A lower bound for the root separation of polynomials

P. Batra*

April 21, 2008

Abstract

An experimental study by Collins (JSC; 2001) suggested the conjecture that the minimum separation of real zeros of irreducible integer polynomials is about the square root of Mahler's bound for general integer polynomials. We prove that a power of about two thirds of the Mahler bound is already a lower bound for the minimum root separation of all integer polynomials.

Keywords: Polynomial roots, minimum root separation, Taylor series, resultants.

1 Introduction

The minimum root separation is the fundamental measure for verified inclusions of zeros of polynomial systems via algebraic algorithms, see, e.g., $[8,11]$. It is an important tool for classification of transcendental numbers, see [1] and the references cited therein.

Definition 1.1 The minimum root separation of an integer polynomial P given as

$$
P(x):=\sum_{i=0}^{n} a_{i} x^{i}=a_{n} \cdot \prod_{i=1}^{n}\left(x-\zeta_{i}\right), \text { where } a_{n} \neq 0
$$

[^0]is defined as
$$
\operatorname{sep}(P):=\min _{\zeta_{i} \neq \zeta_{j}}\left|\zeta_{i}-\zeta_{j}\right| .
$$

We call $M(P):=\left|a_{n}\right| \prod_{i=1}^{n} \max \left\{1 ;\left|\zeta_{i}\right|\right\}$ the Mahler measure of P.
The size of P, denoted by $s(P)$, or s for short, is defined as

$$
s(P):=\sum_{i=0}^{n}\left|a_{i}\right| .
$$

In formulating estimates for the minimum root separation, we capture the case of a single, n-fold zero of P by considering the separation in this case as $\operatorname{sep}(P)=+\infty$.

Mahler's root separation estimate for $P(x)=\sum a_{i} x^{i} \in \mathbb{Z}[x]$ may be formulated in terms of the coefficient vector norms $\|P\|_{q}:=\left\|\left(a_{0}, \ldots, a_{n}\right)\right\|_{q} ; q=$ 1,2 using the fact that

$$
\begin{equation*}
M(P) \leq\left(\sum\left|a_{i}\right|^{2}\right)^{1 / 2} \leq \sum\left|a_{i}\right|=s \tag{1}
\end{equation*}
$$

(where the first inequality follows easily from Jensen's inequality viz. [4] or [9]). The best known estimate for the minimum root separation was obtained by Mahler [5] in 1964.
Theorem 1.1 Let $P(x)=\sum_{0}^{n} a_{i} x^{i}$ be an integer polynomial of size s and degree n. Then

$$
\begin{equation*}
\operatorname{sep}(P)>\frac{\sqrt{3} \cdot \sqrt{\operatorname{discr}(P)}}{n^{n / 2+1} \cdot M(P)^{n-1}} \geq \frac{\sqrt{3} \cdot \sqrt{\operatorname{discr}(P)}}{n^{n / 2+1} \cdot s^{n-1}} . \tag{2}
\end{equation*}
$$

This yields a trivial estimate in case of a polynomial with multiple zeros as the discriminant vanishes, but Mahler's estimate may be applied to the square-free integer polynomial $\hat{P}(x):=P(x) / \operatorname{gcd}\left(P(x), P^{\prime}(x)\right)$ with $\operatorname{sep}(\hat{P})=\operatorname{sep}(P)$, and $\operatorname{discr}(\hat{P}) \geq 1$. The relation $M(\hat{P}) \leq M(P) \leq s$ holds true, and thus (2) gives rise to the following general estimate.

Corollary 1.1 Let $P(x)=\sum_{0}^{n} a_{i} x^{i}$ be an integer polynomial of size s and degree n. Then

$$
\begin{equation*}
\operatorname{sep}(P)>\frac{\sqrt{3}}{n^{n / 2+1} \cdot s^{n-1}} . \tag{3}
\end{equation*}
$$

Do there exist polynomials with small root separation? The example by Bugeaud and Mignotte [1] from 2004,

$$
\begin{equation*}
P(X):=\left(X^{n}-a X+1\right)^{k}-2 X^{n k-k}(a X-1)^{k}, n \geq 3, k \geq 2, a \geq 10 \tag{4}
\end{equation*}
$$

has a cluster of k zeros inside a circle with radius $2 a^{-2 n}$ centered at $1 / a+$ $1 / a^{n+1}$. This shows that the separation might decrease with the size s like $1 / s^{n / 2}$. Which is the best possible exponent of s in (3)?

We claim that a power of about two third of the lower bound (3) is a lower bound for the minimum root separation.

