Computational Systems Biology: Biology X

Bud Mishra

Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA
L\#9:(Apr-06-2010)
Genome Wide Association Studies

Class Projects

- Few Ideas for the class projects:
(1) GWAS - WTCCC Study: See the URL: http://www.nature.com/nature/journal/v447/n7145/full/nature05911
(2) Mendelian Diseases: See the URL:
http://www.nature.com/nature/journal/v461/n7261/full/nature08250
(3) Indian Population: See the URL:
http://www.nature.com/nature/journal/v461/n7263/abs/nature0836
(4) Mutation Rates in Humans: See URL: http://www.pnas.org/content/107/3/961.abstract
(5) Quartet Analysis: See URL: http://www.sciencemag.org/cgi/content/abstract/science. 1186802

Outline

(1) GWAS: Generalized Linear Models
2) Challenges

- Statistical Tests for Quantitative Traits
- Model Selection

Generalized Linear Models

- Fit a multivariate model to either quantitative or discrete/binary traits. Association of traits and genotypes with or without consideration of additional covariates...
- Distinct from classical stratified univariate analysis - one for each stratum: e.g., smoking status.
- GLM: generalized Linear Models, given in matrix notation by the following equation:

$$
g(E[\mathbf{y}])=\mathbf{X} \beta
$$

where $E[\mathbf{Y}]=\mu$ denotes the expectation of $\mathbf{Y}, g(\cdot)$ is a link function (usually identity or logit) and \mathbf{X} is the design matrix.

Multivariate Regression

- Simplest model: $g(\cdot)$ is the identity link, y is a quantitative trait and x is a single genotype (e.g., a SNP)

$$
g(E[\mathbf{y}])=E[\mathbf{y}]=\mathbf{X} \beta
$$

or equivalently,

$$
\mathbf{y}=\mathbf{X} \beta+\epsilon
$$

- Assume that there are n samples; then

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] ; \mathbf{X}=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right] ; \epsilon=\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right] ; \text { and } \beta=\left(\beta_{0}, \beta_{1}\right)^{T}
$$

Scalar Formulation

- Thus

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}
$$

$i=1, \ldots, n$ indicates individuals. We assume the error terms, ϵ_{i} to be distributed i.i.d (independent and identically distributed) with mean 0 .

- The measure of association is given by the parameter β_{1} defined as the amount of change in y that occurs with one unit of change in x

$$
\widehat{\beta_{1}}=\frac{n \sum_{i} x_{i} y_{i}-\sum_{i} x_{i} \sum_{i} y_{i}}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}}
$$

and

$$
\widehat{\beta_{0}}=\left(\sum_{i} y_{i}-\widehat{\beta_{1}} \sum_{i} x_{i}\right) / n
$$

Interpretation of $\widehat{\beta}_{1}$

- Note that

$$
\begin{aligned}
\widehat{\beta_{1}} & =\frac{n \sum_{i} x_{i} y_{i}-\sum_{i} x_{i} \sum_{i} y_{i}}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}} \\
& =\frac{\overline{x y}-\overline{x y}}{\overline{\overline{x^{2}}}-\bar{x}^{2}}=\frac{\operatorname{Cov}[x, y]}{\operatorname{Var}[x]}=r_{x y} \frac{s_{y}}{s_{x}},
\end{aligned}
$$

where $r_{x y}$ is the correlation coefficient between x and $y ; s_{x}$ (resp. s_{y}) is the standard deviation of x (resp. y).

Solution to Linear Regression

- Can be expressed in terms of pseudo- (Penrose-Moore) inverse:

$$
\begin{aligned}
\mathbf{y}-\mathbf{X} \beta & =\epsilon \\
\mathbf{X}^{T} \mathbf{y}-\mathbf{X}^{T} \mathbf{X} \beta & =\mathbf{X}^{T} \epsilon \\
\widehat{\beta} & =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
\end{aligned}
$$

- Thus

$$
\widehat{\beta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}=\left(\frac{1}{n} \sum x_{i} x_{i}^{T}\right)^{-1}\left(\frac{1}{n} \sum x_{i} y_{i}\right)
$$

Covariates

- Suppose we have m covariates, given by $z_{i 1}, z_{i 2}, \ldots, z_{i m}$ for the ith individual:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\sum_{j} \alpha_{j} z_{i j}+\epsilon_{i}
$$

- The measure of association between the genotype and trait is given by $\beta_{1} \ldots$ while taking into account the additional variables in the model.
- The additional variables may explain the variability in the trait better ... or they may have several confounders.

