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Abstract

The ε-pseudospectrum of a matrix A is the subset of the com-
plex plane consisting of all eigenvalues of complex matrices within a
distance ε of A, measured by the operator 2-norm. Given a nonderoga-
tory matrix A0, for small ε > 0, we show that the ε-pseudospectrum
of any matrix A near A0 consists of compact convex neighborhoods of
the eigenvalues of A0. Furthermore, the dependence of each of these
neighborhoods on A is Lipschitz.

1 Introduction

Given a matrix A in the space of n× n complex matrices Mn, the spectrum
Λ(A) is an informative analytic tool, but must be interpreted with care. In
particular, when A has a multiple eigenvalue, small perturbations cause the
spectrum to behave in a non-Lipschitz fashion.

Pseudospectra are robust analogs of the spectrum, enjoying many useful
modelling properties. A comprehensive reference is [9]. We denote the op-
erator 2-norm on Mn by ‖ · ‖. For real ε > 0, the ε-pseudospectrum of A is
the subset of the complex plane consisting of all eigenvalues of all complex
matrices within a distance ε of A, measured by the operator 2-norm:

Λε(A) =
⋃

‖X−A‖≤ε

Λ(X).(1.1)

This subset of the complex plane C is semi-algebraic (meaning that it can
be described as a finite union of sets each defined via finitely many poly-
nomial inequalities [2]), and consists of at most n connected components;
each component is compact, and contains an eigenvalue of A. Visual plots of
pseudospectra are richly informative, and are conveniently computable via
the EigTool package [5]. Note that, by contrast to our definition, [9] defines
pseudospectra via the strict inequality ‖X − A‖ < ε.

Our aim in this work is to show how shifting attention from the spectrum
to pseudospectra has a regularizing effect on variational behavior. Specifi-
cally, for matrices A that are in a certain sense typical, even in the presence
of multiple eigenvalues, if the parameter ε is small, the ε-pseudospectrum
consists of compact convex neighborhoods of the eigenvalues and varies in a
Lipschitz fashion with respect to the Hausdorff distance.
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2 Examples

We begin with two examples to illustrate the potential difficulties. We ob-
serve first how the pseudospectrum can vary in a non-Lipschitz fashion even
around a two-by-two matrix with simple eigenvalues. Secondly, we note that
the component of the ε-pseudospectrum containing a derogatory eigenvalue
may fail to be convex, no matter how small the parameter ε > 0.

To help our calculations, we use a well-known description of the pseu-
dospectrum, more convenient than the definition (1.1). Denoting the small-
est singular value by σmin : Mn → R, the pseudospectrum is related to the
reciprocal of the norm of the resolvent,

σmin(A− zI) = ‖(A− zI)−1‖−1,

via the useful characterization

Λε(A) = {z ∈ C : σmin(A− zI) ≤ ε}.

For our first example, we consider the behavior of the pseudospectrum
Λφ−1(·), where φ is the golden ratio (1 +

√
5)/2, for matrices close to

Â =

[
1 1
0 −1

]
.

An elementary calculation shows, for real r and θ, the formula

2σ2
min(Â− reiθI) = 3 + 2r2 −

√
5 + 4r2(3 + 2 cos 2θ).(2.1)

This leads to a description of the pseudospectrum of Â:

Λφ−1(Â) = {reiθ : r2 ≤ 2(2− φ + cos 2θ)}.

The boundary of this set is a leminiscate centered at zero; its interior consists
of two disjoint open sets, each containing one of the eigenvalues ±1. In
particular, notice that the pseudospectrum is contained in its tangent cone
at zero:

Λφ−1(Â) ⊂ {reiθ : cos 2θ ≥ φ− 2}.(2.2)
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Now consider the point ri on the imaginary axis as r ↓ 0. The inclusion
(2.2) implies a lower bound on the distance from this point to the pseu-
dospectrum Λφ−1(Â) of the form

d(ri, Λφ−1(Â)) ≥ αr(2.3)

for some constant α > 0. On the other hand, formula (2.1) implies

σmin(Â− reiθI) = φ− 1 + O(r2),(2.4)

so for some constant β > 0 we know

ri ∈ Λφ−1+βr2(Â).

