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The law of causality ... is a relic of a bygone age, surviving, like
the monarchy, only because it is erroneously supposed to do no
harm ...

–Bertrand Russell, On the Notion of Cause. Proceedings of the
Aristotelian Society 13: 1-26, 1913.
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Random Variables

A (discrete) random variable is a numerical quantity that in
some experiment (involving randomness) takes a value
from some (discrete) set of possible values.

More formally, these are measurable maps

X (ω), ω ∈ Ω,

from a basic probability space (Ω, F , P) (≡ outcomes, a
sigma field of subsets of Ω and probability measure P on
F ).

Events
...{ω ∈ Ω|X (ω) = xi}...

same as {X = xi} [X assumes the value xi ].
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Few Examples

Example 1: Rolling of two six-sided dice. Random Variable
might be the sum of the two numbers showing on the dice.
The possible values of the random variable are 2, 3, . . .,
12.

Example 2: Occurrence of a specific word GAATTC in a
genome. Random Variable might be the number of
occurrence of this word in a random genome of length
3 × 109. The possible values of the random variable are 0,
1, 2, . . ., 3 × 109.
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The Probability Distribution

The probability distribution of a discrete random variable Y
is the set of values that this random variable can take,
together with the set of associated probabilities.

Probabilities are numbers in the range between zero and
one (inclusive) that always add up to one when summed
over all possible values of the random variable.
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Bernoulli Trial

A Bernoulli trial is a single trial with two possible outcomes:
“success” & “failure.”

P(success) = p and P(failure) = 1 − p ≡ q.

Random variable S takes the value −1 if the trial results in
failure and +1 if it results in success.

PS(s) = p(1+s)/2q(1−s)/2, s = −1,+1.
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The Binomial Distribution

A Binomial random variable is the number of successes in
a fixed number n of independent Bernoulli trials (with
success probability = p).

Random variable Y denotes the total number of successes
in the n trials.

PY (y) =

(

n
y

)

pyqn−y , y = 0, 1, . . . , n.
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The Uniform Distribution

A random variable Y has the uniform distribution if the
possible values of Y are a, a + 1, . . ., a + b − 1 for two
integer constants a and b, and the probability that Y takes
any specified one of these b possible values is b−1.

PY (y) = b−1, y = a, a + 1, . . . , a + b − 1.
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The Geometric Distribution

Suppose that a sequence of independent Bernoulli trials is
conducted, each trial having probability p of success. The
random variable of interest is the number Y of trials before
but not including the first failure. The possible values of Y
are 0, 1, 2, . . ..

PY (y) = pyq, y = 0, 1, . . . .
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The Poisson Distribution

A random variable Y has a Poisson distribution (with
parameter λ > 0) if

PY (y) =
e−λλy

y!
, y = 0, 1, . . . .

The Poisson distribution often arises as a limiting form of
the binomial distribution.
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Continuous Random Variables

We denote a continuous random variable by X and
observed value of the random variable by x .

Each random variable X with range I has an associated
density function fX (x) which is defined, positive for all x
and integrates to one over the range I.

Prob(a < X < b) =

∫ b

a
fX (x)dx .
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The Normal Distribution

A random variable X has a normal or Gaussian distribution
if it has range (−∞,∞) and density function

fX (x) =
1√
2πσ

e−
(x−µ)2

2σ2 ,

where µ and σ > 0 are parameters of the distribution.
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Expectation

For a random variable Y , and any function g(Y ) of Y , the
expected value of g(Y ) is

E(g(Y )) =
∑

y

g(y)PY (y),

when Y is discrete; and

E(g(Y )) =

∫

y
g(y)fY (y) dy ,

when Y is continuous.

Thus,
mean(Y ) = E(Y ) = µ(Y ),

variance(Y ) = E(Y 2) − E(Y )2 = σ2(Y ).
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Conditional Probabilities

Suppose that A1 and A2 are two events such that
P(A2) 6= 0. Then the conditional probability that the event
A1 occurs, given that event A2 occurs, denoted by
P(A1|A2) is given by the formula

P(A1|A2) =
P(A1&A2)

P(A2)
.
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Bayes Rule

Suppose that A1 and A2 are two events such that
P(A1) 6= 0 and P(A2) 6= 0. Then

P(A2|A1) =
P(A2)P(A1|A2)

P(A1)
.
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Causation and Correlation

A fallacy, known as cum hoc ergo propter hoc (Latin for
“with this, therefore because of this”): Correlations do not
imply causation.

