
Pairwise Comparison Between

Genomic Sequences and

Optical-maps

by

Bing Sun

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September, 2006

Bud Mishra



c© Bing Sun

All Rights Reserved, 2006



Dedicated to my loving ones

iii



Acknowledgements

This dissertation would not have been finished without the help and support

from many people to whom I am greatly indebted.

First, I thank my advisor Bud Mishra, for his continuous support in my

Ph.D program. Bud was always there to listen and to give advices. I learned

from him how to ask questions and express my ideas. He showed me different

ways to approach a research problem and the need of persistence to accomplish

a goal. He introduced the CAPO project to me and helped me accomplish it

well. I also would like to thank OpGen Inc. for providing experimental data to

test the CAPO tool.

A special thanks goes to my co-advisor, Jacob Schwartz, who is responsible

for involving me in the COMBAT project in the first place. Jack has been a

friend and a great mentor. Without his encouragement and constant guidance,

I could not have finished this dissertation. He was always there to meet and

talk about my ideas. He took all the patience to correct my English writings

and asked me good questions to help me think through my research problems,

either philosophical or computational.

Besides my advisors, I would like to thank my thesis reader Prof. Mehryar

Mohri for his comments and suggestions. During the course of this work at

NYU (2002 ∼ 2006), I was supported by the Computer Science Dept. teach-

iv



ing/research assistant scholarship and the Bob Berne research funds. I am also

greatly indebted to many teachers in NYU in the past. Also thanks to all the

folks at the NYU Bioinformatics Lab for interesting discussions and having fun

to be with.

Last, but not least, I thank my family for educating me with aspects from

both arts and sciences, for unconditional support and encouragement to pursue

my interests, even when the interests went beyond boundaries of language, field

and geography. Thanks to my husband Shubin Zhao, for listening to my com-

plaints and frustrations about study and research, for sharing his experience of

dissertation writing with me, and for believing in me.

v



Preface

Writing a dissertation about comparative analysis is a difficult endeavor. I’m

glad to have completed it in time to graduate.

Bing Sun

New York, New York

vi



Abstract

With the development and improvement of high throughput experimental tech-

nologies, massive amount of biological data including genomic sequences and

optical-maps have been collected for various species. Comparative techniques

play a central role in investigating the adaptive significance of organismal traits

and revealing evolutionary relations among organisms by comparing these bio-

logical data. This dissertation presents two efficient comparative analysis tools

used in comparative genomics and comparative optical-map study, respectively.

A complete genome sequence of an organism can be viewed as its ulti-

mate genetic map, in the sense that the heritable information are encoded

within the DNA and the order of nucleotides along chromosomes is known.

Comparative genomics can be applied to find functional sites by comparing

genetic maps. Comparing vertebrate genomes requires efficient cross-species se-

quence alignment programs. The first tool introduced in this thesis is COMBAT

(Clean Ordered Mer-Based Alignment Tool), a new mer-based method which

can search rapidly for highly similar translated genomic sequences using the

stable-marriage algorithm (SM) as an alignment filter. In experiments COM-

BAT is applied to comparative analysis between yeast genomes, and between

the human genome and the recently published bovine genome. The homologous

blocks identified by COMBAT are comparable with the alignments produced

vii



by BLASTP and BLASTZ.

When genetic maps are not available, other genomic maps, including optical-

maps, can be constructed. An optical map is an ordered enumeration of the

restriction sites along with the estimated lengths of the restriction fragments

between consecutive restriction sites. CAPO (Comparative Analysis and Phy-

logeny with Optical-Maps), introduced as a second technique in this thesis, is a

tool for inferring phylogeny based on pairwise optical map comparison and bi-

partite graph matching. CAPO combines the stable matching algorithm with ei-

ther the Unweighted Pair Group Method with Arithmetic Averaging (UPGMA)

or the Neighbor-Joining (NJ) method for constructing phylogenetic trees. This

new algorithm is capable of constructing phylogenetic trees in logarithmic steps

and performs well in practice. Using optical maps constructed in silico and

in vivo, our work shows that both UPGMA-flavored trees and the NJ-flavored

trees produced by CAPO share substantial overlapping tree topology and are

biologically meaningful.

viii



Contents

Dedication iii

Acknowledgements iv

Preface vi

Abstract vii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Comparative Genomics . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Motivation: From Single Genomes to Comparative Ge-

nomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 The Solution . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Optical-Map Comparison and Phylogeny Analysis . . . . . . . . 8

1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 8

ix



1.2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . 12

1.2.3 The solution . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Prior Work on Comparative Genomics 14

2.1 Whole Genome Pairwise Alignment Methods . . . . . . . . . . . 14

2.2 Multiple Sequence Alignment Methods . . . . . . . . . . . . . . 24

2.2.1 Multiple Sequence Alignment Tools for Short Sequences . 25

2.2.2 Multiple Sequence Alignment Tools for Long Sequences . 28

3 Selection of Alignment Anchors 31

3.1 Filters for Selecting Alignment Anchors . . . . . . . . . . . . . . 31

3.1.1 Longest-increasing-subsequence Approach . . . . . . . . 32

3.1.2 Dynamic Programming Approach . . . . . . . . . . . . . 34

3.1.3 Clustering Approach . . . . . . . . . . . . . . . . . . . . 35

3.2 Bipartite Graph Matching . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 The Stable Marriage Algorithm . . . . . . . . . . . . . . 36

3.2.2 Applying the Stable Marriage Algorithm as an Alignment

Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 The COMBAT Algorithm for Pairwise Genome Comparison 41

4.1 Build Clean Ordered Mer Libraries . . . . . . . . . . . . . . . . 43

4.1.1 Scheme I: Generate K-mers Tagged by Genomic Locations 43

4.1.2 Scheme II: Generate K-mers Tagged by Indices of ‘J-

intervals’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

x



4.1.3 Scheme III: Generate ‘gapped’ Local Mers Containing

Two Neighboring Mers . . . . . . . . . . . . . . . . . . . 45

4.2 Search For Common Mers . . . . . . . . . . . . . . . . . . . . . 47

4.3 Find A One-to-One Correspondence . . . . . . . . . . . . . . . . 49

4.4 Optional Chaining Procedure . . . . . . . . . . . . . . . . . . . 49

5 Evaluation of Performance of COMBAT 51

5.1 Yeast Genome Comparison . . . . . . . . . . . . . . . . . . . . . 51

5.2 Human Assembly and Cow Contig Comparison . . . . . . . . . 57

5.3 Human Genome and Cow Assembly Comparison . . . . . . . . . 59

5.4 Implementation and Speed . . . . . . . . . . . . . . . . . . . . . 60

5.5 Error Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 CAPO: Comparative Analysis and Phylogeny with Optical-

Maps 65

6.1 Review of Evolutionary Analysis . . . . . . . . . . . . . . . . . . 66

6.1.1 Unweighted Pair Group Method with Arithmetic Mean

(UPGMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.2 Neighbor Joining (NJ) . . . . . . . . . . . . . . . . . . . 69

6.1.3 Fitch Margoliash (FM) . . . . . . . . . . . . . . . . . . . 70

6.1.4 Maximum Parsimony (MP) . . . . . . . . . . . . . . . . 70

6.1.5 Maximum Likelihood (ML) . . . . . . . . . . . . . . . . 71

6.2 The Statistical Method for Optical Map Comparison Used by

OpGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Problem Formulation and the CAPO Methodology . . . . . . . 73

6.3.1 Heuristic Algorithm for Pairwise Optical Map Comparison 75

6.3.2 Stable Matching Algorithm for Inferring Phylogeny . . . 76

xi



6.3.3 Correction of Sizing Errors . . . . . . . . . . . . . . . . . 80

6.4 Phylogenetic Tree Comparison Measure . . . . . . . . . . . . . . 82

6.5 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5.1 Data set I . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5.2 Data set II . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.6 CAPO Experiments and Discussion . . . . . . . . . . . . . . . . 85

6.6.1 Parameter Optimization . . . . . . . . . . . . . . . . . . 85

6.6.2 Phylogenetic Tree Evaluation . . . . . . . . . . . . . . . 94

6.6.3 Impact of Single-Merge Mode and Multi-Merge Mode . . 94

6.6.4 Experiments with OpGen’s Definition of Pairwise Map

Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6.5 Cluster Sizes . . . . . . . . . . . . . . . . . . . . . . . . 98

6.6.6 Implementation and Speed . . . . . . . . . . . . . . . . . 98

7 Conclusions and Future Work 101

7.1 The COMBAT Tool for Pairwise Genome Comparison . . . . . 101

7.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2 The CAPO Tool for Comparative Analysis and Phylogeny with

Optical-maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 103

Appendix: The SOMA Tool for Aligning Optical Maps 105

Bibliography 108

xii



List of Figures

3.1 Schematic view of the LIS technique . . . . . . . . . . . . . . . 33

3.2 An example of a procedure for solving the stable marriage problem 38

4.1 Outline of the COMBAT algorithm . . . . . . . . . . . . . . . . 42

4.2 Build mer library using mer generation scheme II . . . . . . . . 44

4.3 Mer generation scheme III. . . . . . . . . . . . . . . . . . . . . . 46

5.1 Histogram of longest continuous matches length in the alignments

for the 2420 false negative cases of the comparison between Sac-

charomyces cerevisiae and Candida glabrata. . . . . . . . . . . . 55

5.2 Alignment maps between chr1 and cow1 . . . . . . . . . . . . . 58

5.3 (1)-(5): Alignment maps between Hchr1 and Cchr1. T = 5 for all

maps. (6): Specificity and sensitivity measurement of COMBAT

from the experiments (1)-(5). . . . . . . . . . . . . . . . . . . . 61

6.1 Procedure of selecting an appropriate method to infer phylogeny

given single-gene sequences. . . . . . . . . . . . . . . . . . . . . 67

6.2 An example of building a bipartite graph given a distance matrix.

A) A distance matrix M of four items (A, B, C, D). B) The

corresponding bipartite graph. . . . . . . . . . . . . . . . . . . 78

xiii



6.3 First-degree polynomial fit for restriction fragment sizing error.

(a) L vs. stddev(L), cc = 0.7428; (b)
√

L vs. stddev(L), cc =

0.7562; (c) 1/
√

L vs. stddev(L)/L, cc = 0.8290. . . . . . . . . . 81

6.4 View maps of Data set I using MapViewer. A pairwise align-

ment between Escherichia coli O157 : H7 str. Sakai and

Escherichia coli O157 : H7 EDL933 is shown. . . . . . . . . . 86

6.5 View maps in Data set II using MapViewer . . . . . . . . . . . . 88

6.6 Phylogenetic tree for data set I and II (k = 2, ρ = 0.9) . . . . . 90

6.7 Phylogenetic tree for data set I and II (k = 3, ρ = 0.8) . . . . . 91

6.8 Phylogenetic tree for data set I and II (k = 4, ρ = 0.7) . . . . . 92

6.9 Phylogenetic trees constructed by CAPO for data set I and II

using default setting and single merge mode. . . . . . . . . . . . 96

6.10 Phylogenetic trees generated by OpGen for data set I . . . . . . 97

6.11 Phylogenetic trees generated by CAPO for data set I using Op-

Gen’s definition of pairwise map similarity . . . . . . . . . . . . 99

6.12 Number of clusters in the iterations of the experiments of data

set I and II using CAPO SM-UPGMA/SM-NJ. . . . . . . . . . 100

xiv



List of Tables

2.1 The score matrix used by BLASTZ program to evaluate nu-

cleotide substitutions . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Parameters involved in COMBAT . . . . . . . . . . . . . . . . . 50

5.1 Sensitivity and specificity of COMBAT using scheme I assessed

by BLASTP or BLASTP/BLASTN search results . . . . . . . . 53

5.2 Estimated percentages of reduced false negatives by using smaller

values of K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Estimated reduced percentages of false negatives if all five yeast

genomes are considered with different values of K used. . . . . . 56

5.4 Estimated reduced percentages of false negatives by using mer

generation scheme III. . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Exemplary choices of parameters given G and s when ε = 1/G . 64

6.1 Data Set I: 11 Escherichia Coli Strains . . . . . . . . . . . . . . 84

6.2 Data Set II: 28 Enterobacteriaceae Taxa . . . . . . . . . . . . . 87

6.3 Experimented parameter settings . . . . . . . . . . . . . . . . . 89

6.4 Tree comparison measure by the partition metric using different

parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . 93

xv



6.5 Tree comparison measure by the partition metric for the same

data set using different distance methods . . . . . . . . . . . . . 95

xvi



Chapter 1

Introduction

The development and improvement of high-throughput experimental technolo-

gies have allowed collection of massive amount of biological data for various

species. These data include genomic sequences and genomic maps (such as

optical, RH, linear/correspondence, genetic, physical (or contig) and HAPPY

maps). Alone these data cannot tell us how the genetic information leads to

the observable traits and behaviors (phenotypes) that we wish to understand,

or how species are related through evolution. Comparing data becomes a cen-

tral method in investigating the adaptive significance of organismal traits and

revealing their evolutionary relations.

1



1.1 Comparative Genomics

1.1.1 Motivation: From Single Genomes to Comparative

Genomics

As discussed earlier, DNA sequences for whole genomes are becoming available

rapidly. As of today, many genomes of viruses and bacteria and some much

larger genomes of higher organisms have been completely sequenced. These

include several yeasts (Saccharomyces cerevisiae, Schizosaccharomyces pombe,

Candida glabrata, Debaryomyces hansenii, Kluyveromyces lactis, Yarrowia

lipolytica), a nematode (Caenorhabditis elegans), the dog (Canis familiaris), a

fruit fly (Drosophila melanogaster), the zebrafish (Danio rerio), chicken (Gallus

gallus), the human (Homo sapiens), the house mouse (Mus musculus), chim-

panzee (Pan troglodytes), rat (Rattus norvegicus), etc. The available corpus

of genomic sequences as well as other biological data including gene and pro-

tein expression data, protein-protein interaction data, protein 3-D structures,

continue to grow extraordinarily, forming rich sources of challenging computer

science problems addressing large, complex biological data sets and domain

knowledge. As a field of developing computational techniques for management

and analysis of biological data, bioinformatics research has become a driving

force in computer sciences. Typical bioinformatics problems include determin-

ing the locations and functions of genes, identifying binding sites of proteins,

inferring evolutionary history, etc. Numerous algorithms have been designed to

address these problems. Early algorithms focused on using information from a

single genome. Subsequent consolidated databases (Genbank, protein expres-

sion database, protein-protein interaction database, gene expression database,

2



NCBI Taxonomy database, Gene Ontology, CMR, etc.) partition the space of

biological information in different dimensions and help users to manage bioin-

formatics data-types simultaneously. Many new research areas and countless

methods have been developed using these databases. Recently comparative

genomic methods have emerged, targeting the analysis of multiple genomes.

Gene prediction methods serve as a good example for the developing so-

phistication of bioinformatics methods. The goal of gene prediction is to iden-

tify protein-coding regions in raw genomic sequences. Another related natural

problem focuses on exon finding. Over the last decade many gene prediction

programs have been developed. Depending on the nature of the information

exploited and the way that information is used, these programs fall into three

rough categories as follows:

Intrinsic (ab initio) methods

These methods build hidden Markov models (HMMs) or other probabilistic

models that exploit statistical features including exon length, intron length,

ORF length, GC content, codon frequencies, presence of upstream CpG is-

lands, locations of potential splice signals, etc to detect genes. Such models are

trained on known genes from several closely related species to set up model pa-

rameters that reflect their statistical features. These models are then applied to

scan genomes of interest to distinguish coding regions from non-coding regions.

The most popular tools of this kind are GenScan [11] and HMMgene [32]. This

approach is capable of finding genes that lack homologues in protein databases

because some of the statistical features might apply for non-homologous genes

from the same species. In such cases, however, the accuracy of the method is

poor, because known gene measures are insufficient to distinguish true positives

3



from false ones. A limitation for all these intrinsic approaches is that the sta-

tistical models they rely on are derived from limited training sets comprising

of known genes. It is difficult for them to predict genes that have unusual,

undiscovered features.

Extrinsic (homology-based) methods

These methods identify functional elements by comparing a conceptual transla-

tion of nucleotide sequences to databases of known protein sequences ([23], [7]).

This approach depends on utilizing homologies between translated genomic se-

quences and known protein databases. It can find genes that are supported by

very strong similarities, but is not able to detect genes of which no homologue

are known. Because it is difficult to collect mRNAs comprehensively, only lim-

ited number of genes can be detected this way and the observation of a protein

match does not guarantee the correct identification of its exon/intron structure.

Therefore, in contrast to the intrinsic methods, which have low specificity but

high sensitivity, these approaches have high specificity but low sensitivity. En-

sembl is a typical tool of this kind [8]. The gene lists compiled by Ensembl

contain only a small number of false-positive genes but miss a large number of

genes.

Comparative Genomics

These methods exploit the increasing number of completely or partially se-

quenced genomes to address the limitations of the two kinds of methods dis-

cussed above. Comparative genomics includes analysis and comparison of

genomes from different species. These approaches depend heavily on the quality

4



of the underlying sequence alignments, but they do not use any training tech-

nique or depend on the existence of cognate known genes in current databases.

These approaches exploit a simple biological principle: functional elements tend

to be conserved more strongly during evolution than random (or non-functional)

genomic sequences. Researchers have learned a great deal about the function

of human genes by examining their counterparts in simpler organism models

such as the mouse. Genome researchers look at many different features when

comparing genomes: sequence similarity, gene location, the length and number

of coding regions (called exons) within genes, the amount of noncoding DNA in

each genome, and highly conserved regions maintained from simple organisms

like bacteria to complex ones like human. One can also infer the path and the

local evolution rates based on the degree of conservation of functional elements

and underlying alignment deviations.

1.1.2 Problem Statement

Our goal is to develop an efficient and accurate algorithm for large scale pairwise

comparative genomics. The complete genomic sequence of an organism consists

of a sequence of four nucleotides: adenine (A), thymine (T ), cytosine (C) and

guanine (G). The length of a genomic sequence may be several MBs, e.g.

yeast genomes, or several GBs, e.g. human and mouse genomes. Given two

genome sequences x and y, we want to find an optimal global sequence alignment

between them. A sequence alignment is a scheme for writing one sequence on

top of another where the residues in one position are deemed to have a common

evolutionary origin. x and y may have different lengths, so dashes must be used

to mark insertions in the alignment. If the i-th residue xi of sequence x occurs

5



in the same position p as the j-th residue yj of sequence y in the alignment, we

say xi is aligned to yj at p. There are three cases: 1) xi and yj are the same

residues, indicating that this position p has been conserved in evolution; 2) xi

and yj differ, indicating that the two residues derive from an ancestral residue

(which could be one of the two or neither); 3) one residue may be paired up

with dashes in the other sequence to signify an insertion or deletion that has

appeared somewhere in evolution.

Whole genome comparison is most difficult for larger mammalian genomes

because the homologous loci are scattered in a vast sea of non-genic “noise”.

In this case we want to find highly similar pairwise local alignments, which

often represent conserved biological features. For regions of low similarity no

alignment should be given.

1.1.3 The Solution

A variety of comparison algorithms and scoring parameters can be used to eval-

uate protein or DNA sequence similarity. Two general classes of comparison al-

gorithms are used widely: global alignment algorithms and hash-based heuristic

local alignment algorithms. This thesis describes a novel local alignment algo-

rithm, COMBAT (Clean Ordered Mer-Based Alignment Tool). Suppose the

two genomes in comparison are referred to as genome A and genome B. The

basic COMBAT algorithm works as follows.

1. Build Clean Ordered Mer Libraries

Nucleotide sequences for the genomes of interest are translated into pep-

tide sequences over all forward and reverse orientations. After choosing a

mer-size K, local mers are generated using one of the three mer genera-

6



tion schemes described below. Mers which occur in repeats annotated by

RepeatMasker are ignored. A position index is attached to each mer. Mer

libraries for genome A and genome B are built and sorted lexicographi-

cally. Three mer generation schemes are discussed in Chapter 4.