Using the definition of the pseudospectrum (1.1), we can rewrite the right-
hand side as ⋃

‖A−Â‖≤βr2

Λφ−1(A),

so there exists a matrix Ar satisfying

‖Ar − Â‖ ≤ βr2 and ri ∈ Λφ−1(Ar).(2.5)

The Hausdorff distance between two nonempty sets K, L ⊂ C is the
quantity

H(K, L) = max
{

sup
z∈K

d(z, L), sup
z∈L

d(z, K)
}
,
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where d(z, L) is the distance from z to L. Now, in conjunction with inequality
(2.3), the relationships (2.5) imply that the Hausdorff distance between the
pseudospectra Λφ−1(Â) and Λφ−1(Ar) is at least αr, and yet the distance
between the matrices Â and Ar is at most βr2. Thus the variation of the
mapping Λφ−1 around Â is not Lipschitz.

The pathology in this example is caused by the existence of a critical
point of the function z 7→ σmin(Â − zI) at a point on the boundary of the
pseudospectrum (in this case z = 0): this can be seen directly from formula
(2.4), or by observing that the left and right singular vectors of the matrix
Â corresponding to the smallest singular value φ− 1 are orthogonal (see [3,
Cor. 7.2]). A direct calculation is also illuminating. Since σmin(Â) = φ − 1,
replacing by zero the diagonal entry φ−1 in the singular value decomposition
of Â makes a perturbation of size φ− 1 and results in a singular matrix. But
a straightforward calculation shows that this singular matrix is similar to a
two-by-two Jordan block, so further perturbations of size δ result in the zero
eigenvalue splitting into two distinct eigenvalues of size proportional to

√
δ.

It is this splitting that causes the pseudospectrum to behave in a nonlipschitz
fashion. In the development that follows, we avoid this possibility by focusing
on the case of small ε.

We discuss various aspects of the growth of pseudospectra as the param-
eter ε grows in a forthcoming work [4]. In particular, we can quantitatively
estimate the component of the pseudospectrum Λε(A) containing the eigen-
value λ: classical eigenvalue perturbation theory shows that the component
approximates a disk of radius (αε)1/m as ε ↓ 0, where m is the multiplicity of
λ as a root of the minimal polynomial for A, and α is its associated condition
number [4].

Despite approximating disks, small pseudospectral components may be
nonconvex in general, as shown by our second example, suggested by [8].
Consider the matrix

Ã =

[
0 1
0 1

]
.

An easy calculation shows

f(r, θ) = σ2
min(Ã− reiθI) = 1− r cos θ + r2 −

√
(1− r cos θ)2 + r2

=
r2

2
(1− r cos θ) + O(r4) as r ↓ 0.

Hence the component of the pseudospectrum Λε(Ã) containing zero, which
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we denote Λ0
ε(Ã), is a slightly distorted disk centered at zero and with radius

approximately
√

2ε, for small ε > 0.
When θ = π/2, another calculation shows

∂f

∂r
= 2r

(
1− 1√

1 + r2

)
> 0 for all r > 0.

Hence for θ near π/2, the equation f(r, θ) = ε2 implicitly defines r as a
smooth function g(θ), and for r near g(π/2) =

√
2ε + O(ε2), the pseudospec-

tum is
{reiθ : r ≤ g(θ)}.

One more calculation shows

g′(π/2) =

√
1 + g2(π/2)− 1

2
√

1 + g2(π/2)− 1
= ε2 + O(ε3).

To summarize, the pseudospectral boundary for the matrix Ã crosses the
positive imaginary axis at a unique point zε = (

√
2ε+O(ε2))i. The boundary

nearby is a smooth curve crossing the imaginary axis non-orthogonally, and
bounding the pseudospectral component below it. Clearly exactly the same
properties hold for the matrix −Ã, and the two boundaries are mirror images
in the imaginary axis. Finally, consider the matrix

A =

[
Ã 0

0 −Ã

]
.

Since the singular values of a block-diagonal matrices are just the singular
values of the blocks, we have Λε(A) = Λε(Ã)∪Λε(−Ã), so we know Λ0

ε(A) =
Λ0

ε(Ã) ∪ Λ0
ε(−Ã). By considering a neighborhood of the point zε, this latter

set cannot be convex.
In this example the difficulty is caused by the fact that the zero eigenvalue

is derogatory. In what follows, we show good behavior of pseudospectra
around nonderogatory eigenvalues, providing the parameter ε is sufficiently
small.

