d(nf]§d)|R|"‘—1—d different D((,). Hence

seED(G < DI, 210 irret (12)

From (9) and the definitions for ¥ and ¥(, we can count that

£ - 2 < 5l iD(, i1 = Bl e emp(c i (13)
Applying (12) to (13) shows that ¥ -3 < %|D|( )|R|“ 1 whence
o< (270 Junigl (14)
Combining equation (11) and inequality (14) gives
Zo> (219 ) Mipia - . (15)
k—1-d |R|

We remark that (15) cannot hold as an equality. Indeed, suppose that it did. Then (14)
and the first inequality in (13) would hold as equalities. But if (13) were an equality,
then Dg((,4) would have to be the empty set for all ¢ and (, since the definitions of

D((,i) and Dgy((,4) ensure that |M§|(|D(§,i)| —|Do(¢,9)]) < ‘le UM D(¢,4)|, and equality
can occur only if |Dy(¢,7)] = 0. So if (13) is an equality then then ¥y must be zero,

which contradicts (15), since p < |R|, d < k, and z > k. Hence

z

Zo> (212 ) MIDIL- ). (16)

Combining inequalities (10) and (16) gives

z z—d I
(=12 ) 1> (277 ) IMIDIa - .
Eliminating common factors establishes that

d
z

(r=2)"

Now, the derivation of (17) is only valid if d < k, but it is nevertheless reassuring to

>1DI(1- ). (17)

observe that if we (unjustifiably) set d to x in the inequality, z¢ > (k—2)*="|D|(1 l—}%),
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then the resulting expression collapses to the requirement z“ > 0, which is to say that
z > k. Of course k random numbers are necessary and sufficient, in this trivial case.

There are more significant conclusions to be drawn from Theorem 5 and its rela-
tionship to Theorem 2. These observations are deferred to Section 4. Meanwhile, we
close this section with two immediate corollaries.

The counting argument for Theorem 5 also gives an average case time bound.

Corollary 1. Let z, D and R be fixed. Let F; = {fm}men denote a family of (k, u)-
wise independent hash functions mapping D into R, where M C R? is the collection of
z-word auxiliary array data used to evaluate functions in F};. Suppose that p < |R|/2.
Let T be a lower bound for the worst-case count of the number of probes to the array
data that must be used to evaluate some function in any such Fj;. Let T be the average

probe count for any such family, which is averaged over all of D and all of F};.

r-1 Tr-

Then T > T—%(( z =2 —i—( ZF_3 +---+2), which can be expressed as T > T—o(1)
K=2)" K=2)"

when 2z > ck for fixed ¢ > 1.

Proof: The proof is generic. Let Aj, be the size of the largest domain that can
be serviced by a (k,1) wise independent hash function that maps Aj into R and uses
h probes or less. Let T be a lower bound for the number of probes that are necessary,
in the worst case, for a (k,1)-wise independent function that services D. Then a lower
bound for the total number of probes necessary to service all of D is |D|T — |Ap_q| -
|Ap_o| — -+ —|Aq]|, since the negative terms comprise overcorrections for the numbers
of probes that are miscounted by the principal term |D|T". The result now follows from
Theorem 5, which says that %Ad < #, and division by |D|. 1
Of course Theorem 5 also gives an admissible estimate to use for 7.

Theorem 5 suggests that 7" has a very mild dependence on the parameter u, and our
constructions have typically allowed p to remain at one. On the other hand, it is worth
noticing that the lower bound exhibits a far greater dependence on |D|, which could be

dramatically larger than |R|. In this case, we can use a simple, randomly chosen linear
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congruence (cf. F¥ in Appendix I) to premap |D| into, say, R*, whence the resource
requirements dictated by Theorem 5 would depend on |R|* rather than D. Thus there
is a significant benefit, in some cases, in allowing asymptotically negligible fractions of
hash functions to be defective (due to distinct data values colliding at the premapping
stage), and our constructions reflect this benefit.

Finally, it is worth observing that Theorem 5 can be used quite simply to give a

moderately satisfactory lower bound for the running time of r-practical hash functions.

Corollary 2. Let F' be a family of hash functions F' with domain D and range R that
is r-practical (k, u)-wise independent. Then

L (o2 R i)
We omit the proof because it is a straightforward application of Theorem 5.

While the exponent 7/2 in this bound is surely too small by a factor of 2, its
influence on the probe count T is still fairly acceptable. If the data can be examined
during the function selection stage, then probabilistic constructions as presented in
Appendix 1 allow, with high probability, the prehashing step to succeed without any

collisions, so that the resulting function, once a successful linear congruence is found,

is fully (,1)-wise independent.

