Biology X: Introduction to (evolutionary) game theory

Andreas Witzel

see Gintis, Game theory evolving, Chapters 2, 3, 10

2010-09-20

Evolutionary game theory: motivation and background

Classical game theory

Evolutionary game theory: Stable states formalized

Beginnings of evolutionary GT

Why do competing animals usually not fight to death?

Idea: strategic behavior

- How can strategic behavior be explained?
 - Idea: (Simple) behaviors are determined genetically, evolution generates them

- What kinds of behaviors can this ultimately lead to?
 - Idea: Behaviors that are resistant to invasion by mutants

Hawk-Dove

- Consider a population of animals competing for food, where each (pairwise) conflict is solved by fighting ("Hawk")
- Contestants get severely injured, decreasing their fitness
- Assume a mutant occurs that withdraws before getting hurt, when defeat is evident ("Dove")
- When two Doves meet, they share; when a Dove meets a Hawk, she retreats
- Avoiding injury, Doves can overall be fitter
- So their genes can spread in the population
- What happens in a population consisting purely of Doves?
- EGT examines dynamics and stable states ("equilibria")

Alarm calls

- Vervet monkeys have a sophisticated system of alarm calls
- Why would a monkey put itself at risk by calling out?

- In repeated interactions, the mutual benefit may outweigh the risk
- So a small mutant population can spread in a non-signaling population

 Again, in a signaling population, some "cheaters" may profit from alarm calls without contributing themselves

Important features in these examples

- Population of individuals with (partial) conflict of interest
- Encounters take place among groups of individuals
- Behavior is controlled by genes and inherited
- Repeated interaction
- Random encounters, "anonymous", no history
- But there may be correlation of encounters:
 - Spatial structure/geometry
 - Kinship
 - ▶ ...
- Depending on the parameters, different dynamics and equilibria may occur

Evolutionary game theory (EGT)

- EGT puts these ideas into a mathematical framework and studies their properties
- Put differently, EGT studies dynamics and equilibria of individual behaviors in populations
- Most important initiator of EGT:
 - John Maynard Smith (1920–2004); Evolution and the Theory of Games (1982)
- Other people paved the way:
 - Ronald Fisher (1890–1962); his work on sex ratios (1930)
 - William D. Hamilton (1936–2000); his notion of an unbeatable strategy (1967)
 - George R. Price (1922–1975); JMS's coauthor on their seminal 1973 Nature paper

see also http://en.wikipedia.org/wiki/Evolutionary_game_theory

Based on game theory

- EGT is an application of game theory to evolutionary biology
- To properly understand it, we must therefore start with classical game theory
- ► (Non-cooperative) game theory is interactive decision theory
- The basic entity is the rational (self-interested) agent
- A rational agent acts so as to maximize his own well-being
- Agents may have conflicting interests
- What the best act is may depend on how other agents act
- Game theory studies the behavior of such agents
- Important people:
 - John von Neumann (1903–1957), Oskar Morgenstern (1902–1977); Theory of games and economic behavior (1944)
 - John Nash (1994 Nobel prize in Economics)

Evolutionary game theory: motivation and background

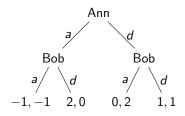
Classical game theory

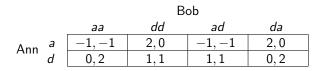
Evolutionary game theory: Stable states formalized

Basic ingredients of game theory

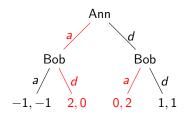
- Agents, or players: $N = \{1, \ldots, n\}$
- Actions, or strategies: S_1, \ldots, S_n
- ▶ Utilities, or payoffs: $\pi_1, \ldots, \pi_n : S \to \mathbb{R}$, where $S = S_1 \times \cdots \times S_n$
- The payoff to a particular agent can depend not only on his choice of action, but on that of all players.
- Payoffs reflect an agents' preferences over the possible outcomes of an interaction.
- Agents are assumed to be rational, i.e., they try to maximize their (expected) payoff and only care for their own payoff.

