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Abstract

Let a finite number of line segments be located in the plane. Let C be a circle that surrounds the
segments. Define the region enclosed by these segments to be those points that cannot be connected to C'
by a continuous curve, unless the curve intersects some segment. We show that the area of the enclosed
region is maximal precisely when the arrangement of segments defines a simple polygon that satisfies a
fundamental isoperimetric inequality, and thereby answer the most basic of the modern day Dido-type
questions posed by Fejes Toth.

1 Introduction

Area optimization problems have a long and remarkably enduring history. Their study can be traced as
far back as Zenodorus (second century, B.C.), and pragmatic applications can even be found in the Aeneid
[16], which recounts the legend of Queen Dido, and her founding of Carthage. According to Virgil, Queen
Dido purchased the right to as much land as she could demark with the skin of an ox, and exercised the
option by splitting the hide into extremely thin strips of leather and tying them together. She then used this
string to construct a giant semicircle that, when combined with the natural boundary imposed by the sea,
turned out to encompass far more area than the seller could have ever imagined.

An elementary presentation of contemporary area optimization problems and their mathematical history
can be found in Kazarinoff’s very accessible text [8]. In brief, the ancient Greeks knew the Isoperimetric
Inequality, which states that among all plane figures with a given perimeter, the circle encompasses the
greatest area. Similarly, they understood that among all n-gons with a given perimeter, the regular n-gon
encloses the greatest area. Pappus discusses these results [13], and attributes them to Zenodorus, whose
original writings on the subject have been lost to antiquity. In the mid-nineteenth century, Steiner realized
that the Greeks had actually failed to prove these bounds. Pappus, it seems, had just assumed that the very
reasonable pictures he drew captured all of the cases, and that the reshaping transformations he specified
could always be applied, somehow, to take any polygonal figure into a better one where the result could
be established more directly. The difficulty is that while the he was right about the reshaping (as is readily
understood with 2000+ years of hindsight), he did not explain how to sequence Zenodorus’s ideas in a
provably correct manner.

In 1841, Steiner endeavored to give a rigorous proof of the Isoperimetric Inequality by publishing the
first of five proposed proofs, which have all come to be recognized as insightful but incomplete. The first
rigorous proofs, which used concepts in analysis and the calculus of variations, were given by F. Edler and
by Weierstrass. As of the mid 1960°s, the question of finding a simple geometric proof was, according to
the literature, widely believed to be open (cf. [8, 4, 14]). However, there have been some not so simple
proofs of Eastern European origin that lie within elementary geometry. See, for example, [17]. Among the
calculus proofs, perhaps the shortest and most elegant is due to Peter Lax [9]. A very elegant proof that
uses continuous (but elementary) deformations of convex regions is presented in [1]. A survey of more
sophisticated isoperimetric inequalities including formulations for higher dimensions can be found in [10].
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2 A Dido-type problem

The modern formulations of Dido-type problems date from the mid 1960’s, when Fejes Toth wondered,
among other things, what Queen Dido would have done if her strips of hide had hardened into rigid straight
line segments. To be more precise, G. Hajos framed this specific version, and questions of this nature have
become known as Dido-type problems (cf. [6, 11, 5]). It is to this most basic version as formulated by
Hajos that we now turn our attention.

Let E be a collection of finite line segments located in R2. A formal definition of the area enclosed by
E is as follows. Let ¢/ be the union of the bounded components of R? \ E. Let W be the closure of the
point set defined by /.

o Define the area of W to be the area enclosed by E, and let this value be denoted by Area(E).

Informally, the problem posed by Fejes Toth and Hajobs is to prove that the area enclosed by an arbitrary
configuration of segments E cannot exceed the largest possible area enclosed by a polygon whose segments
are no longer than their counterparts in E. Now, it is fair to suggest that Fejes T6th and Hajos understood
that the statement had to be true, since it is a matter of common sense. They were really asking how
mathematics can deal with the lack of organization posed by a collection of segments that can be arranged
in arbitrary ways. What do we do if the segments cannot be directed to define a closed oriented path? How
do we prove that such chaotic collections can be rearranged as polygons with greater area? At issue are the
very many irregular cases that are obviously poor choices for maximizing the area, and which would have
been dismissed without comment by the ancient geometers some 2000 years ago.

