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Class Projects

Few Ideas for the class projects:
1 GWAS – WTCCC Study: See the URL:

http://www.nature.com/nature/journal/v447/n7145/full/nature05911.html
2 Mendelian Diseases: See the URL:

http://www.nature.com/nature/journal/v461/n7261/full/nature08250.html
3 Indian Population: See the URL:

http://www.nature.com/nature/journal/v461/n7263/abs/nature08365.html
4 Mutation Rates in Humans: See URL:

http://www.pnas.org/content/107/3/961.abstract
5 Quartet Analysis: See URL:

http://www.sciencemag.org/cgi/content/abstract/science.1186802
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Missingness

Missing and Unobservable Data:
1 Rare alleles are difficult to genotype. The frequency

estimates are incorrect.
2 Alignment of alleles on a single homologous chromosome

is difficult to infer. Haplotype Phasing Problem.
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Haplotype Phasing Problem

Two alleles on the same homologous chromosome are
said to be in cis — Two alleles on opposite sister homologs
are said to be in trans.

A particular combination of alleles on a single homologous
chromosome is called a haplotype.

With (k + 1) biallelic SNPs, the population can have 2k

possible haplotypes, though most of them are likely to be
missing.
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Haplotype Phasing Problem

Note that the diploid pair of haplotypes is of the order 22k :

(
2k

2

)
+ 2k ,

the first term corresponding to heterozygous haplotypes
and the second corresponding to homozygous haplotypes.

When k = 2, there are four haplotypes: (AB, aB, Ab, ab)
and ten diplotypes

(AB, AB), (aB, aB), (Ab, Ab), (ab, ab),

(AB, aB), (AB, Ab), (AB, ab), (aB, Ab), (aB, ab), and (Ab, ab).
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Penetrance

It is possible to infer a likely haplotype from the genotype
data, if we know the LD-structure for the population.
However, this is further confused by two other effects:

1 Penetrance: The presence of a disease alleles does not
lead to the disease phenotype.

2 Phenocopies: Individuals exhibiting disease phenotypes
do not carry the allele under consideration.
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Model Selection

Goal is to select a small number of SNPs to build a model:
These should be causal SNPS or Tag SNPs in LD with
causal SNPs.

Bayesian Variable Selection: Start with a General Linear
Model for Genotype-Trait Association:

yi = β1x∗

i1 + β2x∗

i2 + · · · + βr x∗

ir + ǫi , for i = 1, . . . , n,

where (x∗

1, x∗

2, . . . , x∗

r ) is a subset of potential indicator
variables, y is a quantitative trait.
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Model Selection

For the coefficients assume that they are either relevant or
nuisance variables, described by a mixture model:

βj |γj ∼ (1 − γj)N (0, τ2
j ) + γjN (0, c2

j τ2
j ),

where gamma = (γ1, . . . , γp) is a latent (unobservable)
vector with elements taking values 0 or 1.

Pr(γj = 1) = pj , and Pr(γj = 0) = 1 − pj = qj ,

For the variance in the selected coefficients, we can
choose:

σ2|γ ∼ IG(νγ/2, νγλγ/2),

given by an inverse gaussian (Wald) distribution IG.
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Distributions

Gaussian/Normal:
X ∼ N (µ, σ)

then

f (x ;µ, σ) =
1√

2πσ2
exp

−(x − µ)2

2σ2 .

Wald:
X ∼ IG(µ, λ)

then

f (x ;µ, λ) =

[
λ

2πx3

]1/2

exp
−λ(x − µ)2

2µ2x
.
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Putting it all together

We now have

y|β, σ2 ∼ MVN n(Xβ, σ2I),

where y = (y1, . . . , yn)T , Xn×p = [x1, . . . , xp] and
β = (β1, . . . , βp)T .

The parameters corresponding to the ONLY true
underlying predictors (x∗

1, . . . , x∗

r ) are non-zero.
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Bayesian Formulation

Putting everything together,

π(γ|Y) ∝ f (Y|β, σ2)f (β|γ)f (σ2|γ)π(γ).