Theorem 1.2 Let $P(x)=\sum_{0}^{n} a_{i} x^{i}$ be an integer polynomial of size s and degree n. Then

$$
\begin{equation*}
\operatorname{sep}(P)>\frac{1}{4 e \cdot 2^{n / 3} \cdot n^{n / 3+2} \cdot(s+1)^{2 n / 3}} \tag{5}
\end{equation*}
$$

We proof this theorem in Section 3. Our interest was sparked by a conjecture of Collins [3] supposing that for real zeros of irreducible integer polynomials the square root of Mahler's general bound (3) might be a lower bound for the minimum root separation. This conjecture has to be taken cum grano salis as it is well known that for cubic polynomials the exponent of s in the root separation bound is precisely $-2=-n / 2-1 / 2$, cf., e.g., [9].

2 Bounding values of polynomials via resultants

To prove estimates for the minimum root separation nearly all authors used manipulations of specially constructed resultants or the discriminant (like Cauchy [2] and Mahler [5]). The only exception known to us is the work of S.M. Rump [8] who considered the Taylor expansion of P at a root ξ of the derivative P^{\prime}. In the following, we sketch the elements necessary to estimate the function value $P(\xi)$.

The norms $\|\cdot\|_{q}$ may be extended to matrices of polynomials by considering an $n \times n$ square matrix as a one-dimensional vector of length n^{2}. The following generalization of Hadamard's lemma is easy, for a proof see [11].

Lemma 2.1 Let $M=\left(m_{i j}\right)_{i, j=1, \ldots, n}$ be a quadratic matrix over $\mathbb{C}[X]$, i.e. $m_{i j} \in \mathbb{C}[X]$. Then

$$
\|\operatorname{det}(M)\|_{2} \leq \prod_{i=1}^{n}\left(\sum_{j=1}^{n}\left\|m_{i j}\right\|_{1}^{2}\right)^{1 / 2}
$$

This allows to proof the following estimate (variant of a result in [8]) for the value of integer polynomials at algebraic numbers.

Lemma 2.2 Let P and Q be arbitrary non-constant integer polynomials. Suppose for some $\beta \in \mathbf{C}$ that

$$
P(\beta) \neq 0, \text { but } \quad Q(\beta)=0
$$

Then it holds with $m=\operatorname{deg}(P), n=\operatorname{deq}(Q), f=s(P), g=s(Q)$:

$$
|P(\beta)| \geq\left((f+1)^{n} \cdot g^{m}\right)^{-1}
$$

Proof: We consider the resultant $r(y):=\operatorname{res}_{x}(P(x)-y, Q(x)) \in \mathbb{Z}[y]$ of degree n which is defined as the determinant of the Sylvester matrix of $P(x)-$ y and $Q(x)$ considered as polynomials of x. The coefficient vector of $P(x)-y$ has 1-norm $f+1$. The generalized Hadamard Lemma yields $\|r\|_{2} \leq(f+$ $1)^{n} \cdot g^{m}$. We consider the reciprocal polynomial r^{*} of r (defined as $r^{*}(y)=$ $\left.y^{n} r(1 / y)\right)$ with norm $\left\|r^{*}\right\|_{2}=\|r\|_{2}$ and root $1 / P(\beta)$. From (1) we get the estimate $\max \{1 ;|1 / P(\beta)|\} \leq\left\|r^{*}\right\|_{2}$ which yields the lower bound.

For a zero of the derivative (i.e. a critical point) the Lemma yields the following viz. [8].

Proposition 2.1 Let P be an arbitrary integer polynomial of size s and degree $n \geq 2$. If ξ satisfies

$$
P^{\prime}(\xi)=0, \text { but } \quad P(\xi) \neq 0
$$

then

$$
\begin{equation*}
|P(\xi)| \geq\left(s^{n} n^{n} \cdot(s+1)^{n-1}\right)^{-1}>\left(n^{n} \cdot(s+1)^{2 n-1}\right)^{-1} \tag{6}
\end{equation*}
$$

This holds true even if P and P^{\prime} have common roots.

3 Taylor series and root separation

The Grace-Heawood Lemma (cf. [6], Th.23.1) and its generalisations (cf. [6], Chap. 6) show that the distance of a critical point to a root is bounded in terms of the root separation. We use the following result essentially due to Marden.