In 1973, Fejes Toth published an incorrect solution to a restricted version of the problem [7]. Upon
noticing the error, he communicated the problem to Janos Pach, who gave a correct solution for the restricted
case [11]. Although the basic problem was posed over 30 years ago, no solutions have ever appeared in the
literature, and it has been listed among the open questions in geometry [5, p30-32]. In 1990, however, Gabor
Kertész discovered a solution, and it was accepted as his Masters Thesis at E6tvds University. According
to knowledgeable sources, the proof is very complex and has yet to appear in journal form [12].

We give a proof that is simple, fairly direct and, we believe, insightful. Part of the proof’s simplicity
comes from the use of divide and conquer to reduce the complexity imposed by a morass of arbitrarily
placed segments. The proof also uses such intuitive notions as the direct mapping of area, which is rem-
iniscent of ancient geometric algebra. In addition, we will formulate area coverage problems in terms of
sufficiency conditions about sums of angles, which is, perhaps, more representative of some developments
in modern geometry. Lastly, we exploit the realization that that certain generic exceptions are remarkably
innocuous. Yet, for reasons that are not evident, all of these notions seem to need fairly strong quantification
for the problem at hand.

We will soon specify this so-called Dido-type problem precisely, but defer doing so in order to present
some preliminary definitions and background geometry that will simplify the subsequent exposition.

o Let the term multiset denote collections of elements where different members can be equal.

Suppose S is a multiset of n nonnegative numbers. It is well known how to define the polygons that
have side lengths comprising the elements in S, and which have an area that is as large as possible. The
solution is to create a polygon with the correct edge lengths that is inscribed in a circle of suitable radius.

To see when this construction makes sense, consider the following procedure. Create a path of segments
with lengths defined by the elements in S. Now remove, from the path, some segment that has the longest
length, and let this segment length be s. Let the new path of n — 1 segments have its vertices placed along
a circle of huge radius, and consider how the path is forced to curl up as the radius is decreased. Evidently,
the distance between the endpoints begins as the sum of the n — 1 segment lengths when the circle radius
is infinite, and decreases continuously as the radius diminishes. If s equals this initial sum, the area of the
resulting polygon is zero, and the circle is a straight line with infinite radius. If s is less, we can reduce the
radius until the distance between the endpoints equals s, and then close the path by connecting its endpoints
with the removed segment. This construction gives a polygon that has the maximum area among all n-gons
with side lengths comprising the elements of S. For completeness, we note that the construction would fail
if we attempt to diminish the diameter of the circle to a value that is smaller than some edge in the chain of



n — 1 segments, since such a segment could not lie on the circle. But since all such lengths are bounded by
s, no such reduction will occur in the construction.

As is well known, there is a general case where the area

can be increased by reducing s. Suppose that the previous

" procedure creates a polygon that is inscribed within a semi-

circle of the bounding circumcircle. In this case, it is better

to continue reducing the radius and stop the reduction exactly

when the path fits tightly within a semicircle, and close the

path with a diameter of this final circle as shown in the ac-

companying figure. This procedure should also be applied if

s exceeds the sum of the other values in S. In these cases, the Reflection Principle shows that this modified

construction gives the largest area among all polygons with side lengths that are bounded by the elements
inS.

In particular, let S comprise the multiset of lengths with s removed. Consider the problem of construct-
ing the n-gon with the greatest area where n — 1 of its sides have lengths that comprise the elements of
S, and the last side is built from a subset of an infinite line £. The solution is to configure the edges as a
path D that is tightly inscribed in a minimum radius semicircle. Indeed, if some other arrangement R gave
a greater area, then we can reflect it across £ and adjoin the two copies. The result would be a polygon
with side lengths comprising the elements of the multiset S U S. But one of the standard isoperimetric
inequalities for polygons states that among all polygons with a prescribed multiset of side lengths, those
with the greatest area are precisely the ones that can be inscribed in a circle. In this case, D as adjoined
with its reflected duplicate is such a maximum area polygon. Hence the supposition that R yields a greater
area than D contradicts this isoperimetric inequality.

¢ Let the term Dido exception denote the instances of this Dido-type problem where the longest edge
should be replaced by a shorter segment that acts as a diameter of the resulting circumcircle.

Of course, if the original construction produces a polygon that is not inscribed within some semicircle, then
it has the greatest possible area, and there is no Dido exception. These area maximization results are all
standard; see, for example, any of [8, 11, 14].

¢ Given a multiset .S, let Poly(.S) be a simple polygon that has side lengths bounded from above by the
numbers in S, and has the maximum possible area.

e Let C(S) be the circumcircle of Poly(S), og its center, and Radius(S) its radius.
o If S ={s1,82,...,8n}, lete(s;) refer to the edge of Poly(S) that corresponds to s;.
e Let A(s;;.5) be the triangle with base edge e(s;) and opposing vertex og.

