Guaranteed Precision for

Transcendental and Algebraic

 Computation made Easyby

Zilin Du

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy
Department of Computer Science
Courant Institute of Mathematical Sciences
New York University
May 2006

(C) Zilin Du

All Rights Reserved, 2006

Dedicated to the friends and families who blessed and supported me

Acknowledgments

Many thanks to my advisor Professor Chee Keng Yap for all of his kind help with my work. He has always been available and enthusiastic to encourage and help me during the last five years. I'm also very thankful to Professor Michael Overton, Richard Pollack and Hervé Brönnimann for their careful reading and generous advice. Special thanks to my collaborator and thesis committee member, Sylvain Pion. He kindly hosted me one fruitful week in February 2006 in INRIA. Also great thanks to Vikram Sharma who worked with me together for our Exact Geometric Computation project.

My graduate school years in New York city cannot be a truly memorable one without all my friends here. Among them are Zhihua Wang, Ziyang Wang, Jinyuan Li, Xiaojian Zhao, Ning Feng, Wei Cheng, Tao Ling, Jiawu Feng, Xiujie Wang, Bing Sun and Shubin Zhao. I also want to thank brothers and sisters from Newtown Church, Chingching Won, Daniel Hu, Davie Chao, Lanjo Wu, Li Jing, Lydia Yang, and Ming for their love and prayers.

Abstract

Numerical non-robustness is a well-known phenomenon when implementing geometric algorithms. A general approach to achieve geometric robustness is Exact Geometric Computation (EGC). This dissertation explores the redesign and extension of the Core Library, a C++ library which embraces the EGC approach. The philosophy of the Core Library is to make guaranteed precision computation transparent and easily accessible to most users; our redesign strives to keep the original user interface intact while improving the underlying algorithms significantly. The contributions of this thesis are organized into three parts.

In the first part, we discuss the redesign of the Core Library, especially the expression (Expr) and bigfloat (BigFloat) classes. Our new design emphasizes extensibility in a clean and modular way. The three facilities in Expr, filter, root bound and bigfloat, are separated into independent modules. This allows new filters, root bounds and some bigfloat substitute to be plugged in. The key approximate evaluation and precision propagation algorithms have been greatly improved. A new bigfloat system based on MPFR and interval arithmetic has been incorporated. Our benchmark shows that the redesigned Core Library typically has 5-10 times speedup. We also provide tools to facilitate extensions of Expr to incorporate new types of nodes, especially transcendental nodes.

Although the Core Library was originally designed for algebraic applica-
tions, transcendental functions are needed in many applications. In the second part, we present a complete algorithm for absolute approximation of the general hypergeometric function. Its complexity is also given. The extension of this algorithm to "blackbox numbers" is provided. A general hypergeometric function package based on our algorithm is implemented and integrated into the Core Library based on our new design.

Brent has shown that many elementary functions, such as exp, log, sin, etc., can be efficiently computed using the Arithmetic-Geometric Mean (AGM) based algorithm. However, he only gave an asymptotic error analysis. The constants in the $\operatorname{Big} O(\cdot)$ notation required for implementation are unknown. We provide a non-asymptotic error analysis of the AGM algorithm and the related algorithms for logarithm and exponential functions. These algorithms have been implemented and incorporated into the Core Library.

Contents

Dedication iv
Acknowledgments v
Abstract vi
List of Figures xi
List of Tables xii
List of Experiments xiv
List of Appendices xv
1 Introduction 1
1.1 Exact Geometric Computation (EGC) 2
1.2 Previous work in EGO 4
1.3 Need for Transcendental Functions 10
1.4 Our Contributions 11
2 Redesion of the Core Library 15
2.1 Review of the current Core Library design 16
2.2 Redesign of Expr Package 18
2.2.1 Incorporation of Transcendental Nodes 19
2.2.2 New template-based design of ExprRep 19
2.2.3 Improved Approximate Evaluation Algorithms 33
2.2.4 Improved Propagation of Precision 43
2.3 Redesion of BigFloat system 51
2.3.1 MPFR Overview 53
2.3.2 Design of class BigFloat 54
2.3.3 Design of class BigFloat2 60
2.4 Extending Expr class 62
2.4.1 How to Add Your Own Operation for Expr 62
2.4.2 Adding Your Own Operation using Pre-defined Macros 67
2.4.3 Summation operation for Expn 70
2.4.4 Transcendental Node π 73
2.5 Benchmarks 74
2.6 InCore: an Interactive Core Library 76
3 Absolute Approximation of General Hypergeometric Function 79
3.1 Hvpergeometric series and functions 80
3.1.1 Hvpergeometric series 80
3.1.2 Hvpergeometric function and convergence 82
3.1.3 Elementary Functions in Hvpergeometric Form 84
3.2 General Approximate Evaluation Algorithm 85
3.3 Evaluation at a Blackbox Numben 102
3.4 Complexitv 106
3.5 Argument Reduction. Parameter Pre-processing and Constants 114
3.5.1 Argument Reduction 114
3.5.2 Parameter Pre-processing 119
3.5.3 Mathematical Constants: Evaluation. File Formats 122
3.6 Integration of Hvpergeometric Functions into the Core Library 124
3.7 Final Remarks and Open Problems 125
4 Non-asymptotic Error Analysis of AGM Algorithm 128
4.1 Arithmetic-geometric Mean Iteration 129
4.2 Error Analvsis of AGM 130
4.3 Fast Multiple-precision Evaluation of π 134
4.4 Fast Evaluation of Exponential and Logarithm Functions 139
4.4.1 Elliptic Integrals 139
4.4.2 Brent's method 142
4.4.3 Convergence of $U_{k}(m)$ and $T_{k}(m)$ 145
4.4.4 Approximation of $U_{k}(m)$ and $T_{k}(m)$ 146
4.4.5 Approximation of $U(m)$ and $T(m)$ 154
4.4.6 Discrete Newton Iteration 156
4.4.7 Evaluation $\exp (x)$ and $\log (x)$ 157
4.5 Summary 163
5 Conclusion and Future Work 164
5.1 Conclusion 164
5.2 Future Work 165
Appendices 168
Bibliography 177

List of Figures

2.1 Comparison of ExprRep and ExprRepT 20
2.2 ExprRepT memorv lavout. Sizes in bytes for a 32-bit architecture. 21
2.3 ExprRepT Class Hierarchv 24
2.4 Timing for computing $\sqrt{2} \cdot \sqrt{3} \mathrm{w} /$ and w / o exact multiplication 46
2.5 Timing for computing $\sum_{i}^{n} i \mathrm{w} /$ and w / o removing trailing zeros. 59
2.6 Timing Comparisons for sart (). 60
2.7 Timing for computing harmonic series. 73
2.8 Timing Comparisons for compare.cpp 74
2.9 Timing testFilter.cpp w/ filter (in microseconds) 75
2.10 Timing testFilter. cpp w/o filter (in microseconds) 75
4.1 The Functions $U(m)$ and $T(m)$ for $m \in(0.1)$ 145
4.2 Upper Bound Functions of $U^{\prime}(m)$ and $T^{\prime}(m)$ for $m \in(0.1)$ 161

List of Tables

2.1 Rules for computing number type 33
2.2 Rules for computing sign recursivelv 34
2.3 Rules for computing upper bound of MSB recursivelv 35
2.4 Rules for computing lower bound of MSB recursively 36
2.5 Rules for computing degree bound. 42
2.6 Propagating Rules in Absolute Precision. 51
2.7 Propagating Rules in Relative Precision. 51
2.8 Rules for interval arithmetic. 62
2.9 Rules for multiplication using interval arithmetic. 63
2.10 Rules for division using interval arithmetic. 64
3.1 Some elementarv functions in terms of hypergeometric series. 84
3.2 Transformations of hypergeometric functions. 101
4.1 The Functions $U(m)$ and $T(m)$ 144
4.2 Approximations and Upper Bounds of $U^{\prime}(m)$ and $T^{\prime}(m)$ 162
A. 1 Rules for BFS filter. $\mathrm{D}=52$. 170
B. 1 Rules for BFMSS bound. 172
B. 2 Rules for BFMSS bound in logarithm form. 174
B. 3 Rules for Degree-Measure bound. 175
B. 4 Rules for Li-Yap bound. 176

List of Experiments

1 Precision Propagation for Multiplication 46
2 Optimization of Precision Estimation 58
3 Comparison of the Performance of sart() 60
4 Computing harmonic series using loop 70
5 Computing harmonic series using sum () 72

List of Appendices

Appendix A BFS Filter 168
Appendix B BFMSS Root Bound 172

Chapter 1

Introduction

Numbers are normally represented in fixed-point or floating-point format using a fixed number of bits in modern computers. The arithmetic operations and comparisons associated with them are inexact. Numerical errors due to round-off may lead to inconsistent states from which computer programs cannot recover. These non-robustness problems are especially serious in geometric computation since numerical errors can propagate into the combinatorial computations and result in complete failure of the algorithms. A general framework to solve such problems is Exact Geometric Computation (EGC). While current EGC approach can handle algebraic problems successfully, it is an open question whether it is possible for problems involving transcendental functions. This thesis is aimed to redesign our EGC software library, Core Library, to make it more efficient, modular and extensible, easy to use for both algebraic and transcendental computation. A complete algorithm for absolute approximating the general hypergeometric function is given. An implementation has been developed and integrated into the redesigned Core Library.

1.1 Exact Geometric Computation (EGC)

Computational Geometry is the study of algorithms to solve geometric problems ([77, 25, 71, 6, 66]). In general, geometric computations have two components, a numerical part and combinatorial part. Numerical computations are involved in both the construction of new geometric objects and the evaluation of geometric predicates. To determine the combinatorial relations among geometric objects, geometric predicates are especially critical. For example, for the convex hull problem the predicate asserting that 3 points are oriented counterclockwise is very important. Incorrect evaluation of this predicate can lead to inconsistencies and crash the whole program.

Usually geometric algorithms are designed within a Real RAM model of computation, in which real numbers are exact and arithmetic operations and comparisons are performed exactly. However, approximate floating-point arithmetic, which is a form of fixed-precision arithmetic, is widely used in modern computer systems. Almost all of them follow the IEEE 754 standard [44]. Such an arithmetic has serious shortcomings [36, 43] in certain applications. A geometric algorithm implemented using straightforward floating-point arithmetic could easily introduce some undesirable numerical errors. Although numerical errors can sometimes be tolerated and interpreted as small perturbations in inputs, serious problems arise when these errors accumulate and propagate, triggering inconsistencies between numerical and combinatorial data. Numerical non-robustness has long been an important concern in the implementation of geometric algorithms ([26, 43, [83, [5, ,27]). In the last decade it has become a central research topic in computational geometry (4, 52, 42]).

There are many approaches to dealing with this problem - see [73, 84, 95]
for general surveys on robust geometric computation. For example, the "naive" arithmetic solution tries to compute every numerical quantity exactly, without any errors. But researchers soon realized that it is impractical, even for computation over linear geometry [97, 47]. One approach called Exact Geometric Computation (EGC, for short) 92 perhaps has been the most successful one. The basic idea of EGC is to compute "exactly" in the geometric sense, i.e., all predicates in a geometric algorithm are evaluated exactly. The EGC principle does not require "exact arithmetic" but arithmetic that has "sufficient accuracy" to guarantee the exactness of geometric predicates. Moreover, the EGC solution is often more general and has better properties. Unlike many other approaches [13, (24] that require new algorithms to be designed for each application, it can take any implementation of any algorithm and achieve full robustness just by replacing its machine number type by a suitable number type ("EGC number").

Two general libraries which provide such EGC numbers are currently available: LEDA Real [14, 59] and Core Library [46, 21]. The Core Library, as the successor of Real/Expr [96], is aimed at achieving a user-friendly interface, especially for user's access of numerical accuracy [93]. The EGC number in the Core Library is called Expr; it is the first EGC number type to incorporate arbitrary real algebraic numbers. In contrast to the Core Library, LEDA offers, in addition to their EGC number types, also a large collection of algorithms, data structures and related services. The EGC number type in LEDA is called LEDA_real. Using such libraries, programmers can routinely implement robust programs by using standard algorithms. A large collection of such robust algorithms have been implemented in the major software libraries CGAL 19 and LEDA [49.
§1. General Terminology and Notation for this Thesis We list some terminology that are used in this thesis:

- $\lg =\log _{2}, \ln =\log _{e}$.
- \oplus, \ominus, \odot and \oslash are used to denote the corresponding floating-point arithmetic operations of addition, subtraction, multiplication and division.
- x is a "blackbox number" if we can get arbitrarily many bits of precision of x.
- $\mathbf{a}=\left\{a_{1}, a_{2}, \ldots, a_{p}\right\}$ is a multiset if the order of \mathbf{a} is ignored, but the multiplicity is explicitly significant. For example, multisets $\{1,2,3\}$ and $\{2,1,3\}$ are equivalent, but $\{1,2,3\}$ and $\{1,1,2,3\}$ differ.

1.2 Previous work in EGC

Since the early 1990s, many research efforts have been made toward EGC. Among them three key areas are constructive root bounds [16, 54, 75, 85], approximate expression evaluation [86, [52, [53] and filter techniques [28, (31, 12].
§2. Constructive Root Bound Let Ω be a set of real or complex functions (including constants). The set of constant expressions over Ω is denoted by $\operatorname{Expr}(\Omega)$. For instance, $\Omega_{0}=\{+,-, \times\} \cup \mathbb{Z}$. The value of an expression $e \in$ $\operatorname{Expr}(\Omega)$, denoted by $\operatorname{Val}_{\Omega}(e)$, is a real (complex) number, but it may also be undefined. The zero problem for Ω, denoted $\operatorname{ZERO}(\Omega)$, is to decide for a given $e \in \operatorname{Expr}(\Omega)$, whether $\operatorname{Val}_{\Omega}(e)$ is defined and equal to 0 . It is called the fundamental problem of EGC.

Definition 1. Assume e is an expression and b is a positive number in \mathbb{R}. We say b is a root bound (or zero bound) if the following holds:

$$
e \text { is well-defined and } e \neq 0 \Rightarrow|e| \geq b .
$$

Note that b is a conditional bound: it is not a bound when e is undefined or zero. To determine the sign of e from a root bound b, we compute a numerical approximation \tilde{e} such that if e is undefined then \tilde{e} is undefined; otherwise, $|e-\tilde{e}|<\frac{b}{2}$. Then

$$
\operatorname{sign}(e)= \begin{cases}\operatorname{sign}(\tilde{e}) & \text { if }|\tilde{e}| \geq \frac{b}{2} \text { or } \tilde{e} \text { is undefined } \\ 0 & \text { otherwise }\end{cases}
$$

It is important to find root bounds that are as large as possible since the amplitude of the root bound directly affects the worse-case complexity in sign determination. On the other hand, we also want to be able to compute them efficiently.

Root bounds have been extensively studied in the classical literature (e.g., [58] or [61]). Many classical results, however, are non-constructive. We are more interested in root bounds which can be inductively computed from the structure of an algebraic expression. Such bounds are called "Constructive Root Bounds". A number of constructive root bounds have been proposed and implemented, such as Degree-Measure bounds, BFMSS bounds [16] and Li-Yap bounds [54. Some techniques (e.g. 75) have been developed to improve them as well.

Root bounds greatly depends on the operators in Ω. A hierarchy of some Ω that are important in practice is described in (94:

- Polynomial basis: $\Omega_{0}=\{+,-, \times\} \cup \mathbb{Z}$
- Rational basis: $\Omega_{1}=\Omega_{0} \cup\{\div\}$
- Radical basis: $\Omega_{2}=\Omega_{1} \cup\{\sqrt{ } \cdot\}$
- Algebraic basis: $\Omega_{3}=\Omega_{2} \cup\{\operatorname{Root} \operatorname{Of}(P, i)\}$ where P is an integer polynomial and i is the i-th real root of P.
- Elementary basis: $\Omega_{4}=\Omega_{3} \cup\{\exp (\cdot), \log (\cdot)\}$
- Hypergeometric basis: $\Omega_{5}=\Omega_{4} \cup \mathbb{H}$, where \mathbb{H} is the set of real hypergeometric functions (see Chapter 3).

In many areas of computational sciences, non-algebraic operators are needed: Ω_{4} is the simplest basis beyond the algebraic case. Basic functions such as the trigonometric functions are captured in Ω_{5}. It is an open problem whether there exist constructive root bounds for Ω_{4} or Ω_{5}, but Richardson has given an important conditional result in [80, 81, 82]; partial results are also known from transcendental number theory [76, 57, 69.
§3. Diamond Operation $\operatorname{In} \Omega_{3}$, the $\operatorname{RootOf}(\mathrm{P}, \mathrm{i})$ operation allows one to take the root of the integer polynomials. A more general operation which is called Diamnod Operation is to allow one to take the root of arbitrary real algebraic polynomials. If $e_{d}, e_{d-1}, \ldots, e_{1}, e_{0}$ are real algebraic expressions and i is a positive integer with $0 \leq i \leq d$, then $\diamond\left(i, e_{d}, e_{d-1}, \ldots, e_{1}, e_{0}\right)$ is an expression. If $\operatorname{Val}_{\Omega}\left(e_{i}\right)$ are defined, then the value of $\diamond\left(i, e_{d}, e_{d-1}, \ldots, e_{1}, e_{0}\right)$ is the i-th smallest real root of the polynomial

$$
\operatorname{Val}_{\Omega}\left(e_{d}\right) X^{d}+\operatorname{Val}_{\Omega}\left(e_{d-1}\right) X^{d-1}+\cdots+\operatorname{Val}_{\Omega}\left(e_{0}\right)
$$

if the polynomial has at least i real roots. Otherwise, the value is undefined. We also say $\diamond(\cdot)$ is a Diamond Operator.
§4. Approximate expression evaluation Essentially, all expression evaluations are done with approximations in any EGC library. This requires algorithms that can compute an approximation \tilde{e} to within precision p for any given expression e and precision p. Mostly we use relative or absolute precision 94:

Definition 2. Given e, $\tilde{e} \in \mathbb{R}$, we say that \tilde{e} is a relative p-bit approximation of e if

$$
|\tilde{e}-e| \leq|e| \cdot 2^{-p} .
$$

We also say e e has relative precision p.

Definition 3. Given e, $\tilde{e} \in \mathbb{R}$, we say that \tilde{e} is an absolute p-bit approximation of e if

$$
|\tilde{e}-e| \leq 2^{-p} \text {. }
$$

We also say ẽ has absolute precision p.

The Core Library use a precision-driven approach to approximate expressions. It was first given in detail and analyzed in [96], then was implemented in the Real/Expr package [72] and incorporated into the Core Library subsequently. Intuitively, it can be viewed as an iterative "downward-upward process" operating on the input expression DAG (directed acyclic graph). In the downward direction, precision values (starting with p at the root) are propagated down to the leaves. In the upward direction, approximations are propagated up to the root. This upward propagation amounts to a bottom-up evaluation of the expression e.

The optimal method of propagating precision is an open problem. Currently the Core Library propagates a "composite precision", which leads to compute
an approximation \tilde{e} of e such that

$$
|\tilde{e}-e| \leq 2^{-a} \quad \text { or } \quad|\tilde{e}-e| \leq|e| 2^{-r}
$$

for a given pair $[a, r]$. In [94, Yap proposed a simpler and more intuitive algorithm, which propagates either absolute or relative precision, but not both.

We should notice that computing absolute approximations is a more basic problem. Yap [94] showed that computing a relative approximation of e can be converted to compute an absolute approximation of e only if we can compute a root bound for e. In terms of our hierarchy $\left\{\Omega_{i}: i=0, \ldots, 5\right\}$, we only know how to compute root bounds for $e \in \operatorname{Expr}\left(\Omega_{i}\right)$ for $i=0, \ldots, 3$.
§5. Filter techniques Multi-precision arithmetic is used in EGC libraries, which is much slower than machine floating-point arithmetic. To gain efficiency, a technique called "filtering" is used, which has been proved to be very effective in practice [30, 18]. The basic idea is simple: we first perform all the arithmetic computation using machine floating-point arithmetic, and then we "certify" the results, and go for the slower high precision computation only when this fails. For example, to determine the sign of an expression e, we compute an approximation value \tilde{e} using machine floating-point arithmetic and an error bound err on the accumulated numerical errors such that $|e-\tilde{e}| \leq e r r . e$ and \tilde{e} must have the same sign if $|\tilde{e}|>e r r$.

There are two main categories of numerical filters: static and dynamic. Static filters can be computed at compile time for the most part, and have a low overhead at runtime. However, error bounds may be over-estimated and thus less effective. On the other hand, dynamic filters have higher runtime cost but are much more effective (i.e., fewer false rejections). We can also have
semi-static filters which combine both features.
Error tracking in filters (e.g., the BFS filter [18] used in the Core Library) is usually based on the specification of the floating-point arithmetic standard (IEEE 754). Interval arithmetic [1] 62] is a simpler and more traditional way to control the error. It is used in the CGAL library, covering all predicates in the geometry kernel [12, 74].

The Core Library is a set of $\mathrm{C}++$ classes which aims at making robust programs easily constructed by any programmer. It defines a natural and simple numerical accuracy API with four accuracy levels:

- Level I: Machine Accuracy (i.e., IEEE 754 Standard)
- Level II: Arbitrary Accuracy (e.g., compute to 1000 bits)
- Level III: Guaranteed Accuracy (e.g., guarantee 100 bits)
- Level IV: Mixed Accuracy (i.e., a combination of the three previous levels)

The goal of the Core Library is to allow a single program to be run in any of these levels. The flexible choice of accuracy simplifies debugging and experimentation in many applications. The Core Library is designed so that most "ordinary C++ programs" (written without knowledge of the Core Library in mind) can be adapted to use the Core Library with minimal modifications (i.e., just inserting a single directive, \#include <CORE/CORE.h>). EGC can be easily implemented using Level III accuracy.

1.3 Need for Transcendental Functions

The algebraic problems are the majority of problems treated in contemporary computational geometry. However, some non-algebraic examples, e.g., some kinds of Voronoi diagrams, shortest paths with disc obstacles [48], and nonholonomic motion planning, do arise in computational geometry. Transcendental functions such as $\exp x, \log x, \sin x$, etc. are needed as primitives. While a program involving only algebraic expressions can be "robustified" if it is recompiled under Level III in the Core Library, the exactness of geometric predicates involving transcendental functions cannot be guaranteed since there are no known root bounds for expressions involving transcendental functions. Consequently, we might want to scale back to Level II for such expressions.

Most transcendental functions used in geometric computation are elementary functions [64]. A function is elementary if it can be built up from a finite combination of constant functions, field operations and algebraic, exponential, logarithmic functions 87]. Among them the simplest elementary functions are the logarithm, exponential, and trigonometric functions. Many well-known elementary functions are special cases of hypergeometric functions. Hence, a general implementation of hypergeometric functions can be used as a base for implementing others.

The problem of evaluating hypergeometric functions is a highly classical problem (e.g., [22, 55]). The usual modus operandi here is one that is widely used in numerical analysis: the algorithms are based on fixed-precision arithmetic (e.g., IEEE Standard), and the goal is to design algorithms that try to minimize the round-off errors in the final result. With this procedure, one then gives a posteriori guarantees on the final precision, either by using error analysis,
or computationally via interval arithmetic. Such a posteriori bounds may not be sufficient for an application. In general, it is nontrivial to transform a posteriori methods into a priori ones (the obvious method of increasing precision iteratively may fail (94]). This has given rise to the "Table Maker's Dilemma" [51], described as the problem of computing correctly rounded values of transcendental functions. For machine-double tables, this problem was solved in [51] for some elementary functions using double-precision format. Nardin et al [68), 67] describe an evaluation method for confluent hypergeometric series (on large complex arguments) which they "verify" to be accurate to at least 9 digits. Their verification consists of a battery of 12 tests, but these do not constitute a proof of correctness. But using results of our chapter 2, we can automatically verify the accuracy of their evaluation.

Jeandel [45] describes a recent effort to provide hypergeometric functions in GNU's multi-precision number package GMP. In [23], an implementation of Hypergeometric Function Package in the Core Library introduces transcendental functions into EGC for the first time.

1.4 Our Contributions

The basic goal of my thesis research is to improve the efficiency of our EGC approach and to extend it to transcendental computations. This requires a redesign of our current Core Library and providing effective algorithms for approximating transcendental functions.

As a part of our research effort, we redesigned the Core Library. While we keep the user-level interface intact, the on-top Expr class is redesigned as a template class with three parameters, Filter, Rootbd and Kernel. This
makes the implementation of Expr class independent from the implementation of these three submodules. Moreover, users can easily plug in different template parameters for experiments or various efficiency trade-offs. The key routines computeExactSign() and computeApprox() in Expr package are separated into five subroutines, which greatly avoid the unnecessary computations. The correctness and performance of these new subroutines have been carefully considered. Our benchmark shows that the redesigned system has 5-10 times speedup. For correctness of our implementation, we have ensured that the fairly extensive suite of sample programs in our Core Library produce the same results as the current system.

The underlying approximation "engine", the BigFloat subsystem, has also been redesigned. Instead of one class, we now split off from BigFloat a new class BigFloat2. They are both based on MPFR [63], a portable C library providing multi-precision floating point computation. BigFloat does not keep track of errors while BigFloat2 does using interval arithmetic. This change makes our system more flexible since users can now choose one of them depending on their specific applications to get the most efficiency. And by using MPFR, we can now focus more exclusively on our EGC research.

Some efforts to extend the Core Library have also been made. We now provide a standard interface to help developers or users to write extensions for the Core Library, say, adding new operators or functions. Some C++ macros have been developed to simplify the task of writing such extensions. We also developed an interpreted version of our library, InCore, to help users prototype and rapidly develop their applications.

In the second part of this thesis, we investigate the absolute approximation of the general hypergeometric function $H(\mathbf{a} ; \mathbf{b} ; x)={ }_{p} F_{q}(\mathbf{a} ; \mathbf{b} ; x)$. We show that it
is solvable by presenting our complete approximation algorithm. Furthermore, we show that we can also approximate H when x is a "blackbox number", i.e., the number x is represented by a procedure that can return an approximation \widetilde{x} to any desired absolute precision. This generalization is necessary for various applications: (a) argument reduction [64, 23, (b) evaluation of hypergeometric functions at irrational values such as $x=\pi$ or $x=\sqrt{2}$, (c) absolute approximation of functions that are derived from hypergeometric functions by irrational transformations of their x argument. An explicit bound on the complexity of our algorithm is given as well. A full implementation of our algorithm has been integrated into the Core Library.

