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The law of causality ... is a relic of a bygone age, surviving, like
the monarchy, only because it is erroneously supposed to do no
harm ...

–Bertrand Russell, On the Notion of Cause. Proceedings of the
Aristotelian Society 13: 1-26, 1913.
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Bayesian Interpretation

Probability P(e) 7→ our certainty about whether event e is
true or false in the real world. (Given whatever information
we have available.)

“Degree of Belief. ”

More rigorously, we should write

Conditional probability P(e|L) 7→ Represents a
degree of belief with respect to L — The
background information upon which our belief is
based.
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Probability as a Dynamic Entity

We update the “degree of belief” as more data arrives:
using Bayes Theorem :

P(e|D) =
P(D|e)P(e)

P(D)
.

Posterior is proportional to the prior in a manner that
depends on the data P(D|e)/P(D).

Prior Probability : P(e) is one’s belief in the event e before
any data is observed.

Posterior Probability : P(e|D) is one’s updated belief in e
given the observed data.

Likelihood : P(D|e) 7→ Probability of the data under the
assumption e
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Dynamics

Note:

P(e|D1, D2) =
P(D2|D1, e)P(e|D1)

P(D2|D1)

=
P(D2|D1, e)P(D1|e)P(e)

P(D2D1)

Further, note: The effects of prior diminish as the number
of data points increase.

The Law of Large Number:

With large number of data points, Bayesian and
frequentist viewpoints become indistinguishable.
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Parameter Estimation

Functional form for a model M
1 Model depends on some parameters Θ
2 What is the best estimation of Θ?

Typically the parameters Θ are a set of real-valued
numbers

Both prior P(Θ) and posterior P(Θ|D) are defining
probability density functions.
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MAP Method: Maximum A Posteriori

Find the set of parameters Θ
1 Maximizing the posterior P(Θ|D) or minimizing a score

− log P(Θ|D)

E ′(Θ) = − log P(Θ|D)

= − log P(D|Θ) − log P(Θ) + log P(D)

2 Same as minimizing

E(Θ) = − log P(D|Θ) − log P(Θ)

3 If prior P(Θ) is uniform over the entire parameter space
(i.e., uninformative)

min argΘ EL(Θ) = − log P(D|Θ).

Maximum Likelihood Solution
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Information theory

Information theory is based on probability theory (and
statistics).

Basic concepts : Entropy (the information in a random
variable) and Mutual Information (the amount of
information in common between two random variables).

The most common unit of information is the bit (based log
2). Other units include the nat , and the hartley .
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Entropy

The entropy H of a discrete random variable X is a
measure of the amount uncertainty associated with the
value X .

Suppose one transmits 1000 bits (0s and 1s). If these bits
are known ahead of transmission (to be a certain value
with absolute probability), logic dictates that no information
has been transmitted. If, however, each is equally and
independently likely to be 0 or 1, 1000 bits (in the
information theoretic sense) have been transmitted.
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Entropy

Between these two extremes, information can be
quantified as follows.

If X is the set of all messages x that X could be, and p(x)
is the probability of X given x , then the entropy of X is
defined as

H(x) = EX [I(x)] = −
∑

x∈X

p(x) log p(x).

Here, I(x) is the self-information, which is the entropy
contribution of an individual message, and EX is the
expected value.
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An important property of entropy is that it is maximized
when all the messages in the message space are
equiprobable p(x) = 1/n, i.e., most unpredictable, in which
case H(X ) = log n.

The binary entropy function (for a random variable with two
outcomes ∈ {0, 1} or ∈ {H, T}:

Hb(p, q) = −p log p − q log q, p + q = 1.
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Joint entropy

The joint entropy of two discrete random variables X and Y
is merely the entropy of their pairing: 〈X , Y 〉.

Thus, if X and Y are independent, then their joint entropy
is the sum of their individual entropies.

H(X , Y ) = EX ,Y [− log p(x , y)] = −
∑

x,y

log p(x , y).

For example, if (X,Y) represents the position of a chess
piece Ñ X the row and Y the column, then the joint entropy
of the row of the piece and the column of the piece will be
the entropy of the position of the piece.
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Conditional Entropy or Equivocation

The conditional entropy or conditional uncertainty of X
given random variable Y (also called the equivocation of X
about Y ) is the average conditional entropy over Y :

H(X |Y ) = EY [H(X |y)]

= −
∑

y∈Y

p(y)
∑

x∈X

p(x |y) log p(x |y)

= −
∑

x,y

p(x , y) log
p(x , y)

p(y)

A basic property of this form of conditional entropy is that:

H(X |Y ) = H(X , Y ) − H(Y ).
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Mutual Information (Transinformation)

Mutual information measures the amount of information
that can be obtained about one random variable by
observing another.