3 Background results

We recall some results from [3]. A real-valued function on a real vector space
is real-analytic at zero if in some neighborhood of zero it can be written as
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the sum of an absolutely convergent power series in the coordinates relative
to some basis, and we make an analogous definition at other points. In
particular, such functions are C∞ near the point in question.

The smallest singular value of the matrix Z is simple when the smallest
eigenvalue of the Hermitian matrix Z∗Z is simple. Since the eigenvalues
of matrices depend continuously on the matrix, the set of matrices Z with
simple smallest singular values is open.

We consider the function h : Mn ×C → R defined by

h(A, z) = (σmin(A− zI))2.

For any A ∈ Mn, we also define a function hA : C → R by hA(z) = h(A, z).
Treating C as a Euclidean space with inner product 〈w, z〉 = Re (w∗z), we
can interpret gradients ∇hA(z) as elements of C.

Theorem 3.1 (Analytic singular value) If the smallest singular value of
the matrix Z is simple, then the function σ2

min is real-analytic at Z.

An eigenvalue of A is nonderogatory if it has geometric multiplicity one.
Among multiple eigenvalues, the nonderogatory ones are the most typical
(from the perspective of the dimensions of the corresponding manifolds in Mn

[1]). The matrix A is nonderogatory if all its eigenvalues are nonderogatory.
The following result is very well known.

Proposition 3.2 (Nonderogatory eigenvalues) A matrix A has a non-
derogatory eigenvalue λ if and only if zero is a simple singular value of A−λI.

The next result, an immediate consequence of [3, Thm 7.4 and Cor. 7.8],
shows that the resolvent norm is well-behaved near any nonderogatory eigen-
value of A. For a symmetric matrix X, we write X � 0 to mean X is
positive-definite.

Theorem 3.3 (Growth near an eigenvalue) Suppose λ is a nonderoga-
tory eigenvalue of the matrix A. Then, for all z 6= λ near λ, the function hA

is real-analytic with ∇hA(z) 6= 0, and ∇2hA(z) � 0.

Related results appear in [6].
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4 Convexity

In [3] we observe, as a consequence of Theorem 3.3 (Growth near an eigen-
value), that if λ is a nonderogatory eigenvalue of a matrix A, then for small
ε > 0, the part of the pseudospectrum Λε(A) near λ is strictly convex. (We
call a closed set S ⊂ C strictly convex if the open line segment (u, v) lies in
int S for any distinct points u, v ∈ S.) The first step in our development is
to generalize this result to allow the matrix A to vary. We denote the closed
unit disk in C by D, and the closed unit ball in Mn by B.

We begin with a rather technical statement of our basic tool.

Theorem 4.1 (Small pseudospectra) Consider a nonderogatory eigen-
value λ of a matrix A0 ∈ Mn. For any sufficiently small number µ > 0,
there exists a number ε̄ ∈ (0, µ) (depending on µ) such that all numbers
ε ∈ (0, ε̄) have the following two properties.

• For all matrices A ∈ Mn in a neighborhood of A0 (depending on µ and
ε), the set

Λ̂ε(A) =
{
z ∈ Λε(A) : |z − λ| < µ

}
is the component of the pseudospectrum Λε(A) containing λ, and con-
tains no eigenvalues of A0 except λ.

• There exists a number η̄ ∈ (0, µ) (depending on µ and ε) such that,
given any number η ∈ (0, η̄), all matrices A in a neighborhood of A0

(depending on µ, ε and η) satisfy, in addition to the above property,

(i) Λ̂ε(A) is compact, strictly convex, and contains λ + ηD,

and, for all points z ∈ λ + µD,

(ii) the smallest singular value of A− zI is simple, and

(iii) if |z − λ| ≥ η, then ∇hA(z) 6= 0 and ∇2hA(z) � 0.