Lemma 3.1 Let P be an arbitrary complex polynomial of degree $n \geq 2$. Let $P(\alpha)=P(\beta)=0$, and $\alpha \neq \beta$. Then there exists some critical point γ with $P^{\prime}(\gamma)=0 \neq P(\gamma)$ and

$$
\begin{equation*}
\max \{|\gamma-\alpha| ;|\gamma-\beta|\} \leq \csc \left(\frac{\pi}{2 n-2}\right) \cdot|\beta-\alpha|<2 n \cdot|\beta-\alpha| . \tag{7}
\end{equation*}
$$

Proof: The first inequality in (7) is a consequence of [6], Th. 25.4 as α, β lie in a circle of radius $R:=|\alpha-\beta| / 2$ centered at $C:=(\alpha+\beta) / 2$. Marden's result [6], Th. 25.4 implies existence of a γ as above with distance to C at most $\csc \left(\frac{\pi}{2 n-2}\right) R$, and the first inequality follows easily. The second inequality follows after further easy calculations with the trigonometric function, see [8].

Proof of Theorem 1.2: In the remainder of the paper let P be a polynomial which has at least two distinct zeros, and minimal root separation for given $s \geq 2$ and $n \geq 2$. We may restrict our analysis to polynomials with $\operatorname{sep}(P) \leq(4 e)^{-1} /\left(n^{2} \cdot s\right)$, because otherwise the claimed estimate (5) trivially holds true.

With a suitable numbering suppose that $\left|\zeta_{1}-\zeta_{2}\right|=\operatorname{sep}(P)$. Obviously,

$$
\min \left\{\left|\zeta_{1}\right| ;\left|\zeta_{2}\right|\right\} \leq 1
$$

because otherwise the roots $1 / \zeta_{1}$ and $1 / \zeta_{2}$ of $P^{*}(x)=x^{n} P(1 / x)$ had separation $\left|\frac{\zeta_{2}-\zeta_{1}}{\zeta_{1} \zeta_{2}}\right|<\left|\zeta_{1}-\zeta_{2}\right|$ contradicting the choice of P.

By Lemma 3.1 we may choose a zero ξ of P^{\prime} (i.e. a critical point of P) unequal to either of ζ_{1} and ζ_{2}, and with distance to these zeros not exceeding $2 n\left|\zeta_{1}-\zeta_{2}\right|$. We estimate $|\xi|$ as

$$
\begin{equation*}
|\xi| \leq\left|\zeta_{1}\right|+\left|\xi-\zeta_{1}\right| \leq\left|\zeta_{1}\right|+2 n\left|\zeta_{2}-\zeta_{1}\right| \leq 1+\frac{2 n}{4 e n^{2} s}<1+\frac{1}{n} \tag{8}
\end{equation*}
$$

We write

$$
\begin{align*}
\zeta_{1}-\xi & =-h, \zeta_{2}-\xi=h+\epsilon, \tag{9}\\
\zeta_{2}-\zeta_{1} & =2 h+\epsilon, \text { for some } \epsilon \in \mathbb{C}, \tag{10}\\
\text { which implies } \quad 2 n \cdot \operatorname{sep}(P) & =2 n\left|\zeta_{2}-\zeta_{1}\right| \geq \max \{|h| ;|h+\epsilon|\} . \tag{11}
\end{align*}
$$

The Taylor series for $P\left(\zeta_{1}\right)$ at ξ yields the relation

$$
\begin{equation*}
-P(\xi)=\frac{h^{2}}{2} P^{\prime \prime}(\xi)+\sum_{i=3}^{n} \frac{(-h)^{i}}{i!} P^{(i)}(\xi) \tag{12}
\end{equation*}
$$

If $l>1$ is the smallest index such that $P^{(l)}(\xi) \neq 0$, we also consider the Taylor expansion of $P\left(\zeta_{1}\right)=0$ around ξ with complex Lagrange remainder term according to Darboux (for ref., see [10], p.96) as
$-\frac{(-h)^{l}}{l!} P^{(l)}(\xi)=P(\xi)+\omega \frac{(-h)^{l+1}}{(l+1)!} P^{(l+1)}\left(\xi+t\left(\zeta_{1}-\xi\right)\right),|\omega| \leq 1,0 \leq t \leq 1 .(13)$
We may suppose that

$$
\begin{equation*}
|h| \leq \frac{1}{2(s+1)^{2 n / 3} n^{n / 3+1}} \tag{14}
\end{equation*}
$$

because otherwise by (11) $2 n \cdot \operatorname{sep}(P) \geq|h|>\frac{1}{2(s+1)^{2 n / 3} n^{n / 3+1}}$, and (5) already holds true.

