Computational Systems Biology: Biology X

Bud Mishra

Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA

L\#4:(Feb-23-2010)
 Genome Wide Association Studies

Outline

(1) A Short Introduction to Probability

- Hidden Markov Models

The law of causality ... is a relic of a bygone age, surviving, like the monarchy, only because it is erroneously supposed to do no harm ...
-Bertrand Russell, On the Notion of Cause. Proceedings of the Aristotelian Society 13: 1-26, 1913.

Outline

(1) A Short Introduction to Probability

- Hidden Markov Models

Random Variables

- A (discrete) random variable is a numerical quantity that in some experiment (involving randomness) takes a value from some (discrete) set of possible values.
- More formally, these are measurable maps

$$
X(\omega), \omega \in \Omega
$$

from a basic probability space (Ω, F, P) (\equiv outcomes, a sigma field of subsets of Ω and probability measure P on $F)$.

- Events

$$
\ldots\left\{\omega \in \Omega \mid X(\omega)=x_{i}\right\} \ldots
$$

same as $\left\{X=x_{i}\right\}$ [X assumes the value $\left.x_{i}\right]$.

Few Examples

- Example 1: Rolling of two six-sided dice. Random Variable might be the sum of the two numbers showing on the dice. The possible values of the random variable are $2,3, \ldots$, 12.
- Example 2: Occurrence of a specific word GAATTC in a genome. Random Variable might be the number of occurrence of this word in a random genome of length 3×10^{9}. The possible values of the random variable are 0 , $1,2, \ldots, 3 \times 10^{9}$.

The Probability Distribution

- The probability distribution of a discrete random variable Y is the set of values that this random variable can take, together with the set of associated probabilities.
- Probabilities are numbers in the range between zero and one (inclusive) that always add up to one when summed over all possible values of the random variable.

Bernoulli Trial

- A Bernoulli trial is a single trial with two possible outcomes: "success" \& "failure."

$$
P(\text { success })=p \text { and } P(\text { failure })=1-p \equiv q
$$

- Random variable S takes the value - 1 if the trial results in failure and +1 if it results in success.

$$
P_{S}(s)=p^{(1+s) / 2} q^{(1-s) / 2}, \quad s=-1,+1
$$

The Binomial Distribution

- A Binomial random variable is the number of successes in a fixed number n of independent Bernoulli trials (with success probability $=p$).
- Random variable Y denotes the total number of successes in the n trials.

$$
P_{Y}(y)=\binom{n}{y} p^{y} q^{n-y}, \quad y=0,1, \ldots, n
$$

The Uniform Distribution

- A random variable Y has the uniform distribution if the possible values of Y are $a, a+1, \ldots, a+b-1$ for two integer constants a and b, and the probability that Y takes any specified one of these b possible values is b^{-1}.

$$
P_{Y}(y)=b^{-1}, \quad y=a, a+1, \ldots, a+b-1
$$

The Geometric Distribution

- Suppose that a sequence of independent Bernoulli trials is conducted, each trial having probability p of success. The random variable of interest is the number Y of trials before but not including the first failure. The possible values of Y are $0,1,2, \ldots$.

$$
P_{Y}(y)=p^{y} q, \quad y=0,1, \ldots
$$

The Poisson Distribution

- A random variable Y has a Poisson distribution (with parameter $\lambda>0$) if

$$
P_{Y}(y)=\frac{e^{-\lambda} \lambda^{y}}{y!}, \quad y=0,1, \ldots
$$

- The Poisson distribution often arises as a limiting form of the binomial distribution.

Continuous Random Variables

- We denote a continuous random variable by X and observed value of the random variable by x.
- Each random variable X with range / has an associated density function $f_{X}(x)$ which is defined, positive for all x and integrates to one over the range I.

$$
\operatorname{Prob}(a<X<b)=\int_{a}^{b} f_{X}(x) d x
$$

The Normal Distribution

- A random variable X has a normal or Gaussian distribution if it has range $(-\infty, \infty)$ and density function

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

where μ and $\sigma>0$ are parameters of the distribution.

Expectation

- For a random variable Y, and any function $g(Y)$ of Y, the expected value of $g(Y)$ is

$$
E(g(Y))=\sum_{y} g(y) P_{Y}(y)
$$

when Y is discrete; and

$$
E(g(Y))=\int_{y} g(y) f_{Y}(y) d y
$$

when Y is continuous.

- Thus,

$$
\begin{gathered}
\operatorname{mean}(Y)=E(Y)=\mu(Y) \\
\text { variance }(Y)=E\left(Y^{2}\right)-E(Y)^{2}=\sigma^{2}(Y)
\end{gathered}
$$

Conditional Probabilities

- Suppose that A_{1} and A_{2} are two events such that $P\left(A_{2}\right) \neq 0$. Then the conditional probability that the event A_{1} occurs, given that event A_{2} occurs, denoted by $P\left(A_{1} \mid A_{2}\right)$ is given by the formula

$$
P\left(A_{1} \mid A_{2}\right)=\frac{P\left(A_{1} \& A_{2}\right)}{P\left(A_{2}\right)}
$$

Bayes Rule

- Suppose that A_{1} and A_{2} are two events such that $P\left(A_{1}\right) \neq 0$ and $P\left(A_{2}\right) \neq 0$. Then

$$
P\left(A_{2} \mid A_{1}\right)=\frac{P\left(A_{2}\right) P\left(A_{1} \mid A_{2}\right)}{P\left(A_{1}\right)}
$$

