Computational Systems Biology: Biology X

Bud Mishra

Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA

L#9:(Apr-06-2010)
Genome Wide Association Studies

B Mishra Computational Systems Biology: Biology X



Outline

Class Projects

@ Few ldeas for the class projects:

© GWAS — WTCCC Study: See the URL:
http://www.nature.com/nature/journal/v447/n7145/full/nature05911

© Mendelian Diseases: See the URL:
http://www.nature.com/nature/journal/v461/n7261/full/nature08250

© Indian Population: See the URL:
http://www.nature.com/nature/journal/v461/n7263/abs/nature0836!

© Mutation Rates in Humans: See URL:
http://www.pnas.org/content/107/3/961.abstract

© Quartet Analysis: See URL:
http://www.sciencemag.org/cgi/content/abstract/science.1186802
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GWAS: Generalized Linear Models

e GWAS: Generalized Linear Models
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GWAS: Generalized Linear Models

Generalized Linear Models

@ Fit a multivariate model to either quantitative or
discrete/binary traits. Association of traits and genotypes
with or without consideration of additional covariates...

@ Distinct from classical stratified univariate analysis — one
for each stratum: e.g., smoking status.

@ GLM: generalized Linear Models, given in matrix notation
by the following equation:

9(Ely]) = X5,

where E[Y] = i denotes the expectation of Y, g(-) is a link
function (usually identity or logit) and X is the design
matrix.
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GWAS: Generalized Linear Models

Multivariate Regression

@ Simplest model: g(-) is the identity link, y is a quantitative
trait and x is a single genotype (e.g., a SNP)

g(Ely]) = Ely] = X5,

or equivalently,
y =X06+e.

@ Assume that there are n samples; then

Y1 1 xg €1
Y2 1 x €2

y=|". [ X=1]. . |[ie=] . ;and 8= (B0, A1)" .
Yn 1 Xn €n
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GWAS: Generalized Linear Models

Scalar Formulation

@ Thus
Yi = Bo + b1 + €i,

i =1, ..., nindicates individuals. We assume the error
terms, ¢ to be distributed i.i.d (independent and identically
distributed) with mean 0.

@ The measure of association is given by the parameter 5, —
defined as the amount of change in y that occurs with one
unit of change in x

B = NY i XiYi — 2 %2 Vi
Ny x2 — (0 xi)?

— —
Bo= (D ¥i—B> x| /n.
i i
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GWAS: Generalized Linear Models

Interpretation of /?1

@ Note that
B = NYZiXiYi — 25X 2.V
N30 X2 — (22 %i)?
_ W_W_ COV[X¢y] _ S_Y
T ox2_x2  Varx]  Ysy’

where ryy is the correlation coefficient between x and y; sy
(resp. sy) is the standard deviation of x (resp. y).
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GWAS: Generalized Linear Models

Solution to Linear Regression

@ Can be expressed in terms of pseudo- (Penrose-Moore)

inverse:
y—X3 = €
XTy —=XTXg = XTe
B = (XTX)"XTy.
@ Thus

B =(X"X) 1XTy—< > xix! )_1<%inyi>.
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GWAS: Generalized Linear Models

Covariates

@ Suppose we have m covariates, given by zj1, zjo, ..., Zim
for the ith individual:

Vi = Bo+ 81X + > 0z + €.
i

@ The measure of association between the genotype and
trait is given by f;... while taking into account the
additional variables in the model.

@ The additional variables may explain the variability in the
trait better ... or they may have several confounders.
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GWAS: Generalized Linear Models

Interactions

@ We may model the interactions between the genotypes
and the covariates... nature-nurture interactions

@ Example: Interactions between genotypes and the drug
exposure and its phramaco-genomic effects on the trait...

@ Let genotypes be represented by x and drug exposure by
z. Let the quantitative trait be defined by y:

Yi = Bo + B1Xi + 52z + ¥XiZi + €

@ ~ is the interaction effect and represents the additional
effect of z for a particular genotype x
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GWAS: Generalized Linear Models

Example

@ In the previous model, we may have: x is a polymorphism
in ApoClll gene — involved in triglyceride levels; z
corresponds to the current exposure to lipid lowering
therapy (LLT). y is fasting glyceride level — a quantitative
trait.