The mutual information of X relative to Y is given by:

I(X ; Y ) = EX ,Y [SI(x , y)] =
∑

x,y

p(x , y) log
p(x , y)

p(x)p(y)
.

where SI (Specific mutual Information ) is the pointwise
mutual information.
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A basic property of the mutual information is that

I(X ; Y ) = H(X )−H(X |Y ) = H(X )+H(Y )−H(X , Y ) = I(Y ; X ).

That is, knowing Y , we can save an average of I(X ; Y ) bits
in encoding X compared to not knowing Y . Note that
mutual information is symmetric .

It is important in communication where it can be used to
maximize the amount of information shared between sent
and received signals.
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Kullback-Leibler Divergence (Information Gain)

The Kullback-Leibler divergence (or information
divergence, information gain, or relative entropy) is a way
of comparing two distributions: a “true” probability
distribution p(X ), and an arbitrary probability distribution
q(X ).

DKL(p(X )‖q(X )) =
∑

x∈X

p(x) log
p(x)

q(x)

=
∑

x∈X

[−p(x) log q(x)] − [−p(x) log p(x)]
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If we compress data in a manner that assumes q(X ) is the
distribution underlying some data, when, in reality, p(X ) is
the correct distribution, the Kullback-Leibler divergence is
the number of average additional bits per datum necessary
for compression.

Although it is sometimes used as a ‘distance metric,’ it is
not a true metric since it is not symmetric and does not
satisfy the triangle inequality (making it a
semi-quasimetric).
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Mutual information can be expressed as the average
Kullback-Leibler divergence (information gain) of the
posterior probability distribution of X given the value of Y
to the prior distribution on X :

I(X ; Y ) = Ep(Y )[DKL(p(X |Y = y)‖p(X )]

= DKL(p(X , Y )‖p(X )p(Y )).

In other words, mutual information I(X , Y ) is a measure of
how much, on the average, the probability distribution on X
will change if we are given the value of Y . This is often
recalculated as the divergence from the product of the
marginal distributions to the actual joint distribution.

Mutual information is closely related to the log-likelihood
ratio test in the context of contingency tables and the
multinomial distribution and to Pearson’s χ2 test.
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Source theory

Any process that generates successive messages can be
considered a source of information.

A memoryless source is one in which each message is an
independent identically-distributed random variable,
whereas the properties of ergodicity and stationarity
impose more general constraints. All such sources are
stochastic.
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Information Rate

Rate Information rate is the average entropy per symbol.
For memoryless sources, this is merely the entropy of each
symbol, while, in the case of a stationary stochastic
process, it is

r = lim
n→∞

H(Xn|Xn−1, Xn−2 . . .)

In general (e.g., nonstationary), it is defined as

r = lim
n→∞

1
n

H(Xn, Xn−1, Xn−2 . . .)

In information theory, one may thus speak of the “rate” or
“entropy” of a language.
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Rate Distortion Theory

R(D) = Minimum achievable rate under a given constraint
on the expected distortion.

X = random variable; T = alphabet for a compressed
representation.

If x ∈ X is represented by t ∈ T , there is a distortion d(x , t)

R(D) = min
{p(t|x):〈d(x,t)〉≤D}

I(T , X ).

〈d(x , t)〉 =
∑

x,t

p(x , t)d(x , t)

=
∑

x,t

p(x)p(t |x)d(x , t)
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Introduce a Lagrange multiplier parameter β and
Solve the following variational problem

Lmin[p(t |x)] = I(T ; X ) + β〈d(x , t)〉p(x)p(t|x).

We need
∂L

∂p(t |x)
= 0.

Since

L =
∑

x

p(x)
∑

t

p(t |x) log
p(t |x)

p(t)
+β

∑

x

p(x)
∑

t

p(t |x)d(x , t),

we have

p(x)

[
log

p(t |x)

p(t)
+ βd(x , t)

]
= 0.

⇒
p(t |x)

p(t)
∝ e−βd(x,t).
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Summary

In summary,

p(t |x) =
p(t)

Z (x , β)
e−βd(x,t) p(t) =

∑

x

p(x)p(t |x).

Z (x , β) =
∑

t p(t) exp[−βd(x , t)] is a Partition Function.

