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Abstract

An experimental study by Collins (JSC; 2001) suggested the con-
jecture that the minimum separation of real zeros of irreducible integer
polynomials is about the square root of Mahler’s bound for general in-
teger polynomials. We prove that a power of about two thirds of the
Mahler bound is already a lower bound for the minimum root separa-
tion of all integer polynomials.

Keywords: Polynomial roots, minimum root separation, Taylor series, resultants.

1 Introduction

The minimum root separation is the fundamental measure for verified in-
clusions of zeros of polynomial systems via algebraic algorithms, see, e.g.,
[8, 11]. It is an important tool for classification of transcendental numbers,
see [1] and the references cited therein.

Definition 1.1 The minimum root separation of an integer polynomial P
given as

P (x) :=
n∑

i=0

aix
i = an ·

n∏
i=1

(x− ζi), where an 6= 0,
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is defined as
sep(P ) := min

ζi 6=ζj

|ζi − ζj|.

We call M(P ) := |an|
n∏

i=1

max{1; |ζi|} the Mahler measure of P.

The size of P , denoted by s(P ), or s for short, is defined as

s(P ) :=
n∑

i=0

|ai|.

In formulating estimates for the minimum root separation, we capture the
case of a single, n-fold zero of P by considering the separation in this case
as sep(P ) = +∞.

Mahler’s root separation estimate for P (x) =
∑

aix
i ∈ Z[x] may be for-

mulated in terms of the coefficient vector norms ‖P‖q := ‖(a0, . . . , an)‖q; q =
1, 2 using the fact that

M(P ) ≤ (
∑

|ai|2)1/2 ≤
∑

|ai| = s (1)

(where the first inequality follows easily from Jensen’s inequality viz. [4] or
[9]). The best known estimate for the minimum root separation was obtained
by Mahler [5] in 1964.

Theorem 1.1 Let P (x) =
∑n

0 aix
i be an integer polynomial of size s and

degree n. Then

sep(P ) >

√
3 ·
√

discr(P )

nn/2+1 ·M(P )n−1
≥
√

3 ·
√

discr(P )

nn/2+1 · sn−1
. (2)

This yields a trivial estimate in case of a polynomial with multiple ze-
ros as the discriminant vanishes, but Mahler’s estimate may be applied
to the square-free integer polynomial P̂ (x) := P (x)/gcd(P (x), P ′(x)) with
sep(P̂ ) = sep(P ), and discr(P̂ ) ≥ 1. The relation M(P̂ ) ≤ M(P ) ≤ s holds
true, and thus (2) gives rise to the following general estimate.

Corollary 1.1 Let P (x) =
∑n

0 aix
i be an integer polynomial of size s and

degree n. Then

sep(P ) >

√
3

nn/2+ 1 · sn−1
. (3)
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Do there exist polynomials with small root separation? The example by
Bugeaud and Mignotte [1] from 2004,

P (X) := (Xn − aX + 1)k − 2Xnk−k(aX − 1)k, n ≥ 3, k ≥ 2, a ≥ 10, (4)

has a cluster of k zeros inside a circle with radius 2a−2n centered at 1/a +
1/an+1. This shows that the separation might decrease with the size s like
1/sn/2. Which is the best possible exponent of s in (3)?

We claim that a power of about two third of the lower bound (3) is a lower
bound for the minimum root separation.

Theorem 1.2 Let P (x) =
∑n

0 aix
i be an integer polynomial of size s and

degree n. Then

sep(P ) >
1

4e · 2n/3 · nn/3+ 2 · (s + 1)2n/3
. (5)

We proof this theorem in Section 3. Our interest was sparked by a conjecture
of Collins [3] supposing that for real zeros of irreducible integer polynomials
the square root of Mahler’s general bound (3) might be a lower bound for
the minimum root separation. This conjecture has to be taken cum grano
salis as it is well known that for cubic polynomials the exponent of s in the
root separation bound is precisely −2 = −n/2− 1/2, cf., e.g., [9].

2 Bounding values of polynomials via resul-

tants

To prove estimates for the minimum root separation nearly all authors used
manipulations of specially constructed resultants or the discriminant (like
Cauchy [2] and Mahler [5]). The only exception known to us is the work of
S.M. Rump [8] who considered the Taylor expansion of P at a root ξ of the
derivative P ′. In the following, we sketch the elements necessary to estimate
the function value P (ξ).

The norms ‖ · ‖q may be extended to matrices of polynomials by consid-
ering an n× n square matrix as a one-dimensional vector of length n2. The
following generalization of Hadamard’s lemma is easy, for a proof see [11].
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Lemma 2.1 Let M = (mij)i,j=1,...,n be a quadratic matrix over C[X], i.e.
mij ∈ C[X]. Then

‖det(M)‖2 ≤
n∏

i=1

(
n∑

j=1

‖mij‖2
1

)1/2

.