4. A space—time tradeoff and problem equivalence

It is interesting to observe the dramatic change in the requirements for z when d drops
from k to kK — 1. Suppose that p < |R|/2, and k£ > 3. We can weaken (17) to state
24 > D, so that z must be at least |D|¢ for some positive e. Setting |D| = nk gives
d > k. In view of Theorem 2 (with m set to n*), we conclude that the number of
probes to the auxiliary array A of z = n® random /logn-bit words that is necessary per
evaluation of a (k)-wise independent hash function that maps [0,n* — 1] into [0, nf — 1]

satisfies

d=0(k/e), ford< k.
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Restated, we have a time-log(space) tradeoff: T'log(CacheSize) > log(DomainSize),
where CacheSize is the dimension z of the random word array A, which contains
words from R, and DomainSize = |D|. This lower bound and tradeoff applies to
any algorithm including those with random precomputation (that is oblivious to the
data) as long as any internal storage and precomputed values are counted as part of
the array as measured by z. Furthermore, the program need not be uniform, and the
storage resulting from any deterministic precomputation that precedes the reading of
the random seeds need not be charged to the storage measured by z. (The point of
these remarks is that the tradeoff need not include the generation of G, which could be
probabilistic or based on exhaustive search, which would entail an extravagant use of

time and space, but result in an optimally structured graph.)

From a more abstract perspective, we have exposed a very close equivalence between
the true space-time computational complexity for evaluating (x)-wise independent hash
functions that map, say [0,n — 1] into [0,n — 1], and the operation count needed to
compute the neighbors of an input vertex of bipartite graphs on [0,n — 1] x [0, n¢ — 1]
that have low outdegree d and have good expansion properties for small vertex sets. A
spatially compact graph representation that can be used to compute the adjacency list
of an input vertex in time Ti; = cd gives a time T ~ Tz hash function with a high degree
of independence, when augmented with an array of n® random numbers. Similarly, a
set of d random functions that are independent and enjoy (ex)-wise independence can
be used to build such a graph with Tz ~ edT%, albeit with an additive spatial cost of
edn® for the random number arrays: The equivalence holds in this direction because
our probability estimates in Section 2 were calculated from k-way expectations, and
never used full independence. The resource blowup is the modest factor ed because a
random function value in [0,n — 1] gives 1 points in [0,n¢ — 1] (where all expressions,
for expositional simplicity, are assumed to be integers). A crude application of our
lower bound imposes the requirement that d > 1/¢, while our existential Theorem 2

38



On universal classes of extremely random constant-time hash functions and their time-space tradeoff
establishes sufficiency for d =2/e + 1.

Taken together, these upper and lower bounds show that up to a fairly fine granular-
ity of instruction block counting, the computational complexity of these two algorithms

problems are within a factor of 2 of each other.

4.1 Independence in retrospect

The derivations and proofs, which were little more than a study of locally 1 to 1 map-
pings, exhibit a kind of probabilistic transparancy; if the initial seeding for the hash
function are (O©(k), u)-wise independent, then the resulting hash functions are likewise
(O(k), u)-wise independent, albeit for smaller multiple of k. The more demanding ap-
plication for the seeds, of course, is as input for the actual hash function; the seeding
(if any) for the (presumably) random graph does not seem to be especially sensitive
to the parameter y, and, in theory, does not require any randomness whatsoever. The
graph existance arguments, of course, would need minor adjustment. When =1, the
existance of suitable functions (or structures) will follow when probability estimates for

failure are less than 1. With pu > 1, we will need to read just the parameters to get

1
e

comparable combinatorial expressions for failure that are less than

Evidently, the (k, u)-wise independence of the resulting functions depends on the
quality of the input seeds. Some proofs (cf. [19]) seem to depend on (k, 1)-wise indepen-
dence. It is worth observing that in many such circumstances, seedings of ¢ words that
meet the two-sided formulation of (£,1 4+ O(2;))-wise independence may well suffice.
After all, if all seedings are, within a factor of 1 + O(ﬁlg), equally likely to occur, then
the family of seeds can viewed as (¢,1)-wise independent with probability 1 — 0(721—2),
and as faulty with probability O(nl—z) This simple observation would seem to simplify

some performance analyses, and might well be the the most compelling reason to seek

formulations that depend on small initial seed counts.
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5. Formal applications

The constructions in Section 2 show that (x)-wise independent hash functions, for
nonconstant x < nd and sufficiently small constant § > 0, can actually be programmed
as constant time subroutines that require only a moderate size array of random numbers
as input. Thus we have established a formal feasibility of any probabilistic algorithm
that has a performance bound based exclusively upon the use of such functions.

The two examples cited in this section are by no means self-contained. The first,
which concerns the performance of double hashing, follows from an elaborate proof
based on O(logn)-wise independence [19]. Consequently, Corollary 3 follows trivially.

The second application, which concerns the pipelined emulation of an idealized
nlogn processor parallel machine on an n processor real machine, requires modifications
of the original construction [18], which is based on universal classes of O(logn)-wise
independent hash functions. The original algorithm, though elegant, is sufficiently
elaborate that we only present the changes. In both applications, the original references
are necessary for a complete understanding of the results. For additional applications,

see [8, 10, 14] and. http://citeseer.nj.nec.com/context/122560/0 as well.