Extensive form game:

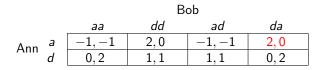




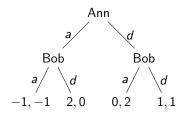
Extensive form game:



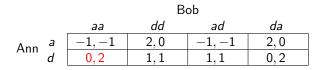
Backward induction



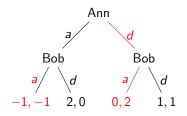
Extensive form game:



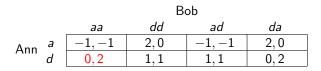
- Backward induction
- Equilibria



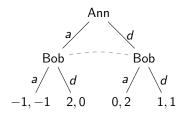
Extensive form game:



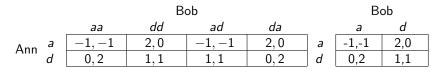
- Backward induction
- Equilibria
- Incredible threats



Extensive form game:



- Backward induction
- Equilibria
- Incredible threats
- Alternating vs simultaneous moves



Prisoner's dilemma

	Cooperate	Defect
Cooperate	2,2	0,3
Defect	3,0	1,1

- Defection dominates
- (Can be fixed by repetition)

Stag hunt: Risky cooperation vs safe defection

	Stag	Hare
Stag	2,2	0,1
Hare	1,0	1,1

- (Stag, Stag) and (Hare, Hare) are both equilibria
- Outcome depends on mutual beliefs and risk attitude

Nash equilibrium

- Strategy profile $s = (s_1, \ldots, s_n)$: one strategy for each player
- Strategies of players except *i*: $s_{-i} = (s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n)$

Definition

 s_i is a best response to s_{-i} iff

$$\pi_i(s_i, s_{-i}) \geq \pi_i(s_i', s_{-i})$$
 for all $s_i' \in S_i$

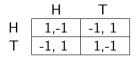
Definition

A strategy profile s is a Nash equilibrium iff

for each player *i*, s_i is a best response to s_{-i} .

- ► No player "regrets" his choice, given the others' choices
- ► No player would benefit from unilaterally deviating.

Matching pennies: no pure strategy equilibrium



- "Circular" preferences, zero sum
- No equilibrium in pure strategies

Mixed strategies

- ► Mixed strategy σ_i ∈ ΔS_i: random choice among i's pure strategies S_i
- Assigns some probability $\sigma_i(s_i)$ to any pure strategy $s_i \in S_i$
- E.g., flipping the penny gives σ_i with $\sigma_i(H) = \sigma_i(T) = 0.5$

Mixed strategies

- ► Mixed strategy σ_i ∈ ΔS_i: random choice among i's pure strategies S_i
- Assigns some probability $\sigma_i(s_i)$ to any pure strategy $s_i \in S_i$
- E.g., flipping the penny gives σ_i with $\sigma_i(H) = \sigma_i(T) = 0.5$
- Mixed-strategy profile: $\sigma = (\sigma_1, \ldots, \sigma_n)$
- E.g., $\sigma = (\sigma_1, \sigma_2)$ with $\sigma_1 = \sigma_2 = \sigma_i$ above
- Since players are independent, for a joint strategy $s \in S$ we let

$$\sigma(s) = \sigma_1(s_1) \cdot \ldots \cdot \sigma_n(s_n)$$

• E.g., $\sigma(H, H) = \sigma_1(H) \cdot \sigma_2(H) = 0.5 \cdot 0.5 = 0.25$

Mixed strategies

- ► Mixed strategy σ_i ∈ ΔS_i: random choice among i's pure strategies S_i
- Assigns some probability $\sigma_i(s_i)$ to any pure strategy $s_i \in S_i$
- E.g., flipping the penny gives σ_i with $\sigma_i(H) = \sigma_i(T) = 0.5$
- Mixed-strategy profile: $\sigma = (\sigma_1, \ldots, \sigma_n)$
- E.g., $\sigma = (\sigma_1, \sigma_2)$ with $\sigma_1 = \sigma_2 = \sigma_i$ above
- Since players are independent, for a joint strategy $s \in S$ we let

$$\sigma(s) = \sigma_1(s_1) \cdot \ldots \cdot \sigma_n(s_n)$$

- E.g., $\sigma(H, H) = \sigma_1(H) \cdot \sigma_2(H) = 0.5 \cdot 0.5 = 0.25$
- Rational players maximize their expected payoff:

$$\pi_i(\sigma) = \sum_{s \in S} \sigma(s) \pi_i(s)$$

Nash equilibrium in mixed strategies

Definition σ_i is a best response to σ_{-i} iff

$$\pi_i(\sigma_i, \sigma_{-i}) \geq \pi_i(\sigma'_i, \sigma_{-i})$$
 for all $\sigma'_i \in \Delta S_i$

Definition

A mixed-strategy profile σ is a Nash equilibrium iff

for each player *i*, σ_i is a best response to σ_{-i} .

Theorem (Nash, 1950)

Every finite game has a Nash equilibrium in mixed strategies.

• E.g. (σ_1, σ_2) from before is a Nash equilibrium

Outline

Evolutionary game theory: motivation and background

Classical game theory

Evolutionary game theory: Stable states formalized

From rationality to evolution

- Strategy: genotypic variants
- Mixed strategy: different ratios of pure-strategy individuals in a population
- Game: repeated random encounters ("stage game")
- Payoff: fitness
- Rationality: evolution
- Equilibrium: fixation of (mix of) genetic traits
- How do we get to an equilibrium? (Dynamics, to be discussed later)
- What equilibrium concept reflects evolutionary stability?