Markov Models

- Suppose there are n states $S_{1}, S_{2}, \ldots, S_{n}$. And the probability of moving to a state S_{j} from a state S_{i} depends only on S_{i}, but not the previous history. That is:

$$
\begin{aligned}
& P\left(s(t+1)=S_{j} \mid s(t)=S_{i}, s(t-1)=S_{i_{1}}, \ldots\right) \\
& \quad=P\left(s(t+1)=S_{j} \mid s(t)=S_{i}\right)
\end{aligned}
$$

Then by Bayes rule:

$$
\begin{aligned}
& P\left(s(0)=S_{i_{0}}, s(1)=S_{i_{1}}, \ldots, s(t-1)=S_{i_{t-1}}, s(t)=S_{i_{t}}\right) \\
& \quad=P\left(s(0)=S_{i_{0}}\right) P\left(S_{i_{1}} \mid S_{i_{0}}\right) \cdots P\left(S_{i_{t}} \mid S_{i_{t-1}}\right) .
\end{aligned}
$$

HMM: Hidden Markov Models

Defined with respect to an alphabet Σ

- A set of (hidden) states Q,
- A $|Q| \times|Q|$ matrix of state transition probabilities $A=\left(a_{k l}\right)$, and
- $\mathrm{A}|Q| \times|\Sigma|$ matrix of emission probabilities $E=\left(e_{k}(\sigma)\right)$.

States

Q is a set of states that emit symbols from the alphabet Σ. Dynamics is determined by a state-space trajectory determined by the state-transition probabilities.

A Path in the HMM

- Path $\Pi=\pi_{1} \pi_{2} \cdots \pi_{n}=$ a sequence of states $\in Q^{*}$ in the hidden markov model, M.
- $x \in \Sigma^{*}=$ sequence generated by the path Π determined by the model M :

$$
P(x \mid \Pi)=P\left(\pi_{1}\right)\left[\prod_{i=1}^{n} P\left(x_{i} \mid \pi_{i}\right) \cdot P\left(\pi_{i} \mid \pi_{i+1}\right)\right]
$$

A Path in the HMM

- Note that

$$
\begin{aligned}
P(x \mid \Pi) & =P\left(\pi_{1}\right)\left[\prod_{i=1}^{n} P\left(x_{i} \mid \pi_{i}\right) \cdot P\left(\pi_{i} \mid \pi_{i+1}\right)\right] \\
P\left(x_{i} \mid \pi_{i}\right) & =e_{\pi_{i}}\left(x_{i}\right) \\
P\left(\pi_{i} \mid \pi_{i+1}\right) & =a_{\pi_{i}, \pi_{i+1}}
\end{aligned}
$$

- Let π_{0} and π_{n+1} be the initial ("begin") and final ("end") states, respectively

$$
P(x \mid \Pi)=a_{\pi_{0}, \pi_{1}} e_{\pi_{1}}\left(x_{1}\right) a_{\pi_{1}, \pi_{2}} e_{\pi_{2}}\left(x_{2}\right) \cdots e_{\pi_{n}}\left(x_{n}\right) a_{\pi_{n}, \pi_{n+1}}
$$

i.e.

$$
P(x \mid \Pi)=a_{\pi_{0}, \pi_{1}} \prod_{i=1}^{n} e_{\pi_{i}}\left(x_{i}\right) a_{\pi_{i}, \pi_{i+1}}
$$

Decoding Problem

- For a given sequence x, and a given path π, the model (Markovian) defines the probability $P(x \mid \Pi)$
- In a casino scenario: the dealer knows Π and x, the player knows x but not Π.
- "The path of x is hidden."
- Decoding Problem: Find an optimal path π^{*} for x such that $P(x \mid \pi)$ is maximized.

$$
\pi^{*}=\arg \max _{\pi} P(x \mid \pi)
$$

Dynamic Programming Approach

Principle of Optimality

Optimal path for the $(i+1)$-prefix of x

$$
x_{1} x_{2} \cdots x_{i+1}
$$

uses a path for an i-prefix of x that is optimal among the paths ending in an unknown state $\pi_{i}=k \in Q$.

Dynamic Programming Approach

Recurrence: $s_{k}(i)=$ the probability of the most probable path for the i-prefix ending in state k

$$
\forall_{k \in Q} \forall_{1 \leq i \leq n} \quad s_{k}(i)=e_{k}\left(x_{i}\right) \cdot \max _{l \in Q} s_{l}(i-1) a_{k k} .
$$

Dynamic Programming

- $i=0$, Base case

$$
s_{\text {begin }}(0)=1, s_{k}(0)=0, \forall_{k \neq \text { begin }}
$$

- $0<i \leq n$, Inductive case

$$
s_{l}(i+1)=e_{l}\left(x_{i+1}\right) \cdot \max _{k \in Q}\left[s_{k}(i) \cdot a_{k l}\right]
$$

- $i=n+1$

$$
P\left(x \mid \pi^{*}\right)=\max _{k \in Q} s_{k}(n) a_{k, e n d}
$$

Viterbi Algorithm

- Dynamic Programing with "log-score" function

$$
S_{l}(i)=\log s_{l}(i) .
$$

- Space Complexity $=O(n|Q|)$.
- Time Complexity $=O(n|Q|)$.
- Additive formula:

$$
S_{l}(i+1)=\log e_{l}\left(x_{i+1}\right)+\max _{k \in Q}\left[S_{k}(i)+\log a_{k l}\right]
$$

[End of Lecture \#4]