Corollary 3. For fixed load factor o < 1, O(logn)-wise independent hash functions
can be used for double hashing with constant time per probe and an expected cost of
125 + o(%) probes for unsuccessful search. |l

Randomized routing schemes and PRAM emulation have had a substantial and
fruitful literature [29, 25, 2, 17, 26, 27, 9, 18, 10, 8|. In particular, Karlin and Upfal ([9])
and Ranade ([18]) show formally (and perhaps plausibly) how nlogn-processor Butterfly
networks with bounded queues can, with very high probability, emulate an nlogn-
processor PRAM with an optimal performance penalty that is “only” a multiplicative
factor of logn.

Both Karlin and Upfal [9] and Ranade [18] presented schemes for an nlog n-processor
emulation of nlogn-processor PRAM algorithms. The processors are interconnected by
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an n xlogn butterfly network. For this configuration, the opportunity to exploit pipelin-
ing is limited for models featuring 100% randomized memory references, because each
PRAM emulation step causes the network to be effectively saturated for O(logn) time.
Thus, their feasibility results, which were based on hash functions comprising logn
degree polynomials, sustain essentially no performance penalty for evaluating such a
polynomial for each memory reference. Given the logn performance cost for referenc-
ing, Karlin and Upfal did not need to address the much less significant issue of what
to do about hashing collisions at the memory cell level; it simply cannot be a problem
when O(logn) time is available to locate each item. Ranade [18] uses the hardware

capability, which can support up to O(logn) reads per fetch, to solve the problem.

Now that highly independent hash functions can be evaluated in constant time,
it is natural to reexamine these models to see if optimal speed-up can be achieved by
pipelining these algorithms on machines that feature a reduced ratio of processor density
to routing capacity. The idea of pipelining that exploits large scale parallel slackness
to mask network latency can be traced to Smith [23], and has also been a subject of

theoretical study [12, 16, 28].

We adapt the constructions in [9] and [18] to emulate an nlogn PRAM machine on
a machine having one column of n processors interconnected by an n x logn butterfly
network. A PRAM step of nlogn parallel instructions is emulated by assigning logn
concurrent PRAM instructions to each processor. The machine would also have n

memory modules, say, one per processor.

Ranade’s Common PRAM emulation scheme can still be used, but a few aspects
must be modified to adapt to the higher performance requirements. A brief high-level
outline of his scheme will serve to identify the key issues. The system uses O(logn)-wise
independent hash functions (where the constant factor is about 8) to map the virtual
address space of [0,logn — 1] x [0,n — 1] x [0, m — 1] into itself.

Ranade’s scheme is roughly as follows.

41



On universal classes of extremely random constant-time hash functions and their time-space tradeoff

1 Each of the nlogn processors constructs a hashed memory request.

2 Each row of logn processors cooperate to sort their logn requests. The sorting is

done by a parallel systolic bubblesort.

3 The first processor in each row injects its row’s logn requests into the routing
network, smallest address first. The messages are routed to the correct row, whence
they pass along the row from module to module and eventually access the true

location of the referenced data.

4  Each return message backs up along its path to its home processor.

A minor issue, in his scheme, is that as many as O(logn) data items might hash
to (i.e., collide at) a single location. Ranade resolves this problem by distributing the
data for such a collision set fairly evenly across a row of logn memory modules in the
butterfly network. The actual hash address might hold a pointer to the distributed list
of items that hash to the computed location. Then a memory request, which includes
the unhashed reference address as a disambiguating identifier, can access each module
in sequential order to access the correct data location. As only O(logn) references will,
with high probability, be issued to each row, the logn processors are adequate to execute
up to (logn)? evenly distributed memory accesses to execute the O(logn) references in
O(logn) time.

The subtle part of his scheme, which is responsible for its remarkable performance,
is the routing sequencing and its analysis. Inasmuch as we exploit this part of the
algorithm without any modification whatsoever, we omit its description despite its
essential characteristics and critical content.

In a pipelined version, there would only be one processor in each row of the network,
and it might typically issue as many as logn memory references for a single emulation
step of Ranade’s algorithm. Since the hash addresses for each memory reference can be
computed in constant time, a single processor can execute these logn emulation steps
in O(logn) time.
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In this adaptation of his scheme, the hash function h would be used to map a key

address = € [0,nm —1] into h(z) € [0,logn —1] x [0,n—1] x [0, 2 —1]. As in the original

> logn

scheme, data packets are still kept locally lexicographically sorted (with the value z
used to break and disambiguate ties). The first address field, which corresponds, in
Ranade’s scheme, to the column number of the destination module (where a pointer to
the data could be found), is still used to control the timing and sequencing of packets
in the routing switch buffers, but does not specify a column in the network, since all
storage is in column 0. Instead, these bits, along with the third field, determine the
local hash address for the destination memory module (which has m words of storage).
The local process number (in [1,logn]) for each packet would be explicitly listed in a

separate field.
There are three modifications to his scheme that require explanation and proof.

Each of the n processors should sort their (locally generated) logn remote address
keys in logn time. Ranade’s scheme can afford to use logn processors and log2 n work

to sort logn addresses.

Each of the n memory modules, which have a logical address space of size m, should
receive, with overwhelming probability, only O(m) preimage addresses as computed by
the hash function. This constraint is essentially the same as that in Ranade’s scheme,

and is included for completeness.

