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A multivariate polynomial P (x1, . . . , xn) with real coefficients is said to be absolutely
positive from a real number B iff it and all of its non-zero partial derivatives of every order
are positive for x1, . . . , xn ≥ B. We call such B a bound for the absolute positiveness
of P . This paper provides a simple formula for computing such bounds. We also prove
that the resulting bounds are guaranteed to be close to the optimal ones.
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1. Introduction

A multivariate polynomial P (x1, . . . , xn) with real coefficients is said to be absolutely
positive from a real number B iff it and all of its non-zero partial derivatives of every
order are positive for x1, . . . , xn ≥ B. We also call such B a bound for the absolute
positiveness of P . The main goal of this paper is to devise a “nice” formula for computing
a bound of a given polynomial.

The initial motivation arose while studying several partial methods for testing posi-
tiveness of multivariate polynomials (Ben-Cherif and Lescanne, 1987; Dershowitz, 1987;
Steinbach, 1992; Steinbach, 1994; Giesl, 1995). We found that these partial methods are
in fact complete methods for testing absolute positiveness (Hong and Jakus, 1996). Since
then, we have also realized that most previously known formulas for univariate root
bounds (Cauchy, 1829; Birkhoff, 1914; Carmichael and Mason, 1914; Fujiwara, 1915;
Kelleher, 1916; Kuniyeda, 1916; Cohn, 1922; Montel, 1932; Tôya, 1933; Berwald, 1934;
Marden, 1949; Johnson, 1991) in fact bounds for absolute positiveness (thus, a bound
not only for the polynomial, but also for all its non-zero derivatives). Indeed, from Lucas’
theorem (Lucas, 1874) one can conclude, in the univariate case, that any complex root
bound, when used as a bound for real roots, is also a bound for absolute positiveness
(see Section 5). Thus, we believe that the notion of absoluteness positiveness deserves to
be investigated.

Not all multivariate polynomials have bounds for absolute positiveness. Thus, first we
need to have a method for checking the existence of bounds. An efficient method is given
in Hong and Jakus (1996), and we use it in this paper.

† E-mail: hhong@risc.uni-linz.ac.at; http://www.risc.uni-linz/people/hhong
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The main contributions of this paper are: (1) We give a simple formula for computing a
bound for a given multivariate polynomial, when it exists. (2) We prove that the resulting
bound is always “good”, in that it is guaranteed to be close to the optimal bound, unlike
previously known bounds.

The structure of the paper is as follows. In Section 2, we give precise statements of
the main results of this paper (a bound and its quality). In Sections 3 and 4, we prove
these main results. Finally in Section 5, we compare the bound with known bounds in
the univariate case.

For modern treatment of related topics, see the recent books (e.g. Milovanovic et al.,
1994; Borwein and Erdelyi, 1995).

2. Main Results

In this section, we give precise statements of the main results of this paper. The
proofs will be given in later sections (Sections 3 and 4). We begin by defining some
notation/conventions that will be used throughout the paper.

Notation 2.1.

µ := (µ1, . . . , µn) ∈ Nn

|µ| := µ1 + · · ·+ µn

µ! := µ1! · · ·µn!
ν − µ := (ν1 − µ1, . . . , νn − µn)
ν ≥ µ := ν1 ≥ µ1 ∧ · · · ∧ νn ≥ µn
ν > µ := ν ≥ µ ∧ ν 6= µ

x := (x1, . . . , xn)

xµ := xµ1
1 · · ·xµnn

P (µ) := ∂|µ|P
∂x
µ1
1 ···∂x

µn
n

∀x ≥ B := ∀x1 ≥ B · · · ∀xn ≥ B.

Definition 2.1. (Absolute Positiveness) Let P ∈ R[x] and let B ∈ R. We say
that P is absolutely positive from B iff the following two conditions hold:

(a) ∀x ≥ B P (x) > 0
(b) ∀x ≥ B P (λ)(x) > 0, for every non-zero partial derivative P (λ) of P †.

We will also say that B is a bound for the absolute positiveness of P .

Example 2.1. The polynomial x2 + y2 − 1 is absolutely positive from 1. But the poly-
nomial (x − y)2 + 1 is not absolutely positive from any bound, because the derivative
∂2P
∂x∂y = −2 is always negative.