Statements associated with necessity and sufficiency

The INUS condition : An Insufficient but Non-redundant
part of an Unnecessary but Sufficient condition.

The Probability Raising condition

Temporal Priority
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Regularity Theories (David Hume)

Causes are invariably followed by their effects : “We
may define a cause to be an object, followed by another,
and where all the objects similar to the first, are followed by
objects similar to the second.”

Attempts to analyze causation in terms of invariable
patterns of succession are referred to as “regularity
theories” of causation.

There are a number of well-known difficulties with
regularity theories, and these may be used to motivate
probabilistic approaches to causation.
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Imperfect Regularities

The first difficulty is that most causes are not invariably
followed by their effects.

Penetrance : The presence of a disease allele does not
always lead to a disease phenotype.

Probabilistic theories of causation : simply requires that
causes raise the probability of their effects; an effect may
still occur in the absence of a cause or fail to occur in its
presence.

Thus smoking is a cause of lung cancer, not because all
smokers develop lung cancer, but because smokers are
more likely to develop lung cancer than non-smokers.
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Imperfect Regularities: INUS condition

John Stuart Mill and John Mackie offer more refined
accounts of the regularities that underwrite causal
relations.

An INUS condition : for some effect is an insufficient but
non-redundant part of an unnecessary but sufficient
condition.

Complexity : raises problems for the epistemology of
causation.
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INUS condition

Suppose, for example, that a lit match causes a forest fire.
The lighting of the match, by itself, is not sufficient; many
matches are lit without ensuing forest fires. The lit match
is, however, a part of some constellation of conditions that
are jointly sufficient for the fire. Moreover, given that this
set of conditions occurred, rather than some other set
sufficient for fire, the lighting of the match was necessary:
fires do not occur in such circumstances when lit matches
are not present.

Epistasis, and gene-environment interaction.
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Asymmetry

If A causes B, then, typically, B will not also cause A.

Causation is usually asymmetric.

This poses a problem for regularity theories, for it seems
quite plausible that if smoking is an INUS condition for lung
cancer, then lung cancer will be an INUS condition for
smoking.

One way of enforcing the asymmetry of causation is to
stipulate that causes precede their effects in time.
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Spurious Regularities

Suppose that a cause is regularly followed by two effects.
For instance, a particular allele A is pleiotropic... It causes
a disease trait, but also transcription of another gene B. B
may be mistakenly thought to be causing the disease.

B is also an INUS condition for disease state. But it’s not a
cause.

Whenever the barometric pressure drops below a certain
level, two things happen: First, the height of the column of
mercury in a barometer drops . Shortly afterwards, a storm
occurs. Then, it may well also be the case that whenever
the column of mercury drops, there will be a storm.
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Causes raise the probability of their effects.

This can be expressed formally using the apparatus of
conditional probability.

Let A, B, C, . . . represent factors that potentially stand in
causal relations.

Let Pr be a probability function... such that Pr(A)
represents the empirical probability that factor A occurs or
is instantiated.

Let Pr(B|A) represent the conditional probability of B,
given A.

Pr(B|A) =
Pr(A ∧ B)

Pr(A)
.
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If Pr(A) is 0, then the ratio in the definition of conditional
probability is undefined. (There are other ways of handling
this formally).

“A raises the probability of B” is that

Pr(B|A) > Pr(B|¬A).

PR Axiom

PR: A causes B if and only ifPr(B|A) > Pr(B|¬A).
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Problems

Probability-raising is symmetric : if Pr(B|A) > P(B|¬A),
then Pr(A|B) > P(A|¬B). The causal relation, however, is
typically asymmetric.
Probability-raising has trouble with spurious correlations. If
A and B are both caused by some third factor, C, then it
may be that Pr(B|A) > Pr(B|¬A) even though A does not
cause B.
Those with yellow-stained fingers are more likely to suffer
from lung cancer ... smoking tends to produce both effects.
Because individuals with yellow-stained fingers are more
likely to be smokers, they are also more likely to suffer from
lung cancer.
Intuitively, the way to address this problem is to require that
causes raise the probabilities of their effects ceteris
paribus.
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Spurious Correlations