Finally, each module should be able to process its incoming memory access requests
in O(logn) time with very high probability. Thus, each processor should receive (with
high probability) only O(logn) memory references per PRAM step, and O(logn) time
should be adequate for these references to be disambiguated from the other preimage

data that hash to this same address set.

The local sorting is accomplished in three steps. Lemmas 7 and 8 will show that
for any fixed ¢, there is a fixed d adequate to guarantee that each (i.e. the slowest) of
the n processors can sort its logn messages in dlogn time with a probability that is at
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least 1 — % The worst case time will be lognloglogn. Since the use of ghost messages
in Ranade’s scheme ensures that the routing phase of the algorithm will synchronize
with the processor that completes its sorting step last, the fact that some steps might
take lognloglogn time to sort is irrelevant to the overall asymptotic performance of
this scheme. Thus, we can even take ¢ = 1, and conclude that the expected time for
the sorting phase is ©(logn).

The sorting begins with a hashing step to collect common memory references. Its
purpose is to accommodate the Common PRAM model, which permits, in a single par-
allel step, a memory location to be referenced by any subset of the individual processors.
Without this hashing step, the sorting phase (in step 3 below) might have too high a
probability of performing poorly, even if a splay tree is used to instantiate the sorting.
Step 1) Bucket partitioning (hashing) is used to group together the memory refer-

ences for identical locations. The common references, as generated within each

pipeline, are then combined. This step comprises n parallel threads wherein

each processor processes its local set of logn or fewer references.
The bucket partitioning is straightforward. Suppose we have a multiset M of logn
items comprising & < logn different values in [0, — 1]. The partitioning proceeds by
sequencing through M and, for each h(z) € M, inserting h(z) into bucket B[L%n]]. A
list recording the buckets that are actually referenced is maintained during the insertion
process. Then the referenced buckets are traversed and a fast sorting algorithm is
applied to sort the contents of each occupied bucket into lists of identical values. The

k lists are then sorted as a set of k£ distinct random values by steps two and three.

Lemma 7. For any fixed ¢ > 0, there is a fixed d such that step 1 completes in dlogn
time with a probability that exceeds 1 — L.

Proof: The probability that, for a single processor, the partitioning places at least
r > 0 different key values in one bucket is bounded by the sum of the expected number

logn
of distinct r-tuples contained in each bucket. This latter count is at most ,u(nf_l), if the
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multiset is derived from a family of (k,u)-wise independent hash functions, for r < k.
Since there are n processors, the probability that no processor encounters as many as r
different key values in a single bucket is at least 1 — u(:i%?.

When no bucket has as many as r different values, for some r > 2, the total time
to sort each nonempty bucket is bounded by the worst case bound O(lﬁﬁﬂrlogr) =
O(lognlogr), which corresponds to the sorting of multisets comprising n items with at
most r values. A suitable sorting scheme might use, for example, a balanced search tree
of lists, with one list per value.

It follows that step 1 completes in time O(lognlogr) with a probability that exceeds

logn
1- % (nTT—Z) . I
If » or more values are encountered, we can use lognloglogn as the time bound. The
r+1
expected contribution, from this case, is a modest O( (log n)n“:_l;g logny.

It suffices to set, say, r = 3 or thereabouts, and observe that the probability that

some processor has three or more keys are mapped to the some single bucket is bounded

1 3
by og:) '

For completeness, we note that while it is reasonable to expect that real parallel
machines will have processors with free storage that in fact exceeds n words per machine,
step 1 can achieve an expected time bound of O(logn) with fewer resources. First, n¢
storage, for any fixed positive € will suffice. In this case, a suitable time bound can
be established by bounding the expected number of r-tuples per bucket where r ~ %,
or by using % passes of the partitioning step in a procedure that is analogous to radix
sorting. Actual sorting would be performed only for sequences of keys that have identical
partitioning histories over all % passes. Second, the storage need not be empty. A free
store of O(logn) words is sufficient to implement a partitioning scheme that works by
conditionally swapping its data into a possibly full local memory of size n¢ or more.

Swapped-out data would be placed in the free store, and fully restored’ upon completion

TThe basic organization for such a scheme can be found in [1] p71, prob 2.12.

45



On universal classes of extremely random constant-time hash functions and their time-space tradeoff
of partitioning step 1.

Step 2) Each processor’s set of memory references, with one (locally combined) repre-
sentative for each of the £ < logn true (disambiguated) address references, is
partitioned among logn bins. Simply stated, a record with the hashed address
(t,x), with ¢t € [0,logn — 1] and z € [0,nm — 1], is placed in bin t.

This step clearly runs in O(logn) time.

Step 3) The contents of each bin are then sorted with an efficient sorting algorithm.
Lastly, the logn sorted sequences are concatenated to produce the desired result.

Step 3 requires a performance proof, since we must assert that all n processors can
complete this sorting task in O(logn) time.

