A lower bound for the root separation of polynomials

P. Batra*

April 21, 2008

Abstract

An experimental study by Collins (JSC; 2001) suggested the conjecture that the minimum separation of real zeros of irreducible integer polynomials is about the square root of Mahler’s bound for general integer polynomials. We prove that a power of about two thirds of the Mahler bound is already a lower bound for the minimum root separation of all integer polynomials.

Keywords: Polynomial roots, minimum root separation, Taylor series, resultants.

1 Introduction

The minimum root separation is the fundamental measure for verified inclusions of zeros of polynomial systems via algebraic algorithms, see, e.g., [8, 11]. It is an important tool for classification of transcendental numbers, see [1] and the references cited therein.

Definition 1.1 The minimum root separation of an integer polynomial P given as

$$P(x) := \sum_{i=0}^{n} a_i x^i = a_n \cdot \prod_{i=1}^{n} (x - \zeta_i), \text{ where } a_n \neq 0,$$

*Hamburg University of Technology, Inst. f. Computer Technology, 21071 Hamburg, Germany (batra@tuhh.de). [Phone: ++49(40)42878-3478, Fax: -2798]
is defined as

\[
\text{sep}(P) := \min_{\zeta_i \neq \zeta_j} |\zeta_i - \zeta_j|.
\]

We call \(M(P) := |a_n| \prod_{i=1}^{n} \max\{1; |\zeta_i|\} \) the Mahler measure of \(P \).

The size of \(P \), denoted by \(s(P) \), or \(s \) for short, is defined as

\[
s(P) := \sum_{i=0}^{n} |a_i|.
\]

In formulating estimates for the minimum root separation, we capture the case of a single, \(n \)-fold zero of \(P \) by considering the separation in this case as \(\text{sep}(P) = +\infty \).

Mahler’s root separation estimate for \(P(x) = \sum a_i x^i \in \mathbb{Z}[x] \) may be formulated in terms of the coefficient vector norms \(\|P\|_q := \|(a_0, \ldots, a_n)\|_q \); \(q = 1, 2 \) using the fact that

\[
M(P) \leq (\sum |a_i|^2)^{1/2} \leq \sum |a_i| = s
\]

(where the first inequality follows easily from Jensen’s inequality viz. [4] or [9]). The best known estimate for the minimum root separation was obtained by Mahler [5] in 1964.

Theorem 1.1 Let \(P(x) = \sum a_i x^i \) be an integer polynomial of size \(s \) and degree \(n \). Then

\[
\text{sep}(P) > \frac{\sqrt{3} \cdot \sqrt{\text{discr}(P)}}{n^{n/2+1} \cdot M(P)^{n-1}} \geq \frac{\sqrt{3} \cdot \sqrt{\text{discr}(P)}}{n^{n/2+1} \cdot s^{n-1}}.
\]

This yields a trivial estimate in case of a polynomial with multiple zeros as the discriminant vanishes, but Mahler’s estimate may be applied to the square-free integer polynomial \(\hat{P}(x) := P(x)/\gcd(P(x), P'(x)) \) with \(\text{sep}(\hat{P}) = \text{sep}(P) \), and \(\text{discr}(\hat{P}) \geq 1 \). The relation \(M(\hat{P}) \leq M(P) \leq s \) holds true, and thus (2) gives rise to the following general estimate.

Corollary 1.1 Let \(P(x) = \sum a_i x^i \) be an integer polynomial of size \(s \) and degree \(n \). Then

\[
\text{sep}(P) > \frac{\sqrt{3}}{n^{n/2+1} \cdot s^{n-1}}.
\]
Do there exist polynomials with small root separation? The example by Bugeaud and Mignotte [1] from 2004,

\[P(X) := (X^n - aX + 1)^k - 2X^{nk-k}(aX - 1)^k, \quad n \geq 3, k \geq 2, a \geq 10, \quad (4) \]

has a cluster of \(k \) zeros inside a circle with radius \(2a^{-2n} \) centered at \(1/a + 1/a^{n+1} \). This shows that the separation might decrease with the size \(s \) like \(1/s^{n/2} \). Which is the best possible exponent of \(s \) in (3)?

We claim that a power of about two third of the lower bound (3) is a lower bound for the minimum root separation.

