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The law of causality ... is a relic of a bygone age, surviving, like
the monarchy, only because it is erroneously supposed to do no
harm ...

–Bertrand Russell, On the Notion of Cause. Proceedings of the
Aristotelian Society 13: 1-26, 1913.
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Mendel

Experimental hybridization in plants – Empirical Studies

Inheritance of physical units (later dubbed “genes”)

Principle of Inheritance : A universal theory to explain
how traits in offspring can be predicted from traits in
parents.

B Mishra Computational Systems Biology: Biology X



Outline
Mendel’s Laws

Genetic Data

Experiments on Garden Peas
Statistical Significance

Mendel’s Analysis

Rules for
(a) Predicting genotypes of the offspring from the
genotypes of the parents;
(b) Modeling how genotypes are related to phenotypes.

Note : Genes and genotypes could not be observed
(underlying biology of cell-division, fertilization, genomic
programs, etc. were unknown to Mendel).

Mendel proposed A Genetic Model: probability distribution
for the trait conditional on the underlying genotypes at the
hypothetical disease locus.
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Mendel’s Models

Dichotomous (Mendelian) traits , Deterministic
Outcomes , No co-dependences , etc.

These models can be generalized further: using statistical
hypothesis testing and with estimation of parameters in the
genetic models (Model Selection).
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Mendel, 1865, “Experiments in Plant Hybridization”

Eight years of experiments with garden peas:
Experiment Design

1 Very simple (Mendelian) traits
2 Large number of sample of crosses
3 Avoiding unintended cross-fertilization
4 Choosing hybrids with no reduction of fertility (no selection

bias)
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Relations

Traits 7→ determined by genotypes 7→ determined by
Genes

Traits are Mendelian; Genotype-Phenotype relation is
deterministic (full-penetrance); Genotypes are simple
genetic loci (underlying a single a trait); Traits are
neutral(!); Genes are bi-allelic (a: wild-type; A: mutant)
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Simplicity of Mendelian Experiment

Constant Differentiating Characteristics . Chose simple
dichotomous traits and avoided “transitional & blended
traits.”

Used F1 (first generation hybrid) and P (pure forms) to
infer genotypes. Used a self-pollinating (highly inbred)
plant which can also cross-pollinate.

Underlying Assumptions : (i) Two genetic variants A and
a; (ii) Diploidy: Pure forms are homozygous AA and aa
(from self-pollinating inbreds); & (iii) Cross-pollination to
create hybrid forms (F1, F2, etc.) with heterozygous
genotypes Aa.
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Since only one of the two possible phenotypic forms is
observed in F1 hybrids, it’s possible to infer the novel
association between genotypes and traits.

Traits appearing in F1 Aa = Dominant

Traits disappearing from F1 Aa = Recessive

equivalently,

P(recessive form of trait | aa) = 1

P(recessive form of trait | AA) = 0

P(dominant form of trait | AA) = 1

P(dominant form of trait | aa) = 0
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Deterministic Model

{Aa, AA} 7→ DominantTrait

{aa} 7→ RecessiveTrait

A causes “Dominant Trait.”
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Reappearance of the recessive form

Second generation hybrids F2 = Offsprings of F1 hybrids;
F2 has both recessive and dominant forms in the ratio 1 : 3

P(dominant form of trait | Aa) = 1

P(recessive form of trait | Aa) = 0

Reappearance of the recessive form – genes for the
recessive form remained intact in F1

AA 7→ 1/4; Aa 7→ 1/2; aa 7→ 1/4

Dominant 7→ 3/4; Recessive 7→ 1/4

Dominant : Recessive = 3 : 1
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Mendel’s First Law: Segregation

One allele of each parent is randomly and independently
selected with probability 1/2 for transmission to the
offspring; the alleles unite randomly to form the offspring’s
genotype.
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Mendel’s Second Law: Segregation

The allele’s underlying two or more different traits are
transmitted to offspring independent of each other; the
transmission of each unit separately follows the first law of
segregation.
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Genetic Model

Find the relationship (usually probabilistic) between an
individual’s genotype and phenotype.

Genetic Epidemiology : Binary trait Y (Affected: Y = 1 vs.
unaffected: Y = 0)

Y = g(X1, X2, . . .),

where Xi ’s are (quantitative) intermediate phenotypes or
endophenotypes — reproducible assessment of the
disease features .
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Individual’s Phenotype

Individual’s phenotype at a marker = Combination of their
two alleles at that locus.

