## Computational Systems Biology: Biology X

#### Bud Mishra

#### Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA

#### L#8:(November-08-2010) Cancer and Signals

・ロ・・ (日・・ (日・・ (日・)





- Bayesian Interpretation of Probabilities
- Information Theory

E.





- Bayesian Interpretation of Probabilities
- Information Theory

・ロト ・回ト ・ヨト ・ヨト

E.

# Multicellularity

- In a multicellular organism, a group of cells must work together to accomplish a particular "function."
- No single cell can perform the entire function, but only its "component" of the function: **action**.
- The appropriate **action** depends upon the global state: microenvironment, stress, oxygen, pH, etc.
- No single cell may know the global state: but only some "component" of the state: type.

・ロット ( 雪 ) ・ ヨ ) ・ ・ ー )

#### Sender-Receiver Game

- A sender cell or ECM (extra-cellular matrix) knows the type, and based on it sends a subset of few available signals.
- A receiver cell receives the **signals** and activates kinases, transcriptional factors to turn on certain genes to perform certain **actions**.
- Sender wants the signals to carry as much information as possible, and specific actions to be carried out as a result of the signals.
- Receiver wishes the signals to encode the global sate as best as possible, and the actions to confirm to the state as informatively as possible.

크



- Intracrine (within a cell)
- Autocrine (originating from the same cell)
- Paracrine (originating from nearby cells)
- Endocrine (system-wide)

・ロ・・ (日・・ ヨ・・

크



- Growth Factors (Kinases)
- Motility (Integrin)
- Apoptosis (Caspases)
- Metabolism (Hypoxia, Anoxia, etc.)
- Autophagy
- Metaplasia (Transdifferentiation, Dedifferentiation)
- Meta-signals (Mutators?)

・ロ・・ (日・・ (日・・ (日・)

Ξ.



#### Bayes & Information

- Bayesian Interpretation of Probabilities
- Information Theory

・ロ・・ (日・・ (日・・ (日・)

E.

# Information theory

- Information theory is based on probability theory (and statistics).
- **Basic concepts**: *Entropy* (the information in a random variable) and *Mutual Information* (the amount of information in common between two random variables).
- The most common unit of information is the **bit** (based log 2). Other units include the **nat**, and the **hartley**.



- The entropy *H* of a discrete random variable *X* is a measure of the amount uncertainty associated with the value *X*.
- Suppose one transmits 1000 bits (0s and 1s). If these bits are known ahead of transmission (to be a certain value with absolute probability), logic dictates that no information has been transmitted. If, however, each is equally and independently likely to be 0 or 1, 1000 bits (in the information theoretic sense) have been transmitted.



- Between these two extremes, information can be quantified as follows.
- If X is the set of all messages x that X could be, and p(x) is the probability of X given x, then the entropy of X is defined as

$$H(x) = E_X[I(x)] = -\sum_{x \in X} p(x) \log p(x).$$

Here, I(x) is the self-information, which is the entropy contribution of an individual message, and  $E_X$  is the expected value.

・ロット ( 雪 ) ・ ヨ ) ・ ・ ー )

- An important property of entropy is that it is maximized when all the messages in the message space are equiprobable p(x) = 1/n, i.e., most unpredictable, in which case H(X) = log n.
- The binary entropy function (for a random variable with two outcomes ∈ {0, 1} or ∈ {*H*, *T*}:

$$H_b(p,q) = -p\log p - q\log q, \quad p+q = 1.$$

## Joint entropy

- The joint entropy of two discrete random variables X and Y is merely the entropy of their pairing: (X, Y).
- Thus, if X and Y are independent, then their joint entropy is the sum of their individual entropies.

$$H(X, Y) = E_{X,Y}[-\log p(x, y)] = -\sum_{x,y} \log p(x, y).$$

 For example, if (X,Y) represents the position of a chess piece Ñ X the row and Y the column, then the joint entropy of the row of the piece and the column of the piece will be the entropy of the position of the piece.

#### Conditional Entropy or Equivocation

 The conditional entropy or conditional uncertainty of X given random variable Y (also called the equivocation of X about Y) is the average conditional entropy over Y:

$$H(X|Y) = E_Y[H(X|y)]$$
  
=  $-\sum_{y \in Y} p(y) \sum_{x \in X} p(x|y) \log p(x|y)$   
=  $-\sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(y)}$ 

A basic property of this form of conditional entropy is that:

$$H(X|Y) = H(X, Y) - H(Y).$$

## Mutual Information (Transinformation)

- Mutual information measures the amount of information that can be obtained about one random variable by observing another.
- The mutual information of X relative to Y is given by:

$$I(X;Y) = E_{X,Y}[SI(x,y)] = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}.$$

where SI (**Specific mutual Information**) is the pointwise mutual information.

• A basic property of the mutual information is that

I(X; Y) = H(X) - H(X|Y) = H(X) + H(Y) - H(X, Y) = I(Y; X).

That is, knowing Y, we can save an average of I(X; Y) bits in encoding X compared to not knowing Y. Note that mutual information is **symmetric**.

 It is important in communication where it can be used to maximize the amount of information shared between sent and received signals.

(日)

### Kullback-Leibler Divergence (Information Gain)

 The Kullback-Leibler divergence (or information divergence, information gain, or relative entropy) is a way of comparing two distributions: a "true" probability distribution p(X), and an arbitrary probability distribution q(X).

$$D_{KL}(p(X) || q(X)) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}$$
  
=  $\sum_{x \in X} [-p(x) \log q(x)] - [-p(x) \log p(x)]$ 

・ロン ・四 ・ ・ ヨン ・ ヨン

- If we compress data in a manner that assumes q(X) is the distribution underlying some data, when, in reality, p(X) is the correct distribution, the Kullback-Leibler divergence is the number of average additional bits per datum necessary for compression.
- Although it is sometimes used as a 'distance metric,' it is not a true metric since it is not symmetric and does not satisfy the triangle inequality (making it a semi-quasimetric).