The Lagrange parameter in this case is positive; It is
determined by the upper bound on distortion:

∂R
∂D

= −β.
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Causation and Correlation

A fallacy, known as cum hoc ergo propter hoc (Latin for
“with this, therefore because of this”): Correlations do not
imply causation.

Statements associated with necessity and sufficiency

The INUS condition : An Insufficient but Non-redundant
part of an Unnecessary but Sufficient condition.

The Probability Raising condition

Temporal Priority
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Regularity Theories (David Hume)

Causes are invariably followed by their effects : “We
may define a cause to be an object, followed by another,
and where all the objects similar to the first, are followed by
objects similar to the second.”

Attempts to analyze causation in terms of invariable
patterns of succession are referred to as “regularity
theories” of causation.

There are a number of well-known difficulties with
regularity theories, and these may be used to motivate
probabilistic approaches to causation.
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Imperfect Regularities

The first difficulty is that most causes are not invariably
followed by their effects.

Penetrance : The presence of a disease allele does not
always lead to a disease phenotype.

Probabilistic theories of causation : simply requires that
causes raise the probability of their effects; an effect may
still occur in the absence of a cause or fail to occur in its
presence.

Thus smoking is a cause of lung cancer, not because all
smokers develop lung cancer, but because smokers are
more likely to develop lung cancer than non-smokers.
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Imperfect Regularities: INUS condition

John Stuart Mill and John Mackie offer more refined
accounts of the regularities that underwrite causal
relations.

An INUS condition : for some effect is an insufficient but
non-redundant part of an unnecessary but sufficient
condition.

Complexity : raises problems for the epistemology of
causation.
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INUS condition

Suppose, for example, that a lit match causes a forest fire.
The lighting of the match, by itself, is not sufficient; many
matches are lit without ensuing forest fires. The lit match
is, however, a part of some constellation of conditions that
are jointly sufficient for the fire. Moreover, given that this
set of conditions occurred, rather than some other set
sufficient for fire, the lighting of the match was necessary:
fires do not occur in such circumstances when lit matches
are not present.

Epistasis, and gene-environment interaction.
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Asymmetry

If A causes B, then, typically, B will not also cause A.

Causation is usually asymmetric.

This poses a problem for regularity theories, for it seems
quite plausible that if smoking is an INUS condition for lung
cancer, then lung cancer will be an INUS condition for
smoking.

One way of enforcing the asymmetry of causation is to
stipulate that causes precede their effects in time.
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Spurious Regularities

Suppose that a cause is regularly followed by two effects.
For instance, a particular allele A is pleiotropic... It causes
a disease trait, but also transcription of another gene B. B
may be mistakenly thought to be causing the disease.

B is also an INUS condition for disease state. But it’s not a
cause.

Whenever the barometric pressure drops below a certain
level, two things happen: First, the height of the column of
mercury in a barometer drops . Shortly afterwards, a storm
occurs. Then, it may well also be the case that whenever
the column of mercury drops, there will be a storm.
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Causes raise the probability of their effects.

This can be expressed formally using the apparatus of
conditional probability.

Let A, B, C, . . . represent factors that potentially stand in
causal relations.

Let Pr be a probability function... such that Pr(A)
represents the empirical probability that factor A occurs or
is instantiated.

Let Pr(B|A) represent the conditional probability of B,
given A.

Pr(B|A) =
Pr(A ∧ B)

Pr(A)
.
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If Pr(A) is 0, then the ratio in the definition of conditional
probability is undefined. (There are other ways of handling
this formally).

“A raises the probability of B” is that

Pr(B|A) > Pr(B|¬A).

PR Axiom

PR: A causes B if and only ifPr(B|A) > Pr(B|¬A).
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Problems

Probability-raising is symmetric : if Pr(B|A) > P(B|¬A),
then Pr(A|B) > P(A|¬B). The causal relation, however, is
typically asymmetric.
Probability-raising has trouble with spurious correlations. If
A and B are both caused by some third factor, C, then it
may be that Pr(B|A) > Pr(B|¬A) even though A does not
cause B.
Those with yellow-stained fingers are more likely to suffer
from lung cancer ... smoking tends to produce both effects.
Because individuals with yellow-stained fingers are more
likely to be smokers, they are also more likely to suffer from
lung cancer.
Intuitively, the way to address this problem is to require that
causes raise the probabilities of their effects ceteris
paribus.
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Spurious Correlations