Technically, each processor has up to logn values derived from a (x)-wise indepen-
dent hash function. But since x > logn, we can take these values to be fully random.
The results of this paper also show that we can set y = 1, which gives the uniform
distribution. We prove the performance bound for this case; it is straightforward to
extend the conclusion to larger u.

For convenience, we rescale the sorting problem with n replacing logn, so that
we now have 2" processors that each sort n random numbers in a fixed interval. Let
algorithm A sort a set D of n random real numbers in [0,m — 1) as follows:

i) Partially sort the data by placing each x € D into Bucket[|n21]].
ii) For each bucket, use a fast sorting algorithm to sort the bucket contents.
iii) Concatenate the sorted contents of the buckets.

The mean performance of Algorithm A is analyzed as follows.

Lemma 8. Let [0,m — 1) comprise all sequences of n real values selected uniformly
from [0,m —1). Then for any fixed ¢ > 0, there is a fixed d such that algorithm A sorts
a fraction exceeding 1—e <" of all D € [0,m—1)" in dn steps, where ¢ =d—-2-In(d-1).
Proof: See [22]. 1
Our sorting problem (as rescaled) concerns the slowest of 27 processors. Let t;
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be the time that the i’th processor uses to sort its n random numbers. Then we can
conclude that Prob{maxjscon(t;) —n > (d - 1)n} < 27((d — 1)e?-4)", whence setting
d = 4 gives the value (;%)", which is exponentially small. In the rescaled problem
comprising n processors, each with logn numbers, the probability is polynomially small
in n and parameter d.f

Ranade’s combining scheme ensures that common references are merged, so that
each memory bank executes just one memory access for each distinct memory reference.
To conclude that this emulation scheme can complete a PRAM step of nlogn threads
in an expected time of O(logn), we establish, in Lemmas 9 10, 11, and 12, four distribu-

tional characteristics of the underlying hashing scheme. Their proofs and formulations

are not especially sharp; rather, they were written to be simple.

Lemma 9. Let D be a set of nlogn distinct values belonging to a domain D, and let
f be a (k,u)-wise independent hash function mapping D into [0,nm — 1]. Let d;, for
i=0,1,...,n -1, be the number of keys in Dy that are mapped into [im, (i + 1)m), so
that d; = |{z € Dy : im < f(z) < (i +1)m}|. Let kx = Blogn, for any fixed 3 > 0. Then
for any fixed ¢ > 0, there is a fixed d such that Prob{d; > dlogn} < .

Proof: We can suppose that dlogn > k. If not, the analogous calculations are even
simpler. Alternatively, it suffices to use the following proof, but with dlogn replacing
k. We take, d; to be the number of distinct memory references, among the nlogn
references of a single PRAM step, that are hashed to locations in memory module 1. We

use (k, u)-wise independence to compute expectations that bound Prob{d; > dlogn}:

3

E dy nlogn Lﬁ
K K

This probability is polynomially small in n, for kK = Blogn with fixed 5> 0. |

TA value is polynomially small in n if it depends on parameters that can be set so that it is less

than -L for any fixed ¢ and sufficiently large n.

47



On universal classes of extremely random constant-time hash functions and their time-space tradeoff

Lemma 10. Let D; be a set of nlogn values in a domain D = [0,nm —1], and let f be
a (k,u)-wise independent hash function that maps D into D. Let A; be the size of the
preimage of f[Dy]n[im,(i+1)m—-1]: A;=|{z € D:3y € Dy s.t. f(x)= f(y) and im <
f(y) < (1+1)m}|. Let k = Blogn, for any fixed § > 0. Then for any fixed ¢ > 0, there
is a fixed d such Prob{A; > dlogn} < ;.

Proof: We can assume that dlogn > k. Let d; be the number of values in Dy that
are mapped into [im, (i+1)m~—1]. By definition, A; includes the count for d;. We observe
that Prob{A; > dlogn} < Prob{(A; — d; > $logn)V(d; < k/2)} + Prob{(A; — d; >
Zlogn) V(k/2 < d; < $logn)} + Prob{d; > $logn}. Lemma 9 ensures that Prob{d; >
41ogn} is polynomially small. We use the (k, u)-wise independence to bound, in turn,
each of Prob{(A; - d; > $logn)V(d; < /2)} and Prob{(A; —d; > $logn)\/(r/2 <d; <
d1ogn)}.

The limited independence allows us to bound these probabilities by counting the
expected number of pairs (S;,8;) where S; is a set of j < § references in Dy that hash
into module 1, and and Sy comprises k — j elements in D — D that hash into the image
of &;.

More precisely, we replace d by 2d so that the probabilities we seek to estimate are

p1= Prob{(A; —d; > dlogn) V(dy < §)}; 1 = Prob{(A; —dy > dlogn) V(dy > §)}.