G is biallelic (also, called di-alleleic)... A =
rare/minor/mutant allele; a =
frequent/major/wild-type/normal allele

Genotypes: AA & aa are minor & major homozygous,
resp. Aa is heterozygous.

They are sought at DSL: Disease Susceptibility locus.
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D-Allele

D-allele is the Disease variant or Disease susceptibility
allele.

The genotype-phenotype relation is deterministic or
probabilistic.

The probabilistic relation is described a penetrance
function P(Y |G).

P(Y = 1|G) + P(Y = 0|G) = 1.

If

H0 : P(Y |G = dd) = P(Y |G = DD) = P(Y |G = Dd) = 0,

then the disease susceptibility locus G has no effect on the
disease status Y .
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Mode of Inheritance

How parameters of the distribution of Y depend on the
number of disease allele?
Four modes of inheritance:

Dominant
Recessive
Additive
Codominant

P(Y = 1|DD) = 1; P(Y = 1|dd) = 0;

P(Y = 1|Dd) = αP(Y = 1|DD) + P(Y = 1|dd).

Dominant 7→ α = 1; Additive 7→ α = 1/2; Recessive
7→ α = 0

Co-dominant makes no assumption about the relation
among the three penetrance function.
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Reduced Penetrance Models

For some 0 ≤ β0 < 1 & 0 < β1 ≤ 1,

P(Y = 1|DD) = β1; P(Y = 1|dd) = β0.

Phenocopies : Disease could also be caused by another
genetic locus or possibly a non-genetic co-variate.
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GLM: Generalized Linear Model

g(·) is a link function; E(·) = expectation:

g(E(Y |X )) = β0 + X ′β1.

X = Coding of genotype in terms of the mode of
inheritance.
Logistic link

log
E(Y |X )

1 − E(Y |X )
= β0 + X ′β1.

Log(relative risk link

log E(Y |X ) = β0 + X ′β1.

Null Hypothesis
H0 : β1 = 0.

Acceptance implies no relationship between the gene and
the trait.
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Difficulties

Effects leading to spurious causal explanations:
Confounding and effect mediation
A confounder is a variable that is: (1) associated with the
exposure (cause) variable; (2) independently associated
with the outcome (effect) variable; and (3) not in the causal
pathway between exposure and disease.
Example: Heavy alcohol consumption (the exposure) is
associated with the total cholesterol level (the outcome).
However smoking tends to be associated with heavy alcohol
consumption. Smoking is also associated with high cholesterol
levels among the individuals who are not heavy alcohol users.

A confounder is defined as a clinical or demographic
variable that is associated with the genotype and the trait
under investigation.
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Difficulties

A variable lying on the causal pathway between the
predictor and the outcome is called an effect mediator or
causal pathway variable.

Genotype affects the trait through alteration of the mediator
variable.

A particular SNP variant may make an individual more
likely to smoke and smoking would then cause cancer.
Here smoking is an effect mediator.
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Contingency Table

Three genotypes for a given SNP: homozygous wildtype
aa, heterozygous Aa and homozygous rare/ AA.

The data can be represented by the 2 × 3 contingency
table. See below.

Odds Ratio : Ratio of the odds of disease among the
exposed to the odds of disease among the unexposed.

Genotype ≡ exposure

Gen: Gen: Gen:
aa Aa AA

Dis: + n11 n12 n13 n1·

Dis: − n21 n22 n23 n2·

n·1 n·2 n·3 n
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Odds Ratio

Odds Ratio:

OR =
Pr(D+|E+)/[1 − Pr(D+|E+)]

Pr(D+|E−)/[1 − Pr(D+|E−)]

In genetics, we calculate the OR for each genotype with
relation to the homozygous wildtype genotype, AA.

ORaa,AA =
(n11/n·1)/(n21/n·1)

(n13/n·3)/(n23/n·3)
=

n11n23

n21n13
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Dichotomized Contingency Table

Dichotomizing genotype priors

E+ = {Aa, aa} and E− = {AA}
The data can be represented by the 2 × 2 contingency
table. See below.