@ The effect of LLT on triglyceride level in 3, among
individuals without ApoClIl polymorphism (x; = 0) and is
02 + v among individuals with ApoCIII polymorphism
(xi =1)
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GWAS: Generalized Linear Models

Solution

@ The model in the matrix form:
Ely] =X,
where
1 x3 z1 (X1 x21)
X= 1 X:2 2;2 e X ) ; and 3 = (fo, 51, B2.7)" -

1 Xn Zn (Xn X Zpn)

@ The solution is: R
B = (X"X)"xy.
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GWAS: Generalized Linear Models

Multiplicative Models

@ Multiplicative effects can be modeled easily, by using In(-)
as the link function:

In(yi) = Bo + B1Xi + B2z + €

or equivalently
yi = ePogbiXigbaZigei

@ Here the effects of x and z are multiplicative ony... A unit
change in x results in e”-fold increase in y; Similarly, a
unit change in z results in e®2-fold increase in y;
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GWAS: Generalized Linear Models

Logistic Regression

@ Application to a binary trait
@ The link function g(-) is the logit(-) function.

logit(j) = In 1 i

— T

@ For a random variable y from a Bernoulli trial

Ely] =Pr(y =1n) =7 = (1, m2,...,m)" .

@ Thus the model is

9(Ely]) = logit(r) = Xg,
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GWAS: Generalized Linear Models

Logistic Regression

@ Simplifying the model

g(Ely]) = logit(r) = Xp,

we get
In[mi /(1 — m)] = Bo + B1Xi,
or
egeﬁlxi
= ————
1y egeﬁlxi

@ The parameter j; is interpreted as “the effect of a unit
increase in x on the log-odds of disease y.”
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GWAS: Generalized Linear Models

Caveats

@ Overfitting: Number of predictors (degrees of freedom)
should be small: Limiting the model to include at most one
predictor for every five to ten observations for quantitative
trait — or — events for binary traits!

@ Avoiding correlated predictor variables. Inclusion of all
SNPs for analysis within a single model may not be
tenable.

@ Model Selection: Eliminate confounding variables by
testing on SNP at a time; Shrinkage/Truncated Shrinkage;
Cross-Validation;

@ Correction for Multiple Hypothesis Testing.

B Mishra Computational Systems Biology: Biology X



Statistical Tests for Quantitative Traits
Model Selection

Challenges

e Challenges
@ Statistical Tests for Quantitative Traits
@ Model Selection
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Statistical Tests for Quantitative Traits

Model Selection
Challenges

Multiplicity and High Dimensionality

@ Curse of Dimensionality A term due to Richard Bellman
— GWAS with SNPs involve millions of dimensions; while
the data (for humans) is bounded by 6 billion!

© |Inflation of Error Rates — Primarily due to Multiple
Hypothesis Testing

© Complex and Unknown Relationship among the Genetic
Markers

@ Model Selection: Degree of Freedom of the Model vs.
Sample Size
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Statistical Tests for Quantitative Traits

Model Selection
Challenges

Error Inflation

@ We wish to reject a null hypothesis: Hy, if we are sure that
the alternative hypothesis: Hj is in fact correct.

@ False Positive: Rejecting the null-hypothesis in favor of
alternative, when in fact the null is true... Also called
type-error

@ If we wish to control the type-error rate (fdr: false-discovery
rate) below some threshold «, then we must ensure that

type-1 error rate = Pr(Reject Hy|Hp = true) < a.
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Statistical Tests for Quantitative Traits
Model Selection

Challenges

@ p-value is for a given hypothesis is determined based on a
sample of data and is defined as the probability of
observing something as extreme or more extreme, given
the null is true:

p-value = Pr(Data D|Hq = true).

@ If p-value is less than « (e.g., 0.05), then we may reject the
null hypothesis in favor of the alternative.
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Statistical Tests for Quantitative Traits

Model Selection
Challenges

Multiple Hypotheses Testing

@ We wish to test K different null hypotheses:
Ho1,Ho2, ..., Hok,...,Hok, fork =1,... K.

@ Family-Wise Error under the Complete Null (FWEC) is
defined as the probability of rejecting at least on null, when
all the nulls are in fact true.