Of course, we can permute these triangles any way we like to get all of the equivalent polygons that have
the maximum area.

o Let alt(s;; S) be the altitude from the base e(s;) of A(s;;.5) to os.

e Let DArea(S) be the area of Poly(S), which includes the reduction of the longest edge whenever
necessary to get a polygon of greater area.

Given these definitions, we can now formalize the problem posed by Fejes Toth and Hajos.

Theorem 3. Let S be a collection of edges placed in the plane R2. Let S be the multiset whose elements
are the lengths of the edges in S. Then

Area(§) < DArea(S).

The proof relies on turning the problem about arbitrary edge collections into a well structured and spe-
cific inequality where calculus can be applied with ease. Accordingly, we first seek to quantify DArea(S)
as a function of the defining edge lengths in S.

Lemmal. Let S = {s1, $2,..., s, } be amultiset of nonnegative values, and A = DArea(S). Then

0A
681'

= alt(s,'; S)



Proof: Let r = Radius(S), so that the circle C(S) has radius r and center og. Let a; = alt(s;, S), and
define 6; to be the angle at vertex og of A(s;; S). By definition, |e(s;)| = 2rsin &, and a; = r cos &.

Let us suppose, for the moment, that we do not have a Dido exception so that s; = |e(s;)| for all 4.
Then

= a;S;
dd = ) d( 5)
i=1

14
= 3 > aids; + 5 > sida; (1)
i=1 i=1
) 1 )
Now, da; = cos %dr — 3" sin %dei, 2
and ds; = 2sin %dr + r cos 6;d6;. 3)
So §s,da, = rsin D) cos idr - 57‘ sin idé’,

. 0; 6 1 6;
= rsin E’ Ccos Ezdr - 57‘2(1 — cos® é)dt%

1 01 . 01 01’ 1 2
= greos 5(2 sin Edr + 7 cos Edﬂz) — 5" dé;.

Substituting from (3) gives %sidai = %aidsi — %erai. (4)
n 2 n
T
Substituting from (4) in (1) gives: d4A = ids; — — dé;. 5
g #in(1)g ;a $i ; ®)

But Y°7, 6; = 2m, and hence 3°i, df; = 0. Since dA = Y1, S4ds;, the result now follows when
there is no Dido exception.

We now need to observe that g—i is continuously differentiable right through any Dido exception, which
can occur in just two ways. If s; were to increase so that 8; became 7, then subsequent increases in s; would
yield g—;‘: = 0, which gives a smooth continuation of A as a function of s;. If, on the other hand, a decrease
of s; increased some 6y, for k # i to r, then the system of equations would change. In particular, we would
have 8, = w and a;, = 0 as s; continues to decrease. The net consequence is that all of the equations would
still hold, and g—;‘i will be precisely r cos % on either side of this transition, and the area therefore remains

continuously differentiable across the Dido exception. I

It should be noted that a Dido exception does cause a discontinuity in g—;, but this does not affect the

area. It is also worth remarking that the altitude, in Lemma 1, is actually a signed quantity. In particular,
if an angle 6; exceeds m, then a; will be negative, as will the contribution of Area(A(s;;S)) to A. But for
our present purposes, this issue is irrelevant, since the construction for Dido exceptions prohibits such an
occurrence.

Proposition 1. Let AABC be an isosceles triangle with base BC. Let D be on the segment BC, and let
AEBD and AFDC be isosceles with respective bases BD and DC. Suppose that the three triangles have

—
equal altitudes with respect to the baseline BC. Let /BAC =6, /BED = a,and /DFC = (.
Then a + 8 < 4arctan(3 tan ), and equality holds if and only if D is the midpoint of BC.
Proof: Straightforward. 1

Proposition 2. Let g(¢) = 4 arctan( tan £), for 0 < 8 < . Then
1) g is strictly convex.
2) g(yz) <vg(z)for0 <y <land0 <z <.

Proof: 1) Differentiating gives g'(#) = %Jr%lTQ% which implies that g"” > 0. Thus g is strictly convex.

2) Let z be any fixed value that satisfies 0 < z < 7. Since g(0) = 0 and g is strictly convex, the curve



g(vyz) lies under the liney = yg(z) for0 <y < 1. |

Lemma?2. For0 <6 <,
27— 0
0
and equality holds if and only if § = 0 or 8 = .