Theorem 1.2 Let \(P(x) = \sum_0^n a_i x^i \) be an integer polynomial of size \(s \) and degree \(n \). Then

\[\text{sep}(P) > \frac{1}{4e \cdot 2^{n/3} \cdot n^{n/3+2} \cdot (s + 1)^{2n/3}}. \quad (5) \]

We proof this theorem in Section 3. Our interest was sparked by a conjecture of Collins [3] supposing that for real zeros of irreducible integer polynomials the square root of Mahler’s general bound (3) might be a lower bound for the minimum root separation. This conjecture has to be taken cum grano salis as it is well known that for cubic polynomials the exponent of \(s \) in the root separation bound is precisely \(-2 = -n/2 - 1/2\), cf., e.g., [9].

2 Bounding values of polynomials via resultants

To prove estimates for the minimum root separation nearly all authors used manipulations of specially constructed resultants or the discriminant (like Cauchy [2] and Mahler [5]). The only exception known to us is the work of S.M. Rump [8] who considered the Taylor expansion of \(P \) at a root \(\xi \) of the derivative \(P' \). In the following, we sketch the elements necessary to estimate the function value \(P(\xi) \).

The norms \(\| \cdot \|_q \) may be extended to matrices of polynomials by considering an \(n \times n \) square matrix as a one-dimensional vector of length \(n^2 \). The following generalization of Hadamard’s lemma is easy, for a proof see [11].
Lemma 2.1 Let $M = (m_{ij})_{i,j=1,...,n}$ be a quadratic matrix over $\mathbb{C}[X]$, i.e. $m_{ij} \in \mathbb{C}[X]$. Then
\[
\|\det(M)\|_2 \leq \prod_{i=1}^{n} \left(\sum_{j=1}^{n} \|m_{ij}\|_1^2 \right)^{1/2}.
\]
This allows to proof the following estimate (variant of a result in [8]) for the value of integer polynomials at algebraic numbers.

Lemma 2.2 Let P and Q be arbitrary non-constant integer polynomials. Suppose for some $\beta \in \mathbb{C}$ that $P(\beta) \neq 0$, but $Q(\beta) = 0$.
Then it holds with $m = \deg(P)$, $n = \deg(Q)$, $f = s(P)$, $g = s(Q)$:
\[
|P(\beta)| \geq ((f + 1)^n \cdot g^m)^{-1}.
\]

Proof: We consider the resultant $r(y) := \text{res}_x(P(x) - y, Q(x)) \in \mathbb{Z}[y]$ of degree n which is defined as the determinant of the Sylvester matrix of $P(x) - y$ and $Q(x)$ considered as polynomials of x. The coefficient vector of $P(x) - y$ has 1-norm $f + 1$. The generalized Hadamard Lemma yields $\|r\|_2 \leq (f + 1)^n \cdot g^m$. We consider the reciprocal polynomial r^* of r (defined as $r^*(y) = y^n r(1/y)$) with norm $\|r^*\|_2 = \|r\|_2$ and root $1/P(\beta)$. From (1) we get the estimate $\max\{1; |1/P(\beta)|\} \leq \|r^*\|_2$ which yields the lower bound. For a zero of the derivative (i.e. a critical point) the Lemma yields the following viz. [8].

Proposition 2.1 Let P be an arbitrary integer polynomial of size s and degree $n \geq 2$. If ξ satisfies
\[
P'(\xi) = 0, \text{ but } P(\xi) \neq 0,
\]
then
\[
|P(\xi)| \geq (s^n n^n \cdot (s + 1)^{n-1})^{-1} > (n^n \cdot (s + 1)^{2n-1})^{-1}.
\]
This holds true even if P and P' have common roots.
3 Taylor series and root separation

The Grace-Heawood Lemma (cf. [6], Th.23.1) and its generalisations (cf. [6], Chap. 6) show that the distance of a critical point to a root is bounded in terms of the root separation. We use the following result essentially due to Marden.