† In Hong and Jakus (1996) we used a slightly different (weaker) condition: ∀x ≥ B P (λ)(x) ≥ 0 for

every partial derivate P (λ) of P . The new definition will be essential for proving certain theorems in this
paper (Theorem 2.3).
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A question arises immediately: For which polynomial does there exist a bound for the
absolute positiveness? We have given a complete answer to this question in our previous
paper (Hong and Jakus, 1996)†. We recall this result because we will need it while stating
and proving the main results of this present paper. First we need one more notion:
dominating monomial, which is a generalization of the notion of leading monomial to the
multivariate case.

Definition 2.2. (Dominating Monomial) We say that a monomial aνxν dominates
a monomial aµxµ iff ν > µ. We say that p is a dominating monomial of P iff no
monomial in P dominates p.

Example 2.2. Let us consider polynomials P = x2−2xy+y2 +1 and Q = x2y−xy+y2.
There are three dominating monomials in P , namely x2,−2xy and y2. There are two
dominating monomials in Q, namely x2y and y2. For univariate polynomials there is
only one dominating monomial—the leading monomial.

Theorem 2.1. (Existence (Hong and Jakus, 1996)) Let P ∈ R[x] be a non-zero
polynomial‡. Then the following two properties are equivalent.

(A) There exists a bound for the absolute positiveness of P .
(B) Every dominating monomial of P has positive coefficient.

The above theorem only tells about the existence, and we naturally would like to find a
“witness” when there exists a bound. The next theorem (Theorem 2.2) provides a formula
for finding a witness. In order to simplify the presentation of this and the subsequent
theorems/proofs, we will make the following global assumption on the polynomial P .

Assumption 2.1. We assume, from here to the end of this paper, that

(a) every dominating monomial of P has positive coefficient and
(b) at least one monomial of P has negative coefficient.

The assumption (a) ensures that there exists a bound for the absolute positiveness (The-
orem 2.1). The assumption (b) filters out a trivial degenerate case. If all the monomials
of P have positive coefficients, we see immediately that P is absolutely positive from any
B > 0.

Further, the following expression will appear frequently throughout the paper, thus,
we will introduce a short-hand for it.

Notation 2.2. Ωn = 1− n

√
1
2 .

† The question can be easily formulated as a sentence in the first-order theory of real closed fields.
Thus, in principle, we can use any decision procedure for the theory (Tarski, 1951; Collins, 1975; Arnon,
1981; McCallum, 1984; Canny, 1988; Grigorev, 1988; Weispfenning, 1988; Heintz et al. 1989; Hong, 1990;
Collins and Hong, 1991; Renegar, 1992) to check the existence of bounds. However, since this is a very
structured and special question, one can naturally find a special method which is more efficient than
the general methods. In Lankford (1976), a special method is given (using partial differentiation and
evaluation). But we will use the method in Hong and Jakus (1996), because it is simpler and more
efficient.
‡ When P = 0, we trivially see that P is not absolute positive from any bound.
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Theorem 2.2. (Bound) Let P =
∑
µ∈I aµx

µ ∈ R[x] and let

BP =
1

Ωn
max
aµ<0

min
aν>0
ν>µ

∣∣∣∣aµaν
∣∣∣∣ 1
|ν−µ|

.

Then P is absolutely positive from BP .

Proof. Given in Section 3. 2

The above expression for BP is well-defined due to Assumption 2.1, that is, the index
sets of max and min are non-empty.

Another question arises: How good (tight) is the bound given above? To answer this,
one needs a notion such as “optimal bound”. However, in general, the set of all bounds
for the absolute positiveness of a given polynomial is an open set, without a minimum.
Thus, we introduce instead another similar notion: threshold.

Definition 2.3. (Threshold) The threshold of absolute positiveness of a polynomial
P , written as AP , is the infimum of all the bounds for the absolute positiveness of P .

Due to Assumption 2.1, we have that AP > 0. Obviously, we also have BP
AP

> 1. Naturally,
we desire that this ratio is not arbitrarily large. The following theorem tells us that the
ratio is indeed bounded from above (when the degree and the number of variables are
fixed).

Theorem 2.3. (Quality) We have

BP
AP
≤ 1

Ωn
d1 + · · ·+ dn

ln(2)

where di = degxi P .

Proof. Given in Section 4. 2

Thus, the ratio is bounded by an expression which is linear in the sum of the degrees.
How does it depend on the number of variables? For this, we need to understand the
behavior of the factor 1

Ωn
. The following proposition tells us that it is almost linear in n.