Interactions

- We may model the interactions between the genotypes and the covariates... nature-nurture interactions
- Example: Interactions between genotypes and the drug exposure and its phramaco-genomic effects on the trait...
- Let genotypes be represented by x and drug exposure by z. Let the quantitative trait be defined by y :

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} z_{i}+\gamma x_{i} z_{i}+\epsilon_{i}
$$

- γ is the interaction effect and represents the additional effect of z for a particular genotype x

Example

- In the previous model, we may have: x is a polymorphism in ApoCIII gene - involved in triglyceride levels; z corresponds to the current exposure to lipid lowering therapy (LLT). y is fasting glyceride level - a quantitative trait.
- The effect of LLT on triglyceride level in β_{2} among individuals without ApoCIII polymorphism ($x_{i}=0$) and is $\beta_{2}+\gamma$ among individuals with ApoCIII polymorphism ($x_{i}=1$)

Solution

- The model in the matrix form:

$$
E[\mathbf{y}]=\mathbf{X} \beta
$$

where

$$
\mathbf{X}=\left[\begin{array}{cccc}
1 & x_{1} & z_{1} & \left(x_{1} \times z_{1}\right) \\
1 & x_{2} & z_{2} & \left(x_{2} \times z_{2}\right) \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & z_{n} & \left(x_{n} \times z_{n}\right)
\end{array}\right] ; \text { and } \beta=\left(\beta_{0}, \beta_{1}, \beta_{2}, \gamma\right)^{T}
$$

- The solution is:

$$
\widehat{\beta}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X} \mathbf{y} .
$$

Multiplicative Models

- Multiplicative effects can be modeled easily, by using $\ln (\cdot)$ as the link function:

$$
\ln \left(y_{i}\right)=\beta_{0}+\beta_{1} x_{i}+\beta_{2} z_{i}+\epsilon_{i}
$$

or equivalently

$$
y_{i}=e^{\beta_{0}} e^{\beta_{1} x_{i}} e^{\beta_{2} z_{i}} e^{\epsilon_{i}}
$$

- Here the effects of x and z are multiplicative on $y \ldots$ A unit change in x results in $e^{\beta_{1}}$-fold increase in y; Similarly, a unit change in z results in $e^{\beta_{2}}$-fold increase in y;

Logistic Regression

- Application to a binary trait
- The link function $g(\cdot)$ is the logit (\cdot) function.

$$
\operatorname{logit}\left(\pi_{i}\right)=\ln \frac{\pi_{i}}{1-\pi_{i}}
$$

- For a random variable y from a Bernoulli trial

$$
E[\mathbf{y}]=\operatorname{Pr}\left(\mathbf{y}=\mathbf{1}_{n}\right)=\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)^{T}
$$

- Thus the model is

$$
g(E[\mathbf{y}])=\operatorname{logit}(\pi)=\mathbf{X} \beta,
$$

Logistic Regression

- Simplifying the model

$$
g(E[\mathbf{y}])=\operatorname{logit}(\pi)=\mathbf{X} \beta
$$

we get

$$
\ln \left[\pi_{i} /\left(1-\pi_{i}\right)\right]=\beta_{0}+\beta_{1} x_{i}
$$

or

$$
\pi_{i}=\frac{e_{0}^{\beta} e^{\beta_{1} x_{i}}}{1+e_{0}^{\beta} e^{\beta_{1} x_{i}}}
$$

- The parameter β_{1} is interpreted as "the effect of a unit increase in x on the log-odds of disease y."

Caveats

- Overfitting: Number of predictors (degrees of freedom) should be small: Limiting the model to include at most one predictor for every five to ten observations for quantitative trait - or — events for binary traits!
- Avoiding correlated predictor variables. Inclusion of all SNPs for analysis within a single model may not be tenable.
- Model Selection: Eliminate confounding variables by testing on SNP at a time; Shrinkage/Truncated Shrinkage; Cross-Validation;
- Correction for Multiple Hypothesis Testing.