Lemma 3.1 Let P be an arbitrary complex polynomial of degree $n \geq 2$. Let $P(\alpha) = P(\beta) = 0$, and $\alpha \neq \beta$. Then there exists some critical point γ with $P'(\gamma) = 0 \neq P(\gamma)$ and

$$\max\{|\gamma - \alpha|; |\gamma - \beta|\} \leq \csc\left(\frac{\pi}{2n-2}\right) \cdot |\beta - \alpha| < 2n \cdot |\beta - \alpha|. \quad (7)$$

Proof: The first inequality in (7) is a consequence of [6], Th.25.4 as α, β lie in a circle of radius $R := |\alpha - \beta|/2$ centered at $C := (\alpha + \beta)/2$. Marden’s result [6], Th.25.4 implies existence of a γ as above with distance to C at most $\csc\left(\frac{\pi}{2n-2}\right)R$, and the first inequality follows easily. The second inequality follows after further easy calculations with the trigonometric function, see [8]. □

Proof of Theorem 1.2: In the remainder of the paper let P be a polynomial which has at least two distinct zeros, and minimal root separation for given $s \geq 2$ and $n \geq 2$. We may restrict our analysis to polynomials with $sep(P) \leq (4e)^{-1}/(n^2 \cdot s)$, because otherwise the claimed estimate (5) trivially holds true.

With a suitable numbering suppose that $|\zeta_1 - \zeta_2| = sep(P)$. Obviously,

$$\min\{|\zeta_1|; |\zeta_2|\} \leq 1,$$

because otherwise the roots $1/\zeta_1$ and $1/\zeta_2$ of $P^*(x) = x^n P(1/x)$ had separation $|\zeta_1 - \zeta_2| < |\zeta_1 - \zeta_2|$ contradicting the choice of P.

By Lemma 3.1 we may choose a zero ξ of P' (i.e. a critical point of P) unequal to either of ζ_1 and ζ_2, and with distance to these zeros not exceeding $2n|\zeta_1 - \zeta_2|$. We estimate $|\xi|$ as

$$|\xi| \leq |\zeta_1| + |\xi - \zeta_1| \leq |\zeta_1| + 2n|\zeta_2 - \zeta_1| \leq 1 + \frac{2n}{4en^2s} < 1 + \frac{1}{n}. \quad (8)$$
We write
\[
\zeta_1 - \xi = -h, \; \zeta_2 - \xi = h + \epsilon, \quad (9)
\]
\[
\zeta_2 - \zeta_1 = 2h + \epsilon, \quad \text{for some } \epsilon \in \mathbb{C}, \quad (10)
\]
which implies
\[
2n \cdot \text{sep}(P) = 2n|\zeta_2 - \zeta_1| \geq \max\{|h|; |h + \epsilon|\}. \quad (11)
\]
The Taylor series for \(P(\zeta_1) \) at \(\xi \) yields the relation
\[
-P(\xi) = \frac{h^2}{2} P''(\xi) + \sum_{i=3}^{n} \frac{(-h)^i}{i!} P^{(i)}(\xi). \quad (12)
\]
If \(l > 1 \) is the smallest index such that \(P^{(l)}(\xi) \neq 0 \), we also consider the Taylor expansion of \(P(\zeta_1) = 0 \) around \(\xi \) with complex Lagrange remainder term according to Darboux (for ref., see [10], p.96) as
\[
-\frac{(-h)^l}{l!} P^{(l)}(\xi) = P(\xi) + \omega \frac{(-h)^{l+1}}{(l+1)!} P^{(l+1)}(\xi + t(\zeta_1 - \xi)), \quad |\omega| \leq 1, 0 \leq t \leq 1. \quad (13)
\]
We may suppose that
\[
|h| \leq \frac{1}{2(s+1)^{2n/3}n^{n/3+1}}, \quad (14)
\]
because otherwise by (11) \(2n \cdot \text{sep}(P) \geq |h| > \frac{1}{2(s+1)^{2n/3}n^{n/3+1}} \), and (5) already holds true.

To prove the estimate (5) we distinguish three cases.

Case 1: \(P'(\xi) = 0 = P(\xi) \).

The root \(\xi \) is close to the roots \(\zeta_1, \zeta_2 \), and we may re-use Mahler’s proof [5] of Theorem 1.1 (see, e.g., [11]) as follows. Let us consider \(\hat{P} := P/gcd(P, P') \) which retains the roots \(\zeta_1, \zeta_2, \xi \), but has a non-vanishing discriminant, and \(M(\hat{P}) \leq M(P) \). Denote \(\xi \) by \(\zeta_3 \). Suppose that the degree of \(\hat{P} \) is \(m \).

