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Beginnings of evolutionary GT

I Why do competing animals usually not fight to death?
I Idea: strategic behavior

I How can strategic behavior be explained?
I Idea: (Simple) behaviors are determined genetically, evolution

generates them

I What kinds of behaviors can this ultimately lead to?
I Idea: Behaviors that are resistant to invasion by mutants



Hawk-Dove

I Consider a population of animals competing for food, where
each (pairwise) conflict is solved by fighting (“Hawk”)

I Contestants get severely injured, decreasing their fitness

I Assume a mutant occurs that withdraws before getting hurt,
when defeat is evident (“Dove”)

I When two Doves meet, they share; when a Dove meets a
Hawk, she retreats

I Avoiding injury, Doves can overall be fitter

I So their genes can spread in the population

I What happens in a population consisting purely of Doves?

I EGT examines dynamics and stable states (“equilibria”)



Alarm calls

I Vervet monkeys have a sophisticated system of alarm calls

I Why would a monkey put itself at risk by calling out?

I In repeated interactions, the mutual benefit may outweigh the
risk

I So a small mutant population can spread in a non-signaling
population

I Again, in a signaling population, some “cheaters” may profit
from alarm calls without contributing themselves



Important features in these examples

I Population of individuals with (partial) conflict of interest

I Encounters take place among groups of individuals

I Behavior is controlled by genes and inherited

I Repeated interaction

I Random encounters, “anonymous”, no history
I But there may be correlation of encounters:

I Spatial structure/geometry
I Kinship
I . . .

I Depending on the parameters, different dynamics and
equilibria may occur



Evolutionary game theory (EGT)

I EGT puts these ideas into a mathematical framework and
studies their properties

I Put differently, EGT studies dynamics and equilibria of
individual behaviors in populations

I Most important initiator of EGT:
I John Maynard Smith (1920–2004); Evolution and the Theory

of Games (1982)

I Other people paved the way:
I Ronald Fisher (1890–1962); his work on sex ratios (1930)
I William D. Hamilton (1936–2000); his notion of an unbeatable

strategy (1967)
I George R. Price (1922–1975); JMS’s coauthor on their seminal

1973 Nature paper

see also http://en.wikipedia.org/wiki/Evolutionary_game_theory

http://en.wikipedia.org/wiki/Evolutionary_game_theory


Based on game theory

I EGT is an application of game theory to evolutionary biology

I To properly understand it, we must therefore start with
classical game theory

I (Non-cooperative) game theory is interactive decision theory

I The basic entity is the rational (self-interested) agent

I A rational agent acts so as to maximize his own well-being

I Agents may have conflicting interests

I What the best act is may depend on how other agents act

I Game theory studies the behavior of such agents
I Important people:

I John von Neumann (1903–1957), Oskar Morgenstern
(1902–1977); Theory of games and economic behavior (1944)

I John Nash (1994 Nobel prize in Economics)
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Basic ingredients of game theory

I Agents, or players: N = {1, . . . , n}
I Actions, or strategies: S1, . . . ,Sn

I Utilities, or payoffs: π1, . . . , πn : S → R,
where S = S1 × · · · × Sn

I The payoff to a particular agent can depend not only on his
choice of action, but on that of all players.

I Payoffs reflect an agents’ preferences over the possible
outcomes of an interaction.

I Agents are assumed to be rational, i.e., they try to maximize
their (expected) payoff and only care for their own payoff.



Basic concepts of game theory

Extensive form game:

Ann

Bob

−1,−1

a

2, 0

d

a

Bob

0, 2

a

1, 1

d

d

Normal/strategic form game:

Ann

Bob
aa dd ad da

a −1,−1 2, 0 −1,−1 2, 0
d 0, 2 1, 1 1, 1 0, 2

Bob
a d

a -1,-1 2,0
d 0,2 1,1

I Backward induction

I Equilibria

I Incredible threats

I Alternating vs simultaneous
moves
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Prisoner’s dilemma

Cooperate Defect
Cooperate 2,2 0,3

Defect 3,0 1,1

I Defection dominates

I (Can be fixed by repetition)



Stag hunt: Risky cooperation vs safe defection

Stag Hare
Stag 2,2 0,1
Hare 1,0 1,1

I (Stag, Stag) and (Hare, Hare) are both equilibria

I Outcome depends on mutual beliefs and risk attitude



Nash equilibrium

I Strategy profile s = (s1, . . . , sn): one strategy for each player

I Strategies of players except i : s−i = (s1, . . . , si−1, si+1, . . . , sn)

Definition
si is a best response to s−i iff

πi (si , s−i ) ≥ πi (s ′i , s−i ) for all s ′i ∈ Si

Definition
A strategy profile s is a Nash equilibrium iff

for each player i , si is a best response to s−i .