Outline

(1) GWAS: Generalized Linear Models
2) Challenges

- Statistical Tests for Quantitative Traits
- Model Selection

Multiplicity and High Dimensionality

- Curse of Dimensionality A term due to Richard Bellman - GWAS with SNPs involve millions of dimensions; while the data (for humans) is bounded by 6 billion!
(1) Inflation of Error Rates - Primarily due to Multiple Hypothesis Testing
(2) Complex and Unknown Relationship among the Genetic Markers
- Model Selection: Degree of Freedom of the Model vs. Sample Size

Error Inflation

- We wish to reject a null hypothesis: H_{0}, if we are sure that the alternative hypothesis: H_{1} is in fact correct.
- False Positive: Rejecting the null-hypothesis in favor of alternative, when in fact the null is true... Also called type-error
- If we wish to control the type-error rate (fdr: false-discovery rate) below some threshold α, then we must ensure that

$$
\text { type-1 error rate }=\operatorname{Pr}\left(\text { Reject } H_{0} \mid H_{0}=\text { true }\right) \leq \alpha .
$$

p-value

- p-value is for a given hypothesis is determined based on a sample of data and is defined as the probability of observing something as extreme or more extreme, given the null is true:

$$
p \text {-value }=\operatorname{Pr}\left(\text { Data } D \mid H_{0}=\text { true }\right) .
$$

- If p-value is less than α (e.g., 0.05), then we may reject the null hypothesis in favor of the alternative.

Multiple Hypotheses Testing

- We wish to test K different null hypotheses:

$$
H_{01}, H_{02}, \ldots, H_{0 k}, \ldots, H_{0 K}, \text { for } k=1, \ldots, K .
$$

- Family-Wise Error under the Complete Null (FWEC) is defined as the probability of rejecting at least on null, when all the nulls are in fact true.

$$
\begin{aligned}
& \text { FWEC }=\operatorname{Pr}\left(\text { Reject at least one } H_{0 k} \mid H_{0 k}=\text { true } \forall k\right) \\
& =1-\operatorname{Pr}\left(\text { Reject no } H_{0 k} \mid H_{0 k}=\operatorname{true} \forall k\right) \\
& =\left(1-(1-\alpha)^{K}\right) \approx 1-e^{-\alpha K} \text {. } \\
& \text { - For } \alpha=0.05 \text {... }
\end{aligned}
$$

Multiple Hypothesis Testing

- As the number of hypotheses increases, so does FWEC a phenomenon called inflation of the type-1 error rates.
- Inflation is a serious problem in any GWAS that tries to find association between a large number of SNPs and a trait.
- We need to develop methods to control (1) family-wise error rates and (2) false discovery rates.

Interaction between Genotypes

- Another Challenge: SNPs are likely to interact (through epistasis and linkages) with one another in a manner that is not well-characterized. The genes affected by the SNPs may belong to the same pathway; the SNPs may affect the structure of the protein they code; they may affect a gene's regulation, etc. The SNPs may act differently in the presence of a varying covariate.
- The Model: A sample of n individuals; M measured SNPs - denoted for individual i by $x_{i 1}, \ldots, x_{i M} . x$ is a binary indicator for the presence of at least one copy of the minor/mutant allele. Assume that SNPs have an additive effect on the trait, but no interaction:

$$
y_{i}=\beta_{0}+\sum_{j=1}^{M} \beta_{j} x_{i j}+\epsilon_{i}
$$

Interactions

- Adding pair-wise interactions to the model:

$$
y_{i}=\beta_{0}+\sum_{j=1}^{M} \beta_{j} x_{i j}+\sum_{k, l, k \neq 1} \gamma_{k \mid} x_{i k} x_{i l} \epsilon_{i}
$$

- In the simpler model (without interactions), there are M null-hypotheses $H_{0 j}: \beta_{j}=0(j=1, \ldots, M)$ saying that j th SNP has no effect on the trait.
- In the more complex models (with interactions), there are now $\binom{M}{2}$ new null hypotheses to account for.
- Thus the complex model makes the possibility of inflation or overfitting much more likely - with a higher FWEC.

Missingness

- Missing and Unobservable Data:
(1) Rare alleles are difficult to genotype. The frequency estimates are incorrect.
(2) Alignment of alleles on a single homologous chromosome is difficult to infer. Haplotype Phasing Problem.