Another important aspect of transcendental computation is the AGM algorithm. It has been used by Brent [10, 11] for fast evaluation of most elementary functions. However, he only gave the asymptotic error analysis which is useful for complexity analysis, but his algorithms cannot be implemented directly since the constants in the $\operatorname{Big} O(\cdot)$ notation is unknown. We present a full non-asymptotic error analysis on these algorithms and implemented them using our redesigned Core Library.

We now summarize the contributions of this thesis:

- We redesigned the Expr package in the Core Library to increase modularity and significantly improved the efficiency of the key evaluation algorithms.
- We provided two BigFloat classes, which are now both based on MPFR, to make them more efficient and flexible for different applications.
- We developed a new mechanism for Expr to help users extend the functionalities of the Core Library.
- We implemented an interpreted version of our library.
- We presented a complete algorithm for absolute approximation of the general hypergeometric function with complexity analysis. Some problems, such as argument reduction, parameter pre-processing and mathematical constants are also addressed.
- We integrated hypergeometric function package with the Core Library.
- We gave an error analysis of the AGM algorithms and implementation in the Core Library.

The results of this thesis form the basis of the next release of the Core Library (version 2.0). All the experiments reported in this thesis are given with source codes and input data as part of the Core Library 2.0 distribution. They can be downloaded from

http://www.cs.nyu.edu/exact

Note that the Core Library is open source software.
Acknowledgments. The work on redesign is joint with Chee Yap, Sylvain Pion and Hervé Brönnimann. The work on hypergeometric functions is joint with Chee Yap. Some initial work on hypergeometric functions is a result of our collaboration with Jose Moreira and Maria Eleftheriou in IBM research.

Chapter 2

Redesign of the Core Library

The Core Library, as one of two general EGC software libraries, has been extensively developed for about ten years. It provides a collection of $\mathrm{C}++$ classes to support numerical computation of algebraic expressions to arbitrary relative or absolute precision. Its simple, natural, numerical API and unique guaranteed accuracy computation feature make it quite useful in many applications, especially for developing robust geometric software. For example, it has been bundled with CGAL since 2003. However, the current design and development faces many issues. In this chapter, we discuss the redesign of the Core Library.

Overview of this chapter. In Section 2.1, we review the current Core Library design. In Section 2.2, we present the new design for the Expr package and discuss the key algorithms in it. The redesign of the BigFloat subsystem is shown in Section 2.3. In Section 2.4, we describe our new mechanism of writing extensions for the Core Library. Some experimental results and benchmarks are reported in Section 2.5. In Section 2.6, we present our newly designed interpreted version. We summarize in Section 2.7.

2.1 Review of the current Core Library design

The Core Library features an object-oriented design and is implemented in C++. A basic goal in the design of the Core Library is to make EGC techniques transparent and easily accessible to non-specialist programmers [52]. Built upon the Real/Expr package from Yap, Dubé and Ouchi [96, 72], it facilitates the rapid development of robust geometric applications.

There are four main subsystems in the current Core Library (version 1.7): expressions(Expr), real numbers(Real), big floating-point numbers(BigFloat) and big integer/rational numbers(BigInt, BigRat). They are built up in a layered structure. The Expr package at the top level provides the basic functionalities of exact geometric computation. In theory, this is the only interface that users need to program with. But experienced users can also access the underlying number classes directly, mainly for efficiency.

In the following, we raise design and efficiency issues in the current design of the Expr subsystem and the BigFloat subsystem.

Expr is the most important class of the library. It represents expressions that are constructed from rational constants by repeated application of the four basic arithmetic operations $\{+,-, *, /\}$ and square root. The leaves of expression trees can introduce arbitrary real algebraic numbers via the root0f() operator. Internally, expressions are represented as directed acyclic graphs (DAGs). Each node in the DAG is a pointer to an instance of ExprRep. The expression DAG and most functionalities of Expr are actually implemented in ExprRep first and then simply wrapped under the interface of Expr.

There are several issues with the current design of the Expr package:

- There are critical facilities in Expr that should be modularized and made
extensible. In particular, the filter facility and the root bound facility have grown considerably over the course of library development and are now hard to maintain, to debug and to extend.
- The main evaluation algorithm of Expr has essentially three co-recursive subroutines. The current design does not separate their roles clearly, and can lead to costly unnecessary computations. For example, the subroutine for computing the sign of a node is always called even though this may not be necessary.
- The Core Library currently support only algebraic expressions. An overhaul of the entire design is needed to add support for non-algebraic expressions.
- Currently, users cannot easily add new operators to Expr. For instance, it is desirable to add determinants, summation and product, and diamond operators.
- It can be very inefficient to build certain huge expressions. For example, a naive implementation of the summation $\sum_{i=1}^{n}(1 / i)$ would build an unbalanced tree of depth n. For large n, this recursive evaluation can easily cause stack overflow. Often such expressions can be automatically generated and evaluated on the fly. We would like to be able to introduce such kinds of nodes into Expr.

We now address the BigFloat class. This class is used by Expr to approximate real numbers. It is an arbitrary precision floating-point number system that is built on top of big integer package (we use GNU's GMP 35] since version 1.3). A BigFloat is represented by the triple $\langle m, e r r, e\rangle$ of integers where m
is the mantissa, err ≥ 0 is the error bound and e is the exponent. The triple represents the interval $\left[(m-e r r) B^{e},(m+e r r) B^{e}\right]$ where $B=2^{14}$. We say the error err is normalized when err $<B$. The following issues arise:

- The interval representation of BigFloat has performance penalty because the current design requires frequent error normalization. For example, our sqrt () function is about 25 times slower than MPFR as shown in Figure [2.6.
- The current BigFloat class only implements $\{+,-, *, /, \sqrt[2]{ }\}$. A lack of implementations for the elementary functions such as exp, \log, \sin, cos etc, limits the applications of the current Core Library.
- There are applications that do not need to maintain error. For example, in Newton iteration, in AGM computation and when bigfloats are used with exact ring operations only. The current BigFloat can be very inefficient for such computations. Although users can manually eliminate the error bounds in current BigFloat numbers, this process is error-prone.

The above issues call for a major redesign of the Core Library.

2.2 Redesign of Expr Package

The goal of our redesign is to increase modularity, introduce extensibility of expression nodes, and significantly improve efficiency. Another design goal is to ensure that these changes do not change the user-level interface. Thus, the original Core Library API, which is simple to understand and use, is intact. For instance, any current CGAL code using the Core Library as its number kernel should be able to run after recompilation.

2.2.1 Incorporation of Transcendental Nodes

We now consider expressions (DAG's) with transcendental operators. We classify a node (and the corresponding subexpression) as transcendental if any of its descendant nodes has a transcendental operator. For example, a transcendental node may be a leaf node such as π, or a unary node such as $\sin (\cdot)$.

In the current Core Library, we classify nodes into rational or irrational (this is used for certain operations). We now refine this classification into
integer, dyadic, rational, algebraic, transcendental.

Since transcendental numbers do not have constructive root bounds, we need to introduce a user-definable global value called escape bound. This bound is used as the root bound at transcendental nodes. Note that there is also another bound called cutoff bound which is used for a different purpose, as explained below.

Note that both the escape and cutoff bounds are absolute bounds on $-\lg |E|$ where E is some error that we wish to bound.

2.2.2 New template-based design of ExprRep

Our new design retains the basic structure of Expr, which is a thin wrapper around ExprRep. So we mainly focus on the redesign of ExprRep class.
§6. ExprRep and ExprRepT As noted in Section 2.1 the filter facility and root bound facility are embedded in the old ExprRep class. Now we factor them out from ExprRep into two functional modules: Filter and Rootbd. The Real class, which is already an independent module, is now viewed as an instance of an abstract number module called Kernel. The role of Kernel is to provide
approximations to the exact value. Typically we use bigfloats. Thus, we want to parametrize an expression class with these three modules. So our ExprRep class is redesigned as a template class with new name ExprRepT.

Figure 2.1: Comparison of ExprRep and ExprRepT

This applies the "delegation pattern" from [89]: delegate certain behaviors of the main class to other objects. The benefit of this new design is that, now we can replace Filter, Rootbd or Kernel without any changes in ExprRepT. The C++ prototype of ExprRepT is shown as follows:

```
template <typename Filter, typename Rootbd, typename Kernel>
class ExprRepT;
```

§7. Memory layout of ExprRep Three type parameters are used to define 3 data fields _filter, _rootbd and kernel inside ExprRepT. However, the nature of their definitions are different: _filter is defined as a variable while _rootbd and _kernel are defined as pointers. We design it in this way because the filter computation will always be done first, but root bound information and
high precision computation (based on _kernel) may not be needed. No memory will be allocated for them when they are not needed. The memory layout of ExprRepT is shown in Figure [2.2. For a binary node, it uses a total of 48 bytes on a 32-bit architecture system (we assume that the Filter class use two IEEE doubles, i.e., 16 bytes).

Field name	Size
Dynamic type information (RTTI)	4
Reference counter	4
Operands : Node * [arity]	$4 \times$ arity
Filter _filter	16
Kernel *_kernel	4
Rootbd *_rootbd	4
Cache *_cache	4
int _numType	4

Figure 2.2: ExprRepT memory layout. Sizes in bytes for a 32-bit architecture.

Note that for efficiency, a data field named _cache is added to cache some important and costly information such as sign, uMSB, lMSB once they become available. Currently, it is designed to cache sign, uMSB, IMSB using 3 integers (12 bytes on 32-bit system). The field _numType is used for node type classification.
§8. API specification for ExprRepT The C++ API specification for ExprRepT is given below.

```
template <typename T>
2 class ExprRepT {
```



```
void refine();
/// compute the sign
virtual bool compute_sgn() const;
/// compute the upper bound of lg|e|
virtual bool compute_uMSB() const;
/// compute the lower bound of lg|e|
virtual bool compute_lMSB() const;
/// compute relative approximation
virtual void compute_r_approx(prec_t) const;
/// compute absolute approximation
virtual void compute_a_approx(prec_t) const;
/// compute root bound
virtual void compute_rootbd() const;
//@}
/// \name helper functions
//@{
/// return true if node is algebraic
bool is_algebraic() const;
/// return true if _cache has been initialized
bool cache_initialized() const;
/// initialize the cache
void initialize_cache();
/// return true if _kernel has been initialized
bool kernel_initialized() const;
/// initialize the kernel
void initialize_kernel();
/// convert relative precision to absolute precision
prec_t rel2abs(prec_t) const;
/// convert absolute precision to relative precision
    prec_t abs2rel(prec_t) const;
    //@}
};
```

Note that in the definition of ExprRepT, we only have one type parameter T. This type is really a combination of the three types Filter, Rootbd, Kernel. This packaging is useful because we can just pass a single type parameter T to
other template classes which are derived from ExprRepT.
There are two versions for each function such as $\operatorname{sgn}(), \operatorname{uMSB}(), 1$ MSB(), etc.; they are protected and public respectively. The ones with C++ keyword const are called const versions which can only be put on the right hand side of a C ++ expression, while the others are non-const versions which can be put on the either side. Lazy evaluation is used in the Core Library, and this requires the modification of some internal data fields in those const version functions. In order to solve this conflict, data fields _rootbd, _kernel and _cache are marked as mutable to avoid checking done by compilers.
§9. ExprRepT class hierarchy ExprRepT only defines the abstract structures and operations; the actual implementations are delegated to the derived classes. The new design still keep the same class hierarchy of ExprRepT and its derived classes as in the Core Library 1.x except that a "T" is appended at each class names. A full hierarchy diagram is shown in Figure 2.3.

Figure 2.3: ExprRepT Class Hierarchy
§10. Design of the Filter class The Filter class is used to provide some information such as sign, uMSB, lMSB using "filter technique" before ExprRepT goes high precision computation. In order to make it work for ExprRepT, the Filter class is required to implement the following interface:

```
class Filter {
    typedef Filter this_cls;
    // put internal maintained data fields here!
    //
public:
    // return true if filter succeed
    bool is_ok() const;
    // return correct sign (only valid if filter succeed)
    int sgn() const;
    // return upper bound of MSB (only valid if filter succeed)
    long uMSB() const;
    // return lower bound of MSB (only valid if filter succeed)
    long lMSB() const;
    // return true if filter value has given relative precision
    bool has_rel_prec(prec_t) const;
    // return relative approximated value from filter value
    double r_approx(prec_t) const;
    // return absolute approximated value from filter value
    double a_approx(prec_t) const;
    // assignment function
    template <typename T> void set(const T&, bool=true);
    // special function to make filter failed
    void invalidate();
    // arithmetic functions
    void neg(const this_cls&);
    void add(const this_cls&, const this_cls&);
    void sub(const this_cls&, const this_cls&);
    void mul(const this_cls&, const this_cls&);
    void div(const this_cls&, const this_cls&);
    void sqrt(const this_cls&);
    void cbrt(const this_cls&);
```

 void root(const this_cls&, unsigned long);
 };

```

Some design considerations and issues for this interface include:
- The function is_ok() is the most important call in the Filter class. It is called by ExprRepT to test whether filter succeed or failed by checking its return values true or false. Only when is_ok() returns true, the other 6 functions: sgn(), uMSB(), 1MSB(), has_rel_prec(), r_approx() and a_approx() will be called to get information from the Filter. Thus, a dummy filter can be implement as follows: let is_ok() function return false and other 6 functions return some dummy values (this is necessary in order to avoid compilation errors).
- The function has_rel_prec () is used to test whether the filter can provide enough precision. If not, ExprRepT will do higher precision computation.
- The assignment function set() is designed for leaf ExprRepT node. It will be called whenever a leaf ExprRepT node is constructed. Since in the Core Library the leaf node can be constructed from the following types:
long, unsigned long, double, BigInt, BigRat, BigFloat,
it has to accept all types above. Different versions of set() have to be defined if the user's Filter class handles those types differently. The second boolean parameter is used to indicate whether the value of the first argument is exact or not. Its default value is true. A dummy filter can just define one set() which takes a template parameter and does nothing inside it.
- The arithmetic functions neg(), add(), sub(), mul(), div(), sqrt(), cbrt() and root() are designed to be called when a corresponding ExprRepT node is constructed. For example, when a MulRepT node is created, the function mul() will be called. At the same time, the filter instances of the children nodes are passed to those functions so that the current node can update its filter information from them. Again, a dummy filter can have a empty implementation. (The Filter class in the Core Library 1.7 implements those functions as \(\mathrm{C}++\) operators, which is more intuitive, but the new designed interface can avoid temporary memory storages to be more efficient.)
- A global function set_filter_flag() is defined to allow users to enable or disable filter facility at run time. So in the implementation of Filter, developers may check this flag by calling the global function get_filter_flag() (if it returns false, then it means users have disabled the filter facility in their applications). However, for a non-dummy filter, the underlying filter computation will still be performed even if the filter facility is disabled. To completely avoid the filter computation, a dummy filter should be used.
- The invalidate() function is used to invalidate the filter value of the current node (for example, by setting it to be IEEE value infinite). Note that this applies only to the current node. To invalidate the filter values for all nodes, the users should call set_filter_flag(false).

With the newly designed filter interface, given the recursive rules of a filter algorithm, writing a Filter class just requires translating those rules into above corresponding functions. An effective floating-point filter, BfsFilter, is
provided in the Core Library. It is based on [17 with some extended rules for cubic root and \(k\)-th root extraction. The detail rules of the BfsFilter and how to translate the rules into code are given in Appendix A
§11. Design of the Rootbd Class The Rootbd class is used to provide root bound information when ExprRepT cannot determine the sign of the current node. While it was embedded inside ExprRep in the Core Library 1.x, now it becomes a separate class. The following interface of the Rootbd class is required by ExprRepT:
```

class Rootbd {
typedef Rootbd this_cls;
// put internal maintained data fields here!
//
public:
// return true if the root bound computation is constructive
static bool is_constructive();
// return root bound
unsigned long get_bound() const;
// return true if it is degree based
static bool is_degree_based() const;
// set the degree bound of the current node
void set_degree_bound(unsigned long);
// get the degree bound of the current node
unsigned long get_degree_bound();
// assignment function
template <typename T> void set(const T\&);
// arithmetic functions
void neg(const this_cls \&);
void add(const this_cls\&, const this_cls\&);
void sub(const this_cls\&, const this_cls\&);
void mul(const this_cls\&, const this_cls\&);
void div(const this_cls\&, const this_cls\&);
void sqrt(const this_cls\&);

```
```

void cbrt(const this_cls\&);
void root(const this_cls\&, unsigned long);

```
\};

We use the term "constructive" for root bound computation. We say a root bound is "constructive" to mean the root bound information is computed by some recursive rules. Functions is_constructive() is used by ExprRepT to test whether the root bound computation is constructive or not. If it returns false, ExprRepT will skip the recursive calls of compute_rootbd() for each of its children. Since there are no known constructive root bounds for nonalgebraic expressions, ExprRepT will also skip the root bound computation if the current node is non-algebraic.

Moreover, if is_constructive() returns true and the current node is algebraic, then get_bound() will be called by ExprRepT to obtain the root bound. Otherwise the global function get_escape_bound() will be called and its returned value is used as a substitute root bound. Users can use set_escape_bound() to set this bound at the run time.

As we mentioned before, ExprRepT contains a pointer instance _rootbd of Rootbd. We will not allocate memory for _rootbd unless we need root bound information. Hence the function is_constructive() is designed to be a static function which can be called without any Rootbd object being constructed, i.e., no memory is allocated.

Most constructive root bounds are based on the degree of the expression node. The function is_degree_based () is used to test this property. A Rootbd class needs to maintain an upper bound on the degree which is called degree bound if is_degree_based() returns true. Degree bounds can be computed
using some recursive rules [52, Table 2.1]. Yap proposed an algorithm which detects the shared expression nodes in DAG to get a better bound. However, such an algorithm can only be invoked by ExprRepT since Rootbd class can not access DAG. Hence, two functions set_degree_bound() and get_degree_bound() are required to allow ExprRepT to update degree bound inside Rootbd.

As the Filter class above, the assignment function set() and arithmetic functions neg(), add(), etc. are designed for corresponding types of nodes. However, those functions in the Rootbd class are only called when root bound information is needed while in the Filter class they are called always even if the filter is disabled by users.

To design a Rootbd class for a constructive root bound algorithm, we just need to translate its constructive rules and root bound computation formula into corresponding function calls. We implemented 3 different Rootbd classes for 3 constructive root bounds: Degree-Measure bound, BFMSS bound [15, 16] and Li-Yap bound [54] in the Core Library. See Appendix B for an example of how we implement BFMSS bound.

Two other Rootbd classes, DummyRootbd and MaxRootbd are provided, too. The DummyRootbd class just returns false in its is_constructive() function. The MaxRootbd takes two other Rootbd classes as parameters and does the root bound computation at the same time, and then returns the maximal bound.
§12. Design of the Kernel Class The Kernel is used by ExprRepT to compute an approximation of the current node. Typically we use bigfloat number for this class. The minimal interface is given below:

\footnotetext{
\({ }^{1}\) This algorithm did not appear in any publication, but it has been implemented in the Core Library since version 1.4
}
```

class Kernel {
typedef Kernel this_cls;
// put internal maintained data fields here!
//
public:
// return true if the sign is known
bool has_sgn() const;
// return true if within required relative precision
bool has_rel_prec(prec_t) const;
// return sign (only valid if has_sgn() return true)
sign_t sgn() const;
// return upper bound of MSB
msb_t uMSB() const;
// return lower bound of MSB
msb_t lMSB() const;
// assignment functions
template <typename T> void set(const T\&);
template <typename T> void set(const T\&, prec_t);
// arithmetic functions
void neg(const this_cls\&, prec_t);
void add(const this_cls\&, const this_cls\&, prec_t);
void sub(const this_cls\&, const this_cls\&, prec_t);
void mul(const this_cls\&, const this_cls\&, prec_t);
void div(const this_cls\&, const this_cls\&, prec_t);
void sqrt(const this_cls\&, prec_t);
void cbrt(const this_cls\&, prec_t);
void root(const this_cls\&, unsigned long, prec_t);
};
std :: istream\& operator }>>(\mathrm{ std :: istream\&, this_cls \&);
std ::ostream\& operator}<<<(std ::ostream\&, const this_cls\&)

```

The function has_sgn() checks whether the sign of the current approximation is known or not (whether the current approximation is separated from zero). If it returns true, the return value of \(\operatorname{sgn}()\) will be used when needed.

The function has_rel_prec() is used to test whether current approximation has enough (relative) precision.

The other functions are similar to those in the Filter class except that now the assignment function set() and arithmetic functions require an extra prec_t type parameter. This parameter is used to specify the precision that needed in the corresponding arithmetic operations. Note that it is a relative precision.

Two global operators >> and \(\ll\) have to be overloaded by the Kernel to provide reading/writing facilities for ExprRepT. By default, only 6 digits are printed out.

We will present our new BigFloat2 class later as an example implementation of the Kernel class. Users are free to use their own number type class as long as they implement the above interface. For example, we can use our old BigFloat or REAL in iRRAM 655.
§13. Number Type inside Expr In order to bring transcendental functions or constants into Expr, we need to identify the number type of each expression node. The field _numType is used for this purpose. For each expression node, its numType can be one of the following enum values:
```

enum NODENUMTYPE {
NODE_NT_INTEGER = 0, // integer node
NODE_NT_DYADIC = 1, // floating-point node
NODE_NT_RATIONAL = 2, // rational node
NODE_NT_ALGEBRAIC = 3, // algebraic node
NODE_NT_TRANSCENDENTAL = 4 // transcendental node
}

```

For a leaf node, the numType is determined by its internal data type. For other operations, we can deduct them from the Table 2.1 shown below:
\begin{tabular}{|c|c|}
\hline Operator op & A op B \\
\hline\(+/-/ \times\) & \(\max \left\{A . \_\right.\)numType, \(B . \_\)numType \(\}\) \\
\hline\(\div\) & \(\max \left\{\right.\) NODE_NT_RATIONAL, \(A . \_n u m T y p e, B . \_\)numType \(\}\) \\
\hline\(\sqrt[k]{\cdot}\) & \(\max \left\{\right.\) NODE_NT_ALGEBRAIC, \(A . \_\)numType \(\}\) \\
\hline Transcendental & \(\max \left\{\right.\) NODE_NT_TRANSCENDENTAL, \(A . \_\)numType \(\}\) \\
\hline
\end{tabular}

Table 2.1: Rules for computing number type
§14. Expr with plug-gable Filter, Root Bound and Kernel A new template class ExprT is defined as:
```

template <typename Filter, typename Rootbd, typename Kernel>
class ExprT;

```

Expr is now a typedef:
```

typedef ExprT<BfsFilter, BfmssRootbd, BigFloat2> Expr;

```

Thus, the default Expr class uses BFS filter, BFMSS root bound and our BigFloat2 kernel. However, now the users are free to plug in their own filter, root bound or kernel classes. For example, we can use a better filter and root bound class for division-free expressions.

\subsection*{2.2.3 Improved Approximate Evaluation Algorithms}
computeExactSign() and computeApprox() are two key evaluation subroutines in the Core Library 1.x. The subroutine computeExactSign() is used for computing the sign, upper and lower bound on the most significant bits of the current node (actually it even computes the root bound information). The subroutine computeApprox () is used to propagate the composite precision and
compute the approximation. These two subroutines recursively call each other, involving unnecessary computations. Now we divided them into five subroutines to be more efficient. A multi-level computation paradigm is designed for optimization.
§15. Algorithms for \(\operatorname{sgn}(), \mathrm{uMSB}()\) and 1 MSB() The sign of an expression node is important and used in many places in the Core Library. For example, division operator needs to check the sign of the child nodes to avoid "divided by zero" error. The upper and lower bound on the most significant bits of an expression node \(E\), denoted by \(E^{+}\)and \(E^{-}\)respectively, are also important. They are used to convert the precision from an absolute bound to a relative one or vice-versa. These three parameters are maintained in ExprRepT. The subroutine computeExactSign() computes them simultaneously using the rules shown in Table 2.2 Table 2.3 and Table 2.4
\begin{tabular}{|c|c|}
\hline\(E=\) & \(\operatorname{E\cdot \operatorname {sgn}()}\) \\
\hline Constant \(x\) & \\
\hline\(E_{1} \pm E_{2}\) & \(\left\{\begin{aligned} \pm E_{2} \cdot \operatorname{sgn}() & \text { if } E_{1} \cdot \operatorname{sgn}()=0 \\
E_{1} \cdot \operatorname{sgn}() & \text { if } E_{2} \cdot \operatorname{sgn}()=0 \\
E_{1} \cdot \operatorname{sgn}() & \text { if } E_{1} \cdot \operatorname{sgn}()= \pm E_{2} \cdot \operatorname{sgn}() \\
E_{1} \cdot \operatorname{sgn}() & \text { if } E_{1} \cdot \operatorname{sgn}() \neq \pm E_{2} \cdot \operatorname{sgn}() \text { and } E_{1}^{-}>E_{2}^{+} \\
\pm E_{2} \cdot \operatorname{sgn}() & \text { if } E_{1} \cdot \operatorname{sgn}() \neq \pm E_{2} \cdot \operatorname{sgn}() \text { and } E_{1}^{+}<E_{2}^{-} \\
\text {unknown } & \text { otherwise }\end{aligned}\right.\) \\
\hline\(E_{1} \times E_{2}\) & \\
\hline\(E_{1} \div E_{2}\) & \(E_{1} \cdot \operatorname{sgn}() * E_{2} \cdot \operatorname{sgn}()\) \\
\hline\(\sqrt[k]{E_{1}}\) & \(E_{1} \cdot \operatorname{sgn}() * E_{2} \cdot \operatorname{sgn}()\) \\
\hline
\end{tabular}

Table 2.2: Rules for computing sign recursively

We can see these rules are recursive. In order to compute this information for the current node, computeExactSign() has to compute its children's
\begin{tabular}{|c|c|}
\hline\(E=\) & \(E^{+}\) \\
\hline Constant \(x\) & \(\left\lceil\log _{2} x\right\rceil\) \\
\hline & \begin{tabular}{ll}
\(E_{2}^{+}\) & if \(E_{1} \cdot \operatorname{sgn}()=0\) \\
\(E_{1}^{+} \pm E_{2}\) & if \(E_{2} \cdot \operatorname{sgn}()=0\) \\
& \(\left\{\begin{array}{rl|} & \begin{array}{rl} \\
\max \left\{E_{1}^{+}, E_{2}^{+}\right\}+1 & \text { if } E_{1} \cdot \operatorname{sgn}()= \pm E_{2} \cdot \operatorname{sgn}() \\
\max \left\{E_{1}^{+}, E_{2}^{+}\right\} & \text {if } E_{1} \cdot \operatorname{sgn}() \neq \pm E_{2} \cdot \operatorname{sgn}() \\
\text { unknown } & \text { otherwise }\end{array} \\
\hline E_{1} \times E_{2} & E_{1}^{+}+E_{2}^{+} \\
\hline E_{1} \div E_{2} & E_{1}^{+}-E_{2}^{-} \\
\hline \sqrt[k]{E_{1}} & {\left[E_{1}^{+} / k\right\rceil} \\
\hline\end{array}\right.\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Table 2.3: Rules for computing upper bound of MSB recursively
computeExactSign() first, which consequently computes this information for all nodes below it in the DAG even we do not need them all.

In contrast to this, in the new design three separated subroutines: \(\operatorname{sgn}()\), uMSB() and 1 MSB() are introduced and they are only called when necessary. The algorithms for them are very similar. Basically, each algorithm consists of the following steps (using sgn() as an example):

\section*{Sign Evaluation Algorithm}
1. Ask the filter if it knows the sign;
2. Else if the cache exists, ask if it cached the sign;
3. Else if the approximation (kernel) exists, ask if it can give the sign;
4. Else if the virtual function compute_sgn() return true, return \(\operatorname{sgn}()\) (it returns the sign in the cache);
5. Else call refine() (to be presented next) to get the sign.

For efficiency, we use five levels of computation here: filter, cache, kernel, recursive rules, refine(). Note that we do not put the cache at the first level. We do not even cache the sign, uMSB and IMSB information when the filter
\begin{tabular}{|c|c|}
\hline \(E=\) & \(E^{-}\) \\
\hline Constant \(x\) & \(\left\lfloor\log _{2} x\right\rfloor\) \\
\hline \(E_{1} \pm E_{2}\) & \[
\begin{aligned}
E_{2}^{-} & \text {if } E_{1} \cdot \operatorname{sgn}()=0 \\
E_{1}^{-} & \text {if } E_{2} \cdot \operatorname{sgn}()=0 \\
\max \left\{E_{1}^{-}, E_{2}^{-}\right\}+1 & \text { if } E_{1} \cdot \operatorname{sgn}()= \pm E_{2} \cdot \operatorname{sgn}() \\
E_{1}^{-}-1 & \text { if } E_{1} \cdot \operatorname{sgn}() \neq \pm E_{2} \cdot \operatorname{sgn}() \text { and } E_{1}^{-}>E_{2}^{+} \\
E_{2}^{-}-1 & \text { if } E_{1} \cdot \operatorname{sgn}() \neq \pm E_{2} \cdot \operatorname{sgn}() \text { and } E_{2}^{-}>E_{1}^{+} \\
\text {unknown } & \text { otherwise }
\end{aligned}
\] \\
\hline \(E_{1} \times E_{2}\) & \(E_{1}^{-}+E_{2}^{-}\) \\
\hline \(E_{1} \div E_{2}\) & \(E_{1}^{-}-E_{2}^{+}\) \\
\hline \(\sqrt[k]{E_{1}}\) & \(\left.E_{1}^{-} / k\right\rfloor\) \\
\hline
\end{tabular}

Table 2.4: Rules for computing lower bound of MSB recursively
succeed because a Cache structure is large and we try to avoid costly memory allocation. The pseudo-codes in \(\mathrm{C}++\) are given below:
```