Gen: Gen:
{aa, Aa} AA

Dis: + n11 n12 n1·

Dis: − n21 n22 n2·

n·1 n·2 n
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Odds Ratio

Odds Ratio:

ÔR =
(n11/n·1)/(n21/n·1)

(n12/n·2)/(n22/n·2)
=

n11n22

n21n12
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Fisher’s Exact Test

What is the probability of getting the 2 × 2 table by chance

p =

(
n1·

n11

)(
n2·

n21

)
/

(
n

n·1

)
=

n1·!n2·!n·1!n·2!

n!n11!n12!n21!n22!

This formula gives the exact probability of observing this
particular arrangement of the data, assuming the given
marginal totals, on the null hypothesis that te two
categories of genotypes are equally likely to have the
disease.
In other words, the probability p indicates how well the data
fit the hypothesis: “the single or double mutation (A 7→ a)
cause the disease.”
If p ≪ θ (i.e., the probability is very very small), we can
reject the null hypothesis, and conclude that “the mutation
(A 7→ a) has a necessary causal role in the disease.”
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Fisher’s exact test

Fisher’s exact test is a statistical test used to determine if
there are nonrandom associations between two categorical
variables. — E.g., Genotypes and a Categorical Trait.

Let there exist two such variables X and Y , with m and n
observed states, respectively.

Now form an m × n matrix in which the entries aij represent
the number of observations in which x = i and y = j .
Calculate the row and column sums Ri and Cj ,
respectively, and the total sum

N
∑

i

Ri =
∑

j

Cj .

of the matrix.
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Then calculate the conditional probability of getting the
actual matrix given the particular row and column sums,
given by

Pcutoff =
(R1!R2! · · ·Rm!)(C1!C2! · · ·Cn!)

N!
∏

ij aij !

which is a multivariate generalization of the
hypergeometric probability function .

Now find all possible matrices of nonnegative integers
consistent with the row and column sums Ri and Cj . For
each one, calculate the associated conditional probability
using this formula, where the sum of these probabilities
must be 1.
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To compute the P-value of the test, the tables must then be
ordered by some criterion that measures dependence, and
those tables that represent equal or greater deviation from
independence than the observed table are the ones whose
probabilities are added together.

There are a variety of criteria that can be used to measure
dependence. In the 2 × 2 case, which is the one Fisher
looked at when he developed the exact test, either the
Pearson chi-square or the difference in proportions (which
are equivalent) is typically used.

Other measures of association, such as the
likelihood-ratio-test, -squared, or any of the other
measures typically used for association in contingency
tables, can also be used.
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Pearson’s chi-square (χ2) test

Null hypothesis states that the “frequency distribution of
certain events observed in a sample is consistent with a
particular theoretical distribution.”

The events considered must be mutually exclusive and
have total probability 1. The events each cover an outcome
of a categorical variable.

Used for (1) Tests of goodness of fit and (2) Tests of
independence.

Example : Test the hypothesis that an ordinary six-sided
die is “fair,” i.e., all six outcomes are equally likely to occur.
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A test of independence assesses whether paired
observations on two variables, expressed in a contingency
table, are independent of each other. E.g., association
between a categorical exposure (genotype) and
categorical disease variable (trait).

In case of a 2 × 2 contingency table test of no association
between rows and columns ≡ the single null hypothesis
H0 : OR = 1. That is, expected count

n11 ≈ n·Pr(D+)Pr(E+) = n(n1./n)(n.1/n) = E11 = n1.n.1/n.
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General Scheme

The expected count for the (i , j) cell is given by
Eij = ni .n.j/n, where i = 1, · · · , r (rows) and j = 1, · · · , c
(columns).

Let the corresponding observed cell counts be denoted by
Oij .

Pearson’s χ2-statistics is given by

χ2 =
∑

i ,j

(Oij − Eij)
2

Eij
∼ χ2

(r−1)(c−1).

That is, this statistics has χ2-distributions with
(r − 1)(c − 1) degrees of freedom.
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p-value

The χ2 statistic can then be used to calculate a p-value by
comparing the value of the statistic to a χ2-distribution.

A χ2 probability ≤ 0.05 is commonly interpreted as
justification for rejecting the null hypothesis that the row
variable is unrelated (that is, only randomly related) to the
column variable.

Fisher’s exact test is preferable when at least 20% of the
expected cell counts are small (Eij < 5).
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Cochran-Armitage (C-A) Trend Test

The Cochran-Armitage test for trend is typically used in
categorical data analysis when some categories are
ordered.