To prove the estimate (5) we distinguish three cases.
Case 1: $P^{\prime}(\xi)=0=P(\xi)$.
The root ξ is close to the roots ζ_{1}, ζ_{2}, and we may re-use Mahler's proof [5] of Theorem 1.1 (see, e.g., [11]) as follows. Let us consider $\hat{P}:=P / \operatorname{gcd}\left(P, P^{\prime}\right)$ which retains the roots $\zeta_{1}, \zeta_{2}, \xi$, but has a non-vanishing discriminant, and $M(\hat{P}) \leq M(P)$. Denote ξ by ζ_{3}. Suppose that the degree of \hat{P} is m.

To make the analysis slightly more general (as needed below) we treat the situation of three distinct zeros such that

$$
\begin{equation*}
\hat{P}\left(\zeta_{3}\right)=\hat{P}\left(\zeta_{1}\right)=\hat{P}\left(\zeta_{2}\right)=0, \operatorname{deg}(\hat{P})=m, \text { and }\left|\zeta_{3}-\zeta_{1}\right| \leq 20 n^{2}\left|\zeta_{1}-\zeta_{2}\right| . \tag{15}
\end{equation*}
$$

As the discriminant of \hat{P} is non-zero, we use the well-known identity (see, e.g., [11])

$$
\operatorname{discr}(\hat{P})=\left[a_{n}^{n-1} \operatorname{det}\left(\zeta_{l}^{k}\right)_{\substack{k=0, \ldots, m-1 \\ l=0, \ldots, m-1}}^{\substack{ \\\hline}}\right]^{2}
$$

of the discriminant with the scaled square of the determinant of the Vandermonde matrix. We modify Mahler's analysis (as in the proof of the MahlerDavenport bound, see, e.g., [11]) to find

$$
1 \leq \sqrt{\operatorname{discr}(\hat{P})} \leq\left|\zeta_{1}-\zeta_{2}\right| \cdot\left|\zeta_{1}-\zeta_{3}\right| M(\hat{P})^{m-1}\left(m^{1.5} / \sqrt{3}\right)^{2} m^{\frac{m-2}{2}}
$$

By (15), $\left|\zeta_{3}-\zeta_{1}\right| \leq 20 n^{2}\left|\zeta_{1}-\zeta_{2}\right|=20 n^{2} \operatorname{sep}(P)$, and using this together with $m<n$ yields

$$
\begin{equation*}
\operatorname{sep}(P) \geq\left(\sqrt{20 / 3} s^{n / 2-0.5} n^{n / 4+1.5}\right)^{-1} \tag{16}
\end{equation*}
$$

Case 2: $P^{\prime}(\xi)=0 \neq P(\xi)$ and $P^{\prime \prime}(\xi)=0$.
The modulus of any $P^{(l)}(\lambda)$ may be estimated as

$$
\begin{equation*}
\left|P^{(l)}(\lambda)\right| \leq n^{l} \sum_{i=l}^{n}\left|a_{i}\right| \max \{1 ;|\lambda|\}^{i-l} \leq n^{l} \cdot s \cdot \max \{1 ;|\lambda|\}^{n} \tag{17}
\end{equation*}
$$

With $P^{\prime \prime}(\xi)=0$, the smallest $l>1$ with $P^{(l)}(\xi)=0$ is at least 3 . Using (13) for $\lambda=\xi$ with $|\xi|$ estimated as (8) and $|h|$ restricted by (14) we obtain

$$
\begin{aligned}
\left|h^{l}\right| & \geq\left|\frac{P(\xi)}{P^{(l)}(\xi) / l!}\right|-\left|\frac{h^{l+1}}{(l+1)!} \frac{P^{(l+1)}\left(\xi+t\left(\zeta_{1}-\xi\right)\right)}{P^{(l)}(\xi) / l!}\right| \\
& \geq \frac{l!}{n^{l} s e}\left(|P(\xi)|-\left(\frac{1}{2(s+1)^{2 n / 3} n^{n / 3+1}}\right)^{l+1} \frac{n^{l+1} s \cdot e}{(l+1)!}\right) .
\end{aligned}
$$

As l is at least 3 , and $|P(\xi)|$ is at least $(s+1)^{-(2 n-1)} n^{-n}$ by (6), we obtain

$$
2 n \cdot \operatorname{sep}(P) \geq|h| \geq \frac{1}{2} \frac{|P(\xi)|^{1 / 3}}{n s^{1 / 3} e^{1 / 3}}>\frac{1}{2 e^{1 / 3}} \frac{1}{(s+1)^{2 n / 3} n^{n / 3+1}}
$$

Case 3: $P^{\prime}(\xi)=0 \neq P(\xi) \cdot P^{\prime \prime}(\xi)$.