FWEC = Pr(Reject at least one Hox|Hox = true k)
= 1 — Pr(Reject no Hox|Hok = true Vk)
= 1-1-a)f)~1-eK,

K FWEC

1 0.05
@ Fora=0.05... .... 5 0.0975

10 | 0.401
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Statistical Tests for Quantitative Traits

Model Selection
Challenges

Multiple Hypothesis Testing

@ As the number of hypotheses increases, so does FWEC —
a phenomenon called inflation of the type-1 error rates.

@ Inflation is a serious problem in any GWAS that tries to find
association between a large number of SNPs and a trait.

@ We need to develop methods to control (1) family-wise
error rates and (2) false discovery rates.
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Statistical Tests for Quantitative Traits

Model Selection
Challenges

Interaction between Genotypes

@ Another Challenge: SNPs are likely to interact (through
epistasis and linkages) with one another in a manner that
is not well-characterized. The genes affected by the SNPs
may belong to the same pathway; the SNPs may affect the
structure of the protein they code; they may affect a gene’s
regulation, etc. The SNPs may act differently in the
presence of a varying covariate.

@ The Model: A sample of n individuals; M measured SNPs
— denoted for individual i by X;4, ..., Xju. X iS a binary
indicator for the presence of at least one copy of the
minor/mutant allele. Assume that SNPs have an additive
effect on the trait, but no interaction:

M
Yi =Bo+ Y G +e
j=1
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Statistical Tests for Quantitative Traits

Model Selection
Challenges

Interactions

@ Adding pair-wise interactions to the model:

M
Yi = Bo + Zﬁjxij + Z Vit Xik Xil €

j=1 k| kI

@ In the simpler model (without interactions), there are M
null-hypotheses Hp; : 5 =0 (j =1, ..., M) saying that jth
SNP has no effect on the trait.

@ In the more complex models (with interactions), there are
now (%) new null hypotheses to account for.

@ Thus the complex model makes the possibility of inflation
or overfitting much more likely — with a higher FWEC.
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Statistical Tests for Quantitative Traits

Model Selection
Challenges

Missingness

@ Missing and Unobservable Data:
© Rare alleles are difficult to genotype. The frequency
estimates are incorrect.
@ Alignment of alleles on a single homologous chromosome
is difficult to infer. Haplotype Phasing Problem.
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Statistical Tests for Quantitative Traits

Model Selection
Challenges

Haplotype Phasing Problem

@ Two alleles on the same homologous chromosome are
said to be in cis — Two alleles on opposite sister homologs
are said to be in trans.

@ A particular combination of alleles on a single homologous
chromosome is called a haplotype.

@ With (k + 1) biallelic SNPs, the population can have 2K
possible haplotypes, though most of them are likely to be
missing.
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Statistical Tests for Quantitative Traits

Model Selection
Challenges

Haplotype Phasing Problem

@ Note that the diploid pair of haplotypes is of the order 22%:

2% K
(5)+2
the first term corresponding to heterozygous haplotypes
and the second corresponding to homozygous haplotypes.

@ When k = 2, there are four haplotypes: (AB,aB, Ab, ab)
and ten diplotypes

(AB,AB), (aB,aB), (Ab, Ab), (ab, ab),

(AB,aB), (AB,Ab), (AB,ab), (aB,Ab), (aB,ab), and (Ab, ab).
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Statistical Tests for Quantitative Traits

Model Selection
Challenges

Penetrance

@ It is possible to infer a likely haplotype from the genotype
data, if we know the LD-structure for the population.
@ However, this is further confused by two other effects:

© Penetrance: The presence of a disease alleles does not
lead to the disease phenotype.

@ Phenocopies: Individuals exhibiting disease phenotypes
do not carry the allele under consideration.
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Statistical Tests for Quantitative Traits

Model Selection
Challenges

Genetics Models and Models of Association

@ We have considered additive and multiplicative models of
association.
@ Genetic Models: They describe the biological interaction
between alleles on a homologous chromosome.
© Additive Model: k (k = 0,1, 2) copies of T allele increases
the trait y by an amount k :
yl =« + 6[IX|11:T + IX|Y2:T] + €i
© Dominant Model: Having one or more copies of T allele
increases the trait y by an amount 3:
yl =« + 6[|Xi11:T\/XiY2:T] + Ci
© Recessive Model: Both homologs must have copies of T
allele to increase the trait y by an amount g:

yl =« + 6[|Xi11:T/\XiY2:T] + 6]
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Statistical Tests for Quantitative Traits

Model Selection
Challenges

M-sample test for Quantitative Traits

@ Two Sample t-Test: Consider two populations: e.g., (1)
one with alleles AA and (2) the other with alleles (Aa, aa).