Proof: It is evident that equality is achieved in the limit for § = 0, =. We need to show that

1 0
4arctan(§ tan 5) < 2m,

1 0 0
4 arctan(§ tan 5) < m

for0 < § < 7. Let L(§) = 4arctan(Ltan$), and R(6) = % To see that the L(6) < R(6)
for 0 < 6 < m, we exploit the fact that equallty is achieved at the endpoints. It suffices to show that if
L'(6) > R'(9), then L'(6) > R'(d), forall §: § < § < . Indeed, this last inequality would imply that
since L(0) — R(0) = 0, this difference must be initially decreasing and hence less than 0 for all § < 6,
for some fixed 6, at which point the difference starts to increase, and continues rising to ultimately reach
L(w) — R(w) = 0.

Differentiating gives L' = m and R' = = ,, T We need only show that L'(8) — R'(6)

has one zero in (0, ), and that the transition is from negatlve o positive. Alternatively, we can prove that

L,Lw) R,l(a) has one zero in (0, ), and that the transition is from positive to negative. Accordingly, let

1(6) = L'(a) =cos® £ + Lsin® £, and r(6) = R'(a) =(1-£)2
Now, I(0) — r(8) is zero for @ = 0, w. To see that I(8) — r () has only one zero in (0, )
and is initially increasing, we can differentiate { — r and see if I'(8) — +'(8) is initially
0 g7 Positive and has only two zeros in (0, 7). The two zeros will occur because I(6) — r(6)

must be zero at three points in [0,#]. If I — r were zero at additional locations, I' — '
| (9)—!’ (9) would have additional zeros as well.

Differentiating gives I'(6) = —2sin6, and 7'(6) = —1(1 — £). Since —£ sin 6 is strictly convex on
[0, 7], and =’ (@) defines a straight line, the two curves can intersect at most twice. Finally, we note that
I'(0) —7'(0) = £ > 0, and the desired conclusion now follows. [

Proposition 3. Let S = {s1,582,...,8,}, and T = {t1,12,...,t,} be multisets of nonnegative elements
where s; < t;,fori =1,2,...,n. Then

Radius(S) < Radius(T),

and equality holds if and only if the largest value in S is at least the length of the longest edge in Poly(T),
and all of the other values in S equal the corresponding values in 7.

Proof: Let C(T") be a circle with the inscribed figure Poly(T). Let t,, be a maximal element in 7. By
swapping the value assigned to a maximal sized element in .S with the assignment to s,,, we can assume
that s,, is maximal. It is easy to see that this change preserves the inequalities s; < ¢; for all 3.

Let a chain of segments with lengths s1, s2, ..., s,—1 be inscribed in C(T"). Since these segments are
no longer than their counterparts in Poly(T'), the chain must span a radial arc of angle « that is no larger
than that spanned by the corresponding n — 1 segments of Poly(T"). Evidently, the chain will span the same
radial arc if and only if ¢; = s; fori = 1,2, ..., n — 1. In this case, the Radius(S) will equal Radius(T')
if an only if s, is at least as large as the longest edge in Poly(T"), which is bounded by ¢,,.

Now suppose that « is less than the angle spanned by the corresponding edges of Poly(T). If a > m,
then the gap between the endpoints of the chain must exceed ¢,,, and Radius(S) must therefore be less than
Radius(T). On the other hand, if & < w, then Radius(S) must be less than Radius(T") because either
sp, Causes a Dido exception or s, is less than the length of the gap between the endpoints of the chain as
inscribed in C(T). 1



The next inequality enables divide and conquer to be used in an area conserving (or decreasing) way.
While the theorem is just a statement about the multisets of numbers E, F', and G, it will be applied as a
statement about special collections E, F,and G of located segments and the areas they enclose.

Theorem 3.1. Let E = {e;},, F = {fi}, and G = {g;}?_, be multisets with nonnegative entries.
Suppose that

1) f1 < ey > g1; (Intuitively, segment 3 can be shared by subregions F and G of the region E.)
2) e; = fi + g;, fori > 1; (Intuitively, any other segment might be partitioned by € .)
3) e1 > e; forall j where f; - g; > 0. (Intuitively, e; is longer than any segment that crosses €; .)

Then
u DArea(E) > DArea(F') + DArea(G),

\/el /G and equality can only hold if DArea(F') - DArea(G) = 0.

Proof: The proof will be by contradiction.

