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Analysis of the gradient method with an Armijo–Wolfe line
search on a class of non-smooth convex functions

Azam Asl and Michael L. Overton

Courant Institute of Mathematical Sciences, New York University, New York, NY, USA

ABSTRACT
It has long been known that the gradient (steepest descent) method
may fail on non-smooth problems, but the examples that have
appeared in the literature are either devised specifically to defeat
a gradient or subgradient method with an exact line search or are
unstable with respect to perturbation of the initial point. We give
an analysis of the gradient method with steplengths satisfying the
Armijo and Wolfe inexact line search conditions on the non-smooth
convex function f (x) = a|x(1)| +∑n

i=2 x(i). We show that if a is suffi-
ciently large, satisfying a condition that depends only on the Armijo
parameter, then, when the method is initiated at any point x0 ∈
R
n with x(1)

0 �= 0, the iterates converge to a point x̄ with x̄(1) = 0,
although f is unbounded below. We also give conditions under
which the iterates f (xk)→−∞, using a specific Armijo–Wolfe brack-
eting line search. Our experimental results demonstrate that our
analysis is reasonably tight.
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1. Introduction

First-order methods have experienced a widespread revival in recent years, as the num-
ber of variables n in many applied optimization problems has grown far too large to apply
methods that requiremore thanO(n) operations per iteration. Yetmanywidely usedmeth-
ods, including limited-memory quasi-Newton and conjugate gradient methods, remain
poorly understood on non-smooth problems, and even the simplest such method, the gra-
dient method, is non-trivial to analyse in this setting. Our interest is in methods with
inexact line searches, since exact line searches are clearly out of the question when the
number of variables is large. We discuss methods with prescribed step sizes in Section 5.

The gradient method dates back to Cauchy [6]. Armijo [1] was the first to establish
convergence to stationary points of smooth functions using an inexact line search with a
simple ‘sufficient decrease’ condition. Wolfe [26], discussing line search methods for more
general classes of methods, introduced a ‘directional derivative increase’ condition among
several others. The Armijo condition ensures that the line search step is not too large while
the Wolfe condition ensures that it is not too small. Powell [22] seems to have been the
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first to point out that combining the two conditions leads to a convenient bracketing line
search, noting also in another paper [23] that use of the Wolfe condition ensures that, for
quasi-Newton methods, the updated Hessian approximation is positive definite. Hiriart-
Urruty and Lemaréchal [12, Vol. 1, Ch. 11.3] give an excellent discussion of all these issues,
although they reference neither [1] nor [22,23]. They also comment (p. 402) on a surprising
error in [6].

Suppose that f, the function to be minimized, is a non-smooth convex function. An
example of Wolfe [27] shows that the ordinary gradient method with an exact line search
may converge to a non-optimal point, without encountering any points where f is non-
smooth except in the limit. This example is stable under perturbation of the starting
point, but it does not apply when the line search is inexact. Another example given in [12,
vol. 1, p. 363] applies to a subgradient method in which the search direction is defined by
the steepest descent direction, i.e. the negative of the element of the subdifferential with
smallest norm, again showing that use of an exact line search results in convergence to
a non-optimal point. This example is also stable under perturbation of the initial point,
and, unlike Wolfe’s example, it also applies when an inexact line search is used, but it
is more complicated than is needed for the results we give below because it was specifi-
cally designed to defeat the steepest-descent subgradient method with an exact line search.
Another example of convergence to a non-optimal point of a convex max function using a
specific subgradientmethod with an exact line search goes back to [8]; see [9, p. 385].More
generally, in a ‘black-box’ subgradient method, the search direction is the negative of any
subgradient returned by an ‘oracle’, which may not be a descent direction if the function
is not differentiable at the point, although this is unlikely if the current point was not gen-
erated by an exact line search since convex functions are differentiable almost everywhere.
The key advantage of the subgradient method is that, as long as f is convex and bounded
below, convergence to its minimal value can be guaranteed even if f is non-smooth by pre-
defining a sequence of steplengths to be used, but the disadvantage is that convergence is
usually slow. Nesterov [19] improved the complexity of such methods using a smoothing
technique, but to apply this one needs some knowledge of the structure of the objective
function.

The counterexamples mentioned above motivated the introduction of bundle methods
by Lemaréchal [15] andWolfe [27] for non-smooth convex functions and, for non-smooth,
non-convex problems, the bundle methods of Kiwiel [13] and the gradient sampling
algorithms of Burke et al. [4] and Kiwiel [14]. These algorithms all have fairly strong con-
vergence properties, to a non-smooth (Clarke) stationary value when these exist in the
non-convex case (for gradient sampling, with probability one), but when the number of
variables is large the cost per iteration is much higher than the cost of a gradient step.
See the recent survey paper [5] for more details. The ‘full’ BFGS method is a very effec-
tive alternative choice for non-smooth optimization [16], and its O(n2) cost per iteration
(for the matrix-vector products that it requires) is generally much less than the cost of the
bundle or gradient sampling methods, but its convergence results for non-smooth func-
tions are limited to very special cases. The limited memory variant of BFGS [17] costs only
O(n) operations per iteration, like the gradient method, but its behaviour on non-smooth
problems is less predictable.