・ロット ( 雪 ) ・ ヨ ) ・ ・ ー )

 Mutual information can be expressed as the average Kullback-Leibler divergence (information gain) of the posterior probability distribution of X given the value of Y to the prior distribution on X:

$$I(X; Y) = E_{p(Y)}[D_{KL}(p(X|Y = y)||p(X)]] = D_{KL}(p(X, Y)||p(X)p(Y)).$$

In other words, mutual information I(X, Y) is a measure of how much, on the average, the probability distribution on X will change if we are given the value of Y. This is often recalculated as the divergence from the product of the marginal distributions to the actual joint distribution.

• Mutual information is closely related to the log-likelihood ratio test in the context of contingency tables and the multinomial distribution and to Pearson's  $\chi^2$  test.

通り イヨン イヨン

### Source theory

- Any process that generates successive messages can be considered a source of information.
- A memoryless source is one in which each message is an independent identically-distributed random variable, whereas the properties of ergodicity and stationarity impose more general constraints. All such sources are stochastic.

#### Information Rate

Rate Information rate is the average entropy per symbol.
 For memoryless sources, this is merely the entropy of each symbol, while, in the case of a stationary stochastic process, it is

$$r = \lim_{n \to \infty} H(X_n | X_{n-1}, X_{n-2} \ldots)$$

• In general (e.g., nonstationary), it is defined as

$$r = \lim_{n \to \infty} \frac{1}{n} H(X_n, X_{n-1}, X_{n-2} \ldots)$$

 In information theory, one may thus speak of the "rate" or "entropy" of a language.

・ロン ・四 ・ ・ ヨン ・ ヨン

#### Rate Distortion Theory

- *R*(*D*) = Minimum achievable rate under a given constraint on the expected distortion.
- *X* = random variable; *T* = alphabet for a compressed representation.
- If  $x \in X$  is represented by  $t \in T$ , there is a distortion d(x, t)

$$R(D) = \min_{\{p(t|x): \langle d(x,t) \rangle \le D\}} I(T,X).$$
  
$$\langle d(x,t) \rangle = \sum_{x,t} p(x,t) d(x,t)$$
  
$$= \sum_{x,t} p(x) p(t|x) d(x,t)$$

イロン イヨン イヨン -

- Introduce a Lagrange multiplier parameter  $\boldsymbol{\beta}$  and
- Solve the following variational problem

$$\mathcal{L}_{min}[p(t|x)] = I(T;X) + \beta \langle d(x,t) \rangle_{p(x)p(t|x)}.$$

We need

$$\frac{\partial \mathcal{L}}{\partial p(t|\mathbf{x})} = 0.$$

Since

$$\mathcal{L} = \sum_{x} p(x) \sum_{t} p(t|x) \log \frac{p(t|x)}{p(t)} + \beta \sum_{x} p(x) \sum_{t} p(t|x) d(x,t),$$

we have

$$p(x)\left[\log rac{p(t|x)}{p(t)} + eta d(x,t)
ight] = 0.$$
  
 $\Rightarrow rac{p(t|x)}{p(t)} \propto e^{-eta d(x,t)}.$ 

프 > 프

## Summary

#### In summary,

$$p(t|x) = \frac{p(t)}{Z(x,\beta)}e^{-\beta d(x,t)} \qquad p(t) = \sum_{x} p(x)p(t|x).$$

 $Z(x,\beta) = \sum_{t} p(t) \exp[-\beta d(x,t)]$  is a Partition Function.

• The Lagrange parameter in this case is positive; It is determined by the upper bound on distortion:

$$\frac{\partial R}{\partial D} = -\beta.$$

・ロン ・四 ・ ・ ヨン ・ ヨン

臣

#### Redescription

- Some hidden object may be observed via two views X and Y (two random variables.)
- Create a common descriptor T
- Example X = words, Y = topics.

$$R(D) = \min_{\substack{p(t|x): l(T:Y) \ge D}} I(T;X)$$
  
$$\mathcal{L} = I(T:X) - \beta I(T;Y)$$

・ロ・・ (日・・ (日・・ (日・)

크

Proceeding as before, we have

$$p(t|x) = \frac{p(t)}{Z(x,\beta)} e^{-\beta D_{KL}[p(y|x)||p(y|t)]}$$

$$p(t) = \sum_{x} p(x)p(t|x)$$

$$p(y|t) = \frac{1}{p(t)} \sum_{x} p(x,y)p(t|x)$$

$$p(y|x) = \frac{p(x,y)}{p(x)}$$

• Information Bottleneck = T.

イロン イヨン イヨン イヨン

E

# **Blahut-Arimoto Algorithm**

- Start with the basic formulation for RDT; Can be changed *mutatis mutandis* for IB.
- Input: p(x), T, and  $\beta$
- Output: *p*(*t*|*x*)
  - Step 1. Randomly initialize p(t)
  - Step 2. **loop until** p(t|x) converges (to a fixed point)
  - Step 3.  $p(t|x) := \frac{p(t)}{Z(x,\beta)}e^{-\beta d(x,t)}$
  - Step 4.  $p(t) := \sum_{x} p(x)p(t|x)$
  - Step 5. endloop

**Convex Programming:** Optimization of a convex function over a convex set  $\mapsto$  Global optimum exists!

・ロト・(型)・(ヨ)・(ヨ) ヨー りへの

#### [End of Lecture #8]

B Mishra Computational Systems Biology: Biology X

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 \_ 釣へで