Suppose that DArea(F’) + DArea(G) — DArea(E) > 0. Let us seek to maximize this expression subject
to the constraints that e; is held constant and all other values can be diminished but not increased. In view of
Lemma 1, we can assume that e; = f; = g1. Formally, let X = {z1,22,...,2,}, Y = {y1,y2,---,Un},
Z = {z1,2,...,2n}, and suppose that DArea(Y") + DArea(Z) — DArea(X) is maximal for X, Y, and
Z constrained as follows: z; = y; = 21 = ey, andfori =2,3,...,n: 0 < z; <e;,0<y; 0< 2,
Ti =Yi + 2.

This problem is just a matter of calculus. Since the function DArea(Y’) + DArea(Z) — DArea(X) is
continuous on the compact domain for X x Y x Z, the maximum value must be achieved somewhere, so
let (X,Y, Z) be a point where this maximum occurs.

Let Poly(X), Poly(Y), and Poly(Z), have the respective circumcenters ox, oy, and oz. Let the radii of
the circumcircles be rx = Radius(X), ry = Radius(Y"), and rz = Radius(Z). Let segments connect each
vertex of Poly(X), Poly(Y), and Poly(Z) with, respectively, ox, oy, and oz, so that each of the inscribed
polygons is triangulated with the polygon’s circumcenter serving as a common apex for all of its triangles.

For convenience, let z; denote the edge e(x;) as well as a numerical element in X, and let the definitions
for y; and z; be extended in an analogous manner.

Let, foreach ¢, A(z;; X) have anangle of §; at vertex ox ; let A(y;; Y') and A(z;; Z) have the respective
angles a;, and §; at oy and oz.

Let X be fixed. By the properties of calculus, it follows that for ¢ > 1, either y; is extremal (i.e.,y; = 0
ory; = x;) or aDAr;:a(y) + aDArea(z) = 0. By Lemma 1, the equation aDArea(Y) + aDArea(z) =0

says that the local altitude from the edge y; to oy and from edge z; to oz are equal alt(y;; Y) _yalt(zz, 7Z),
since z; = z; — y;. Thus, we view each edge z;, for ¢ > 1 as either whole and belonging to either Y or
Z, or as partitioned among Y and Z, in which case the two pieces y; and z; have equal altitudes as defined
above. As the remarks that conclude the proof of Lemma 1 point out, the occurrence of a Dido exception
does not limit the scope this observation.

On the other hand, if an edge z; is not partitioned, then alt(z;; X) > alt(y;;Y), if y; = z;, or
alt(z;; X) > alt(z;; Z), if z; = x;, since rx > ry and rx > rz. In this case, we can reduce z; (while
maintaining equality between z; and its counterpartin Y or Z), whence DArea(Y")+DArea(Z)—DArea(X)
will increase, since the partial derivative of the sum with respect to «; will be negative. While it is possible
that z; and its counterpart might be Dido exceptions, the values can still be reduced, and z; would be the
first to cease being an exception, which would occur when «; = 2rx. So even here the observation holds:
at the (phantom) maximization point, all X elements other than z; must be partitioned between the Y and
Z multisets, so that y;z; # 0, for all 4.




Consequently, alt(y;,Y) = alt(z;, Z), fori > 1.
By the same reasoning, we can conclude that alt(y;;Y) > alt(z;; X), for j > 1: otherwise fix z;;
aDArea(y) BDA(;I’E.a(Z) - 8D’°5rf,a(x) will be negative, and diminishing z; will cause DArea(Y) +

Tj J
DArea(Z ) — DArea(X) to increase.

At this point, the assumptions of Theorem 2 can be seen to ensure that |e(z1)| > |e(z;)| for all j,
since all edges of X are partitioned, the size of edge z; did not diminish from e; (unless it became a Dido
exception) and none of the other lengths increased from their corresponding values in E.

We can now use Proposition 2 and Lemma 2 to complete the contradiction. Evidently, > 6; = Y. a; =
>_; Bi = 2m. By construction, a; < , and likewise 8; < 7. We will show that 3~ (a; + 8;) < 2m,
which gives a contradiction.

Let g(f) = 4 arctan( tan £). Proposition 1 shows that

D (@i +B) < 96)

i>1 i>1

Since 6, > 6; for all 7, the convexity established in Proposition 2 ensures that

0; 0
9(0;) = 9(0—]91) < 9—19(91);
1 1
whence 0 0 0
Sl + ) < Y a(6y) < L0 57, - 9ONCT0)
i>1 j>1 Lois1 1
and hence
Z(Oéj +5;) <2rm
i>1

by Lemma 2. Moreover, Lemma 2 shows that Zj>1(aj + B;) = 2m only if all angles 6; are zero or ,
and we conclude that X must be composed of two edges of length 2r x, and any number of edges of zero
length. Consequently, the partitioning must give rise to comparably trivial polygons Poly(Y") and Poly(Z),
which each have no area.