Proposition 2.1. (Almost Linear Behavior)

n

ln (2)
+

1
2
≤ 1

Ωn
≤ n

ln(2)
+

1
2

+
ln (2)
12n

.

Proof. This follows immediately from the Laurent expansion of 1
Ωn

around 1
n = 0. 2

3. Proof of Bound Theorem

In this section, we will prove Theorem 2.2. The proof is divided into several lemmas
for easier reading and also for separating out the main insights. We begin by finding a
bound for the positiveness of polynomials of a certain nice type:
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Lemma 3.1. Let P be of the type:

P = aνx
ν +

∑
µ∈I

aµx
µ

where aν > 0, aµ < 0, and ν > µ for µ ∈ I. Let

B∗P =
1

Ωn
max
µ∈I

∣∣∣∣aµaν
∣∣∣∣ 1
|ν−µ|

.

Then P is positive from B∗P , that is,

∀x ≥ B∗P P (x) > 0.

Proof. Let x ≥ B∗P be arbitrary but fixed. We need to show that P (x) > 0. We show
it by the following repeated rewriting, which in fact also shows how the formula for B∗P
was originally discovered.

P (x) = aνx
ν +

∑
µ∈I

aµx
µ

= aνx
ν

[
1 +

∑
µ∈I

aµ
aν

1
xν−µ

]

= aνx
ν

[
1−

∑
µ∈I

∣∣∣∣aµaν
∣∣∣∣ 1
xν−µ

]
since aν > 0 and aµ < 0

≥ aνxν
[
1−

∑
µ∈I

∣∣∣∣aµaν
∣∣∣∣ 1

B∗P
|ν−µ|

]
since x ≥ B∗P > 0

= aνx
ν

[
1−

∑
µ∈I

(∣∣∣∣aµaν
∣∣∣∣ 1
|ν−µ| 1

B∗P

)|ν−µ|]
≥ aνxν

[
1−

∑
µ∈I

Ω|ν−µ|n

]
≥ aνxν

[
1−

∑
µ<ν

Ω|ν−µ|n

]
since possibly more is subtracted

= aνx
ν
[
2−

∑
µ≤ν

Ω|ν−µ|n

]
since the summand is 1 when µ = ν

= aνx
ν
[
2−

∑
0≤µ1≤ν1

· · ·
∑

0≤µn≤νn
Ων1−µ1
n · · ·Ωνn−µnn

]
= aνx

ν
[
2−

∑
0≤µ1≤ν1

Ων1−µ1
n · · ·

∑
0≤µn≤νn

Ωνn−µnn

]
= aνx

ν
[
2−

∑
0≤µ1≤ν1

Ωµ1
n · · ·

∑
0≤µn≤νn

Ωµnn
]

> aνx
ν
[
2−

∑
0≤µ1

Ωµ1
n · · ·

∑
0≤µn

Ωµnn
]

= aνx
ν

[
2− 1

1− Ωn
· · · 1

1− Ωn

]
since Ωn < 1.
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= aνx
ν

[
2−

(
1

1− Ωn

)n]
= aνx

ν

[
2−

(
1

1−
(
1− n

√
1
2

))n].
= 0.

Thus, we have shown that P (x) > 0. 2

Remark 3.1. Note that only at the very last step of the rewriting (the second line
from the bottom) have we used the definition of Ωn. In fact, we originally discovered
the definition of Ωn by examining the expression on the third line from the bottom.
We simply looked for the value of Ωn for which the expression will become 0, which is
obviously 1− n

√
1/2.

Remark 3.2. A referee suggested that a slight improvement could be obtained by re-
placing the fifth line from the bottom with the following:

aνx
ν
[
2−

∑
0≤µ1≤d

Ωµ1
n · · ·

∑
0≤µn≤d

Ωµnn
]

where d = maxi νi. Though this observation is correct in itself, this approach eventually
requires solving the polynomial equation:

Ωdn + Ωd−1
n + · · ·+ Ωn + 1− n

√
2 = 0

which in general does not have a “closed” form solution.

Next we generalize this result to find a bound for the positiveness of arbitrary poly-
nomials.

Lemma 3.2. Let P =
∑
µ∈I aµx

µ ∈ R[x] and let

BP =
1

Ωn
max
aµ<0

min
aν>0
ν>µ

∣∣∣∣aµaν
∣∣∣∣ 1
|ν−µ|

.