2. Search For Common Mers

The two clean ordered mer libraries produced by step 1 are scanned to

search for common mers between them. Peptide compositions which ap-

pear more than C times in any one of the two mer libraries are not con-

sidered when looking for common mers.

3. Find A One-to-One Correspondence

Next we apply the modified stable marriage algorithm to find the single

best alignment. Details of the stable marriage algorithm are described in

chapter 3.

4. Optional Chaining Procedure

Lastly, a chaining procedure is performed to further remove randomly

matching local alignments. The chaining criterion requires that there

must be at least F local alignments, each no farther than E intervals from

each other. This step is not necessary if strict parameter values are chosen.

1.1.4 Contributions

COMBAT develops an efficient and accurate solution for comparative genomics.

The main contributions of COMBAT come from the following points:

• Efficiency: COMBAT hashes genomes into mer libraries and uses mer

indexing to search rapidly for highly similar homologous blocks.

7



• Clean design: COMBAT does not utilize any sophisticated scoring matrix,

thus it has few parameters whose values need to be set up by statistical

study.

• Fewer constraints: COMBAT makes no assumption of gene order and

orientation, so it is capable of detecting translocated conserved elements.

• Novel usage of the stable marriage algorithm as alignment filter: the stable

marriage algorithm is used innovatively to find the optimal one-to-one

mapping from multimappings.

1.2 Optical-Map Comparison and Phylogeny

Analysis

1.2.1 Introduction

An ordered restriction map is a physical map describing the position of restric-

tion endonucleoase cleavage sites (restriction sites) within a DNA sequence. It

exploits the fact that a restriction enzyme cuts DNA strands at nucleotide se-

quence specific locations (48 bp long) by breaking phosphodiester bonds, so

that these locations can be used as physical markers. The fragments of DNA

generated by cleaving at two consecutive restriction sites are called restriction

fragments. Thus a DNA molecule has fixed cutting patterns for a specific re-

striction enzyme, assuming 100% cutting efficiency and no other experimental

errors. In the past decade, single-molecule approaches have proven successful in

constructing restriction maps — a primary example of such technologies being

the Optical Mapping method originally developed by T.S. Anantharaman, B.

8



Mishra and D. Schwartz. Optical Mapping has been used in the past to pre-

pare restriction maps of a number of clone types including bacterial artificial

chromosomes [12], but also with genomic DNA. e.g., parasite chromosomes [30],

and whole bacterial genomes [36].

The physicochemical approach underlying optical mapping is based on im-

mobilizing long single DNA molecules on an open glass surface, digesting the

molecules on the surface and visualizing the gaps created by restriction activ-

ities using fluorescence microscopy. The molecules retain biochemical accessi-

bility and fragment order after enzymatic digestion. Thus the resulting image,

in the absence of any errors, would produce an ordered sequence of restriction

fragments, whose masses can be measured via relative fluorescence intensity and

interpreted as fragment lengths in base pairs. The corrupting effects of many

independent sources of errors affect the accuracy of optical maps created from

one single DNA molecule, but can be tamed by combining the optical maps of

many single molecules covering completely or partially the same genomic region

and by exploiting accurate statistical models of the error sources. To a rough

approximation, the density and accuracy of an optical map can be arbitrarily

improved by simply increasing the number of enzymes and number of molecules

used respectively [40].

Statistical models and Bayesian approaches have been used for accurate op-

tical map construction considering fragment sizing error, and false positive and

false negative cutting errors. The Bayesian approach [40] uses a model of the

map of restriction sites (Hypothesis, H) and a conditional probability distri-

bution function for the single molecule map data given the hypothesis (condi-

tional pdf , f(D|H)). The conditional pdf models restriction fragment sizing

errors in terms of a Gaussian distribution, missing restriction site events (due

9



to partial digestion) as a Bernoulli trial and the appearance of false restriction

sites as a Poisson process. Using the Bayes formula, the posterior conditional

pdf , f(H|D) = f(D|H)f(H)/f(D), is computed and provides the means for

searching for the best hypothetical model given the set of single molecule ex-

perimental data. Since the underlying hypothesis space is high dimensional

and the distributions are multimodal, a naive computational search must be

avoided. An efficient implementation involves approximating the modes of the

posterior distribution of the parameters and accurate local search implemented

using dynamic programming [4]. The correctness of the constructed map de-

pends crucially on the choice of the experimental parameters (e.g. sizing error,

digestion rate, number of molecules). Thus, the feasibility of the entire method

can be ensured only by a proper experimental design [40].

Because Optical Mapping requires only small amounts of starting material

and maps can be generated at relative high speed and low cost, it enables li-

brary construction without associated cloning artifacts and simplifies mapping

of microorganisms that are problematic to culture. Optical maps can there-

fore be resources for numerous scientific study areas: i) facilitating ongoing

sequencing efforts [5, 40]; ii) it may uncover new general mechanisms of DNA

repair [36]; iii) it may illuminate the basic organization of an entire genome

and the presence of extrachromosomal elements [36]; iv) it might identify aber-

rant DNA structures associated with mechanisms of DNA repair [36]; v) it may

reveal polymorphisms due to single nucleotide differences (SNPs), small inser-

tions and deletions (RFLPs), and copy-number variations (CNPs). So Optical

Mapping can be useful in studies involving genomic instabilities in cancer, and

genetics [5].

Given DNA sequences of various taxa, the standard technique in evolu-

10



tionary analysis is to first perform a multiple sequence alignment (on DNA

sequences or protein sequences). From the resultant distance matrix a phyloge-

netic tree is built describing the relationship of the various taxa with respect to

each other. These distance-based methods compress sequence information into

a single number and the two sequences with shortest distance are considered as

closely related taxa. However, the high cost of sequencing techniques and the

biological diversity among the genomes, together makes it impossible to study

phylogeny using detailed sequences of many strains of large-number of related

species. The low cost and high speed of Optical Mapping technique provide

an elegant solution to this dilemma, provided that one can devise an accurate

tool to infer phylogeny from optical mapping data instead of sequence data. At

OpGen Inc. of Madison, WI., clusters of optical-maps are generated using their

SOMA map aligner and the statistical package R. Pairwise map similarity is

defined as the percentage of aligned fragment lengths over the sum of all frag-

ment lengths between two maps. These pairwise map similarity values are then

fed into R, and one clustering method (nearest neighbor, furthest neighbor, or

UPGMA) is selected to infer phylogeny. Generally, their unpublished results

show that this method performs satisfactorily for small data sets (< 10) where

there is adequate similarity variations. When the set sizes grow, this clustering

method produces groupings that are no longer biologically meaningful.

To address this concern, we developed CAPO (Comparative Analysis and

Phylogeny with Optical-Maps), which is a novel tool that combines the Stable

Marriage (SM) algorithm and a distance-based method (either the UPGMA or

the NJ method) to infer phylogeny among multiple strains or genomes.

11



1.2.2 Problem Statement

The problem studied here can be formulated as follows: an optical map can be

viewed as an ordered sequence of restriction fragment lengths. Each genome to

be studied can be represented as an optical map, H. The algorithmic problem

we wish to study is to explore evolutionary relations, given optical maps of

multiple species or strains. No full genomic sequences are assumed available.

1.2.3 The solution

The CAPO algorithm is based on pairwise optical map comparison and bipar-

tite graph matching, combined with standard distance methods of phylogeny

tree construction. We adapt many of the key ideas from the earlier published

COMBAT algorithm [52] for pairwise genome comparison. CAPO consists of

two major phases:

1. Pairwise optical map comparison

First, pairwise optical map comparison is performed to generate a pairwise

similarity matrix S = (sij), where sij is the map similarity between the

i-th and j-th map in the input matrix O.

2. Inferring phylogeny

The similarity matrix S thus constructed is used as input to the second

phase of CAPO, which infers phylogeny among input strains or genomes.

The stable marriage algorithm is combined with standard distance-based

methods (UPGMA or NJ) to infer phylogeny. Output is produced in the

Phylip format used by many phylogenetic analysis packages.

The detailed algorithms implemented in CAPO are explained in chapter 6.

12



1.2.4 Contributions

CAPO develops a fast solution for comparative analysis and phylogeny with

optical-maps. The main contributions of CAPO comes from the following as-

pects:

• Efficiency: CAPO performs optical-map comparison and phylogeny study

rapidly, so it can be used in analyzing large data sets.

• Flexibility: Depending on data features users have the option to produce

either UPGMA-flavored or NJ-flavored phylogenetic trees and compare

the resulting trees.

• Novel usage of the stable marriage algorithm in phylogenetic tree construc-

tion: The stable marriage algorithm, combined with a standard distance-

based phylogenetic tree construction method, is capable of constructing a

phylogenetic tree in log(n) iterations in average cases.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 1 gives an introduction to this

thesis. Chapter 2 describes related work on comparative genomics. Chapter

3 focuses on approaches for selecting alignment anchors. Chapter 4 presents

the COMBAT algorithm with three mer generation schemes. Chapter 5 shows

experimental results obtained using COMBAT. Chapter 6 focuses on phylogeny,

prior works on analyzing optical-maps, the CAPO algorithm and experimental

results obtained using CAPO. Chapter 7 summarizes this thesis and discusses

future applications and improvements.

13



Chapter 2

Prior Work on Comparative

Genomics

Since 1999 there have been quite a few efforts to develop computer programs

and algorithms for aligning whole genomes. These are reviewed in the following

section.

2.1 Whole Genome Pairwise Alignment Meth-

ods

Given the genomic sequences of closely related species one of the first questions

bio-scientists ask is how the genomes align. Standard dynamic programming

alignment algorithms [Smith-Waterman,1970; Needleman-Wunsch,1981] are not

suitable for aligning large genomes due to their quadratic running time and

space, and their weak ability to find short regions of good alignments flanked by

poor alignments. Accelerated heuristic alignment algorithms, such as BLAST

14



and FASTA, are also not satisfactory because they were not designed to perform

large scale alignments and so only give lists of local alignments ranked by quality.

It was not until 1999 that the first software capable of aligning whole genomes,

MUMmer [13], was released. Other programs, including GLASS [6], AVID [9],

DIALIGN [42], LAGAN [37], BLASTZ [49] and WABA [31], became available

shortly thereafter.

There are two basic types of alignment programs, global and local. In global

alignment every character in the query sequence is lined up with a character in

the target sequence, so gap insertion may be required. These global alignment

algorithms embody an assumption that the highly conserved regions in the two

aligned sequences appear in the same order and orientation, which is possibly

true for closely related organisms. Local alignment algorithms are designed to

find optimal similarity between subsequences of the two sequences and do not

make such an assumption. Therefore they are able to find conserved regions

such as transcription factor binding sites, which are inverted or rearranged with

respect to each other. But false positive alignments can result from simple

sequence repeats and other sequence artifacts. If a subsequence match appears

in a global alignment but not in a local alignment, additional information is

needed to determine whether or not the match is significant.

Most programs filter genomic sequences before alignment, for instance, re-

move lineage-specific interspersed repeats from the sequences being aligned.

Some programs mark those repeats and ignore them completely, others use

these repeats in alignments if they improve the alignment results.

Anchoring alignments at regions of high sequence similarity can reduce the

search space required for an alignment procedure [42], and so most of these

global alignment programs use anchor-based algorithms. They work as follows:

15



first, local similarities between the two sequences of interest are detected and

sorted based on length; longest set of anchors are then selected and fixed from

the ordered local similarities; finally, interleaving regions are aligned. These

programs vary in their underlying data structures, anchor selection algorithms,

thresholds, scoring functions and the methods to fill in the gaps of the set of

anchors.

These algorithms are reviewed below. For simplicity the two genomes to be

compared/aligned are referred to as genome A and genome B.

• MUMmer: This program originally integrated generation of suffix trees,

detection of longest increasing subsequence (LIS) and Smith-Waterman

alignment into a coherent system for large genome alignment. Suffix trees

are used to efficiently find all unique common subsequences shared by the

two genomes. The algorithm locates single nucleotide polymorphisms,

small mutated regions, large insertions, and repeats. The alignment pro-

cess proceeds as the follows [13]:

i) Construct a single suffix tree for the two genomes. The leaf nodes of

the suffix tree are labeled by start positions of the suffix that they repre-

sent. Edges of the tree are labeled with subsequences of the genome such

that by following a path from a leaf i to the root, and concatenating the

sequences along those edges one produces the suffix starting at position i.

Every unique matching sequence is then represented by an internal tree

node with exactly two child nodes, whose child nodes are leaf nodes from

different genomes. By clever use of sets of pointers a suffix tree can be built

in linear time and linear space [38]. The newly released MUMmer 3.0 uses

approximately 17 bytes for each base pair in the reference sequence in cre-

16



ating this data structure (see http://www.tigr.org/software/mummer/).

ii) Sort matches by their start locations in genome A from the suffix tree

and extract the set of maximal unique matches (MUM) that occur in

the same order in both genomes using a variation of the LIS (Longest-

Increasing-Subsequence) algorithm [25]. This variation of the algorithm

takes into account the lengths of the MUMs and allows them to overlap.

It runs in O(K log K) time, where K is the number of MUMs.

iii) Generate Smith-Waterman alignments for all the regions between the

MUMs.

iv) Output the alignment, including all the matches in the MUM alignment

as well as the detailed alignments of regions that do not match exactly.

• GLASS (Global Alignment System): This program uses a hashing

technique and computes a global alignment recursively by finding long seg-

ments that match exactly and whose flanking regions have high similarity.

More precisely it works as follows [6]:

i) Find all common K-mers for a fixed value of K that appear in both

genomes.

ii) Use a hash technique that maps each matching K-mer to a unique char-

acter and convert both sequences of genomes into strings of such charac-

ters. The alphabet of these characters must be disjoint from that of the

letters in the genomic sequences.

iii) Apply the standard dynamic programming algorithm to the short

flanking regions on both ends of each matching K-mer and compute two

scores. Each K-mer receives a score equal to the sum of these two scores.

17



iv) Take only ‘consistent’ K-mers whose score exceeds a threshold T . Two

K-mers are inconsistent if they correspond to positions that overlap by

i > 0 bases in genome A but not in genome B. Fix the alignment in the

underlying genomic sequences contained in these K-mers.

v) Recursively align the intervening regions using a smaller value of K.

The value of K is often chosen from the sequence 20, 15, 12, 9, 8, 7, 6 and

5.

vi) Extend all pairs of aligned segments by short local alignments to the

left and right by standard dynamic programming.

vii) Perform standard dynamic programming on the remaining unaligned

regions to form the complete global alignment between two genomes.

• DIALIGN (Diagonal Alignment): This program assigns a weight

score to every pair of matching segments based on the degree of similarity

and selects a consistent set of segments maximizing their total weights.

The procedure is summarized below [42]:

i) Construct collections of gap-free local pairwise alignments by processing

a comparison matrix in a column-by-column fashion from left to right. A

dynamic programming procedure is used to keep track of the optimal

prefix alignments for each column.

ii) For each matching segment pair f , a weight score is computed at the

nucleotide and the peptide levels using the BLOSUM 62 substitution ma-

trix [26] for both possible orientations; The final score of f is chosen to

be the maximum of these values.

iii) Intervals between those fragments are realigned based on the proba-

18



bility of random occurrence in sequences and the size of the respective

intervals.

• AVID: This program uses both overlapping repeat matches and non-

overlapping clean matches. It works as follows [9]:

i) Find matches using suffix trees: concatenate two genomic sequences and

place the character N between them; a maximal repeat in this string that

crosses the boundary between the two sequences represents a maximal

match between the two sequences.

ii) Remove matches that are less than half the length of the longest match.

Sort the matches by length with clean matches appearing first.

iii) A variant of the Smith-Waterman algorithm is used to select anchors.

Every match is evaluated based on its length and alignment scores of its

two flanking regions (10 bp on each side). This is similar to the idea first

employed in the GLASS algorithm. It requires that anchors selected are

not overlapping.

iv) Check each match to determine whether that match is entirely be-

tween two sets of anchors. Shorter matches removed in step ii) and repeat

matches will be considered if there are not enough matches. Smaller inter-

anchor regions are realigned using the anchor selection step recursively.

For short such regions use the Needleman-Wunsch algorithm.

• LAGAN (Limited Area Global Alignment of Nucleotides): This

program is suitable for aligning distantly related organisms. In outline,

this algorithm consists of three main steps [37]:

i) Use the CHAOS algorithm to generate local alignments between the

19



two sequences. The CHAOS algorithm [10] is a highly sensitive method

that detects local alignments using multiple short inexact words instead

of the longer exact words used by MUMmer, GLASS and AVID. Given

a maximum distance d and maximum shift s, two local alignments that

are x and y letters apart in the two sequences, can be chained together if

x ≤ d, y ≤ d, and |x − y| ≤ s. Assign a weight to each pair of chained

local alignment.

ii) Construct rough global map by maximizing the weight of a consistent

chain of local alignments using the LIS algorithm which is also used by

MUMmer. A local alignment is chained to the previous one that produces

the highest scoring chain among all chains that end with this alignment.

Apply step i) and ii) recursively between every pair of anchors that are

separated by more bases than a threshold.

iii) Compute the optimal Needleman-Wunsch global alignment within the

subset of cells at most r from cells of the anchors.

• BLASTZ: It is an independent implementation of the Gapped BLAST

algorithm [1]. Currently the BLASTZ algorithm is used by PipMaker,

a visualization tool for cross-species sequence alignment [Schwartz et al.

2000]. In contrast to other local alignment algorithms, BLASTZ requires

that the matching regions must occur in the same order and orientation.

The BLASTZ algorithm can be summarized as follows ([48], [49]):

i) Remove lineage-specific interspersed repeats from both sequences. This

strategy was utilized earlier by Lee et al [34].

ii) Look for all pairs of identical 12-mers except for at most one transition

20



shared by the two genomes. These form a collection of seeds. Remove the

seeds that align to many different regions of another genome.

iii) Extend each seed in both direction without gaps. Stop extending if

the score drops below some threshold X. If the gap-free alignment score

is more than some threshold Y then extend again allowing gaps. Consider

the alignment valid if it scores above some threshold Z.

iv) For the regions between the zones aligned by the preceding steps,

repeat these steps using a more sensitive seeding procedure (e.g., 7-mer

exact matches) and lower score thresholds.

• WABA (Wobble Aware Bulk Aligner): This program attempts to

allow for the case in which two divergent species can have conserved gene

functions while differing at their third codon positions. The underlying

biological concept is the redundancy of the genetic code and the first two

positions of a codon are subject to much more selective pressure than the

third, “wobble”, position.

i) Look for eight consecutive nucleotides with the pattern XXoXXoXX,

where X denotes a match and o denotes a possible mismatch.

ii) Use a seven state pair Hidden Markov Model to produce a detailed

alignment of these overlapping regions.

iii) Stitch the overlapping alignments together.

Some of the above programs focus on alignment at the nucleotide level,

others at the peptide level. That is, sequence similarity can be evaluated by

comparing segments nucleotide-by-nucleotide or by translating DNA sequences

21



according to the genetic code and then comparing the resulting peptide seg-

ments. It is well known that proteins evolve slower than their coding DNA, so

translation into peptide sequences from raw genomic sequences tends to mini-

mize the noise caused by synonymous nucleotide substitutions. Of the possible

kinds of nucleotide substitutions in a typical viral coding sequence, synonymous

(or so-called “silent”) substitutions are the most commonly observed. If scor-

ing matrices are used, a synonymous substitution has a better weight than a

non-synonymous substitution (generating amino acid replacements). The PAM

family matrices [45] and the BLOSUM family matrices [26] are the two most

commonly used types of log-odds substitution matrices for scoring amino-acid

alignments. Some programs also use a scoring matrix for nucleotide substitu-

tions. For example BLASTZ uses the scoring matrix shown in Table 2.1:

A C G T

A 91 -114 -31 -123

C -114 100 -125 -31

G -31 -125 -100 -114

T -123 -31 -114 91

Table 2.1: The score matrix used by BLASTZ program to evaluate nucleotide

substitutions

Given a table of scores for matches and mismatches between all amino acids

or nucleotides and penalties for insertions or deletions of different lengths, a

mathematically ‘optimal’ alignment is guaranteed. However, the scoring matrix

which is most appropriate for aligning a set of sequences is affected by the

level of relatedness of sequences, irrespective of whether or not it is a PAM,

22



a BLOSUM or other matrix. For example, the PAM1 matrix is calculated

from the global alignments of sequences with no more than 1% divergence,

and the BLOSUM 62 matrix is calculated from local multiple alignments of

sequences with no less than 62% identity. The percentage of similarity between

two genomes has to be estimated or measured before choosing a scoring matrix.