For instance, with a biallelic locus with three genotypes
aa = 0, aA = 1, and AA = 2, ordered by the number of A
alleles, it can be used to test for association in a 2 × 3
contingency table.
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Define a statistic

T =
3∑

i=1

ti(n1in2. − n2in1.),

where ti ’s are weights.
Null hypothesis (H0) of no association indicates that

E(T ) = 0, var(T ) =
(n1.

n2.

)

n

3∑

i=1

t2
i n

.i(n − n
.i)− 2

2∑

i=1

3∑

j=i+1

ti tj n.in.j

p-values are computed assuming that T/
√

var(T ) ∼ N(0, 1).

Gen: Gen: Gen:
aa Aa AA

Dis: + n11 n12 n13 n1·

Dis: − n21 n22 n23 n2·

n·1 n·2 n·3 n
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Another Interpretation

If we let pj be the probability of the disease for the j th
genotype column, and Sj is the score for the j th column,
i.e. Sj = number of A alleles +1, then the C-A test is
testing for the trend by solving the following linear
regression

pj = α + βSj .

The null hypothesis H0 is then tested y checking the trend:
β = E(T ) = 0.
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Correlation

The correlation coefficient between two random variables
is defined as the ratio of the covariance between these two
variables and the product of their standard deviations.

cc(X , Y ) =
cov(X , Y )√

var(X )var(Y )
.

The correlation coefficient is a measure of linear
association between two variables and takes values
between −1 and +1.
Two most common sample-based estimates of the
correlation coefficient: (1) Pearson’s product-moment
correlation coefficient and (2) Spearman’s rank correlation
coefficient. Pearson’s coefficient is highly sensitive to
outliers!
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LD and HWE

Two important concepts to explore

(1) LD: Linkage Disequilibrium

(2) HWE: Hardy-Weinberg Equilibrium

Concepts regarding the genetic component of the data —
No connection to traits.
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LD and HWE

Both LD and HWE are measures of allelic association....

LD measures the associations among sites along the
genome

HWE measures the association at a single site between
pair of homologous chromosmes.
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Linkage Disequilibrium (LD)

Association between two adjacent variant sites become
lost over time as recombination events occur in the region
separating them. Asymptotically the genomes will go to
linkage equilibrium, making all the sites acting
independently.

If the sites are all independent then only the “causal
variant” site will contribute to the “probability raising” and
will not have any “screening off” due to some other
confounding (correlated) sites.

However, in general the variant sites are not yet in linkage
equilibrium and there exist strong dependence among the
sites.
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The SNP sites that are usually analyzed in GWAS
could be within genes, but may not be functional. That
is, these SNP sites may not directly cause the disease.

Usually “tag SNPs” that are analyzed are selected to
represent the haplotypes occurring within a haplotype
block–they are non-functional but closely associated to
functional/causal SNPs.

These sites are likely to be associated with disease
because they are in LD (Linkage Disequilibrium ) with the
functional variant.

LD is measured in terms of two closely related measures:
D′ and r2.

These measures are very closely related to Pearson’s
χ2-statistics.
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LD: D′

Consider the distribution of alleles for n individuals across
two sites: Assume that the two sites are independent of
each other – in Linkage Equilibrium .
The presence of an allele at one site does not influence the
particular allele observed at the second site.
Assume: At site 1 the alleles are A and a, with population
frequencies pA and pa, respectively. At site 2 the alleles
are B and b, with population frequencies pB and pb,
respectively.

Site 2
B b

Site A n11 = NpApB n12 = NpApb n1· = NpA

1 a n21 = NpapB n22 = Npapb n2· = Npa

n·1 = NpB n·2 = Npb N = 2n

B Mishra Computational Systems Biology: Biology X
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LD: D′

If sites 1 and 2 are in fact associated with one another,
then the observed counts will deviate from the numbers
shown in the earlier table.

Represent the deviation by a single scalar D.

H0 : D = 0 corresponds to the null hypothesis that the two
sites are independent (in LE: Linkage Equilibrium).

Site 2
B b

Site A n11 = N(pApB + D) n12 = N(pApb − D) n1·

1 a n21 = N(papB − D) n22 = N(papb + D) n2·

n·1 n·2 N = 2n
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Estimating D′

D can be expressed in terms of the joint probability of A
and B and the product of the individual allele probabilities:

D = pAB − pApB.