I No player “regrets” his choice, given the others’ choices

I No player would benefit from unilaterally deviating.



Matching pennies: no pure strategy equilibrium

H T
H 1,-1 -1, 1
T -1, 1 1,-1

I “Circular” preferences, zero sum

I No equilibrium in pure strategies



Mixed strategies

I Mixed strategy σi ∈ ∆Si : random choice among i ’s pure
strategies Si

I Assigns some probability σi (si ) to any pure strategy si ∈ Si

I E.g., flipping the penny gives σi with σi (H) = σi (T ) = 0.5

I Mixed-strategy profile: σ = (σ1, . . . , σn)

I E.g., σ = (σ1, σ2) with σ1 = σ2 = σi above

I Since players are independent, for a joint strategy s ∈ S we let

σ(s) = σ1(s1) · . . . · σn(sn)

I E.g., σ(H,H) = σ1(H) · σ2(H) = 0.5 · 0.5 = 0.25

I Rational players maximize their expected payoff:

πi (σ) =
∑
s∈S

σ(s)πi (s)
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Nash equilibrium in mixed strategies

Definition
σi is a best response to σ−i iff

πi (σi , σ−i ) ≥ πi (σ′i , σ−i ) for all σ′i ∈ ∆Si

Definition
A mixed-strategy profile σ is a Nash equilibrium iff

for each player i , σi is a best response to σ−i .

Theorem (Nash, 1950)

Every finite game has a Nash equilibrium in mixed strategies.

I E.g. (σ1, σ2) from before is a Nash equilibrium
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From rationality to evolution

I Strategy: genotypic variants

I Mixed strategy: different ratios of pure-strategy individuals in
a population

I Game: repeated random encounters (“stage game”)

I Payoff: fitness

I Rationality: evolution

I Equilibrium: fixation of (mix of) genetic traits

I How do we get to an equilibrium? (Dynamics, to be discussed
later)

I What equilibrium concept reflects evolutionary stability?



Hawk-Dove: Aggressive vs defensive

Hawk Dove
Hawk -1,-1 2,0
Dove 0,2 1,1

I Two pure-strategy Nash equilibria: (Hawk, Dove), (Dove,
Hawk)

I But no pure strategy can stably be adopted by a population

I Not immune against small perturbations (“mutants”)



Evolutionarily stable equilibrium

I Consider population repeatedly playing a stage game

I Stage game is symmetric in strategies and payoffs

I Assume σ reflects the current state of the population,
τ a small mutant population

I Idea: population is stable if it cannot be invaded by mutants

I σ is an Evolutionarily Stable Strategy (ESS) iff
I π(σ, σ) > π(τ, σ)

(σ is better in most encounters)
I or π(σ, σ) = π(τ, σ) and π(σ, τ) > π(τ, τ)

(σ is as good as τ in most, but better in rare encounters

I Refinement of Nash equilibrium
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Hawk-Dove revisited

Hawk Dove
Hawk -1,-1 2,0
Dove 0,2 1,1

I Assume a population of Doves: σ(H) = 0, σ(D) = 1
and a mutant Hawk: τ(H) = 1, τ(D) = 0

I π(σ, σ) = 1 < 2 = π(τ, σ)

I Hawks can invade

I But π(σ, τ) = 0 > −1 = π(τ, τ), so Hawks have an advantage
only while the population has still mostly Doves

I Hawks won’t be able to take over completely

I Mixed-strategy Nash equilibrium: σ(H) = 1
2 , σ(D) = 1

2

I This is also the unique ESS
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Summary

I Evolutionary Game Theory tries to explain observed stable
states of populations as equilibria in an evolutionary process

I It is based on classical game theory (“interactive rational
choice theory”), replacing rationality by evolution and choice
by genotypic variants

I Members of a population are assumed to repeatedly
participate in random encounters of a certain strategic form

I Payoffs represent fitness

I Nash equilibrium is a set of strategies such that no single
player would benefit from deviating

I Evolutionary Stable Strategy is a refinement of Nash
equilibrium for symmetric games

I Intuition: if played by a population, then no small mutant
population can invade
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