Screening off : If Pr(B|A ∧ C) = P(B|C), then C is said to
screen A off from B.
Equivalently (A ⊥ B)|C...
[Pr(A ∧ B|C) = Pr(A|C)Pr(B|C))] ... Intuitively, C renders
A probabilistically irrelevant to B.
To avoid the problem of spurious correlations, add a ‘no
screening off’ (NSO)

NSO

Factor A occurring at time t , is a cause of the later factor B if
and only if:

Pr(B|A) > Pr(B|¬A)

There is no factor C, occurring earlier than or simultaneously
with A, that screens A off from B.
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Yule-Simpson Effect

NSO does not suffice to resolve the problem of spurious
correlations
Suppose, for example, that smoking is highly correlated
with exercise: those who smoke are much more likely to
exercise as well. Smoking is a cause of heart disease, but
suppose that exercise is an even stronger preventative of
heart disease. Then it may be that smokers are, over all,
less likely to suffer from heart disease than non-smokers.
A 7→ smoking, C 7→ exercise, and B 7→ heart disease,
Pr(B|A) < Pr(B|¬A). Note, however, that if we
conditionalize on whether one exercises or not, this
inequality is reversed:

Pr(B|A ∧ C) > Pr(B|¬A ∧ C)

Pr(B|A ∧ ¬C) > Pr(B|¬A ∧ ¬C).

Such reversals of probabilistic inequalities are instances of
` ´

B Mishra Computational Systems Biology: Biology X



Outline
Bayes & Information

Causation

Definitions
Association Studies & Notations
Statistical Significance

Test Situations

Causes must raise the probability of their effects in test
situations:

TS

TS: A causes B if Pr(B|A∧T ) > Pr(B|¬A∧T ) ∀ test situation T .

A test situation is a conjunction of factors, which are “held
fixed.” This suggests that in evaluating the causal
relevance of A for B, we need to hold fixed other causes of
B, either positively or negatively.
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Notations

We will use y to represent the trait under study; x to
represent the genotype data; and z to represent
covariates.

Example: yi = the trait value for the i th individual in a
sample, where i = 1, . . ., n; and n is the total sample size.

Similarly, xij is the genotype at the j th SNP for individual i ,
where j = 1, . . ., p is the total number of SNPs under study.

Finally, zik is the value of the k th covariate for individual i ,
where k = 1, . . ., m and m is the total number of
covariates.
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Notations

Thus, we will write x = (x1, . . . , xn)T to represent an n × 1
vector of genotypes at a single site on the genome across
all individuals in our sample.

Thus, x j = (x1j , . . . , xnj)
T will represent the genotypes at

the j th site.

Additionally, we will write x i = (xi1, . . . , xip)T to denote the
genotype data for the i th individual.

B Mishra Computational Systems Biology: Biology X
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Similarly, y = (y1, . . . , yn)T is a vector with its i th element
corresponding to the trait for individual i . y can be
quantitative; e.g., CD4 count or total cholesterol level.

Finally, an n × p matrix of genotype variables is given by X,
with the (i , j)th element corresponding to the j th genotype
for individual i .

Similarly, n × m matrix Z denotes the entire set of
covariates. (Multiple clinical, demographic and
environmental variables, such as age, sex, weight and
second hand smoke exposures.)
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Explanatory Variables

The combined matrix [XZ] represents the combined
explanatory variables.

Greek letters α, β, µ and θ are used to represent the model
parameters. The parameters are unobservable quantities
and are estimated from the data.
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The genotype for individual i at site j (denoted xij ) is a
categorical variable taking two or more levels.

For instance, xij may be a three level factor variable taking
three possible genotypes at a biallelic site: AA, Aa and aa,
where A is the major haplotype and a is the minor
haplotype.

As another example, we may assign xij = 0 if the observed
genotype is homozygous in major alleles, i.e., AA and
xij = 1 otherwise.

Sometimes, we will think of xij as an indicator for the
presence of any variant alleles across multilocus genotype.
Thus xij = 0 if the multilocus genotype is (AA, BB) and
xij = 1 otherwise.
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Difficulties

Effects leading to spurious causal explanations:
Confounding and effect mediation
A confounder is a variable that is: (1) associated with the
exposure (cause) variable; (2) independently associated
with the outcome (effect) variable; and (3) not in the causal
pathway between exposure and disease.
Example: Heavy alcohol consumption (the exposure) is
associated with the total cholesterol level (the outcome).
However smoking tends to be associated with heavy alcohol
consumption. Smoking is also associated with high cholesterol
levels among the individuals who are not heavy alcohol users.

A confounder is defined as a clinical or demographic
variable that is associated with the genotype and the trait
under investigation.