We can find the best estimator for γ by Gibb’s sampling
from the marginal posterior densities for β, σ and γj .
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Bayesian Variable Selection

Algorithm 1: BVS - pseudocode
Input: Traits Y and SNPs xi

Output: Subset of prdictive SNPs x∗

i

Initialize β, σ and γ — denoted as β(0), σ(0) and γ(0)1

Let t = t + 1 and sample2

β(t)|y ∼ f (β|y, σ(t−1), γ(t−1))

σ(t)|y ∼ f (σ|y, β(t−1), γ(t−1))

Randomly select an ordering γ(1), . . ., γ(p) and sample3

γ
(t)
(1)|y ∼ f (γ(1)|y, β(t), σ(t), γ

(t−1)
(2) , . . . , γ

(t−1)
(p) )

γ
(t)
(2)|y ∼ f (γ(1)|y, β(t), σ(t), γ

(t)
(1), γ

(t−1)
(3) , . . . , γ

(t−1)
(p) )

...

γ
(t)
(p)|y ∼ f (γ(1)|y, β(t), σ(t), γ

(t)
(1), . . . , γ

(t)
(p−1))

Repeat the steps (2) and (3) M times for a large M.4

5
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Unobservable Phase

Currently a primary challenge in GWAS: Unobservable
nature of allelic phases.

It is possible to solve it by improved technology. But current
technologies focus on “genotyping,” and then resolve
haplotype ambiguity via statistical methods: (1) Single
IMputation or (2) Multiple Imputations.

Simple Methods: First resolve genotype ambiguities to
impute haplotypes; then use the haplotypes in association
studies.

Complex Methods: Combined analysis involving both
imputations and association studies.
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Imputation

We have incomplete observed data Xobs, which are from a
distribution parametrized by (unknown) θ.

We can estimate θ by an MLE, if we had complete data Xc.

If we had the parameters θ, we could impute Xc from Xobs.

In our case,

Xobs = {G1, . . . , Gn} genotypes

Xc = {H1, . . . , Hn} haplotypes

θ = parameters describing

haplotype distributions in the population
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Toy Example

Consider the genotype across two sites for individual i
given by

Gi = [AA][BB]

The individual is homozygous in both sites. Then his
haplotypes are

S(Gi) = {(AB, AB)}
There is no haplotypic ambiguities for such an individual.
But such individuals would be relatively rare in the
population, occurring with a probability p2

Ap2
B.
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Toy Example

Next, consider the genotype across two sites for individual
i given by

Gi = [AA][Bb]

The individual is heterozygous in the second site. Then his
haplotypes are

S(Gi) = {(AB, Ab)}
There is no haplotypic ambiguities for such an individual,
either. But such individuals would not be that frequent in
the population, occurring with a probability 2p2

ApB(1 − pB).
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Ambiguities

Now, consider a more common case: the genotype across
two sites for individual i given by

Gi = [Aa][Bb]

The individual is heterozygous in both sites. Then the set
of all haplotype pairs consistent with this genotype is given
by

S(Gi) = {(AB, ab), (Ab, aB)}
There is a haplotypic ambiguity for such an individual.
They occur in the population with a probability
4pApB(1 − pA)(1 − pB).
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Ambiguities

The best one can do is to impute the data by the
population wide distributions of various haplotypes, under
assumption of a panmictic population, with the distributions
governed by some parameters θ.

The parameters θ̂ can be estimated from the imputed
haplotypes for all individuals.

Suppose the haplotype frequencies are θ1, θ2, θ3 and θ4 for
haplotypes AB, Ab, aB and ab, respectively. Then for the
(ambiguous) individuals, we may impute, by saying that he
has haplotype-pair (AB, ab) with a probability 2θ1θ4 and
haplotype-pair with a probability 2θ2θ3.
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Haplotype Estimation

Estimate individual haplotypes and population-level
frequencies.