Proof Without loss of generality, λ = 0. By Theorem 3.3 (Growth near an
eigenvalue), there exists a number µ > 0 such that

0 < |z| ≤ µ ⇒ ∇hA0(z) 6= 0 and ∇2hA0(z) � 0.(4.2)
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Hence the function hA0 is strictly convex on the disk µD, with a strict local
minimum value of zero at zero. In particular, we deduce

Λ(A0) ∩ µD = {0}.(4.3)

Consider the open set

Ω =
{
(A, z) ∈ Mn ×C : the smallest singular value of A− zI is simple

}
.

Theorem 3.1 (Analytic singular value) implies that the function h is real-
analytic throughout Ω, so the function (A, z) 7→ ∇2hA(z) is continuous on
Ω. Clearly (A0, 0) ∈ Ω. Hence, by reducing µ if necessary, we can suppose
there exists a number δ1 > 0 such that{

(A, z) ∈ Mn × µD : ‖A− A0‖ < δ1

}
⊂ Ω.

Choose any number µ1 ∈ (0, µ). Then we claim

Λε(A0) ⊂ µ1D ∪ µDc(4.4)

for all small ε > 0 (where Dc denotes the complement of D). If this were
not the case, there would exist sequences of parameters εr ↓ 0 and points
zr ∈ Λεr(A0) satisfying µ1 < |zr| ≤ µ. By compactness, we can suppose zr

approaches a nonzero point z ∈ µD. However, since σmin(A0 − zrI) ≤ εr

for all r, we then deduce σmin(A0 − zI) ≤ 0, so z ∈ Λ(A0), contradicting
equation (4.3).

Fix any ε > 0 small enough to ensure inclusion (4.4), and choose any
number µ2 ∈ (µ1, µ). We claim there exists a number δ2 ∈ (0, δ1) such that

‖A− A0‖ < δ2 ⇒ Λ̂ε(A) ⊂ µ2D.(4.5)

Indeed, if this fails, there are sequences of matrices Ar → A0 and points
zr ∈ Λ̂ε(Ar) satisfying µ2 < |zr| < µ. By compactness, we can suppose
zr approaches a point z ∈ µD satisfying |z| ≥ µ2 > µ1. However, since
σmin(Ar − zrI) ≤ ε for all r, we deduce σmin(A0 − zI) ≤ ε, and hence z ∈
Λε(A0). But this contradicts inclusion (4.4).

The inclusion Λ̂ε(A) ⊂ µ2D implies that the set Λ̂ε(A) is compact, being
the intersection of the two compact sets Λε(A) and µ2D.

For our next step, observe that, by continuity, we know there exists a
number η ∈ (0, µ) such that σmin(A0 − zI) < ε for all points z ∈ ηD. We
now claim there exists a number δ3 ∈ (0, δ2) such that

‖A− A0‖ < δ3 ⇒ ηD ⊂ int Λ̂ε(A).(4.6)
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Suppose this property fails, so there are sequences of matrices Ar → A0 and
points zr ∈ ηD satisfying zr 6∈ int Λ̂ε(Ar), and hence σmin(Ar − zrI) ≥ ε.
By compactness, we can suppose zr approaches a point z ∈ ηD, giving the
contradiction σmin(A0 − zI) ≥ ε.

We next claim there exists a number δ ∈ (0, δ3) such that, whenever
‖A− A0‖ ≤ δ and η ≤ |z| ≤ µ, we have

∇hA(z) 6= 0 and ∇2hA(z) � 0.(4.7)

If this fails, there are sequences of matrices Ar → A0 and points zr satisfying
η ≤ |zr| ≤ µ and

min
{
|∇hAr(zr)|, λmin(∇2hAr(zr))

}
≤ 0

for all r. By compactness, we can suppose zr approaches a point ẑ satisfying
η ≤ |ẑ| ≤ µ. By the continuity with respect to (A, z) ∈ Ω of the functions
∇hA(z) and ∇2hA(z), we deduce

min
{
|∇hA0(ẑ)|, λmin(∇2hA0(ẑ))

}
≤ 0,

contradicting statement (4.2).
We next prove that the set Λ̂ε(A) is strictly convex. To this end, consider

any matrix A satisfying ‖A − A0‖ < δ, and any two distinct points u, v ∈
Λ̂ε(A). We want to show the open line segment (u, v) lies in int Λ̂ε(A). By
property (4.6), we know

ηD ⊂ int Λ̂ε(A).(4.8)

We consider various cases.

(i): |u|, |v| ≤ η. The result then follows by inclusion (4.8).