Screening off : If Pr(B|A ∧ C) = P(B|C), then C is said to
screen A off from B.
Equivalently (A ⊥ B)|C...
[Pr(A ∧ B|C) = Pr(A|C)Pr(B|C))] ... Intuitively, C renders
A probabilistically irrelevant to B.
To avoid the problem of spurious correlations, add a ‘no
screening off’ (NSO)

NSO

Factor A occurring at time t , is a cause of the later factor B if
and only if:

Pr(B|A) > Pr(B|¬A)

There is no factor C, occurring earlier than or simultaneously
with A, that screens A off from B.
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Yule-Simpson Effect

NSO does not suffice to resolve the problem of spurious
correlations
Suppose, for example, that smoking is highly correlated
with exercise: those who smoke are much more likely to
exercise as well. Smoking is a cause of heart disease, but
suppose that exercise is an even stronger preventative of
heart disease. Then it may be that smokers are, over all,
less likely to suffer from heart disease than non-smokers.
A 7→ smoking, C 7→ exercise, and B 7→ heart disease,
Pr(B|A) < Pr(B|¬A). Note, however, that if we
conditionalize on whether one exercises or not, this
inequality is reversed:

Pr(B|A ∧ C) > Pr(B|¬A ∧ C)

Pr(B|A ∧ ¬C) > Pr(B|¬A ∧ ¬C).

Such reversals of probabilistic inequalities are instances of
` ´
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Test Situations

Causes must raise the probability of their effects in test
situations:

TS

TS: A causes B if Pr(B|A∧T ) > Pr(B|¬A∧T ) ∀ test situation T .

A test situation is a conjunction of factors, which are “held
fixed.” This suggests that in evaluating the causal
relevance of A for B, we need to hold fixed other causes of
B, either positively or negatively.
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Notations

We will use y to represent the trait under study; x to
represent the genotype data; and z to represent
covariates.

Example: yi = the trait value for the i th individual in a
sample, where i = 1, . . ., n; and n is the total sample size.

Similarly, xij is the genotype at the j th SNP for individual i ,
where j = 1, . . ., p is the total number of SNPs under study.

Finally, zik is the value of the k th covariate for individual i ,
where k = 1, . . ., m and m is the total number of
covariates.
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Notations

Thus, we will write x = (x1, . . . , xn)T to represent an n × 1
vector of genotypes at a single site on the genome across
all individuals in our sample.

Thus, x j = (x1j , . . . , xnj)
T will represent the genotypes at

the j th site.

Additionally, we will write x i = (xi1, . . . , xip)T to denote the
genotype data for the i th individual.
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Similarly, y = (y1, . . . , yn)T is a vector with its i th element
corresponding to the trait for individual i . y can be
quantitative; e.g., CD4 count or total cholesterol level.

Finally, an n × p matrix of genotype variables is given by X,
with the (i , j)th element corresponding to the j th genotype
for individual i .

Similarly, n × m matrix Z denotes the entire set of
covariates. (Multiple clinical, demographic and
environmental variables, such as age, sex, weight and
second hand smoke exposures.)
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Explanatory Variables

The combined matrix [XZ] represents the combined
explanatory variables.

Greek letters α, β, µ and θ are used to represent the model
parameters. The parameters are unobservable quantities
and are estimated from the data.
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The genotype for individual i at site j (denoted xij ) is a
categorical variable taking two or more levels.

For instance, xij may be a three level factor variable taking
three possible genotypes at a biallelic site: AA, Aa and aa,
where A is the major haplotype and a is the minor
haplotype.

As another example, we may assign xij = 0 if the observed
genotype is homozygous in major alleles, i.e., AA and
xij = 1 otherwise.

Sometimes, we will think of xij as an indicator for the
presence of any variant alleles across multilocus genotype.
Thus xij = 0 if the multilocus genotype is (AA, BB) and
xij = 1 otherwise.
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Difficulties

Effects leading to spurious causal explanations:
Confounding and effect mediation
A confounder is a variable that is: (1) associated with the
exposure (cause) variable; (2) independently associated
with the outcome (effect) variable; and (3) not in the causal
pathway between exposure and disease.
Example: Heavy alcohol consumption (the exposure) is
associated with the total cholesterol level (the outcome).
However smoking tends to be associated with heavy alcohol
consumption. Smoking is also associated with high cholesterol
levels among the individuals who are not heavy alcohol users.