Then P is positive from BP , that is,

∀x ≥ BP P (x) > 0.

Proof. Consider a partition of the monomials of P

P = P1 + · · ·+ P` +R

such that

(a) each Pk is of the type studied in the previous lemma, that is,

Pk = aν(k)xν
(k)

+
∑
µ∈I(k)

aµx
µ

where aν(k) > 0, aµ < 0, and ν(k) > µ for all µ ∈ I(k);
(b) R is either 0 or a polynomial consisting of only positive monomials.
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Such a partition exists due to Assumption 2.1. Let B∗Pk be the bound for the positiveness
of Pk given in the previous lemma. Then obviously P is positive from maxk B∗Pk , which
is

max
k

[
1

Ωn
max
µ∈I(k)

∣∣∣∣ aµaν(k)

∣∣∣∣ 1
|ν(k)−µ|

]
=

1
Ωn

max
k

max
µ∈I(k)

∣∣∣∣ aµaν(k)

∣∣∣∣ 1
|ν(k)−µ|

=
1

Ωn
max
aµ<0

∣∣∣∣ aµaν(µ)

∣∣∣∣ 1
|ν(µ)−µ|

where ν(µ) stands for the exponent vector of the positive monomial which belongs to the
same partition as the monomial aµxµ.

Now we only have to fix a partition. Which partition shall we choose? Equivalently
put, for each negative monomial aµxµ, which positive monomial aνxν shall we choose to
put in the same partition? The best one is naturally the one that minimizes maxk B∗Pk .
One sees immediately that this means choosing the ν that minimizes |aµaν |

1
|ν−µ| under the

condition aν > 0 and ν > µ. Thus, we obtain the following bound:

BP =
1

Ωn
max
aµ<0

min
aν>0
ν>µ

∣∣∣∣aµaν
∣∣∣∣ 1
|ν−µ|

.
2

Proof of (Bound) Theorem 2.2 In Lemma 3.2, we have already shown that

∀x ≥ BP P (x) > 0.

Thus it only remains to show that

∀x ≥ BP P (λ)(x) > 0

for every non-zero partial derivative P (λ) of P . If P (λ) consists of only positive monomials,
then it is obviously true. Thus from now on assume that P (λ) has at least one negative
monomial.

The idea for the proof is to apply Lemma 3.2 to P (λ), obtaining a bound BP (λ) , and
to show that BP (λ) ≤ BP . But before doing so, we need to ensure that P (λ) satisfies the
conditions in Assumption 2.1.

Note that condition (b) is already satisfied since we assumed it in the above. In or-
der to see whether condition (a) is also satisfied, we first recall that all the dominating
monomials of P have a positive coefficient (from Assumption 2.1). During differentia-
tion, a dominating monomial of P either disappears or stays as a dominating monomial
(multiplied with some positive integer). Further, every dominating monomial of P (λ)

originates from a dominating monomial of P . So all the dominating monomials of P (λ)

have positive coefficients. Thus, P (λ) satisfies condition (a) also. Hence, we can safely
apply Lemma 3.2.

Now, by Lemma 3.2, we know that

∀x ≥ BP (λ) P (λ)(x) > 0.

Next, we will show that BP (λ) ≤ BP . For this, let us recall the following elementary fact
from calculus:

P (λ)(x) =
∑

µ∈I,µ≥λ

µ!
(µ− λ)!

aµx
µ−λ.
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Thus, we have

BP (λ) =
1

Ωn
max
µ!

(µ−λ)!aµ<0
min
ν!

(ν−λ)!aν>0

ν−λ>µ−λ

∣∣∣∣∣
µ!

(µ−λ)!aµ
ν!

(ν−λ)!aν

∣∣∣∣∣
1

|(ν−λ)−(µ−λ)|

=
1

Ωn
max
aµ<0
µ≥λ

min
aν>0
ν≥λ
ν>µ

∣∣∣∣ µ!
(µ−λ)!aµ
ν!

(ν−λ)!aν

∣∣∣∣ 1
|ν−µ|

=
1

Ωn
max
aµ<0
µ≥λ

min
aν>0
ν>µ

∣∣∣∣∣
µ!

(µ−λ)!aµ
ν!

(ν−λ)!aν

∣∣∣∣∣
1

|ν−µ|

since µ ≥ λ and ν > µ implies ν ≥ λ.