The fact that the neutral rate of evolution varies across genome regions also

complicates the application of cross-species sequence comparisons. Between

two genomes which diverged about 40 ∼ 80 million years ago the background

levels of sequence conservation can vary from one genomic region to another.

Therefore it is impractical to pick a single scoring matrix and gap costs (e.g.,

gap opening penalty, gap extension penalty) used for identifying sequences that

are under selection pressure [21]. In addition, attempts at generalizing dynamic

programming to multiple alignments are thus far limited to small numbers of

short sequences.

Many current global alignment algorithms use an “anchor and stitch” strat-

egy after first building a suffix tree for both genomes in order to efficiently find

the maximal set of unique matches. Although suffix trees can be built and

searched in linear time using linear space, the algorithm for this is complex and

the constants involved in this asymptotic complexity of this algorithm are large.

Also, using the “match and extend” strategy many current local alignment al-

gorithms pay a steep cost in extending each short match in both directions. For

all vs. all sequence alignment between human genome and mouse genome even

after filtering lineage-specific interspersed repeats the number of short matches

that must be processed is still huge. Also, sophisticated scoring functions and

alignment models result in slow algorithms that are also very memory intensive.

23



2.2 Multiple Sequence Alignment Methods

As natural extensions of pairwise sequence alignments, multiple sequence align-

ments are used ubiquitously in computational biology. They find patterns that

characterize protein families; detect homology between new sequences and ex-

isting families of sequences; help predict the secondary and tertiary structures

of new sequences; suggest oligonucleotide primers for PCR; and serve as an es-

sential prelude to molecular evolutionary analysis. Aligning multiple genomes

can reveal relationships among several organisms. However, available multiple

alignment methods are far from mature. Multiple genome alignment is much

more complicated than pairwise genome alignment, and has higher time and

space costs. Many existing multiple alignment algorithms are only suitable for

aligning short sequences, but not genome level sequences.

Progressive alignment is by far the most widely used approach for mul-

tiple sequence alignment, particularly for evolutionarily related sequences. This

approach assembles multiple alignments progressively by a series of pairwise

alignments, following the branching order in a phylogenetic tree. One first

aligns the most closely related sequences, gradually adding in the more distant

one. Iterative alignment uses algorithms to refine alignments through a se-

ries of iterations until no more improvements can be made. Iterative methods

can be deterministic or stochastic, depending on the strategy used to improve

the alignment.

24



2.2.1 Multiple Sequence Alignment Tools for Short Se-

quences

Clustal W [Thompson, Higgins and Gibson 1994], T-COFFEE [Notredame et

al. 2000] and DIALIGN 2 [Morgenstern et al. 1998], are multiple sequence

alignment tools for short sequences.

• CLUSTAL W : This is a general purpose multiple sequence align-

ment program for DNA or protein sequences. It consists of three main

stages [54]:

(i) Building a distance matrix. All pairs of sequences are aligned sepa-

rately in order to calculate a distance matrix representing the divergence

of each pair of sequences. It uses a full dynamic programming alignments

with two gap penalties and a full amino acid weight matrix. The scores

calculated are the number of identities in the best alignment divided by

the number of residues compared excluding the gap positions. Given n

sequences, an n× n distance matrix is calculated. In the distance matrix

each entry is the mean number of differences per residue converted from

the percent identity scores.

(ii) Constructing a phylogenetic tree. A phylogenetic tree is calculated

from the distance matrix using the Neighbor Joining method [Saitou and

Nei, 1987]. The principle of this method is to find pairs of operational tax-

onomic units (OTUs[=neighbors]) that minimize the total branch lengths

at each stage of clustering of OTUs starting with a starlike tree. This

method produces an unrooted tree with branch lengths proportional to

estimated divergence along each branch. The weight of a sequence is cal-

25



culated based on the distance from the root of the tree to the node that

represents the sequence and the number of other sequences that share the

a common branch with it. In other progressive alignment algorithm, all

sequences would be equally weighted.

(iii) Progressive alignment. Sequences are progressively aligned according

to the increasing order of branch lengths in a guide tree using a dynamic

programming algorithm. Each step aligns two existing alignments or se-

quences. Gaps present in existing alignments remain fixed. This strategy

is justified because the placement of gaps in alignments between closely

related sequences should be much more accurate than between distantly

related ones. When all of the sequences being aligned are highly diver-

gent (e.g. less than -25-30% identity between any pair of sequences), this

progressive approach becomes much less reliable. New gaps introduced

later get full gap opening and extension penalties. The new score at each

position between two existing alignments is calculated as the average of

all the pairwise weight matrix scores from the amino acids in the two sets

of sequences. For two alignments with x and y sequences respectively,

the score at each position is the average of x× y comparisons, multiplied

by the weights from the two compared sequences. Each gap paired to a

residue is scored as zero.

Clustal W includes many specialized heuristics which aim at maximal

exploitation of sequence information:

– Automatic gap penalty adjustment based on the weight matrix, de-

gree of sequence similarity, and differences in the lengths of the se-

quences being aligned.

26



– Local gap penalties based on residue-specific penalties, distances to

existing gaps, and the existence of hydrophilic stretches.

– Automatic substitution matrix choice

– Delaying the alignment of distantly related sequences

• T-COFFEE (Tree-based Consistency Objective Function for

alignment Evaluation): This first computes local and global pairwise

alignments and then combines them into a primary library that is extended

for use in computing multiple sequence alignments in a progressive man-

ner similar to that of Clustal W. During each alignment step information

from all of the sequences is considered, not just those being aligned at that

stage. The primary library is extended to produce an ‘extended library’,

a position-specific substitution matrix in which the score associated with

each pair of residues depends on the compatibility of that pair with the

rest of the library [43]. T-COFFEE uses a procedure reminiscent of Vin-

gron’s Dot matrix multiplication and Morgenstern overlapping weights.

• DIALIGN 2 : This is a consistency-based algorithm that attempts to

use local information in order to guide a global multiple alignment. It

preceeds as follows [41]:

i) For each sequence pair a collection of local matches with maximum sum

of weights is calculated. The weight of a match of length lD is defined to

be:

w(D) = − log P (lD, sD)−K

where P (1D, sD) denotes the probability that a random match of the same

length lD has at least the same sum sD of similarity values, and K is a

27



constant that depends on the sequence length. The purpose of including

K in this formula for calculating weights is to prevent the program from

splitting up long high-scoring matches into several shorter ones.

ii) Each of these matches receives another score proportional to its com-

patibility with the rest set of matches. This score is called the ‘overlapping

weight’ of the pair. Sort the matches by these overlapping weight scores.

The multiple alignment is then progressively assembled by adding the

matches one in weight order. Local matches that are not consistent with

the matches already accepted are discarded. To decide whether or not a

match is consistent with others some tags, called “consistency bounds”,

must be stored. With addition of every match in the multiple alignment,

the consistency bounds must be updated.

iii) Iteratively realign those parts of the sequences that are not yet directly

aligned until no additional local matches can be found.

2.2.2 Multiple Sequence Alignment Tools for Long Se-

quences

Three current code available multiple whole genome alignment are MultiPip-

Maker [47], MultiLAGAN [37] and EMAGEN [15].

• MultiPipMaker : This is a Web-based multiple alignment tool1 which

used iterative refinement. It first uses BLASTZ to get pairwise alignments

between the reference sequence and each of the others. Local alignment

overlaps are removed by a pruning process. Internal gaps are penalized in

1MultiPipMaker is available at http://bio.csi.psu.edu.

28



the usual way and the end-gaps lying between aligned segments are not

penalized. MultiPipMaker then produces a crude multiple alignment from

these pairwise alignments by an iterative refinement procedure, which

repeats the following steps for each row of the multiple alignments [47]:

i) Given alignment column positions i and j, and a row index r in the

multiple alignment such that there are no end-gaps between i and j of

row r, extract the subalignment from i to j without row r.

ii) Reduce the sub-alignment by discarding any column that contains only

internal-gap or end-gap symbols. Reduce the segment of row r by remov-

ing any internal-gap symbols.

iii) If these steps improve the score, the new alignment is spliced into the

large alignment, otherwise, no change is made.

• MultiLAGAN : This is an extension of LAGAN to multiple genome

alignment. MLAGAN uses a progressive alignment approach. It com-

pares synteny regions which are gene loci occurring in the same order on

chromosomes of different species, and it is designed to efficiently produce

detailed alignments of closely related multiple whole genomes. MLAGAN

assumes that a phylogenetic tree for the species being aligned is known.

It uses the phylogenetic tree to select the two closest genomes. It then

uses LAGAN to produce a pairwise alignment between the two closest

sequences. The program repeats this step, aligning the closest sequences

or multi-sequences (alignment between two or more sequences produced

before), until there remains only one multi-sequence. MLAGAN gives

its user the option to perform an iterative refinement during which indi-

vidual sequences are removed and realigned until no significant improve-

29



ment can be made. During progressive alignment, MLAGAN aligns two

(multi-)sequences X/Y and Z, to generate multi-sequence X/Y/Z in the

following two steps [37]:

i) Select a collection of anchors for the new alignment as the anchors

between X and Z, and between Y and Z. Reweight the anchors between

X and Z that overlap an anchor between Y and Z according to the length

of the intersection, the original scores and the length of the union of the

overlapping anchors.

ii) Compute the rough global map between X/Y and Z as the highest-

weight chain of these anchors using the Longest Increasing Subsequence

algorithm.

• EMAGEN (Efficient Multiple Alignment algorithm for whole

GENomes): This is an anchor-based alignment system [15]. EMAGEN

uses an approach that combines suffix arrays and graph theoretic formula-

tion for multiple whole genome alignment. It first finds conserved regions

among multiple genomes by a linear time procedure. Then it calculates a

maximum set of conserved regions by a graph theoretic approach. These

conserved regions are used as alignment anchors. Short subsequences be-

tween the anchors are then aligned using the multiple sequence alignment

tool Clustal W.

30



Chapter 3

Selection of Alignment Anchors

3.1 Filters for Selecting Alignment Anchors

Heuristic sequence alignment approaches start by generating a collection of

highly similar subsequences between a target sequence and query sequence. It

is not uncommon for one region of one sequence to align with several regions

of the other sequence because of genome duplications, incomplete masking of

interspersed repeats, or the presence of low-complexity regions. Such phenom-

ena, and also genome rearrangements, can cause local alignments to appear

superimposed. A filter for selecting alignment anchors must be used to filter

out spurious matching regions. Many filters used by sequence aligners also try

to filter out superimposed local alignments. Usually the single best orthologous

match for each conserved region gains most biological attention. Therefore, it is

reasonable to offer users a ‘single coverage’ option which selects a single highest-

scoring chain of local alignments such that any position in the first sequence

can appear in one alignment, at most once.

Tools for pairwise long sequence alignment, such as MUMmer, GLASS,

31



AVID, LAGAN, and WABA (discussed in the previous chapter) assume that

local alignments appear in the same relative order and orientation in the tar-

get and query sequences and select a single collinear set of alignment anchors.

These anchors are used to construct a rough global alignment that is iteratively

refined. Two local alignments can be chained if the end of one precedes the start

of the other in both sequences. The longest-increasing-subsequence (LIS) [25] al-

gorithm and a dynamic programming approach similar to the Smith-Waterman

algorithm are often used during anchor selection process. We review these tech-

niques briefly:

3.1.1 Longest-increasing-subsequence Approach

The LIS algorithm sorts the local alignments found between Genome A and B

by their positional order in Genome A, representing local alignments by integers

indicating the order of their B-positions. For example, suppose that the order

of B-positions is given by the sequence 〈1, 3, 2, 4, 6, 7, 5〉, as shown in Figure 3.1.

The top alignments shows all the local alignments. The shift of pairs 〈3, 3〉 and

〈5, 5〉 indicates transpositions. After running the LIS algorithm the LIS is given

by 〈1, 2, 4, 6, 7〉. The overall running time of the LIS method is O(n log n), where

n is the size of the integer set representing the order of B-positions. Notice that

this approach removes all transpositions from the remaining local alignments,

leaving us a collection of non-overlapping, non-crossing local alignments. There-

fore it is most appropriately used for comparison of closely related sequences

where transpositions are expected to be rare.

The longest increasing subsequence algorithm is well explained by Dan Gus-

field [25]. Given a set of integers
∏

, the LIS technique finds the longest subset

32



1      2     3     4     5     6     7
Genome A:  

1      3     2     4     6     7     5

Genome B: 

Get LIS

1      2 4            6     7
Genome A:    

1            2     4     6    7     

Genome B:  

Figure 3.1: Schematic view of the LIS technique

of
∏

whose values increase strictly from left to right. The idea is to decompose

the set of integers
∏

into a greedy cover C such that there is an increasing sub-

sequence I containing exactly one number from each decreasing subsequence in

C. A greedy cover of
∏

is a set of decreasing subsequences of
∏

that contain

all the numbers of
∏

.

An O(nlogn) (n is the size of
∏

) greedy cover algorithm works in the follow-

ing straightforward way: Let L be the ordered list containing the last number

of each decreasing subsequences built so far. Scan
∏

from left to right, for each

number x, find the left-most number y in L larger than x using binary search,

place x at the end of that subsequence containing y. If no such a y exists in L,

start a new subsequence to the right of all the current decreasing subsequences

built so far. Update L before examining the next number.

Given the greedy cover the longest increasing subsequence algorithm is as

follows:

33



begin

0. Set i to be the number of subsequences in the

greedy cover. Set I to the empty list; pick any

number x in subsequence i and place it on the

front of list I.

1. While i > 1 do

begin

2. Scanning down from the top of subsequence i - 1,

find the first number y that is smaller than x.

3. Set x to y and i to i - 1.

4. Place x on the front of list I.

end

end.

Since every number in
∏

is only examined once in finding the longest increas-

ing subsequence given the greedy cover, and since it takes O(nlogn) during the

running of the greedy cover algorithm, overall running time of the LIS method

is O(nlogn).

3.1.2 Dynamic Programming Approach

GLASS implements its dynamic programming approach in several steps: first

an initial value of k is chosen, then all matching k-mers are found, then scores

are assigned to matches according to their length and the alignment score of

their flanking regions. Local alignments whose scores below a threshold T are

removed. The related AVID aligner first finds maximal matches using suffix

trees, then selects anchors using a variant of the Smith-Waterman algorithm,

34



similarly to the one used by GLASS. Both these algorithms require the selected

anchors to be collinear.

BLAT [29] uses a graph traversal strategy in its protein alignment. Local hits

are extended into maximally scoring gap-free alignments (called “high-scoring

pairs”, or HSPs). The scores are computed by a score function which assigns a

match score 2 and a mismatch score 1. Then consider HSPs are considered as

nodes in a graph. An edge from node A to B indicates that HSP A proceeds

HSP B in both sequence coordinates. The edge is weighted by the score of B

minus a gap penalty based on the distance between A and B. After this graph

is built, a dynamic programming algorithm traverses the graph, and extracts

the maximal-scoring alignment.

3.1.3 Clustering Approach

The Gcomp module of the program MGA [27] clusters local chains together

if they are separated in both genomes by no more than a threshold distance.

After running a chaining procedure it reports only one chain of maximum score

as a representative of that cluster, similarly to the NUCmer module in MUM-

merII [14].

3.2 Bipartite Graph Matching

Besides the techniques described above, several other filters can be used for

choosing the best match candidates from the lists of ranked matching pairs.

One prepares for this by a technique called ‘multimapping’, which works with a

data structure containing many potentially useful mappings as subsets [39] (A

multimapping can be viewed as a bipartite graph). One can use the maximum

35



weight matching (MWM) technique for selecting best match candidates [24].

But the MWM solver maximizes cumulative similarity, and thus might not give

us the single best match for any individual region. The alternative so-called

stable marriage (SM) problem incorporates a helpful intuition that leads to an

improved selection strategy for multimappings.

3.2.1 The Stable Marriage Algorithm

The SM problem was introduced by Gale and Shapley [22]. This problem can

be stated as follows: given two finite, equal-sized sets of items, called men and

women (mi ∈ men,wj ∈ women), where each mi/wj ranks wj/mi in strict order

forming his/her preference list, find a one-to-one stable matching M between the

two sexes. M is “stable” if there are no two couples (m, w) and (m′, w′) in M

such that m prefers w′ to w and w′ prefers m to m′. The so-called Gale/Shapley

“proposal algorithm” solves this problem (This algorithm was first applied to

study the problem of admission of college students to colleges of their choices. In

computational biology field it has been used for protein structures classification

[53]). Our application of the stable marriage algorithm as an alignment filter

is explained in detail in section III, and appears to be novel. The algorithm’s

complexity is O(n2) where n is the number of men/women.

The stable marriage problem has a few variants: i) there can be unacceptable

partners, or preference lists can be incomplete; ii) there can be ties in the

preference lists; or iii) the preference lists can have both ties and incompleteness.

The first two cases are still solvable in polynomial time. However, in the third

case we get the Stable Marriage Problem with Ties and Incomplete lists (SMTI).

In this case, the SMTI decision problem “does a stable matching of size n exist?”

36



and the optimization problem “find the smallest or largest stable matching” have

been proven to be NP-complete [28]. In our application this issue is avoided by

randomly selecting one from each group of tied partners.

3.2.2 Applying the Stable Marriage Algorithm as an

Alignment Filter

We now describe the application of the stable marriage (SM) problem as an

alignment filter for large-scale genome comparison.

Let P = {(a, b)} denote the set of all ‘local alignment’ 1 pairs (a, b) found

initially, and let X = {a | ∃b : (a, b) ∈ P}, and Y = {b | ∃a : (a, b) ∈ P}.
P can be viewed as a bipartite graph, i.e. a multi-valued mapping between

these matching pairs. We wish to find a one-to-one stable matching M as a

subset of P . Since normally many a in X match to a multi-element subset of

Y , and we might have ties in the preference list, this SM problem becomes a

case of the Stable Marriage Problem with Ties and Incomplete Lists (SMTI).

The preference lists required for application of the stable marriage algorithm are

formed using measures of similarity defined in the manner explained in chapter

4. The required procedure uses the following two steps:

1. We count the number of K-mers shared by a local alignment (a, b) in P as

S(a,b), and use it as a measure of the absolute similarity of (a, b). Details of

the technique used to count common mers are explained in section IV-B.

2. A relative similarity R(a,b) is computed subsequently as fractions of the

1In COMBAT scheme I, ‘local alignment’ refers to a maximal interval in genome A that

matches an interval in genome B. In COMBAT scheme II/III, ‘local alignment’ refers to a

J-interval in genome A that matches a J-interval in genome B.

37



largest absolute similarities between the element a in X and its matching

partners in Y . A relative similarity R(b,a) going in the other direction is

computed in the same manner. Then each element j in X or Y ranks its

match partners in strict order of R(j,i), forming j′s preference list.

a
1

a
2

a
3

b
1

b
2

b
3

2

3

5

4

2

a
1 b

1
0.67 1.00

a
2

a
3

b
2

b
3

1.00

0.75

1.0
0

1.0
0

1.00

1.00

0.50 0.40

M with Absolute Similarities M with Relative Similarities Stable Marriage Assignments

(a1, b1)

(a2, b3)

(a3, b2)

Figure 3.2: An example of a procedure for solving the stable marriage problem

In the example shown in Figure 3.2, we first compute relative similarities

from absolute similarities in the bipartite graph, and then use the SM algorithm

to find the stable marriage assignments. Lines (a1, b1)− (a3, b3) denote the local

alignments between genome A and B. In multiple mapping M with absolute

similarities, the numbers on the edges show numbers of K-mers sharing by the

local alignments. Numbers associated with edges in the middle panel show the

relative similarities of local alignments. Since b2 is the best match for a1, we set

R(a1,b2) = 1.00. The relative similarities of other matches of a1 are computed

as fractions of S(a1,b2). Thus, R(a1,b1) = S(a1,b1)/S(a1,b2) = 2/3 ≈ 0.67. Relative

similarities are asymmetric. Under the marriage interpretation, this asymmetry

implies that any two match partners may like each other unequally. We modify

the proposal algorithm and explain the SM algorithm used by COMBAT as

follows:

38



1. X={a},Y={b},M={}. Every a and b has

an ordered preference list.