A confounder is defined as a clinical or demographic
variable that is associated with the genotype and the trait
under investigation.
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Difficulties

A variable lying on the causal pathway between the
predictor and the outcome is called an effect mediator or
causal pathway variable.

Genotype affects the trait through alteration of the mediator
variable.

A particular SNP variant may make an individual more
likely to smoke and smoking would then cause cancer.
Here smoking is an effect mediator.
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Difficulties

Effect modification : Effect of a predictor variable on the
outcome depends on the level of another variable, called a
modifier . Thus, the predictor variable and the modifier
interact (in a statistical sense) in their association with the
outcome.

Conditional Association : The causal pathways between
a predictor variable and the outcome depends on the
values taken by the third modifying variable.
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Markov Models

Suppose there are n states S1, S2, . . ., Sn. And the
probability of moving to a state Sj from a state Si depends
only on Si , but not the previous history. That is:

P(s(t + 1) = Sj |s(t) = Si , s(t − 1) = Si1, . . .)

= P(s(t + 1) = Sj |s(t) = Si).

Then by Bayes rule:

P(s(0) = Si0 , s(1) = Si1, . . . , s(t − 1) = Sit−1
, s(t) = Sit )

= P(s(0) = Si0)P(Si1 |Si0) · · ·P(Sit |Sit−1).
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HMM: Hidden Markov Models

Defined with respect to an alphabet Σ

A set of (hidden) states Q,

A |Q| × |Q| matrix of state transition probabilities
A = (akl), and

A |Q| × |Σ| matrix of emission probabilities E = (ek (σ)).

States

Q is a set of states that emit symbols from the alphabet Σ.
Dynamics is determined by a state-space trajectory determined
by the state-transition probabilities.

B Mishra Computational Systems Biology: Biology X



Outline
A Short Introduction to Probability and Causation

Probability
Causation
Association Studies

A Path in the HMM

Path Π = π1π2 · · · πn = a sequence of states ∈ Q∗ in the
hidden markov model, M.

x ∈ Σ∗ = sequence generated by the path Π determined
by the model M:

P(x |Π) = P(π1)

[

n
∏

i=1

P(xi |πi) · P(πi |πi+1)

]
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A Path in the HMM

Note that

P(x |Π) = P(π1)

[

n
∏

i=1

P(xi |πi) · P(πi |πi+1)

]

P(xi |πi) = eπi (xi )

P(πi |πi+1) = aπi ,πi+1

Let π0 and πn+1 be the initial (“begin”) and final (“end”)
states, respectively

P(x |Π) = aπ0,π1eπ1(x1)aπ1,π2eπ2(x2) · · · eπn(xn)aπn,πn+1

i.e.

P(x |Π) = aπ0,π1

n
∏

i=1

eπi (xi)aπi ,πi+1.
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Decoding Problem

For a given sequence x , and a given path π, the model
(Markovian) defines the probability P(x |Π)

In a casino scenario: the dealer knows Π and x , the player
knows x but not Π.

“The path of x is hidden.”

Decoding Problem : Find an optimal path π∗ for x such
that P(x |π) is maximized.

π∗ = arg max
π

P(x |π).
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Dynamic Programming Approach

Principle of Optimality

Optimal path for the (i + 1)-prefix of x

x1x2 · · · xi+1

uses a path for an i-prefix of x that is optimal among the paths
ending in an unknown state πi = k ∈ Q.
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Dynamic Programming Approach

Recurrence: sk (i) = the probability of the most probable path
for the i-prefix ending in state k

∀k∈Q∀1≤i≤n sk (i) = ek (xi) · max
l∈Q

sl(i − 1)alk .
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Dynamic Programming

i = 0, Base case

sbegin(0) = 1, sk (0) = 0,∀k 6=begin.

0 < i ≤ n, Inductive case

sl(i + 1) = el(xi+1) · max
k∈Q

[sk (i) · akl ]

i = n + 1
P(x |π∗) = max

k∈Q
sk (n)ak ,end .
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Viterbi Algorithm

Dynamic Programing with “log-score ” function

Sl(i) = log sl(i).

Space Complexity = O(n|Q|).
Time Complexity = O(n|Q|).
Additive formula:

Sl(i + 1) = log el(xi+1) + max
k∈Q

[Sk (i) + log akl ].
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[End of Lecture #5]

B Mishra Computational Systems Biology: Biology X


	Outline
	A Short Introduction to Probability and Causation
	Probability
	Causation
	Association Studies