≤ 1
Ωn

max
aµ<0
µ≥λ

min
aν>0
ν>µ

∣∣∣∣aµaν
∣∣∣∣ 1
|ν−µ|

since
µ!

(µ−λ)!
ν!

(ν−λ)!
< 1.

≤ 1
Ωn

max
aµ<0

min
aν>0
ν>µ

∣∣∣∣aµaν
∣∣∣∣ 1
|ν−µ|

= BP .

Thus we have shown that BP (λ) ≤ BP . Hence obviously we have

∀x ≥ BP P (λ)(x) > 0. 2

4. Proof of Quality Theorem

In this section we will prove Theorem 2.3.

Proof of (Quality) Theorem 2.3. Let P be an arbitrary but fixed polynomial such
that degxi P = di. We need to show that

BP
AP
≤ 1

Ωn
d1 + · · ·+ dn

ln(2)
.

Recall the definition of BP :

BP =
1

Ωn
max
aµ<0

min
aν>0
ν>µ

∣∣∣∣aµaν
∣∣∣∣ 1
|ν−µ|

.

Suppose that maxaµ<0 is achieved at µ∗, so that

BP =
1

Ωn
min
aν>0
ν>µ∗

∣∣∣∣aµ∗aν
∣∣∣∣ 1
|ν−µ∗|

.

In order to simplify the notation, we will write µ instead of µ∗ from now on. For every
ν > µ such that aν > 0, we have∣∣∣∣aµaν

∣∣∣∣ 1
|ν−µ|

≥ BPΩn
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∣∣∣∣ ≥ (BPΩn)|ν−µ|

|aµ|
aν
≥ (BPΩn)|ν−µ|

aν ≤ |aµ|
1

(BPΩn)|ν−µ|
.

When aν < 0 the above inequality trivially holds, thus for every ν ∈ I such that ν > µ,
we have

aν ≤ |aµ|
1

(BPΩn)|ν−µ|
. (4.1)

From the elementary calculus, we have

P (µ)(x) =
∑

ν∈I,ν≥µ

ν!
(ν − µ)!

aνx
ν−µ.

This is a non-constant polynomial since there exists ν ∈ I such that ν > µ, due to
Assumption 2.1. Thus we can rewrite this as

P (µ)(x) = −µ! |aµ|+
∑

ν∈I,ν>µ

ν!
(ν − µ)!

aνx
ν−µ.

Using the inequality (4.1), we see that, for every x > 0,

P (µ)(x) ≤ −µ!|aµ|+
∑

ν∈I,ν>µ

ν!
(ν − µ)!

|aµ|
xν−µ

(BPΩn)|ν−µ|
.

Let Q(x) denote the polynomial at the right-hand side of the above inequality. Then we
have just shown that

∀x > 0 P (µ)(x) ≤ Q(x).

Let P̂ (µ)(t) = P (µ)(t, . . . , t) and let Q̂(t) = Q(t, . . . , t). Then we immediately have

∀t > 0 P̂ (µ)(t) ≤ Q̂(t).

Note that the signs of the coefficients of Q̂ alternate only once. Thus, by Descartes’ sign
rule, there exists a unique positive root of Q̂. Let us call the positive root α. Then we
have P̂ (µ)(α) ≤ Q̂(α) = 0. Hence, we have

P̂ (µ)(α) ≤ 0. (4.2)

We see that
α ≤ AP (4.3)

because if α > AP , then P would be absolutely positive from α, contradicting the
inequality (4.2).

Now it remains to estimate α. Note

Q̂(t) = −µ!|aµ|+
∑

ν∈I,ν>µ

ν!
(ν − µ)!

|aµ|
t|ν−µ|

(BPΩn)|ν−µ|

= µ!|aµ|
[
−1 +

∑
ν∈I,ν>µ

(
ν

µ

)
(

t

BPΩn
)|ν−µ|

]
.
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Let

SI,µ(t) = −1 +
∑

ν∈I,ν>µ

(
ν

µ

)
t|ν−µ|.

Then, obviously, we have

Q̂(t) = µ! |aµ| SI,µ
(

t

BPΩn

)
.