2. WHILE X is not empty, LOOP

3. choose an element a from X

4. b=the first element on a’s list

(Randomly choose one from ties if such exist)

5. IF a is not on b’s preference list, THEN

6. delete b from a’s list;

7. IF a’s preference list is empty, THEN

8. delete a from X; goto line 2

9. ELSE goto line 4

10. ELSE

11. IF (x, b) is in M for some x in X, THEN

12. remove (x, b) from M; add x to X;

13. add (a, b) to M

14. FOR each successor x (x ranks after a)

in b’s list, LOOP

15. delete x from b’s list, and b from

x’s list;

16. END LOOP

17. END LOOP

18. RETURN M

This SM algorithm’s time complexity is O(n2), and it is linear in space (n

is the number of local alignments). The result returned by this algorithm is an

incomplete one-to-one mapping, which means that any fragment in genome A

39



will map to at most one fragment in genome B, and vice versa.

40



Chapter 4

The COMBAT Algorithm for

Pairwise Genome Comparison

The goal of COMBAT is to identify protein-encoding regions in genomic se-

quences using a genome comparison approach. The two genomes being com-

pared are referred to as genome A and genome B. This chapter describes the

three mer generation schemes used in COMBAT algorithm in detail.

A schematic view of the COMBAT procedure is shown in Figure 4.1. In

contrast to those programs that build statistical models based on training data

and those programs that utilize very sophisticated scoring functions in dynamic

programming, the COMBAT procedure involves relatively few parameters that

need to be pre-determined, and these are not hard to guess based on probabilistic

computation. Most steps of the algorithm, except for the steps involving sorting,

require only linear time and space.

The COMBAT algorithm involves the following steps:

41



 Genome A Genome B

   ------------------Sequence translation------------------

EFGMNPQR……

CTAYTAYM……

STVWYADE…….

HIKLMNSTD…….

DPWQHEFV…….

TTAYTAYM……

MFGMNPQR……

STVWSADE …….

HLKLMNST…. …

DPWQHEFV…….

Peptide sequences of 3 

forward and 3 backward 

reading frames 

--------------------Mer  generation -----------------

Mer libray of 

genome A
Mer library of

genome B

-------- Sorting and cleaning mers------------

Sorted mers of 

genome A,

duplicates

eliminated

Sorted mers of 

genome B,

duplicates

eliminated

TTA0

TAY3

AYT6

YTA9

TAY12

AYM15

……

AYM15

AYT6

TAY3

TTA0

YTA9

……

Scheme I 

Scheme II 

Scheme III

CTA100000

TAY100003

AYT100006

YTA100009

TAY100012

AYM100015

……

AYM100015

AYT1000006

CTA1000000

TAY1000003

YTA1000009

……

----- Searching for common mers -----

Matching 

mers tagged 

with offset 

100000AYM15

100000AYT6

100000TAY3

100000YTA9

……

TAYTAYM 

         TAYTAYM 

Construction of one-to-one significant conserved  regions 

Applying the stable 

marriage alignment filter 

Figure 4.1: Outline of the COMBAT algorithm

42



4.1 Build Clean Ordered Mer Libraries

First, nucleotide sequences for the genomes of interest are translated into pep-

tide sequences in all six possible reading frames over both forward and reverse

orientations. After choosing a mer-size K, K-mers are generated using one of

the three mer generation schemes described below. Mers which occur in repeats

annotated by RepeatMasker are ignored. A position index is attached to each

mer. All the mers generated are then sorted lexicographically by using their

peptide sequences. The mer libraries for genome A and genome B are built and

sorted separately.

4.1.1 Scheme I: Generate K-mers Tagged by Genomic

Locations

This is the simplest of the three schemes we consider. Similar mer generation

schemes are widely used in local sequence aligners. In this scheme, our ‘mers’

are simply polypeptide mers of a certain size, K, typically 3 ∼ 9. K-mers are

generated taking all K-mers from the peptide sequence of a genome. Mers are

indexed by their genomic locations. We keep up to C copies of duplicate local

mers which occur in a mer library.

The following two schemes are variants of scheme I, used to reduce the size

of the mer index so as to make it possible to apply the stable marriage algorithm

efficiently.

43



4.1.2 Scheme II: Generate K-mers Tagged by Indices of

‘J-intervals’

In this scheme, genomes of interest are covered with ‘J-intervals’. A J-interval

is a continuous genomic sequence of length J . Adjacent J-intervals are spaced

J/2 bases apart. These J-intervals cover each base in the genome twice, except

for the bases at the beginning and ending regions of the genome. The serial

index of a J-interval is called its J-index. The “representation of position” that

we attach to each K-mer is the index of each J-interval to which it belongs

(named ‘J-index’). In Figure 4.2, Ki denotes the ith K-mer; Jj denotes the

J-index of the jth J-interval. Most mers (like K13) occur in regions covered by

two adjacent J-intervals, and so will appear twice in the mer library. Within

each J-interval we keep only one copy of duplicate K-mers if there are any such

mers. This makes K-mers unique within every J-interval.

J1 interval

J2 interval

Κ1
Κ2

Κ13 K
1
J

1

K
2
J

1

……

K
13

J
1

K
13

J
2

……

Mer LibraryIndividual mers (oligopeptides)

Genomic sequences at peptide level

……

……

Figure 4.2: Build mer library using mer generation scheme II

Every genomic interval I of length at most J/2 is contained in at least one of

44



these J-intervals. To see this, consider the rightmost interval j which includes

the right-hand end point R of I. If this does not include all of I, then clearly R

must lie in the left half of J , and the left end of I must lie within J/2 positions

to the left of J . Hence, by moving j J/2 positions to the left, we get another

J-interval which does include I.

Suppose then that we take only the tagged A-mers that appear only once,

and likewise the tagged B-mers that appear only once. We can then consider

the offsets1 between these. In a random string these offsets would be scattered

randomly over the whole range −2G to +2G, so the probability of an offset

being matched accidentally by another is 1/4G. Consider one of the J-base

long J-intervals, and any one of the J K-mers in it. In the random case, the

probability that there should exist another K-mer in the same J-interval which

has the same offset is J/(4G) , so the probability that two K-mers in the same J-

interval should have the same offset is therefore J2/(4G). This small probability

indicates that the number of negative cases which are caused by eliminating

duplicates inside the same J-interval will be reasonably few.

4.1.3 Scheme III: Generate ‘gapped’ Local Mers Con-

taining Two Neighboring Mers

In this scheme, we allow local mers which contain two nearby unbroken K-mers

K1 and K2, with K usually equal to 3 or 4, but with a gap between them, the

number of amino acids constituting the gap being allowed to vary from 0 to M ,

where M is usually chosen to be 5 ∼ 10. The peptide sequence assigned to such

1The offset dij = Ai - Bj is the index difference between mer i in genome A and its

matching mer in genome B.

45



a ‘gapped mer’ is then the concatenation of the sequences of K1 and K2, and the

location index used is K1’s J-index. For comparing small genomes, instead of

using K1’s J-index, we can use the starting genomic location of K1 as a location

index of a K-mer. Allowing a few amino acids between nearby K-mers lets us

detect imperfect local alignments invisible to scheme II. A schematic view of

this procedure is given in Figure 4.3, where green boxes denote two neighboring

K-mers, K1 and K2. At every genomic position M +1 local mers are generated

with fixed K1 but varying K2 for every reading frame.

Inter-mer 
oligopeptides

: genomic sequence at the peptide level

: one of two neighboring K-mers

: Inter-mer oligopeptides. 
Its length varies from 0 to M.

……

0)
1)
…

M-1)
M)

Κ1 Κ2

Κ1 Κ2

Figure 4.3: Mer generation scheme III.

This scheme is easily extended to generate other ‘generalized local mers’,

e.g. those containing three neighboring mers with a few amino acids appearing

among these mers. If this extended gapping is allowed, very many objects can

be generated, but they are generated rapidly in a linear fashion. The sorting

and pruning steps guarantee the order and uniqueness of these objects. So the

46



computation will not be heavy in time and space.

4.2 Search For Common Mers

Having built cleaned ordered mer libraries for the two genomes of interest in

one of the three ways just described, we now search for common mers.

In scheme I, genome position offsets between all matching mer pairs Ai, Bj

are computed and attached to the mers Ai take from the ‘A’ genome. The

offset dij = Ai - Bj is the index difference between mer i in genome A and its

matching mer in genome B. Then this list of mer-with-offset pairs is sorted

by their offsets and their indexes in genome A. Mers sharing the same offsets

within a local window of a specified size are grouped together to form a local

alignment. The number of common mers in each local alignment is counted and

used as the similarity measure of that local alignment. Refer to section III for

the use of these values.

In scheme II, we look for mers having identical peptide sequences and for

each such mer place an item in our ‘common mer library’. Each item contains

the corresponding pair of J-indices (but not detailed genome positions), one from

each genome. Our common mer library is then sorted using J-indices in genome

A as the primary sorting key and J-indices in genome B as the secondary sorting

key. Then for each matching interval pair in the sorted common mer library

the number of common mers is counted and used as the measure of absolute

similarity of that pair. We set a threshold T , and keep only those matching

interval pairs whose number of common K-mers exceeds T for the next step.

Peptide sequences which appear more than C times in any one of the two

mer libraries are not considered when looking for common mers. This threshold

47



C can be estimated by the following simple probabilistic computation:

The number of K-mers in the peptide sequences taking all six reading frames

together is:

N = 6 ∗G/3 = 2G

where G is the size of the genomes being analyzed, e.g. ∼ 3 billion bases for

the human genome and ∼ 12 million bases for the yeast genome.

If mer generation scheme I is used, we usually set C = 1. Since the alpha-

bet size is 21 for protein sequences (20 amino acids plus one stop codon), the

probability that at least that one K-mer in a genome matches a random K-mer

is:

P1 = N/21K = 2G/21K .

If K = 9 is used in comparing the Human genome to the Mouse genome, then

P1 ≈ 0.008. Hence, randomly duplicated peptide 9-mers should be relatively

rare, and elimination of duplicates should remove less than 1% of the 9-mers on

average. In comparing yeast genomes, we can take K = 7 and get P1 ≈ 0.013.

If mer generation scheme II is in use, the probability that a random K-mer

in one genome matches a K-mer in another genome is:

P2 = 2N
(21K∗(N/J))

= 2J
21K

The expected number of identical K-mers in one genome in different J-

intervals are therefore:

C = 2N
21K∗J = 4G

21K∗J

48



In comparing the Human genome to the Mouse genome, if K = 5, J = 1000,

then P2 ≈ 4.90× 10−4 and C ≈ 3. In comparing yeast genomes, it is better to

take K = 4, J = 100, then P2 ≈ 6.35× 10−9 and C ≈ 3.

If mer generation scheme III is used, C increases by the factor M . In prac-

tice, we found C needed to be increased by 2 ∼ 10 times in order to improve

sensitivity, especially when contig sequences are used since these contain many

repeated subsequences.

4.3 Find A One-to-One Correspondence

Once having the multimappings of ‘local alignments’ produced by previous step,

we apply the modified SM algorithm described in chapter 3 to find the single

best alignment. In COMBAT scheme I, ‘local alignment’ refers to a maximal

interval in genome A that matches an interval in genome B. In COMBAT

scheme II and III, ‘local alignment’ refers to a J-interval in genome A that

matches a J-interval in genome B.

4.4 Optional Chaining Procedure

Lastly, a chaining procedure is performed to further reduce local alignments

caused by accidental random matches. In chaining, we demand that there must

be at least F local alignments, each no farther than E intervals from each other.

Our experiment results show that this step is not necessary if we choose suitable

values of J and K. The parameters involved in our COMBAT experiments are

summarized in Table 4.1.

49



K The K-mer size

J The length of a J-interval

C The allowed maximum number of copies of a certain

peptide composition we keep in each mer library

T The minimum number of common K-mers required in

any matching J-interval pairs

M The maximum number of amino acids between two nearby

K-mers when using mer generation scheme II or III

Table 4.1: Parameters involved in COMBAT

50



Chapter 5

Evaluation of Performance of

COMBAT

We tested the performance of COMBAT as applied to small genome comparison

(between yeast genomes) and large genome comparison (between human and

cow genomes). Our evaluations focus on the efficiency of COMBAT tool, and

the coverage and accuracy of COMBAT experimental results.

5.1 Yeast Genome Comparison

Several complete genomes of yeasts were used for testing the COMBAT algo-

rithm. The reasons for focusing on yeast species are:

i) Yeast is well studied and annotated. Yeast is a superb model for under-

standing the basic functions of human cells, which must do nearly everything

yeast cells do. When a gene in yeast similar to a gene in human is located,

its function in human genome can be deduced through experiments with yeast,

which is much more amenable to genetic manipulation.

51



ii) The sizes of different yeast genomes are very similar, around 12 MB to

14 MB which is not too big or too trivial for testing the algorithm efficiently.

iii) Six complete yeast genomes are available1. These four hemiascomycete

yeasts as well as the most popular yeast Saccharomyces cerevisiae (baker’s yeast)

and Schizosaccharomyces pombe (fission yeast) represent a broad evolutionary

range within a single eukaryotic phylum.

A cross-species sequence comparison program’s sensitivity and specificity can

be used to measure its success in identifying orthologous regions of two or more

genomes. We consider identified conserved regions as true positives (TP ) if they

belong to annotated exons, and as false positives (FP ) if they do not; we treat

identified non-conserved regions as true negatives (TN) if they do not belong

to annotated exons, and as false negatives (FN) if they do. Mathematically, a

matching procedures’s specificity Sp is defined as: Sp = TP/(TP + FP ), and

its sensitivity Sn is defined as: Sn = TP/(TP + FN). So specificity reflects

the accuracy of a program and sensitivity measures its coverage of annotated

exons.

To assess the COMBAT method we performed a comparison between closely

related Saccharomyces cerevisiae and Candida glabrata. Scheme I was used,

first with K = 9, to generate peptide mers of length 9. Common mers were

detected and merged to form local alignments as explained previously. 10, 136

local alignments between Saccharomyces cerevisiae and Candida glabrata were

found, of which 7, 027 (i.e 69%) actually occur in the protein database, as was

1In a comparative genomics project designed to examine eukaryotic genome evolution, the

Génolevures Consortium determined the complete genome sequences of the yeast species,

including Kluyveromyces lactis, Candida glabrata, Yarrowia lipolytica, and Debaryomyces

hansenii.

52



confirmed by searching these regions using BLASTP with its default parameter

setting. But 96% of the local alignments found by COMBAT but not found by

BLASTP in the protein database were found to belong to parts of functional el-

ements in yeast genomes by doing a BLASTN search in the nucleotide database.

This discrepancy may be due to the incompleteness of the protein database or

the insensitivity of BLASTP. These local alignments belong to 3, 865 different

proteins (61% of the 6, 300 total Saccharomyces cerevisiae protein database).

If we use K = 7, then 25, 915 local alignments were found, of which 12, 482

(i.e 48%) different proteins were confirmed by BLASTP. 79% of the local align-

ments found by COMBAT but not found by BLASTP in the Saccharomyces

cerevisiae protein database were confirmed by BLASTN search in the nucleotide

database. These local alignments found by COMBAT belong to 4, 733 different

proteins (75% of the 6, 300 total cerevisiae protein database). This experi-

mental data, used to calculate the sensitivity and specificity of COMBAT, are

summarized in Table 5.1.

Sp(BLASTP) Sp(BLASTP/BLASTN) Sn

K = 9 69% 99% 61%

K = 7 48% 89% 75%

Table 5.1: Sensitivity and specificity of COMBAT using scheme I assessed by

BLASTP or BLASTP/BLASTN search results

There are several situations that might prodece false negative when mer

generation scheme I is used:

i) If the corresponding K-mers of every matching region in a local alignment

are removed since they have as duplicates in other regions in the genome, then

53



the corresponding local alignment cannot be found by COMBAT using mer

generation scheme I.

ii) The real alignments are composed of tiny aligned pieces of length less than

K. In this case we lack a necessary ‘seed’ that is long enough to be detected

by COMBAT using mer generation scheme I. This problem can be ameliorated

by using small value of K. However if K is too small then real matches will

get lost in the ‘noise’ of small random matches. A better solution is to use mer

generation scheme III, especially in large genome comparison.

We studied the number of false negative cases which arise from using scheme

I and removing duplicates, in the following way: BLASTP searches were per-

formed for the false negative cases (2420 Saccharomyces cerevisiae proteins

COMBAT missed using K = 9) of our results against the official database

of ∼ 6, 300 Saccharomyces cerevisiae proteins; we then collected the longest

continuous match lengths in the alignments obtained by BLASTP. Histogram

of these longest match lengths is shown in Figure 5.1. It indicates that if a

local alignment has a continuous match of length larger than 11 then it is very

unlikely to be missed. There are 793 cases missed by BLASTP search due to

the limit of BLASTP method itself.

We estimated the extant to which false negatives could be reduced by us-

ing a smaller value of K in the following manner: first we searched the protein

database using BLASTP for each of those 2420 missed Saccharomyces cerevisiae

proteins; we then collected the longest continuous match lengths in the align-

ments between each of these 2420 Saccharomyces cerevisiae proteins and the

matching protein of one of the other five yeasts (Kluyveromyces lactis, Candida

glabrata, Debaryomyces hansenii, Yarrowia lipolytica, and Schizosaccharomyces

pombe). The results of this search are summarized in Table 5.2. For example,

54



 

0

100

200

300

400

500

600

700

800

0 3 5 7 9 11 13 15 17 19 22 26 29 40 49

The length of longest matches in alignments

 
 
 
 
 
 
 
 

N
um

be
r 

of
 a

lig
nm

en
ts

 

Figure 5.1: Histogram of longest continuous matches length in the alignments

for the 2420 false negative cases of the comparison between Saccharomyces cere-

visiae and Candida glabrata.

57% Candida glabrata proteins align to some of the missing Saccharomyces cere-

visiae proteins whose alignments are at least 3 mer long. This empirical analysis

implies that by using K = 3 COMBAT might be able to find 57% of those missed

at K = 9 while comparing the genomes of Saccharomyces cerevisiae and Can-

dida glabrata2. Since Saccharomyces cerevisiae and Schizosaccharomyces pombe

are poorly related, comparison between these two genomes generate alignments

containing more tiny aligned pieces than other comparison.

Another possible strategy for improving COMBAT’s sensitivity is to em-

ploy multiple genome comparison. We studied the possibility of finding more

proteins by comparing all five other yeasts with Saccharomyces cerevisiae. We

reasoned that a Saccharomyces cerevisiae protein can be found by this variant

of COMBAT if it has at least one matching protein of any of these five yeasts,

by a match confirmed by BLASTP, and if the alignment contains at least one

2These percentages are approximate because if we lower the values of K we may have to

deal with more random local mers bringing more noise to the process.

55



K=7 K=3

Kluyveromyces lactis 32% 62%

Candida glabrata 33% 57%

Debaryomyces hansenii 15% 52%

Yarrowia lipolytica 11% 42%

Schizosaccharomyces pombe 4% 25%

Table 5.2: Estimated percentages of reduced false negatives by using smaller

values of K

match no shorter than K. The estimated reduced percentages of false negatives

if all these five yeast genomes are considered are summarized in Table 5.3. This

table shows that it is possible to find roughly the same number of proteins us-

ing K = 6 by multiple genome comparison as using K = 3 by pairwise genome

comparison. Lineage-specific protein loss, to a large extent, accounts for the

differences in gene repertoire between genomes, particularly among eukaryotes.

By comparing multiple genomes one is likely to find proteins that are lost in

one species but remain in others.