EM approach: Estimate haplotype frequencies; Use
estimates to infer unknown haplotypes for the individuals in
the GWAS sample;

Bayesian approach: Reconstruct unknown haplotypes;
reconstructed data can then be used to estiamte
population-level haplotype frequencies.
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EM algorithms

Expectation-Maximization (EM) algorithms work in two
steps: E steps and M steps...
It is a natural approach when there is a significant amount
of missing data
Recall: A maximum likelihood estimate (MLE) is an
estimate of parameters of a distribution, derived by
maximizing a function of the complete data
Xc = (x1, . . . , xn).

θ̂ = arg max
θ

L(θ|Xc) = arg max
θ

n∏

i=1

Pr(xi |θ),

where Pr(xi |θ) is the probability density function of xi

(parametrized by θ).

B Mishra Computational Systems Biology: Biology X
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EM algorithms

Thus a maximum likelihood estimate (MLE) computes
(since log is an order preserving transformation)

θ̂ = arg max
θ

log L(θ|Xc).

But since we have only Xobs, we first impute Xc using our
best guess for θ̂:

θ̂ = arg max
θ

E
(

log L(θ|Xc)|Xobs, θ̂
)

.

We solve the fix-point equation by successively improving
the estimates

θ̂(t+1) = arg max
θ

E
(

log L(θ|Xc)|Xobs, θ̂(t)
)

.
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EM Algorithm

The algorithm works in two steps:

E step: First it takes the expectation of the complete data
log likelihood – conditional on the observed data and the
current parameter estimate. Thus it determines the most
likely value of the likelihood for the complete data

M step: Next it maximizes the equation with respect to the
parameter θ. This yields a new estimate – denoted θ̂(t+1).

E- and M-steps are repeated iteratively until a convergence
criterion (stopping rule) is met to arrive at an MLE of θ.
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EM

Algorithm 2: EM - pseudocode

Input: Model: Pr(xi |θ) and Xobs

Output: MLE of θ̂

Initialize θ(0) to some reasonable sets of values1

Let t = t + 1 and repeat2

θ̂(t+1) := arg maxθ E
(

log L(θ|Xc)|Xobs, θ̂(t)
)

.

Repeat the step (2) M times for a large M.3

4
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EM

Algorithm 3: EM - pseudocode
Input: Genotype Data: G1, G2, . . ., Gn

Output: MLE estimates of the frequencies p̂Hi

Initialize θ(0) to some reasonable sets of values by using the1

homozygous individuals
Let t = t + 1 and repeat2

θ̂(t+1) := arg max
θ

E
(

log L(θ|H1, . . . , Hn)|G1, . . . , Gn, θ̂
(t)

)
.

=
n∑

i=1

∑

Hi∈S(Gi )

p̂Hi

(t) log Pr(Hi |θ)

p̂Hi

(t)
:= Pr(Hi |Gi , θ̂

(t))

=
Pr(Hi |θ̂(t))

∑
Hi∈S(Gi )

Pr(Hi |θ̂(t))

Repeat the step (2) M times for a large M.3

4
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Intuition

E step: We average over all possible resolutions of the
missing data in a manner that takes into account the
current parameter estimates...

If an individual’s genotype is [Aa, Bb], then E-step will give
more weight to the haplotype pair that has a higher
estimated frequency.... For instance if the haplotypes
(AB, ab) are relatively common while the haplotypes
(Ab, aB) appear rare, then we lend additional weight to the
former than the later. That is,

Wt(AB, ab) > Wt(Ab, aB).
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Intuition

M step: We maximize the expectation to arrive at updated
parameter estimates.
As the E- and M-steps are repeatedly applied, the
estimates converge to the true values. (Assuming that an
initial estimate is not too far away form the true values.)
Note: This approach assumes HWE. Thus it should only
be applied within racial and ethnic strata within which there
is no evidence of a departure from the underlying
assumption of panmixia (i.e., random mating).
Also, note: Sometimes, it is not uncommon to fill in
unknown haplotypes by assigning each individual the
haplotype pair with the highest posterior probability ... This
strategy leads to incorrect solutions, as since valuable
information on the uncertainty in the assignment is lost.
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Bayesian Haplotype Reconstruction

This method allows for estimation of population level
haplotype frequencies in the context of data for which
allelic phase is potentially unobservable. The primary aim
however is reconstruction of individual-level haplotype
pairs — Assign each individual the most likely haplotype
pair.