Note that we can estimate D as

D̂ = p̂AB − p̂Ap̂B = p̂AB − (n1·/N)(n·1/N).

p̂AB has to be estimated by an MLE estimator

B Mishra Computational Systems Biology: Biology X
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Estimating D′

Let θ = (pAB , pAb, paB, pab) be estimated from the genotype
counts from two biallelic loci

log L(θ|n11, . . . , n33)

∝ (2n11 + n12 + n21) log pAB + (2n13 + n12 + n23) log pAb

+ (2n31 + n21 + n32) log paB + (2n33 + n32 + n23) log pab

+ n22 log(pABpab + pAbpaB).

Site 2
BB Bb bb

Site AA n11 n12 n13

1 Aa n21 n22 n23

aa n31 n32 n33

B Mishra Computational Systems Biology: Biology X
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One can estimate D by first substituting pApB + D for pAB,
pApb − D for pAb, etc. and solve the maximization problem
for D̂ using numerical optimization.

Alternatively, write pAb = pA − pAB, paB = pB − pAB, and
pab = 1 − pA − pB − pAB , and estimate pAB. Solve for
D̂ = p̂AB − p̂Ap̂B.

A rescaled value of D, given by D′ is used for a measure of
LD:

D′ =
|D|

Dmax
,

where Dmax bounds D from above:

Dmax =

{
min(pApb, papB), if D > 0;

min(pApB, papb), otherwise.
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Note that 0 ≤ D′ ≤ 1

If D′ is close to 1, then the two sites are assumed to be in
“complete LD.” The sites are in the same haplotype block.

If D′ is close to 0, then the two sites are assumed to be
independent — with a recombination hot-spot separating
them. The sites belong to two distinct adjacent haplotype
blocks.
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The quantity r 2

The quantity r2, measuring LD, is based on Pearson’s
χ2-statistic for the test of no association.

Consider an r × c contingency table corresponding to the
counts of individuals with two bi-allelic sites: Site 1: A, a
and site 2: B, b.

χ2
1 =

∑

i ,j

(Oij − Eij)
2

Eij
,

where i = 1, . . ., r ; j = 1, . . ., c; and Oij and Eij are
respective observed and expected cell counts for the i , j th
cell of an r × c table.

r2 is defined as
r2 = χ2

1/N.

B Mishra Computational Systems Biology: Biology X



Outline
Mendel’s Laws

Genetic Data
Linkage Disequilibrium (LD)

Relation between D′ and r 2

(Oij − Eij)
2 = (ND)2.

Thus

χ2
1 =

∑

ij

(ND)2

Eij

= (ND)2
(

1
NpApB

+
1

NpApb
+

1
NpapB

+
1

Npapb

)

= ND2
(

papb + papB + pApb + pApB

pApBpapb

)

=
ND2

pApBpapb
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Relation between D′ and r 2

In summary,

r2 = χ2
1/N =

D2

pApBpapb
.

Thus r2 is simply D2, further adjusted by the marginal
probabilities.

r2 is usually preferred, because of its straightforward
relationship with the χ2 statistics and the null hypothesis
H0 that the two sites are independent.
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Caveat

With the currently available technology (e.g., genotype
sequencing), haplotypes are not observed — so the cell
counts in the contingency tables are inferred.

The estimation process (MLE or EM), introduces further
errors into the r2 measures — making it highly unreliable.

Additionally, Pearson’s χ2-test assumes independent
observations — which may be violated in the absence of
HWE (Hardy-Weinberg Equilibrium). Note that the
contingency table includes two observations per person
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Summary

D′ and r2 are both measures of linkage disequilibrium
between loci; they estimate the amount of association
between two sites.

Conclusions from these must be drawn with caution — as
they depend on certain implicit assumptions that are often
violated.

The Key problem: Haplotype Phasing Problem
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LD Blocks

Determine whether a group of adjacent loci are in LD.