Let f be the hash function. Then ¢; is overestimated by the following expectation

E[[{(81,82) | 81 € Dy, 82 € D — Dy, f($1) € moduley, f(S2) € f(S1),151] = [S2| = §}]

(TeR") ’

since there must be (d’lf/%") suitable subsets Sy among dlogn items that collide with Dy

in the hashing range restricted to module 1. Similarly, p; is bounded in the same way,

except that we set |S;| = j and |S3| = k — j and sum over j =1,2,...,k/2 1. The j’th

dlog n)

term in the summation is divided by (dég%"), rather than (“; 7

In the following calculations, we make an additional over-count by treating |D — Dy

as mn. We can also suppose that (§)2 < d(logn)?, which ensures that, in the summation

j sk—2]

below, 10gn)’s

gy 1 maximized at j = §.

48



On universal classes of extremely random constant-time hash functions and their time-space tradeoff

K/2 mn\(_ J \k—j
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As for ¢q, the resulting expression is just the term for p; with j = /2, which is
bounded by u(4 2V%/2_ Thus, ¢; is already counted in our estimate for p;, which could
have limited the summation range to 1 < j < k/2.

These bounds are all polynomially small in n. It follows that for suitable fixed d,
Prob{A; > dlogn} < L. As all modules have the same statistical performance, the
bound is established. |
Consequently, Prob{max; A; > dlogn} < ncl——l

We now observe that the hashing of D distributes the data quite evenly among the

n modules; there is only a polynomially small chance that any module will have more

than dm records hashed into its address range, and we can choose, say, d = 3.

Lemma 11. Let f be a (k, u, )-wise independent hash function that maps [0,nm — 1]
into [0,nm — 1], and let d; be the size of the preimage of [im, (i + 1)m — 1]|, so that
d; = {z: f(z) € [im,(i+ 1)m - 1]}. Let k = Blogn, for any fixed 3 > 0. Then for any
fixed ¢ > 0, there is a fixed d such that Prob{d; > dm} < %

Proof: Let m; be the number of items, among the nm data, that are mapped to
module 7 by the hash function f, for i =1,2,...,n. Under (k, u)-wise independence, we
can compute that

Probi (n;) . (vm+ﬂ>} <2 [(:%); < U M(T(zm)% —
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where k = Blogn. Taking v = 2¢/8, gives the bound n—< as required. |

Since there are n modules with identical hashing statistics, the probability that a

hashing failure occurs by allocating more than dm data to some module is the polyno-

1
ne—1-

mially small p < 374 7z =

It should be noted that good performance does not require a failure probability ¢
to be astronomically small. Indeed, suppose that the PRAM program can be emulated
in time 7', where 7T includes the time for a successful hashing and loading of the data
(without any failures to balance the data). Then we can expect that an hashing failure
will run in a time that is also bounded by 7. It even suffices to declare that a failure
has occurred if the time exceeds 27, and begin afresh at that point with new hashing

seeds. Even in this case, the degradation in 7" due to failures to balance the data gives
an expected time of T'(1 + 2q + 2¢%2 +2¢% +...).

The only issue that remains to be shown before the emulation bound can be estab-
lished is a bound for the expected time for a PRAM emulation step in the exceptional
case where some processor must encounter too many keys while executing the references
routed to its memory module. This event, according to Lemma 10, occurs with polyno-
mially small probability, but consumes a time (which would be proportional to max; A;)
that is not necessarily bounded by a small polynomial in n. (The reason that the time
can be so high is that a hashed memory reference can collide with huge numbers of

other keys that are not being referenced by other active processes.)
There are several ways to bound the expected service time for this exception.

One way is to declare the hashing a failure if any location is the image of n or more
keys in D. It is easy to show that this event has a probability that is superpolynomially
small in n, provided m = O(n*), for some fixed size k. If, in this slightly restrictive
case, we restart the emulation afresh in this circumstance, then a successful hashing
might have steps where an individual processor receives at most nlogn references that
each access hashing-based chains of length n, in the worst case. Such an O(n?logn)
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time delay would occur with a probability that is bounded by n¢, so that the expected
cost from this exception is o(1) per time step.

However, we will adhere to the convention that a failure occurs only if too many keys
are hashed to a memory module as described in Lemma 11. Other kinds of exceptional
events can, upon rare occasion, cause long delays, We will charge each time step with a
time penalty to account for the expected delay from these exceptional instances. One
of these instance types is covered by Lemma 12, which accounts for the lost time due

to too many data elements colliding with the hash address of a referenced datum.

Lemma 12. Let the domain [0,7m — 1] be mapped into itself by a (k, pu)-wise indepen-
dent hash function f, where x = logn, for any fixed 3 > 0. Let D; be the set of data
referenced at the ¢-th time step of the PRAM algorithm, and let A; be the number of

elements in D — D; that collide with elements in D;:

Ar=w e D: (@ ¢ D)V(£(z) = £(y) for some y € Dy)).
Then for any fixed c, there is a fixed d so that E[A; - X(A; > dnlogn)] < L.

Proof: We can use (k)-wise independence to overestimate the expected sum of all
chains for the nlogn references in the case that A; > dnlogn, say. We suppress the ¢

A
notation since the bound will apply for all £. Then E[A-X(A > dnlogn+1)] < E[—{&l ],

dnl
("R

since the ratio will be at least A, provided A > dnlogn. Continuing the estimation

A mny(nlogn\k
gives: E[(d'zg%)n)] s ("dn)go%";; )® < p(§)"~1nlogn. This expression is polynomially

small in n. 1

With one more definition, we will be able to establish an optimal speedup in emu-
lation mode.