To make the analysis slightly more general (as needed below) we treat the situation of three distinct zeros such that
\[
\hat{P}(\zeta_3) = \hat{P}(\zeta_1) = \hat{P}(\zeta_2) = 0, \quad \text{deg}(\hat{P}) = m, \quad \text{and} \quad |\zeta_3 - \zeta_1| \leq 20n^2|\zeta_1 - \zeta_2|. \quad (15)
\]
As the discriminant of \(\hat{P} \) is non-zero, we use the well-known identity (see, e.g., [11])

\[
\text{discr}(\hat{P}) = \left[a_n^{-1} \det(\zeta^k_{i=0,...,m-1})\right]^2
\]

of the discriminant with the scaled square of the determinant of the Vandermonde matrix. We modify Mahler’s analysis (as in the proof of the Mahler-Davenport bound, see, e.g., [11]) to find

\[
1 \leq \sqrt{\text{discr}(\hat{P})} \leq |\zeta_1 - \zeta_2| \cdot |\zeta_1 - \zeta_3| M(\hat{P})^{m-1}(m^{1.5}/\sqrt{3})^2 m^{m-2}.
\]

By (15), \(|\zeta_3 - \zeta_1| \leq 20n^2|\zeta_1 - \zeta_2| = 20n^2 \text{sep}(P)\), and using this together with \(m < n\) yields

\[
\text{sep}(P) \geq (\sqrt{20/3} s^{n/2 - 0.5} n^{n/4 + 1.5})^{-1}.
\]

Case 2: \(P'(\xi) = 0 \neq P(\xi)\) and \(P''(\xi) = 0\).

The modulus of any \(P^{(l)}(\lambda)\) may be estimated as

\[
|P^{(l)}(\lambda)| \leq n^l \sum_{i=1}^n |a_i| \max\{1; |\lambda|\}^{i-l} \leq n^l \cdot s \cdot \max\{1; |\lambda|\}^n.
\]

With \(P''(\xi) = 0\), the smallest \(l > 1\) with \(P^{(l)}(\xi) = 0\) is at least 3. Using (13) for \(\lambda = \xi\) with \(|\xi|\) estimated as (8) and \(|h|\) restricted by (14) we obtain

\[
|h|^l \geq \frac{|P(\xi)|}{P^{(l)}(\xi)/l!} - \frac{h^{l+1}}{(l+1)!} \frac{P^{(l+1)}(\xi + t(\zeta_1 - \xi))}{P^{(l)}(\xi)/l!}
\]

\[
\geq \frac{ll!}{n^l \text{sep} \left(\frac{|P(\xi)|}{2(s + 1)^{2n^3/3} n^{n/3 + 1}}\right)}
\]

As \(l\) is at least 3, and \(|P(\xi)|\) is at least \((s + 1)^{-2n^3} n^{-n}\) by (6), we obtain

\[
2n \cdot \text{sep}(P) \geq |h| \geq \frac{1}{2} \frac{|P(\xi)|^{1/3}}{n^{s^{1/3} e^{1/3}}} > \frac{1}{2} \frac{1}{2^{e^{1/3}} (s + 1)^{2n^3 n^{n/3 + 1}}}
\]

Case 3: \(P'(\xi) = 0 \neq P(\xi) \cdot P''(\xi)\).
Let us consider first the favourable situation that P'' is small, more precisely, limited by

$$|P''(\xi)| \leq 5es \cdot n^4 \cdot 2^n \cdot \text{sep}(P). \quad (18)$$

The smallest index $l > 1$ such that $P^{(l)}(\xi) \neq 0$ is precisely 2. We use the Taylor expansion with complex remainder (13), and re-write it to estimate

$$|h^2/2| \geq \left| \frac{P(\xi)}{P'(\xi)} - \frac{h^3 P^{(3)}(\xi + t(\zeta_1 - \xi))}{6 P''(\xi)} \right| \quad \text{for some } t, 0 \leq t \leq 1.$$