Let us consider first the favourable situation that $P^{\prime \prime}$ is small, more precisely, limited by

$$
\begin{equation*}
\left|P^{\prime \prime}(\xi)\right| \leq 5 e s \cdot n^{4} 2^{n} \operatorname{sep}(P) \tag{18}
\end{equation*}
$$

The smallest index $l>1$ such that $P^{(l)}(\xi) \neq 0$ is precisely 2 . We use the Taylor expansion with complex remainder (13), and re-write it to estimate

$$
\left|h^{2} / 2\right| \geq\left|\frac{P(\xi)}{P^{\prime \prime}(\xi)}\right|-\left|\frac{h^{3}}{6} \frac{P^{(3)}\left(\xi+t\left(\zeta_{1}-\xi\right)\right)}{P^{\prime \prime}(\xi)}\right| \text { for some } t, 0 \leq t \leq 1
$$

The limitation (14) for $|h|$ together with (6) yields the inequality

$$
\begin{aligned}
\left|h^{2}\right| & \geq \frac{2}{\left|P^{\prime \prime}(\xi)\right|}\left(|P(\xi)|-\left(\frac{1}{2(s+1)^{2 n / 3} n^{n / 3+1}}\right)^{3} \frac{n^{3} s \cdot e}{6}\right) \\
& \geq \frac{2}{\left|P^{\prime \prime}(\xi)\right|} \frac{1}{2(s+1)^{2 n-1} n^{n}}
\end{aligned}
$$

We use the assumed upper limit (18) for $\left|P^{\prime \prime}(\xi)\right|$ together with the upper bound (11) for $|h|$ to obtain

$$
\begin{aligned}
(2 n \cdot \operatorname{sep}(P))^{2} \geq\left|h^{2}\right| & \geq \frac{1}{\left|P^{\prime \prime}(\xi)\right|} \frac{2}{2(s+1)^{2 n-1} n^{n}} \\
& \geq \frac{2}{5 e s n^{4} 2^{n} \operatorname{sep}(P)} \frac{1}{(s+1)^{2 n-1} n^{n}}
\end{aligned}
$$

This yields the estimate $\operatorname{sep}(P)>\left(20^{1 / 3} e^{1 / 3} 2^{n / 3}(s+1)^{2 n / 3} n^{n / 3+2}\right)^{-1}$, and our claim (5) holds true if (18) is satisfied.

If one of the roots ζ_{1}, ζ_{2} is not simple, $\left|P^{\prime \prime}(\xi)\right|$ must be small: A multiple root of P is a root of the derivative. Thus, we have the situation that P^{\prime} has two distinct roots, namely ξ and at least one of ζ_{1}, ζ_{2}, in a distance of at most $2 n\left|\zeta_{1}-\zeta_{2}\right|$. We may assume w.l.o.g. that the multiple root is ζ_{2}. If we write with a suitable numbering $P^{\prime}(x)=n a_{n} \prod_{i=1}^{n-1}\left(x-\lambda_{i}\right)=$ $n a_{n}(x-\xi)\left(x-\zeta_{2}\right) \prod_{j=3}^{n-1}\left(x-\lambda_{j}\right)$, then $P^{\prime \prime}(\xi)=n a_{n}\left(\xi-\zeta_{2}\right) \prod_{j=3}^{n-1}\left(\xi-\lambda_{j}\right)$. The Mahler measure of P^{\prime} is $M\left(P^{\prime}\right)=\left|n \cdot a_{n}\right| \prod_{i=1}^{n-1} \max \left\{1 ;\left|\lambda_{i}\right|\right\}$, and as the coefficient vector of P^{\prime} has 1-norm at most $n \cdot s$, inequality (1) yields
$M\left(P^{\prime}\right) \leq n \cdot s$. This implies the estimate

$$
\begin{aligned}
\left|P^{\prime \prime}(\xi)\right| & =\left|n a_{n}\right|\left|\xi-\zeta_{2}\right| \prod_{j=3}^{n-1}\left|\xi-\lambda_{j}\right| \\
& \leq\left|n a_{n}\right| 2 n\left|\zeta_{1}-\zeta_{2}\right| \max \{1 ;|\xi|\}^{n-2} \prod_{j=3}^{n-1} 1+\max \left\{1 ;\left|\lambda_{j}\right|\right\} \\
& \leq 2 n \operatorname{sep}(P) \max \{1 ;|\xi|\}^{n-2} 2^{n-2} M\left(P^{\prime}\right) \\
& <2^{n-1} n^{2} \operatorname{se} \cdot \operatorname{sep}(P)
\end{aligned}
$$

This puts us in the situation (18), and hence our claimed estimate holds true if one of the roots ζ_{1}, ζ_{2} of minimal separation is not simple.