This allows to proof the following estimate (variant of a result in [8]) for
the value of integer polynomials at algebraic numbers.

Lemma 2.2 Let P and Q be arbitrary non-constant integer polynomials.
Suppose for some β ∈ C that

P (β) 6= 0, but Q(β) = 0.

Then it holds with m = deg(P ), n = deq(Q), f = s(P ), g = s(Q) :

|P (β)| ≥ ((f + 1)n · gm)−1.

Proof: We consider the resultant r(y) := resx(P (x) − y, Q(x)) ∈ Z[y] of
degree n which is defined as the determinant of the Sylvester matrix of P (x)−
y and Q(x) considered as polynomials of x. The coefficient vector of P (x)−y
has 1-norm f + 1. The generalized Hadamard Lemma yields ‖r‖2 ≤ (f +
1)n · gm. We consider the reciprocal polynomial r∗ of r (defined as r∗(y) =
ynr(1/y)) with norm ‖r∗‖2 = ‖r‖2 and root 1/P (β). From (1) we get the
estimate max{1; |1/P (β)|} ≤ ‖r∗‖2 which yields the lower bound. �

For a zero of the derivative (i.e. a critical point) the Lemma yields the
following viz. [8].

Proposition 2.1 Let P be an arbitrary integer polynomial of size s and
degree n ≥ 2. If ξ satisfies

P ′(ξ) = 0, but P (ξ) 6= 0,

then
|P (ξ)| ≥ (snnn · (s + 1)n−1)−1 > (nn · (s + 1)2n−1)−1. (6)

This holds true even if P and P ′ have common roots.
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3 Taylor series and root separation

The Grace-Heawood Lemma (cf. [6], Th.23.1) and its generalisations (cf. [6],
Chap. 6) show that the distance of a critical point to a root is bounded in
terms of the root separation. We use the following result essentially due to
Marden.

Lemma 3.1 Let P be an arbitrary complex polynomial of degree n ≥ 2. Let
P (α) = P (β) = 0, and α 6= β. Then there exists some critical point γ with
P ′(γ) = 0 6= P (γ) and

max{|γ − α|; |γ − β|} ≤ csc(
π

2n− 2
) · |β − α| < 2n · |β − α|. (7)

Proof: The first inequality in (7) is a consequence of [6], Th.25.4 as α, β lie
in a circle of radius R := |α− β|/2 centered at C := (α + β)/2. Marden’s re-
sult [6], Th.25.4 implies existence of a γ as above with distance to C at most
csc( π

2n−2
)R, and the first inequality follows easily. The second inequality fol-

lows after further easy calculations with the trigonometric function, see [8]. �

Proof of Theorem 1.2: In the remainder of the paper let P be a polyno-
mial which has at least two distinct zeros, and minimal root separation for
given s ≥ 2 and n ≥ 2. We may restrict our analysis to polynomials with
sep(P ) ≤ (4e)−1/(n2 ·s), because otherwise the claimed estimate (5) trivially
holds true.

With a suitable numbering suppose that |ζ1 − ζ2| = sep(P ). Obviously,

min{|ζ1|; |ζ2|} ≤ 1,

because otherwise the roots 1/ζ1 and 1/ζ2 of P ∗(x) = xnP (1/x) had separa-
tion | ζ2−ζ1

ζ1ζ2
| < |ζ1 − ζ2| contradicting the choice of P .

By Lemma 3.1 we may choose a zero ξ of P ′ (i.e. a critical point of P )
unequal to either of ζ1 and ζ2, and with distance to these zeros not exceeding
2n|ζ1 − ζ2|. We estimate |ξ| as

|ξ| ≤ |ζ1|+ |ξ − ζ1| ≤ |ζ1|+ 2n|ζ2 − ζ1| ≤ 1 +
2n

4en2s
< 1 +

1

n
. (8)
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We write

ζ1 − ξ = −h, ζ2 − ξ = h + ε, (9)

ζ2 − ζ1 = 2h + ε, for some ε ∈ C, (10)

which implies 2n · sep(P ) = 2n|ζ2 − ζ1| ≥ max{|h|; |h + ε|}. (11)

The Taylor series for P (ζ1) at ξ yields the relation

−P (ξ) =
h2

2
P ′′(ξ) +

n∑
i=3

(−h)i

i!
P (i)(ξ). (12)

If l > 1 is the smallest index such that P (l)(ξ) 6= 0, we also consider the
Taylor expansion of P (ζ1) = 0 around ξ with complex Lagrange remainder
term according to Darboux (for ref., see [10], p.96) as

−(−h)l

l!
P (l)(ξ) = P (ξ) + ω

(−h)l+1

(l + 1)!
P (l+1)(ξ + t(ζ1 − ξ)), |ω| ≤ 1, 0 ≤ t ≤ 1.(13)

We may suppose that

|h| ≤ 1

2(s + 1)2n/3nn/3+1
, (14)

because otherwise by (11) 2n ·sep(P ) ≥ |h| > 1
2(s+1)2n/3nn/3+1 , and (5) already

holds true.