sign_t sgn() const {
// Step 1:
if (filter().is_ok())
return filter().sgn());
// Step 2:
if (cache_initialized() \&\& cache().has_sgn())
return cache().sgn();
// Step 3:
if (kernel_initialized() \&\& kernel().has_sgn())
return kernel().sgn();
// Step 4:
if (compute_sgn())
return sgn();
// Step 5:
refine();
return kernel().sgn();

```

In the algorithm above, we adapt another design pattern which is called "template method pattern" [32]: define the skeleton of an algorithm in terms of abstract operations which subclasses will override to provide concrete behavior.

In the derived classes of ExprRepT, it is sufficient to just override the virtual function compute_sgn() when appropriate. For example, ConstIntegerRepT may implement compute_sgn() as follows:
```

virtual bool compute_sgn() {
sgn()= value.sgn();
return true;
}

```
and MulRepT may override its compute_sgn() function as:
```

virtual bool compute_sgn() {
sgn() = first.sgn() * second.sgn();
return true;
}

```
§16. Algorithms for r_approx() and a_approx() For approximation algorithms, we made two improvements:
1. The new approximation algorithm does not compute the sign before approximating when it is unnecessary; the old algorithm always does.
2. While the the Core Library 1.x uses one subroutine computeApprox () to do approximation which requires a composite precision, the new design use two subroutines, r_approx() for relative approximation and a_approx() for absolute approximation. This can avoid unnecessary conversion between them.

The algorithm for computing approximation in relative (or absolute) precision is given below.

\section*{Approximation Algorithm}
1. Use the filter value if it works and has the required precision.
2. Else if the approximation has not been initialized, then initialize it.
3. Else if the approximation does not have enough precision, then call virtual function compute_r_approx() or compute_a_approx() to obtain a better approximation with required precision.
4. Return the approximation.

It uses two levels of computation: filter and kernel. The detailed algorithm in C++ for r_approx() is as follows:
```

Kernel r_approx(prec_t prec) const {
// Step 1:
if (filter().is_ok() \&\& filter().has_rel_prec(prec))
return filter().r_approx(prec);
// Step 2:
if (!kernel_initialized())
initialize_kernel();
// Step 3:
if (!kernel().has_rel_prec(prec))
compute_r_approx(prec);
// Step 4:
return kernel();
}

```

We also applied "template method pattern". The derived classes of ExprRepT will override compute_r_approx() or compute_a_approx() function to implement actual approximating computation. Moreover, only one of them is required to be implemented if \(\operatorname{uMSB}()\) or 1MSB() is available because two default implementations are already provided in ExprRepT:
```

virtual bool compute_r_approx(prec_t prec)
{ return compute_a_approx(rel2abs(prec)); }

```

3 virtual bool compute_a_approx (prec_t prec)
4 \{ return compute_r_approx (abs2rel(prec)); \}

With the default implementations, if one of them is missing, ExprRepT will automatically call another one with converted precision. This simplifies the work of designing derived classes of ExprRepT. For instance, AddRepT may want to override compute_a_approx() while MulRepT may prefer to override compute_r_approx().

In order to keep the current interface, we still provide the function approx() in Expr level that will be redirected to call r_approx() or a_approx().
§17. Algorithm for refine() The override-able compute_sgn(), compute_uMSB() and compute_1MSB() return false when they cannot determine the sign, upper and lower bound on the most significant bit of the current node. Then a refinement of the current approximation is required. The abstract algorithm for such refinement is as follows:

\section*{Refinement Algorithm}
1. If an approximation exists, use its precision as the start precision, otherwise use 52 bits instead since this is the relative precision that the floating-point filter can provide.
2. Check if the Rootbd is non-constructive or the current node is non-algebraic. If so, use the global escape bound. Otherwise, compute the degree bound if the Rootbd is degree based. Then compute the root bound.
3. Compare the bound that we get in step 2 with the global cutoff bound. Take the minimum of them.
4. Run a loop which doubles the precision each time until it hits the precision that we obtained in step 3. In the loop, compute a better approximation (absolute) on the current node. Once the refined approximation can give the correct sign, return immediately.
5. Upon the loop termination, if either escape bound or cutoff bound was used, print out a warning message in a diagnostic file, otherwise set the current node to be zero.
§18. Cutoff Bound Cutoff bound is used in above algorithm. It is a global variable and set to be CORE_INFTY by default. It is different from the escape bound we mentioned before. The escape bound is used when we do not have the root bound for the current node, say a transcendental node, while the cutoff bound is used to restrict the root bound to a certain precision. For instance, if users want to speed up their programs for testing, they can set a small cutoff bound using set_cut_off_bound(). However, users should realize that sign
computations are not guaranteed any more. The pseudo code for refine() is given:
```

void refine() {
// Step 1:
prec_t prec = 52, bound;
int bound_type;
if (!kernel_initialized())
initialize-kernel();
else
prec = kernel().rel_prec();
// Step 2:
if (!T::Rootbd::is_constructive() || !is_algebraic()) {
bound = get_escape_bound ();
bound_type = 0;
} else {
if (T::is_degree_based()) compute_degree_bound();
bound = rootbd().get_bound();
bound_type = 2;
}
// Step 3:
if (bound > get_cut_off_bound()) {
bound = get_cut_off_bound(); bound_type = 1;
}
// Step 4:
do {
prec <<= 1;
compute_a_approx(prec);
if (kernel().has_sgn()) {
if (cache_initialized()) {
sgn() = kernel().sgn();
uMSB() = kernel().uMSB(); lMSB() = kernel().lMSB();
}
return;
}
} while (prec < bound);
// Step 5:
if (bound_type < 2) { // hit escape bound or cut-off bound
core_warning("Hit_Escape_bound_or_CCut-off^Bound");

```
```

}
kernel().set (0.0)
if (cache_initialized()) {
sgn() = 0; uMSB()=0; lMSB() = MSB_MIN;
}
}

```

Note that rootbd() will call compute_rootbd(), which consequently computes the root bound information recursively .
§19. Algorithm for compute_degree_bound() Most known constructive root bounds are based on the degree of an algebraic expression. In many applications, computing minimal polynomials explicitly is very expensive, so obtaining the exact degree is hard. In practice, we are more interested in computing an upper bound on the degree, say "degree bound". Such a bound can be computed recursively using the rules in Table 2.5.
\begin{tabular}{|l|l|}
\hline Expr \(E\) & \(d(E)\) \\
\hline Rational \(\frac{a}{b}\) & 1 \\
\hline RootOf(P, i) & \(\operatorname{deg}(P)\) \\
\hline\(E=F \pm G\) & \(d(F) d(G)\) \\
\hline\(E=F \times G\) & \(d(F) d(G)\) \\
\hline\(E=F \div G\) & \(d(F) d(G)\) \\
\hline\(E=\sqrt[k]{F}\) & \(k \cdot d(F)\) \\
\hline
\end{tabular}

Table 2.5: Rules for computing degree bound.

A better bound can be obtained by detecting the shared nodes: if a node \(E\) is shared, then \(d(E)\) will return 1 for the subsequent calls. The Core Library 1.x implemented this algorithm. However, to detect whether a node is shared, an extra flag visited is stored in each ExprRep and a clean operation is needed for all nodes after \(d(E)\) is computed.

For efficiency, we now use a map data structure (std::map in STL) to reimplement this algorithm 2: we first create a map \(M\), then for each node \(E\), if its address does not appear in \(M\), use its degree bound value \(d(E)\) and save its address in \(M\), otherwise use 1 instead. At the end we just discard the map \(M\).

\subsection*{2.2.4 Improved Propagation of Precision}

The centerpiece of an EGC library is the algorithm for approximate expression evaluation. The Core Library uses a precision-driven algorithm with composite precision. The error analysis of the various bigfloat operations of this algorithm were studied in detail by Ouchi [72]. Using this analysis to propagate composite precision, various small constants appear in the code which caused the current code to be hard to understand and maintain. Here we introduce a simpler and more intuitive solution, where we propagate either absolute or relative precision, but not both. It basically follows the idea from 94 but with some simplification.
§20. Precision Conversion We can transform absolute precision to relative precision or vice-versa if we know the location of the first significant bit in \(E\). It is shown below:

Lemma 1. Let \(\tilde{E}\) be an approximation of \(E\), while \(E^{+}\)and \(E^{-}\)are upper and lower bounds on \(\lg |E|\), i.e., \(2^{E-} \leq|E| \leq 2^{E+}\).
(i) If we want to guarantee a absolute bits in \(E\), it is enough to guarantee \(a+E^{+}\) relative bits in \(E\).
(i) If we want to guarantee r relative bits in \(E\), it is enough to guarantee \(r-E^{-}\)

\footnotetext{
\({ }^{2}\) Sylvain Pion mentioned this idea when I visited INRIA in February 2006.
}
absolute bits in \(E\).

Proof. It is clear from
\[
|\tilde{E}-E| \leq|E| 2^{-\left(a+E^{+}\right)} \leq 2^{-a},
\]
and
\[
|\tilde{E}-E| \leq 2^{-\left(r-E^{-}\right)} \leq|E| 2^{-r}
\]

\section*{Q.E.D.}

We normally restrict the relative precision \(r\) to positive values. To see why, note that when \(r \leq 0\), then \(\tilde{E}=0\) satisfies \(|\tilde{E}-E| \leq|E| 2^{-r}\) always. Similarly, we may also assume absolute precision \(a>-E^{+}\). This latter assumption allows us to simplify some of the bounds in [94].
§21. Absolute Approximation for Addition/Subtraction For addition/subtraction, it is easy to guarantee absolute precision:

Lemma 2. (cf. 94, Lemma 9, (i)]) Let \(z=x+y\). To guarantee \(p\) absolute bits in \(z\), it suffices to approximate \(x\) and \(y\) to \(p+2\) absolute bits and perform the addition in \(p+1\) absolute bits of precision (or \(p+z^{+}+1\) bits relative precision).

Proof.
\[
\begin{aligned}
|\tilde{x} \oplus \tilde{y}-(x+y)| & \leq|\tilde{x} \oplus \tilde{y}-(\tilde{x}+\tilde{y})|+|\tilde{x}-x|+|\tilde{y}-y| \\
& \leq 2^{-(p+1)}+2^{-(p+2)}+2^{-(p+2)} \\
& =2^{-p} .
\end{aligned}
\]
Q.E.D.
§22. Absolute Approximation for Summation We can extend this to summation:

Corollary 3. To guarantee \(p\) absolute bits in \(z=\sum_{i=1}^{n} x_{i}\), it suffices to approximate \(x_{i}\) to \((p+\lceil\lg n\rceil+1)\) absolute bits and perform the addition in \((p+\lceil\lg n\rceil+1)\) absolute bits of precision.

Proof. A naive implementation of \(\sum_{i=1}^{n} x_{i}\) can be done by first setting \(z=0\), then approximating \(x_{i}\) for \(i=1, \ldots, n\), and finally do \(n\) additions of \(z=z+x_{i}\) for \(i=1, \ldots, n\). Hence the total absolute error is \(2 n \cdot 2^{-(p+\lceil\lg n\rceil+1)} \leq 2^{-p}\). Q.E.D.
§23. Relative Approximation for Multiplication For multiplication, guaranteed relative precision is more natural:

Lemma 4. (cf. 94, Lemma 8, (i)]) To approximate \(z=x \cdot y\) to within \(p\) relative bits of precision, it is enough to approximate \(x\) and \(y\) to within \(p+2\) relative bits of precision and perform the multiplication in \(p+2\) relative bits of precision.

Proof. Let \(\delta=2^{-(p+2)}\). From \(|\tilde{x}-x| \leq|x| \delta\), we have \(|\tilde{x}| \leq|x|(1+\delta)\). Similarly we have \(|\tilde{y}| \leq|y|(1+\delta)\) and \(|\tilde{x} \cdot \tilde{y}| \leq|x \cdot y|(1+\delta)^{2}\). Hence
\[
\begin{aligned}
|\tilde{x} \odot \tilde{y}-x \cdot y| & \leq|\tilde{x} \odot \tilde{y}-\tilde{x} \cdot \tilde{y}|+|\tilde{x}| \cdot|\tilde{y}-y|+|y| \cdot|\tilde{x}-x| \\
& \leq|\tilde{x} \cdot \tilde{y}| \cdot \delta+|\tilde{x} \cdot y| \cdot \delta+|x \cdot y| \cdot \delta \\
& \leq|x \cdot y|(1+\delta)^{2} \delta+|x \cdot y|(1+\delta) \delta+|x \cdot y| \cdot \delta \\
& =|x \cdot y|\left(3 \delta+3 \delta^{2}+\delta^{3}\right) \\
& \leq|x \cdot y|(4 \delta) \\
& =|x \cdot y| 2^{-p} .
\end{aligned}
\]

Since \(p>0, \delta=2^{-(p+2)}<1 / 4\). Q.E.D.
§24. Precision Propagation without Exact Ring Operation It should be noticed, from the above error analysis, exact ring operations are not necessary although this is assumed in [94. To see the the difference, we did the following experiment:

Experiment 1 Precision Propagation for Multiplication
We use two methods to compute \(z=\sqrt{2} \cdot \sqrt{3}\) to relative precision \(p\).

Method 1: approximate \(\sqrt{2}\) and \(\sqrt{3}\) to \((p+2)\) relative bits, then use exact multiplication to multiply the approximate values.

Method 2: do the same as the Method 1 except performing the multiplication in \((p+2)\) bits relative precision.

The timing (in microseconds) is shown in the Figure 2.4 (we use loops to repeat the experiment since the time for a single run is short). Method 2 seems to be more efficient.
\begin{tabular}{|c|c|c|c|c|}
\hline Precision & Loops & Method 1 & Method 2 & Speedup \\
\hline 10 & 1000000 & 345 & 191 & \(45 \%\) \\
\hline 100 & 100000 & 60 & 46 & \(23 \%\) \\
\hline 1000 & 10000 & 72 & 71 & \(1 \%\) \\
\hline 10000 & 1000 & 267 & 219 & \(18 \%\) \\
\hline 100000 & 100 & 859 & 760 & \(12 \%\) \\
\hline
\end{tabular}

Figure 2.4: Timing for computing \(\sqrt{2} \cdot \sqrt{3} \mathrm{w} /\) and \(\mathrm{w} / \mathrm{o}\) exact multiplication
§25. Relative Approximation for Addition/Subtraction Using Lemma we can do relative approximation for addition/subtraction if we know the lower bound on \(\lg |z|\) : to guarantee \(p\) relative bits in \(z=x+y\), we can first convert to guarantee \(p-z^{-}\)absolute bits in \(z\), then applying Lemma 2 we need to guarantee \(p-z^{-}+2\) absolute bits in \(x\) and \(y\). After we convert them again, we need to guarantee \(p-z^{-}+x^{+}+2\) relative bits in \(x\) and \(p-z^{-}+y^{+}+2\) bits in \(y\). With the similar precision transformation, the relative precision we need for performing addition is \(p+2\) bits. Note a small error in [94, Lemma 9, (ii)] where the corresponding terms " \(+x^{+"}\) and " \(+y^{+"}\) are missing.

Lemma 5. (cf. [94, Lemma 9, (ii)]) Let \(z=x+y\). To guarantee \(p\) relative bits in \(z\), it suffices to approximate \(x\) to \(p-z^{-}+x^{+}+2\) relative bit and \(y\) to \(p-z^{-}+y^{+}+2\) relative bits, and perform the addition in \(p+2\) relative bits.
§26. Absolute Approximation for Multiplication Similarly we can do absolute approximation for multiplication using transformation of precision. However, such transforming might over-estimate the precision we actually need. For example, to guarantee \(p\) absolute bits in \(z=x \cdot y\), we can transform the operation to guarantee \(\left(p+z^{+}\right)\)relative bits in \(z\) first, and then we can apply Lemman i.e., we need approximate \(x\) and \(y\) to \(\left(p+z^{+}+2\right)\) relative bits. After we transform them to absolute precision, we find that we need to guarantee \(\left(p+z^{+}-x^{-}+2\right)\) absolute bits in \(x\) and \(\left(p+z^{+}-y^{-}+2\right)\) absolute bits in \(y\). Similarly, the relative precision for performing multiplication is \(\left(p+z^{+}+2\right)\). However, the lemma below gives a better estimation:

Lemma 6. (cf. 94, Lemma 8, (ii)]) To approximate \(z=x \cdot y\) to within \(p\) absolute bits of precision, it is enough to approximate \(x\) to within \(\left(p+y^{+}+2\right)\)
absolute bits of precision, \(y\) to within \(\left(p+x^{+}+2\right)\) absolute bits of precision and perform the multiplication with \(p+2\) bits absolute of precision (or \(p+z^{+}+2\) relative bits).

Proof. Let \(\delta=2^{-(p+2)}, \delta_{x}=2^{-\left(p+y^{+}+2\right)}\) and \(\delta_{y}=2^{-\left(p+x^{+}+2\right)}\). From \(|\tilde{x}-x| \leq\) \(\delta_{x}\), we have \(|\tilde{x}| \leq|x|+\delta_{x}\). Hence
\[
\begin{aligned}
|\tilde{x} \odot \tilde{y}-x \cdot y| & \leq|\tilde{x} \odot \tilde{y}-\tilde{x} \cdot \tilde{y}|+|\tilde{x}| \cdot|\tilde{y}-y|+|y| \cdot|\tilde{x}-x| \\
& \leq \delta+|\tilde{x}| \cdot \delta_{y}+|y| \cdot \delta_{x} \\
& \leq \delta+\left(|x|+\delta_{x}\right) \cdot \delta_{y}+|y| \cdot \delta_{x} \\
& =\delta+|x| \cdot \delta_{y}+|y| \cdot \delta_{x}+\delta_{x} \cdot \delta_{y} \\
& \leq \delta+\delta+\delta+\delta_{x} \cdot \delta_{y} \\
& \leq 4 \delta \\
& =2^{-p} .
\end{aligned}
\]
where \(\delta_{x} \cdot \delta_{y}=2^{-\left(2 p+4+x^{+}+y^{+}\right)} \leq 2^{-\left(2 p+4+z^{+}\right)} \leq 2^{-(p+4)} \leq \delta\) since we assume \(p>-z^{+}\).
Q.E.D.

It is not hard to see that \(p+y^{+}+2 \leq p+z^{+}-x^{-}+2\). Moreover, this propagation avoids the computation of \(x^{-}\)and \(y^{-}\)which could be costly for some nodes.
§27. Relative Approximation for Division For division, guaranteed relative precision is easier:

Lemma 7. (cf. 94, Lemma 10]) To approximate \(z=x / y\) to within \(p\) relative bits precision, it is enough to approximate \(x\) and \(y\) to within \(p+2\) bits relative precision and perform the division in \(p+2\) relative bits precision.

Proof. Let \(\delta=2^{-(p+2)}\). From \(|\tilde{x}-x| \leq|x| \delta\), we have \(|x|(1-\delta) \leq|\tilde{x}| \leq\) \(|x|(1+\delta)\). Similarly we have \(|y|(1-\delta) \leq|\tilde{y}| \leq|y|(1+\delta)\) and \(|\tilde{x} / \tilde{y}| \leq|x / y| \cdot \frac{1+\delta}{1-\delta}\). Hence
\[
\begin{aligned}
|\tilde{x} \oslash \tilde{y}-x / y| & \leq|\tilde{x} \oslash \tilde{y}-\tilde{x} / \tilde{y}|+|\tilde{x} / \tilde{y}-x / y| \\
& \leq|\tilde{x} / \tilde{y}| \cdot \delta+\frac{|\tilde{x}-x| \cdot|y|+|\tilde{y}-y| \cdot|x|}{|y \cdot \tilde{y}|} \\
& \leq|x / y| \cdot \frac{1+\delta}{1-\delta} \cdot \delta+\frac{|x| \cdot \delta \cdot|y|+|y| \cdot \delta \cdot|x|}{|y \cdot y|(1-\delta)} \\
& \leq\left|\frac{x}{y}\right| \cdot\left(\frac{1+\delta}{1-\delta} \cdot \delta+\frac{2 \delta}{1-\delta}\right) \\
& \leq\left|\frac{x}{y}\right| \cdot \frac{3+\delta}{1-\delta} \cdot \delta \\
& \leq\left|\frac{x}{y}\right| \cdot(4 \delta) \\
& \leq\left|\frac{x}{y}\right| \cdot 2^{-p}
\end{aligned}
\]

Since \(p \geq 1, \delta=2^{-(p+2)} \leq 1 / 8<1 / 5\).
Q.E.D.
§28. Absolute Approximation for Division We give the following lemma for absolute approximation for division:

Lemma 8. (cf. 94, Lemma 11]) To approximate \(z=x / y\) to within \(p\) bits absolute precision, it is enough to approximate \(x\) to \(p+z^{+}-x^{-}+2\) bits absolute and \(y\) to \(p+z^{+}-y^{-}+2\) bits absolute precision and perform the division in \(p+z^{+}+2\) relative bits precision.
§29. Relative Approximation for \(k\)-th Root Extraction For \(k\)-th root extraction, we prefer to guarantee relative precision:

Lemma 9. (cf. 94, Lemma 12, (i)]) To approximate \(z=\sqrt[k]{k}\) to within \(p\) relative bits precision, it is enough to approximate \(x\) within \(p-\lfloor\lg k\rfloor+1\) relative bits precision and perform the root extraction in \(p+2\) relative bits precision.

Proof. Let \(\delta_{x}\) be the relative error for approximating \(x\) and \(\delta\) be the relative error in root extraction. If \(\delta_{x} \leq 2^{-(p-\lfloor\lg k\rfloor+1)}\) and \(\delta \leq 2^{-(p+2)}\), then we have
\[
\begin{aligned}
|\tilde{z}-z| & =\left|\sqrt[k]{x\left(1+\delta_{x}\right)}(1+\delta)-\sqrt[k]{x}\right| \\
& =|\sqrt[k]{x}| \cdot\left|\sqrt[k]{\left(1+\delta_{x}\right)}(1+\delta)-1\right| \\
& \leq|\sqrt[k]{x}| \cdot\left|\left(1+\delta_{x} / k\right)(1+\delta)-1\right| \\
& =|\sqrt[k]{x}| \cdot\left|\delta_{x} / k+\delta+\delta_{x} \delta / k\right| \\
& \leq|\sqrt[k]{x}| \cdot\left|2^{-(p+1)}+2^{-(p+2)}+2^{-(p+1)} 2^{-(p+2)}\right| \\
& \leq|\sqrt[k]{x}| \cdot 2^{-p}
\end{aligned}
\]

Here we use the fact: \(\sqrt[k]{\left(1+\delta_{x}\right)} \leq 1+\delta_{x} / k\) for \(\delta_{x}<1\) and \(k \geq 1\). Q.E.D.
§30. Absolute Approximation for \(k\)-th Root Extraction We give the following lemma for absolute approximation for \(k\)-th root extraction using precision transformation:

Lemma 10. (cf. [94, Lemma 12, (ii)]) To approximate \(z=\sqrt[k]{x}\) to within \(p\) bits absolute precision, it is enough to approximate \(x\) to \(p+z^{+}-x^{-}-\lfloor\lg k\rfloor+1\) bits absolute and perform the root extraction in \(p+z^{+}+2\) relative bits precision.
§31. Propagation Rules Now we show all these propagation rules in the following Table 2.6 and Table 2.7.
\begin{tabular}{|l|l|l|l|}
\hline & Precision in \(x\) & Precision in \(y\) & Precision for Operation \\
\hline\(z=x \pm y\) & \(p+2\) & \(p+2\) & \(p+1\) \\
\hline\(z=x \cdot y\) & \(p+y^{+}+2\) & \(p+x^{+}+2\) & \(p+2\) \\
\hline\(z=x / y\) & \(p+z^{+}-x^{-}+2\) & \(p+z^{+}-y^{-}+2\) & \(p+2\) \\
\hline\(z=\sqrt[k]{x}\) & \(p+z^{+}-x^{-}-\lceil\lg k\rceil+1\) & & \(p+2\) \\
\hline
\end{tabular}

Table 2.6: Propagating Rules in Absolute Precision.
\begin{tabular}{|l|l|l|l|}
\hline & Precision in \(x\) & Precision in \(y\) & Precision for Operation \\
\hline\(z=x \pm y\) & \(p-z^{-}+x^{+}+2\) & \(p-z^{-}+y^{+}+2\) & \(p+2\) \\
\hline\(z=x \cdot y\) & \(p+2\) & \(p+2\) & \(p+2\) \\
\hline\(z=x / y\) & \(p+2\) & \(p+2\) & \(p+2\) \\
\hline\(z=\sqrt[k]{x}\) & \(p-\lceil\lg k\rceil+1\) & & \(p+2\) \\
\hline
\end{tabular}

Table 2.7: Propagating Rules in Relative Precision.

\subsection*{2.3 Redesign of BigFloat system}

In the Core Library, underlying the Expr package is the BigFloat system, the "engine" that performs actual numerical approximation. Hence, the performance of the BigFloat system is crucial to the whole system. As we mentioned in Section 2, BigFloat uses GMP as its big integer kernel (but with its own internal representation) and implements arithmetic operations from scratch. While many research efforts have been made on improving performance of Expr level, less attention is paid to improving BigFloat. Moreover, as we want to bring transcendental functions into the Core Library, this would require us provide those functions in the BigFloat class as well.

We do not want to reinvent the wheel but would prefer to use existing implementations. Two multiple-precision floating-point computation libraries, mpf in GMP and MPFR, were both considered for adoption. We finally decided to use MPFR because it provides exact rounding and implements more transcendental functions. MPFR is also efficient and under active development.

The interface of BigFloat in the Core Library has certain requirements that are not directly available in MPFR. Hence a wrapper is necessary. Furthermore, BigFloat in the Core Library has two roles: as an exact number ring and as an approximate interval of real numbers. For example, when we study the intersections of curves and surfaces, we are interested in evaluating polynomials at exact BigFloat points using only exact ring operations. Another example is Newton iteration. Although it involves division, we do not want to keep track of errors since the Newton method is self-correcting.

To gain greater efficiency, we now split off from BigFloat a new class called BigFloat2. BigFloat is designed to be a C++ wrapper around MPFR with some new features, for instance, exact ring operations are implemented for \(\mathrm{C}++\) arithmetic operators,,\(+- \times\). Since it does not keep track of errors, it can be used efficiently in the applications that we mentioned above. BigFloat2 is now going to take the role of the old BigFloat in providing interval bounds for expression nodes. We use interval arithmetic to maintain errors inside BigFloat2. Internally, each BigFloat2 actually uses two BigFloat numbers, which also explains the " 2 " in the new name.

\subsection*{2.3.1 MPFR Overview}

MPFR is a portable C library which provides efficient arbitrary precision arithmetic on floating-point numbers [63, 29, 50]. It uses ideas from the IEEE-754 standard 44 for double-precision floating-point arithmetic. In particular, with a precision of 53 bits, it is able to exactly reproduce all computations with doubleprecision machine floating-point numbers. It also provides the four rounding mode in the IEEE 754 standard. It has been used in many applications, such as CGAL and iRRAM.
§32. Internal representation of MPFR Internally, a floating-point number \(f\) in MPFR is represented by a triple \(\langle s, m, e\rangle\) where \(s\) is the sign, \(m\) is the mantissa with \(0.5 \leq m<1\) and \(e\) is the exponent such that
\[
f=(-1)^{s} \cdot m \cdot 2^{e} .
\]

Functions mpfr_sgn() and mpfr_get_exp() return the sign and the exponent respectively.
§33. Signed zero Zero in MPFR is signed, i.e., there are both +0 and -0 . However mpfr_sgn() will return 0 for either one.
§34. Precision According to [38, "the precision is the number of bits used to represent the mantissa of a floating-pointer number". Extra zeros may appear at the tail of the mantissa. mpfr_get_prec() and mpfr_set_prec() are used to get and set this precision.
§35. Mantissa in integer form Sometimes we want to manipulate the mantissa directly. But the mantissa in MPFR is a fraction. We are more interested
in the mantissa in integer form. A call of mpfr_get_z_exp() for a variable \(f\) will return \(z\) and \(e^{\prime}\) such that \(f=z \cdot 2^{e^{\prime}}\). However, the returned mantissa \(z\) may have powers of 2 as factors. Actually \(z\) is scaled by the precision in \(f\), i.e., if \(f=(-1)^{s} \cdot m \cdot 2^{e}\) has a precision \(p\), then \(z=(-1)^{s} \cdot m \cdot 2^{p}\) and \(e^{\prime}=e-p\). Thus, if there are \(n\) extra zeros at the tail of mantissa \(m\), then \(z\) contains a factor of \(2^{n}\). It is clear that \(2^{p-1} \leq|z|<2^{p}\) since \(0.5 \leq m<1\). Thus, the precision \(p\) is \(\left\lceil\log _{2} z\right\rceil\).
§36. Rounding mode Four rounding modes, round to nearest, round towards 0 , round towards \(+\infty\) and round towards \(-\infty\), are supported in MPFR. Under these rounding modes, if \(f\) is a MPFR variable with the precision \(p\), then the difference between its rounded mantissa and its exact one is less than \(2^{-p}\).

\subsection*{2.3.2 Design of class BigFloat}

The class BigFloat is designed to a C++ wrapper class on mpfr_t provided by MPFR. But we enhanced it with some new features.
§37. Relative precision and precision in MPFR MPFR follows the IEEE standard in its arithmetic: it requires the result of arithmetic operations be exactly rounded. That is, the result must be computed exactly and then rounded to the nearest floating-point number. In particular, if the result can be exactly represented, then this result will be output. So the error in the result depends on the number of bits of its mantissa, i.e., the precision of the result variable. The Core Library use relative precision or absolute precision to measure the approximation errors. The precision in MPFR is very close to our notion of relative precision. For each arithmetic operations, users are required to set the output
precision manually. For example, a call of mpfr_mul (c, a, b, GMP_RNDN) in MPFR will compute the product of \(a\) and \(b\) with rounding to nearest and put the result into \(c\). The number of correct bits of this product depends on the number of bits in the mantissa of \(c\), so users have to set it explicitly before the mpfr_mul() call. However, how many bits do we need if we want to guarantee the result has relative precision \(p\) ? The following lemma shows that \(p+1\) bits is enough:

Lemma 11. To guarantee relative p-bit precision in an arithmetic operation in MPFR, it is sufficient that mantissa of the result variable has at least \(p+1\) bits (using any of above four rounding modes).

Proof. Assume \(f=(-1)^{s} \cdot m \cdot 2^{e}\) is the real result and \(\tilde{f}\) is the result with \(p+1\) bits in mantissa returned by MPFR, then
\[
\tilde{f}=(-1)^{s} \cdot \tilde{m} \cdot 2^{e}
\]
and
\[
|\tilde{m}-m|=2^{-(p+1)} .
\]

Hence,
\[
|\tilde{f}-f|=|\tilde{m}-m| 2^{e}=2^{-(p+1)} 2^{e} \leq 2^{-p} \cdot m \cdot 2^{e}=|f| \cdot 2^{-p}
\]
since \(1 / 2 \leq m<1\).
Q.E.D.

This Lemma shows that the precision used in MPFR is basically relative precision (but off by 1 bit) if all bits in the mantissa are valid. It also shows that the type IEEE double which has 53 bits in mantissa ( 52 bits + one implicit bit) can only guarantee up to relative 52 bits of precision.
§38. Estimation of precision for exact ring operations MPFR requires users to specify the precision for each variable. This design is efficient, but sometime inconvenient for users. In our redesigned BigFloat, we want to guarantee exactness of ring operations for our overloaded C++ arithmetic operators \((+,-, \times)\).

To achieve this, we estimate the precision for the final results. The following two lemmas are given for such precision estimation:

Lemma 12 (Addition/Subtraction). Let \(f_{1}=(-1)^{s_{1}} \cdot m_{1} \cdot 2^{e_{1}}\) and \(f_{2}=(-1)^{s_{2}}\). \(m_{2} \cdot 2^{e_{2}}\) be two variables in MPFR. If \(f_{1}\) has precision \(p_{1}, f_{2}\) has precision \(p_{2}\) and \(\delta=\left(e_{1}-p 1\right)-\left(e_{2}-p 2\right)\), then for computing \(f=f_{1} \pm f_{2}\), it is enough to set the precision of \(f\) to be
\[
\begin{cases}1+\max \left\{p_{1}+\delta, p_{2}\right\} & \text { if } \delta \geq 0 \\ 1+\max \left\{p_{1}, p_{2}-\delta\right\} & \text { if } \delta<0\end{cases}
\]
in order to guarantee that all bits in the mantissa of \(f\) correct.

Proof. We can write \(f_{1}\) and \(f_{2}\) with the mantissa in integer forms as follows:
\[
f_{1}=z_{1} \cdot 2^{e_{1}-p_{1}} \quad \text { and } \quad f_{2}=z_{2} \cdot 2^{e_{2}-p_{2}} .
\]
where \(\left\lceil\log _{2}\left|z_{1}\right|\right\rceil=p_{1}\) and \(\left\lceil\log _{2}\left|z_{2}\right|\right\rceil=p_{2}\). Then,
\[
|f|=\left|f_{1} \pm f_{2}\right| \leq\left|z_{1}\right| \cdot 2^{e_{1}-p_{1}}+\left|z_{2}\right| \cdot 2^{e_{2}-p_{2}}
\]

If \(\delta \geq 0\), then
\[
|f| \leq\left(\left|z_{1}\right| 2^{\delta}+\left|z_{2}\right|\right) 2^{e_{2}-p_{2}} .
\]

The mantissa \(z\) in integer form of \(f\) satisfies
\[
|z| \leq\left|z_{1}\right| 2^{\delta}+\left|z_{2}\right|
\]

Thus, the precision \(p\) that we need in \(f\) satisfies
\[
\begin{aligned}
p & =\left\lceil\log _{2}|z|\right\rceil \\
& \leq 1+\max \left\{\left\lceil\log _{2}\left|z_{1}\right|\right\rceil+\delta,\left\lceil\log _{2}\left|z_{2}\right|\right\rceil\right\} \\
& =1+\max \left\{p_{1}+\delta, p_{2}\right\} .
\end{aligned}
\]

If \(\delta<0\), then we obtain
\[
p \leq 1+\max \left\{p_{1}, p_{2}-\delta\right\} .
\]

\section*{Q.E.D.}

Lemma 13 (Multiplication). Let \(f_{1}=(-1)^{s_{1}} \cdot m_{1} \cdot 2^{e_{1}}\) and \(f_{2}=(-1)^{s_{2}} \cdot m_{2} \cdot 2^{e_{2}}\) be two variables in MPFR. If \(f_{1}\) has precision \(p_{1}, f_{2}\) has precision \(p_{2}\), then for computing \(f=f_{1} \cdot f_{2}\), it is enough to set the precision of \(f\) to be
\[
p_{1}+p_{2}
\]
in order to guarantee that \(f\) can be computed without error.

Proof. As above, we have
\[
|f|=\left|f_{1} \cdot f_{2}\right| \leq\left|z_{1} \cdot z_{2}\right| \cdot 2^{e_{1}-p_{1}+e_{2}-p_{2}}
\]
so the mantissa of \(f\) satisfies:
\[
|z| \leq\left|z_{1} \cdot z_{2}\right| .
\]

Hence, \(p=\left\lceil\log _{2}|z|\right\rceil \leq\left\lceil\log _{2}\left|z_{1}\right|\right\rceil+\left\lfloor\log _{2}\left|z_{2}\right|\right\rfloor=p_{1}+p_{2}\).
Q.E.D.

It should be noticed that over-estimation can occur. Even more, the overestimated precision could grow very fast (see column 2 of Figure 2.5) which will
cause MPFR have to allocate large unnecessary memory space. To avoid this, we provide a function named mpfr_remove_trailing_zeros() to remove the unnecessary tailing zeros (for efficiency, it only removes zeros in chunks). It is called after each corresponding arithmetic operation. The following experiment shows the difference of performing a summation with and without this call:

\section*{Experiment 2 Optimization of Precision Estimation}

We compute \(\sum_{n=1}^{n} i\) using two methods:

Method1: initialize \(s=1\), then for \(i=1,2, \cdots, n\), increase the precision of \(s\) by the precision of \(i\), and then call MPFR to multiply \(s\) and \(i\) and put the result in \(s\).

Method2: same as Method 1, but call mpfr_remove_trailing_zeros() for \(s\) after multiplication in the loop.

A time comparison between them is given in Figure 2.5 (timings are measured in microseconds and the precision is in bits). From this experiment, we can see that without removing trailing zeros, the estimated precision could grow fast and the time for performing corresponding arithmetic operations could be longer.
§39. Variants of Operations in BigFloat We provide four versions for each arithmetic operations:
1. Raw version: functions starting with "r."; the user has to set the precision explicitly.
2. Fixed version: the last parameter before rounding mode is the precision that the user specified for result variables. It calls set_prec() first, and
\begin{tabular}{|c|c|c|c|c|}
\hline\(n=\) & Estimated Precision & Timing & Optimized Precision & New Timing \\
\hline 100 & 469 & 1 & 32 & 0 \\
\hline 1000 & 7599 & 4 & 32 & 4 \\
\hline 10000 & 108458 & 90 & 32 & 32 \\
\hline 100000 & 1414677 & 16305 & 32 & 308 \\
\hline 1000000 & & & 64 & 3118 \\
\hline
\end{tabular}

Figure 2.5: Timing for computing \(\sum_{i=1}^{n} i \mathrm{w} /\) and \(\mathrm{w} / \mathrm{o}\) removing trailing zeros.
then calls the raw version.
3. Auto version: BigFloat will estimate a precision for the result, then after computation, adjusts the final precision (i.e., eliminating the tailing zeros using mpfr_remove_trailing_zeros()).
4. C++ operators: The overloaded C++ operators will use the auto version, so that users don't have to worry about the precision estimation. However for division, it will use default global precision.

As an example, C++ declarations of four versions for addition operations are shown below:
```