A measure of LD across a region (comprising multiple
SNPs) is the average of all pairwise measures of D′

D̄′ =
1
nL

∑

i ,j∈L

D′

ij ,

where
L is a set of loci within a region of interest
D′

ij is the measure of LD between loci i and j for i, j ∈ L
nL is the number of ways of choosing two loci from the set L
(i.e.,

(
|L|
2

)
)

the summation is over all such pairs of loci
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LD Blocks

Through characterization of regions of high average LDs, a
genome (i.e., human’s) can be partitioned in to LD Blocks.

These blocks are separated by (recombination) hotspots –
regions in which recombination events might have
occurred with very high frequencies (and likely to happen
in the future).

In general, alleles tend to be more correlated within an LD
block than across...
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SNP tagging

Once regions of high LD are identified, we will aim to
determine the smallest subset of SNPs that characterizes
the variability in the region — this process is called SNP
tagging and the selected SNPs are called Tag SNPs .

Example: Consider two SNPs (i and j) that are in perfect
LD so that D′

i ,j = 1. Genotyping both SNPs are
unnecessary as their relationship is deterministic —
knowledge of the genotype of one SNP completely defines
the genotype of the second and there is no need to
sequence both loci.

Few (say 3 - 5) well-defined tag SNPs capture a substantial
majority of the genetic variability within an LD block.
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TAG SNPs

Note: in general, tag SNPs are correlated with the true
disease causing variant – but are not typically functional
themselves.
LD blocks differ substantially across race and ethnicity
groups: It’s shorter in Black/non-Hispanics than White and
Hispanics.
African population has much more genetic variability. It is
older with many more recombination events than the
European population.
A tag SNP may capture information on the true
disease-causing variant in one racial group, but not
another.
Thus in any GWAS, understanding population
substructures and its effect on measures of LD is
CRUCIAL!!!!
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LD and Population Stratification

Population Stratification : Presence of multiple
subgroups (of sub-populations) among which there is
minimal mating and gene-flow.

Ignoring population stratification in a sample could lead to
confounding conclusions.

Population ad mixtures pose additional problems.

Simpson’s paradox – Yule-Simpson Effect. This paradox
occurs in the presence of a confounding variable that is not
properly accounted for in the analysis.
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Hardy-Weinberg Equilibrium (HWE)

HWE denotes independence of alleles at a single site
between two homologous chromosomes.

For instance, consider the simple case of biallelic SNP with
genotypes AA, Aa and aa.

HWE implies that the probability of an allele occurring on
one homolog does not affect which allele will be present on
the second homolog:

pAA = p2
A, pAa = paA = pApa, and paa = p2

a,

where
pA + pa = 1.

B Mishra Computational Systems Biology: Biology X



Outline
Mendel’s Laws

Genetic Data
Linkage Disequilibrium (LD)

Violation of HWE

Tests of HWE include Pearson’s χ2-test and Fisher’s exact
test.

When more than 20% of the expected counts are less than
five, Fisher’s exact test is recommended. The χ2-test is
computationally efficient but relies on asymptotic theories.

The test s are based on the 2 × 2 table of genotypes at a
single locus, as shown below:

Homolog 2
A a

Homolog A n11 n12 n1·

1 a n21 n22 n2·

n·1 n·2 n
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χ
2-test

Note: n11 and n22 are the counts for major and minor
homozygous individuals: AA and aa, respectively.

The two heterozygous genotypes are indistinguishable:
One can only observe n∗

12 = n12 + n21.

The expected values, corresponding to observations
O11 = n11, O12 = n∗

12 and O22 = n22 are

E11 = np2
A, E12 = 2npA(1 − pA), and E22 = n(1 − pA)2.

The χ2-statistic:

χ2 =
∑

i=1,2

(Oij − Eij)
2

Eij
∼ χ2

1.
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HWE

Let i index the individual in a sample of n independent
individuals from a population with allele frequency pA. Let
Xi(i = 1, . . . , n) denote the number of A alleles the i th
person in the sample. Let X+ denote the summation of Xi

over all n individuals.

Xi ∼ Bin(2, pA); E(Xi) = 2pA; var(Xi) = 2pAqA.

An estimate for pA is

p̂A =
1

2n

∑

i

Xi =
2n11 + n∗

12

2n
.

Thus

E(p̂A) =
1
2n

∑

i

E(Xi ) = pA, & var(p̂A) =
1

4n2

∑

i

var(Xi ) =
pAqA

2n
.
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HWE

In large populations, p̂A is approximately N(pA, pAqA/2n).