Hawk-Dove: Aggressive vs defensive

	Hawk	Dove
Hawk	-1,-1	2,0
Dove	0,2	1,1

- Two pure-strategy Nash equilibria: (Hawk, Dove), (Dove, Hawk)
- But no pure strategy can stably be adopted by a population
- Not immune against small perturbations ("mutants")

- Consider population repeatedly playing a stage game
- Stage game is symmetric in strategies and payoffs

- Consider population repeatedly playing a stage game
- Stage game is symmetric in strategies and payoffs
- Assume σ reflects the current state of the population,
 τ a small mutant population
- Idea: population is stable if it cannot be invaded by mutants

- Consider population repeatedly playing a stage game
- Stage game is symmetric in strategies and payoffs
- Assume σ reflects the current state of the population,
 τ a small mutant population
- Idea: population is stable if it cannot be invaded by mutants
- σ is an Evolutionarily Stable Strategy (ESS) iff
 - π(σ, σ) > π(τ, σ)
 (σ is better in most encounters)

- Consider population repeatedly playing a stage game
- Stage game is symmetric in strategies and payoffs
- Assume σ reflects the current state of the population,
 τ a small mutant population
- Idea: population is stable if it cannot be invaded by mutants
- σ is an Evolutionarily Stable Strategy (ESS) iff
 - $\pi(\sigma, \sigma) > \pi(\tau, \sigma)$ (σ is better in most encounters)
 - or π(σ, σ) = π(τ, σ) and π(σ, τ) > π(τ, τ)
 (σ is as good as τ in most, but better in rare encounters

- Consider population repeatedly playing a stage game
- Stage game is symmetric in strategies and payoffs
- Assume σ reflects the current state of the population,
 τ a small mutant population
- Idea: population is stable if it cannot be invaded by mutants
- σ is an Evolutionarily Stable Strategy (ESS) iff
 - $\pi(\sigma, \sigma) > \pi(\tau, \sigma)$ (σ is better in most encounters)
 - or π(σ, σ) = π(τ, σ) and π(σ, τ) > π(τ, τ)
 (σ is as good as τ in most, but better in rare encounters
- Refinement of Nash equilibrium

Hawk-Dove revisited

	Hawk	Dove
Hawk	-1,-1	2,0
Dove	0,2	1,1

 Assume a population of Doves: and a mutant Hawk:

•
$$\pi(\sigma,\sigma) = 1 < 2 = \pi(\tau,\sigma)$$

Hawks can invade

$$\sigma(H) = 0, \ \sigma(D) = 1$$

 $\tau(H) = 1, \ \tau(D) = 0$

Hawk-Dove revisited

	Hawk	Dove
Hawk	-1,-1	2,0
Dove	0,2	1,1

 Assume a population of Doves: and a mutant Hawk:

$$\sigma(H) = 0, \ \sigma(D) = 1$$

 $\tau(H) = 1, \ \tau(D) = 0$

•
$$\pi(\sigma,\sigma) = 1 < 2 = \pi(\tau,\sigma)$$

- Hawks can invade
- But π(σ, τ) = 0 > −1 = π(τ, τ), so Hawks have an advantage only while the population has still mostly Doves
- Hawks won't be able to take over completely

Hawk-Dove revisited

	Hawk	Dove
Hawk	-1,-1	2,0
Dove	0,2	1,1

 Assume a population of Doves: and a mutant Hawk:

$$\sigma(H) = 0, \ \sigma(D) = 1$$

 $\tau(H) = 1, \ \tau(D) = 0$

•
$$\pi(\sigma,\sigma) = 1 < 2 = \pi(\tau,\sigma)$$

- Hawks can invade
- But π(σ, τ) = 0 > −1 = π(τ, τ), so Hawks have an advantage only while the population has still mostly Doves
- Hawks won't be able to take over completely
- Mixed-strategy Nash equilibrium: $\sigma(H) = \frac{1}{2}$, $\sigma(D) = \frac{1}{2}$
- This is also the unique ESS

Summary

- Evolutionary Game Theory tries to explain observed stable states of populations as equilibria in an evolutionary process
- It is based on classical game theory ("interactive rational choice theory"), replacing rationality by evolution and choice by genotypic variants
- Members of a population are assumed to repeatedly participate in random encounters of a certain strategic form
- Payoffs represent fitness
- Nash equilibrium is a set of strategies such that no single player would benefit from deviating
- Evolutionary Stable Strategy is a refinement of Nash equilibrium for symmetric games
- Intuition: if played by a population, then no small mutant population can invade