Bayesian Approach: Sampling schemes: (1) MCMC
(Markov-Chain Monte-Carlo), (2) Gibbs Sampling, (3)
Sequential Monte-Carlo (Particle Filtering), (4) EM, etc.
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Bayesian Approach

Make inference about parameter based on its conditional
distribution given data.

θ = parameter of interest

X = data

π(θ|X) = conditional distribution of θ given X

= posterior density of θ

The distribution depends on three quantities:
1 The prior distribution of θ, given by π(θ)
2 The likelihood of the data, given by L(θ|X) = f (X|θ)
3 A constant c = 1/(

∫
θ
π(θ)L(θ|X)dθ)
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Baye’s Rule

The relationship between the posterior density and each of
the tree quantities: posterior, likelihood and partition
function is

π(θ|X) = cL(θ|X)π(θ)...

or equivalently,

π(θ|X) =
π(θ; X)

f (X)
=

f (X|θ)π(θ)∫
θ π(θ)L(θ|X)dθ

.

In practice, exact calculation of this is posterior probability
is not tractable, and approximation methods are use —
Markov-Chain Monte-Carlo (MCMC) methods provide an
approach to generate approximate samples from a
distribution

B Mishra Computational Systems Biology: Biology X



Outline
Missing Data in GWAS

Model Selection
Unobservable Phase

Gibb’s Sampler

Suppose that the population parameters are
θ = (θ1, . . . , θk ), and we wish to compute the joint posterior
density π(θ|X) — which cannot be obtained analytically.

Assume that π(θk |θ−k , X) is the marginal distribution of the
single parameter θk conditional on current values of all
other parameters:

θ1, . . . , θk−1, θk+1, . . . , θK .

A Gibb’s sampler provides us with sample of data from
posterior density π(θ|X), based on sampling from marginal
distributions π(θk |θ−k , X).
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Gibb’s Sampler

Algorithm 4: Gibb’s Sampling
Input: Model parameters θ, Data: X
Output: MLE estimates of the parameters θ

Initialize θ(0) to some reasonable sets of values1

Let t = t + 1 and sample2

θ
(t+1)
1 |θ−1, X ∼ π(θ1|θ(t)

2 , . . . , θ
(t)
K , X)

θ
(t+1)
2 |θ−2, X ∼ π(θ2|θ(t+1)

1 , θ
(t)
3 , . . . , θ

(t)
K , X)

...

θ
(t+1)
K |θ−K , X ∼ π(θK |θ(t+1)

1 , . . . , θ
(t+1)
K−1 , X)

Repeat the step (2) M times for a large M.
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Bayesian Haplotype Reconstruction

Algorithm 5: Bayes’ Haplo Recon
Input: Genotype Data: G = {G1, . . . , Gn}
Output: MLE estimates of the haplotype pairs

H = {H1, . . . , hn∗}
Initialize H(0) to some reasonable values1

Let t = t + 1 and sample2

H(t+1)
1 |G, H−1 ∼ π(H1|H(t)

2 , . . . , H(t)
n∗ , G)

H(t+1)
2 |G, H−2 ∼ π(H2|H(t+1)

1 , H(t)
3 , . . . , H(t)

n∗ , X)
...

H(t+1)
n∗ |G, H−n∗ ∼ π(Hn∗|H(t+1)

1 , . . . , H(t+1)
n∗−1 , X)

Repeat the step (2) M times for a large M.
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[End of Lecture #10]
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