Note that the sign of the coefficients of SI,µ alternate only once. Thus, by Descartes’ sign
rule, there exists a unique positive root, say β, of SI,µ. Obviously we have

β =
α

BPΩn
. (4.4)

Let us estimate β. Follow the repeated rewriting:

0 = SI,µ(β)

= −1 +
∑

ν∈I,ν>µ

(
ν

µ

)
β|ν−µ|

= −2 +
∑

ν∈I,ν≥µ

(
ν

µ

)
β|ν−µ|

≤ −2 +
∑

d1≥ν1≥µ1

· · ·
∑

dn≥νn≥µn

(
ν1

µ1

)
βν1−µ1 · · ·

(
νn
µn

)
βνn−µn

= −2 +
∑

d1≥ν1≥µ1

(
ν1

µ1

)
βν1−µ1 · · ·

∑
dn≥νn≥µn

(
νn
µn

)
βνn−µn

= −2 +Rd1,µ1 · · ·Rdn,µn
where

Rp,q =
∑
p≥i≥q

(
i

q

)
βi−q.

Now follow the repeated rewriting again:

Rp,q ≤
∑
p≥i≥q

pi−q

(i− q)!β
i−q =

∑
p−q≥i≥0

(pβ)i

i!
≤
∑
i≥0

(pβ)i

i!
= epβ . (4.5)

Thus, we have

0 ≤ −2 +Rd1,µ1 · · ·Rdn,µn ≤ −2 + ed1β · · · ednβ .
Thus,

2 ≤ e(d1+···+dn)β .

Solving for β, we get

β ≥ ln(2)
d1 + · · ·+ dn

. (4.6)

Now recall the (in)equalities (4.3), (4.4), and (4.6):

α ≤ AP
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β =
α

BPΩn

β ≥ ln(2)
d1 + · · ·+ dn

.

From these, we obtain immediately

ln(2)
d1 + · · ·+ dn

BPΩn ≤ AP .

Hence, we finally have
BP
AP
≤ 1

Ωn
d1 + · · ·+ dn

ln(2)
.

2

Remark 4.1. A referee pointed out that the estimation of Rp,q given in (4.5) can be
sharpened as follows:

Rp,q =
p−q∑
j=0

(
j + q

q

)
βj =

p−q∑
j=0

(
j + q

j

)
βj ≤

p−q∑
j=0

(
p

j

)
βj ≤

p∑
j=0

(
p

j

)
βj ≤ (1 + β)p.

Note that

(1 + β)p <
(

1 + β +
β2

2!
+ · · ·

)p
= (eβ)p = epβ .

Continuing with this sharper bound for Rp,q, one can obtain

BP
AP

≤ 1
Ωn

1

2
1

d1+···+dn − 1
.

How much sharper is it than the one given in Theorem 2.3? By carrying out the Laurent
expansion of the expression 1

2x−1 , one can straightforwardly observe that

d1 + · · ·+ dn
ln(2)

− 1

2
1

d1+···+dn − 1
<

1
2
.

Thus, the reduction is at most 1
2Ωn

.

5. Comparison with Known Bounds in the Univariate Case

Naturally, one is interested to know how the proposed bound compares with any pre-
viously known bounds. However, we are not aware of any bounds for the multivariate
case. Thus, from now on, we will consider only the univariate case.

Let P be a univariate polynomial (satisfying Assumption 2.1). Obviously any bound B
for the absolute positiveness of P is also a bound for the real roots of P , that is, every
real root of P is less than B. Now a question arises: How does BP given in Theorem 2.2
compare with the known bounds for the real roots of univariate polynomials? As far as we
are aware the known bounds can be classified into two types:

(a) a bound B for the modulus of complex roots (Cauchy, 1829; Birkhoff, 1914; Car-
michael and Mason, 1914; Fujiwara, 1915; Kelleher, 1916; Kuniyeda, 1916; Cohn,
1922; Montel, 1932; Tôya, 1933; Berwald, 1934; Marden, 1949) that is,

∀z ∈ C P (z) = 0 =⇒ |z| < B;
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(b) a bound B for positive real roots (Johnson, 1991), that is,

∀z ∈ R P (z) = 0 =⇒ z < B.

Admittedly, the bounds of type (a) were not originally intended for real roots. How-
ever bounds used in most real roots isolation/approximation algorithms (Heindel, 1970;
Akritas and Collins, 1976; Collins and Loos, 1976; Johnson, 1991, 1992; Collins et al.,
1992; Collins and Krandick, 1992, 1993) are in fact bounds for complex roots. Thus we
find that the comparison is still worthwhile doing. As for previously known bounds for
the positive real roots, we are aware of only the bound given by Johnson (1991), which
is a slight modification of Knuth’s bound for the modulus of complex roots.