K = 9 K = 6 K = 3

32% 55% 72%

Table 5.3: Estimated reduced percentages of false negatives if all five yeast

genomes are considered with different values of K used.

Although the above results show that if we use K = 3 we will be able to find

a lot more proteins, the large number of small random local mers can bury the

real matches. As a possible way of dealing with this problem, we studied the

56



number of possible proteins COMBAT can find by using scheme III to generate

local mers. Table 5.4 shows that by using K1 = 4 and K2 = 3, 65% out of 2420

otherwise missing proteins might be found by COMBAT, which indicates that

its sensitivity is about 86% in this case.

K1 = 4, K2 = 3 K1 = 3, K2 = 3

65% 68%

Table 5.4: Estimated reduced percentages of false negatives by using mer gen-

eration scheme III.

5.2 Human Assembly and Cow Contig Com-

parison

We have applied COMBAT to Human Assembly (hg17, May 2004) and Cow

Contigs (bosTau1, Sep. 2004, BCM HGSC Btau 1.0), both from the UCSC

Genome Bioinformatics Site. As an example illustrating our results, we take

chromosome I from hg17 and the first 33,000 cow scaffolds, and align them by

COMBAT using mer generation scheme II. These two sequences are approx-

imately 250MB in size. Let us call the first sequence chr1, and the second

sequence cow1. The resulting alignment maps are shown in Figure 5.2, with the

X-axis showing the J-indexes along the chr1 sequence, and the Y-axis showing

those along the cow1 sequence. Figures 5.2-(1),(2),(4), and (5) are the results

produced by COMBAT, with each plus sign representing the index coordinates

of a pair of matching intervals found by COMBAT. Figure 5.2-(4) and (5) show

results obtained without using the chaining procedure. Figures 5.2-(3) and

57



(6) show matches produced by BLASTZ, filtered by the axtBest program [48]

(downloaded from the UCSC Genome Bioinformatics Site and transformed to

fit our J-intervals context), with each dot representing the index coordinates

of the starting positions of two matched regions. The BLASTZ result is trans-

formed twice according to two values of J used. The BLASTZ result contains

the best alignments in the genome with gaps in the best alignments filled in by

next-best alignments where possible.

0 1 2 3 4 5 6

x 10
5

0

1

2

3

4

5
x 10

8 (1)COMBAT(J=900,K=6,E=5,F=T=3)

0 1 2 3 4 5 6

x 10
5

0

1

2

3

4

5
x 10

8 (2)COMBAT(J=900,K=6,E=100,F=T=3)

0 1 2 3 4 5 6

x 10
5

0

1

2

3

4

5
x 10

8 (3)BLASTZ(J=900)

0 1 2 3 4 5

x 10
5

0

1

2

3

4
x 10

8 (4)COMBAT(J=1000,K=8,T=5)

0 1 2 3 4 5

x 10
5

0

1

2

3

4
x 10

8 (5)COMBAT(J=1000,K=9,T=5)

0 1 2 3 4 5

x 10
5

0

1

2

3

4
x 10

8 (6)BLASTZ(J=1000)

Figure 5.2: Alignment maps between chr1 and cow1

The chaining criterion used by COMBAT turns out to be relatively insensi-

tive to the value of E used (see Figure 5.2-(1) and 3-(2)). To evaluate COM-

58



BAT, we have tested the appearance of every matching pair of intervals found

by COMBAT in the BLASTZ result (transformed by the same J used by COM-

BAT). Consider a pair of matching J-interval (a, b) in COMBAT result as a true

positive case if there exists a pair of matching regions (x, y) (a and x in genome

A, b and y in genome B) in BLASTZ result and one of the following conditions

is satisfied: 1) a is contained in x and b is contained in y; 2) x is contained in

a and y is contained in b; 3) the starting positions of a/b is within J bases of

those of x/y, respectively; 4) the ending positions of a/b is within J bases of

those of x/y, respectively. In Figure 5.2-(1), 95% of the 625 partner interval

pairs found by COMBAT are true positives. In the other direction, out of 8,389

matching regions in the BLASTZ result, 7% are confirmed by COMBAT. In

Figure 5.2-(4), there are 84% true positives out of 1235 PIPs, and they cover

11% of the BLASTZ result. In Figure 5.2-(5), there are 85% true positives out

of 971 PIPs, and they cover 9% of the BLASTZ result. This high specificity

indicates a promising wide use of COMBAT. The low coverage is not surprising

because only highly similar protein-coding regions are expected to be found.

5.3 Human Genome and Cow Assembly Com-

parison

We have also applied COMBAT using mer generation scheme II and III to the

most recent Human Assembly (hg18, Mar. 2006) and Cow Assembly (bosTau2,

Mar. 2005), both downloaded from the UCSC Genome Bioinformatics Site.

In this experiment, we consider chromosome I from these genomes. Call the

human chromosome I Hchr1 (∼ 252Mb), and the cow chromosome I Cchr1 (∼

59



105Mb). We use J = 1000 in these experiments. The corresponding alignments

are shown in Figure 5.3, with the X-axis showing the J-indices of matches along

the Hchr1 sequence, and the Y-axis showing those along the Cchr1 sequence.

Red dots represent J-indices of matching J-intervals found by COMBAT; Blue

dots represent J-indices of matching regions found by BLASTZ. Figure 5.3-(1),

(2) and (3) show the experimental results using mer generation scheme II, and

Figure 5.3-(4) and (5) describe the experimental results using scheme III.

To evaluate the performance of COMBAT, again we have tested the ap-

pearance of every matching J-intervals found by COMBAT in the BLASTZ

result (transformed by the same J used by COMBAT). Specificity and sensitiv-

ity values are shown in Figure 5.3-(6). Specificity varies from 92% to 81% and

sensitivity varies from 33% to 12%. Generally speaking, using mer generation

scheme III brings more noise to alignment results but gains better coverage;

using mer generation scheme II produces reliable results with low coverage.

5.4 Implementation and Speed

The computational core of the COMBAT algorithm was implemented as a C++

program and all experiments were performed on NYU Bioinformatics Group’s

cluster of Pentium IV machines with 3 GB memory running RedHat Linux 7.3.

To compare 0.25 Gb of human sequence against 0.24 Gb of cow sequence (∼
1/10 of total genomes) and produce the one-to-one mapping list of highly similar

regions, it took 23 CPU hours under the configuration shown in Figure 5.2-(1),

and took 2 CPU hours under the configuration shown in Figure 5.2-(4).

To compare 0.25 Gb of human sequence against 0.15 Gb of cow sequence

and produce the one-to-one mapping list of highly similar regions, it took 1.6

60



0 2 4 6

x 10
5

0

0.5

1

1.5

2

2.5
x 10

5 (1) K=9,C=5, II

J−index on Hchr1

J−
in

de
x 

on
 C

ch
r1

BLASTZ
COMBAT

0 2 4 6

x 10
5

0

0.5

1

1.5

2

2.5
x 10

5 (2) K=8,C=5, II

J−index on Hchr1

J−
in

de
x 

on
 C

ch
r1

BLASTZ
COMBAT

0 2 4 6

x 10
5

0

0.5

1

1.5

2

2.5
x 10

5 (3) K=6,C=5, II

J−index on Hchr1

J−
in

de
x 

on
 C

ch
r1

BLASTZ
COMBAT

0 2 4 6

x 10
5

0

0.5

1

1.5

2

2.5
x 10

5    (4) K=8,C=20,M=3, III

J−index on Hchr1

J−
in

de
x 

on
 C

ch
r1

BLASTZ
COMBAT

0 2 4 6

x 10
5

0

0.5

1

1.5

2

2.5
x 10

5    (5) K=6,C=30,M=3, III

J−index on Hchr1

J−
in

de
x 

on
 C

ch
r1

BLASTZ
COMBAT

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
(6)Specificity and Sensitivity of COMBAT

Specificity
Sensitivity

Figure 5.3: (1)-(5): Alignment maps between Hchr1 and Cchr1. T = 5 for

all maps. (6): Specificity and sensitivity measurement of COMBAT from the

experiments (1)-(5).

61



CPU hours to obtain the result shown in Figure 5.3-(1), and took 28 CPU hours

to obtain the result shown in Figure 5.3-(5). Other experiment running times

vary between these two extreme ones.

This speed should be compared with the published report of BLASTZ taking

481 days of CPU time to align 2.8 Gb of human sequence against 2.5 Gb of mouse

sequence on a cluster of 1024 833-Mhz Pentium III [48].

5.5 Error Estimation

In this section we discuss how to estimate the lower bound and the upper

bound of the threshold parameter T used in COMBAT. Consider two random

J-intervals a in genome A and b in genome B (each of length J over an alphabet

of 20 amino acids and 1 stop codon). For the sake of simplicity, we consider

these intervals in one orientation only. Let Pk denote the probability that there

is a common K-mer at any position. Assuming that letters occur at any given

position with equal probability and statistical independence, we get Pk = 1/(21)K .

Let the positive-valued random variable w denote the number of common K-

mers in a and b. We can show that w follows a Poisson distribution with

parameter λw = J2Pk. The expectation of a new random variable
(

w
i

)
can be

estimated by considering all possible
(

J
i

)
subsets of K-mers from a and counting

the probability of each such subset having exact matches with i K-mers in b.

E

[(
w

i

)]
=

(
J

i

)
(JPk)((J − 1)Pk) · · · ((J − i + 1)Pk)

≈ J (i)

i!

(
J

21K

)i

≈
(
J2/21K

)i

i!

62



Using Brun’s sieve, the probability that two randomly selected J-intervals

from genome A and genome B have exactly m K-mers in common is:

Pr[w = m] = e−(J2/21K)

(
J2/21K

)m

m!

Using parameters of this Poisson distribution, we can choose a lower thresh-

old such that two random J-intervals are unlikely (with probability > 1− ε) to

have more than θw K-mers in common. Using Chebychev’s inequality, we see

that a conservative choice would be:

θw = µw +
σw√

ε
, where µw =

J2

21K
, σw =

J

21K/2

As argued earlier, by using the one-tailed Chebychev bound, we have:

Pr(w > θw) = Pr(w − µw >
σw√

ε
) < ε

By choosing a very small value of ε (for example, ε ≈ O(1/G), where G is the

genome size), we could make the probability of false positive adequately small.

In the other direction, let s be a desired similarity value, in the sense that

COMBAT must almost always find pairs a and b, whenever they have a sim-

ilarity value of s or higher. The number of observed K-mers shared by a and

b can be viewed as a random variable v: B(|a ∩ b|, s) which has a Binomial

distribution with mean µ = |a ∩ b|s and variance σ2 = |a ∩ b|s(1 − s). Using

the Chernoff bound, we can choose an upper threshold of |a ∩ b|s/2 > Js/4 to

guarantee a probability of success larger than (1 − ε), if J is sufficiently large,

i.e., Js > 16 ln(1/ε). Assuming ε = 1/G, and 16 ln(G)/s < J ¿ G, we will

need to satisfy the following inequality:

J2

21K
+ J

√
G

21K
< θ < Js/4

63



s = 0.8

G = 109 G = 106

J = 1000, K = 8 J = 1000, K = 6

162 < θ < 200 108 < θ < 200

s = 0.6

G = 109 G = 106

J = 1000, K = 9 J = 1000, K = 6

35 < θ < 150 108 < θ < 150

Table 5.5: Exemplary choices of parameters given G and s when ε = 1/G

or

J

21K
+

√
G

21K
< θ′ < s/4

Since G and s are determined by the genomes, we need only to choose K and

J . Table 5.5 shows some exemplary choices of parameters. The variable θ has

the same meaning as the T parameter in Table 4.1. Since ε is extremely small

here, the suggested range of θ is very conservative. Note that since our estima-

tions are rather conservative, we found that, in practice, COMBAT performs

quite well even for suboptimal choices of parameters.

64



Chapter 6

CAPO: Comparative Analysis

and Phylogeny with

Optical-Maps

Given DNA sequences of various taxa, a standard technique in evolutionary

analysis is to first perform a multiple sequence alignment (on DNA sequences

or protein sequences). From the resultant distance matrix a phylogenetic tree

can be built describing the relationship of the various taxa with respect to each

other. These distance-based methods compress sequence information into a sin-

gle number and the two sequences with shortest distance are considered as most

closely related taxa. However, the high cost of sequencing techniques and the

biological diversity among the genomes, together makes it impossible to study

phylogeny using detailed sequences of many strains of large-number of related

species. The low cost and high speed of the Optical Mapping technique provide

an elegant solution to this dilemma, provided that one can devise suitable tool

to infer phylogeny from optical mapping data instead of sequence data. CAPO

65



(Comparative Analysis and Phylogeny with Optical-Maps) is a novel tool that

combines the Stable Marriage (SM) algorithm and a distance-based method (ei-

ther the UPGMA or the NJ method) to infer phylogeny among multiple strains

or genomes.

Standard methods for constructing phylogenetic trees are reviewed below,

followed by a review of an existing statistical method developed by OpGen

to infer phylogeny using optical-map comparison. Then the CAPO method is

explained in section 6.3. CAPO experiments and discussion are given in the

end.

6.1 Review of Evolutionary Analysis

A phylogenetic tree represents the evolutionary history of a family of organ-

isms. Constructing phylogenetic trees is a crucial step for biologists in finding

out how all the extant species are related to one another in terms of common

ancestors. Numerous computer tools have been developed to construct such

trees. The tools proposed for construction of phylogenetic trees can be classi-

fied into two groups: the phenetic methods (distance matrix method, Michener

and Sokal, 1957) and the cladistic methods (maximum parsimony and maxi-

mum likelihood, Hennig 1966). Popular programs of constructing phylogenetic

trees include PHYLIP1 (phylogenetic inference package by J. Felsenstein) and

PAUP2 (phylogenetic analysis using parsimony from Sinauer Assoc.).

Phenetic methods use various measures of overall similarity for grouping.

They can use any number or type of characters, but the data used must be

1Available at evolution.genetics.washington.edu/phylip.html
2Available at paup.csit.fsu.edu.

66



converted into numerical values. The organisms are compared to each other

for all of the characters and then the similarities are calculated. After this,

the organisms are clustered based on these similarities. Such methods place a

greater emphasis on the relationships among data sets than on the paths they

have taken to arrive at their current states. They do not necessarily reflect

evolutionary relations. The cladistic method is based on the idea that members

of a group share a common evolutionary history and are more closely related

to members of the same group than to any other organisms. This method

differs from phenetics in that it does not give equal weight to all characters.

Cladistic approaches focus more on evolutionary pathways than on relationships.

Figure 6.1 shows how to select an appropriate method to infer phylogeny given

single-gene sequences.

Method Selection for Single-Gene Phylogeny 

Maximum

Parsimony

methods

Choose set of Obtain multiple 

sequence alignment

Is there strong 

sequence similarity?related sequences 
Yes

Yes Distance

methods

Analyze how well 

data support 

prediction

No

Is there clearly recognizable 

sequence similarity? 

No

Maximum

Likelihood

methods

Figure 6.1: Procedure of selecting an appropriate method to infer phylogeny

given single-gene sequences.

In the following paragraphs, we review five well-known algorithms: Un-

67



weighted Pair Group Method using Arithmetic Average [50], Neighbor Join-

ing [46], Fitch Margoliash [20], Maximum Parsimony [17, 19], and Maximum

Likelihood [18].

6.1.1 Unweighted Pair Group Method with Arithmetic

Mean (UPGMA)

UPGMA [50] is a sequential clustering algorithm. It works by first constructing

a distance matrix, then iteratively amalgamating two Operational Taxonomy

Units (OTUs) at each stage. This amalgamated pair is represented by a new

internal node in the tree. Whenever two nodes are merged into a new node,

UPGMA recalculates the distances between the new node and other nodes. This

process is repeated until all OTUs are grouped into a single cluster. UPGMA

produces a rooted tree. It is suitable for constructing phylogenetic trees for taxa

with the relatively constant rate of evolution.

UPGMA is simple and fast. But it has several disadvantages:

• It implicitly assumes the existence of an ultrametric tree: the total branch

lengths from the root to any leaf are all equal. In other words, it assumes

that there is a “molecular clock”, which ticks at a constant pace, and that

all the observed species are at an equal number of ticks from the root,

which is often not the case.

• It assumes the additive property.

68



6.1.2 Neighbor Joining (NJ)

NJ [46] is a heuristic greedy algorithm. It begins with distance matrix and a

star-like tree. At each stage two closest neighbors are joined into a new node,

which becomes the root of the new tree. The branch lengths from the two nodes

to the new node are calculated. The two nodes are replaced by the new node in

the distance matrix, thus reducing the number of OTUs by 1. NJ then updates

the distance matrix and repeats the node merging process until all OTUs left

are joined into a root node. Unlike UPGMA, which chooses the neighbors with

minimum distance, NJ chooses the neighbors that minimize the sum of branch

lengths at each stage.

NJ has following advantages:

• It is fast and well suited for data sets of substantial size and also for the

postprocessing step of bootstrap analysis.

• It is especially suitable when the rate of evolution of the separate lineages

under consideration varies.

Unfortunately, NJ suffers from several disadvantages:

• It depends heavily on the evolutionary model applied.

• It assumes the additive property.

Both UPGMA and NJ algorithms use distance matrices to reflect evolution-

ary relationships and compress sequence information into a single number, so

they cannot reflect the changes of character states of sequences. UPGMA and

NJ are both relatively fast, so they are suitable for analyzing large data sets,

and can handle species that are not very strongly similar. In general, NJ gives

better results than UPGMA.

69



6.1.3 Fitch Margoliash (FM)

FM [20] assumes that the expected error is proportional to the square root of

the observed distances. It compares the two most closely related taxa to the

average of all the other taxa. It then moves through the tree sequentially to

calculate the distances between decreasingly related taxa until all the distances

are found.

Its advantage is following:

• It does not assume a constant rate of evolution and therefore can produce

varied branch lengths from a common ancestor.

Its main disadvantage is:

• It requires longer execution time than UPGMA and NJ.

6.1.4 Maximum Parsimony (MP)

Maximum parsimony trees [17, 19] are built upon this principle that simple hy-

potheses are more preferable than complicated ones. Consequently construction

of trees using this method requires using the smallest number of evolutionary

changes among the OTUs in order to explain the phylogeny of the species under

study. This method compares different parsimonious trees and chooses the tree

that has the least number of evolutionary steps (substitutions of nucleotides in

the context of DNA sequence). MP is a character-based Maximum Parsimony

algorithm. It starts with a multiple alignment and construct all possible phy-

logenetic trees for the species of interest. It scores each of these topologies and

chooses a tree with the fewest ‘evolutionary changes’ as the final tree, where

an evolutionary change is a transformation step from one character state to

70



another. Character states can be DNA bases, the loss or gain of a restricted

site, or the absence or presence of morphological features.

Its advantages are:

• It allows the use of all known evolutionary information in tree building.

• It produces numerous unrooted, “most parsimonious trees”.

Its disadvantages are:

• It requires long computation time, although faster than Maximum likeli-

hood.

• It yields little information about branch length.

• It usually performs well with closely related sequences, but often performs

badly with very distantly related sequences.

6.1.5 Maximum Likelihood (ML)

The maximum likelihood method evaluates the topologies of different trees and

chooses the best one based on a specified model. This model is based on the

evolutionary process that can account for the conversion of one sequence into

another. It evaluates a hypothesis about evolutionary history in terms of the

probability that the proposed model and the hypothesized history would give

rise to the observed data set. The topology parameter is branch length. MP

starts with a multiple alignment and lists all possible topologies of each data

partition (column). It then calculates probability of all possible topologies for

each data partition and combines data partitions. It identifies tree with the

highest overall probability at all partitions as most likely phylogeny.

It enjoys many advantages:

71



• It is more accurate than other methods. It is often used to test an existing

tree.

• All the sequence information is used.

• Sampling errors have least effect on the method.

It suffers from the following disadvantages:

• It is extremely slow, and thus, impractical for analyzing large data set.