int BigFloat:: r_add(const BigFloat\& x, const BigFloat\& y);
int BigFloat:: add(const BigFloat\& x, const BigFloat\& y, prec_t);
int BigFloat::add(const BigFloat\& x, const BigFloat\& y);
BigFloat operator +(const BigFloat\& x, const BigFloat\& y);

```

Note that the first 3 functions are member functions of BigFloat. So the results of these function calls will be stored in the calling BigFloat objects. The returned integer values in these functions show the exactness of the result: a positive value means the result is larger than the exact value, negative means
less than and zero means exactly. The last overloaded + operator is a global function which returns the result as a new object. Hence, it is less efficient than the first 3 functions.
§40. Benchmark of new BigFloat By adapting MPFR, not only can BigFloat provide more arithmetic operations, such as cbrt(), elementary functions \(\sin (), \cos ()\) etc., but also the performance of the BigFloat has also been greatly improved. We tested the performance of sqrt() in the current Core Library 1.x and the new implementation based on MPFR using the following experiment:

Experiment 3 Comparison of the Performance of sqrt()
Computing sqrt(i) for \(i=2, \ldots, 100\) with precision \(p\) using BigFloat class in the Core Library 1.x and Core Library 2.0:

The timing comparison is shown in Figure [2.6] We have about 25 times speedup with the new implementations.
\begin{tabular}{|c|c|c|c|}
\hline Precision & Core Library 1.7 & Core Library 2.0 & Speedup \\
\hline 1000 & 25 & 1 & 25 \\
\hline 10000 & 716 & 32 & 22 \\
\hline 100000 & 33270 & 1299 & 25 \\
\hline
\end{tabular}

Figure 2.6: Timing Comparisons for sqrt().

\subsection*{2.3.3 Design of class BigFloat2}

BigFloat2 is the new number type that we split off from BigFloat. It is mostly used by Expr to perform the underlying approximation. However, experienced
users can use it directly for efficiency (to avoid building expression DAG). Internally, we use interval arithmetic.
§41. Interval representations To approximate the real numbers, an interval is usually used to represent the approximation of the exact value when it cannot be presented (we use floating-point representation) exactly in computers. There are 3 different approaches:
- ( \(m \pm e r r\) ) \(\cdot 2^{e}\) : mantissa, error bits and exponents parts are maintained and error bits are limited to a certain range. A computation involves one operation on mantissa, a few operations on error bits, then a final normalization is needed in order to maintain error bits within certain ranges. BigFloat in the Core Library 1.x uses this approach.
- (d土err): less restriction on error bits, which can have different exponents. so normalization is not necessary for each operation. REAL in iRRAM [65] uses this approach.
- \(\left(d_{l}, d_{r}\right)\) : two multiple precision numbers are used to represent an interval, and interval arithmetic is used for all kinds of arithmetic operations.

We use \(\left(d_{l}, d_{r}\right)\) as our new approach for BigFloat2 because this implementation is simpler and the approximation interval is more precise. Another motivation is that MPFR has provided the necessary rounding modes for each arithmetic operations and has already implemented many elementary functions.
§42. Interval Arithmetic BigFloat2 maintains an interval \([\underline{x}, \bar{x}]\) for a real number \(x\) where \(\underline{x}\) and \(\bar{x}\) are BigFloat numbers. It uses interval arithmetic
to implement its arithmetic operations. The standard rules for some basic operations are shown in Table [2.8 [1, 62]:
\begin{tabular}{|c|c|c|}
\hline\(z\) & \(\underline{z}\) & \(\bar{z}\) \\
\hline\(z=x+y\) & \(\underline{x}+\underline{y}\) & \(\bar{x}+\bar{y}\) \\
\hline\(z=x-y\) & \(\underline{x}-\bar{y}\) & \(\bar{x}-\underline{y}\) \\
\hline\(z=x \times y\) & \(\min \{\underline{x} \underline{y}, \underline{x} \bar{y}, \bar{x} \underline{y}, \overline{x y}\}\) & \(\max \{\underline{x} \underline{y}, \underline{x} \bar{y}, \bar{x} \underline{y}, \overline{x y}\}\) \\
\hline\(z=x \div y\) & \(\min \{\underline{x} / \underline{y}, \underline{x} / \bar{y}, \bar{x} / \underline{y}, \bar{x} / \bar{y}\}\) & \(\max \{\underline{x} / \underline{y}, \underline{x} / \bar{y}, \bar{x} / \underline{y}, \bar{x} / \bar{y}\}\) \\
\hline\(z=\sqrt[k]{x}\) & \(\sqrt[k]{\underline{x}}\) & \(\sqrt[k]{\bar{x}}\) \\
\hline
\end{tabular}

Table 2.8: Rules for interval arithmetic.

Multiplication and division involve 4 arithmetic operations and 3 comparisons if we use the rules in the fourth and fifth row for multiplication and division. In practice, we can reduce them to fewer operations as shown below in Table 2.9 and Table 2.10

\subsection*{2.4 Extending Expr class}

While our Expr class provides four arithmetic operations and radical operations which can satisfy most applications, there is a need for supporting new operations, for example, transcendental functions.

\subsection*{2.4.1 How to Add Your Own Operation for Expr}

As we mentioned in the Section [2.1] Expr is a wrapper around ExprRep. Adding a new operation for Expr requires one to design a new type of ExprRep node, i.e., design a subclass of ExprRep. In the Core Library 1.x, it is possible for users
\begin{tabular}{|c|c|c|c|}
\hline\(x\) & \(y\) & \(\min\) & \(\max\) \\
\hline \(0 \leq \underline{x} \leq \bar{x}\) & \(0 \leq \underline{y} \leq \bar{y}\) & \(\underline{x} \underline{y}\) & \(\overline{x y}\) \\
\hline \(0 \leq \underline{x} \leq \bar{x}\) & \(\underline{y} \leq \bar{y} \leq 0\) & \(\bar{x} \underline{y}\) & \(\underline{x} \bar{y}\) \\
\hline \(0 \leq \underline{x} \leq \bar{x}\) & \(\underline{y} \leq 0 \leq \bar{y}\) & \(\bar{x} \underline{y}\) & \(\overline{x y}\) \\
\hline\(\underline{x} \leq \bar{x} \leq 0\) & \(0 \leq \underline{y} \leq \bar{y}\) & \(\underline{x} \bar{y}\) & \(\bar{x} \underline{y}\) \\
\hline\(\underline{x} \leq \bar{x} \leq 0\) & \(\underline{y} \leq \bar{y} \leq 0\) & \(\overline{x y}\) & \(\underline{x} \underline{y}\) \\
\hline\(\underline{x} \leq \bar{x} \leq 0\) & \(\underline{y} \leq 0 \leq \bar{y}\) & \(\underline{x} \bar{y}\) & \(\underline{x} \underline{y}\) \\
\hline\(\underline{x} \leq 0 \leq \bar{x}\) & \(0 \leq \underline{y} \leq \bar{y}\) & \(\underline{x} \bar{y}\) & \(\overline{x y}\) \\
\hline\(\underline{x} \leq 0 \leq \bar{x}\) & \(\underline{y} \leq \bar{y} \leq 0\) & \(\bar{x} \underline{y}\) & \(\underline{x} \underline{y}\) \\
\hline\(\underline{x} \leq 0 \leq \bar{x}\) & \(\underline{y} \leq 0 \leq \bar{y}\) & \(\min \{\bar{x} \underline{y}, \underline{x} \bar{y}\}\) & \(\max \{\underline{x} \underline{y}, \overline{x y}\}\) \\
\hline
\end{tabular}

Table 2.9: Rules for multiplication using interval arithmetic.
to design their own Expr nodes. However, the procedure is complicated and error-prone. Now, adding a new type of Expr node becomes easier. Basically, it involves the following steps:
1. Derive a class from ExprRepT or a subclass of ExprRepT (see Figure 2.3 for pre-defined subclasses).
2. Implement a constructor for this new class and call the following two functions:
```

compute_filter(),compute_numtype()

```
to compute the filter value and set the number type.
3. Implement the following functions:
```

 compute_filter(), compute_numtype(),
 compute_sign(), compute_uMSB(), compute_lMSB(),

```
\begin{tabular}{|c|c|c|c|}
\hline\(x\) & \(y\) & \(\min\) & \(\max\) \\
\hline\(\underline{x} \leq \bar{x}\) & \(\underline{y}=\bar{y}=0\) & \(N a N\) & \(N a N\) \\
\hline\(\underline{x} \leq \bar{x}\) & \(\underline{y} \leq 0 \leq \bar{y}\) & \(-\infty\) & \(+\infty\) \\
\hline \hline \(0 \leq \underline{x} \leq \bar{x}\) & \(0 \leq \underline{y} \leq \bar{y}\) & \(\underline{x} / \bar{y}\) & \(\bar{x} / \underline{y}\) \\
\hline \(0 \leq \underline{x} \leq \bar{x}\) & \(\underline{y} \leq \bar{y} \leq 0\) & \(\bar{x} / \bar{y}\) & \(\underline{x} / \underline{y}\) \\
\hline \hline\(\underline{x} \leq \bar{x} \leq 0\) & \(0 \leq \underline{y} \leq \bar{y}\) & \(\underline{x} / \underline{y}\) & \(\bar{x} / \bar{y}\) \\
\hline\(\underline{x} \leq \bar{x} \leq 0\) & \(\underline{y} \leq \bar{y} \leq 0\) & \(\bar{x} / \underline{y}\) & \(\underline{x} / \bar{y}\) \\
\hline \hline\(\underline{x} \leq 0 \leq \bar{x}\) & \(0<\underline{y} \leq \bar{y}\) & \(\underline{x} / \underline{y}\) & \(\bar{x} / \underline{y}\) \\
\hline\(\underline{x} \leq 0 \leq \bar{x}\) & \(\underline{y} \leq \bar{y}<0\) & \(\bar{x} / \bar{y}\) & \(\underline{x} / \bar{y}\) \\
\hline \hline
\end{tabular}

Table 2.10: Rules for division using interval arithmetic.
```

compute_r_approx(), compute_a_approx(), compute_rootbd()

```
4. Define a function (can be global function/operator or constructor/member functions/operator in Expr) which can construct this new type node.

Now we follow these steps to show how to add a new operation for Expr. Say, we want to add the following "neg" function for Expr:
```

Expr neg(const Expr\& e);

```

It will take one Expr parameter \(e\) and construct a new Expr node with the negated value \(-e\).

We first derive a new class, NegRepT, from ExprRepT. For efficiency, ExprRepT uses a reference counting technique, so each ExprRepT has a reference counter inside. If we directly derive our class from ExprRep, it will require us to maintain the reference counter. The three directly derived class ConstRepT, UnaryOpRepT, and BinaryOpRepT handle the reference counting automatically.

So we derive our new class from UnaryOpRepT since negation operation is a "unary" operation:
```

template <typename T>
class NegRepT : public UnaryOpRepT<T> {
};

```

Then we add a constructor that takes one parameter of an ExprRepT pointer (pointing to its child node). In the constructor initializer, we pass the pointer parameter to the parent class UnaryOpRepT. We compute the filter value and set the number type inside the constructor.
```

NegRepT(ExprRepT<T>* c) : UnarayOpRepT<T>(c) {
compute_filter();
compute_numtype();
}

```

The next step is to implement the required functions \(3^{3}\) :
```

