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Few Ideas for the class projects:
1 GWAS – WTCCC Study: See the URL:

http://www.nature.com/nature/journal/v447/n7145/full/nature05911.html
2 Mendelian Diseases: See the URL:

http://www.nature.com/nature/journal/v461/n7261/full/nature08250.html
3 Indian Population: See the URL:

http://www.nature.com/nature/journal/v461/n7263/abs/nature08365.html
4 Mutation Rates in Humans: See URL:

http://www.pnas.org/content/107/3/961.abstract
5 Quartet Analysis: See URL:

http://www.sciencemag.org/cgi/content/abstract/science.1186802
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Generalized Linear Models

Fit a multivariate model to either quantitative or
discrete/binary traits. Association of traits and genotypes
with or without consideration of additional covariates...

Distinct from classical stratified univariate analysis — one
for each stratum: e.g., smoking status.

GLM: generalized Linear Models, given in matrix notation
by the following equation:

g(E [y]) = Xβ,

where E [Y] = µ denotes the expectation of Y, g(·) is a link
function (usually identity or logit) and X is the design
matrix.

B Mishra Computational Systems Biology: Biology X



Outline
GWAS: Generalized Linear Models

Challenges

Multivariate Regression

Simplest model: g(·) is the identity link, y is a quantitative
trait and x is a single genotype (e.g., a SNP)

g(E [y]) = E [y] = Xβ,

or equivalently,
y = Xβ + ǫ.

Assume that there are n samples; then

y =




y1

y2
...

yn


 ; X =




1 x1

1 x2
...

...
1 xn


 ; ǫ =




ǫ1

ǫ2
...
ǫn


 ; and β = (β0, β1)

T .
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Scalar Formulation

Thus
yi = β0 + β1xi + ǫi ,

i = 1, . . ., n indicates individuals. We assume the error
terms, ǫi to be distributed i.i.d (independent and identically
distributed) with mean 0.
The measure of association is given by the parameter β1 –
defined as the amount of change in y that occurs with one
unit of change in x

β̂1 =
n
∑

i xiyi −
∑

i xi
∑

i yi

n
∑

i x2
i − (

∑
i xi)2

and

β̂0 =

(
∑

i

yi − β̂1

∑

i

xi

)
/n.

B Mishra Computational Systems Biology: Biology X



Outline
GWAS: Generalized Linear Models

Challenges

Interpretation of β̂1

Note that

β̂1 =
n
∑

i xiyi −
∑

i xi
∑

i yi

n
∑

i x2
i − (

∑
i xi)2

=
xy − xy

x2 − x2
=

Cov[x , y ]

Var[x ]
= rxy

sy

sx
,

where rxy is the correlation coefficient between x and y ; sx

(resp. sy ) is the standard deviation of x (resp. y).
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Solution to Linear Regression

Can be expressed in terms of pseudo- (Penrose-Moore)
inverse:

y − Xβ = ǫ

XT y − XT Xβ = XT ǫ

β̂ = (XT X)−1XT y.

Thus

β̂ = (XT X)−1XT y =

(
1
n

∑
xix

T
i

)−1(1
n

∑
xiyi

)
.
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Covariates

Suppose we have m covariates, given by zi1, zi2, . . ., zim

for the i th individual:

yi = β0 + β1xi +
∑

j

αjzij + ǫi .

The measure of association between the genotype and
trait is given by β1... while taking into account the
additional variables in the model.

The additional variables may explain the variability in the
trait better ... or they may have several confounders.
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Interactions

We may model the interactions between the genotypes
and the covariates... nature-nurture interactions

Example: Interactions between genotypes and the drug
exposure and its phramaco-genomic effects on the trait...

Let genotypes be represented by x and drug exposure by
z. Let the quantitative trait be defined by y :

yi = β0 + β1xi + β2zi + γxi zi + ǫi

γ is the interaction effect and represents the additional
effect of z for a particular genotype x
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Example

In the previous model, we may have: x is a polymorphism
in ApoCIII gene — involved in triglyceride levels; z
corresponds to the current exposure to lipid lowering
therapy (LLT). y is fasting glyceride level — a quantitative
trait.