The limitation (14) for $|h|$ together with (6) yields the inequality

$$|h^2| \geq \frac{2}{|P''(\xi)|} \left(|P(\xi)| - \frac{1}{2(s + 1)^{2n/3} n^{n/3+1}} \right) \frac{n^3 s \cdot e}{6} \geq \frac{2}{|P''(\xi)|} \frac{1}{2(s + 1)^{2n-1} n^n}.$$

We use the assumed upper limit (18) for $|P''(\xi)|$ together with the upper bound (11) for $|h|$ to obtain

$$(2n \cdot \text{sep}(P))^2 \geq |h^2| \geq \frac{2}{|P''(\xi)|} \frac{1}{2(s + 1)^{2n-1} n^n} \geq 2 \frac{1}{5esn^4 \cdot 2^n \cdot \text{sep}(P) (s + 1)^{2n-1} n^n}.$$

This yields the estimate $\text{sep}(P) > (20^{1/3} e^{1/3} 2^{n/3} (s + 1)^{2n/3} n^{n/3+2})^{-1}$, and our claim (5) holds true if (18) is satisfied.

If one of the roots ζ_1, ζ_2 is not simple, $|P''(\xi)|$ must be small: A multiple root of P is a root of the derivative. Thus, we have the situation that P' has two distinct roots, namely ξ and at least one of ζ_1, ζ_2, in a distance of at most $2n|\zeta_1 - \zeta_2|$. We may assume w.l.o.g. that the multiple root is ζ_2. If we write with a suitable numbering $P'(x) = na_n \prod_{i=1}^{n-1} (x - \lambda_i) = na_n(x - \xi)(x - \zeta_2) \prod_{j=3}^{n-1} (x - \lambda_j)$, then $P''(\xi) = na_n(\xi - \zeta_2) \prod_{j=3}^{n-1} (\xi - \lambda_j)$.

The Mahler measure of P' is $M(P') = |n \cdot a_n| \prod_{i=1}^{n-1} \max\{1; |\lambda_i|\}$, and as the coefficient vector of P' has 1-norm at most $n \cdot s$, inequality (1) yields
\[M(P') \leq n \cdot s. \] This implies the estimate

\[|P''(\xi)| = |na_n| |\xi - \zeta_2| \prod_{j=3}^{n-1} |\xi - \lambda_j| \]

\[\leq |na_n| 2n|\zeta_1 - \zeta_2| \max\{1; |\xi|\}^{n-2} \prod_{j=3}^{n-1} 1 + \max\{1; |\lambda_j|\} \]

\[\leq 2nse\max\{1; |\xi|\}^{n-2} 2^{n-2} M(P') \]

\[< 2^{n-1} n^2 \cdot se \cdot sep(P). \]

This puts us in the situation (18), and hence our claimed estimate holds true if one of the roots \(\zeta_1, \zeta_2 \) of minimal separation is not simple.

Let us deal with the favourable situation that a third root is close to the roots \(\zeta_1, \zeta_2 \) measured in terms of distance to \(\xi \). If

\[\min_{3 \leq j \leq n} |\xi - \zeta_j| \leq 10n \cdot |h| \leq 20n^2 \max|\zeta_1 - \zeta_2| \]

we have the situation of (15) (with \(m \leq n \)), and the lower bound (16).

Thus, we may suppose that the roots \(\zeta_1 \) and \(\zeta_2 \) are simple, and all other roots are somewhat remote from \(\zeta_1, \zeta_2 \):

\[\min_{3 \leq j \leq n} |\xi - \zeta_j| > 10n \cdot |h| = 10n|\zeta_1 - \xi|. \] (19)

We distinguish two different geometrical situations: The mid-point \(\frac{\zeta_1 + \zeta_2}{2} \) is far from \(\xi \), or otherwise close to it measured in terms of \(h \). We quantify the latter situation (using the differences \(\zeta_1 - \xi = -h, \zeta_2 - \xi = h + \epsilon \) and their sum \(\epsilon = \zeta_1 + \zeta_2 - 2\xi \)) as

\[|\epsilon| = |\zeta_1 + \zeta_2 - 2\xi| < |h|/10. \]