// functions for computing filter and number type
void compute_filter() const {
filter().neg(child -> filter());
}
void compute_numtype() const {
_numType = child ->_numType;
}
// virtual functions for computing sign, uMSB, lMSB
virtual bool compute_sign() const {
sign() = -child }-\mathrm{ sign(); return true;
}
virtual bool compute_uMSB() const {
uMSB() = child }->\mathrm{ uMSB(); return true;
}
virtual bool compute_lMSB() const {
MMSB() = child }->\operatorname{lMSB}(); return true

```

\footnotetext{
\({ }^{3}\) Note that compute_filter() and compute_numtype() are not virtual functions since we cannot call virtual functions in the constructor of the base class.
}
```

}
// virtual functions for r_approx, a_approx
virtual void compute_r_approx(prec_t prec) const {
kernel().neg(child ->r_approx(prec), prec);
}
virtual bool compute_a_approx(prec_t prec) const {
kernel().neg(child ->a_approx(prec), abs2rel(prec));
}
// virtual function for computing root bound
virtual void compute_rootbd() const {
rootbd().neg(child }->\mathrm{ rootbd());
}

```

Now we have NegRepT class. The last step is to define the negation function. It just constructs our new designed NegRepT node:
```

template <typename T>
ExprT<}<\textrm{T}> neg(const ExprT<<T>\& e)
return new NegRepT<T>(e.rep ());
}

```

\section*{Remarks:}
1. We do not have to implement all functions in step 3. For compute_filter(), users can just call filter().invalidate() if the users do not know how to obtain an filter value. For compute_sgn(), compute_uMSB(), and compute_1MSB(), users can just return false when it is not applicable. In that case, ExprRepT will get those information from the approximation. As we mentioned before, users do not have to implement both compute_r_approx() and compute_a_approx(). However, if the users only implement compute_r_approx(), then users need provide a valid compute_uMSB(); if the users only implement compute_a_approx(), compute_1MSB() is needed as well.
2. We must implement compute_numtype() since ExprRepT need it to classify each node. Moreover, in case the expression node is algebraic, we must implement compute_rootbd().
3. We can put the implementations of compute_filter() and compute_numtype() into the constructor directly without defining separated functions.

\subsection*{2.4.2 Adding Your Own Operation using Pre-defined Macros}

Although now adding a new operation for Expr is easier and straightforward, users need to know all the details of implementing in C++. For instance, they need to know the exact signatures for each functions that they are required to implement. In order to help the Core Library developers and other advanced users, a new mechanism is designed to simplify such task. We provide a set of pre-defined \(\mathrm{C}++\) macros to hide some implementation details from the users.

To see how these macros works, we still use the NegRepT in previous section as an example. With pre-defined macros, we can simply define NegRepT as follows:
```

BEGIN_DEFINE_UNARY_NODE(NegRepT)
END_DEFINE_UNARY_NODE

```

BEGIN_DEFINE_UNARY_NODE and END_DEFINE_UNARY_NODE are two C++ macros which are defined as follows:
```

\#define BEGIN_DEFINE_UNARY_NODE(cls_name)
template <typename T>
class cls_name : public UnaryOpRepT<T> { \
public:
cls_name(ExprRepT<T>* c) : UnarayOpRepT<T>(c) {

```
```

 compute_filter();
 compute_numtype();
 }
 \#define END_DEFINE_UNARY_NODE };

```

Hence, once our new implementation of NegRepT are compiled by C++ compilers, those macros are first expanded by cpp (C/C++ preprocessor provided by every \(\mathrm{C} / \mathrm{C}++\) compilers) into:
```

template <typename T>
class NegRepT: public UnaryOpRepT<T> {
public:
NegRepT(ExprRepT<T>* c) : UnarayOpRepT<T>(c) {
compute_filter();
compute_numtype();
}
};

```

Similarly, we define the macro DEFINE_UNARY_FUNCTION() in the Core Library as:
```

\#define DEFINE_UNARY_FUNCTION(fun_name, cls_name)
template <typename T>
Expr<T> fun_name(const Expr < T >\& e)
return new cls_name< < > (e.rep ()); }

```

With this macro, we can define our negation function in just one line:
```

DEFINE_UNARY_FUNCTION(neg, NegRepT)

```

A few other macros are pre-defined. See the source code of the Core Library 2.0 for details. With these new macros, we can now implement NegRepT as:
```

BEGIN_DEFINE_UNARY_NODE(NegRepT)
// define rule for filter computation
BEGIN_DEFINE_RULE(filter)
filter().neg(child }->\mathrm{ filter());
END_DEFINE_RULE

```
```

// define rule for setting number type
BEGIN_DEFINE_RULE (numtype)
_numType = child ->_numType;
END_DEFINE_RULE
// define rules for computing sign, uMSB, lMSB
BEGIN_DEFINE_RULE(sign)
sign() = -child ->sign(); return true;
END_DEFINE_RULE
BEGIN_DEFINE_RULE(uMSB)
uMSB() = child }->\mathrm{ - uMSB(); return true;
END_DEFINE_RULE
BEGIN_DEFINE_RULE(lMSB)
lMSB() = child }->>\operatorname{lMSB}(); return true
END_DEFINE_RULE
// define rules for r_approx, a_approx
BEGIN_DEFINE_RULE(r_approx)
kernel().neg(child ->r_approx(prec), prec);
END_DEFINE_RULE
BEGIN_DEFINE_RULE(a_approx)
kernel().neg(child ->a_approx(prec), abs2rel(prec));
END_DEFINE_RULE
// define rules for computing root bound
BEGIN_DEFINE_RULE (rootbd)
rootbd().neg(child }->\mathrm{ rootbd ());
END_DEFINE_RULE
END_DEFINE_UNARY_NODE
DEFINE_UNARY_FUNCTION(neg, NegRepT)

```

They will be expanded to the exactly same code that we designed in the previous section. We can see that these pre-defined macros simplify the work of extending Expr.

\subsection*{2.4.3 Summation operation for Expr}

The DAG constructed in Expr could be very large in some computation. However, when these expressions are defined using simple recursive rules, we can avoid the explicit construction. This can lead to considerable speedup. For example, computing harmonic series \(\sum_{i=1}^{n} \frac{1}{i}\) can be done using the following function:
```

Expr harmonic(int n) {
Expr r(0);
for (int i=1; i<=n; ++i)
r = r + Expr (1)/Expr (i);
return r
}

```

This function will build an unbalanced DAG of depth \(n\). We did the following experiment to test the performance of this function:

Experiment 4 Computing harmonic series using loop
Computing harmonic series \(\sum_{i=1}^{n} \frac{1}{i}\) using above harmonic() function for different \(n\).

The timing (in microseconds) for this experiment is given in the second column in Figure [2.7. The segmentation fault is caused by stack overflow in most systems. However, we find an optimization can be done: instead of using \(n-1\) binary operation ( + ) nodes, we can introduce a single "anary" node to do the entire summation in one level.

With the new mechanism we described in previous section, a new type of node called Sum can be easily implemented as follows:
```

BEGIN_DEFINE_ANARY_NODE(Sum)
// define rule for filter computation
BEGIN_DEFINE_RULE(filter)

```
```

filter().set(children[0] - > filter ());
for (size_t i=1; i<children.size(); ++i)
filter().add(filter(), children[i]->filter());

```
END_DEFINE_RULE
// define rule for setting number type
BEGIN_DEFINE_RULE ( numtype)
_numType \(=\) children \([0]->\) _numType
for (size_t \(\mathrm{i}=1\); \(\mathrm{i}<\) children.size () \(;++\mathrm{i})\)
    _numType \(=\) std::max (_numType, children[i]—>_numType);
END_DEFINE_RULE
// define rules for computing sign, uMSB, lMSB
BEGIN_DEFINE_RULE( sign )
    return false;
END_DEFINE_RULE
BEGIN_DEFINE_RULE(uMSB)
    \(\operatorname{uMSB}()=\) children \([0]->\operatorname{uMSB}()\);
    for (size_t \(\mathrm{i}=1\); \(\mathrm{i}<\) children.size () ; ++i )
            \(\operatorname{uMSB}()=\) std \(:: \max (\operatorname{uMSB}()\), children \([i]->\operatorname{uMSB}())+1\);
    return true;
END_DEFINE_RULE
BEGIN_DEFINE_RULE (1MSB)
    \(\operatorname{lMSB}()=\) children \([0]->\operatorname{lMSB}()\);
    for (size_t \(\mathrm{i}=1\); \(\mathrm{i}<\) children. size () \(;++\mathrm{i})\)
        \(\operatorname{lMSB}()=\) std \(:: \max (\operatorname{lMSB}(), \quad\) children \([i]->\operatorname{lMSB}())\);
    return true;
END_DEFINE_RULE
// define rules for r_approx, \(a_{-}\)approx
BEGIN_DEFINE_RULE (r_approx)
    int \(\mathrm{n}=\) ceillg (children.size()) +1 ;
    kernel (). set (0);
    for (size_t \(\mathrm{i}=0 ; \mathrm{i}<\) children.size () ; ++i\()\)
            kernel (). add (kernel () ,
                children [i] \(->\) r_approx (prec+n), prec+n);
    END_DEFINE_RULE
BEGIN_DEFINE_RULE ( a a approx)
    int \(\mathrm{n}=\) ceillg (children. size() \()+1\);
    kernel().set (0);
```

for (size_t i=0; i<children.size(); ++i)
kernel().add(kernel(),
children[i]->a_approx(prec+n), abs2rel(prec+n));
END_DEFINE_RULE
// define rules for computing root bound
BEGIN_DEFINE_RULE (rootbd)
rootbd().set(0L);
for (size_t i=1; i<children.size(); ++i)
rootbd().add(rootbd(), child }->\mathrm{ rootbd());
END_DEFINE_RULE
END_DEFINE_ANARY_NODE
DEFINE_ANARY_FUNCTION(sum, Sum)

```

With this new operation, we can rewrite the routine harmonic():
```

Expr harmonic_term(int i) {
return Expr(1)/Expr(i);
}
Expr harmonic(int n) {
return sum(harmonic_term, 1, n);
}

```

A new experiment with the redesigned harmonic() function is shown below:
Experiment 5 Computing harmonic series using sum()
Computing harmonic series \(\sum_{i=1}^{n} \frac{1}{i}\) using above redesigned harmonic() function for different \(n\).

The timing (in microseconds) for this new implementation is shown in the third column in Figure 2.7 (see t_sum.cpp under benchmark/sum). We can see with the new implemented sum() operations, we can compute the summation for larger \(n\) and the new operation speeds up 3-58 times.
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{n}=\) & Using Loops & Using sum() & Speedup \\
\hline 1000 & 24 & 7 & 3.4 \\
\hline 10000 & 3931 & 67 & 58.6 \\
\hline 100000 & (segmentation fault) & 752 & \(\mathrm{~N} / \mathrm{A}\) \\
\hline 1000000 & (segmentation fault) & 12260 & \(\mathrm{~N} / \mathrm{A}\) \\
\hline
\end{tabular}

Figure 2.7: Timing for computing harmonic series.

\subsection*{2.4.4 Transcendental Node \(\pi\)}

Now we present our first transcendental node \(\pi . \pi\) is a constant, so we design it to be a leaf node and derive it from ConstRepT:
```

template <typename T>
class PiRepT: public ConstRepT<T> {
public:
PiRepT() : ConstRepT<T>() {
compute_filter();
compute_numtype();
}
// functions for computing filter and number type
void compute_filter() const {
filter().set(3.14, true); //true means the value is inexact
}
void compute_numtype() const
{ _numType = NODE_NT_TRANSCENDENTAL; }
// virtual functions for computing sign, uMSB, lMSB
virtual bool compute_sign() const
{ sign() = 1; return true; }
virtual bool compute_uMSB() const
{ uMSB() = 2; return true; }
virtual bool compute_lMSB() const
{ lMSB() = 1; return true; }

```
```

23
24
25
26
27
2 8

```
```

 // virtual functions for r_approx, a_approx
    ```
    // virtual functions for r_approx, a_approx
    virtual void compute_r_approx(prec_t prec) const
    virtual void compute_r_approx(prec_t prec) const
    { kernel().pi(prec); }
    { kernel().pi(prec); }
    virtual bool compute_a_approx(prec_t prec) const
    virtual bool compute_a_approx(prec_t prec) const
    { kernel().pi(abs2rel(prec)); }
    { kernel().pi(abs2rel(prec)); }
};
```

A global function in Expr can be:

```
template <typename T>
ExprT<T> pi()
{ return new PiRepT<T>(); }
```


2.5 Benchmarks

§43. compare.cpp Figure 2.8 shows the timing of comparing

$$
\sqrt{x}+\sqrt{y} \text { and } \sqrt{x+y+2 \sqrt{x y}}
$$

where x and y are rational numbers with various bit length L. Our redesigned

| bit length L | Core Library 1.7 | Core Library 2.0 | Speedup |
| :---: | :---: | :---: | :---: |
| 1000 | 0.82 | 0.59 | 1.4 |
| 2000 | 6.94 | 1.67 | 4.2 |
| 8000 | 91.9 | 11.63 | 7.9 |
| 10000 | 91.91 | 30.75 | 3.0 |

Figure 2.8: Timing Comparisons for compare.cpp
library speeds up about 2-8 times.
§44. testFilter.cpp Figure 2.9 and Figure 2.10 shows the timing of computing the determinants of a set of matrices with the filter facility on and off (see
testFilter.cpp under benchmark/testFilter). The numbers in first column in each table has the following format:

$$
N \times d \times b
$$

where N is the number of matrices, d is the dimension of each matrix and b is the bit length of each entry in the matrix (entries are rationals).

| MATRIX | $1.7 \mathrm{w} /$ filter | $2.0 \mathrm{w} /$ filter | Speedup |
| :--- | :--- | :--- | :--- |
| $1000 \mathrm{x} 3 \times 10$ | 9 | 19 | 0.5 |
| 1000 x 4 x 10 | 26 | 43 | 0.6 |
| 500 x 5 x 10 | 449 | 204 | 2.2 |
| $500 \times 6 \times 10$ | 1889 | 597 | 3.2 |
| $500 \mathrm{x} 7 \times 10$ | 4443 | 1426 | 3.1 |
| 500 x 8 x 10 | 8100 | 2658 | 3.0 |

Figure 2.9: Timing testFilter.cpp w/ filter (in microseconds)

| MATRIX | $1.7 \mathrm{w} / \mathrm{o}$ filter | $2.0 \mathrm{w} / \mathrm{o}$ filter | Speedup |
| :--- | :--- | :--- | :--- |
| 1000 x 3 x 10 | 621 | 232 | 2.7 |
| 1000 x 4 x 10 | 1666 | 530 | 3.1 |
| 500 x 5 x 10 | 1728 | 488 | 3.5 |
| 500 x 6 x 10 | 3493 | 894 | 3.9 |
| 500 x 7 x 10 | 6597 | 1580 | 4.2 |
| 500 x 8 x 10 | 11367 | 2820 | 4.0 |

Figure 2.10: Timing testFilter.cpp w/o filter (in microseconds)

2.6 InCore: an Interactive Core Library

While the Core Library provides a very simple programming interface, it still requires users to have C++ programming experience. Moreover since the Core Library is written in C++, the library itself as well as users' programs have to been compiled first before they are run. The compilation is slow. It is even slower because of C++ template classes. Some users will be more interested in using the Core Library for prototyping and testing, so an interpreted version like Maple can be very useful.

Python is an interpreted language with an object oriented design. It is very easy to use. It provides an interface for wrapping $\mathrm{C} / \mathrm{C}++$ codes.
§45. Tools for Writing Python Binding To wrap C++ code, there are different solutions 78, 79, 7:

Python/C API: Official C APIs for writing Python extension.

SWIG: Uses interfaces file to generate wrapper codes automatically. It can generate wrapper codes for other script languages such as Perl, Tcl/Tk and Ruby.

Boost.Python: a C++ library which enables seamless interoperability between C++ and Python.

SIP: a tool for automatically generating Python bindings for C and $\mathrm{C}++$ libraries. SIP was originally developed in 1998 for PyQt - the Python bindings for the Qt GUI toolkit-but is suitable for generating bindings for any C or $\mathrm{C}++$ library.

We developed our first Python binding using SWIG. However, we found the speed was slow because it generated a very big Python interface program to call underlying C++ codes. We tried Boost.Python as well, but had some problems with function and operator overloading and the compilation time for building binding was long. We finally turned to SIP. It is easy to use and has very good performance [34] although the documentation is sparse.

InCore is the name of our Python binding for our Core Library. It exposes Core Library's classes such as BigInt, BigRat, BigFloat, Expr, so that the users can use them as Python objects in Python programs while providing the same features as our C++ library. Here is an example of a Python program using InCore. It calls Python's built-in math functions and our Core Library functions (exposed via InCore) to test the following two identities:

$$
\sqrt{2} \cdot \sqrt{3}-\sqrt{6}=0
$$

and

$$
\sqrt{1+y^{2}}-y-\frac{1}{\sqrt{1+y^{2}}+y}=0
$$

for $y=5000,5001, \ldots, 5010$.

```
import corelib
import math
def simpleTest(fn, cls, x, y, z):
    "test\iotax*yっ-ぃz"
    name = fn.__name__
    result = fn(cls(x))*fn(cls(y))-fn(cls(z))
```



```
def kahan(fn, cls, first, last):
    "testь(sqrt(1+y*y)-y) \iota-ь1/( sqrt (1+y*y)+y)"
    for n in range(first, last):
        y = cls (n)
```