In this paper we analyse the ordinary gradient method with an inexact line search
applied to a simple non-smooth convex function. We require points accepted by the line
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search to satisfy both Armijo and Wolfe conditions for two reasons. The first is that our
longer-term goal is to carry out a related analysis for the limited memory BFGS method
for which the Wolfe condition is essential. The second is that although the Armijo con-
dition is enough to prove convergence of the gradient method on smooth functions, the
inclusion of the Wolfe condition is potentially useful in the non-smooth case, where the
norm of the gradient gives no useful information such as an estimate of the distance to a
minimizer. For example, consider the absolute value function in one variable initialized at
x0 with x0 large. A unit step gradient method with only an Armijo condition will require
O(x0) iterations just to change the sign of x, while anArmijo–Wolfe line searchwith extrap-
olation defined by doubling requires only one line search with O(log2(x0)) extrapolations
to change the sign of x. Obviously, the so-called strong Wolfe condition recommended in
many books for smooth optimization, which requires a reduction in the absolute value of
the directional derivative, is a disastrous choice when f is non-smooth. We mention here
that in a recent paper on the analysis of the gradient method with fixed step sizes [25], Tay-
lor et al. remark that ‘we believe it would be interesting to analyse [gradient] algorithms
involving line-search, such as backtracking or Armijo–Wolfe procedures’.

We focus on the non-smooth convex function mapping from R
n to R defined by

f (x) = a|x(1)| +
n∑

i=2
x(i). (1)

We show that if a satisfies a lower bound that depends only on the Armijo parameter,
then the iterates generated by the gradient method with steps satisfying Armijo andWolfe
conditions converge to a point x̄ with x̄(1) = 0, regardless of the starting point, although
f is unbounded below. The function f defined in (1) was also used by Lewis and Overton
[16, p. 136] with n = 2 and a = 2 to illustrate failure of the gradientmethod with a specific
line search, but the observations made there are not stable with respect to small changes in
the initial point.

The paper is organized as follows. In Section 2 we establish the main theoretical results,
without assuming the use of any specific line search beyond satisfaction of the Armijo and
Wolfe conditions. In Section 3, we extend these results assuming the use of a bracketing
line search that is a specific instance of the ones outlined by [12,22]. In Section 4, we give
experimental results, showing that our theoretical results are reasonably tight. We discuss
connections with the convergence theory for subgradient methods in Section 5. We make
some concluding remarks in Section 6.

2. Convergence results independent of a specific line search

First let f denote any locally Lipschitz function mapping R
n to R, and let xk ∈ R

n, k =
0, 1, . . . , denote the kth iterate of an optimization algorithm where f is differentiable at
xk with gradient ∇f (xk). Let dk ∈ R

n denote a descent direction at the kth iteration, i.e.
satisfying ∇f (xk)Tdk < 0, and assume that f is bounded below on the line {xk + tdk : t ≥
0}. Let c1 and c2, respectively, the Armijo and Wolfe parameters, satisfy 0 < c1 < c2 < 1.
We say that the step t satisfies the Armijo condition at iteration k if

A(t) : f (xk + tdk) ≤ f (xk)+ c1t∇f (xk)Tdk (2)
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and that it satisfies the Wolfe condition if1

W(t) : f is differentiable at xk + tdk with ∇f (xk + tdk)Tdk ≥ c2∇f (xk)Tdk. (3)

The condition 0 < c1 < c2 < 1 ensures that points t satisfying A(t) and W(t) exist, as is
well known in the convex case and the smooth case; formore general f, see [16]. The results
of this section are independent of any choice of line search to generate such points. Note
that as long as f is differentiable at the initial iterate, defining subsequent iterates by xk+1 =
xk + tkdk, whereW(t) holds for t = tk, ensures that f is differentiable at all xk.

We now restrict our attention to f defined by (1), with

dk = −∇f (xk) = −
[
sgn(x(1)

k )a

1

]
, (4)

where 1 ∈ R
n−1 denotes the vector of all ones. We have

f (xk + tdk) = a
∣∣∣x(1)

k − sgn(x(1)
k )at

∣∣∣+ n∑
i=2

x(i)
k − (n− 1)t.

We assume that a ≥ √n− 1, so that f is bounded below along the negative gradient
direction as t→∞. Hence, xk+1 = xk + tkdk satisfies

x(1)
k+1 = x(1)

k − sgn(x(1)
k )atk and x(i)

k+1 = x(i)
k − tk for i = 2, . . . , n. (5)

We have

∇f (xk)Tdk = −(a2 + n− 1) (6)

and

∇f (xk + tkdk)Tdk = −(a2 sgn(x(1)
k+1) sgn(x(1)

k )+ n− 1). (7)

For clarity we summarize the underlying assumptions that apply to all the results in this
section.