The effect of LLT on triglyceride level in β2 among
individuals without ApoCIII polymorphism (xi = 0) and is
β2 + γ among individuals with ApoCIII polymorphism
(xi = 1)
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Solution

The model in the matrix form:

E [y] = Xβ,

where

X =




1 x1 z1 (x1 × z1)
1 x2 z2 (x2 × z2)
...

...
...

...
1 xn zn (xn × zn)


 ; and β = (β0, β1, β2, γ)T .

The solution is:
β̂ = (XT X)−1Xy.
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Multiplicative Models

Multiplicative effects can be modeled easily, by using ln(·)
as the link function:

ln(yi) = β0 + β1xi + β2zi + ǫi

or equivalently
yi = eβ0eβ1xi eβ2zi eǫi .

Here the effects of x and z are multiplicative on y ... A unit
change in x results in eβ1-fold increase in y ; Similarly, a
unit change in z results in eβ2-fold increase in y ;
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Logistic Regression

Application to a binary trait

The link function g(·) is the logit(·) function.

logit(πi) = ln
πi

1 − πi
.

For a random variable y from a Bernoulli trial

E [y] = Pr(y = 1n) = π = (π1, π2, . . . , πn)
T .

Thus the model is

g(E [y]) = logit(π) = Xβ,
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Logistic Regression

Simplifying the model

g(E [y]) = logit(π) = Xβ,

we get
ln[πi/(1 − πi)] = β0 + β1xi ,

or

πi =
eβ

0 eβ1xi

1 + eβ
0 eβ1xi

.

The parameter β1 is interpreted as “the effect of a unit
increase in x on the log-odds of disease y .”
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Caveats

Overfitting: Number of predictors (degrees of freedom)
should be small: Limiting the model to include at most one
predictor for every five to ten observations for quantitative
trait — or — events for binary traits!

Avoiding correlated predictor variables. Inclusion of all
SNPs for analysis within a single model may not be
tenable.

Model Selection: Eliminate confounding variables by
testing on SNP at a time; Shrinkage/Truncated Shrinkage;
Cross-Validation;

Correction for Multiple Hypothesis Testing.
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Statistical Tests for Quantitative Traits
Model Selection

Multiplicity and High Dimensionality

Curse of Dimensionality A term due to Richard Bellman
— GWAS with SNPs involve millions of dimensions; while
the data (for humans) is bounded by 6 billion!

1 Inflation of Error Rates — Primarily due to Multiple
Hypothesis Testing

2 Complex and Unknown Relationship among the Genetic
Markers

Model Selection: Degree of Freedom of the Model vs.
Sample Size
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Statistical Tests for Quantitative Traits
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Error Inflation

We wish to reject a null hypothesis: H0, if we are sure that
the alternative hypothesis: H1 is in fact correct.

False Positive: Rejecting the null-hypothesis in favor of
alternative, when in fact the null is true... Also called
type-error

If we wish to control the type-error rate (fdr: false-discovery
rate) below some threshold α, then we must ensure that

type-1 error rate = Pr(Reject H0|H0 = true) ≤ α.
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p-value

p-value is for a given hypothesis is determined based on a
sample of data and is defined as the probability of
observing something as extreme or more extreme, given
the null is true:

p-value = Pr(Data D|H0 = true).

If p-value is less than α (e.g., 0.05), then we may reject the
null hypothesis in favor of the alternative.
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Multiple Hypotheses Testing

We wish to test K different null hypotheses:

H01, H02, . . . , H0k , . . . , H0K , for k = 1, . . . , K .

Family-Wise Error under the Complete Null (FWEC) is
defined as the probability of rejecting at least on null, when
all the nulls are in fact true.

FWEC = Pr(Reject at least one H0k |H0k = true ∀k)

= 1 − Pr(Reject no H0k |H0k = true ∀k)

= (1 − (1 − α)K ) ≈ 1 − e−αK .

For α = 0.05 ... ....