6.2 The Statistical Method for Optical Map

Comparison Used by OpGen

To calculate the pairwise map similarity value, OpGen Inc. uses the SOMA map

aligner (see appendix A) to find all the local alignments between the two strains

above a certain score threshold. Given two optical-maps mapA and mapB, the

percentage similarity is found by taking (alignedLA + alignedLB)/(LA + LB),

where alignedLA is the length of aligned restriction fragments of mapA, and

LA is the total length of restriction fragments of mapA.

After the percentage similarity values are computed, they are fed into a sta-

tistical package available in the language “R” and a clustering method selected

from the following list: the nearest neighbor, furthest neighbor, or UPGMA. Ac-

cording to OpGen (personal communication) this method performs reasonably

well for small data sets (less than 10) in which there is a lot of map similarity

variations. As the data set sizes grow, OpGen often found that the clustering

method generates groups that are no longer biologically meaningful.

72



We have performed pairwise alignment between Escherichia coli O157 :

H7 str. Sakai and Escherichia coli O157 : H7 EDL933 using SOMA map

aligner with its default settings, as shown in Figure 6.4. This pairwise alignment

takes ∼ 15 min. So in practice the efficiency of SOMA also limits the usage of

OpGen’s method of inferring phylogeny.

6.3 Problem Formulation and the CAPO Method-

ology

Instead of using sequence alignment results, we use optical map comparison for

pairwise distance measures. The advantages of this approach against traditional

distance measures based on sequence alignments are:

• Most of the traditional distance measures for phylogenetics have been de-

veloped for comparing genes or proteins, not genomes. They assume linear

alignments (e.g., clustalw) where the only differences between sequences

are point mutations. They do not handle indels very well and they can

not handle translocations or local inversions at all – these regions end up

being scored as mismatches when the distance measure is computed. So

whole segments of DNA may not contribute to the score, if they are iden-

tical but out-of-order. Our method takes whole genome optical map into

consideration. Genome evolution events including insertion, deletion, in-

version, and translocation all contribute to corresponding map similarity

measures.

• Multiple sequence alignment methods can only be used for small number of

short genomes because of the complexity and efficiency of those methods.

73



Since optical map data is much more ‘condensed’ than sequence data, our

approach is very fast and can be easily applied to analyzing large data

set.

• There are many different strains in the same species. The genome content

could be very different. We cannot sequence every single strain unless

DNA sequencing gets really inexpensive and efficient. Our approach is

not limited by the availability of sequence data.

The problem of comparing optical maps can be formulated mathematically

as follows: an optical map can be viewed as an ordered sequence of “restriction

sites”, or equivalently, “restriction fragment lengths”. A vector of decimal num-

bers, Hk = (h1, h2, ..., hm), can beis used to represent a single map k, where hi

with index 1 ≤ i ≤ m is the length of the i-th restriction fragment. The size of

an optical map k is then defined as sk =
∑

hi, hi ∈ Hk. The input to CAPO is

an N ×M matrix O = (oij), where each row corresponds to an optical map of

a strain or a genome. Each column corresponds to a position in that map. N is

the total number of maps, and M is the number of restriction fragments in the

longest map in that input. Because sequences of different strains or genomes

vary in length, the final optical maps usually do not have the same number of

restriction fragments. We force them to have M fragments by appending zeros

to the end of shorter map vectors. Notice that all the restriction maps in the

input must be digested by the same set of restriction endonucleases to make the

map comparison meaningful in genome evolution study.

The CAPO algorithm is based on pairwise optical map comparison and bi-

partite graph matching, combined with standard distance methods of phylogeny

tree construction. It consists of two major phases. First, pairwise optical map

74



comparison is performed to generate a pairwise similarity matrix S = (sij),

where sij is the map similarity between the i-th and j-th map in the input ma-

trix O. S is used as input to the second phase of CAPO, which infers phylogeny

among input strains or genomes. Output is in the Phylip format used by many

phylogenetic analysis packages. This consists of a series of nested parentheses

describing the branching order with the sequence names (the branch lengths are

ignored in the current version of CAPO). Users can display the phylogeny tree

using the NJPLOT program distributed with the ClustalX package3. The two

algorithms implemented in CAPO are detailed in the following sections.

6.3.1 Heuristic Algorithm for Pairwise Optical Map Com-

parison

This algorithm, used in CAPO’s phase one, is a heuristic mer-based algorithm

for pairwise optical map comparison. A ‘mer’ (or more elaborately “restriction-

fragment-mer”) in an optical map is an ordered sequence of restriction fragment

lengths. A ‘k-mer’ is a mer with k fragment lengths. Mathematically, a k-mer

comprises k decimal numbers, and their positions reflect the sequence order of

the corresponding restriction fragments. After choosing a mer size k, we gen-

erate all k-mers in an optical map for both forward and backward orientations.

Each k-mer is indexed by its position in the optical map. To compare two op-

tical maps i and j, we examine all common k-mers between them as follows:

we count the number of common k-mers as cij, and compute the pairwise map

similarity sij, sij = cij/(si + sj), where si and sj are the sizes of the two optical

3The latest version of the ClustalX program is available at ftp://ftp-igbmc.u-

strasbg.fr/pub/ClustalX/.

75



maps. sij = 0 if i = j. The obtained pairwise similarity matrix S is used as

input to the next phase inferring phylogeny.

Common mers are searched in a manner allowing for sizing errors. For ex-

ample, given two k-mers, k1 = (f1, f2, ..., fk) in map 1 and k2 = (g1, g2, ..., gk)

in map 2, we consider k1 and k2 as a pair of common k-mers if and only if the

following condition is satisfied:

Fi ∩Gi

Fi ∪Gi

≥ ρ, for all 1 ≤ i ≤ k.

where Fi is interval (fi − σfi, fi + σfi), σfi is the standard deviation for

fragment fi; Gi is interval (gi − σgi, gi + σgi), σgi is the standard deviation

for fragment gi; ρ is a cutoff determining the least overlap degree between two

common intervals. The standard deviation of a restriction fragment collection is

estimated via observations of experiment data. Details are given in section 6.3.3.

6.3.2 Stable Matching Algorithm for Inferring Phylogeny

Given a matrix of distances among a set of taxa, both the UPGMA and NJ meth-

ods are widely used in phylogenetic analysis to show how similar or dissimilar

they are. The UPGMA method assumes equal rates of evolution, so that branch

tips come out equal. The NJ method allows for unequal rates of evolution, so

that branch lengths are proportional to amount of change. CAPO combines the

standard stable marriage (SM) algorithm for bipartite graph matching problem

with either the UPGMA or the NJ method for inferring phylogeny. The SM

problem is introduced in chapter 3.

Usually a phylogenetic tree is constructed in stepwise manner. Every time

two most similar sequences are clustered together, they are combined into a

new node, representing their least common ancestor. The clustering process

76



continues until there is only one node left. Therefore, given n taxa, traditional

distance-based methods need O(n) iterations to construct a phylogenetic tree.

In normal cases, our method is capable of constructing a phylogenetic tree in

log(n) iterations, though its worst-case number of iterations is comparable to

traditional distance-based methods. It works as follows:

Initialization: Define T to be the set of leaf nodes, one for each given optical

map. If the UPGMA method is used, we set the distance matrix D = (dij) =

(sij), where sij is the map similarity obtained from phase one. If the NJ method

is used, we compute ui =
∑n

j=1 sij/(n − 2) for each node i in T , where n is

the total number of nodes in T . The distance matrix D is recomputed to be

D = (dij) = (sij − ui − uj).

Iteration:

1. Build a bipartite graph: we partition D along diagonal line into two

parts: the upper triangular part UT and the lower triangular part LT .

Pairs in UT form the left column in the bipartite graph, and pairs in LT

form the right column. Each node i has a preference list of nodes, ranked

by dij.

2. Apply the stable marriage algorithm and produce a set X of

stable pairs [52]. Such a ‘stable pair’ is a pair of nodes connected by the

stable marriage algorithm and is clustered into a new internal node if this

pair passes the following test in the cleaning step.

3. Clean the set X: sort stable pairs in decreasing order of dij and keep

only the first m pairs in X that are disjoint4 with each other.

4Two pairs (a, b) and (c, d) are disjoint with each other if and only if no two nodes in

different pairs are the same.

77



4. Connect nodes and update the distance matrix D in a loop until

X is empty. In each loop execute the following operations: i) extract

the first pair (i, j) in X; ii) join them with a new internal node vij
5; iii)

compute the distances between node vij and the remaining nodes k6; iv)

delete dij in D and add the new distances to D; and finally, v) connect

nodes i and j in T with vij.

Termination: When only two nodes i and j remain unconnected in T , con-

nect them to the root node of the tree T .

 A) Distance Matrix for four items (A, B, C, D)                              B) Build Bipartite Graph

0 11 14 12 D

11 0 9 7 C

14 9 0 8 B

12 7 8 0 A

D C BA

A

B

C

 C      B      D

 C      D

 D D

B

C

 C      A      B

 A      B

 A

Figure 6.2: An example of building a bipartite graph given a distance matrix.

A) A distance matrix M of four items (A, B, C, D). B) The corresponding

bipartite graph.

An example of building a bipartite graph given a distance matrix is shown

5The node vij has its cluster size nij = ni + nj (initially, ni = 1).
6If the UPGMA method is used, we use

d(ij),k = (
ni

ni + nj
)dik + (

nj

ni + nj
)djk.

If the NJ method is used, we use

d(ij),k =
dik + djk − dij

2
.

78



in Figure 6.2. Each node has a preference list(grey boxes) ordered by distances.

Left panel contains pairs in the upper triangular part of M ; right panel contains

pairs in the lower triangular part of M . For example, the first row in the left

panel means “item A prefers to pair with C, B, D, in the decreasing order of

preferences”.

We can assume that each iteration reduces the number of nodes by a factor

of k, where k is a constant. On average this algorithm terminates in O(logn)

iterations (n is the number of optical maps in the analyzed data set). In each

iteration, building a bipartite graph is the most expensive step, which involves

sorting each preference list and it takes O(m2logm) (m is the number of nodes

left in current iteration). After i-th iteration m becomes n
ki . So the complexity

of this algorithm is as follows:

T ≈
logn∑

i=0

(
n

ki
)2log(

n

ki
)

=
logn∑

i=0

(
n2

k2i
)(logn− ilogk)

≤
logn∑

i=0

n2logn

k2i

= n2logn
logn∑

i=0

1

k2i

= n2logn(
1− ( 1

k2 )
logn

1− 1
k2

)

= n2logn(O(1))

= O(n2logn)

Comparatively, a standard distance-based method for building a phyloge-

netic tree terminates in n iterations. In each iteration, the major time consum-

ing step is to look for the smallest distance in a m × m distance matrix (m

is the number of clusters left in current iteration), which takes O(m2). So the

79



complexity of a standard distance-based method is as follows:

T ′ ≈ (
1∑

m=n

m2) = O(n3)

Therefore, in normal cases our stable marriage algorithm for inferring phy-

logeny is more efficient than a standard distance-based method. Although in

worst case scenario our algorithm takes O(n3logn), but this case should be very

rare.

6.3.3 Correction of Sizing Errors

Optical maps of different strains of the same species would vary due to single

nucleotide differences (SNPs), small insertions and deletions (RFLPs) as well

as many genomic rearrangement events that leave their footprints on restriction

site patterns. Further variations are introduced by the experimental process.

These can be due to: sizing errors, partial digestion, short missing restriction

fragments, false cuts, ambiguities in the orientation, optical chimerisms, and so

on [3, 40]. We can classify these error factors introduced by the experimental

process into three types — sizing errors, digestion errors, and orientation errors.

The sizing error statistics is estimated from observations of experiments done

by OpGen, Inc. These observations (including fragment lengths and standard

deviations) are what are reported in the output from the GENTIG [2] soft-

ware that OpGen used to produces optical maps. A first-degree polynomial

fit for the three pairs of variables: L ∼ stddev(L), sqrt(L) ∼ stddev(L), and

1/sqrt(L) ∼ stddev(L)/L is shown in Figure 6.3, where linear correlation co-

efficient is referred as cc. No apparent linear relation is observed between any

pair of them since none of these pairs have linear correlation coefficient close

80



enough to one (> 0.95). These results indicate that it may not be appropri-

ate to estimate standard deviations using any of these ‘linear relations’ (results

not shown). Therefore data interpolation is used instead to estimate standard

deviations stddev(L) for a restriction fragment whose length is L. This data

interpolation step is performed in the following way: given a fragment length L,

find Ll and Lr from the error plot shown in Figure 6.3-(a) where Ll and Lr are

the closest left neighbor and right neighbor of L, respectively (Ll < L < Lr);

compute stddev(L) using stddev(L) = (stddev(Ll) + stddev(Lr))/2.

0 50 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(a) L vs. stddev(L)

L

st
dd

ev
(L

)

cc = 0.7428

Polynomial Model
Data

0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4
(b) sqrt(L) vs. stddev(L)

sqrt(L)

st
dd

ev
(L

)

cc = 0.7562

Polynomial Model
Data

0 1 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
(c) 1/sqrt(L) vs. stddev(L)/L

1/sqrt(L)

st
dd

ev
(L

)/
L

cc = 0.8290

Polynomial Model
Data

Figure 6.3: First-degree polynomial fit for restriction fragment sizing error. (a)

L vs. stddev(L), cc = 0.7428; (b)
√

L vs. stddev(L), cc = 0.7562; (c) 1/
√

L

vs. stddev(L)/L, cc = 0.8290.

81



6.4 Phylogenetic Tree Comparison Measure

A tree comparison measure is a measure of the similarity between two trees,

say T1 and T2. There are two basic kinds: The first one counts the minimum

number of operations required to transform T1 into T2 using some transforming

method (e.g. the nearest neighbor interchange (NNI) metric [55]); The second

one represents the two trees as sets of simpler structures (such as clusters or

quartets) and then uses various measures of similarity between sets (e.g. Es-

tabrook et al’s quartet measures [16]). These two categories of tree comparison

measure are not mutually exclusive (e.g. the partition metric [44]).

The partition metric [44] is used to compare phylogenetic trees in testing

CAPO. In this method, the difference between two trees (referred as dT score)

is defined as the number of edges for which there is no equivalent edge on the

other tree. A dT score between two binary unrooted trees with n leaves is in the

interval 0 (for isomorphic trees) and 2(n−3) (if all leaves are placed differently).

The reasons of choosing this method are:

• It treats trees as sets of clusters, which is how most biologists interpret

trees.

• The partition metric is easy and fast to compute.

• It is widely implemented (in PAUP 3.0 and COMPONENT 1.5).

This method also has a disadvantageous feature: Two trees differing solely

in the position of one taxon can be maximally different [44].

82



6.5 Material

6.5.1 Data set I

These data were obtained from collaborators at OpGen, Inc. The data con-

tained eleven optical maps constructed commercially by OpGen7 for varying

E. coli strains. Information describing this data set is listed in Table 6.1. All

the organisms in data set I are E. coli bacteria, and are identified by their indi-

vidual strain names. Sequence data are not available for most but four of these

E. coli strains, including Escherichia coli CFT073, Escherichia coli K12,

Escherichia coli O157 : H7 str. Sakai, and Escherichia coli O157 : H7 EDL933.

OpGen uses the following procedure to produce this data: i) purified chro-

mosomal DNA is deposited onto an optical mapping surface using a microfluidic

device; ii) the DNA is encased in a thin layer of acrylamide and incubated with

the restriction enzyme BamHI (it cleaves only at sites containing the 6 bp long

sequence GGATCC) in a humidified chamber at 37◦ C for 60 ∼ 120 mins;

iii) the digested DNA is labeled with fluorescent YOYO-1 and the individual

molecules are imaged with fluorescence microscopy; iv) digital images are col-

lected by an automated image-acquisition system and image files are processed

to create single-molecule optical maps; v) individual molecule restriction maps

are overlapped by using GENTIG (GENomic conTIG) map-assembly software.

Briefly, GENTIG [2, 40] works by comparing single-molecule restriction maps

and estimating the probability that these two molecules arose from overlapping

genomic locations given a description of the likelihood of possible experimen-

tal errors resulting from incomplete digestion, spurious cuts, and sizing errors.

7Website of OpGen Inc. is http://www.opgen.com/

83



Through repeated overlapping of molecules, the assembler reconstructs the or-

dered restriction map of the genome. This technique has been previously applied

to map other bacterial genomes [33, 35, 36].

Species Genome Refseq ID Length(no. of nt.)

Escherichia coli CFT073 NC 004431 5,231,428

Escherichia coli K12 NC 000913 4,639,675

Escherichia coli O157 : H7 str. Sakai NC 002695 5,498,450

Escherichia coli O157 : H7 EDL933 NC 002655 5,528,445

EC1231 NA NA

400 NA NA

536 NA NA

AB1 NA NA

DEC5A NA NA

503 NA NA

886 NA NA

Table 6.1: Data Set I: 11 Escherichia Coli Strains

OpGen Inc. developed an interface for viewing optical-maps, called MapViewer.

MapViewer allows users to visualize optical-maps, to move maps around, pull

up sequence information when available, and change the orientation of the

maps. Figure 6.4 shows the optical maps for data set I using MapViewer.

A pairwise alignment between Escherichia coli O157 : H7 str. Sakai and

84



Escherichia coli O157 : H7 EDL933 is shown. Regions that match exactly

once are colored green, and regions that match to more than one locations are

colored red.

6.5.2 Data set II

28 genomic sequences of Enterobacteriaceae taxa are downloaded from the NCBI

database, and then cleaved “in silico” with the restriction enzyme BamHI. Their

optical maps were constructed using the SilicoMap software provided by Op-

Gen8. Information describing this data set is listed in Table 6.2. Figure 6.5

shows the optical maps for data set I using MapViewer.

6.6 CAPO Experiments and Discussion

Experimental results are provided in this section using CAPO on both real

optical mapping data of 11 E. coli strains and simulated optical mapping data

of 28 entire genomes of Enterobacteriaceae taxa. All of the tests were ran on a

2.4-GHz Pentium IV machine with 3GB of RAM.

6.6.1 Parameter Optimization

Users have choices for two parameters in CAPO: k (mersize) and ρ (cutoff value

involved in determining whether two restriction fragment lengths are ‘equal’

considering sizing errors). The effect of parameter settings in CAPO is tested

in the following experiments using the two data sets: k = 2, ρ = 0.9 (see

8The SilicoMap tool is built upon the BioPerl [51] toolkit which is able to perform an in

silico restriction digest, after which, it is straightforward to find the lengths of each of the

resulting fragments and create the map.

85



_Escherichia coli CFT073 BamHI

_Escherichia coli O157:H7 EDL933 BamHI

_Escherichia coli O157:H7 str.Sakai BamHI

_Escherichia coli K12 BamHI

_EC1231 BamHI

_400 BamHI

_536 BamHI

_AB1 BamHI

_DEC5A BamHI

_503 BamHI

_886 BamHI

Figure 6.4: View maps of Data set I using MapViewer. A pairwise alignment

between Escherichia coli O157 : H7 str. Sakai and Escherichia coli O157 :

H7 EDL933 is shown.