Let us deal with the favourable situation that a third root is close to the roots ζ_{1}, ζ_{2} measured in terms of distance to ξ. If

$$
\min _{3 \leq j \leq n}\left|\xi-\zeta_{j}\right| \leq 10 n \cdot|h| \leq 20 n^{2}\left|\zeta_{1}-\zeta_{2}\right|
$$

we have the situation of (15) (with $m \leq n$), and the lower bound (16).
Thus, we may suppose that the roots ζ_{1} and ζ_{2} are simple, and all other roots are somewhat remote from ζ_{1}, ζ_{2} :

$$
\begin{equation*}
\min _{3 \leq j \leq n}\left|\xi-\zeta_{j}\right|>10 n \cdot|h|=10 n\left|\zeta_{1}-\xi\right| \tag{19}
\end{equation*}
$$

We distinguish two different geometrical situations: The mid-point $\frac{\zeta_{1}+\zeta_{2}}{2}$ is far from ξ, or otherwise close to it measured in terms of h. We quantify the latter situation (using the differences $\zeta_{1}-\xi=-h, \zeta_{2}-\xi=h+\epsilon$ and their $\left.\operatorname{sum} \epsilon=\zeta_{1}+\zeta_{2}-2 \xi\right)$ as

$$
|\epsilon|=\left|\zeta_{1}+\zeta_{2}-2 \xi\right|<|h| / 10 .
$$

We write $P(\xi)$ in terms of h and ϵ

$$
\begin{equation*}
P(\xi) / a_{n}=\prod_{i=1}^{n}\left(\xi-\zeta_{i}\right)=-h(h+\epsilon) \prod_{\nu=3}^{n}\left(\xi-\zeta_{\nu}\right)=: D, \tag{20}
\end{equation*}
$$

and want to do the same with

$$
P^{\prime \prime}(\xi) / a_{n}=\sum_{j=1}^{n} \sum_{\substack{k=1 \\ k \neq j}}^{n} \prod_{\substack{\nu=1 \\ \nu \neq j, k}}^{n}\left(\xi-\zeta_{\nu}\right)=: N .
$$

We may divide this double sum into parts (using the usual conventions about empty sums and empty products):

$$
\begin{aligned}
N=\prod_{\nu=3}^{n}\left(\xi-\zeta_{\nu}\right) & +\left(\xi-\zeta_{1}\right) \sum_{\substack{k=3}}^{n} \prod_{\substack{\nu=3 \\
\nu \neq k}}^{n}\left(\xi-\zeta_{\nu}\right) \\
& +\left(\xi-\zeta_{2}\right) \sum_{\substack{k=3} \prod_{\substack{\nu=3 \\
\nu \neq k}}^{n}\left(\xi-\zeta_{\nu}\right)} \\
& +\left(\xi-\zeta_{1}\right)\left(\xi-\zeta_{2}\right) \sum_{j=3}^{n} \sum_{\substack{k=3 \\
k \neq j}}^{n} \prod_{\substack{\nu=3 \\
\nu \neq j, k}}^{n}\left(\xi-\zeta_{\nu}\right) .
\end{aligned}
$$

As $P(\xi) \neq 0$, the ratio N / D is well-defined, and we may write

$$
\begin{aligned}
\frac{P^{\prime \prime}(\xi)}{P(\xi)}=\frac{N}{D} & =\frac{1}{-h(h+\epsilon)}\left[1-\epsilon \sum_{k=3}^{n} \frac{1}{\xi-\zeta_{k}}-h(h+\epsilon) \sum_{j=3}^{n} \sum_{\substack{k=3 \\
k \neq j}}^{n} \frac{1}{\xi-\zeta_{j}} \frac{1}{\xi-\zeta_{k}}\right] \\
& =: \frac{1}{-h(h+\epsilon)} B .
\end{aligned}
$$

Expressing alternatively $-\frac{P(\xi)}{P^{\prime \prime}(\xi)}=-D / N$ via the Taylor series expansion (12) yields

$$
\begin{aligned}
-\frac{P(\xi)}{P^{\prime \prime}(\xi)}=\frac{-D}{N} & =\frac{h^{2}}{2}+\sum_{i=3}^{n} \frac{(-h)^{i}}{i!} \frac{P^{(i)}(\xi)}{P^{\prime \prime}(\xi)} \\
& =h^{2}\left(\frac{1}{2}+\sum_{i=3}^{n} \frac{(-1)^{i} h^{i-2}}{i!} \frac{P^{(i)}(\xi)}{P^{\prime \prime}(\xi)}\right)=: h^{2} \cdot T .
\end{aligned}
$$