B Mishra Computational Systems Biology: Biology X



Outline
Bayes & Information

Causation

Definitions
Association Studies & Notations
Statistical Significance

Difficulties

A variable lying on the causal pathway between the
predictor and the outcome is called an effect mediator or
causal pathway variable.

Genotype affects the trait through alteration of the mediator
variable.

A particular SNP variant may make an individual more
likely to smoke and smoking would then cause cancer.
Here smoking is an effect mediator.
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Difficulties

Effect modification : Effect of a predictor variable on the
outcome depends on the level of another variable, called a
modifier . Thus, the predictor variable and the modifier
interact (in a statistical sense) in their association with the
outcome.

Conditional Association : The causal pathways between
a predictor variable and the outcome depends on the
values taken by the third modifying variable.
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Contingency Table

Three genotypes for a given SNP: homozygous wildtype
aa, heterozygous Aa and homozygous rare/ AA.

The data can be represented by the 2 × 3 contingency
table. See below.

Odds Ratio : Ratio of the odds of disease among the
exposed to the odds of disease among the unexposed.

Genotype ≡ exposure

Gen: Gen: Gen:
aa Aa AA

Dis: + n11 n12 n13 n1·

Dis: − n21 n22 n23 n2·

n·1 n·2 n·3 n
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Odds Ratio

Odds Ratio:

OR =
Pr(D+|E+)/[1 − Pr(D+|E+)]

Pr(D+|E−)/[1 − Pr(D+|E−)]

In genetics, we calculate the OR for each genotype with
relation to the homozygous wildtype genotype, AA.

ORaa,AA =
(n11/n·1)/(n21/n·1)

(n13/n·3)/(n23/n·3)
=

n11n23

n21n13
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Dichotomized Contingency Table

Dichotomizing genotype priors

E+ = {Aa, aa} and E− = {AA}

The data can be represented by the 2 × 2 contingency
table. See below.

Gen: Gen:
{aa, Aa} AA

Dis: + n11 n12 n1·

Dis: − n21 n22 n2·

n·1 n·2 n
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Odds Ratio

Odds Ratio:

ÔR =
(n11/n·1)/(n21/n·1)

(n12/n·2)/(n22/n·2)
=

n11n22

n21n12
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Fisher’s Exact Test

What is the probability of getting the 2 × 2 table by chance

p =

(
n1·

n11

)(
n2·

n21

)
/

(
n

n·1

)
=

n1·!n2·!n·1!n·2!

n!n11!n12!n21!n22!

This formula gives the exact probability of observing this
particular arrangement of the data, assuming the given
marginal totals, on the null hypothesis that te two
categories of genotypes are equally likely to have the
disease.
In other words, the probability p indicates how well the data
fit the hypothesis: “the single or double mutation (A 7→ a)
cause the disease.”
If p ≪ θ (i.e., the probability is very very small), we can
reject the null hypothesis, and conclude that “the mutation
(A 7→ a) has a necessary causal role in the disease.”
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Fisher’s exact test

Fisher’s exact test is a statistical test used to determine if
there are nonrandom associations between two categorical
variables. — E.g., Genotypes and a Categorical Trait.

Let there exist two such variables X and Y , with m and n
observed states, respectively.

Now form an m × n matrix in which the entries aij represent
the number of observations in which x = i and y = j .
Calculate the row and column sums Ri and Cj ,
respectively, and the total sum

N
∑

i

Ri =
∑

j

Cj .

of the matrix.
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Then calculate the conditional probability of getting the
actual matrix given the particular row and column sums,
given by

Pcutoff =
(R1!R2! · · ·Rm!)(C1!C2! · · ·Cn!)

N!
∏

ij aij !

which is a multivariate generalization of the
hypergeometric probability function .

Now find all possible matrices of nonnegative integers
consistent with the row and column sums Ri and Cj . For
each one, calculate the associated conditional probability
using this formula, where the sum of these probabilities
must be 1.
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To compute the P-value of the test, the tables must then be
ordered by some criterion that measures dependence, and
those tables that represent equal or greater deviation from
independence than the observed table are the ones whose
probabilities are added together.

There are a variety of criteria that can be used to measure
dependence. In the 2 × 2 case, which is the one Fisher
looked at when he developed the exact test, either the
Pearson chi-square or the difference in proportions (which
are equivalent) is typically used.

Other measures of association, such as the
likelihood-ratio-test, -squared, or any of the other
measures typically used for association in contingency
tables, can also be used.
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[End of Lecture #6]
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