To prove the estimate (5) we distinguish three cases.

Case 1: P ′(ξ) = 0 = P (ξ).

The root ξ is close to the roots ζ1, ζ2, and we may re-use Mahler’s proof [5]
of Theorem 1.1 (see, e.g., [11]) as follows. Let us consider P̂ := P/gcd(P, P ′)
which retains the roots ζ1, ζ2, ξ, but has a non-vanishing discriminant, and
M(P̂ ) ≤ M(P ). Denote ξ by ζ3. Suppose that the degree of P̂ is m.

To make the analysis slightly more general (as needed below) we treat
the situation of three distinct zeros such that

P̂ (ζ3) = P̂ (ζ1) = P̂ (ζ2) = 0, deg(P̂ ) = m, and |ζ3 − ζ1| ≤ 20n2|ζ1 − ζ2|. (15)
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As the discriminant of P̂ is non-zero, we use the well-known identity (see,
e.g., [11])

discr(P̂ ) =
[
an−1

n det(ζk
l ) k=0,...,m−1

l=0,...,m−1

]2
of the discriminant with the scaled square of the determinant of the Vander-
monde matrix. We modify Mahler’s analysis (as in the proof of the Mahler-
Davenport bound, see, e.g., [11]) to find

1 ≤
√

discr(P̂ ) ≤ |ζ1 − ζ2| · |ζ1 − ζ3|M(P̂ )m−1(m1.5/
√

3)2m
m−2

2 .

By (15), |ζ3− ζ1| ≤ 20n2|ζ1− ζ2| = 20n2sep(P ), and using this together with
m < n yields

sep(P ) ≥ (
√

20/3sn/2−0.5nn/4+1.5)−1. (16)

Case 2: P ′(ξ) = 0 6= P (ξ) and P ′′(ξ) = 0.

The modulus of any P (l)(λ) may be estimated as

|P (l)(λ)| ≤ nl

n∑
i=l

|ai|max{1; |λ|}i−l ≤ nl · s ·max{1; |λ|}n. (17)

With P ′′(ξ) = 0, the smallest l > 1 with P (l)(ξ) = 0 is at least 3. Using (13)
for λ = ξ with |ξ| estimated as (8) and |h| restricted by (14) we obtain

|hl| ≥ | P (ξ)

P (l)(ξ)/l!
| − | hl+1

(l + 1)!

P (l+1)(ξ + t(ζ1 − ξ))

P (l)(ξ)/l!
|

≥ l!

nlse

(
|P (ξ)| − (

1

2(s + 1)2n/3nn/3+1
)l+1nl+1s · e

(l + 1)!

)
.

As l is at least 3, and |P (ξ)| is at least (s + 1)−(2n−1)n−n by (6), we obtain

2n · sep(P ) ≥ |h| ≥ 1

2

|P (ξ)|1/3

ns1/3e1/3
>

1

2e1/3

1

(s + 1)2n/3nn/3+1
.

Case 3: P ′(ξ) = 0 6= P (ξ) · P ′′(ξ).
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Let us consider first the favourable situation that P ′′ is small, more pre-
cisely, limited by

|P ′′(ξ)| ≤ 5es · n42nsep(P ). (18)

The smallest index l > 1 such that P (l)(ξ) 6= 0 is precisely 2. We use the
Taylor expansion with complex remainder (13), and re-write it to estimate

|h2/2| ≥ | P (ξ)

P ′′(ξ)
| − |h

3

6

P (3)(ξ + t(ζ1 − ξ))

P ′′(ξ)
| for some t, 0 ≤ t ≤ 1.

The limitation (14) for |h| together with (6) yields the inequality

|h2| ≥ 2

|P ′′(ξ)|

(
|P (ξ)| − (

1

2(s + 1)2n/3nn/3+1
)3n3s · e

6

)
≥ 2

|P ′′(ξ)|
1

2(s + 1)2n−1nn
.