@ Test for the null hypothesis that the mean of the traits for
the two populations are the same: Hq : 1 = po.

y1i—Y2
V/S3L/ng +1/n;]
where y; and y, are the sample means of the quantitative

trait for genotype groups (1) and (2); sp is the pooled
estimate of variance, and n, and n, are the sample sizes.

@ This statistic has a T -distribution with n; + n, — 2 degrees
of freedom.
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Statistical Tests for Quantitative Traits

Model Selection
Challenges

Other Tests

@ Wilcoxon Rank-Sum Test
@ ANOVA (analysis of Variance)
@ Kruskal-Wallis (KW) Test
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Statistical Tests for Quantitative Traits

Model Selection
Challenges

Model Selection

@ Goal is to select a small number of SNPs to build a model:
These should be causal SNPS or Tag SNPs in LD with
causal SNPs.

@ Bayesian Variable Selection: Start with a General Linear
Model for Genotype-Trait Association:

Vi = 01Xy + BoXi5 + -+ BeXp + ¢, fori=1,....n,

where (x],x3,...,X{) is a subset of potential indicator
variables, y is a quantitative trait.
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Statistical Tests for Quantitative Traits

Challenges Model Selection

Model Selection

@ For the coefficients assume that they are either relevant or
nuisance variables, described by a mixture model:

ﬁ] |7J ~ (1 — )N(0¢ 7-'2) + FVJN(Oa Cj27-j2)>

where gamma = (71, ...,7p) is a latent (unobservable)
vector with elements taking values 0 or 1.

Pr(yj =1) =pj, and Pr(y = 0) = 1 —pj = g,

@ For the variance in the selected coefficients, we can
choose:
0%y ~ IG (/2,50 /2),

given by an inverse gaussian (Wald) distribution ZgG.
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Statistical Tests for Quantitative Traits

Challenges Model Selection

Distributions

@ Gaussian/Normal:

X ~ N(H7 U)
then
f ) _ 1 _(X - /1‘)2
(X' K, U) - \/m eXp 20_2 .
@ Wald:
X ~IG(p, A)
then
A Y2 (X = p)?
F(X; 1, A) = 27%3 exp ~ o
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Statistical Tests for Quantitative Traits

Challenges Model Selection

Putting it all together

@ We now have
y|B,0% ~ MVYN (X8, 0?1),

wherey = (y1,...,Yn)", Xnxp = [X1,...,Xp] and

B=B1-0)"
@ The parameters corresponding to the ONLY true
underlying predictors (X}, ...,X;) are non-zero.
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Statistical Tests for Quantitative Traits

Challenges Model Selection

Bayesian Formulation

@ Putting everything together,

m(1Y) o< £(Y|8, a2 (Bl7)f (o |7)7 (7).

@ We can find the best estimator for v by Gibb’s sampling
from the marginal posterior densities for 3, o and ;.
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Statistical Tests for Quantitative Traits

Challenges Model Selection

Bayesian Variable Selection

Algorithm 1: BVS - pseudocode
Input: Traits Y and SNPs x;
Output: Subset of prdictive SNPs x*

1 Initialize 8, ¢ and ¥ — denoted as 3, ¢(® and ~(©)
2 Lett =t + 1 and sample

Oly ~ f(Bly, o=, 4(-1))
Oly ~ f(aly, B4, 41

3 Randomly select an ordering (), . - ., ¥(p) @nd sample
-1 -1
Bl ~ Hornly, 8O, 60,45, D)
®) (t) (t=1) (t-1)
0’7(2)‘ny( ‘y 0()77(1)7 Y@ V) )

o 1Dly ~frly, 8D, 00,78, .8 1)

IS

Repeat the steps (2) and (3) M times for a large M.
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Statistical Tests for Quantitative Traits

Challenges Model Selection

[End of Lecture #9]
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