(ii): (u, v)∩ ηD = ∅. In this case, we know hA(u) ≤ ε2 and hA(v) ≤ ε2, and
the function hA is strictly convex on the line segment [u, v], by property
(4.7), so the result follows.

(iii): |u| ≤ η and |v| > η. Then consider the unique number γ ∈ [0, 1] such
that the point w = γu + (1 − γ)v satisfies |w| = η. Then [u, w] ⊂
int Λ̂ε(A) by inclusion (4.8), while (w, v) ⊂ int Λ̂ε(A) by case (ii).

(iv): |u| > η and |v| ≤ η. By swapping u and v, we obtain case (iii).
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(v) |u|, |v| > η and (u, v) ∩ ηD 6= ∅. Consider the two (possibly equal)
solutions γ1 ≥ γ2 in [0, 1] to the quadratic equation |γu+(1−γ)v|2 = η2.
For each j = 1, 2, set wj = γju+(1−γj)v. Then [w1, w2] ⊂ int Λ̂ε(A) by

inclusion (4.8), while both intervals (u, w1) and (w2, v) lie in int Λ̂ε(A)
by case (ii).

This completes the proof of strict convexity.
To see that the set Λ̂ε(A) must be the component of the pseudospectrum

Λε(A) containing λ, note that the function A 7→ σmin(A− λI) is continuous
on Mn, and σmin(A0 − λI) = 0, so λ ∈ Λ̂ε(A) for all A near A0. Since the
Λ̂ε(A) is a connected subset of Λε(A), being convex, the result follows. 2

Corollary 4.9 (Strict convexity) Consider a nonderogatory eigenvalue λ
of a matrix A0 ∈ Mn. Given any sufficiently small ε > 0, the component of
the pseudospectrum Λε(A) containing λ is strictly convex for all matrices A
sufficiently close to A0.

5 Sensitivity

We are now ready to study the dependence of a fixed component of the
pseudospectrum Λε(A) on the matrix A.

Lemma 5.1 (Gradient continuity) Suppose all the assumptions of The-
orem 4.1 (Small pseudospectra) hold. For nonzero complex w, consider the
function αw : Mn → R defined by

αw(A) = sup{Re (w∗z) : z ∈ Λ̂ε(A)}.(5.2)

Then the function (A, w) 7→ αw(A) is C∞ on the set{
(A, w) ∈ Mn ×C : ‖A− A0‖ ≤ δ, w 6= 0

}
.

Proof The supremum (5.2) is attained at a unique point z(A, w) ∈ Λ̂ε(A),
since the set Λ̂ε(A) is compact and strictly convex. We can also write the
supremum as a smooth optimization problem:

αw(A) = sup
{
Re (w∗z) : hA(z) ≤ ε2, |z − λ| < µ

}
.
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By continuity, the optimal solution z(A, w) must satisfy hA(z(A, w)) = ε2.
The function hA is real-analytic (so in particular C∞), and satisfies the con-
dition

∇hA(z(A, w)) 6= 0 and ∇2hA(z(A, w)) � 0.(5.3)

We now apply a standard sensitivity argument to show that the depen-
dence of the optimal solution z(A, w) on the parameters (A, w) is also C∞.
We argue as follows. Since ∇hA(z(A, w)) 6= 0, there exists a Lagrange multi-
plier γ(A, w) ∈ R corresponding to the optimal solution. Thus z = z(A, w)
and γ = γ(A, w) solve the system

w + γ∇hA(z) = 0

hA(z) = ε2.

But it is easy to check that condition (5.3) implies that the Jacobian for the
left hand side is surjective at (z(A, w), γ(A, w)). Hence the implicit function
theorem implies that the mapping (A, w) 7→ z(A, w) is C∞. The result
follows. 2

We can now prove our main result.

Theorem 5.4 (Component Lipschitz behavior) Consider a nonderoga-
tory eigenvalue λ of a matrix A0 ∈ Mn. For any sufficiently small number
µ > 0, there exists a number ε̄ ∈ (0, µ) (depending on µ) such that for all
numbers ε ∈ (0, ε̄), and all matrices A ∈ Mn in a neighborhood of A0 (de-
pending on µ and ε), the set

Λ̂ε(A) =
{
z ∈ Λε(A) : |z − λ| < µ

}
has the following properties.