The supposition that DArea(F') + DArea(G) — DArea(E) > 0 has given a contradiction. [l

Evidently, the insufficiency in the sum of the angles «; and 3; is a consequence of the assumption that the
altitudes associated with Y and Z exceed those associated with X. In reality, those altitudes are, overall,
smaller, and the areas for Y and Z are not as great, in total, as that for X.

At this point, Theorem 1 is an easy exercise.

Theorem 1. Let S be a collection of edges placed in the plane R2. Let S be the multiset corresponding to
the lengths of the edges in S. Then R
Area(S) < DArea(S).

Proof: Let WV be the region enclosed by S. Let S be optimized so that each edge in S cannot be reduced
in length without changing the area of S. It follows that every edge in S has some neighborhood of each
endpoint on the boundary of W.

e Define an edge ¢ in S to be normal if one entire side of e is exposed to the exterior of W, and the
other entire side is exposed to the interior. An edge is abnormal if it is not normal.

Evidently, the collection S of optimized edges defines a polygon if and only if every edge is normal.

The edge lengths of S will comprise the multiset S. Let the longest abnormal edge e € S be used to
partition S into two arrangements 7 T and U. The associated multisets 7' and U will meet the criteria of the
Theorem 2. Formally, both T and U will consist of an abnormal splitting edge e and one or more connected
point sets of U§€§§ \ e, where the removal of e splits each edge crossing e into two disjoint pieces. While
this splitting might create more than two connected components, we can group the components arbitrarily



into two sets 7' and U, which meet the requirements of Theorem 1. Thus, Theorem 2 gives an (implicit)
partitioning of DArea(.S) into DArea(T') and DArea(U) with some area left over, and the process can be
repeated recursively for T and U. Since T and U both define fewer subregions than does the edge set s,
the refined collections of edges will eventually define just one subregion each, and have no abnormal edges.
Consequently, the standard Isoperimetric Theorem for polygons with a fixed multiset of edge lengths can
be applied to show that each terminal subregion will have an area that is bounded by its allotted fraction of

DArea(S). |

A more formal proof of Theorem 1 would be by contradiction, and would suppose that S is a coun-
terexample to Theorem 1 where R? \ S has as small a number of components as as possible. The recursive
formulation was offered to illustrate the intuition behind the divide and conquer proof technique.

3 Conjectures and open problems

Suppose that F' is a finite collection of segments.
e Let Dido(F) = D Area(F™), where F* is the multiset of lengths {|f|} rer U {3 ;e |1}

Thus, Dido(F) is the area of ConvHull(G), where G is an open polygonal path that is tightly inscribed
in a semicircle, and is composed of segments that are congruent to those in F'.

In [2], A. and K. Bezdek posed, and gave a partial proof of the following Dido-type conjecture.
Let F comprise a finite collection of located segments in the plane, and suppose that F' is connected as
a point-set.
Then
Area(ConvHull(F)) < Dido(F).

This bound was fully established and generalized in [15]. We now offer a somewhat stronger conjecture
plus extensions to include the Dido-type problem of Fejes T6th and Hajos.

Conjecture 1. Let F be a finite collection of segments located in the plane. Let Umbra(F') be the set of
points z such that every line through z intersects some segment in F'. Then

Area(Umbra(F)) < Dido(F).

Conjecture 2. Let F' be a finite collection of segments located in the plane. Let Encloak(F') be the set of
points  such that every line £ through x intersects at least two segments in F'. Then

Area(Encloak(F)) < DArea(F).

Other questions. It should be evident that additional problems can be formulated by demanding higher
intersection counts. These problems can also be extended to higher dimensions. For example, the for-
mulations of Bordczky, Barany, Makai Jr. and Pach [3] might be adapted as follows. Suppose a region
F is enclosed by a collection P of polytopes that each lie in some hyperplane of R™. Then we should
expect that Vol(F') is bounded by largest volume of any polytope whose facets (i.e. (n — 1)-dimensional
faces) have surface areas that are bounded by corresponding areas of the elements in P, and likewise for
Vol(Encloak(P)).
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