86



Species Refseq ID Length

Buchnera aphidicola str. APS(Acyrthosiphonpisum) NC 002528 640,681

Buchnera aphidicola str. Sg(Schizaphisgraminum) NC 004061 641,454

Buchnera aphidicola str. Bp(Baizongiapistaciae) NC 004545 615,980

Candidatus Blochmannia floridanus NC 005061 705,557

Candidatus Blochmannia pennsylvanicus str. BPEN NC 007292 791,654

Erwinia carotovora subsp. atroseptica SCRI1043 NC 004547 5,064,019

Escherichia coli CFT073 NC 004431 5,231,428

Escherichia coli K12 NC 000913 4,639,675

Escherichia coli O157 : H7 str. Sakai NC 002695 5,498,450

Escherichia coli O157 : H7 EDL933 NC 002655 5,528,445

Escherichia coli UTI89 NC 007946 5,065,741

Escherichia coli W3110 DNA AC 000091 4,646,332

Photorhabdus luminescens subsp. laumondii TTO1 NC 005126 5,688,987

Salmonella typhimurium LT2 NC 003197 4,857,432

Salmonella enterica subsp. enterica serovar Typhi Ty2 NC 004631 4,791,961

Salmonella enterica subsp. enterica serovar Typhi str. CT18 NC 003198 4,809,037

Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150 NC 006511 4,585,229

Salmonella enterica subsp. enterica serovar Choleraesuis str. SC −B67 NC 006905 4,755,700

Shigella flexneri 2a str. 301 NC 004337 4,607,203

Shigella boydii Sb227 NC 007613 4,519,823

Shigella sonnei Ss046 NC 007384 4,825,265

Shigella dysenteriae Sd197 NC 007606 4,369,232

Sodalis glossinidius str. ′morsitans′ NC 007712 4,171,146

Wigglesworthia glossinidia endosymbiont of Glossinabrevipalpis NC 004344 697,724

Y ersinia pestis CO92 NC 003143 4,653,728

Y ersinia pestis biovar Medievalis str. 91001 NC 005810 4,595,065

Y ersinia pestis KIM NC 004088 4,600,755

Y ersinia pseudotuberculosis IP 32953 NC 006155 4,744,671

Table 6.2: Data Set II: 28 Enterobacteriaceae Taxa

87



_Buchnera aphidicola str.Aps BamHI

_Buchnera aphidicola str.Bp BamHI

_Buchnera aphidicola str.Sg BamHI

_Candidatus Blochmannia floridanus BamHI

_Candidatus Blochmannia pennsylvanicus str.BPEN BamHI_Escherichia coli CFT073 BamHI

_Escherichia coli K12 BamHI

_Escherichia coli O157:H7 str.Sakai BamHI

_Escherichia coli O157:H7 EDL933 BamHI

_Escherichia coli UTI89 BamHI

_Escherichia coli W3110 DNA BamHI

_Erwinia carotovora subsp.atroseptica SCRI1043 BamHI

_Photorhabdus luminescens subsp.laumondii TTO1 BamHI

_Salmonella enterica subsp.enterica serovar Choleraesuis str.SC−B67 BamHI

_Salmonella enterica subsp.enterica serovar Paratyphi A str.ATCC9150 BamHI

_Salmonella enterica subsp.enterica serovar Typhi str.CT18 BamHI

_Salmonella enterica subsp.enterica serovar TyphiTy2 BamHI

_Salmonella typhimurium LT2 BamHI

_Shigella boydii Sb227 BamHI

_Shigella dysenteriae Sd197 BamHI

_Shigella flexneri 2a str.301 BamHI

_Shigella sonnei Ss046 BamHI

_Sodalis glossinidius str.’morsitans’ BamHI _Wigglesworthia glossinidia endosymbiont of Glossinabrevipalpis BamHI

_Yersinia pestis biovar Medievalis str.91001 BamHI

_Yersinia pestis CO92 BamHI

_Yersinia pestis KIM BamHI

_Yersinia pseudotuberculosis IP 32953 BamHI

Figure 6.5: View maps in Data set II using MapViewer

88



Parameter Setting a k = 2, ρ = 0.9 multi-merge mode

Parameter Setting b k = 3, ρ = 0.8 multi-merge mode

Parameter Setting c k = 4, ρ = 0.7 multi-merge mode

Parameter Setting d k = 3, ρ = 0.8 single-merge mode

Table 6.3: Experimented parameter settings

Figure 6.6); k = 3, ρ = 0.8 (see Figure 6.7); k = 4, ρ = 0.7 (see Figure 6.8)

9 . To tolerate sizing errors more flexibly it is reasonable to use smaller cutoff

value of ρ if a larger mersize is chosen.

Shown in Figure 6.6-Figure 6.8, the ‘best’ results (whose phylogenetic trees

are most biologically meaningful) are produced using k = 3, ρ = 0.8. Table 6.4

lists the dT measure for the two data sets using either SM-UPGMA or SM-NJ

with different parameter settings (see Table 6.3). For data set I the possible

maximum value of dT score is 16; For data set II the possible maximum value

of dT score is 50. It is shown in Table 6.4 that setting b produces the most

‘reliable’ trees (Trees produced using setting b differ less to trees using setting

a and c; trees produced using setting a differ more to trees using setting c.).

Based on these two observations we choose setting b (k = 3, ρ = 0.8) as the

default parameter setting.

9A phylogenetic tree produced by CAPO using the stable marriage algorithm combined

with the UPGMA method is referred as ‘SM-UPGMA tree’. A phylogenetic tree produced

by CAPO using the stable marriage algorithm combined with the NJ method is referred as

‘SM-NJ tree’.

89



886

Escherichia coli K12

EC1231

Escherichia coli CFT073

Escherichia coli O157:H7 EDL933

Escherichia coli O157:H7 str.Sakai

400

DEC5A

AB1

536

503

503

886

Escherichia coli CFT073

Escherichia coli K12

Escherichia coli O157:H7 EDL933

Escherichia coli O157:H7 str.Sakai

400

DEC5A

EC1231

536

AB1

A1: SM-UPGMA tree for data set I A2: SM-NJ tree for data set I

Candidatus Blochmannia pennsylvanicus str.BPEN
Salmonella enterica subsp.enterica serovar Paratyphi A str.ATCC9150
Salmonella enterica subsp.enterica serovar Typhi str.CT18
Salmonella enterica subsp.enterica serovar TyphiTy2
Salmonella enterica subsp.enterica serovar Choleraesuis str.SC-B67
Salmonella typhimurium LT2
Candidatus Blochmannia floridanus
Wigglesworthia glossinidia endosymbiont of Glossinabrevipalpis
Buchnera aphidicola str.Bp
Buchnera aphidicola str.Aps
Buchnera aphidicola str.Sg
Photorhabdus luminescens subsp.laumondii TTO1
Sodalis glossinidius str.’morsitans
Yersinia pestis biovar Medievalis str.91001
Yersinia pseudotuberculosis IP 32953
Yersinia pestis CO92
Yersinia pestis KIM
Escherichia coli CFT073
Escherichia coli UTI89
Escherichia coli K12
Escherichia coli W3110 DNA
Escherichia coli O157:H7 str.Sakai
Escherichia coli O157:H7 EDL933
Shigella dysenteriae Sd197
Shigella flexneri 2a str.301
Shigella sonnei Ss046
Erwinia carotovora subsp.atroseptica SCRI1043
Shigella boydii Sb227

Photorhabdus luminescens subsp.laumondii TTO1
Candidatus Blochmannia pennsylvanicus str.BPEN
Salmonella enterica subsp.enterica serovar Paratyphi A str.ATCC9150
Salmonella enterica subsp.enterica serovar Typhi str.CT18
Salmonella enterica subsp.enterica serovar TyphiTy2
Buchnera aphidicola str.Bp
Buchnera aphidicola str.Aps
Buchnera aphidicola str.Sg
Candidatus Blochmannia floridanus
Wigglesworthia glossinidia endosymbiont of Glossinabrevipalpis
Salmonella enterica subsp.enterica serovar Choleraesuis str.SC-B67
Salmonella typhimurium LT2
Shigella dysenteriae Sd197
Shigella boydii Sb227
Erwinia carotovora subsp.atroseptica SCRI1043
Escherichia coli K12
Escherichia coli W3110 DNA
Escherichia coli O157:H7 str.Sakai
Escherichia coli O157:H7 EDL933
Escherichia coli CFT073
Escherichia coli UTI89
Shigella flexneri 2a str.301
Shigella sonnei Ss046
Sodalis glossinidius str.’morsitans
Yersinia pseudotuberculosis IP 32953
Yersinia pestis biovar Medievalis str.91001
Yersinia pestis CO92
Yersinia pestis KIM

B1: SM-UPGMA tree for data set II B2: SM-NJ tree for data set II

Figure 6.6: Phylogenetic tree for data set I and II (k = 2, ρ = 0.9)

90



Escherichia coli K12

886

Escherichia coli CFT073

Escherichia coli O157:H7 EDL933

Escherichia coli O157:H7 str.Sakai

400

DEC5A

EC1231

536

AB1

503

EC1231

Escherichia coli K12

886

Escherichia coli CFT073

Escherichia coli O157:H7 EDL933

Escherichia coli O157:H7 str.Sakai

400

536

DEC5A

AB1

503

A1: SM-UPGMA tree for data set I A2: SM-NJ tree for data set I

Buchnera aphidicola str.Sg
Buchnera aphidicola str.Aps
Buchnera aphidicola str.Bp
Wigglesworthia glossinidia endosymbiont of Glossinabrevipalpis
Candidatus Blochmannia floridanus
Candidatus Blochmannia pennsylvanicus str.BPEN
Salmonella enterica subsp.enterica serovar Choleraesuis str.SC-B67
Salmonella typhimurium LT2
Salmonella enterica subsp.enterica serovar Paratyphi A str.ATCC9150
Salmonella enterica subsp.enterica serovar Typhi str.CT18
Salmonella enterica subsp.enterica serovar TyphiTy2
Photorhabdus luminescens subsp.laumondii TTO1
Shigella dysenteriae Sd197
Escherichia coli O157:H7 str.Sakai
Escherichia coli O157:H7 EDL933
Escherichia coli CFT073
Escherichia coli UTI89
Shigella boydii Sb227
Escherichia coli K12
Escherichia coli W3110 DNA
Shigella flexneri 2a str.301
Shigella sonnei Ss046
Erwinia carotovora subsp.atroseptica SCRI1043
Yersinia pestis biovar Medievalis str.91001
Yersinia pestis CO92
Yersinia pestis KIM
Sodalis glossinidius str.’morsitans
Yersinia pseudotuberculosis IP 32953

Erwinia carotovora subsp.atroseptica SCRI1043
Sodalis glossinidius str.’morsitans
Photorhabdus luminescens subsp.laumondii TTO1
Buchnera aphidicola str.Sg
Buchnera aphidicola str.Aps
Buchnera aphidicola str.Bp
Yersinia pseudotuberculosis IP 32953
Yersinia pestis biovar Medievalis str.91001
Yersinia pestis CO92
Yersinia pestis KIM
Escherichia coli K12
Escherichia coli W3110 DNA
Escherichia coli O157:H7 str.Sakai
Escherichia coli O157:H7 EDL933
Escherichia coli CFT073
Escherichia coli UTI89
Shigella flexneri 2a str.301
Shigella sonnei Ss046
Salmonella enterica subsp.enterica serovar Choleraesuis str.SC-B67
Salmonella typhimurium LT2
Salmonella enterica subsp.enterica serovar Paratyphi A str.ATCC9150
Salmonella enterica subsp.enterica serovar Typhi str.CT18
Salmonella enterica subsp.enterica serovar TyphiTy2
Wigglesworthia glossinidia endosymbiont of Glossinabrevipalpis
Candidatus Blochmannia floridanus
Candidatus Blochmannia pennsylvanicus str.BPEN
Shigella boydii Sb227
Shigella dysenteriae Sd197

B1: SM-UPGMA tree for data set II B2: SM-NJ tree for data set II

Figure 6.7: Phylogenetic tree for data set I and II (k = 3, ρ = 0.8)

91



Escherichia coli K12

886

Escherichia coli CFT073

Escherichia coli O157:H7 EDL933

Escherichia coli O157:H7 str.Sakai

400

AB1

EC1231

DEC5A

536

503

EC1231

Escherichia coli CFT073

Escherichia coli K12

Escherichia coli O157:H7 EDL933

Escherichia coli O157:H7 str.Sakai

536

503

400

AB1

DEC5A

886

A1: SM-UPGMA tree for data set I A2: SM-NJ tree for data set I

Wigglesworthia glossinidia endosymbiont of Glossinabrevipalpis
Buchnera aphidicola str.Sg
Photorhabdus luminescens subsp.laumondii TTO1
Buchnera aphidicola str.Bp
Salmonella enterica subsp.enterica serovar Choleraesuis str.SC-B67
Salmonella typhimurium LT2
Salmonella enterica subsp.enterica serovar Paratyphi A str.ATCC9150
Salmonella enterica subsp.enterica serovar Typhi str.CT18
Salmonella enterica subsp.enterica serovar TyphiTy2
Shigella boydii Sb227
Shigella sonnei Ss046
Shigella flexneri 2a str.301
Escherichia coli K12
Escherichia coli W3110 DNA
Escherichia coli O157:H7 str.Sakai
Escherichia coli O157:H7 EDL933
Escherichia coli CFT073
Escherichia coli UTI89
Buchnera aphidicola str.Aps
Shigella dysenteriae Sd197
Erwinia carotovora subsp.atroseptica SCRI1043
Sodalis glossinidius str.’morsitans
Candidatus Blochmannia floridanus
Candidatus Blochmannia pennsylvanicus str.BPEN
Yersinia pseudotuberculosis IP 32953
Yersinia pestis biovar Medievalis str.91001
Yersinia pestis CO92
Yersinia pestis KIM

Buchnera aphidicola str.Aps
Buchnera aphidicola str.Bp
Wigglesworthia glossinidia endosymbiont of Glossinabrevipalpis
Erwinia carotovora subsp.atroseptica SCRI1043
Sodalis glossinidius str.’morsitans
Shigella dysenteriae Sd197
Yersinia pseudotuberculosis IP 32953
Yersinia pestis biovar Medievalis str.91001
Yersinia pestis CO92
Yersinia pestis KIM
Escherichia coli CFT073
Escherichia coli UTI89
Escherichia coli K12
Escherichia coli W3110 DNA
Escherichia coli O157:H7 str.Sakai
Escherichia coli O157:H7 EDL933
Salmonella enterica subsp.enterica serovar Choleraesuis str.SC-B67
Salmonella typhimurium LT2
Salmonella enterica subsp.enterica serovar Paratyphi A str.ATCC9150
Salmonella enterica subsp.enterica serovar Typhi str.CT18
Salmonella enterica subsp.enterica serovar TyphiTy2
Candidatus Blochmannia floridanus
Candidatus Blochmannia pennsylvanicus str.BPEN
Buchnera aphidicola str.Sg
Photorhabdus luminescens subsp.laumondii TTO1
Shigella flexneri 2a str.301
Shigella boydii Sb227
Shigella sonnei Ss046

B1: SM-UPGMA tree for data set II B2: SM-NJ tree for data set II

Figure 6.8: Phylogenetic tree for data set I and II (k = 4, ρ = 0.7)

92



Data Set I

Method Settings dT score

SM-UPGMA

a b 14

b c 8

a c 12

b d 6

SM-NJ

a b 16

b c 14

a c 14

b d 12

Data Set II

Method Settings dT score

SM-UPGMA

a b 32

b c 28

a c 40

b d 20

SM-NJ

a b 24

b c 14

a c 32

b d 28

Table 6.4: Tree comparison measure by the partition metric using different

parameter settings

93



6.6.2 Phylogenetic Tree Evaluation

Since there are no ‘true’ phylogenetic trees available for comparison with our re-

sults, we evaluate the quality of these trees based on optical map alignments, the

taxonomy information given by the NCBI database, and tree topology overlap

between the two distance methods measured by the partition metric [44]. For ex-

ample, using the SOMA map aligner developed by OpGen, we find that the map

of Escherichia coli K12 is very similar to that of 886, and these two strains are

clustered closely by CAPO with default setting (see Figure 6.7-A1,A2). CAPO

also assigns the rest of three known E. coli strains close evolutionary distances.

Using data set II, we observe that CAPO clusters biologically closely related

taxa together (the Buchnera aphidicola strains, the Candidatus Blochmannia

strains, the E. coli strains, the Salmonella strains, etc.), as would be desired.

Lastly, phylogenetic trees produced by CAPO for the same data set using differ-

ent distance methods share substantial tree topology overlap, shown in Table 6.5

(Using default setting b, the dT score for data set I is 8, and the dT score for

data set II is 24) 10.

6.6.3 Impact of Single-Merge Mode and Multi-Merge

Mode

One might wonder whether there is any effect on the phylogenetic tree topology

by merging more than two clusters at one iteration. To address this concern, we

generated phylogenetic trees for both data sets using ‘single-merge mode’ (merge

exactly two clusters at one iteration), as shown in Figure 6.9. Compared with

trees produced in ‘multi-merge mode’ (merge multiple pairs of disjoint clusters

10Setting a, b, and c have the same meaning as in Talbe 6.4.

94



Data Set I

Methods Setting dT score

SM-UPGMA SM-NJ

a 14

b 8

c 12

Data Set II

Methods Setting dT score

SM-UPGMA SM-NJ

a 24

b 24

c 26

Table 6.5: Tree comparison measure by the partition metric for the same data

set using different distance methods

found by the stable marriage procedure at one iteration), as shown in Figure 6.7,

we do see some tree topology changes, especially between Figure 6.7-A2 and

Figure 6.9-A2. But most corresponding trees share substantial tree topology

overlap, as shown by the partition measure listed in Table 6.4.

6.6.4 Experiments with OpGen’s Definition of Pairwise

Map Similarity

OpGen’s experiments are shown in Figure 6.10. Apparently we define pairwise

map similarity differently from what OpGen does. So we also experimented Op-

Gen’s definition of pairwise map similarity in CAPO, as shown in Figure 6.11.

We observe a > 90% tree overlap between trees produced by using OpGen’s

method and trees produced by CAPO with the single-merge mode. More di-

95



886

Escherichia coli CFT073

Escherichia coli K12

Escherichia coli O157:H7 EDL933

Escherichia coli O157:H7 str.Sakai

400

DEC5A

EC1231

536

AB1

503

Escherichia coli CFT073

Escherichia coli K12

Escherichia coli O157:H7 EDL933

Escherichia coli O157:H7 str.Sakai

AB1

503

536

DEC5A

EC1231

400

886

A1: SM-UPGMA tree for data set I A2: SM-NJ tree for data set I

Buchnera aphidicola str.Sg
Buchnera aphidicola str.Aps
Buchnera aphidicola str.Bp
Wigglesworthia glossinidia endosymbiont of Glossinabrevipalpis
Candidatus Blochmannia floridanus
Candidatus Blochmannia pennsylvanicus str.BPEN
Photorhabdus luminescens subsp.laumondii TTO1
Erwinia carotovora subsp.atroseptica SCRI1043
Sodalis glossinidius str.’morsitans
Yersinia pseudotuberculosis IP 32953
Yersinia pestis biovar Medievalis str.91001
Yersinia pestis CO92
Yersinia pestis KIM
Shigella dysenteriae Sd197
Escherichia coli CFT073
Escherichia coli UTI89
Shigella boydii Sb227
Escherichia coli O157:H7 str.Sakai
Escherichia coli O157:H7 EDL933
Shigella sonnei Ss046
Shigella flexneri 2a str.301
Escherichia coli K12
Escherichia coli W3110 DNA
Salmonella enterica subsp.enterica serovar Choleraesuis str.SC-B67
Salmonella typhimurium LT2
Salmonella enterica subsp.enterica serovar Paratyphi A str.ATCC9150
Salmonella enterica subsp.enterica serovar Typhi str.CT18
Salmonella enterica subsp.enterica serovar TyphiTy2

Photorhabdus luminescens subsp.laumondii TTO1
Buchnera aphidicola str.Sg
Buchnera aphidicola str.Aps
Buchnera aphidicola str.Bp
Salmonella enterica subsp.enterica serovar Paratyphi A str.ATCC9150
Salmonella enterica subsp.enterica serovar Typhi str.CT18
Salmonella enterica subsp.enterica serovar TyphiTy2
Salmonella enterica subsp.enterica serovar Choleraesuis str.SC-B67
Salmonella typhimurium LT2
Wigglesworthia glossinidia endosymbiont of Glossinabrevipalpis
Candidatus Blochmannia floridanus
Candidatus Blochmannia pennsylvanicus str.BPEN
Erwinia carotovora subsp.atroseptica SCRI1043
Shigella dysenteriae Sd197
Shigella boydii Sb227
Shigella sonnei Ss046
Shigella flexneri 2a str.301
Escherichia coli K12
Escherichia coli W3110 DNA
Escherichia coli O157:H7 str.Sakai
Escherichia coli O157:H7 EDL933
Escherichia coli CFT073
Escherichia coli UTI89
Sodalis glossinidius str.’morsitans
Yersinia pseudotuberculosis IP 32953
Yersinia pestis biovar Medievalis str.91001
Yersinia pestis CO92
Yersinia pestis KIM

B1: SM-UPGMA tree for data set II B2: SM-NJ tree for data set II

Figure 6.9: Phylogenetic trees constructed by CAPO for data set I and II using

default setting and single merge mode.