To test the null hypothesis H0 : pA = p0 at the α-level, we
reject if the magnitude of

Z =

√
2n(p̂A − p0)√
p0(1 − p0)

is greater than the (1 − α)/2-percentile (Z(1−α)/2) of a
standard normal distribution.
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HWD

A statisticaly significant test of HWE suggests that the SNP
under investigation is in Hardy-Weinberg Disequilibrium
(HWD).

HWD is usually assumed to be resulting from self-seleting
mates: non-random mating.

Deviation from HWE may also indicate non-neutral
evolution: positive or negative selection

Question: What is the relationship between HWE and
population substructure?
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HWE and Population Substructure

HWE is based on the assumptions of: random mating, no
inbreeding, infinite population size, discrete generations,
equal allele frequencies in males nd females, and no
mutation, migration or selection.
Note:

1 HWE implies constant allele frequencies over generations.
2 HWE is violated in the presence of population admixtures.
3 HWE is violated in the presence of population stratification.

These observations and the corresponding statistical tests
allow one to understand the population substructures and
use them to correct the causal analysis of GWAS.
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Allele Frequencies over Generations

The genotype of a parent (at a single biallelic locus):

pr(AA) = p2
A, pr(Aa) = 2pAqA, and pr(aa) = q2

A,

where qA = pa = (1 − pA).
The inheritance pattern. The conditional probability that an
offspring inherits allele y , given that the parent has
genotype X is pr(y |X ).

pr(A|AA) = 1, pr(A|Aa) = 1/2, and pr(A|aa) = 0.

Thus the population frequency of the allele A in the next
generation is given by

pr(A) = pr(A|AA)pr(AA) + pr(A|Aa)pr(Aa) + pr(A|aa)pr(aa)

= p2
A + pAqA + 0 = pA.
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Population Admixtures

Population Admixtures occur as a result of matings
between two populations for which alele frequencies differ.

Assume that the two populations have two different
frequencies for the allele A: p1A and p2A.

Then the offsprings resulting from random matings of the
two populations (assuming infinite populations sizes) will
have frequencies:

pr(AA) = p1Ap2A, pr(Aa) = p1Aq2A + p2Aq1A, and

pr(aa) = q1Aq2A.

Note: qiA = 1 − piA, i = 1, 2.
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Population Stratification

Population stratification is the combination of populations
in which breeding occurs within but not between
sub-populations.

Within each sub-populations, we may have HWE (since the
observed counts are as expected under random mating).

Assume population 1 has allele frequency: pr(A) = p1A

and population 2: pr(A) = p2A. Assume that the two
populations are of equal size, but p1A ≪ p2A. The
combined frequency is pA = (p1A + p2A)/2, but

pr(AA) = (p2
1A + p2

2A)/2 ≈ p2
2A/2, but

p2
A = (p1A + p2A)2/4 ≈ p2

2A/4.
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Failure of HWE

Counting:

Pr(X = 0) = paa,

Pr(X = 1) = pAa,

Pr(X = 2) = pAA.

Thus

E(X ) = 0 · paa + 1 · pAa + 2 · pAA = 2pA.

&

var(X ) = 0 · paa + 1 · pAa + 4 · pAA − E(X )2 = pAa = 2pAqA.
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Failure of HWE: Population Stratification

Assume a population with K strata, with allele frequencies
pk and strata frequencies sk , for k = 1, . . . , K .
By definition the allele frequencies in the total population is
p =

∑
k sk pk .

Now

Pr(X = 0) =
∑

k

sk q2
k = 1 − 2p + E(p2

k ) − p2 + p2

= q2 + var(pk )

Pr(X = 1) = 2
∑

k

sk pk qk = 2p − 2E(p2
k ) + 2p2 − 2p2

= 2pq − 2var(pk ),

Pr(X = 2) =
∑

k

sk p2
k = E(p2

k ) − p2 + p2 = p2 + var(pk ).
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Failure of HWE: Population Stratification

Thus

E(X) = 0 · (q2 + var(pk )) + 1 · (2pq − 2var(pk ))

+ 2 · (p2 + var(pk ))

= 2p2 + 2pq = 2p.

&

var(X) = 0 · (q2 + var(pk ) + 1 · (2pq − 2var(pk ))

+ 4 · (p2 + var(pk )) − E(X)2

= 2pq + 2var(pk ).