Assumption 2.1: Let f be defined by (1) with a ≥ √n− 1 and define xk+1 = xk + tkdk,
with dk = −∇f (xk), for some step tk, k = 1, 2, 3, . . ., where x0 is arbitrary provided that
x(1)
0 �= 0.

Lemma 2.1: The Armijo condition A(tk) (i.e. (2) with t = tk), is equivalent to

c1tk(a2 + n− 1) ≤ f (xk)− f (xk+1) (8)

and theWolfe conditionW(tk) (i.e. (3)with t = tk) is equivalent to each of the following three
conditions:

sgn(x(1)
k+1) = −sgn(x(1)

k ), (9)

tk >
|x(1)
k |
a

(10)
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and

atk = |x(1)
k+1 − x(1)

k | = |x(1)
k | + |x(1)

k+1|. (11)

Proof: These all follow easily from (5), (6) and (7), using c2 < 1 and a ≥ √n− 1. �

Thus, tk satisfies theWolfe condition if and only if the iterates xk oscillate back and forth
across the x(1) = 0 axis.2

Theorem 2.2: Suppose tk satisfies A(tk) and W(tk) for k = 1, 2, 3, . . . ,N and define SN =∑N−1
k=0 tk. Then

c1(a2 + n− 1)SN ≤ f (x0)− f (xN) ≤ (n− 1)SN + a|x(1)
0 |, (12)

so that SN is bounded above as N →∞ if and only if f (xN) is bounded below. Furthermore,
f (xN) is bounded below if and only if xN converges to a point x̄ with x̄(1) = 0.

Proof: Summing up (8) from k = 0 to k = N−1 we have
c1(a2 + n− 1)SN ≤ f (x0)− f (xN). (13)

Using (5) we have

x(i)
0 − x(i)

N =
N−1∑
k=0

(x(i)
k − x(i)

k+1) = SN for i = 2, . . . , n,

so

f (x0)− f (xN) = a|x(1)
0 | − a|x(1)

N | + (n− 1)SN ,

using (1). Combining this with (13) and dropping the term a|x(1)
N | we obtain (12), so SN is

bounded above if and only if f (xN) is bounded below. Now suppose that f (xN) is bounded
below and hence SN is bounded above, implying that tN → 0, and therefore, from (11),
that x(1)

N → 0. Since f (xN) = a|x(1)
N | +

∑n−1
i=2 x(i)

N is bounded below asN →∞, and since,
from (5), for i = 2, . . . , n, each x(i)

N is decreasing asN increases, wemust have that each x(i)
N

converges to a limit x̄(i). On the other hand, if xN converges to a point (0, x̄(2), . . . , x̄(n))

then f (xN) is bounded below by
∑n−1

i=2 x̄(i). �

Note that, as f is unbounded below, convergence of xN to a point (0, x̄(2), . . . , x̄(n))

should be interpreted as failure of the method.
We next observe that, because of the bounds (12), it is not possible that SN →∞ if

a >
√

(n− 1)(1/c1 − 1)

(in addition to a ≥ √n− 1 as required by Assumption 2.1).
It will be convenient to define

τ = c1 + (n− 1)(c1 − 1)
a2

. (14)

Since c1 ∈ (0, 1) and a ≥ √n− 1, we have −1 < −1+ 2c1 < τ < c1 < 1, with τ > 0
equivalent to c1(a2 + n− 1) > n− 1.
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Corollary 2.3: Suppose A(tk) andW(tk) hold for all k. If τ > 0 then f (xk) is bounded below
as k→∞.

Proof: This is now immediate from (12) and the definition of τ . �

So, the larger a is, the smaller the Armijo parameter c1 must be in order to have τ ≤ 0
and therefore the possibility that f (xk)→−∞.

At this point it is natural to ask whether τ ≤ 0 implies that f (xk)→−∞. We will see
in the next section (in Corollary 3.4, for τ = 0) that the answer is no. However, we can
show that there is a specific choice of tk satisfyingA(tk) andW(tk) for which τ ≤ 0 implies
f (xk)→−∞. We start with a lemma.

Lemma 2.4: Suppose W(tk) holds. Then A(tk) holds if and only if

(1+ τ)
atk
2
≤ |x(1)

k |. (15)

Proof: Suppose x(1)
k > 0. Since W(tk) holds, using (9), we can rewrite the Armijo condi-

tion (8) as

c1tk(a2 + n− 1) ≤ f (xk)− f (xk+1)

=
(
ax(1)

k +
n∑
i=2

x(i)
k

)
−
(
−a(x(1)

k − atk)+
n∑
i=2

x(i)
k − (n− 1)tk

)

⇔ tk
(
c1(a2 + n− 1)+ a2 − (n− 1)

)
≤ 2ax(1)

k

⇔ tka2(τ + 1) ≤ 2ax(1)
k ,

giving (15). A similar argument applies when x(1)
k < 0. �

Theorem 2.5: Let

tk =
2|x(1)

k |
(τ + 1)a

. (16)

Then

(1) A(tk) and W(tk) both hold.
(2) if τ ≤ 0, then f (xk) is unbounded below as k→∞.