K FWEC
1 0.05
2 0.0975
10 0.401
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Multiple Hypothesis Testing

As the number of hypotheses increases, so does FWEC –
a phenomenon called inflation of the type-1 error rates.

Inflation is a serious problem in any GWAS that tries to find
association between a large number of SNPs and a trait.

We need to develop methods to control (1) family-wise
error rates and (2) false discovery rates.
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Interaction between Genotypes

Another Challenge: SNPs are likely to interact (through
epistasis and linkages) with one another in a manner that
is not well-characterized. The genes affected by the SNPs
may belong to the same pathway; the SNPs may affect the
structure of the protein they code; they may affect a gene’s
regulation, etc. The SNPs may act differently in the
presence of a varying covariate.
The Model: A sample of n individuals; M measured SNPs
— denoted for individual i by xi1, . . ., xiM . x is a binary
indicator for the presence of at least one copy of the
minor/mutant allele. Assume that SNPs have an additive
effect on the trait, but no interaction:

yi = β0 +
M∑

j=1

βjxij + ǫi
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Interactions

Adding pair-wise interactions to the model:

yi = β0 +

M∑

j=1

βjxij +
∑

k ,l ,k 6=l

γklxik xilǫi

In the simpler model (without interactions), there are M
null-hypotheses H0j : βj = 0 (j = 1, . . ., M) saying that j th
SNP has no effect on the trait.

In the more complex models (with interactions), there are
now

(M
2

)
new null hypotheses to account for.

Thus the complex model makes the possibility of inflation
or overfitting much more likely — with a higher FWEC.
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Missingness

Missing and Unobservable Data:
1 Rare alleles are difficult to genotype. The frequency

estimates are incorrect.
2 Alignment of alleles on a single homologous chromosome

is difficult to infer. Haplotype Phasing Problem.
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Haplotype Phasing Problem

Two alleles on the same homologous chromosome are
said to be in cis — Two alleles on opposite sister homologs
are said to be in trans.

A particular combination of alleles on a single homologous
chromosome is called a haplotype.

With (k + 1) biallelic SNPs, the population can have 2k

possible haplotypes, though most of them are likely to be
missing.
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Haplotype Phasing Problem

Note that the diploid pair of haplotypes is of the order 22k :

(
2k

2

)
+ 2k ,

the first term corresponding to heterozygous haplotypes
and the second corresponding to homozygous haplotypes.

When k = 2, there are four haplotypes: (AB, aB, Ab, ab)
and ten diplotypes

(AB, AB), (aB, aB), (Ab, Ab), (ab, ab),

(AB, aB), (AB, Ab), (AB, ab), (aB, Ab), (aB, ab), and (Ab, ab).
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Penetrance

It is possible to infer a likely haplotype from the genotype
data, if we know the LD-structure for the population.
However, this is further confused by two other effects:

1 Penetrance: The presence of a disease alleles does not
lead to the disease phenotype.

2 Phenocopies: Individuals exhibiting disease phenotypes
do not carry the allele under consideration.
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Genetics Models and Models of Association

We have considered additive and multiplicative models of
association.
Genetic Models: They describe the biological interaction
between alleles on a homologous chromosome.

1 Additive Model: k (k = 0, 1, 2) copies of T allele increases
the trait y by an amount kβ:

yi = α + β[Ixi,1=T + Ixi,2=T ] + ǫi

2 Dominant Model: Having one or more copies of T allele
increases the trait y by an amount β:

yi = α + β[Ixi,1=T∨xi,2=T ] + ǫi

3 Recessive Model: Both homologs must have copies of T
allele to increase the trait y by an amount β:

yi = α + β[Ixi,1=T∧xi,2=T ] + ǫi
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M-sample test for Quantitative Traits

Two Sample t-Test: Consider two populations: e.g., (1)
one with alleles AA and (2) the other with alleles (Aa, aa).