We use the assumed upper limit (18) for |P ′′
(ξ)| together with the upper

bound (11) for |h| to obtain

(2n · sep(P ))2 ≥ |h2| ≥ 1

|P ′′(ξ)|
2

2(s + 1)2n−1nn

≥ 2

5esn42nsep(P )

1

(s + 1)2n−1nn
.

This yields the estimate sep(P ) > (201/3e1/32n/3(s+1)2n/3nn/3+2)−1, and our
claim (5) holds true if (18) is satisfied.

If one of the roots ζ1, ζ2 is not simple, |P ′′(ξ)| must be small: A multiple
root of P is a root of the derivative. Thus, we have the situation that P ′

has two distinct roots, namely ξ and at least one of ζ1, ζ2, in a distance
of at most 2n|ζ1 − ζ2|. We may assume w.l.o.g. that the multiple root is
ζ2. If we write with a suitable numbering P ′(x) = nan

∏n−1
i=1 (x − λi) =

nan(x − ξ)(x − ζ2)
∏n−1

j=3 (x − λj), then P ′′(ξ) = nan(ξ − ζ2)
∏n−1

j=3 (ξ − λj).

The Mahler measure of P ′ is M(P ′) = |n · an|
∏n−1

i=1 max{1; |λi|}, and as
the coefficient vector of P ′ has 1-norm at most n · s, inequality (1) yields
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M(P ′) ≤ n · s. This implies the estimate

|P ′′(ξ)| = |nan||ξ − ζ2|
n−1∏
j=3

|ξ − λj|

≤ |nan|2n|ζ1 − ζ2|max{1; |ξ|}n−2

n−1∏
j=3

1 + max{1; |λj|}

≤ 2nsep(P ) max{1; |ξ|}n−22n−2M(P ′)

< 2n−1n2se · sep(P ).

This puts us in the situation (18), and hence our claimed estimate holds true
if one of the roots ζ1, ζ2 of minimal separation is not simple.

Let us deal with the favourable situation that a third root is close to the
roots ζ1, ζ2 measured in terms of distance to ξ. If

min
3≤j≤n

|ξ − ζj| ≤ 10n · |h| ≤ 20n2|ζ1 − ζ2|

we have the situation of (15) (with m ≤ n), and the lower bound (16).

Thus, we may suppose that the roots ζ1 and ζ2 are simple, and all other
roots are somewhat remote from ζ1, ζ2:

min
3≤j≤n

|ξ − ζj| > 10n · |h| = 10n|ζ1 − ξ|. (19)

We distinguish two different geometrical situations: The mid-point ζ1+ζ2
2

is
far from ξ, or otherwise close to it measured in terms of h. We quantify the
latter situation (using the differences ζ1 − ξ = −h, ζ2 − ξ = h + ε and their
sum ε = ζ1 + ζ2 − 2ξ) as

|ε| = |ζ1 + ζ2 − 2ξ| < |h|/10.

We write P (ξ) in terms of h and ε

P (ξ)/an =
n∏

i=1

(ξ − ζi) = −h(h + ε)
n∏

ν=3

(ξ − ζν) =: D, (20)
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and want to do the same with

P ′′(ξ)/an =
n∑

j=1

n∑
k=1
k 6=j

n∏
ν=1

ν 6=j,k

(ξ − ζν) =: N.

We may divide this double sum into parts (using the usual conventions about
empty sums and empty products):

N =
n∏

ν=3

(ξ − ζν) + (ξ − ζ1)
n∑

k=3

n∏
ν=3
ν 6=k

(ξ − ζν)

+ (ξ − ζ2)
n∑

k=3

n∏
ν=3
ν 6=k

(ξ − ζν)

+ (ξ − ζ1)(ξ − ζ2)
n∑

j=3

n∑
k=3
k 6=j

n∏
ν=3

ν 6=j,k

(ξ − ζν).

As P (ξ) 6= 0, the ratio N/D is well-defined, and we may write

P ′′(ξ)

P (ξ)
=

N

D
=

1

−h(h + ε)

1− ε
n∑

k=3

1

ξ − ζk

− h(h + ε)
n∑

j=3

n∑
k=3
k 6=j

1

ξ − ζj

1

ξ − ζk


=:

1

−h(h + ε)
B.

Expressing alternatively − P (ξ)
P ′′(ξ)

= −D/N via the Taylor series expansion

(12) yields

− P (ξ)

P ′′(ξ)
=
−D

N
=

h2

2
+

n∑
i=3

(−h)i

i!

P (i)(ξ)

P ′′(ξ)

= h2(
1

2
+

n∑
i=3

(−1)ihi−2

i!

P (i)(ξ)

P ′′(ξ)
) =: h2 · T.