Thus, we may consider the identity

$$
B \cdot T=\frac{h(h+\epsilon)}{h^{2}} .
$$

We estimate the bracket B (using (19) and $|\epsilon|<|h| / 10$), and obtain

$$
\left(1+\frac{|h|}{10} \sum_{k=3}^{n} \frac{1}{10 n|h|}+\frac{11}{10} \frac{|h|^{2}(n-3)^{2}}{(10 n|h|)^{2}}\right) \cdot\left|\frac{1}{2}+\sum_{i=3}^{n} \frac{(-1)^{i} h^{i-2}}{i!} \frac{P^{(i)}(\xi)}{P^{\prime \prime}(\xi)}\right| \geq \frac{9}{10}
$$

which implies

$$
\left|\frac{1}{2}+\sum_{i=3}^{n} \frac{(-1)^{i} h^{i-2}}{i!} \frac{P^{(i)}(\xi)}{P^{\prime \prime}(\xi)}\right| \geq \frac{2}{3}
$$

The triangle inequality together with the estimate for the derivatives yields

$$
\frac{1}{6} \leq \sum_{i=3}^{n}\left|\frac{h^{i-2}}{i!} \frac{P^{(i)}(\xi)}{P^{\prime \prime}(\xi)}\right| \leq \sum_{i=3}^{n}\left|\frac{h^{i-2}}{i!} \frac{e \cdot n^{i} \cdot s}{P^{\prime \prime}(\xi)}\right|,
$$

and as the limitation (14) for $|h|$ implies $|h|<1 /(2 n)$ we have

$$
\left|P^{\prime \prime}(\xi)\right| \leq 6 e s\left(\frac{n^{3}}{3!}+\frac{h \cdot n^{4}}{4!}+\frac{h^{2} \cdot n^{5}}{5!}+\ldots\right)<2|h| e s \cdot n^{3} \leq 4 e s n^{4} \cdot \operatorname{sep}(P)
$$

This puts us in the situation of (18), and hence our claimed new estimate (5) holds true in the case $|\epsilon|<|h| / 10$.

It remains to consider the case $|\epsilon| \geq|h| / 10$. We may restrict our analysis to the case $\operatorname{sep}(P)<\frac{1}{2(s+1)^{2 n / 3} n^{n / 3+2}}$ as otherwise the claimed separation bound is trivially true. We repeat our notation and introduce additionally z_{1}, z_{2} :

$$
z_{1}:=\zeta_{1}-\xi=-h, z_{2}:=\zeta_{2}-\xi=h+\epsilon, \text { for some } \epsilon \in \mathbb{C} .
$$

We define Blaschke factors $B_{z_{i}}(x):=\frac{1-x \overline{z_{i}}}{x-z_{i}} ; i=1,2$. For $|x|=1$, the factors $B_{z_{i}}(x)$ are unimodular. We compose the holomorphic function

$$
f(x):=P(x+\xi) B_{z_{1}}(x) B_{z_{2}}(x)
$$

to which we want to apply Cauchy's inequality (cf., e.g., [10], p.91) for the Taylor coefficients in the form

$$
\begin{equation*}
\sup _{i}\left|\frac{f^{(i)}(0)}{i!}\right| \leq \max _{|x| \leq 1}\{|f(x)|\}=: M_{f} . \tag{21}
\end{equation*}
$$

Using the bound (8) for $|\xi|$ we may estimate the maximum M_{f} as

$$
\begin{equation*}
M_{f}=\max _{|x| \leq 1}\{|P(x+\xi)|\} \leq(1+|\xi|)^{n} \max _{|x| \leq 1}\{|P(x)|\} \leq 2^{n} e \cdot s \tag{22}
\end{equation*}
$$

(where the first inequality follows from Hadamard's three circle theorem, cf., e.g., [7]).

Expanding P around the critical point $\xi\left(\right.$ where $\left.P^{\prime}(\xi)=0\right)$ yields $P(x+$ $\xi)=p_{0}+p_{2} x^{2}+\sum_{i=3}^{n} p_{i} x^{i}$. For the Taylor coefficients of the composite function f we obtain from (21) and (22) the relation

$$
\left|f^{\prime}(0)\right|=\left|p_{0} \cdot\left(B_{z_{1}}^{\prime}(0) B_{z_{2}}(0)+B_{z_{1}}(0) B_{z_{2}}^{\prime}(0)\right)\right| \leq 2^{n} e s
$$