Let € be a network. We say that a no-load memory reference takes time 7" on (2
if, in the worst case, a single write (with all other process requests suspended) can be

executed on ) in a worst-case time of 7.

Corollary 4. Suppose that a no-load distributed memory reference can be processed by
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an n-processor n xlogn butterfly network in logn time. Then a 7T-time n log n-processor
PRAM algorithm with m words of shared memory can be emulated on a pipelined n-
processor n x logn butterfly network in expected time O(7 logn). Furthermore, for any
fixed c, there is a fixed d such that the algorithm runs in time d7'logn with probability
exceeding 1— 7. The hashing is performed with a (k, u)-wise independent hash function

where k = #logn, for suitable fixed [.

Proof: We can estimate the performance of the emulation procedure as follows.
Lemma 11 ensures that the hashing succeeds in distributing the data adequately well
among the n memory modules with probability 1 — % Moreover, the probability of a
hashing failure has a nominal impact on the expected running time of the algorithm.
Lemmas 7 and 8 ensure that each of the n processors will, when jointly emulating
a PRAM step of nlogn threads, be able to sort their locally derived logn memory
references in dlogn time with probability 1 — % Furthermore, the sorting time has a
worst-case time of O((logn)loglogn), whence the expected time of the sorting step is

bounded by dlogn + 2Uosnloglogn _ 5160 p).

nc—1

Lemma 9 can be interpreted (with trivial adjustments of ¢ and d) to state that with

1

==, each memory module will receive at most dlogn references in a single

probability 1—

PRAM time-step. We can take the reference count to a single module to be a worst

case nlogn with probability %, which will give a negligible expected time penalty.
Lemma 10 can be interpreted to ensure that each memory module will, with proba-

1

5=, be able to service the incoming memory references by following

bility exceeding 1 —
at most § chains with a total of dlogn members in O(dlogn) time during an individual

parallel emulation step of an nlogn-thread PRAM step.

Lemma 12 says that the expected time used during an exception to the typical case
covered by Lemma 10 is polynomially small.

Given an algorithm that takes 7" PRAM steps, let T be the time it takes in our
emulation mode of Ranade’s scheme. These Lemmas show that if a hashing failure does
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not occur, then E[Tg] < dT'logn, for a suitable constant d. As explained following the
proof of Lemma 11, the possibility of a hashing failure increases the expected running
time by a nominal factor.

To show that Tg satisfies such a time bound with high probability, we bound
Prob{Tgr > 2dT'logn}. Suppose, for the moment, that no hashing failure occurs. Let
T be the running time for the algorithm in this case. Then there will be 7" PRAM
emulation steps, and each step has five potential exceptions where slow processing
could occur, (We count one exception for each of Lemmas 7, 8, 9, and 12, plus one for
Ranade’s routing scheme.) Let X be the sum of the time consumed by each of these 5T
exceptional events. Most, of course, will be zero, since they will not occur. It follows

that:

Prob{Ty > 2dT logn} < Prob{a hashing failure occurs} + Prob{X > dT logn}
E[X]

dT logn

5Tn=¢

dTl'logn’

This probability is polynomially small as claimed. A careful modeling of T would

<n ¢+

<n ¢+

be as follows. Let bq,b9,... be an infinite family of independent Bernoulli trials that
model the probability of a hashing failure: Prob{b; =1} =n=°. Let T 1,Tny,... be

an infinite family of independent random variables distributed according to Th;. Then
Tr=TN1+WTNg+b1boTn, -,

It now follows that the expected time will exceed 4dT logn with a probability that is
polynomially small, provided 2 independent initializing seed sets are available. That is,
either by is 1, or T}, ; is at least 2dT logn. But both events are polynomially small. 1

While the principal results of this paper suggest that there is little additional cost
in creating constant time hash functions that are far more random than O(logn)-wise
independent, our analysis of PRAM emulation has followed a more parsimonious path
by restricting the randomness allocated to these functions to be flogn, for a fixed value
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of 3. The reasons for this restriction are two-fold. First, the sufficiency of O(logn)-wise
independence gives hope that even less randomness might suffice for real implemen-
tations. Second, the realization of fast random functions really awaits the discovery
of suitable graphs; it is conceivable that good graphs might be found first for more

moderate degrees of randomness, such as those which give O(logn)-wise independence.

We conclude this section by suggesting that these PRAM emulation results are really
feasibility arguments. While methods that are provably sound provide assurances based
upon mathematical argument, and offer the best hope that techniques and architectures
might scale without unanticipated performance losses, they are frequently no substitute
for alternatives that might be difficult or even impossible to analyze completely, but
which achieve much better performance in practice. Thus PRAM algorithms in general,
and PRAM emulation schemes in particular do not necessarily tell us the best way to
implement highly parallel algorithms or architectures. Rather, they suggest implemen-
tation and development paths, and serve to show that there might not be any intrinsic
technology barrier for such massively parallel computation. At the same time, we are
obliged to accept these kinds of results with a degree of skepticism, for the real barriers
might well lie in the marketplace, where backwards compatibility, cost, demand and

market share take precedence over feasibility results.