We write \(P(\xi) \) in terms of \(h \) and \(\epsilon \)

\[P(\xi)/a_n = \prod_{i=1}^{n} (\xi - \zeta_i) = -h(h + \epsilon) \prod_{\nu=3}^{n} (\xi - \zeta_\nu) =: D, \] (20)
and want to do the same with
\[
P''(\xi)/a_n = \sum_{j=1}^{n} \sum_{k=1}^{n} \prod_{\nu=1, \nu \neq j, k}^{n} (\xi - \zeta_{\nu}) =: N.
\]

We may divide this double sum into parts (using the usual conventions about empty sums and empty products):
\[
N = \prod_{\nu=3}^{n} (\xi - \zeta_{\nu}) + (\xi - \zeta_1) \sum_{k=3}^{n} \prod_{\nu=3, \nu \neq k}^{n} (\xi - \zeta_{\nu})
+ (\xi - \zeta_2) \sum_{k=3}^{n} \prod_{\nu=3, \nu \neq k}^{n} (\xi - \zeta_{\nu})
+ (\xi - \zeta_1)(\xi - \zeta_2) \sum_{j=3}^{n} \sum_{k=3, k \neq j}^{n} \prod_{\nu=3, \nu \neq j, k}^{n} (\xi - \zeta_{\nu}).
\]

As \(P(\xi) \neq 0\), the ratio \(N/D\) is well-defined, and we may write
\[
\frac{P''(\xi)}{P(\xi)} = \frac{N}{D} = \frac{1}{-h(h + \epsilon)} \left[1 - \epsilon \sum_{k=3}^{n} \frac{1}{\xi - \zeta_k} - h(h + \epsilon) \sum_{j=3}^{n} \sum_{k=3, k \neq j}^{n} \frac{1}{\xi - \zeta_j} \frac{1}{\xi - \zeta_k} \right]
= : \frac{1}{-h(h + \epsilon)} B.
\]

Expressing alternatively \(-\frac{P(\xi)}{P''(\xi)} = -D/N\) via the Taylor series expansion (12) yields
\[
\frac{P(\xi)}{P''(\xi)} = \frac{-D}{N} = \frac{h^2}{2} + \sum_{i=3}^{n} \frac{(-h)^i}{i!} \frac{P^{(i)}(\xi)}{P''(\xi)}
= h^2 \left(\frac{1}{2} + \sum_{i=3}^{n} \frac{(-1)^i h^{i-2}}{i!} \frac{P^{(i)}(\xi)}{P''(\xi)} \right) =: h^2 \cdot T.
\]

Thus, we may consider the identity
\[
B \cdot T = \frac{h(h + \epsilon)}{h^2}.
\]
We estimate the bracket B (using (19) and $|\epsilon| < |h|/10$), and obtain

$$
\left(1 + \frac{|h|}{10} \sum_{k=3}^{n} \frac{1}{10n|h|} + \frac{11}{10} \frac{|h|^2(n - 3)^2}{(10n|h|)^2} \right) \cdot \frac{1}{2} + \sum_{i=3}^{n} \frac{(-1)^i h^{i-2} P^{(i)}(\xi)}{i! P''(\xi)} \geq \frac{9}{10}
$$

which implies

$$
\left| \frac{1}{2} + \sum_{i=3}^{n} \frac{(-1)^i h^{i-2} P^{(i)}(\xi)}{i! P''(\xi)} \right| \geq \frac{2}{3}.
$$

The triangle inequality together with the estimate for the derivatives yields

$$
\frac{1}{6} \leq \sum_{i=3}^{n} \frac{h^{i-2} P^{(i)}(\xi)}{i! P''(\xi)} \leq \sum_{i=3}^{n} \frac{h^{i-2} e \cdot n^i \cdot s}{i! P''(\xi)},
$$

and as the limitation (14) for $|h|$ implies $|h| < 1/(2n)$ we have

$$
|P''(\xi)| \leq 6es \left(\frac{n^3}{3!} + \frac{h \cdot n^4}{4!} + \frac{h^2 \cdot n^5}{5!} + \ldots \right) < 2|h|es \cdot n^3 \leq 4esn^4 \cdot sep(P).
$$

This puts us in the situation of (18), and hence our claimed new estimate (5) holds true in the case $|\epsilon| < |h|/10$.