(i) Λ̂ε(A) is the component of the pseudospectrum Λε(A) containing λ.

(ii) Λ̂ε(A) contains no eigenvalues of A0 except λ.

(iii) Λ̂ε(A) is compact and strictly convex.

(iv) The set-valued mapping Λ̂ε is Lipschitz on a neighborhood of A0 (with
respect to the Hausdorff distance).
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Proof We apply Theorem 4.1 (Small pseudospectra) and Corollary 4.9
(Strict convexity). Using Lemma 5.1 (Gradient continuity), we can define a
number

L = max
{
‖∇αw(A)‖ : A ∈ Γ, |w| = 1

}
,

where the set Γ is the neighborhood of the matrix A0 referred to in Theorem
4.1. Consider any two matrices A1, A2 ∈ Γ. According to [7, Lemma 2], the
Hausdorff distance between the sets Λ̂ε(A1) and Λ̂ε(A2) is given by

max
|w|=1

∣∣∣αw(A1)− αw(A2)
∣∣∣,

and, by the definition of L, this quantity cannot exceed L‖A1 − A2‖. 2

In particular, we obtain the following variational property of the entire
pseudopectrum.

Corollary 5.5 (Pseudospectral Lipschitz behavior) If the matrix A0∈
Mn is nonderogatory, then for any small ε > 0, the dependence of the pseu-
dospectrum Λε(A) on the matrix A ∈ Mn is Lipschitz near A0 (with respect
to the Hausdorff distance).

Proof Denote the distinct eigenvalues of A0 by λ1, λ2, . . . , λm, and denote
the separation of the eigenvalues by ν = minj 6=k |λj−λk|. Now apply the pre-
ceding result successively at each eigenvalue λj to obtain a number µ < ν/3
such that any small ε > 0 has the following property: for all matrices A near
A0 and each index j = 1, 2, . . . ,m, the component of the pseudospectrum
Λε(A) containing λj is

Λj
ε(A) = {z ∈ Λε(A) : |z − λj| < µ},

and the set-valued mapping Λj
ε is Lipschitz around A0.

Now consider any matrices A1, A2 ∈ Mn near A0. For any fixed index j,
we have

z ∈ Λj
ε(A1) ⇒ d(z, Λε(A2)) = d(z, Λj

ε(A2)).(5.6)

To see this, notice that d(z, Λj
ε(A2)) < µ because λj ∈ Λj

ε(A2). On the other
hand, for indices k 6= j, we know

|z − λj| < µ, |λj − λk| > 3µ, Λk
ε (A2) ⊂ λk + µD,
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so d(z, Λk
ε (A2)) > µ. Since

d(z, Λε(A2)) = min
k

d(z, Λk
ε (A2)),

our claim (5.6) now follows.
As a consequence of the implication (5.6), we obtain

sup
z∈Λε(A1)

d(z, Λε(A2)) = max
j

sup
z∈Λj

ε(A1)

d(z, Λε(A2)) = max
j

sup
z∈Λj

ε(A1)

d(z, Λj
ε(A2)),

and similarly,

sup
z∈Λε(A2)

d(z, Λε(A1)) = max
k

sup
z∈Λk

ε (A2)

d(z, Λk
ε (A1)).

Hence the Hausdorff distance between the pseudospectra Λε(A1) and Λε(A2)
is given by

H
(
Λε(A1), Λε(A2)

)
= max

{
sup

z∈Λε(A1)
d(z, Λε(A2)) , sup

z∈Λε(A2)
d(z, Λε(A1))

}
= max

{
max

j
sup

z∈Λj
ε(A1)

d(z, Λj
ε(A2)) , max

k
sup

z∈Λk
ε (A2)

d(z, Λk
ε (A1))

}
= max

r
max

{
sup

z∈Λr
ε (A1)

d(z, Λr
ε(A2)) , sup

z∈Λr
ε (A2)

d(z, Λr
ε(A1))

}
= max

r
H

(
Λr

ε(A1), Λ
r
ε(A2)

)
.

The result now follows. 2

Acknowledgements: The authors thank Mark Embree and Nick Trefethen
for a number of insights that improved the overall presentation.
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