We write explicitly

$$
\left|p_{0} \cdot\left(\frac{1-\left|z_{1}\right|^{2}}{z_{1}^{2}} \frac{1}{z_{2}}+\frac{1}{z_{1}} \frac{1-\left|z_{2}\right|^{2}}{z_{2}^{2}}\right)\right| \leq 2^{n} e s
$$

and deduce

$$
\begin{equation*}
2^{n} s \cdot e \geq\left|p_{0} \cdot \frac{z_{1}+z_{2}}{z_{1}^{2} z_{2}^{2}}\right|-\left|p_{0} \frac{\overline{z_{1}+z_{2}}}{z_{1} z_{2}}\right| \tag{23}
\end{equation*}
$$

As $p_{0}=P(\xi)=a_{n} \prod_{i=1}^{n}\left(\xi-\zeta_{i}\right), z_{1}=-h=\zeta_{1}-\xi, z_{2}=h+\epsilon=\zeta_{2}-\xi$ and $z_{1}+z_{2}=\epsilon$ we have

$$
\begin{aligned}
\left|p_{0} \frac{\overline{z_{1}+z_{2}}}{z_{1} z_{2}}\right|=|\epsilon| \cdot\left|a_{n} \prod_{j=3}^{n}\left(\xi-\zeta_{j}\right)\right| & \leq|\epsilon| \cdot \max \{1 ;|\xi|\}^{n-2} 2^{n-2}\left|a_{n}\right| \prod_{j=3}^{n} \max \left\{1 ;\left|\zeta_{j}\right|\right\} \\
& \leq|\epsilon| \cdot e \cdot 2^{n-2} \cdot s
\end{aligned}
$$

The assumed upper limits for $|h|$ and $\operatorname{sep}(P)$ imply by (11) that $|\epsilon|<1 / 2^{n+2}$ With $\left|z_{1}+z_{2}\right|=|\epsilon| \geq|h| / 10=\left|z_{1}\right| / 10$ and $|\epsilon|<\frac{1}{2^{n}}$ the inequality (23) yields

$$
2^{n} \cdot 1.2 s e \geq\left|\frac{p_{0}}{10 \cdot z_{1} z_{2}^{2}}\right|=\left|\frac{P(\xi)}{10 \cdot h(h+\epsilon)^{2}}\right| .
$$

If we use in this inequality the bounds (11) together with the estimate of $|P(\xi)|$ in (6) we obtain

$$
\operatorname{sep}(P)^{3} \geq\left|\frac{P(\xi)}{2^{n} \cdot 10 \cdot(2 n)^{3} 1.2 s e}\right|>\frac{1}{96 \cdot e \cdot 2^{n} \cdot n^{n+3}(s+1)^{2 n}}
$$

hence even in the case that $|\epsilon| \geq|h| / 10$ our claimed estimate (5) holds true. Q.E.D.

References

[1] Bugeaud, Y.; Mignotte, M. On the distance between roots of integer polynomials. Proc. Edinburgh Mathematical Society, 47:553-556, 2004.
[2] Cauchy, A.L. Oeuvres complètes d'Augustin Cauchy, volume 3 of 2^{e} série., chapter Sur la résolution numérique des équations, pages 378426. Gauthier-Villars, Paris, reprint of 1897 edition, 1921.
[3] Collins, G.E. Polynomial minimum root separation. Journal of Symbolic Computation, 32:467-473, 2001.
[4] Landau, E. Sur quelques théorèmes de M. Pétrovitch relatifs aux zéros des fonctions analytiques. Bull. Soc. Math. Franc., 33:251-261, 1905.
[5] Mahler, K. An Inequality for the Discriminant of a Polynomial. Michigan Math. Journal, 11:257-262, 1964.
[6] Marden, M. M. The Geometry of Polynomials. AMS, Providence, Rhode Island, second edition, 1966.
[7] Pólya, G.; Szegö, G. Aufgaben und Lehrsätze aus der Analysis I. Springer-Verlag, Berlin, 1970.
[8] Rump, S.M. Polynomial minimum root separation. Mathematics of Computation, 33:327-336, 1979.
[9] Schönhage, A. Polynomial root separation examples. Journal of Symbolic Computation, 41(10):1080-1090, 2006.
[10] Whittaker, E. T.; Watson, G. N. Modern Analysis. Cambridge University Press, 4th edition, 1927.
[11] Yap, C.K. Fundamental Problems of Algorithmic Algebra. Oxford University Press, New York, N.Y., 2000.

[^0]: *Hamburg University of Technology, Inst. f. Computer Technology, 21071 Hamburg, Germany (batra@tuhh.de). [Phone: $++49(40) 42878-3478$, Fax: -2798]