```
    yy = y * y
    g=(fn}(yy+1)-y)-(1/(y+fn(yy+1))
```



```
def testFloating():
    print "Test^Python\_Floatingヶpoint^computation:"
    simpleTest(math.sqrt, int, 2, 3, 6)
    kahan(math.sqrt, int, 5000, 5010)
def testCore():
    print "Test_Core^Library^Level_3^computation:"
    simpleTest(corelib.sqrt, corelib.Expr, 2, 3, 6)
    kahan(corelib.sqrt, corelib.Expr, 5000, 5010)
if __name__ == "__main__":
    testFloating()
    testCore()
```

Currently, a Python binding for CGAL is also under development. It uses Boost.Python.

Chapter 3

Absolute Approximation of General Hypergeometric
 Function

The redesigned Core Library provides a better mechanism for integrating transcendental functions. We need algorithms to approximate such functions to absolute precision since we do not have root bounds for them. Many important results were obtained three decades ago by Brent (e.g., [10, [11). In particular, he showed that all the common elementary functions can be approximated efficiently using Newton-like schemes.

Most common elementary functions [64] are hypergeometric functions. In this chapter, we present our research effort on the general hypergeometric functions. We show that the absolute approximation of the general hypergeometric function $H(\mathbf{a} ; \mathbf{b} ; x)={ }_{p} F_{q}(\mathbf{a} ; \mathbf{b} ; x)$ is solvable. An explicit bound for the complexity of our algorithm is given. We further address the problem of evaluating H when x is a "blackbox number", i.e., the number x is represented by a pro-
cedure that can return an approximation \widetilde{x} to any desired absolute precision. This generalization allows us to extend our approximability results to most of the familiar transcendental functions of classical analysis that can be derived from H. In particular, this solves the so-called Table Maker's Dilemma 51 for such functions.

Overview of this chapter In Section 3.1, we give basic facts about hypergeometric functions. In Section 3.2, we show that H is absolutely approximable. Section 3.3 shows that H is absolutely approximable when x is a black box number. An explicit bound on the complexity of H is given in Section 3.4. In section 3.5, we address the problems of argument reduction, parameter preprocessing and mathematical constants for efficient evaluation. Some details of the implementation and integration of hypergeometric function package are presented in Section 3.6. In Section 3.7, we give our final remarks and propose some open problems.

3.1 Hypergeometric series and functions

3.1.1 Hypergeometric series

A function $r(n)$ is a rational function of n if there are polynomials $p(n)$ and $q(n)$ with

$$
r(n)=\frac{p(n)}{q(n)} .
$$

Consider a sequence with terms t_{n} and the associated series

$$
\sum_{n=0}^{\infty} t_{n} .
$$

If

$$
\frac{t_{n+1}}{t_{n}}=x
$$

then t_{n} is called a geometric term and $\sum_{n} t_{n}$ a geometric series. If

$$
\frac{t_{n+1}}{t_{n}}=r(n) x
$$

where $r(n)$ is a rational function, then t_{n} is called a hypergeometric term and $\sum_{n} t_{n}$ a hypergeometric series. So hypergeometric term and series are a generalization of geometric term and series, respectively. See the second column of Table 3.1 for some examples.

A given term and its corresponding series can be normalized: (1) by renumbering the terms such that the index of the first nonzero term is $0,(2)$ by factoring out the first term such that the new first term is equal 1. After this normalization, every geometric series can be written in its normal form

$$
\sum_{n=0}^{\infty} x^{n}
$$

and every hypergeometric series can be written in its normal form

$$
\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{q}\right)_{n} n!} x^{n}
$$

where the rising factorial or Pochhammer symbol $(a)_{k}$ is given by $(a)_{k}=a(a+$ 1) $(a+2) \cdots(a+k-1)$ for $k \geq 1$ and $(a)_{0}=1$.

The above normal form of hypergeometric series may be denoted by the following F-notation:

$$
{ }_{p} F_{q}\left(a_{1}, \cdots, a_{p} ; b_{1}, \cdots, b_{q} ; x\right) .
$$

Thus, a hypergeometric series is completely defined by the sequences $\mathrm{a}=$ $\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{q}\right)$. These are called the upper and lower parameters of the hypergeometric series. x is called the argument.

Note the presence of the parameter $1\left(n!=(1)_{n}\right)$ in the denominator; this is a standard convention. Many common hypergeometric series have this factor; but in case denominator does not naturally contain such a factor, we artificially attach this factor to numerator and denominator and denote it as b_{0}.

3.1.2 Hypergeometric function and convergence

A hypergeometric function is a hypergeometric series in which the evaluation point is a variable. It is defined only for those x in which the hypergeometric series converges. If one of the upper parameters is a non-positive integer, then the hypergeometric series has finite number of terms and the hypergeometric function become a polynomial. Otherwise the convergence is given by:

| number of parameter | convergence radius |
| :---: | :---: |
| $p<q+1$ | ∞ |
| $p=q+1$ | 1 |
| $p>q+1$ | 0 |

The interesting case is $p=q+1$. Think of 1 as a hidden lower parameter, this means that the number of upper parameters is equal to the number of lower parameters. In the case of $p=q+1$ the convergence depends on x and on the value of

$$
s:=\sum_{k=1}^{q} b_{k}-\sum_{k=1}^{p} a_{k}
$$

called the parameter excess (3). The following Lemma 14 shows their relations.

LEMMA 14. Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{q}\right)$ where $p, q \leq 0$. If $p=q+1$, then the hypergeometric series

$$
\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n} \cdots\left(b_{q}\right)_{n} n!} x^{n}
$$

is convergent for $|x|<1$ and divergent for $|x|>1$. When $x=1$, it converges if $s>0$; when $x=-1$, it is absolutely convergent when $s>0$, and convergent but not absolutely when $-1 \leq s \leq 0$, where s is the parameter excess defined above.

Proof. The term ratio of the series is

$$
\frac{t_{n+1}}{t_{n}}=\frac{\left(a_{1}+n\right) \cdots\left(a_{p}+n\right)}{\left(b_{1}+n\right) \cdots\left(b_{q}+n\right)(1+n)} x=\frac{\left(1+a_{1} / n\right) \cdots\left(1+a_{p} / n\right)}{\left(1+b_{1} / n\right) \cdots\left(1+b_{q} / n\right)(1+1 / n)} x
$$

so that as $n \rightarrow \infty$, the ratio

$$
\left|\frac{t_{n+1}}{t_{n}}\right| \rightarrow|x|
$$

By D'Alembert's test, the series is convergent for all values of x, real or complex such that $|x|<1$, and divergent for all values of x, real or complex, such that $|x|>1$. When $|x|=1$,

$$
\begin{aligned}
\left|\frac{t_{n+1}}{t_{n}}\right| & =\left|\left\{1+\frac{\sum_{k=1}^{p} a_{k}}{n}+O\left(1 / n^{2}\right)\right\}\left\{1-\frac{1+\sum_{k=1}^{q} b_{k}}{n}+O\left(1 / n^{2}\right)\right\}\right| \\
& =\left|1-\frac{1+\sum_{k=1}^{q} b_{k}-\sum_{k=1}^{p} a_{k}}{n}+O\left(1 / n^{2}\right)\right| \\
& =\left|1-\frac{1+s}{n}+O\left(1 / n^{2}\right)\right|
\end{aligned}
$$

Thus, when $x=1$, by Raabe's test, it converges if $s>0$. When $x=-1$, the series is absolutely convergent when $s>0$, and convergent but not absolutely when $-1 \leq s \leq 0$.
Q.E.D.

From now on, we assume that $p \leq q+1$ and $|x| \leq 1$ if $p=q+1$.

3.1.3 Elementary Functions in Hypergeometric Form

Table 3.1 lists the hypergeometric series representation of some elementary functions. For each function, we list (i) the usual power series representation of that function, (ii) the ratio t_{k+1} / t_{k} between two consecutive terms of that power series, and (iii) the corresponding hypergeometric series. In some cases, the first term t_{0} of the power series is not 1 , and has to be factored out from the series (e.g., $\sin x, \arcsin x$).

Table 3.1: Some elementary functions in terms of hypergeometric series.

| Functions | Power series | Ratio t_{k+1} / t_{k} | Hypergeometric series |
| :---: | :---: | :---: | :---: |
| $\exp (x)$ | $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ | $\frac{1}{(k+1)} x$ | ${ }_{0} F_{0}(; ; x)$ |
| $\operatorname{erf}(x)$ | $\frac{2 x}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1) k!} x^{2 k}$ | $\frac{\left(k+\frac{1}{2}\right)}{\left(k+\frac{3}{2}\right)(k+1)}\left(-x^{2}\right)$ | $\left(\frac{2 x}{\sqrt{\pi}}\right){ }_{1} F_{1}\left(\frac{1}{2} ; \frac{3}{2} ;-x^{2}\right)$ |
| $\sin (x)$ | $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}$ | $\frac{1}{\left(k+\frac{3}{2}\right)(k+1)}\left(-\frac{x^{2}}{4}\right)$ | $x \cdot{ }_{0} F_{1}\left(; \frac{3}{2} ; \frac{-x^{2}}{4}\right)$ |
| $\cos (x)$ | $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k}$ | $\frac{1}{\left(k+\frac{1}{2}\right)(k+1)}\left(-\frac{x^{2}}{4}\right)$ | ${ }_{0} F_{1}\left(; \frac{1}{2} ; \frac{-x^{2}}{4}\right)$ |
| $\arcsin (x)$ | $\sum_{k=0}^{\infty} \frac{(2 k)!}{2^{2 k}(2 k+1)(k!)^{2}} x^{2 k+1}$ | $\frac{\left(k+\frac{1}{2}\right)^{2}}{\left(k+\frac{3}{2}\right)(k+1)} x^{2}$ | $x \cdot{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; \frac{3}{2} ; x^{2}\right)$ |
| $\arctan (x)$ | $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k+1}$ | $\frac{\left(k+\frac{1}{2}\right)}{\left(k+\frac{3}{2}\right)}\left(-x^{2}\right)$ | $x \cdot{ }_{2} F_{1}\left(\frac{1}{2}, 1 ; \frac{3}{2} ;-x^{2}\right)$ |
| $\log (1+x)$ | $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+1} x^{k+1}$ | $\frac{(k+1)(k+1)}{(k+2)(k+1)}(-x)$ | $x \cdot{ }_{2} F_{1}(1,1 ; 2 ;-x)$ |
| ellipticK (x) | $\frac{\pi}{2} \sum_{k=0}^{\infty}\left[\frac{(2 k-1)!!}{(2 k)!!}\right]^{2} x^{2 k}$ | $\frac{\left(k+\frac{1}{2}\right)\left(k+\frac{1}{2}\right)}{(k+1)(k+1)} x^{2}$ | $\frac{\pi}{2} \cdot{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ; x^{2}\right)$ |
| ellipticE(x) | $\frac{\pi}{2}\left\{1-\sum_{k=0}^{\infty}\left[\frac{(2 k-1)!!}{(2 k)!!}\right]^{2} \frac{x^{2 k}}{2 k-1}\right\}$ | $\frac{\left(k-\frac{1}{2}\right)\left(k+\frac{1}{2}\right)}{(k+1)(k+1)} x^{2}$ | $\frac{\pi}{2} \cdot{ }_{2} F_{1}\left(-\frac{1}{2}, \frac{1}{2} ; 1 ; x^{2}\right)$ |
| erfi (x) | $\frac{2 x e^{x^{2}}}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{k}}{(2 k+1)!} x^{2 k}$ | $\frac{(k+1)}{\left(k+\frac{3}{2}\right)(k+1)}\left(-x^{2}\right)$ | $\left(\frac{2 x x^{x^{2}}}{\sqrt{\pi}}\right){ }_{1} F_{1}\left(1 ; \frac{3}{2} ;-x^{2}\right)$ |
| $\operatorname{dilog}(x)$ | $\sum_{k=0}^{\infty} \frac{x^{k}}{k^{2}}$ | $\frac{k^{2}}{(k+1)(k+1)} x$ | ${ }_{2} F_{2}(0,0 ; 1,1 ; x)$ |
| x^{y} | $\sum_{k=0}^{\infty} \frac{(k-y)!}{(-y)!k!}(1-x)^{k}$ | $\frac{k-y}{k+1}(1-x)$ | ${ }_{1} F_{0}(-y ; ; 1-x)$ |
| BesselJ [p, x] | $\frac{1}{p!}\left(\frac{x}{2}\right)^{p} \sum_{k=0}^{\infty} \frac{(-1)^{k} p!}{k!(k+p)!}\left(\frac{x}{2}\right)^{2 k}$ | $\frac{1}{(k+p+1)(k+1)}\left(-\frac{x^{2}}{4}\right)$ | $\frac{1}{p!}\left(\frac{x}{2}\right)^{p}{ }_{0} F_{1}\left(; p+1 ;-\frac{x^{2}}{4}\right)$ |
| LaguerreL $[p, x]$ | $\sum_{k=0}^{\infty} \frac{(k-p)!}{(-p)!k!k!} x^{k}$ | $\frac{(k-p)}{(k+1)(k+1)} x$ | ${ }_{1} F_{1}(-p ; 1 ; x)$ |
| Laguerre $\mathrm{P}[p, x]$ | $\sum_{k=0}^{\infty} \frac{(k-p)!(k+p+1)!}{(-p)!(p+1)!k!k!}\left(\frac{1-x}{2}\right)^{k}$ | $\frac{(k-p)(k+p+1)}{(k+1)(k+1)} \frac{1-x}{2}$ | ${ }_{2} F_{1}\left(-p, p+1 ; 1 ; \frac{1-x}{2}\right)$ |
| $\mathrm{HermiteH}_{2 n}(x)$ | $(-1)^{n}(2 n)!\sum_{k=0}^{\infty} \frac{(-1)^{k}(2 x)^{2 k}}{(2 k)!(n-k)!}$ | $\frac{(k-n)}{\left(k+\frac{1}{2}\right)(k+1)} x^{2}$ | $\frac{(-1)^{n}(2 n)!}{n!}{ }_{1} F_{1}\left(-n ; \frac{1}{2} ; x^{2}\right)$ |
| HermiteH ${ }_{2 n+1}(x)$ | $(-1)^{n}(2 n+1)!\sum_{k=0}^{\infty} \frac{(-1)^{k}(2 x)^{2 k+1}}{(2 k+1)!(n-k)!}$ | $\frac{(k-n)}{\left(k+\frac{3}{2}\right)(k+1)} x^{2}$ | $\frac{2 x(-1)^{n}(2 n+1)!}{n!}{ }_{1} F_{1}\left(-n ; \frac{3}{2} ; x^{2}\right)$ |

The standard series for $\log (1+x)$ in Table 3.1 has poor convergence prop-
erties. By subtracting the standard series for $\log (1+x)$ from $\log (1-x)$, we obtain

$$
\log \frac{1-x}{1+x}=-2 x\left[1+\frac{x^{2}}{3}+\frac{x^{4}}{5}+\cdots\right]=-2 x \cdot{ }_{2} F_{1}\left(1, \frac{1}{2} ; \frac{3}{2} ; x^{2}\right) .
$$

Changing variables, we obtain

$$
\log y=-2\left(\frac{1-y}{1+y}\right){ }_{2} F_{1}\left(1, \frac{1}{2} ; \frac{3}{2} ;\left(\frac{1-y}{1+y}\right)^{2}\right)
$$

for $0<y<\infty$. In addition to the functions in Table 3.1, which are mostly computed through direct evaluation of listed hypergeometric series, we also compute $\tan (x), \cot (x)$, and $\arccos (x)$ as

$$
\begin{align*}
\tan (x) & =\frac{\sin (x)}{\cos (x)} \tag{3.1}\\
\cot (x) & =\frac{\cos (x)}{\sin (x)} \tag{3.2}\\
\arccos (x) & =\arcsin \left(\sqrt{1-x^{2}}\right), 0 \leq x \leq 1 \tag{3.3}
\end{align*}
$$

3.2 General Approximate Evaluation Algorithm

We regard the parameters \mathbf{a}, \mathbf{b} as fixed in ${ }_{p} F_{q}(\mathbf{a} ; \mathbf{b} ; x)$. In this thesis, we only consider the case when \mathbf{a}, \mathbf{b} are rationals. Let $H(\mathbf{a} ; \mathbf{b} ; x)={ }_{p} F_{q}(\mathbf{a} ; \mathbf{b} ; x)$ denote the general hypergeometric function where the parameters as well as p, q can now vary. It is conceivable that each hypergeometric function ${ }_{p} F_{q}(\mathbf{a} ; \mathbf{b} ; x)$ is absolutely approximable, but the function H is not absolutely approximable. In other word, the absolute approximation of H requires a uniform algorithmic method that is applicable to arbitrary values of the parameters. We give this approximate evaluation problem formally as follows:

Given $\mathbf{a}=\left(a_{1}, \ldots, a_{p}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{q}\right)$ where $p, q \geq 0$ and $p \leq q+1$ and the argument x and precision ℓ, compute an approximation $\widetilde{H}(\mathbf{a} ; \mathbf{b} ; x ; \ell)$ of

$$
H=H(\mathbf{a} ; \mathbf{b} ; x)
$$

such that

$$
|\widetilde{H}-H| \leq 2^{-\ell}
$$

In this section, we present an algorithm for computing \widetilde{H}. Let $H(\mathbf{a} ; \mathbf{b} ; x)=$ $S_{n}+R_{n}$ where $S_{n}=\sum_{k=0}^{n-1} t_{k}$ and $R_{n}=\sum_{k=n}^{\infty} t_{k}$. The algorithm proceeds in two stages: in STAGE A, we compute an n_{3} such that $\left|R_{n}\right| \leq 2^{-\ell-1}$ for all $n>n_{3}$. In STAGE B, we compute an approximation \widetilde{S}_{n} such that $\left|\widetilde{S}_{n}-S_{n}\right| \leq 2^{-\ell-1}$. Since STAGE B is clearly computable, it remains to prove that STAGE A is computable.

This basic strategy follows [23]. Among the improvements are: (1) The original paper only addresses the case where the series $\sum_{k \geq 0} t_{k}$ satisfies $\left|t_{k}\right|>\left|t_{k+1}\right|$ for all $k \geq 0$, while our current method is completely general. (2) Originally, STAGE A (in the non-alternating case) determines n_{3} by a computational procedure that evaluates t_{n} for increasing values of n until $n=n_{3}$. The STAGE A presented below is able to compute n_{3} directly.
§46. STAGE A We introduce some notations: Let $a_{\max }^{+}$denote the maximum value of the positive a_{i} 's, and $a_{\max }^{-}$denote the maximum of $-a_{i}$'s where $a_{i}<$ 0 . If all the a_{i} 's are positive, we set $a_{\max }^{-}$to 0 , and similarly, if all a_{i} 's are negative, we set $a_{\max }^{+}$to 0 . Also, set $a_{\max }=\max \left\{a_{\max }^{+}, a_{\max }^{-}\right\}$. We write $s_{k}^{+}(\mathbf{a})$ for the sum $\sum_{i: a_{i}>0} a_{i}^{k}$ which range over positive elements in \mathbf{a}. Also $s_{k}^{-}(\mathbf{a})$ is the corresponding sum ranging over negative a_{i} 's. Finally, let $\bar{a}=\left(\sum_{i}^{p} a_{i}\right) / p$.

Each term t_{n+1} in our hypergeometric series $H(\mathbf{a} ; \mathbf{b} ; x)$ can be written as $t_{n+1}=t_{n} f(n) x$ where

$$
\begin{equation*}
f(n)=P(n) / Q(n), \quad P(n)=\prod_{i=1}^{p}\left(n+a_{i}\right), \quad Q(n)=\prod_{j=0}^{q}\left(n+b_{j}\right) . \tag{3.4}
\end{equation*}
$$

and $b_{0}=1$. Write \mathbf{b}^{\prime} for $\left(b_{0}, b_{1}, \ldots, b_{q}\right)$ where $b_{0}=1$ is the implicit lower parameter.
$\S 47$. Finding n_{0} Note that $R_{n}=\sum_{k=n}^{\infty} t_{k} ;$ it is clear that t_{k} has to be strictly decreasing in order to guarantee $\left|R_{n}\right| \leq 2^{-\ell-1}$. Therefore, the first step of our algorithm is to compute a n_{0} such that $\left|\frac{t_{n+1}}{t_{n}}\right|=|x| f(n)<1$ holds for $n \geq n_{0}$. The following lemma gives this formula:

Lemma 15. $|x| f(n)<1$ holds for $n>n_{0}$ where

$$
n_{1}= \begin{cases}\max \left\{\bar{a}+2 b_{\max }^{-},\left(2^{p}|x|\right)^{\frac{1}{q+1-p}}\right\} & \text { if } p<q+1 \tag{3.5}\\ \frac{\bar{a}+b_{\max }^{-}}{1-\sqrt[2]{|x|}}+b_{\max }^{-} & \text {if } p=q+1\end{cases}
$$

Proof.

$$
\begin{aligned}
P(n) & =\prod_{i=1}^{p}\left(a_{i}+n\right) \\
& \leq\left[\frac{\left(a_{1}+n\right)+\left(a_{2}+n\right)+\cdots+\left(a_{p}+n\right)}{p}\right]^{p}=(\bar{a}+n)^{p}
\end{aligned}
$$

and

$$
Q(n)=\prod_{j=0}^{q}\left(b_{j}+n\right) \geq\left(n-b_{\max }^{-}\right)^{q+1} .
$$

So we have

$$
\left|\frac{t_{n+1}}{t_{n}}\right|=\frac{P(n)}{Q(n)}|x| \leq \frac{(\bar{a}+n)^{p}}{\left(n-b_{\max }^{-}\right)^{q+1}}|x| .
$$

We consider the following two cases:

1. $p<q+1$. Thus

$$
\begin{aligned}
& \qquad\left|\frac{t_{n+1}}{t_{n}}\right| \leq\left(1+\frac{\bar{a}+b_{\max }^{-}}{n-b_{\max }^{-}}\right)^{p} \frac{|x|}{n^{q+1-p}} \leq \frac{2^{p}|x|}{n^{q+1-p}} \leq 1 \\
& \text { provided } n \geq \max \left\{\bar{a}+2 b_{\text {max }}^{-},\left(\left.2^{p}|x|\right|^{\frac{1}{q+1-p}}\right\} .\right.
\end{aligned}
$$

2. $p=q+1$. Thus

$$
\left|\frac{t_{n+1}}{t_{n}}\right| \leq\left(1+\frac{\bar{a}+b_{\max }^{-}}{n-b_{\max }^{-}}\right)^{p}|x| \leq 1
$$

provided $n \geq \frac{\bar{a}+b_{\text {max }}^{-}}{1-\sqrt[2]{|x|}}+b_{\text {max }}^{-}$.

Q.E.D.

Recall that a series $\sum_{n=0}^{\infty} t_{n}$ is called alternating if $t_{n} t_{n+1}<0$ for all $n \in \mathbb{N}$. For alternating series, we have the following lemma:

Lemma 16. if $\left|t_{i}\right| \geq\left|t_{i+1}\right|$ for all $i \geq n$, then $\left|R_{n}\right| \leq\left|t_{n}\right|$ and $R_{n} t_{n} \geq 0$.

For $n>n_{0},\left|R_{n}\right|$ is bounded by $\left|t_{n}\right|$. For non-alternating series, we obtain the following bounds for $\left|R_{n}\right|$:

Lemma 17. If $|x| f(n)<1$, then

1. if starting from some $n, f(n)$ decreases, i.e., $f(n) \geq f(n+1)$, then

$$
\left|R_{n}\right| \leq \frac{\left|t_{n}\right|}{1-|x| f(n)}
$$

2. if starting from some n, $f(n)$ increases, i.e., $f(n) \leq f(n+1)$, then

$$
\left|R_{n}\right| \leq \frac{\left|t_{n}\right|}{1-|x|}
$$

Proof.

1. Note that if $f(n)$ decreases, then for $i \geq 0$,

$$
\left|t_{n+i}\right|=\left|t_{n}\right| \cdot|x|^{i} \prod_{j=0}^{i-1} f(n+j) \leq\left|t_{n}\right| \cdot|x|^{i} \prod_{j=0}^{i-1} f(n) \leq\left|t_{n}\right| \cdot|x|^{i} f(n)^{i} .
$$

Summing,

$$
\left|R_{n}\right|=\left|\sum_{i \geq 0} t_{n+i}\right| \leq \sum_{i \geq 0}\left|t_{n+i}\right| \leq\left|t_{n}\right| \sum_{i \geq 0}|x|^{i} f(n)^{i}=\frac{\left|t_{n}\right|}{1-|x| f(n)} .
$$

2. If $f(n)$ increases, then $f(n)<1$ since $\lim _{n \rightarrow \infty} f(n)=1$ if $p=q+1$ and $\lim _{n \rightarrow \infty} f(n)=0$ if $p<q+1$. Hence,

$$
\left|t_{n+i}\right|=\left|t_{n}\right| \cdot|x|^{i} \prod_{j=0}^{i-1} f(n+j) \leq\left|t_{n}\right| \cdot|x|^{i}
$$

Summing,

$$
\left|R_{n}\right|=\left|\sum_{i \geq 0} t_{n+i}\right| \leq \sum_{i \geq 0}\left|t_{n+i}\right| \leq\left|t_{n}\right| \sum_{i \geq 0}|x|^{i}=\frac{\left|t_{n}\right|}{1-|x|}
$$

Q.E.D.

We notice that the geometric case would also apply for the alternating series as well. However, it is obvious that the upper bound $\left(\left|t_{n}\right|\right)$ of $R(n)$ given by the alternating case is better than here $\left(\frac{\left|t_{n}\right|}{1-|x| f(n)}\right.$ or $\left.\frac{\left|t_{n}\right|}{1-|x|}\right)$.
§48. Determining n_{1} for $p<q+1$ Now we need to determine a value n_{1} beyond which $f(n)$ is monotone increasing or decreasing. Write " $f(n) \nearrow n_{1}$ " to mean that for all $n>n_{1}, f(n)<f(n+1)$. Similarly, " $f(n) \searrow n_{1}$ " means that for all $n>n_{1}, f(n)>f(n+1)$. In either case, we can write " $f(n) \uparrow n_{1}$ ". We may also write " $f(n) \nearrow$ " if $f(n) \nearrow n_{1}$ for some n_{1}. Similarly, for " $f(n) \searrow$ ". The following Lemma 18 and Lemma 20 gives such a condition depends on $p<q+1$ and $p=q+1$.

Lemma 18. Let $p<q+1$ and $\left\{a_{1}, \ldots, a_{p}\right\} \neq\left\{b_{0}, b_{1}, \ldots, b_{q}\right\}$ viewed as multi-sets.
Denote

$$
r=\frac{s_{1}\left(\mathbf{b}^{\prime}\right)-\frac{1}{2} s_{1}^{+}(\mathbf{a})-2 s_{1}^{-}(\mathbf{a})}{q+1-p}
$$

then $f(n) \searrow n_{1}$ where

$$
\begin{equation*}
n_{1}=\max \left\{a_{\max }^{+}, 2 a_{\max }^{-}, b_{\max }^{-}, r\right\} \tag{3.6}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
f(n) & =\frac{\prod_{i=1}^{p}\left(a_{i}+n\right)}{\prod_{j=0}^{q}\left(b_{j}+n\right)} \\
& =\frac{\prod_{i=1}^{p}\left(\frac{a_{i}}{n}+1\right)}{\prod_{j=0}^{q}\left(\frac{b_{j}}{n}+1\right)}\left(\frac{1}{n}\right)^{q+1-p} \\
\log f(n) & =\sum_{i=1}^{p} \log \left(\frac{a_{i}}{n}+1\right)-\sum_{j=0}^{q} \log \left(\frac{b_{j}}{n}+1\right) \\
& +(q+1-p) \log \left(\frac{1}{n}\right)
\end{aligned}
$$

Let $\nu=1 / n$ and define $h(\nu)$ via

$$
\begin{aligned}
h(\nu) & =\log f(1 / \nu) \\
& =\sum_{i=1}^{p} \log \left(a_{i} \nu+1\right)-\sum_{j=0}^{q} \log \left(b_{j} \nu+1\right) \\
& +(q+1-p) \log \nu \\
h^{\prime}(\nu) & =\sum_{i=1}^{p} \frac{a_{i}}{a_{i} \nu+1}-\sum_{j=0}^{q} \frac{b_{j}}{b_{j} \nu+1}+\frac{q+1-p}{\nu} .
\end{aligned}
$$

From the following facts:

$$
\begin{aligned}
& \frac{a_{i}}{a_{i} \nu+1}>\frac{a_{i}}{2} \text { for } a_{i}>0, n>a_{\max }^{+}, \\
& \frac{a_{i}}{a_{i} \nu+1}>2 a_{i} \text { for } a_{i}<0, n>2 a_{\max }^{+}, \\
& \frac{b_{j}}{b_{j} \nu+1}>-b_{j} \text { for } b_{i}>0, n>0, \\
& \frac{b_{j}}{b_{j} \nu+1}>-b_{j} \text { for } b_{i}<0, n>b_{\max }^{-},
\end{aligned}
$$

for $n>\max \left\{a_{\max }^{+}, 2 a_{\text {max }}^{-}, b_{\text {max }}^{-}\right\}$, we have

$$
h^{\prime}(\nu) \geq \frac{1}{2} s_{1}^{+}(\mathbf{a})+2 s_{1}^{-}(\mathbf{a})-s_{1}(\mathbf{b})+\frac{q+1-p}{\nu} .
$$

Hence, if we choose

$$
n_{1}=\max \left\{a_{\max }^{+}, 2 a_{\max }^{-}, b_{\max }^{-}, r\right\}
$$

we conclude that $h^{\prime}(\nu)>0$. This means as $h(\nu)$ increases with ν. But as $n \rightarrow \infty, \nu$ decreases towards 0 and so $h(\nu)$ is decreasing, i.e., $f(n) \searrow$ as claimed.
Q.E.D.
$\S 49$. Determining n_{1} for $p=q+1$ For the case $p=q+1$, we need a lemma from the Symmetric Polynomial theorem. Let

$$
s_{k}(\mathbf{a})=\sum_{i=1}^{p} a_{i}^{k}, \quad k=1, \ldots, p
$$

and $\sigma_{k}(\mathbf{a})$ be the k th elementary symmetric function on \mathbf{a}. Thus

$$
\begin{gathered}
\sigma_{1}(\mathbf{a})=s_{1}(\mathbf{a}), \quad \sigma_{2}(\mathbf{a})=\sum_{1 \leq i<j \leq p} a_{i} a_{j}, \\
\sigma_{3}(\mathbf{a})=\sum_{1 \leq i<j<k \leq p} a_{i} a_{j} a_{k}, \quad \ldots, \quad \sigma_{p}(\mathbf{a})=\prod_{i=1}^{p} a_{i} .
\end{gathered}
$$

Also, define the polynomials

$$
\begin{equation*}
P_{\mathbf{a}}(n)=\prod_{i=1}^{p}\left(a_{i}+n\right), \quad P_{\mathbf{b}}(n)=\prod_{i=1}^{p}\left(b_{i}+n\right) \tag{3.7}
\end{equation*}
$$

Lemma 19. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{p}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{p}\right)$ where $a_{1} \leq \cdots \leq a_{p}$ and $b_{1} \leq \cdots \leq b_{p}$. The following three statements are equivalent:
(1) $(\forall k=1, \ldots, p)\left[s_{k}(\mathbf{a})=s_{k}(\mathbf{b})\right]$.
(2) $(\forall k=1, \ldots, p)\left[\sigma_{k}(\mathbf{a})=\sigma_{k}(\mathbf{b})\right]$.
(3) The polynomials $P_{\mathbf{a}}(n)$ and $P_{\mathbf{b}}(n)$ are equal.
(4) $\mathbf{a}=\mathbf{b}$.

Proof. The equivalence of (1) and (2) is a simple consequence of the NewtonGirard formulas which show that the $s_{k}(\mathbf{a})$'s and the $\sigma_{k}(\mathbf{a})$'s are derived from each other:

$$
\begin{aligned}
& s_{1}(\mathbf{a})=\sigma_{1}(\mathbf{a}) \\
& s_{2}(\mathbf{a})=\left(\sigma_{1}(\mathbf{a})\right)^{2}-2 \sigma_{2}(\mathbf{a}) \\
& s_{3}(\mathbf{a})=\left(\sigma_{1}(\mathbf{a})\right)^{3}-\sigma_{1}(\mathbf{a}) \sigma_{2}(\mathbf{a})+3 \sigma_{3}(\mathbf{a})
\end{aligned}
$$

The equivalence of (2) and (3) follows since $\sigma_{k}(\mathbf{a})$ is the coefficient of n^{k} in $P_{\mathbf{a}}(n)$ for all $k=1, \ldots, n$. The equivalence of (3) and (4) uses the following remark: if the i th derivative $P_{\mathbf{a}}^{(i)}(n)$ vanishes at $n=a$ for all $i=0,1, \ldots, r-1$ but $P_{\mathbf{a}}^{(r)}(a) \neq 0$, then a occurs exactly $r \geq 0$ times in a. Thus, $P_{\mathbf{a}}(n)=P_{\mathbf{a}}(n)$ implies that a occurs exactly the same number of times in \mathbf{a} as in \mathbf{b}. This shows that $P_{\mathbf{a}}(n)=P_{\mathbf{a}}(n)$ implies $\mathbf{a}=\mathbf{b}$. The converse implication is immediate: $\mathbf{a}=\mathbf{b}$ implies $P_{\mathbf{a}}(n)=P_{\mathbf{a}}(n)$.
Q.E.D.

Now we can prove the following lemma:

Lemma 20. Let $p=q+1$ and $\left\{a_{1}, \ldots, a_{p}\right\} \neq\left\{b_{0}, b_{1}, \ldots, b_{q}\right\}$ viewed as multisets, and $k=1, \ldots, p$ be the smallest such index such that $s_{k}(\mathbf{a}) \neq s_{k}\left(\mathbf{b}^{\prime}\right)$.
(a) $f(n) \searrow$ iff $(-1)^{k}\left(s_{k}\left(\mathbf{b}^{\prime}\right)-s_{k}(\mathbf{a})\right)>0$.
(b) Denote

$$
r_{1}=\sqrt[k]{\frac{s_{k}\left(\mathbf{b}^{\prime}\right)}{s_{k}(\mathbf{a})}}, \quad r_{2}=\sqrt[k]{\frac{s_{k}^{+}\left(\mathbf{b}^{\prime}\right)-s_{k}^{-}(\mathbf{a})}{s_{k}^{+}(\mathbf{a})-s_{k}^{-}\left(\mathbf{b}^{\prime}\right)}}
$$

then we have:
(i) if k is even, then $f(n) \searrow n_{1}$ where

$$
\begin{equation*}
n_{1}=\max \left\{a_{\max }, b_{\max }, b_{\max } \frac{1}{r_{1}-1}\right\} \tag{3.8}
\end{equation*}
$$

provided that $s_{k}\left(\mathbf{b}^{\prime}\right)>s_{k}(\mathbf{a})$, and $f(n) \nearrow n_{1}$ where

$$
\begin{equation*}
n_{1}=\max \left\{a_{\max }, b_{\max }, a_{\max } \frac{r_{1}}{r_{1}-1}\right\} \tag{3.9}
\end{equation*}
$$

provided that $s_{k}\left(\mathbf{b}^{\prime}\right)<s_{k}(\mathbf{a})$,
(ii) if k is odd, then $f(n) \nearrow n_{1}$, where

$$
\begin{equation*}
n_{1}=\max \left\{a_{\max }, b_{\max }, \frac{b_{\max }^{+}+b_{\max }^{-} r_{2}}{r_{2}-1}\right\} \tag{3.10}
\end{equation*}
$$

provided that $s_{k}\left(\mathbf{b}^{\prime}\right)>s_{k}(\mathbf{a})$, and $f(n) \searrow n_{1}$ where

$$
\begin{equation*}
n_{1}=\max \left\{a_{\max }, b_{\max }, \frac{a_{\max }^{+} r_{2}+a_{\max }^{-}}{1-r_{2}}\right\} \tag{3.11}
\end{equation*}
$$

provided that $s_{k}\left(\mathbf{b}^{\prime}\right)<s_{k}(\mathbf{a})$,

Proof. (a) In this case, we have

$$
h^{\prime}(\nu)=\sum_{i=1}^{p} \frac{a_{i}}{a_{i} \nu+1}-\sum_{j=1}^{q} \frac{b_{j}}{b_{j} \nu+1} .
$$

In general, for $r \geq 1$, the r th derivative is

$$
h^{(r)}(\nu)=(r-1)!(-1)^{r}\left(\sum_{j=0}^{q}\left(\frac{b_{j}}{b_{j} \nu+1}\right)^{r}-\sum_{i=1}^{p}\left(\frac{a_{i}}{a_{i} \nu+1}\right)^{r}\right)
$$

Also, $h^{(0)}(\nu)$ is simply $h(\nu)$. Evaluating at $\nu=0$, we get

$$
\begin{aligned}
\left.h^{(r)}(\nu)\right|_{\nu=0} & =(r-1)!(-1)^{r}\left(\sum_{j=0}^{q} b_{j}^{r}-\sum_{i=1}^{p} a_{i}^{r}\right) \\
& =(r-1)!(-1)^{r}\left(s_{r}\left(\mathbf{b}^{\prime}\right)-s_{r}(\mathbf{a})\right) .
\end{aligned}
$$

By Lemma 19, we know that there exists a smallest index k such that $s_{k}(\mathbf{a}) \neq$ $s_{k}\left(\mathbf{b}^{\prime}\right)$. Then $\left.h^{(r)}(\nu)\right|_{\nu=0}=0$ for $r=1, \ldots, k-1$ and $\left.h^{(k)}(\nu)\right|_{\nu=0} \neq 0$. So for $\varepsilon>0$ small enough, $h(\varepsilon)$ and $h^{\prime}(\varepsilon)$ has the sign of $\left.h^{(k)}(\nu)\right|_{\nu=0}$. As in the proof of Lemma 18, $h^{\prime}(\varepsilon)>0$ means that $f(n) \searrow$. This proves $f(n) \searrow$ iff $(-1)^{k}\left(s_{k}\left(\mathbf{b}^{\prime}\right)-s_{k}(\mathbf{a})\right)>0$.
(b) Denoting

$$
S_{k}(\nu)=\sum_{j=0}^{q}\left(\frac{b_{j}}{b_{j} \nu+1}\right)^{k}-\sum_{i=1}^{p}\left(\frac{a_{i}}{a_{i} \nu+1}\right)^{k},
$$

then we have $f(n) \searrow$ if $(-1)^{k} S_{k}(\nu)>0$ and $f(n) \nearrow$ if $(-1)^{k} S_{k}(\nu)<0$.

If k is even, then b_{j}^{k} and a_{i}^{k} are positive. For $n>\max \left\{a_{\max }, b_{\max }\right\}$, we have

$$
0<\frac{1}{1+a_{\max } \nu} \leq \frac{1}{1+a_{i} \nu} \leq 1, \quad 0<\frac{1}{1+b_{\max } \nu} \leq \frac{1}{1+b_{i} \nu} \leq 1
$$

Hence,

$$
\begin{aligned}
S_{k}(\nu) & \geq\left(\frac{1}{1+b_{\max } \nu}\right)^{k} \sum_{j=0}^{q} b_{j}{ }^{k}-\sum_{i=1}^{p} a_{i}{ }^{k} \\
& =\left(\frac{1}{1+b_{\max } \nu}\right)^{k}\left(s_{k}\left(\mathbf{b}^{\prime}\right)-s_{k}(\mathbf{a})\right)
\end{aligned}
$$

We can choose

$$
n>b_{\max } \frac{1}{r_{1}-1}
$$

to ensure $S_{k}(\nu)>0$ provided $s_{k}\left(\mathbf{b}^{\prime}\right)>s_{k}(\mathbf{a})$. In this case, $f(n) \searrow n_{1}$ where

$$
n_{1}=\max \left\{a_{\max }, b_{\max }, b_{\max } \frac{1}{r_{1}-1}\right\} .
$$

Similarly we can choose another n_{1} for the case $s_{k}\left(\mathbf{b}^{\prime}\right)<s_{k}(\mathbf{a})$.

If k is odd, then we can rewrite $S_{k}(\nu)$ as

$$
\begin{aligned}
S_{k}(\nu) & =\sum_{j}\left(\frac{b_{j}^{+}}{1+b_{j}^{+} \nu}\right)^{k}+\sum_{j}\left(\frac{b_{j}^{-}}{1+b_{j}^{-} \nu}\right)^{k} \\
& -\sum_{i}\left(\frac{a_{i}^{+}}{1+a_{i}^{+} \nu}\right)^{k}-\sum_{i}\left(\frac{a_{i}^{-}}{1+a_{i}^{-} \nu}\right)^{k}
\end{aligned}
$$

where a_{i}^{+}, b_{j}^{+}are positive a_{i}, b_{j} and a_{i}^{-}, b_{j}^{-}are negative a_{i}, b_{j}.

For $n>\max \left\{a_{\max }, b_{\max }\right\}$, we have

$$
\begin{aligned}
& 0<\frac{1}{1+b_{\max }^{+} \nu} \leq \frac{1}{1+b_{j}^{+} \nu} \leq \frac{1}{1+a_{i}^{-} \nu} \\
& 0<\frac{1}{1+a_{i}^{+} \nu} \leq \frac{1}{1+b_{i}^{-} \nu} \leq \frac{1}{1-b_{\max }^{-}}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
S_{k}(\nu) & \geq\left(\frac{1}{1+b_{\text {max }}^{+} \nu}\right)^{k}\left(\sum_{j}\left(b_{j}^{+}\right)^{k}-\sum_{i}\left(a_{i}^{-}\right)^{k}\right) \\
& -\left(\frac{1}{1-b_{\text {max }}^{-} \nu}\right)^{k}\left(\sum_{i}\left(a_{i}^{+}\right)^{k}-\sum_{j}\left(b_{j}^{-}\right)^{k}\right) \\
& =\left(\frac{1}{1+b_{\text {max }}^{+} \nu}\right)^{k}\left(s_{k}^{+}\left(\mathbf{b}^{\prime}\right)-s_{k}^{-}(\mathbf{a})\right) \\
& -\left(\frac{1}{1-b_{\text {max }}^{-} \nu}\right)^{k}\left(s_{k}^{+}(\mathbf{a})-s_{k}^{-}\left(\mathbf{b}^{\prime}\right)\right) .
\end{aligned}
$$

We can choose

$$
n>\frac{b_{\max }^{+}+b_{\max }^{-} r_{2}}{r_{2}-1}
$$

to ensure $S_{k}(\nu)>0$ provided $s_{k}\left(\mathbf{b}^{\prime}\right)>s_{k}(\mathbf{a})$. In this case, $f(n) \nearrow n_{1}$ where

$$
n_{1}=\max \left\{a_{\max }, b_{\max }, \frac{b_{\max }^{+}+b_{\max }^{-} r_{2}}{r_{2}-1}\right\} .
$$

Similarly we can choose another n_{1} for the case $s_{k}\left(\mathbf{b}^{\prime}\right)<s_{k}(\mathbf{a})$.

Q.E.D.

§50. Defining n_{2} Let us further define

$$
\begin{equation*}
n_{2}:=\max \left\{n_{0}, n_{1}\right\} \tag{3.12}
\end{equation*}
$$

for the remainder of this section (this definition of n_{2} will be refined in the next section). Let

$$
u_{n}=\frac{\left(a_{1}\right)_{n}\left(a_{2}\right)_{n} \cdots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n}\left(b_{2}\right)_{n} \cdots\left(b_{q}\right)_{n}} \frac{1}{n!},
$$

then

$$
t_{n}=u_{n} x^{n}
$$

§51. Computing n_{3}

Lemma 21. Denote

$$
r=-\ell-1-\lg \left|u_{n_{2}}\right|, \quad s=n_{2} \lg f\left(n_{2}\right),
$$

then the bound $\left|R_{n}\right|<2^{-\ell-1}$ for all $n>n_{3}$ where

$$
n_{3}= \begin{cases}\max \left\{n_{2}, \frac{r}{\lg |x|}\right\} & \text { if } x<0 \text { and } f(n) \nearrow, \tag{3.13}\\ \max \left\{n_{2}, \frac{r+s}{\lg \left(|x| f\left(n_{2}\right)\right)}\right\} & \text { if } x<0 \text { and } f(n) \searrow, \\ \max \left\{n_{2}, \frac{r+\lg (1-x)}{\lg |x|}\right\} & \text { if } x>0 \text { and } f(n) \nearrow, \\ \max \left\{n_{2}, \frac{r+s+\lg \left(1-x f\left(n_{2}\right)\right)}{\lg \left(|x| f\left(n_{2}\right)\right)}\right\} & \text { if } x>0 \text { and } f(n) \searrow .\end{cases}
$$

Proof. If $x<0$, then

$$
\begin{aligned}
|R(n)| & \leq\left|t_{n}\right| \\
& =\left|t_{n_{2}}\right||x|^{n-n_{2}} \prod_{j=0}^{n-n_{2}-1} f\left(n_{2}+j\right) \\
& =\left|u_{n_{2}}\right||x|^{n} \prod_{j=0}^{n-n_{2}-1} f\left(n_{2}+j\right)
\end{aligned}
$$

for $n>n_{2}$.
If $f(n) \nearrow n_{2}$, then $f(n)<1$ for $n>n_{2}$. To ensure

$$
\left|R_{n}\right| \leq\left|u_{n_{2}}\right||x|^{n}<2^{-\ell-1},
$$

we require

$$
n>n_{3}=\frac{-\ell-1-\lg \left|u_{n_{2}}\right|}{\lg |x|}
$$

If $f(n) \searrow n_{2}$, then $f(n)>f(n+1)$ for $n>n_{2}$. To ensure

$$
\left|R_{n}\right| \leq\left|u_{n_{2}}\right||x|^{n} f\left(n_{2}\right)^{n-n_{2}}<2^{-\ell-1}
$$

we require

$$
n>n_{3}=\frac{-\ell-1-\lg \left|u_{n_{2}}\right|+n_{2} \lg f\left(n_{2}\right)}{\lg \left(|x| f\left(n_{2}\right)\right)} .
$$

If $x>0$, then

$$
\begin{aligned}
|R(n)| & =\left|\sum_{i=0}^{\infty} t_{n+i}\right| \\
& \leq \sum_{i=0}^{\infty}\left|t_{n+i}\right| \\
& \leq\left|t_{n}\right| \sum_{i=0}^{\infty}|x|^{i} \prod_{j=0}^{i-1} f(n+j) \mid .
\end{aligned}
$$

If $f(n) \nearrow n_{2}$, then $f(n)<1$ for $n>n_{2}$. To ensure

$$
\left|R_{n}\right| \leq\left|t_{n}\right| \sum_{i=0}^{\infty}|x|^{i}=\left|t_{n}\right| \frac{1}{1-x}<\left|u_{n_{2}}\right||x|^{n} \frac{1}{1-x}<2^{-\ell-1}
$$

we require

$$
n>n_{3}=\frac{-\ell-1-\lg \left|u_{n_{2}}\right|+\lg (1-x)}{\lg |x|}
$$

If $f(n) \searrow n_{2}$, then $f(n)>f(n+1)$ for $n>n_{2}$. To ensure

$$
\begin{aligned}
\left|R_{n}\right| & \leq\left|t_{n}\right| \sum_{i=0}^{\infty}|x|^{i} f(n)^{i}=\left|t_{n}\right| \frac{1}{1-x f(n)} \\
& <\left|u_{n_{2}}\right||x|^{n} f\left(n_{2}\right)^{n-n_{2}} \frac{1}{1-x f\left(n_{2}\right)}<2^{-\ell-1}
\end{aligned}
$$

we require

$$
n>n_{3}=\frac{-\ell-1-\lg \left|u_{n_{2}}\right|+n_{2} \lg f\left(n_{2}\right)+\lg \left(1-x f\left(n_{2}\right)\right)}{\lg \left(|x| f\left(n_{2}\right)\right)} .
$$

Q.E.D.

§52. Algorithm of computing n_{3} We are now ready to present the algorithm to compute n_{3}.

- STEP 0: PRELIMINARY. We first sort \mathbf{a} and \mathbf{b} in nondecreasing order. By a merge-like process, we can delete pairs $\left(a_{i}, b_{j}\right)$ of identical upper and lower parameters where $a_{i}=b_{j}$. Continue to let \mathbf{a}, \mathbf{b} denote the parameters after they are processed in this way. If $p=q=0$ then we are reduced to the evaluation of $\exp (x)$. Otherwise, we know that $\mathbf{a} \neq \mathbf{b}$. If $p=q+1$, verify that $|x|<1$. If $x=0$, return 1 .
- STEP 1: Compute a value $n_{0}=n_{0}(\mathbf{a}, \mathbf{b}, x)$ such that $|x| f(n)<1$.
- CASE $p<q+1$: compute

$$
n_{0}=\max \left\{\bar{a}+2 b_{\text {max }}^{-},\left(2^{p}|x|\right)^{1 /(q+1-p)}\right\} .
$$

$-\operatorname{CASE} p=q+1$: compute

$$
n_{0}=\frac{\bar{a}+b_{\max }^{-}}{1-\sqrt[p]{|x|}}+b_{\max }^{-}
$$

- STEP 2: Compute a value $n_{1}=n_{1}(\mathbf{a}, \mathbf{b})$ such that $f(n) \uparrow n_{1}$.
- CASE $p<q+1$: compute

$$
r=\frac{s_{1}\left(\mathbf{b}^{\prime}\right)-\frac{1}{2} s_{1}^{+}(\mathbf{a})-2 s_{1}^{-}(\mathbf{a})}{q+1-p}
$$

Then compute

$$
n_{1}=\max \left\{a_{\max }^{+}, 2 a_{\max }^{-}, b_{\max }^{-}, r\right\}
$$

In this case, $f(n) \searrow n_{1}$.

- CASE $p=q+1:$ we find the smallest $k=1, \ldots, p$ such that $\sum_{i} a_{i}^{k} \neq$ $\sum_{j} b_{j}^{k}$. Such a k exists since $\mathbf{a} \neq \mathbf{b}$.

Then for k even, compute

$$
r_{1}=\sqrt[k]{\frac{s_{k}\left(\mathbf{b}^{\prime}\right)}{s_{k}(\mathbf{a})}}
$$

If $s_{k}\left(\mathbf{b}^{\prime}\right)>s_{k}(\mathbf{a})$, compute

$$
n_{1}=\max \left\{a_{\max }, b_{\max }, b_{\max } \frac{1}{r_{1}-1}\right\} .
$$

If $s_{k}\left(\mathbf{b}^{\prime}\right)<s_{k}(\mathbf{a})$, compute

$$
n_{1}=\max \left\{a_{\max }, b_{\max }, a_{\max } \frac{r_{1}}{r_{1}-1}\right\} .
$$

For k odd, compute

$$
r_{2}=\sqrt[k]{\frac{s_{k}^{+}\left(\mathbf{b}^{\prime}\right)-s_{k}^{-}(\mathbf{a})}{s_{k}^{+}(\mathbf{a})-s_{k}^{-}\left(\mathbf{b}^{\prime}\right)}}
$$

If $s_{k}\left(\mathbf{b}^{\prime}\right)>s_{k}(\mathbf{a})$, compute

$$
n_{1}=\max \left\{a_{\max }, b_{\max }, \frac{b_{\max }^{+}+b_{\max }^{-} r_{2}}{r_{2}-1}\right\} .
$$

If $s_{k}\left(\mathbf{b}^{\prime}\right)<s_{k}(\mathbf{a})$, compute

$$
n_{1}=\max \left\{a_{\max }, b_{\max }, \frac{a_{\max }^{+} r_{2}+a_{\max }^{-}}{1-r_{2}}\right\} .
$$

- STEP 3: Compute $n_{2}=\max \left\{n_{0}, n_{1}\right\}$.
- STEP 4: Compute n_{3} such that $\left|R_{n}\right|<2^{-\ell-1}$ for $n \geq n_{3}$. Compute

$$
r=-\ell-1-\lg \left|u_{n_{2}}\right|, \quad s=n_{2} \lg f\left(n_{2}\right)
$$

then

- CASE $x<0$: compute

$$
n_{3}= \begin{cases}\max \left\{n_{2}, \frac{r}{\lg |x|}\right\} & \text { if } f(n) \nearrow, \\ \max \left\{n_{2}, \frac{r+s}{\lg \left(|x| f\left(n_{2}\right)\right)}\right\} & \text { if } f(n) \searrow\end{cases}
$$

- CASE $x>0$: compute

$$
n_{3}= \begin{cases}\max \left\{n_{2}, \frac{r+\lg (1-x)}{\lg |x|}\right\} & \text { if } f(n) \nearrow \\ \max \left\{n_{2}, \frac{r+s+\lg \left(1-x f\left(n_{2}\right)\right)}{\lg \left(|x| f\left(n_{2}\right)\right)}\right\} & \text { if } f(n) \searrow\end{cases}
$$

This give us:

Theorem 22. The general hypergeometric function H is absolutely approximable.

Proof. Given a, b, x, ℓ, we compute n_{3} as given in the above algorithm. We then compute an approximation $\widetilde{S_{n_{3}}}$ which approximates $S_{n_{3}}$ to $\ell+1$ absolute bits. This value also approximates $H(\mathbf{a} ; \mathbf{b} ; x)$ to ℓ absolute bits.
Q.E.D.

Table 3.2: Transformations of hypergeometric functions.

| $E(x)=A(x) F(B(x))$ | $F(x)$ | $A(x)$ | $B(x)$ |
| :--- | :--- | :--- | :--- |
| $\exp (x)$ | $0_{0} F_{0}(; ; x)$ | 1 | 1 |
| $\cos (x)$ | ${ }_{0} F_{1}\left(; \frac{1}{2} ; x\right)$ | 1 | $-x^{2} / 4$ |
| $\sin (x)$ | ${ }_{0} F_{1}\left(; \frac{3}{2} ; x\right)$ | x | $-x^{2} / 4$ |
| $\cosh (x)$ | ${ }_{0} F_{1}\left(; \frac{1}{2} ; x\right)$ | 1 | $x^{2} / 4$ |
| $\sinh (x)$ | ${ }_{0} F_{1}\left(; \frac{3}{2} ; x\right)$ | x | $x^{2} / 4$ |
| $\operatorname{erf}(x)$ | ${ }_{1} F_{1}\left(\frac{1}{2} ; \frac{3}{2} ; x\right)$ | x | $-x^{2}$ |
| $(1+x)^{-v}$ | ${ }_{1} F_{0}(v ; x)$ | 1 | $-x$ |
| $\ln (1+x)$ | ${ }_{2} F_{1}(1,1 ; 2 ; x)$ | x | $-x$ |
| $\arcsin (x)$ | ${ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; \frac{3}{2} ; x\right)$ | x | x^{2} |
| $\arctan (x)$ | ${ }_{2} F_{1}\left(\frac{1}{2}, 1 ; \frac{3}{2} ; x\right)$ | x | $-x^{2}$ |

Many well-known functions in analysis are obtained by the simple transformations of hypergeometric functions. For instance, if $A(x)$ and $B(x)$ are functions (typically simple polynomials), we transform $F(x)$ to $E(x):=A(x) F(B(x))$ to obtain familiar functions. This is illustrated in Table [3.2 (see [56, p. 42ff] for more examples).

We can extend this result to simple functions that are derived from H (e.g., Table (3.2):

Theorem 23. If $A(x), B(x) \in \mathbb{Z}[x]$ then the function of the form $F(x)=$ $A(x)_{p} F_{q}(\mathbf{a} ; \mathbf{b} ; B(x))$ is absolutely approximable.

Furthermore, it is clear that these results also hold when we view the functions as complex.

3.3 Evaluation at a Blackbox Number

This section seeks to generalize the algorithm of Section 3 to the case where x is a black-box number. In [23], such a solution is given for common elementary functions, exploiting well-known properties of such functions. We shall now solve this in complete generality.

In the following, we assume the usual rational parameters \mathbf{a}, \mathbf{b}, the precision $\ell \in \mathbb{Z}$ and a blackbox number x. Our main result says that $H(\mathbf{a} ; \mathbf{b} ; x)$ is absolutely approximable. We can make this precise with the help of oracle Turing machines. In general, if $f\left(x_{1}, \ldots, x_{p} ; y_{1}, \ldots, y_{q}\right)$ is a real function where the x_{i} 's are representable reals and y_{j} 's are black box numbers, then we say that f is absolutely approximable if there is an oracle Turing machine taking representable real inputs x_{1}, \ldots, x_{p} and ℓ, and q oracles for y_{1}, \ldots, y_{q}, such that within a finite time, it halts with an absolute ℓ-bit approximation to $f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{q}\right)$. We call an oracle for y_{i} by writing a pair $\left(i, \ell^{\prime}\right)$ on a special tape, and in the next instant, an absolute ℓ^{\prime}-bit approximation of y_{i} appears on another special output tape.

When a, \mathbf{b} are understood, we will simply write $F(x)$ or $\widetilde{F}(x ; \ell)$ for $H(\mathbf{a} ; \mathbf{b} ; x)$ and $\widetilde{H}(\mathbf{a} ; \mathbf{b} ; x ; \ell)$ respectively. For any $n \geq 0$, let $F(x)=S_{n}(x)+R_{n}(x)$ where $S_{n}(x)=\sum_{k=0}^{n-1} t_{k}$ and $R_{n}(x)=\sum_{k \geq n} t_{k}$.

Let $[u]$ denote an interval $[\underline{u}, \bar{u}]$ where \underline{u}, \bar{u} are bigfloats. We further assume that

$$
\begin{equation*}
0 \notin[u], \text { and } \text { if } p=q+1 \text { then }[u]<1 . \tag{3.14}
\end{equation*}
$$

If $f(x)$ is a real function, let $f([u])=\{f(\theta): \underline{u} \leq \theta \leq \bar{u}\}$. Write $f([u])<M$ if each $y \in f([u])$ is less than M.

Lemma 24. Given $[u]$ as in (3.14), we can compute \bar{n}_{3} such that $\left|R_{\bar{n}_{3}}([u])\right|<$ $2^{-\ell}$.

Proof. Observe that all the inequalities required in STAGE A can be extended by replacing x by $[u]$ since $[u]$ satisfies (3.14).

Lemma 25. Given $[u]$ as in (3.14, we can compute an $M \in \mathbb{F}_{1}$ such that $\left|F^{\prime}([u])\right| \leq M$ where $F^{\prime}(x)$ denotes differentiation with respect to x.

Proof. Note that $F^{\prime}(x)$ is just another hypergeometric function multiplied by a rational number since

$$
F^{\prime}(x)=\frac{P_{\mathbf{a}}(0)}{P_{\mathbf{b}}(0)} H(\mathbf{a}+1 ; \mathbf{b}+1 ; x)
$$

where $P_{\mathbf{a}}(n)$ is given by (3.7). Thus by Lemma [24, we can determine an \bar{n}_{3} such that truncating the series for $F^{\prime}(x)$ after the first \bar{n}_{3} terms incurs an error of at most $1 / 2$. Then compute an approximation \widetilde{S} of the sum of the first \bar{n}_{3} terms, error at most $1 / 2$. Take $M=\widetilde{S}+1$.
Q.E.D.
§53. Blackbox Evaluation Algorithm The following algorithm will absolutely approximate H relative to a blackbox number x :

Blackbox Evaluation Algorithm

Input: Rational $\mathbf{a}, \mathbf{b}, \ell$ and blackbox number x.
Output: A bigfloat \widetilde{y} such that $|\widetilde{y}-H(\mathbf{a} ; \mathbf{b} ; \widetilde{x})| \leq 2^{-\ell}$.
0 . Initialize $s \leftarrow \ell+1$.

1. Compute \widetilde{x} such that $|\widetilde{x}-x|<2^{-s}$.

This is just one call to the black box x.
Let $[u]=[\underline{u}, \bar{u}]$
where $\underline{u}=\widetilde{x}-2^{-s}$ and $\bar{u}=\widetilde{x}+2^{-s}$.
2. While $[u]$ does not satisfy (3.14),
keep doubling the precision s in \widetilde{x} until it does.
3. Using Lemma 25, compute M such that $\left|F^{\prime}([u])\right|<M$.
4. [Repeat Step 1]

Recompute \widetilde{x} such that $|\widetilde{x}-x|<2^{-s-\max \{0, \lg M\}}$