Proof: The first statement follows immediately from (10) (since |τ | < 1) and Lemma 2.4.
Furthermore, (11) allows us to write (15) equivalently as

(1+ τ)|x(1)
k+1| ≤ (1− τ)|x(1)

k |. (17)
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Since tk is the maximum steplength satisfying (15), it follows that (17) holds with equality,
so |x(1)

k+1| = C|x(1)
k |, where

C = 1− τ

1+ τ
,

and hence

|x(1)
k+1| = Ck+1|x(1)

0 |.
Then, we can rewrite (16) as

tk =
2Ck|x(1)

0 |
a(τ + 1)

.

When −1 < τ ≤ 0, we have C ≥ 1, so SN =
∑N−1

k=0 tk→∞ as N →∞ and hence, by
Theorem 2.2, f (xN)→−∞. �

3. Additional results depending on a specific choice of Armijo–Wolfe line
search

In this section we continue to assume that f and dk are defined by (1) and (4), respectively,
with a ≥ √n− 1, and that A(t) and W(t) are defined as earlier. However, unlike in the
previous section, we now assume that tk is generated by a specific line search, namely the
one given in Algorithm 1, which is taken from [16, p. 147] and is a specific realization of
the line searches described implicitly in [22] and explicitly in [12]. Since the line search
function s �→ f (xk + sdk) is locally Lipschitz and bounded below, it follows, as shown in
[16], that at any stage during the execution of Algorithm 1, the interval [α,β] must always
contain a set of points t with non-zeromeasure satisfyingA(t) andW(t), and furthermore,
the line search must terminate at such a point. This defines the point tk. A crucial aspect of
Algorithm 1 is that, in the ‘while’ loop, the Armijo condition is tested first and the Wolfe
condition is then tested only if the Armijo condition holds.

We already know fromTheorem 2.2 and Corollary 2.3 that, for any set of Armijo–Wolfe
points, if τ > 0, then f (xN) is bounded below. In this section we analyse the case
τ ≤ 0, assuming that the steps tk are generated by the Armijo–Wolfe bracketing line
search. It simplifies the discussion to make a probabilistic analysis, assuming that x0 =
(x(1)

0 , x(2)
0 , . . . , x(n)

0 ) is generated randomly, say from the normal distribution. Clearly, all
intermediate values t generated by Algorithm 1 are rational, and with probability one
all corresponding points x = (x(1)

0 − sgn(x(1)
0 )at, x(2)

0 − t, . . . , x(n)
0 − t) where the Armijo

and Wolfe conditions are tested during the first line search are irrational (this is obvious
if a is rational but it also holds if a is irrational assuming that x0 is generated indepen-
dently of a). It follows that, with probability one, f is differentiable at these points, which
include the next iterate x1 = (x(1)

1 , x(2)
1 , . . . , x(n)

1 ). It is clear that, by induction, the points
xk = (x(1)

k , x(2)
k , . . . , x(n)

k ) are irrational with probability one for all k, and in particular, x(1)
k

is non-zero for all k and hence f is differentiable at all points xk.
Let us summarize the underlying assumptions for all the results in this section.

Assumption 3.1: Let f be defined by (1), with a ≥ √n− 1, and define xk+1 = xk + tkdk,
with dk = −∇f (xk), and with tk defined by Algorithm 1, k = 1, 2, 3, . . ., where xk =
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Algorithm 1 (Armijo–Wolfe Bracketing Line Search)
α← 0
β ←+∞
t← 1
while true do

if A(t) fails (see (2)) then
β ← t

else if W(t) fails (see (3)) then
α← t

else
stop and return t

end if
if β < +∞ then

t← (α + β)/2
else

t← 2α
end if

end while

(x(1)
k , x(2)

k , . . . , x(n)
k ), and x0 = (x(1)

0 , x(2)
0 , . . . , x(n)

0 ) is randomly generated from the normal
distribution. All statements in this section are understood to hold with probability one.

Lemma 3.1: Suppose τ ≤ 0 and suppose |x(1)
k | > a. Define

rk =
⌈
log2
|x(1)
k |
a

⌉
so that a2rk−1 < |x(1)

k | < a2rk . (18)

Then, tk = 2rk .

Proof: Since |x(1)
k | > a any steplength t ≤ |x(1)

k |/a satisfies A(t) but fails W(t). Starting
with t = 1, the ‘while’ loop inAlgorithm1will carry out rk doublings of t until t > |x(1)

k |/a,
i.e. W(t) holds. Hence, in the beginning of stage rk + 1, we have α = 2rk−1 (a lower
bound on tk), t = 2rk and β = +∞. At this point, t satisfiesW(t) and since τ ≤ 0, it also
satisfies (15), i.e. A(t). So tk = 2rk . �

Theorem 3.2: Suppose τ ≤ 0 and |x(1)
0 | > a. Then after j ≤ r0 iterations we have |x(1)

j | <
a, where r0 is defined by (18), and furthermore, for all subsequent iterations, the condition
|x(1)
k | < a continues to hold.