Thus, we may consider the identity

B · T =
h(h + ε)

h2
.
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We estimate the bracket B (using (19) and |ε| < |h|/10), and obtain(
1 +

|h|
10

n∑
k=3

1

10n|h|
+

11

10

|h|2(n− 3)2

(10n|h|)2

)
· |1

2
+

n∑
i=3

(−1)ihi−2

i!

P (i)(ξ)

P ′′(ξ)
| ≥ 9

10

which implies

|1
2

+
n∑

i=3

(−1)ihi−2

i!

P (i)(ξ)

P ′′(ξ)
| ≥ 2

3
.

The triangle inequality together with the estimate for the derivatives yields

1

6
≤

n∑
i=3

|h
i−2

i!

P (i)(ξ)

P ′′(ξ)
| ≤

n∑
i=3

|h
i−2

i!

e · ni · s
P ′′(ξ)

|,

and as the limitation (14) for |h| implies |h| < 1/(2n) we have

|P ′′(ξ)| ≤ 6es(
n3

3!
+

h · n4

4!
+

h2 · n5

5!
+ . . .) < 2|h|es · n3 ≤ 4esn4 · sep(P ).

This puts us in the situation of (18), and hence our claimed new estimate
(5) holds true in the case |ε| < |h|/10.

It remains to consider the case |ε| ≥ |h|/10. We may restrict our analysis
to the case sep(P ) < 1

2(s+1)2n/3nn/3+2 as otherwise the claimed separation

bound is trivially true. We repeat our notation and introduce additionally
z1, z2:

z1 := ζ1 − ξ = −h, z2 := ζ2 − ξ = h + ε, for some ε ∈ C.

We define Blaschke factors Bzi
(x) :=

1− xzi

x− zi

; i = 1, 2. For |x| = 1, the

factors Bzi
(x) are unimodular. We compose the holomorphic function

f(x) := P (x + ξ)Bz1(x)Bz2(x)

to which we want to apply Cauchy’s inequality (cf., e.g., [10], p.91) for the
Taylor coefficients in the form

sup
i
|f

(i)(0)

i!
| ≤ max

|x|≤1
{|f(x)|} =: Mf . (21)
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Using the bound (8) for |ξ| we may estimate the maximum Mf as

Mf = max
|x|≤1

{|P (x + ξ)|} ≤ (1 + |ξ|)n max
|x|≤1

{|P (x)|} ≤ 2ne · s (22)

(where the first inequality follows from Hadamard’s three circle theorem, cf.,
e.g., [7]).

Expanding P around the critical point ξ (where P ′(ξ) = 0) yields P (x +
ξ) = p0 + p2x

2 +
∑n

i=3 pix
i. For the Taylor coefficients of the composite

function f we obtain from (21) and (22) the relation

|f ′(0)| = |p0 · (B′
z1

(0)Bz2(0) + Bz1(0)B
′
z2

(0))| ≤ 2nes.

We write explicitly

|p0 · (
1− |z1|2

z2
1

1

z2

+
1

z1

1− |z2|2

z2
2

)| ≤ 2nes,

and deduce

2ns · e ≥ |p0 ·
z1 + z2

z2
1z

2
2

| − |p0
z1 + z2

z1z2

|. (23)

As p0 = P (ξ) = an

∏n
i=1(ξ − ζi), z1 = −h = ζ1 − ξ, z2 = h + ε = ζ2 − ξ and

z1 + z2 = ε we have

|p0
z1 + z2

z1z2

| = |ε| · |an

n∏
j=3

(ξ − ζj)| ≤ |ε| ·max{1; |ξ|}n−22n−2|an|
n∏

j=3

max{1; |ζj|}

≤ |ε| · e · 2n−2 · s.

The assumed upper limits for |h| and sep(P ) imply by (11) that |ε| < 1/2n+2

With |z1 + z2| = |ε| ≥ |h|/10 = |z1|/10 and |ε| < 1
2n the inequality (23) yields

2n · 1.2se ≥ | p0

10 · z1z2
2

| = | P (ξ)

10 · h(h + ε)2
|.

If we use in this inequality the bounds (11) together with the estimate of
|P (ξ)| in (6) we obtain

sep(P )3 ≥ | P (ξ)

2n · 10 · (2n)31.2se
| > 1

96 · e · 2n · nn+3(s + 1)2n
,

hence even in the case that |ε| ≥ |h|/10 our claimed estimate (5) holds true.
Q.E.D.

12



References

[1] Bugeaud, Y.; Mignotte, M. On the distance between roots of integer
polynomials. Proc. Edinburgh Mathematical Society, 47:553–556, 2004.
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