Test for the null hypothesis that the mean of the traits for
the two populations are the same: H0 : µ1 = µ2.

t =
ȳ1 − ȳ2√

s2
p[1/n1 + 1/n2]

∼ Tn1+n2−2,

where ȳ1 and ȳ2 are the sample means of the quantitative
trait for genotype groups (1) and (2); sp is the pooled
estimate of variance, and n1 and n2 are the sample sizes.

This statistic has a T -distribution with n1 + n2 − 2 degrees
of freedom.
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Other Tests

Wilcoxon Rank-Sum Test

ANOVA (analysis of Variance)

Kruskal-Wallis (KW) Test

B Mishra Computational Systems Biology: Biology X



Outline
GWAS: Generalized Linear Models

Challenges

Statistical Tests for Quantitative Traits
Model Selection

Model Selection

Goal is to select a small number of SNPs to build a model:
These should be causal SNPS or Tag SNPs in LD with
causal SNPs.

Bayesian Variable Selection: Start with a General Linear
Model for Genotype-Trait Association:

yi = β1x∗
i1 + β2x∗

i2 + · · · + βr x∗
ir + ǫi , for i = 1, . . . , n,

where (x∗
1, x∗

2, . . . , x∗
r ) is a subset of potential indicator

variables, y is a quantitative trait.

B Mishra Computational Systems Biology: Biology X



Outline
GWAS: Generalized Linear Models

Challenges

Statistical Tests for Quantitative Traits
Model Selection

Model Selection

For the coefficients assume that they are either relevant or
nuisance variables, described by a mixture model:

βj |γj ∼ (1 − γj)N (0, τ2
j ) + γjN (0, c2

j τ2
j ),

where gamma = (γ1, . . . , γp) is a latent (unobservable)
vector with elements taking values 0 or 1.

Pr(γj = 1) = pj , and Pr(γj = 0) = 1 − pj = qj ,

For the variance in the selected coefficients, we can
choose:

σ2|γ ∼ IG(νγ/2, νγλγ/2),

given by an inverse gaussian (Wald) distribution IG.
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Distributions

Gaussian/Normal:
X ∼ N (µ, σ)

then

f (x ;µ, σ) =
1√

2πσ2
exp

−(x − µ)2

2σ2 .

Wald:
X ∼ IG(µ, λ)

then

f (x ;µ, λ) =

[
λ

2πx3

]1/2

exp
−λ(x − µ)2

2µ2x
.
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Putting it all together

We now have

y|β, σ2 ∼ MVN n(Xβ, σ2I),

where y = (y1, . . . , yn)T , Xn×p = [x1, . . . , xp] and
β = (β1, . . . , βp)T .

The parameters corresponding to the ONLY true
underlying predictors (x∗

1, . . . , x∗
r ) are non-zero.
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Bayesian Formulation

Putting everything together,

π(γ|Y) ∝ f (Y|β, σ2)f (β|γ)f (σ2|γ)π(γ).

We can find the best estimator for γ by Gibb’s sampling
from the marginal posterior densities for β, σ and γj .
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Bayesian Variable Selection

Algorithm 1: BVS - pseudocode
Input: Traits Y and SNPs xi

Output: Subset of prdictive SNPs x∗
i

Initialize β, σ and γ — denoted as β(0), σ(0) and γ(0)1

Let t = t + 1 and sample2

β(t)|y ∼ f (β|y, σ(t−1), γ(t−1))

σ(t)|y ∼ f (σ|y, β(t−1), γ(t−1))

Randomly select an ordering γ(1), . . ., γ(p) and sample3

γ
(t)
(1)|y ∼ f (γ(1)|y, β(t), σ(t), γ

(t−1)
(2) , . . . , γ

(t−1)
(p) )

γ
(t)
(2)|y ∼ f (γ(1)|y, β(t), σ(t), γ

(t)
(1), γ

(t−1)
(3) , . . . , γ

(t−1)
(p) )

...

γ
(t)
(p)|y ∼ f (γ(1)|y, β(t), σ(t), γ

(t)
(1), . . . , γ

(t)
(p−1))

Repeat the steps (2) and (3) M times for a large M.4

5
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[End of Lecture #9]
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