Proof: For any k with |x(1)
k | > a we know from the previous lemma that tk = 2rk with

rk > 0. From (11) and (18) we get

|x(1)
k+1| = atk − |x(1)

k | < a2rk − a2rk−1 = a2rk−1. (19)
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Figure 1. Doubling t in order to satisfyW(t).

See Figure 1 for an illustration with n = 2, with x(1)
k > 0, so−a2rk−1 < x(1)

k+1 < 0. Hence,
either |x(1)

k+1| < a, or a < |x(1)
k+1| < a2rk−1, in which case from (18) and (19) we have

rk+1 ≤ rk − 1.

So, beginning with k = 0, rk is decremented by at least one at every iteration until |x(1)
k | <

a. Finally, once |x(1)
k | < a holds, it follows that the initial step t = 1 satisfies the Wolfe

conditionW(t), and hence, ifA(t) also holds, tk is set to one, while if not, the upper bound
β is set to one so tk < 1. Hence, the next value x(1)

k+1 = x(1)
k − sgn(x(1)

k )atk also satisfies
|x(1)
k+1| < a. �

Theorem 3.2 shows that for any τ ≤ 0 and sufficiently large k using Algorithm 1 we
always have |x(1)

k | < a. In the reminder of this section we provide further details on the
step tk generated when |x(1)

k | < a. In this case, the initial step t = 1 satisfiesW(t) but not
necessarily A(t). So Algorithm 1 will repeatedly halve t, until it satisfies A(t). See Figure 2
for an illustration.

Suppose for the time being that τ = 0 and define pk by

pk =
⌈
log2

a

|x(1)
k |

⌉
so that

a
2pk

< |x(1)
k | <

a
2pk−1

. (20)

For example, in Figure 2, pk = 2. So, a/4 < |x(1)
k | < a/2. Hence t = 1/2 satisfiesW(t). In

fact it also satisfies A(t), because for τ = 0, we have
(1+ τ)at

2
= a

4
< |x(1)

k |,
which is exactly the Armijo condition (15). So, Algorithm 1 returns tk = 1/2.

On the other hand if we had τ ≤ −1/2, t = 1 would have satisfied the Armijo condi-
tion (15) since

(1+ τ)a
2

≤ a
4

< |x(1)
k |.

By taking τ into the formulationwe are able to compute the exact value of tk in the following
theorem.
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Figure 2. Halving t in order to satisfy A(t).

Theorem 3.3: Suppose τ ≤ 0 and |x(1)
k | < a. Then tk = min(1, 1/2qk−1), where

qk =
⌈
log2

(1+ τ)a

|x(1)
k |

⌉
,

so

(1+ τ)a
2qk

< |x(1)
k | <

(1+ τ)a
2qk−1

. (21)

Note that, unlike rk and pk, the quantity qk could be zero or negative.

Proof: If |x(1)
k | > (1+ τ)a/2, then t = 1 satisfies the Armijo condition (15) as well as the

Wolfe condition, so tk is set to 1. Otherwise, qk > 1, so 1/2qk−1 < 1 and Algorithm 1
repeatedly halves t until A(t) holds. We now show that the first t that satisfies A(t) is such
that |x(1)

k | < at, i.e. it satisfiesW(t) aswell. Since τ ≤ 0, the second inequality in (21) proves
that steplength t = 1/2qk−1 satisfies W(t). Moreover, the first inequality is the Armijo
condition (15) with the same steplength. Furthermore, the second inequality in (21) also
shows that t′ = 2t = 1/2qk−2 is too large to satisfy the Armijo condition (15). Hence
t = 1/2qk−1 is the first steplength satisfying both A(t) andW(t). So, Algorithm 1 returns
tk = 1/2qk−1. �

Note that if τ = 0, pk and qk coincide, with pk ≥ 1 since |x(1)
k | < a, and hence tk =

1/2pk−1 ≤ 1. Furthermore, pk = 1 and hence tk = 1 when a/2 < |x(1)
k | < a.

Corollary 3.4: Suppose τ = 0. Then xk converges to a limit x̄ with x̄(1) = 0.
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Proof: Assume that k is sufficiently large so that |x(1)
k | < a. From (20) we have a/2pk <

|x(1)
k |. Using Theorem 3.3 we have tk = 1/2pk−1 and therefore

|x(1)
k+1| = atk − |x(1)

k | <
a

2pk−1
− a

2pk
= a

2pk

(see Figure 2 for an illustration). So pk+1 ≥ pk + 1. Using Theorem 3.3 again we con-
clude tk+1 ≤ 1/2pk and so tk+1 ≤ tk/2. The same argument holds for all subsequent
iterates so SN =

∑N−1
k=0 tk is bounded above as N →∞. The result therefore follows from

Theorem 2.2. �

Corollary 3.5: If τ ≤ −0.5 then eventually tk = 1 at every iteration, and f (xk)→−∞.