Haplotype Phasing Problem

- Two alleles on the same homologous chromosome are said to be in cis - Two alleles on opposite sister homologs are said to be in trans.
- A particular combination of alleles on a single homologous chromosome is called a haplotype.
- With $(k+1)$ biallelic SNPs, the population can have 2^{k} possible haplotypes, though most of them are likely to be missing.

Haplotype Phasing Problem

- Note that the diploid pair of haplotypes is of the order $2^{2 k}$:

$$
\binom{2^{k}}{2}+2^{k}
$$

the first term corresponding to heterozygous haplotypes and the second corresponding to homozygous haplotypes.

- When $k=2$, there are four haplotypes: $(A B, a B, A b, a b)$ and ten diplotypes

$$
(A B, A B),(a B, a B),(A b, A b),(a b, a b)
$$

$(A B, a B),(A B, A b),(A B, a b),(a B, A b),(a B, a b)$, and $(A b, a b)$.

Penetrance

- It is possible to infer a likely haplotype from the genotype data, if we know the LD-structure for the population.
- However, this is further confused by two other effects:
(1) Penetrance: The presence of a disease alleles does not lead to the disease phenotype.
(2) Phenocopies: Individuals exhibiting disease phenotypes do not carry the allele under consideration.

Genetics Models and Models of Association

－We have considered additive and multiplicative models of association．
－Genetic Models：They describe the biological interaction between alleles on a homologous chromosome．
（1）Additive Model：$k(k=0,1,2)$ copies of T allele increases the trait y by an amount $k \beta$ ：

$$
y_{i}=\alpha+\beta\left[I_{x_{i, 1}=T}+I_{x_{i, 2}=T}\right]+\epsilon_{i}
$$

（2）Dominant Model：Having one or more copies of T allele increases the trait y by an amount β ：

$$
y_{i}=\alpha+\beta\left[I_{\left.x_{i, 1}=T \vee x_{i, 2}=T\right]}+\epsilon_{i}\right.
$$

（3）Recessive Model：Both homologs must have copies of T allele to increase the trait y by an amount β ：

$$
y_{i}=\alpha+\beta\left[I_{x_{i, 1}=T \wedge x_{i, 2}=T}\right]+\epsilon_{i}
$$

M-sample test for Quantitative Traits

- Two Sample t-Test: Consider two populations: e.g., (1) one with alleles $A A$ and (2) the other with alleles $(A a, a a)$.
- Test for the null hypothesis that the mean of the traits for the two populations are the same: $H_{0}: \mu_{1}=\mu_{2}$.

$$
t=\frac{\overline{y_{1}}-\overline{y_{2}}}{\sqrt{s_{p}^{2}\left[1 / n_{1}+1 / n_{2}\right]}} \sim T_{n_{1}+n_{2}-2}
$$

where $\overline{y_{1}}$ and $\overline{y_{2}}$ are the sample means of the quantitative trait for genotype groups (1) and (2); s_{p} is the pooled estimate of variance, and n_{1} and n_{2} are the sample sizes.

- This statistic has a T-distribution with $n_{1}+n_{2}-2$ degrees of freedom.

Other Tests

- Wilcoxon Rank-Sum Test
- ANOVA (analysis of Variance)
- Kruskal-Wallis (KW) Test

Model Selection

- Goal is to select a small number of SNPs to build a model: These should be causal SNPS or Tag SNPs in LD with causal SNPs.
- Bayesian Variable Selection: Start with a General Linear Model for Genotype-Trait Association:

$$
y_{i}=\beta_{1} x_{i 1}^{*}+\beta_{2} x_{i 2}^{*}+\cdots+\beta_{r} x_{i r}^{*}+\epsilon_{i}, \quad \text { for } i=1, \ldots, n
$$

where $\left(\mathbf{x}_{1}^{*}, \mathbf{x}_{2}^{*}, \ldots, \mathbf{x}_{r}^{*}\right)$ is a subset of potential indicator variables, \mathbf{y} is a quantitative trait.