It remains to consider the case $|\epsilon| \geq |h|/10$. We may restrict our analysis to the case $sep(P) < \frac{1}{2((s+1)^{n+1}/n^n + s^{n+1})}$ as otherwise the claimed separation bound is trivially true. We repeat our notation and introduce additionally z_1, z_2:

$$
z_1 := \zeta_1 - \xi = -h, \ z_2 := \zeta_2 - \xi = h + \epsilon, \text{ for some } \epsilon \in \mathbb{C}.
$$

We define Blaschke factors $B_{z_i}(x) := \frac{1 - xz_i}{x - z_i}$; $i = 1, 2$. For $|x| = 1$, the factors $B_{z_i}(x)$ are unimodular. We compose the holomorphic function

$$
f(x) := P(x + \xi)B_{z_1}(x)B_{z_2}(x)
$$

to which we want to apply Cauchy’s inequality (cf., e.g., [10], p.91) for the Taylor coefficients in the form

$$
\sup_i \left| \frac{f^{(i)}(0)}{i!} \right| \leq \max_{|x| \leq 1} \{|f(x)|\} =: M_f.
$$

(21)
Using the bound (8) for $|\xi|$ we may estimate the maximum M_f as

$$M_f = \max_{|x| \leq 1} |P(x + \xi)| \leq (1 + |\xi|)^n \max_{|x| \leq 1} |P(x)| \leq 2^n e \cdot s \quad (22)$$

(where the first inequality follows from Hadamard’s three circle theorem, cf., e.g., [7]).

Expanding P around the critical point ξ (where $P'(\xi) = 0$) yields $P(x + \xi) = p_0 + p_2 x^2 + \sum_{i=3}^n p_i x^i$. For the Taylor coefficients of the composite function f we obtain from (21) and (22) the relation

$$|f'(0)| = |p_0 \cdot (B_{z_1}(0) B_{z_2}(0) + B_{z_1}(0) B'_{z_2}(0))| \leq 2^n e s.$$

We write explicitly

$$|p_0 \cdot (\frac{1 - |z_1|^2}{z_1^2} \frac{1}{z_2} + \frac{1 - |z_2|^2}{z_2^2})| \leq 2^n e s,$$

and deduce

$$2^n s \cdot e \geq |p_0 \cdot \frac{z_1 + z_2}{z_1^2 z_2^2} - |p_0 \cdot \frac{z_1 + z_2}{z_1 z_2}|. \quad (23)$$

As $p_0 = P(\xi) = a_n \prod_{i=1}^n (\xi - \zeta_i)$, $z_1 = -h = \xi_1 - \xi$, $z_2 = h = \xi_2 - \xi$ and $z_1 + z_2 = \epsilon$ we have

$$|p_0 \cdot \frac{z_1 + z_2}{z_1 z_2}| = |\epsilon| \cdot |a_n \prod_{j=3}^n (\xi - \zeta_j)| \leq |\epsilon| \cdot \max\{1; |\xi|\}^{n-2} 2^{n-2}|a_n| \prod_{j=3}^n \max\{1; |\zeta_j|\}$$

$$\leq |\epsilon| \cdot e \cdot 2^{n-2} \cdot s.$$

The assumed upper limits for $|h|$ and $sep(P)$ imply by (11) that $|\epsilon| < 1/2^{n+2}$

With $|z_1 + z_2| = |\epsilon| \geq |h|/10 = |z_1|/10$ and $|\epsilon| < 1/2^n$ the inequality (23) yields

$$2^n \cdot 1.2 s e \geq \frac{|p_0 |}{10 \cdot z_1 z_2} = |\frac{P(\xi)}{10 \cdot h(h+\epsilon)^2}|.$$

If we use in this inequality the bounds (11) together with the estimate of $|P(\xi)|$ in (6) we obtain

$$sep(P)^3 \geq \left|\frac{P(\xi)}{2^n \cdot 10 \cdot (2n)^3 1.2 s e} \right| > \frac{1}{96 \cdot e \cdot 2^n \cdot n^{n+3}(s+1)^{2n}}.$$

hence even in the case that $|\epsilon| \geq |h|/10$ our claimed estimate (5) holds true.

Q.E.D.
References