Proof: Aswe showed in Theorem 3.2, for sufficiently large k, |x(1)
k | < a and therefore t = 1

always satisfies the Wolfe condition, so tk ≤ 1. If |x(1)
k | > (1+ τ)a/2, then t = 1 also sat-

isfies the Armijo condition (15), so tk = 1. If |x(1)
k+1| > (1+ τ)a/2 as well, then tk+1 = 1

and hence x(1)
k+2 = x(1)

k . It follows that tj = 1 for all j> k+ 1. Hence, by Theorem 2.2,
f (xk)→−∞. Otherwise, suppose |x(1)

k | < (1+ τ)a/2 (in case |x(1)
k | > (1+ τ)a/2 and

|x(1)
k+1| < (1+ τ)a/2 just shift the index by one so that we have |x(1)

k−1| > (1+ τ)a/2 and
|x(1)
k | < (1+ τ)a/2).
Since |x(1)

k | < (1+ τ)a/2, from the definition of qk in (21) we conclude that 2 ≤ qk,
i.e. 1/2qk−1 ≤ 1/2, so from Theorem 3.3 we have tk = 1/2qk−1 ≤ 1/2. Since |x(1)

k | < (1+
τ)a/2qk−1 and 1+ τ ≤ 1/2 we have

|x(1)
k | <

a
2qk

. (22)

So by (11)

|x(1)
k+1| = atk − |x(1)

k | ≥
a

2qk−1
− a

2qk
= a

2qk
>

(1+ τ)a
2qk−1

(23)

and using (21) again we conclude qk+1 ≤ qk − 1. So,

tk+1 = min
(
1,

1
2qk+1−1

)
≥ min

(
1,

1
2qk−2

)
= 1

2qk−2
= 2tk

and therefore, applying this repeatedly, after a finite number of iterations, say at itera-
tion k̄, we must have tk̄ = 1 for the first time. Furthermore, from (22) and (23) we have
|x(1)
k | < |x(1)

k+1|, and applying this repeatedly as well we have |x(1)
k̄
| < |x(1)

k̄+1|. From the

Armijo condition (15) at iteration k̄ we have (1+ τ)a/2 ≤ |x(1)
k̄
| and therefore

(1+ τ)a
2

< |x(1)
k̄+1|.

Hence, t = 1 also satisfies the Armijo condition (15) at iteration k̄+ 1. With tk̄ = 1 and
tk̄+1 = 1, we conclude x(1)

k̄+2 = x(1)
k̄
. It follows that tj = 1 for all j > k̄+ 1. Hence f (xk)→

−∞ by Theorem 2.2. �
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Figure 3. Minimizing f with n = 2, u = x(1), v = x(2) and c1 = 0.1. Left, with a = 2, so τ < 0 and
f (uk , vk)→−∞ (success). Right, with a = 5, so τ > 0 and (uk , vk)→ (0, v̄) (failure).

4. Experimental results

In this section we again continue to assume that f and dk are defined by (1) and (4),
respectively. For simplicity we also assume that n = 2, writing u = x(1) and v = x(2)

for convenience. Our experiments confirm the theoretical results presented in the pre-
vious sections and provide some additional insight. We know from Theorem 2.2 that
when the gradient algorithm fails, i.e. xk converges to a point (0, v̄), the step tk converges
to zero. However, an implementation of Algorithm 1 in floating point arithmetic must
terminate the ‘while’ loop after it executes amaximumnumber of times.We used theMat-
lab implementation in hanso,3 which limits the number of bisections in the ‘while’ loop
to 30.

Figure 3 shows two examples of minimizing f with a = 2 and a = 5, with c1 = 0.1 in
both cases, and hencewith τ < 0 and τ > 0, respectively. Starting from the same randomly
generated point, we have f (xk)→−∞ (success) when τ < 0 and xk→ (0, v̄) (failure)
when τ > 0.

For various choices of a and c1 we generated 5000 starting points x0 = (u0, v0), each
drawn from the normal distribution with mean 0 and variance 1, and measured how fre-
quently ‘failure’ took place, meaning that the line search failed to find an Armijo–Wolfe
point within 30 bisections. If failure did not take place within 50 iterations, i.e. with k ≤ 50,
we terminated the gradientmethod declaring success. Figure 4 shows the failure rates when
(top) c1 is fixed to 0.05 and a is varied and (bottom) when a = √2 and c1 is varied. Both
cases confirm that when τ > 0 themethod always fails, as predicted by Corollary 2.3, while
when τ ≤ −0.5, failure does not occur, as shown in Corollary 3.5.