For completeness, we note that Kruskal, Rudolph and Snir use pipelines of depth
nl/€ to get a parallel emulation time that is optimal up to a factor of 1 [12]. Versions
of some of the basic counting estimates can also be found elsewhere [12, 16, 18, 28|.
For example, a formulations comparable to Lemmas 9 and 11 can be found in [18].
Ranade uses the fact that degree h polynomials functions over a finite field have at
most h roots, to bound the preimage size to O(logn?) for the fetches that must be
executed by a single row of logn processors. Valiant uses the root bound plus secondary
hashing to control the fetch time. Lemma 13 establishes the necessary adaptations from
the statistical properties of (k)-wise independence, plus the implicit synchronization of
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Ranade’s emulation scheme (with ghost messages), which ensures that no processor can
begin a new computation phase before all data accesses to remote memory have been
successfully completed.

It should also be noted that the Fast Fourier Transform can be used to compute &
evaluations of a degree k polynomial in klogk time (cf. [1]). Thus it is possible to use
the above pipeline strategy on n processors with logn degree hash functions to attain
a performance cost of O(loglogn) operations per memory reference rather than a naive
logn. We have shown that this multiplicative performance penalty can, in theory, be

reduced to an asymptotic O(1).

6. Conclusions

The high independence exhibited by our hash functions enriches the class of prob-
abilistic algorithms that can be shown to achieve their expected performance in real
computation. Proofs need not be restricted to (k)-wise independence for constant ,
and probability estimates can use the probabilistic method to calculate the expected
number of k-tuples satisfying various behavior criteria.

On the other hand, it is worth noting that the fast hash functions described in this
paper are not really necessary for pure routing problems. After all, if an adequately
random assignment of intermediate destinations provides, with very high probability,
nearly optimal performance in a Valiant-Brebner style of routing [29], then the same
destinations could be used for many consecutive routings.

What these fast hash functions really provide is nearly uniform random mappings
of data to modules and cell locations and a convenient way to assert that with high

k emulation sequence takes more than O(logn) time to

probability, no step in an n
complete. Thus, fast hash functions are even important for fast deterministic routing
schemes, if large amounts of data have to be stored in a randomized manner. In addition,
hash functions computed from destination addresses provide a way for common memory

references to be fully combined en route in Ranade’s simple queue management scheme,
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and this might be important if combining is required to avoid hot spot contention.
But while the the asymptotic characteristics of fast hash functions are now well
understood, the feasibility question remains wide open. Without doubt, the most sig-
nificant open problem is to find good local expander-like graphs that are defined by
short efficient programs. The discovery of such an object might have a very beneficial

effect on the practicality of such a class of functions.

Appendix 1

Fact 1: Let P, = {p|p is prime and p e (nFlog m, (2 + 3)n*log m)}, for some small
suitably fixed # > 0. Then

ve#ye[0,m-1]: Probyep {z =y modp} < nk.

Proof: [15],[7]. The Prime Number Theorem says that |P| = W(l -

klnn+Inlnm

0(1)), whence fewer than 1/n* of the elements of Py can divide |z — y|, since [, pp>

(nkInm)Px > (m)n".

Fact 2: Let Fy(p) = {h| h(z) = (ax +b mod p) modn¥, a#0,be [0,p- 1]}, where

p > nk is prime. Then

vz #y€l0,p—1]: Probs.p o){f(2) = f(y)} < nk.

Proof: [4]. Given z and y, z,y € [0,p—1], z # y, the number of different f € Fy(p)

where f(x) = f(y), is precisely the number of 2 x 2 linear systems in a and b:

{ax-l—b:c—i-dnk mod p
ay+b=c+enk modp

c,d,e>0; c+dnF <p; c<nk; e£d; c+enk <p.

This system is designed so that ¢+ dn* can have p different values: ¢ ranges from 0 to
n* — 1, and dnF gives increments of n¥. The same is true of ¢+ enk, since it has the
same format. Both expressions equal ¢ when taken modn*, and all possible values are
captured by this representation. The parameters e and d cannot be equal because the

solution to the system would then give a = 0. Furthermore, a cannot be zero if e # d,
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which is required for x and y to be distinct. Straightforward counting shows that there
are at most [p/n¥ — 1] different values available for e. Since there are p(p— 1) different
functions in Fy, and f(z) = f(y) for at most p[p/nkF — 1] < ppn;k1 of them, the result
follows. 1

Combining Facts 1 and 2 shows that a hash function selected at random from
F} = Upep, Fo (p) will, with probability exceeding 1-2(%)n—*, map n items from [0, m—1]
into [0, n* — 1] with no collisions at all among its (%) pairs. We could take k = 4, so that
the probability of a collision is below 1/n2, and assume the functions Fy(p) are defined

as in Fact 2 for p ~ n*lnm.
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