
Vectors and Dot Product

Basic Definitions

A k-dimensional vector is (for our purposes) a list of k numbers. We will use angle
brackets to combine numbers into a vector; e.g. 〈3, 0, 1〉 is a three-dimensional vector.

Vectors are often notated by using a symbol with an arrow over it, such as ~V .

Vectors of equal dimension can be added and subtracted and can be multiplied by
numbers (called “scalars” in this context), by applying the operations component by
component.
Let ~U = 〈u1 . . . uk〉 and ~V = 〈v1 . . . vk〉 be vectors and let p be a scalar.

Then ~U + ~V = 〈u1 + v1 . . . uk + vk〉 and p · ~U = 〈pu1 . . . puk〉.
For example:

〈3, 0, 1〉 + 〈2,−1, 2〉 = 〈5,−1, 3〉.
〈3, 0, 1〉 − 〈2,−1, 2〉 = 〈1, 1,−1〉.
2 · 〈3, 0, 1〉 = 〈6, 0, 2〉.

The zero vector, denoted ~0, is the vector all of whose components are 0. (Strictly
speaking, of course, there is a one-dimensional zero-vector, a two-dimensional zero
vector, and so on, all of which are different. Which dimensionality is intended by the
notation ~0 is generally determined by context.)

Whenever two vectors are mentioned together, it is usually implicit that they have
the same dimension; if they have different dimensions, this should be stated explicitly.

Geometric Interpretation

If you consider k-dimensional geometric space (usually k = 2 or 3, but sometimes
more), and you fix a coordinate system, then a k-dimensional vector is an arrow from
the origin to a point in space whose coordinates correspond to the elements of the
vector. Therefore, the elements of a vector are often called its “coordinates”.

Under this interpretation, the product p · ~V is a vector aligned with V but p times as
long. If ~V 6= ~0 then ~V and p · ~V are said to be “parallel” if p > 0 and “anti-parallel”
if p < 0. The sum ~U + ~V corresponds to the following geometric construction: Draw
an arrow parallel to ~V and the same length whose tail lies on the head of of ~U . Then
the head of this new arrow is at ~U + ~V .
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Figure 1: Adding and multiplying vectors
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Length, direction, etc.

The length or magnitude of vector ~V , denoted |~V |, is given by the Pythagorean
theorem:

|~V | =
√

v2

1 + . . . + v2

k

For example |〈1, 3〉| =
√

12 + 32 =
√

10 = 3.162. |〈2,−1, 2〉| =
√

22 + −12 + 22 =√
9 = 3.

Two important facts:

• |p · ~V | = abs(p) · |V |.

• |~V + ~U | ≤ |~V | + |~U | (the triangle inequality).

~V is a unit vector if |~V | = 1.. Unit vectors are often notated with a hat rather than
an arrow, e.g. V̂ .

If ~V 6= ~0 then the direction of ~V is the unit vector parallel to ~V , which is equal to
~V /|~V |.
If ~A and ~B are vectors, then the distance from ~A to ~B = the length of the line
connecting their heads = | ~B − ~A|.

Dot Product

Let ~A = 〈a1 . . . ak〉 and ~B = 〈b1 . . . bk〉 be k-dimensional vectors. The dot product of
~A and ~B, denoted ~A · ~B is a number, defined as follows

~A · ~B = a1b1 + a2b2 + . . . + akbk

The dot product has the following geometric interpretation: Let α be the angle
between ~A and ~B. Then ~A · ~B = | ~A| · | ~B| · cos(α).

A number of important properties of the dot product should be noted. Most of these
are obvious consequences, either of the definition or of the above geometric formula
or both.

• ~A · ~B = ~B · ~A

• ( ~A + ~B) · ~C = ( ~A · ~C) + ( ~B · ~C)

• p · ( ~A · ~B) = (p · ~A) · ~B.
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• ~A · ~A = | ~A|2.

• −| ~A|| ~B| ≤ ~A · ~B ≤ | ~A|| ~B|.

• If Â and B̂ are unit vectors then Â · B̂ = cos(α), where α is the angle between
them. Therefore, the smaller the distance from Â to B̂, the larger is Â · B̂.

• Let ~A and ~B be any two non-zero vectors. Then the angle α between ~A and ~B
is given by

cos(α) =
~A · ~B

| ~A|| ~B|

• If all the components of ~A and ~B are non-negative, then ~A · ~B is non-negative.

Sparse vectors

The standard data structure used for a vector is a list or an array whose elements are
the components of the vector. However, in many applications, the important vectors
tend to be sparse; that is, most of the components are equal to 0. In that case,
there are more efficient data structures. The simplest of these is a list of pairs of
the form [dimension, component] for each non-zero component, sorted by dimension.
For example, the vector 〈0, 0, 5, 0, 0, 0,−1, 2, 0, 0, 7〉 would be represented as the list
(using 1-based indexing) [[3, 5], [7,−1], [8, 2], [11, 7]].

It should be obvious how to implement the above operations on vectors represented
in this way.
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