As Figure 4 shows, when τ < 0 with |τ | small, the method may or may not fail, with
failure more likely the closer τ is to zero. Further experiments for three specific values



OPTIMIZATION METHODS & SOFTWARE 235

Figure 4. Failure rates (small circles) for f with n = 2 when (top) c1 is fixed to 0.05 and a is varied and
(bottom) a is fixed to

√
2 and c1 is varied. The solid curves show the value of τ . Each experiment was

repeated 5000 times.

of τ , namely −0.1,−0.01 and −0.001, using a fixed value of c1 = 0.05 and a defined
by a = √(1− c1)/(c1 − τ), confirmed that failure is more likely the closer that τ gets
to zero and also showed that the set of initial points from which failure takes place is
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complex; see Figure 5. The initial pointswere drawnuniformly from the box (−100, 100)×
(−100, 100).

We know from Corollary 3.4 that, for τ = 0, with probability one tk→ 0, so even if
high precision were being used, for sufficiently large k an implementation in floating point
must fail. It may well be the case that failures for τ < 0 occur only because of the limited
precision being used, and that with sufficiently high precision, these failures would be elim-
inated. This suggestion is supported by experiments done reducing the maximum number
of bisections to 15, for which the number of failures for τ < 0 increased significantly, and
increasing it to 50, for which the number of failures decreased significantly.

5. Relationship with convergence results for subgradient methods

Let h be any convex function. The subgradient method [3,24] applied to h is a general-
ization of the gradient method, where h is not assumed to be differentiable at the iterates
{xk} and hence, instead of setting−dk = ∇h(xk), one defines−dk to be any element of the
subdifferential set

∂h(xk) =
{
g : h(xk + z) ≥ h(xk)+ gTz ∀ z ∈ R

n}.
The steplength tk in the subgradient method is not determined dynamically, as in an
Armijo–Wolfe line search, but according to a predetermined rule. The advantages of the
subgradient method with predetermined steplengths are that it is robust, has low iteration
cost, and has a well established convergence theory that does not require h to be differen-
tiable at the iterates {xk}, but the disadvantage is that convergence is usually slow. Provided
h is differentiable at the iterates, the subgradient method reduces to the gradient method
with the same step sizes, but it is not necessarily the case that f decreases at each iterate.

We cannot apply the convergence theory of the subgradientmethod directly to our func-
tion f defined in (1), because f is not bounded below. However, we can argue as follows.
Suppose that τ > 0, so that we know (by Corollary 2.3) that for all x0 with x(1)

0 �= 0, the
iterates xk generated by the gradient method with Armijo–Wolfe steplengths applied to f
converge to a point x̄with x̄(1) = 0. Fix any initial point x0 with x

(1)
0 �= 0, and letM = f (x̄),

where x̄ is the resulting limit point (to make this well defined, we can assume that the
Armijo–Wolfe bracketing line search of Section 3 is in use). Now define

f̃ (x) = max

(
M − 1, a|x(1)| +

n∑
i=2

x(i)

)
.

Clearly, the iterates generated by the gradient method with Armijo–Wolfe steplengths ini-
tiated at x0 are identical for f and f̃ , with f (equivalently, f̃ ) differentiable at all iterates {xk},
and with f (xk) = f̃ (xk)→ M. Furthermore, the theory of subgradient methods applies to
f̃ . One well-known result states that provided the steplengths {tk} are square-summable
(that is,

∑∞
k=0 t2k <∞, and hence the steps are ‘not too long’), but not summable (that is,∑∞

k=0 tk = ∞, and hence the steps are ‘not too short’), then convergence of f̃ (xk) to the
optimal value M−1 must take place [18]. Since this does not occur, we conclude that the
Armijo–Wolfe steplenths {tk} do not satisfy these conditions. Indeed, the ‘not summable’
condition is exactly the condition SN →∞, where SN =

∑N−1
k=0 tk, andTheorem2.2 estab-

lished that the converse, that SN is bounded above, is equivalent to the function values
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Figure 5. Mixed success and failure when τ = −0.1 (top), τ = −0.01 (middle) and τ = −0.001 (bot-
tom). Each plot shows 5000 points. The green circles show starting points for which the method
succeeded, generating xk = (uk , vk) ∈ R

2 for which f (xk) is apparently unbounded below, while the
red crosses show starting points for which themethod failed, generating xk converging to a point on the
v-axis.
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f (xk) being bounded below. This, then, is consistent with the convergence theory for the
subgradient method, which says that the steps must not be ‘too short’; in the context of an
Armijo–Wolfe line search, when c1 is not sufficiently small, and hence τ > 0, the Armijo
condition is too restrictive: it is causing the {tk} to be ‘too short’ and hence summable.

Of course, in practice, one usually optimizes functions that are bounded below, but one
hopes that a method applied to a convex function that is not bounded below will not con-
verge, but will generate points xk with f (xk)→−∞. The main contribution of our paper
is to show that, in fact, this does not happen for a simple well known method on a simple
convex non-smooth function, regardless of the starting point, unless the Armijo parame-
ter is chosen to be sufficiently small — how small, one does not know without advance
information on the properties of f.