Model Selection

- For the coefficients assume that they are either relevant or nuisance variables, described by a mixture model:

$$
\beta_{j} \mid \gamma_{j} \sim\left(1-\gamma_{j}\right) \mathcal{N}\left(0, \tau_{j}^{2}\right)+\gamma_{j} \mathcal{N}\left(0, c_{j}^{2} \tau_{j}^{2}\right)
$$

where gamma $=\left(\gamma_{1}, \ldots, \gamma_{p}\right)$ is a latent (unobservable) vector with elements taking values 0 or 1 .

$$
\operatorname{Pr}\left(\gamma_{j}=1\right)=p_{j}, \text { and } \operatorname{Pr}\left(\gamma_{j}=0\right)=1-p_{j}=q_{j}
$$

- For the variance in the selected coefficients, we can choose:

$$
\sigma^{2} \mid \gamma \sim \mathcal{I} \mathcal{G}\left(\nu_{\gamma} / 2, \nu_{\gamma} \lambda_{\gamma} / 2\right)
$$

given by an inverse gaussian (Wald) distribution $\mathcal{I G}$.

Distributions

- Gaussian/Normal:

$$
X \sim \mathcal{N}(\mu, \sigma)
$$

then

$$
f(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \frac{-(x-\mu)^{2}}{2 \sigma^{2}}
$$

- Wald:

$$
X \sim \mathcal{I G}(\mu, \lambda)
$$

then

$$
f(x ; \mu, \lambda)=\left[\frac{\lambda}{2 \pi x^{3}}\right]^{1 / 2} \exp \frac{-\lambda(x-\mu)^{2}}{2 \mu^{2} x}
$$

Putting it all together

- We now have

$$
\mathbf{y} \mid \beta, \sigma^{2} \sim \mathcal{M V N}_{n}\left(\mathbf{X} \beta, \sigma^{2} I\right)
$$

where $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}, \mathbf{X}_{n \times p}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right]$ and $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)^{T}$.

- The parameters corresponding to the ONLY true underlying predictors $\left(\mathbf{x}_{1}^{*}, \ldots, \mathbf{x}_{r}^{*}\right)$ are non-zero.

Bayesian Formulation

- Putting everything together,

$$
\pi(\gamma \mid \mathbf{Y}) \propto f\left(\mathbf{Y} \mid \beta, \sigma^{2}\right) f(\beta \mid \gamma) f\left(\sigma^{2} \mid \gamma\right) \pi(\gamma)
$$

- We can find the best estimator for γ by Gibb's sampling from the marginal posterior densities for β, σ and γ_{j}.

Bayesian Variable Selection

Algorithm 1: BVS - pseudocode
Input: Traits \mathbf{Y} and SNPs \mathbf{x}_{i}
Output: Subset of prdictive SNPs \mathbf{x}_{i}^{*}
1 Initialize β, σ and γ - denoted as $\beta^{(0)}, \sigma^{(0)}$ and $\gamma^{(0)}$
2 Let $t=t+1$ and sample

- $\beta^{(t)} \mid \mathbf{y} \sim f\left(\beta \mid \mathbf{y}, \sigma^{(t-1)}, \gamma^{(t-1)}\right)$
- $\sigma^{(t)} \mid \mathbf{y} \sim f\left(\sigma \mid \mathbf{y}, \beta^{(t-1)}, \gamma^{(t-1)}\right)$

3 Randomly select an ordering $\gamma_{(1)}, \ldots, \gamma_{(p)}$ and sample

- $\gamma_{(1)}^{(t)} \mid \mathbf{y} \sim f\left(\gamma_{(1)} \mid \mathbf{y}, \beta^{(t)}, \sigma^{(t)}, \gamma_{(2)}^{(t-1)}, \ldots, \gamma_{(p)}^{(t-1)}\right)$
- $\gamma_{(2)}^{(t)} \mid \mathbf{y} \sim f\left(\gamma_{(1)} \mid \mathbf{y}, \beta^{(t)}, \sigma^{(t)}, \gamma_{(1)}^{(t)}, \gamma_{(3)}^{(t-1)}, \ldots, \gamma_{(p)}^{(t-1)}\right)$
- $\gamma_{(p)}^{(t)} \mid \mathbf{y} \sim f\left(\gamma_{(1)} \mid \mathbf{y}, \beta^{(t)}, \sigma^{(t)}, \gamma_{(1)}^{(t)}, \ldots, \gamma_{(p-1)}^{(t)}\right)$

4 Repeat the steps (2) and (3) M times for a large M.

Statistical Tests for Quantitative Traits Model Selection

[End of Lecture \#9]