With a stratified population, var(X ) is inflated and the
frequency of heterozygosity is reduced.
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Failure of HWE: Population Inbreeding

With inbreeding, there is a positive probability that an
individual inherits the exact same A (or a) allele from both
parents – increasing homozygosity...

F is defined to be the inbreeding coefficient = is the
probability that a randomy sampled individual will inherit
the same copy from both parents.

Pr(X = 0) = FqA + (1 − F )q2
A,

Pr(X = 1) = 2pAqA(1 − F ),

Pr(X = 2) = FpA + (1 − F )p2
A.
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Failure of HWE

Thus

E(X) = 2[FpA + (1 − F )p2
A] + 2pAqA(1 − F ) = 2pA

var(X) = 4[FpA + (1 − F )p2
A] + 2pAqA(1 − F ) − 4p2

A

= 2pAqA(1 + F ).

There is a deficit of heterozygotes relative to HWE ... Loss
of Heterozygosity (LOH).

Further var(X ) is inflated.
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Hardy’s Law

Mendelian genetics: it was not then known how it could
cause continuous characteristics. Udny Yule (1902) argued
against Mendelism because he thought that dominant
alleles would increase in the population.
The American William E. Castle (1903) showed that
without selection, the genotype frequencies would remain
stable. Karl Pearson (1903) found one equilibrium position
with values of p = q = 1/2.
Reginald Punnett introduced the problem to G. H. Hardy, a
British mathematician... who found biologists’ use of
mathematics as “very simple.”
The principle was known as Hardy’s law in the
English-speaking world until 1943, when Curt Stern
pointed out that it had first been formulated independently
in 1908 by the German physician Wilhelm Weinberg.
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Hardy’s Letter

“To the Editor of Science:

“I am reluctant to intrude in a discussion concerning
matters of which I have no expert knowledge, and I should
have expected the very simple point which I wish to make
to have been familiar to biologists. However, some remarks
of Mr. Udny Yule, to which Mr. R. C. Punnett has called my
attention, suggest that it may still be worth making...

“Suppose that Aa is a pair of Mendelian characters, A
being dominant, and that in any given generation the
number of pure dominants (AA), heterozygotes (Aa), and
pure recessives (aa) are as p : 2q : r .
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Hardy’s Letter

“Finally, suppose that the numbers are fairly large, so that
mating may be regarded as random, that the sexes are
evenly distributed among the three varieties, and that all
are equally fertile. A little mathematics of the
multiplication-table type is enough to show that in the next
generation the numbers will be as
(p + q)2 : 2(p + q)(q + r) : (q + r)2, or as p1 : 2q1 : r1, say.

“The interesting question is — in what circumstances will
this distribution be the same as that in the generation
before? It is easy to see that the condition for this is
q2 = pr . And since q2

1 = p1r1, whatever the values of p, q,
and r may be, the distribution will in any case continue
unchanged after the second generation.”
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Heterozygote advantage

HWE may be violated under selection pressure: E.g.,
heterozygote advantage, or heterotic balancing selection.
... An individual who is heterozygous at a particular gene
locus has a greater fitness than a homozygous individual.

Example: Sickle cell anemia... a hereditary disease that
damages red blood cells.

Sickle cell anemia is caused by the inheritance of a variant
hemoglobin gene (HgbS) from both parents. In these
individuals hemoglobin (protein in red blood cells that
carries oxygen to the tissues) is extremely sensitive to
oxygen deprivation causing short life expectancy.
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Heterozygote advantage

However, a person who inherits the sickle cell gene from
one parent and a normal hemoglobin gene (HgbA) from
the other parent (a carrier of the sickle cell trait) has a
normal life expectancy. The heterozygote is resistant to the
malarial parasite which kills a large number of people each
year.
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Heterozygote advantage

HgbS, which in the homozygous state causes sickle-cell
anemia, is distributed throughout sub-Saharan Africa, the
Mediterranean, the Middle East, and parts of India; the
frequency of the carrier state ranges from 5 to over 40
percent.

HgbE, the most common structural hemoglobin in the world
population, is confined to the eastern regions of the Indian
subcontinent, Myanmar, and Southeast Asia. Its frequency
varies; carrier rates of over 60 percent of the population
occur in eastern Thailand and parts of Cambodia.
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[End of Lecture #5]
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