6. Concluding remarks

Should we conclude from the results of this paper that, if the gradient method with an
Armijo–Wolfe line search is applied to a non-smooth function, the Armijo parameter
c1 should be chosen to be small? Results for a very ill-conditioned convex non-smooth
function f̂ devised by Nesterov [20] suggest that the answer is yes. The function is
defined by

f̂ (x) = max{|x1|, |xi − 2xi−1|, i = 2, . . . , n}.
Let x̂1 = 1, x̂i = 2x̂i−1 + 1, i = 2, . . . , n. Then f̂ (x̂) = 1 = f̂ (1) although ‖x̂‖∞ ≈ 2n and
‖1‖∞ = 1, so the level sets of f̂ are very ill conditioned. The minimizer is x = 0 with
f̂ (x) = 0. Figure 6 shows function values computed by applying five different methods to
minimize f̂ with n = 100. The five methods are: the subgradient method with tk = 1/k, a
square-summable but not summable sequence that guarantees convergence; the gradient
method using the Armijo–Wolfe bracketing line search of Section 3; the limited memory
BFGS method [21] with 5 and 10 updates, respectively (using ‘scaling’); and the full BFGS
method [16,21]; the BFGS variants also use the same Armijo–Wolfe line search.4 The top
and bottom plots in Figure 6 show the results when the Armijo parameter c1 is set to 0.1
and to 10−6, respectively. The Wolfe parameter was set to 0.5 in both cases. These values
were chosen to satisfy the usual requirement that 0 < c1 < c2 < 1, while still ensuring that
c1 is not so tiny that it is effectively zero in floating point arithmetic. All function values
generated by the methods are shown, including those evaluated in the line search. The
same initial point, generated randomly, was used for all methods; the results using other
initial points were similar.

For this particular example, we see that, in terms of reduction of the function value
within a given number of evaluations, the gradient method with the Armijo–Wolfe line
search when the Armijo parameter is set to 10−6 performs better than using the subgra-
dient method’s predetermined sequence tk = 1/k, but that this is not the case when the
Armijo parameter is set to 0.1. The smaller value allows the gradient method to take steps
with tk = 1 early in the iteration, leading to rapid progress, while the larger value forces
shorter steps, quickly leading to stagnation. Eventually, even the small Armijo parameter
requires many steps in the line search — one can see that on the right side of the lower
figure, at least 8 function values per iteration are required. One should not read too much
into the results for one example, but the most obvious observation from Figure 6 is that the
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Figure 6. Comparison of five methods for minimizing Nesterov’s ill-conditioned convex nonsmooth
function f̂ . The subgradient method (blue crosses) uses tk = 1/k. The gradient, limited-memory BFGS
(with 5 and 10 updates, respectively) and full BFGS methods (red circles, green squares, magenta dia-
monds and black dots) all use the Armijo–Wolfe bracketing line search. All function evaluations are
shown. Top: Armijo parameter c1 = 0.1. Bottom: Armijo parameter c1 = 10−6.

full BFGS and limitedmemoryBFGSmethods aremuchmore effective than the gradient or
subgradient methods. This distinction becomes far more dramatic if we run the methods
for more iterations: BFGS is typically able to reduce f̂ to about 10−12 in about 5000 func-
tion evaluations, while the gradient and subgradientmethods fail to reduce f̂ below 10−1 in
the same number of function evaluations. The limitedmemory BFGSmethods consistently
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performbetter than the gradient/subgradientmethods butworse than full BFGS. The value
of the Armijo parameter c1 has little effect on the BFGS variants.

These results are consistent with substantial prior experience with applying the full
BFGS method to non-smooth problems, both convex and non-convex [7,10,11,16]. How-
ever, although the BFGS method requires far fewer operations per iteration than bundle
methods or gradient sampling, it is still not practical when n is large. Hence, the attraction
of limited-memory BFGS which, like the gradient and subgradient methods, requires only
O(n) operations per iteration. In a companion paper [2], we investigate under what con-
ditions the limited-memory BFGS method applied to the function f studied in this paper
generates iterates that converge to a non-optimal point, and, more generally, how reliable
a choice it is for non-smooth optimization.

Notes

1. There is a subtle distinction between theWolfe condition given here and that given in [16], since
here theWolfe condition is understood to fail if the gradient of f does not exist at xk + tdk, while
in [16] it is understood to fail if the function of one variable s �→ f (xk + sdk) is not differentiable
at s = t. For the example analysed here, these conditions are equivalent.

2. The same oscillatory behaviour occurs if we replace the Wolfe condition by the Goldstein
condition f (xk + tdk) ≥ f (xk)+ c2t∇f (xk)Tdk.

3. www.cs.nyu.edu/overton/software/hanso/
4. In our implementation, we made no attempt to determine whether f̂ is differentiable at a given

point or not. This is essentially impossible in floating point arithmetic, but as noted earlier, the
gradient is defined at randomly generated points with probability one; there is no reason to
suppose that any of the methods tested will generate points where f̂ is not differentiable, except
in the limit, and hence the ‘subgradient’ method actually reduces to the gradient method with
tk = 1/k. See [16] for further discussion.
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