96



  Escherichia_coli_CFT073

  DEC5A

  EC1231

  536

  AB1

  Escherichia_coli_O157:H7_EDL933

  Escherichia_coli_O157:H7

  503

  400

  Escherichia_coli_K12

  886

A: UPGMA tree

  Escherichia_coli_CFT073

  DEC5A

  EC1231

  AB1

  Escherichia_coli_O157:H7_EDL933

  536

  Escherichia_coli_O157:H7

  503

  400

  Escherichia_coli_K12

  886

B: Nearest Neighbor Tree

Figure 6.10: Phylogenetic trees generated by OpGen for data set I

97



vergency appears between trees using OpGen’s method and trees using CAPO

with the multi-merge mode. This divergency is due to the impact of single-

merge mode and multi-merge mode which need to be studied further in the

future.

6.6.5 Cluster Sizes

CAPO constructs phylogenetic trees in much fewer iterations than standard

distance methods. For data set I, CAPO SM-UPGMA trees and SM-NJ trees

are constructed in 5 and 6 iterations, respectively. For data set II, CAPO SM-

UPGMA trees and SM-NJ trees are constructed in 8 and 9 iterations, respec-

tively. Number of remaining clusters in each iteration is shown in Figure 6.12.

6.6.6 Implementation and Speed

The core module of CAPO is implemented in C++ and all experiments were

performed on a Pentium IV PC with 3 GB memory. Experiments for data set I

and II took ∼ 4 sec. and ∼ 18 sec., respectively. The speed of CAPO indicates

its potential for wide usage in analyzing large phylogenomic data set.

98



Escherichia coli CFT073

DEC5A

EC1231

536

AB1

Escherichia coli O157*H7 EDL933

Escherichia coli O157*H7 str.Sakai

503

400

Escherichia coli K12

886

DEC5A

AB1

Escherichia coli O157:H7 str.Sakai

503

EC1231

536

Escherichia coli CFT073

Escherichia coli O157:H7 EDL933

400

Escherichia coli K12

886

A1: UPGMA tree with single-merge mode A2: UPGMA tree with mulit-merge mode

DEC5A

Escherichia coli CFT073

400

Escherichia coli K12

886

EC1231

536

Escherichia coli O157*H7 EDL933

503

Escherichia coli O157*H7 str.Sakai

AB1

Escherichia coli CFT073

400

Escherichia coli K12

886

AB1

Escherichia coli O157*H7 EDL933

503

EC1231

536

Escherichia coli O157*H7 str.Sakai

DEC5A

B1: NJ tree with single-merge mode B2: NJ tree with mulit-merge mode

Figure 6.11: Phylogenetic trees generated by CAPO for data set I using OpGen’s

definition of pairwise map similarity

99



1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30
Number of clusters in each iteration during CAPO SM−UPGMA/SM−NJ process

Index of iteration

N
um

be
r 

of
 c

lu
st

er
s

Number of clusters using SM−UPGMA for data set I
Number of clusters using SM−NJ for data set I
Number of clusters using SM−UPGMA for data set II
Number of clusters using SM−NJ for data set II

Figure 6.12: Number of clusters in the iterations of the experiments of data set

I and II using CAPO SM-UPGMA/SM-NJ.

100



Chapter 7

Conclusions and Future Work

This dissertation presents two efficient comparative analysis tools for use in

comparative analysis based on sequence and on optical-map data, respectively.

These two tools handle different biological problems, but share substantial sim-

ilarity in their algorithm designs.

7.1 The COMBAT Tool for Pairwise Genome

Comparison

7.1.1 Summary

The annotation of whole-genome sequences to indicate their functional elements

is clearly one of the most important and difficult challenges facing the biosciences

community. The strategy of using cross-species DNA comparisons for identify-

ing functionally important sequences is a powerful approach. To get adequate

speed when performing whole genome comparison many high-speed alignment

programs incorporate a fast search stage that uses a heuristic to identify regions

101



likely to be homologous. Providing a way of indexing sequences is a key to an

efficient search stage. COMBAT indexes both genomic sequences. By using

an index of intervals instead of genomic positions, we have been able to reduce

by J-fold the size of the index for a vertebrate genome, and make it practical

to run whole genome comparison on a single CPU machine. We have shown

that COMBAT is capable of rapidly finding matching regions across vertebrate

species working in translated mode. Detailed alignments can then be retrieved

by using standard alignment algorithms [Smith-Waterman,1970; Needleman-

Wunsch,1981]. So, the complex large-scale genome comparison problem is sim-

plified by using COMBAT. We also solve the problem of finding a one-to-one

mapping in a multiple mapping list by using the stable marriage algorithm.

7.1.2 Future Work

The following issues related to COMBAT remains to be explored in the near

future:

• Try other mer generation methods (some are suggested in chapter 4-4.1.3)

in a manner reflecting different genome similarity level.

• Compare COMBAT to other global alignment methods to quantify COM-

BAT’s ability to detect translocated conserved elements.

• Use nucleotide sequences and other databases (including database of Ex-

pressed Sequence Tags, databases of regulatory sites, databases of RNAi,

etc.) than protein databases to extend COMBAT’s ability to identify

conserved non-coding regions.

102



• Evaluate COMBAT using simulated sequence data for artificial species

with known evolutionary rates.

• Explore the use of COMBAT for multiple genome comparison.

7.2 The CAPO Tool for Comparative Analysis

and Phylogeny with Optical-maps

7.2.1 Summary

Optical-maps provide a window through which one may explore the machinery

of genome evolution. CAPO tool is a novel, inexpensive and potentially rapid

method for inferring phylogeny based on pairwise optical map comparison and

bipartite graph matching. CAPO combines the stable matching algorithm with

either Unweighted Pair Group Method with Arithmetic Averaging (UPGMA)

or the Neighbor-Joining method (NJ) for constructing phylogenetic trees. This

new algorithm constructs phylogenetic trees in logarithmical steps in average

cases. Using optical maps constructed in silico and in vivo, we have demon-

strated many desirable properties of CAPO, and in particular, shown that the

UPGMA-flavored trees and the NJ-flavored trees it produces share substantial

overlapping tree topology and are biologically meaningful.

7.2.2 Future Work

The following issues related to CAPO needs to be explored in the future:

• Compute branch lengths in CAPO, and find some reasonable way of solv-

ing negative branch length problem.

103



• Further study the impact of the single-merge mode and multi-merge mode

on CAPO’s performance.

• Further study the performance of CAPO using various tree comparison

methods.

• Study the bias of the CAPO method by using simulated optical-map data

for artificial species with known evolutionary rates.

104



Appendix: The SOMA Tool for

Aligning Optical Maps

SOMA is a program for aligning optical maps and was developed at OpGen

Inc. Map alignments between two different strains are generated using a dy-

namic programming algorithm. This method finds the optimal alignment of

two restriction maps according to a scoring model that allows for fragment siz-

ing errors, false and missing cuts, and missing small fragments. For a given

alignment, the score is proportional to the log of the length of the alignment,

penalized by the differences between the two maps. More details are given in

the following description of the error model it uses:

1) Error Modeling

Optical maps may be corrupted by the following two primary kinds of errors:

sizing error and missing fragment error. Sizing errors can be modeled as follows:

stddev(L) = C ∗ sqrt(L)

with C ∼ 0.05 − 0.1 and L in Kbp. For example, given a fragment of length

L = 10 Kbp and assuming C = 0.1, the standard deviation of the measurement

error is 320 bp or a relative standard deviation of about 3.2%.

105



Another significant kind of error is due to limited measurement resolution:

cut sites that are “too close” together are often missed. That is, an in silico

map may have two cut sites that are close, and so appear as one cut site in

the optical consensus map. This process is modeled using a simple exponential

probability:

P (missing a cut of length d) = exp(−ln(2) ∗ d/m)

where d is the distance from the missing cut site to the nearest measured cut

site and m is the distance at which half of the cut sites are missing. In the

case of an optical consensus map, m is about 1 Kbp. Therefore, there is a 71%

chance of missing a cut that is 500 bp away from a detected cut and a 25%

chance of missing a cut that is 2 Kbp away from a detected cut.

2) Matching Method

SOMA uses a restriction matching algorithm that is similar to Smith-

Waterman. The scoring function is of the form:

s = size(L1, L2)− cut(m1,m2)

where L1 is the length of map 1, L2 is the length of map 2, m1 is the number

of mis-matched cuts on map 1, and m2 is the number of mis-matched cuts on

map 2. The size function is a linear function in |L1− L2|:

size(L1, L2) = 1− |L1− L2|/budget

where budget is the “error budget”, or how much relative error we will allow

before we say two fragments do not match (i.e., have a negative score). The

error budget is calculated based on the allowable discrepancy, measured as the

106



number of standard deviations, treated as “matching”. So, if one allows two

standard deviations of error for a match, then the error budget will be about

6.4% for a 10 Kbp fragment. The cut penalty function assigns a fixed cut penalty

(currently 1.5) to the number of mis-aligned cuts. However, the mis-aligned cuts

are weighted according to the missing fragment model described above. That

is, if it is “far” from the nearest matching cut site, then that mis-matched cut

is assigned a weight of one, 1 − P (d). The weight goes to zero as the distance

to the nearest cut site goes to zero, 1− P (d) → 0 as d → 0.

107



Bibliography

[1] S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and

D. Lipman. Gapped blast and psi-blast—a new generation of protein

database search programs. Nucleic Acids Res., 25:3389–3402, 1997.

[2] T. Anantharaman, B. Mishra, and D. Schwartz. Genomics via optical

mapping iii: Contiging genomic dna and variations.

[3] T. Anantharaman, B. Mishra, and D. Schwartz. Genomics via optical

mapping ii: Ordered restriction maps. Journal of Computational Biology,

4(2):91–118, 1997.

[4] T. Anantharaman, V. Mysore, and B. Mishra. Fast and cheap genome

wide haplotype construction via optical mapping. volume 10, pages 385–

396. Pacific Symposium on Biocomputing, 2005.

[5] C. Aston, B. Mishra, and D. Schwartz. Optical mapping and its potential

for large-scale sequencing projects. Trends in Biotechnology, 17:297–302,

1999.

[6] S. Batzoglou, L. Pachter, J. Mesirov, B. Berger, and E. Lander. Human

and mouse gene structure: Comparative analysis and application to exon

prediction. Genome Res., 10:950–958, 2000.

108



[7] E. Birney and R. Durbin. Using genewise in the drosophila annotation

experiment. Genome Res., 10:547–548, 2000.

[8] E. Birney and et al. Ensembl. Nucleic Acids Res., 32:468–470, 2004.

[9] N. Bray, I. Dubchak, and L. Pachter. Avid: A global alignment program.

Genome Res., 13:97–102, 2003.

[10] M. Brudno and B. Morgenstern. Fast and sensitive alignment of large

genomic sequences. In Proc. of the IEEE Computer Society Bioinformatics

Conference, pages 138–150, 2002.

[11] C. Burge and S. Karlin. Prediction of complete gene structures in human

genomic dna. J.Mol. Bio., 268:78–94, 1997.

[12] W. Cai, J. Jing, B. Irvin, L. Ohler, E. Rose, H. Shizuya, U. Kim, M. Simon,

T. Anantharaman, B. Mishra, and D. Schwartz. High-resolution restriction

maps of bacterial artificial chromosomes constructed by optical mapping.

Proc. Natl. Acad. Sci. U.S.A., 95:3390–3395, 1998.

[13] A. Delcher, S. Kasif, R. Fleischmann, J. Peterson, O. White, and

S. Salzberg. Alignment of whole genomes. Nucleic Acids Res., 27:2369–

2376, 1999.

[14] A. Delcher, A. Phillippy, J. Carlton, and S. Salzberg. Fast algorithms

for large-scale genmoe alignment and comparison. Nucleic Acids Res.,

30(11):2478–2483, 2002.

[15] J. Deogun, J. Yang, and F. Ma. Emagen: An efficient approach to multiple

whole genome alignment. In the 2nd Asia Pacific Bioinformatics Confer-

ence (APBC2004), volume 29, Dunedin, New Zealand, 2004.

109



[16] G. Estabrook, F. McMorris, and C. Meacham. Comparison of undirected

phylogenetic trees based on subtrees of four evolutionary units. Syst. Zool.,

34:193200, 1985.

[17] J. Felsenstein. Alternative methods of phylogenetic inference and their

interrelationship. Systematic Zoology, 28:49–62, 1979.

[18] J. Felsenstein. Evolutionary trees from dna sequences: A maximum likeli-

hood approach. Journal of Molecular Evolution, 17:368–376, 1981.

[19] J. Felsenstein. A likelihood approach to character weighting and what it

tells us about parsimony and compatibility. Biological Journal of Linnean

Society, 16:183–196, 1981.

[20] W. Fitch and E. Margoliash. The construction of phylogenetic trees - a

generally applicable method utilizing estimates of the mutation distance

obtained from cytochrome c sequences. Science, 155:279–284, 1967.

[21] K. Frazer, L. Elnitski, D. Church, I. Dubchak, and R. Hardison. Cross-

species sequence comparisons: A review of methods and available resources.

Genome Res., 13:1–12, 2003.

[22] D. Gale and L. Shapley. College admissions and the stability of marriage.

Am. Math. Monthly, 60(1):9–15, 1962.

[23] M. Gelfand, A. Mironov, and P. Pevzner. Gene recognition via spliced

sequence alignment. volume 93, pages 9061–9066, 1996.

[24] A. Goldberg, S. Plotkin, D. Shmoys, and E. Tardos. Using interiorpoint

methods for fast parallel algorithms for bipartite matchings and related

problems. SIAM Journal on Computing, 21(1):140–150, 1992.

110



[25] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Sci-

ence and Computational Biology. Cambridge University Press, New York,

1997.

[26] S. Henikoff and J. Henikoff. Amino acid substitution matrices from protein

blocks. Proc. Natl Acad. Sci. USA, 89:10915–10919, 1992.

[27] M. Hohl and E. Ohlebusch. Efficient multiple genome alignment. In Pro-

ceedings of the 10th Intervational Conference on Intelligent Systems for

Molecular Biology, pages 312–320, 2002.

[28] K. Iwama, D. Manlove, S. Miyazaki, and Y. Morita. Stable marriage with

incomplete lists and ties. In Proc. ICALP ’99, pages 443–452. 1999.

[29] W. James Kent. Blat-the blast-like alignment tool. Genome Res., 12:656–

664, 2002.

[30] J. Jing, Z. Lai, C. Aston, J. Lin, D. Carucci, M. Gardner, B. Mishra,

T. Anantharaman, H. Tettelin, L. Cummings, S. Hoffman, J. Venter, and

D. Schwartz. Optical mapping of plasmodium falciparum chromosome 2.

Genome Res., 9:175–181, 1999.

[31] W. Kent and A. Zahler. Conservation, regulation, synteny, and introns

in a large-scale c. briggsae - c. elegans genomic alignment. Genome Res.,

10:1115–1125, 2000.

[32] A. Krogh. Using database matches with for hmmgene for automated gene

detection in drosophila. Genome Res., 11:817–832, 2000.

111



[33] Z. Lai, J. Jing, C. Aston, V. Clarke, J. Apodaca, E. Dimalanta, D. Carucci,

M. Gardner, B. Mishra, and et al. A shotgun optical map of the entire

plasmodium falciparum genome. Nat. Genet., 23:309–313, 1999.

[34] I. Lee, D. Westaway, A. Smit, K. Wang, J. Seto, L. Chen, C. Acharya,

M. Ankener, D. Baskin, C. Cooper, and et al. Complete genomic sequence

and analysis of the prion protein gene region from three mammalian species.

Genome Res., 8:1022–1037, 1998.

[35] A. Lim, E. Dimalanta, K. Potamousis, G. Yen, J. Apodoca, C. Tao, J. Lin,

R. Qi, J. Shiadas, and et al. Shotgun optical maps of the whole escherichia

coli o157 :h7 genome. Genome Res., 11:1584–1593, 2001.

[36] J. Lin, R. Qi, C. Aston, J. Jing, T. Anantharaman, B. Mishra, O. White,

M. Daly, K. W. Minton, J. Venter, and D. Schwartz. Whole-genome shot-

gun optical mapping of deinococcus radiodurans. SCIENCE, 285:1558–

1562, 1999.

[37] B. M., C. Do, G. Cooper, M. Kim, and E. Davydov. Lagan and multi-lagan:

Efficient tools for large-scale multiple alignment of genomic dna. Genome

Res., 13:721–731, 2003.

[38] E. McCreight. A space-economical suffix tree construction algorithm. J.

ACM., 23:262–272, 1976.

[39] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile

graph matching algorithm and its application to schema matching. In Proc.

18th Intl. Conf. on Data Engineering (ICDE), San Jose CA, 2002.

112



[40] B. Mishra. Optical mapping. Encyclopedia of the Human Genome, Nature

Publishing Group, Macmillan Publishers Limited, London, UK, 4:448–453,

2003.

[41] B. Morgenstern. Dialign 2: improvement of the segment-to-segment ap-

proach to multiple sequence alignment. Bioinformatics, 15(3):211–218,

1999.

[42] B. Morgenstern, O. Rinner, S. Abdedda1̈m, D. Haase, K. Mayer, A. Dress,

and H. Mewes. Exon discovery by genomic sequence alignment. Bioinfor-

matics, 18(6):777–787, 2002.

[43] C. Notredame, D. Higgins, and J. Heringa. T-coffee: A novel method for

fast and accurate multiple sequence alignment. J. Mol. Biol., 302:205–217,

2000.

[44] D. Penny and M. Hendy. The use of tree comparison metrics. Syst. Zool.,

34:75–82, 1985.

[45] H. S. and H. J.G. Performance evaluation of amino acid substitution ma-

trices. Proteins, 17(1):49–61, 1993.

[46] N. SAITOU and M. NEI. The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Mol. Biol. Evol., 4:406–425, 1987.

[47] S. Schwartz, L. Elnitski, M. Li, M. Weirauch, and et al. Multipipmaker

and supporting tools: alignments and analysis of multiple genomic dna

sequences. Nucleic Acids Research, 31(13):3518–3524, 2003.

113



[48] S. Schwartz, W. Kent, A. Smit, Z. Zhang, R. Baertsch, R. Hardison,

D. Haussler, and W. Miller. Human-mouse alignments with blastz. Genome

Res., 13:103–107, 2003.

[49] S. Schwartz, Z. Zhang, K. Frazer, A. Smit, C. Riemer, J. Bouck, R. Gibbs,

R. Hardison, and W. Miller. Pipmaker-a web server for aligning two ge-

nomic dna sequences. Genome Res., 10:577–586, 2000.

[50] P. Sneath and R. Sokal. The principles and practice of numerical classifi-

cation. Numerical Taxonomy, W. H. Freeman, San Francisco, 1973.

[51] J. Stajich, D. Block, K. Boulez, S. Brenner, S. Chervitz, C. Dagdigian, and

et al. The bioperl toolkit: Perl modules for the life sciences. Genome Res.,

12(10):1611–1618, 2002.

[52] B. Sun, J. Schwartz, O. Gill, and B. Mishra. Combat: Search rapidly for

highly similar protein-coding sequences using bipartite graph matching. In

Computational Science - ICCS 2006: 6th International Conf., pages 654–

661, Reading, UK., 2006.

[53] W. Taylor. Protein structure comparison using bipartite graph matching

and its application to protein structure classification. Mol. Cell Proteomics,

1(4):334–339, 2002.

[54] J. Thompson, D. Higgins, and T. Gibson. Clustal w: improving the sensi-

tivity of progressive multiple sequence alignment through sequence weight-

ing, position-specific gap penalties and weight matrix choice. Nucleic Acids

Research, 22(22):4673–4680, 1994.

114



[55] M. S. Waterman and T. F. Smith. On the similarity of dendrograms. J.

Theoret. Biol., 73(4):789–800, 1978.

115