Theorem 5.1. (Knuth–Johnson Bound (Johnson, 1991)) Let P =
∑d
µ=0 aµx

µ be
a univariate polynomial and let

BKP = 2 max
aµ<0

∣∣∣∣aµad
∣∣∣∣ 1
d−µ

.

Then every real root of P is smaller than BKP .

First, we would like to know whether the previously known bounds are also bounds
for absolute positiveness. The following theorem answers affirmatively.

Theorem 5.2. (Known Bounds are Bounds for Absolute Positiveness)

(a) Every bound for the modulus of the complex roots of a polynomial P is also a bound
for the absolute positiveness of P .

(b) The Knuth–Johnson bound BKP is also a bound for the absolute positiveness of P .

Proof. To show (a), we recall Lucas’ theorem (Lucas, 1874) which states that all the
complex roots of the derivative of a non-constant polynomial P lie in the convex hull of
the set of the complex zeros of the polynomial P . From this, we see immediately that the
real roots of the derivative of P are smaller than B. We can apply the same reasoning
repeatedly on the derivatives to see that the real roots of all the (non-zero) derivative
of P are smaller than B. Hence B is a bound for the absolute positiveness of P .

To show (b), let us recall Theorem 2.2. After putting n = 1, we see that BP , given
by

BP = 2 max
aµ<0

min
aν>0
ν>µ

∣∣∣∣aµaν
∣∣∣∣ 1
ν−µ

is a bound for the absolute positiveness of P . By comparing the expressions for BKP
and BP , one immediately observes that

BKP ≥ BP .
Hence BKP is a bound for the absolute positiveness of P . 2

Since all the previously known bounds are also bounds for absolute positiveness, now
we would like to know how they compare with the bound given in this paper.
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Theorem 5.3. (Comparison) Let BCP be any bound for the modulus of the complex
roots of P , let BKP be the Knuth–Johnson bound for the positive real root of P , and
let BP be the bound given in this paper. Further let AP be the threshold of the absolute
positiveness of P . Then we have

(a) the ratio BCP
AP

can be arbitrarily large (even when the degree of P is fixed);

(b) the ratio BKP
AP

can be arbitrarily large (even when the degree of P is fixed);
(c) the ratio BP

AP
is bounded above by 2d

ln(2) , where d is the degree of P .

Proof. To show (a), consider the quadratic polynomials† of the form P = x2 + ax− a,
where a ≥ 1. By elementary calculation, one sees that

AP =
−a+

√
a2 + 4a
2

.

Note also that P has two real roots (and no other roots):

α =
−a+

√
a2 + 4a
2

β =
−a−

√
a2 + 4a
2

.

Thus, BCP is greater than |α| and |β|. In particular BCP > |β|. Now observe

BCP
AP

>
|β|
AP

=

∣∣−a−√a2+4a
2

∣∣
−a+

√
a2+4a

2

=
a+
√
a2 + 4a

−a+
√
a2 + 4a

=
a+ 2 +

√
a2 + 4a

2
.

Thus BCP
AP

can be arbitrarily large since we can choose arbitrarily large a.
To show (b), consider again the polynomials of the form P = x2 +ax−a, where a ≥ 1.

From the definition of BKP , we immediately see

BKP = 2
√
a.

Now observe
BKP
AP

=
2
√
a

−a+
√
a2+4a

2

=
√
a

(
1 +

√
1 +

4
a

)
> 2
√
a.

Thus BKP
AP

can be arbitrarily large since we can choose arbitrarily large a.
To show (c), one only needs to recall Theorem 2.3. The claim follows immediately from

the theorem by setting n = 1. The proof is finished.
But to satisfy curiosity, we continue to check the quality of BP for the particular form

of polynomials used for proving the claims (a) and (b). We immediately see that

BP = 2

no matter what a is. Thus we have

BP
AP

=
2

−a+
√
a2+4a

2

=
(

1 +

√
1 +

4
a

)
≤ 1 +

√
5.

† This example was formulated by Dalibor Jakuš and communicated to the author.
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As expected, we also have

1 +
√

5 ≈ 3.236 067 978 < 5.707 801 64 ≈ 2× 2
ln(2)

.
2
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