Let $[v]$ be the interval based on this new value of \widetilde{x}.
5. Using Theorem 22, compute $\widetilde{y}=\widetilde{H}(\mathbf{a} ; \mathbf{b} ; \widetilde{x} ; \ell+1)$.
6. Return \widetilde{y}.

Theorem 26. If $x \neq 0$ and ($p=q+1$ implies $|x|<1$), then the Blackbox Evaluation Algorithm halts and gives a correct output:

$$
|\widetilde{y}-H(\mathbf{a} ; \mathbf{b} ; x)| \leq 2^{-\ell} .
$$

Proof. Halting of the algorithm is guaranteed because of the assumption that $x \neq 0$ and $(|x|<1$ if $p=q+1)$. Next, we must show that $|\widetilde{y}-F(x)| \leq 2^{-\ell}$. But Step 5 implies $|\widetilde{y}-F(\widetilde{x})| \leq 2^{-\ell-1}$. Hence it suffices to show that

$$
\begin{equation*}
F(\widetilde{x})-F(x) \mid \leq 2^{-\ell-1} \tag{3.15}
\end{equation*}
$$

By Step $4, \widetilde{x}=x+\delta$ where $|\delta| \leq 2^{-s} / \max \{1, M\} \leq 2^{-\ell-1} / M$. Therefore

$$
|F(\widetilde{x})-F(x)|=|F(x+\delta)-F(x)| \leq\left|\delta \cdot F^{\prime}(x+\theta \delta)\right|
$$

for some $0 \leq \theta \leq 1$ (intermediate value theorem). According to Step 2,

$$
x+\theta \delta \in[u]=\left[\widetilde{x}-2^{-s}, \widetilde{x}+2^{-s}\right]=\left[x+\delta-2^{-s}, x+\delta+2^{-s}\right],
$$

and thus $\left|F^{\prime}(x+\theta \delta)\right| \leq M$ by Step 3 . Hence

$$
|F(\widetilde{x})-F(x)| \leq\left|\delta \cdot F^{\prime}(x+\theta \delta)\right| \leq\left(2^{-\ell-1} / M\right)(M)=2^{-\ell-1}
$$

Q.E.D.

Remark: the precision of \widetilde{x} in Step 1 is quite arbitrary. However, it seems to be best to choose a precision (like ℓ) that is close to, but not exceeding, the precision s in Step 4. We want it to be close to s so that our estimate of M is not too far off, but we do not want to exceed s so that Step 1 will not expend more effort than the effort in Step 4. Also, after Step 4, we might wish to compute an updated (smaller) value of M based on $[v]$. But this requires a corresponding update on \widetilde{x}. This iteration can be repeated, but it seems to give diminishing returns after the second iteration.

The power of the above blackbox algorithm is seen in the following application:

Corollary 27. Fixing x, define $G(\mathbf{a} ; \mathbf{b}):=H(\mathbf{a} ; \mathbf{b} ; x)$. If x is any approximable real number, then G is absolutely approximable.

The approximable real numbers include all algebraic numbers and most of the common constants of analysis such as π and e. They are also closed under rational operations.

3.4 Complexity

We next derive the complexity of the procedure in Section 3.2. This is quite involved, and we must further sharpen the algorithm of Section 3.2 before an explicit bound is possible.
§54. Bigfloat Representation Our algorithm, however, will usually compute using bigfloat approximations. We represent a bigfloat x by a pair e, f of integers in binary notation. The pair (e, f) represents the value $x=f 2^{e-\operatorname{msb}(f)}$ where $\operatorname{msb}(f)=\lfloor\lg f\rfloor$ To emphasize the representation of x by (e, f), we write $x \sim\langle e, f\rangle$. Here, e and f are the exponent and fraction of the representation. Note that $\langle e, f\rangle$ and $\langle e-1,2 f\rangle$ represent the same number. A representation $\langle e, f\rangle$ is normal if f is odd, or if $e=f=0$. Clearly every bigfloat in \mathbb{F} has a unique normal representation. Let $\langle f\rangle$ be a shorthand for $f 2^{-\operatorname{msb}(f)} \sim\langle 0, f\rangle$. Thus for $f \neq 0$, we have $\langle f\rangle \in[1,2)$, representing the fraction obtained by placing a binary point immediately to the left of the most significant bit in the binary notation for f.
§55. Size of the Input We now give our input and representation of numbers more explicitly. If a is a rational number p / q then $\operatorname{size}(a)$ is defined as $\max \{\lg |p|, \lg |q|\}$. If a is a bigfloat then it is also a rational number, and hence $\operatorname{size}(a)$ is well-defined. In fact, if $a \sim\langle e, f\rangle$, then $\operatorname{size}(a)=\max \{e, \lg |f|\}$. If the input to \widetilde{H} is the usual ($\mathbf{a}, \mathbf{b}, x, \ell$) (all rationals), we say the size of this input is the quadruple $\left(q^{\prime}, n, m, \ell\right)$ where $q^{\prime}=q+1, n=\max _{i, j}\left\{\operatorname{size}\left(a_{i}\right)\right.$, size $\left.\left(b_{j}\right)\right\}$ and $m=\operatorname{size}(x)$.
§56. Brent's Complexity Bounds Our complexity bounds will contain terms involving $M(n)$, defined as the complexity of multiplying two n-bit numbers. We can plug in the Schönhage-Strassen bound $M(n)=O(n \log n \log \log n)$, but it may also be useful to substitute $M(n)=n^{2}$ to estimate the complexity of using naive multiplication.

The following result is taken from [20] with a correction 1:
Lemma 28. Let $x=\left\langle e_{x}, f_{x}\right\rangle, y=\left\langle e_{y}, f_{y}\right\rangle$ be bigfloats, and s be a positive number. Then there exists an algorithm to
(1) evaluate x to s relative bits in $O(s)$ time.
(2) evaluate $x \pm y$ to s relative bits in $O\left(s+\lg \left|e_{x} e_{y}\right|\right)$ time
(3) evaluate $x \cdot y, 1 / x, \sqrt{x}$ to s relative bits in $O\left(M(s)+\lg \left|e_{x} e_{y}\right|\right)$ time.
(4) evaluate $\lg (x)$ to s relative bits in $O\left(M(s) \lg s+\lg \left|e_{x}\right|\right)$ time.

Using the above results, we can easily get the complexity bound of approximating a rational number and adding of two or more rational numbers:

Lemma 29. Let $a=\frac{N}{D}$ be a rational number and $n=\operatorname{size}(a)=\max \{\lg N, \lg D\}$. There exist algorithms to approximate a to s bits relative precision in $O(M(s)+$ $\lg n)$ time.

Proof. We can express N and D by bigfloats $\langle m s b(N), N\rangle$ and $\langle m s b(D), D\rangle$, then by Lemma 28, we can evaluate $\frac{N}{D}$ to s bits in $O(M(s)+\lg n)$ time. Q.E.D.

Corollary 30. (i) Let a, b be rational numbers with at most n bits in their numerators and denominators. Then we can evaluate $a+b$ to s relative bits in

[^0]$O(M(s)+\lg n)$ time. (ii) We can compute $s_{1}(\mathbf{a})$ to s relative bits in $O\left(q^{\prime}(M(s+\right.$ $\left.\left.\left.\lg q^{\prime}\right)+\lg n\right)\right)$ or $O\left(q^{\prime}\left(M\left(s+q^{\prime}\right)+\lg n\right)\right)$ time.

Proof. (i) Evaluating $a+b$ to s relative bits can be done by first approximating a and b to $s+2$ relative bits, truncating them to $s+2$ bits, and then adding those values up to s relative bits. The first step takes $O(M(s)+\lg n)$ time and the addition takes $O(s+\lg n)$ time, so the total running time is $O(M(s)+\lg n)$. (ii) The first complexity comes from evaluating a balanced binary tree whose leaves are a_{1}, \ldots, a_{p}. The second comes from evaluating a linear expression.
Q.E.D.
§57. Complexity of Computing n_{0} The upper bound for n_{0} in our algorithm and the complexity of computing n_{0} is shown below:

Lemma 31. We have $n_{0} \leq 2^{3 q^{\prime}(n+m)}$. Computing n_{1} takes $O(M(q)+m)$ time for the case $p<q+1$ and $O\left(M(n)+\lg m+\lg q^{\prime}\right)$ time for the case of $p=q+1$.

Proof. We note that $\left(2^{p}|x|\right)^{1 /(q+1-p)} \leq 2^{p}|x| \leq 2^{n p+m}$ and $\frac{\bar{a}}{1-\sqrt[p]{|x|}} \leq 2^{n+m p}$, so $n_{0} \leq 2^{(n+m)\left(q^{\prime}+2\right)} \leq 2^{3 q^{\prime}(n+m)}$. For the case of $p<q+1$, it is enough to compute $\sqrt[q+1-p]{|x|}$ to q^{\prime} relative precision, which takes $O(M(q)+m)$ time. For the case of $p=q+1$, we compute $\frac{1}{1-\sqrt[p]{|x|}}$ to n relative precision, which takes $O\left(M(n)+\lg m+\lg q^{\prime}\right)$ time.
Q.E.D.
§58. Complexity of Computing n_{1} for $p<q+1$ In the case of $p<q+1$, the complexity of computing n_{1} is easy and shown as follows:

Lemma 32. If $p<q+1$, then $n_{1} \leq 3 q^{\prime} 2^{n}$. Moreover, we can compute it in time $O\left(q^{\prime} M\left(n+\lg q^{\prime}\right)\right)$.

Proof. To bound n_{1}, we note that

$$
\left|s_{1}\left(\mathbf{b}^{\prime}\right)\right|,\left|s_{1}^{+}(\mathbf{a})\right|,\left|s_{1}^{-}(\mathbf{a})\right|
$$

are each bounded by $q^{\prime} 2^{n}$. Hence $|r| \leq 3 q^{\prime} 2^{n}$. We can compute

$$
r^{\prime}=\frac{\left\lceil s_{1}\left(\mathbf{b}^{\prime}\right)\right\rceil-\frac{1}{2}\left\lfloor s_{1}^{+}(\mathbf{a})\right\rfloor-2\left\lfloor s_{1}^{-}(\mathbf{a})\right\rfloor}{q+1-p}
$$

and

$$
n_{0}=\max \left\{\left\lceil a_{\max }^{+}\right\rceil, 2\left\lceil a_{\max }^{-}\right\rceil,\left\lceil b_{\max }^{-}\right\rceil, r^{\prime}\right\} .
$$

Since $s_{1}\left(\mathbf{b}^{\prime}\right), s_{1}^{+}(\mathbf{a}), s_{1}^{-}(\mathbf{a})$ has at most $\left(n+\lg q^{\prime}\right)$ bits, we can evaluate them to $\left(n+\lg q^{\prime}\right)$ relative bits to get $\left\lceil s_{1}\left(\mathbf{b}^{\prime}\right)\right\rceil,\left\lfloor s_{1}^{+}(\mathbf{a})\right\rfloor,\left\lfloor s_{1}^{-}(\mathbf{a})\right\rfloor$ in time $O\left(q^{\prime} M\left(n+\lg q^{\prime}\right)\right)$ by Corollary 30
Q.E.D.
§59. Complexity of Computing n_{1} for $p=q+1$ However, for the case of $p=q+1$, we need first analyze the complexity of finding the smallest k, which is shown in the following three lemmas:

Lemma 33. Let $\alpha=\sqrt[k]{a}-\sqrt[k]{b}$ where $a, b>0$ are rational numbers of size t. Then $\lg |\alpha| \geq-(2 t+1) k^{2}$. If a, b are integers then $\lg |\alpha| \geq-(t+k) k$.

Proof. We use the BFMSS rule [16] to compute $u(\sqrt[k]{a}) \leq 2^{t}$ and $\ell(\sqrt[k]{a}) \leq 2^{t}$, with the same bound when a is replaced by b. Hence $u(\alpha)=2^{2 t+1}$. Since the degree of α is $\leq k^{2}$, we get $|\alpha| \geq u(\alpha)^{-k^{2}}$ and $\lg |\alpha| \geq-(2 t+1) k^{2}$. When a, b are integers, we obtain $u(\sqrt[k]{a}) \leq 2^{t / k}$ and $\ell(\sqrt[k]{a})=1$, giving us the improvement stated.
Q.E.D.

Corollary 34. Let $\alpha=s_{k}\left(\mathbf{b}^{\prime}\right)-s_{k}(\mathbf{a}), \beta=\sqrt[k]{s_{k}(\mathbf{a})}-\sqrt[k]{s_{k}(\mathbf{b})}$. Then $\lg |\alpha| \geq$ $-2\left(k n+\lg q^{\prime}\right), \lg |\beta| \geq-\left(2 q^{\prime}\left(k n+\lg q^{\prime}\right)+1\right) k^{2}$.

Proof. We note that $s_{k}(\mathbf{a})$ and $s_{k}(\mathbf{b})$ have size at most $\left(k n+\lg q^{\prime}\right)$. Q.E.D.

Lemma 35. Deciding the sign of $s_{k}\left(\mathbf{b}^{\prime}\right)-s_{k}(\mathbf{a})$ takes $O\left(k n+\lg q^{\prime}\right)$ time and deciding the smallest k such that $s_{k}\left(\mathbf{b}^{\prime}\right) \neq s_{k}(\mathbf{a})$ takes $O\left(q^{\prime 2} n+q^{\prime} \lg q^{\prime}\right)$ time.

Proof. We can evaluate $s_{k}\left(\mathbf{b}^{\prime}\right)-s_{k}(\mathbf{a})$ to $2\left(k n+\lg q^{\prime}\right)$ relative precision to get the sign in time $O\left(k n+\lg q^{\prime}\right)$. In at most q^{\prime} steps, we can find the smallest index k, which takes $O\left(q^{\prime 2} n+q^{\prime} \lg q^{\prime}\right)$ time.
Q.E.D.

Now we have the complexity of computing n_{1} :

Lemma 36. If $p=q+1$, then $n_{1} \leq 2^{4 q^{\prime 3} n}$. Moreover, we can compute it in time $O\left(M\left(q^{3} n\right)\right)$.

Proof. To see the upper bound for n_{1}, we note from the definition in (3.10) and (3.11) that the numerator is at most $2^{2 n+\lg q^{\prime}+1}$ and the denominator is at least $2^{-q^{\prime 2}\left(2\left(n q^{\prime}+\lg q^{\prime}\right)+1\right)}$, hence $n_{1} \leq 2^{4 q^{\prime 3} n}$. Then we can compute n_{1} to $4 q^{\prime 3} n$ relative bits which will take $O\left(M\left(q^{\prime 3} n\right)\right)$ time.
Q.E.D.
§60. Complexity of Computing n_{2} If we follow the scheme of the previous section, it remains to bound n_{3}. However, no finite bound is possible under that scheme. To see this, note that for $n>n_{2}$, although we know that $|x f(n)|<1$, it can be arbitrarily close to 1 , which implies n_{3} can be arbitrarily large. Moreover, this difficulty only arises when $p=q+1$. Hence, when $p=q+1$, we shall modify the definition in (3.12).

Lemma 37. If $p=q+1$, redefine $n_{2}:=\max \left\{n_{0}, n_{1}, n_{2}^{\prime}\right\}$ where

$$
\begin{equation*}
n_{2}^{\prime}:=\frac{a_{\max }^{+}+b_{\max }^{-}}{\sqrt[q]{1+2^{-m}}-1}+b_{\max }^{-} \tag{3.16}
\end{equation*}
$$

Then,

$$
1-\left|x f\left(n_{2}\right)\right| \geq 2^{-2 m} .
$$

and hence $-\lg \left(|x| f\left(n_{2}\right)\right) \leq 2 m$.

Let us note that for $0<x<1$ and $p \geq 1$,

$$
\begin{equation*}
(1+x)^{1 / p}-1 \geq \frac{x}{2 p} . \tag{3.17}
\end{equation*}
$$

Lemma 38. $n_{2} \leq 2^{q^{\prime}\left(7 q^{\prime 2} n+3 m\right)}$. The computation of n_{2} takes $O\left(q^{3} n+m\right)$ time.

Proof. We have that $n_{0} \leq 2^{4 q^{\prime 3} n}$, and $n_{1} \leq 2^{3 q^{\prime}(n+m)}$. When $p<q+1$, our lemma is clearly true in view of (3.12). When $p=q+1$, we need to estimate n_{2}^{\prime} in (3.16). Using the bound (3.17), we conclude that $\sqrt[q]{1+2^{-m}}-1 \geq 2^{-m-1-\lg q^{\prime}}$. Hence

$$
n_{2}^{\prime} \leq \frac{2^{n+1}}{2^{-m-1-\lg q^{\prime}}}+2^{n} \leq 2^{n+3+m+\lg q^{\prime}}
$$

But this bound is dominated by the bound for n_{1}. The computation time is dominated by the computation of n_{0} and n_{1} in the case of $p=q+1$, which takes at most $O\left(q^{3} n+m\right)$ time.
Q.E.D.

$\S 61$. Complexity of Computing n_{3}

Lemma 39. We have the bound

$$
\begin{aligned}
n_{3} & \leq 4^{m}\left(\ell+1+2 q^{\prime 2}\left(7 q^{\prime 2} n+3 m\right) 2^{q^{\prime}\left(7 q^{\prime 2} n+3 m\right)}\right) \\
& \leq 4^{m}\left(\ell+2^{4 q^{\prime}\left(2 q^{\prime 2} n+m\right)}\right)
\end{aligned}
$$

The computation of n_{3} takes time

$$
O\left(M\left(\lg (\ell)+q^{13} n+q m\right)\right) .
$$

Proof. Using the fact

$$
\left|\left(a_{i}\right)_{n_{2}}\right| \leq\left(a_{i}+n_{2}\right)^{n_{2}} \leq\left(2^{n}+n_{2}\right)^{n_{2}}
$$

and

$$
\left|\left(b_{j}\right)_{n_{2}}\right| \geq\left|b_{j}\right|^{n_{2}} \geq 2^{-n n_{2}}
$$

we first note that

$$
\begin{aligned}
1+\lg \left|u_{n_{2}}\right| & \leq 1+2 q^{\prime} n_{2} \lg \left(2^{n}+n_{2}\right) \\
& \leq 1+2 q^{\prime} 2^{q^{\prime}\left(7 q^{\prime 2} n+3 m\right)}\left(n+q^{\prime}\left(7 q^{\prime 2} n+3 m\right)\right) \\
& \leq 2^{4 q^{\prime}\left(2 q^{\prime 2} n+m\right)} .
\end{aligned}
$$

Moreover, if $f(n) \nearrow$, then p must be equal to $q+1$. In this case we require $|x|<1-2^{-m}$, i.e., $\lg |x| \leq-2^{-m}$. So

$$
n_{3} \leq 2^{m}\left(\ell+2^{4 q^{\prime}\left(2 q^{\prime 2} n+m\right)}\right)
$$

If $f(n) \searrow$, by Lemma 37 we have $\lg \left|x f\left(n_{2}\right)\right| \leq-2^{-2 m}$. Hence

$$
n_{3} \leq 4^{m}\left(\ell+2^{4 q^{\prime}\left(2 q^{\prime 2} n+m\right)}\right)
$$

Therefore, the running time of computing n_{3} is

$$
O\left(M\left(\lg (\ell)+q^{\prime 3} n+q m\right)\right)
$$

assuming that we use bigfloat approximations.
Q.E.D.
§62. Complexity of Computing the Summation S_{N} Let us define

$$
\begin{equation*}
N=4^{m}\left(\ell+2^{4 q^{\prime}\left(2 q^{\prime 2} n+m\right)}\right) . \tag{3.18}
\end{equation*}
$$

Now we analyze the complexity of computing the approximation \widetilde{S}_{N} such that $\left|\widetilde{S}_{N}-S_{N}\right| \leq 2^{-\ell-1}$ where $S_{N}=\sum_{k=0}^{N} t_{k}$. It is sufficient that for each $k, 0 \leq k \leq$ N, we compute an approximation \widetilde{t}_{k} such that

$$
\left|\widetilde{t}_{k}-t_{k}\right| \leq 2^{-\ell-1-\lg N}
$$

Noting that $t_{k}=u_{k} x^{k}, \lg \left|u_{k}\right| \leq 2 k q^{\prime} \lg \left(2^{n}+k\right)$ and $\lg \left|x^{k}\right| \leq k m$, it is sufficient to compute u_{k} and x_{k} to relative $r+2$ bits where

$$
r=\left(\ell+1+\lg N+2 k q^{\prime} \lg \left(2^{n}+k\right)+k m\right) .
$$

Lemma 40. We can compute x^{k} to $r+2$ relative precision in time $O(k M(r))$.
Proof. To compute x^{k} to relative $r+2$ bits, we can use two steps:

1. compute x to relative $(r+2+\lg (k+1))$ bits and truncate,
2. multiply them (in linear order or binary tree order).

Note that x is a rational number $\frac{N}{D}$ with bit length m, so the first step can be done in time $O(M(r+\lg k)+\lg m)$. For the second step, if we do the multiplication in linear order, $x^{2}=x \times x$ can be done in time $O(M(r+\lg k)+$ $\lg m), x^{3}=x^{2} \times x$ can be done in time $O(M(r+\lg k)+\lg (2 m)), \ldots, x^{k}=x^{k-1} \times x$ can be done in time $O(M(r+\lg k)+\lg ((k-1) m))$, so the total running time is $O(k M(r+\lg k)+k \lg (k m))=O(k M(r))$.
Q.E.D.

Lemma 41. We can compute u_{k} to $r+2$ relative precision in time $O((k+$ $\left.\left.q^{\prime}\right) M(r)\right)$.

Proof. Computing u_{k} to relative $r+2$ bits can be done the following steps:

1. compute $\left(a_{i}\right)_{k},\left(b_{j}\right)_{k}$ to relative $\left(r+4+\lg q^{\prime}\right)$ bits and truncate,
2. compute $P(k)=\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{p}\right)_{k}$ to relative $(r+4)$ bits and truncate,
3. compute $Q(k)=\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \cdots\left(b_{q}\right)_{k}(1)_{k}$ to relative $(r+4)$ bits and truncate, 4. compute $\frac{P(k)}{Q(k)}$ to relative $r+2$ bits.

The first step can be done in time $O(k M(r+\lg q+\lg k)+k \lg (k n))=O(k M(r))$. The second and third step can be done in time $O\left(q^{\prime} M\left(r+\lg q^{\prime}\right)+k q^{\prime} \lg \left(2^{n}+k\right)\right)=$ $O\left(q^{\prime} M(r)\right)$, and the final step can be done in time $O\left(M(r)+k q^{\prime} \lg \left(2^{n}+k\right)\right)=$ $O(M(r))$. Therefore, computing u_{k} takes $O\left(\left(k+q^{\prime}\right) M(r)\right)$ time. Q.E.D.

Corollary 42. The summation S_{N} takes $O\left(N^{2} M\left(\ell+q^{\prime} N \lg N+N m\right)\right)$ time where N is defined in (3.18).

Proof. Note that $r=O\left(\ell+q^{\prime} N \lg N+N m\right)$, so computing t_{k} takes at most $O\left(N M\left(\ell+q^{\prime} N \lg N+N m\right)\right)$ time, hence the total running time for computing S_{N} is $O\left(N^{2} M\left(\ell+q^{\prime} N \lg N+N m\right)\right)$.
Q.E.D.

The upshot of these calculations yields:

Theorem 43. The general hypergeometric function H can be approximated in time that is singly exponential in q^{\prime}, n, m, and polynomial in ℓ.

3.5 Argument Reduction, Parameter Pre-processing and Constants

3.5.1 Argument Reduction

An issue in the efficient evaluation of hypergeometric functions is the wellknown problem of argument reduction. Thus the evaluation of $\sin \left(10^{22}\right)=$
$-0.8522008497671888017727 \ldots$ might well arise because its argument is automatically generated in some sequence of evaluations [70] [39] [40] 41].

Each hypergeometric series is generally valid within a bounded range, and the problem is to reduce a general argument to this range. Even when an argument is in the valid range, argument reduction can still be applied to achieve faster convergence. As noted in [64, p.145-147], argument reduction in trigonometric functions (the "additive type" of reductions) are prone to catastrophic errors, with the result that evaluating $\sin \left(10^{22}\right)$ on many computers have widely divergent answers (some outright wrong).

Whenever we perform argument reductions, an error is introduced into the modified arguments. We need to bound the effects of this error. For instance, argument reduction for the trigonometric functions uses the fact that they have period 2π. By exploiting other properties, the arguments can be reduced to a range of size $\pi / 2$. If r is the reduced argument corresponding to an original argument of x, we have

$$
r=x-\frac{\pi}{2}\left\lfloor\frac{2}{\pi} x\right\rfloor .
$$

But we can only compute an approximation \widetilde{r} to r. Using a sufficiently accurate approximation to π, we can bound $|r-\widetilde{r}|$ by any desired error bound ε^{\prime}. The choice of ε^{\prime} can be deduced using the following lemma:

Lemma 44. For $\varepsilon>0$, we have the following bounds:

$$
\begin{aligned}
|\sin (x+\varepsilon)-\sin x| & \leq \varepsilon \\
|\cos (x+\varepsilon)-\cos x| & \leq \varepsilon \\
|\tan (x+\varepsilon)-\tan x| & \leq 4 \varepsilon, \quad 0 \leq x \leq \pi / 4, \varepsilon<\pi / 12 \\
|\cot (x+\varepsilon)-\cot x| & \leq 2 \varepsilon, \quad \pi / 4 \leq x \leq \pi / 2, \varepsilon \leq \pi / 4 \\
|\arcsin (x+\varepsilon)-\arcsin x| & \leq 2 \varepsilon, \quad|x|<0.5, \varepsilon \leq 1 / 4 \\
|\arccos (x+\varepsilon)-\arccos x| & \leq 2 \varepsilon, \quad|x|<0.5, \varepsilon \leq 1 / 4 \\
|\arctan (x+\varepsilon)-\arctan x| & \leq \varepsilon, \quad|x|<1 \\
|\log (x+\varepsilon)-\log x| & \leq \varepsilon / x, \quad x>0 . \\
|\exp (x+\varepsilon)-\exp x| & \leq 2 \varepsilon \exp (x), \quad \varepsilon \leq \log (2) .
\end{aligned}
$$

Proof. We use the remainder form of the Taylor expansion,

$$
f(x+h)=f(x)+h f^{\prime}(x+\theta), \quad 0 \leq \theta \leq h
$$

Then

$$
\begin{aligned}
|\sin (x+\varepsilon)-\sin x| & =\varepsilon|\cos (x+\theta)| \leq \varepsilon \\
|\cos (x+\varepsilon)-\cos x| & =\varepsilon|\sin (x+\theta)| \leq \varepsilon \\
|\tan (x+\varepsilon)-\tan x| & =\varepsilon\left|\sec ^{2}(x+\theta)\right| \leq 4 \varepsilon \\
|\cot (x+\varepsilon)-\cot x| & =\varepsilon\left|\csc ^{2}(x+\theta)\right| \leq 2 \varepsilon \\
|\arcsin (x+\varepsilon)-\arcsin x| & =\varepsilon\left|\frac{1}{\sqrt{1-(x+\theta)^{2}}}\right| \leq 2 \varepsilon \\
|\arccos (x+\varepsilon)-\arccos x| & =\varepsilon\left|\frac{1}{\sqrt{1-(x+\theta)^{2}}}\right| \leq 2 \varepsilon \\
|\arctan (x+\varepsilon)-\arctan x| & =\varepsilon\left|\frac{1}{1+(x+\theta)^{2}}\right| \leq \varepsilon \\
|\log (x+\varepsilon)-\log x| & =\varepsilon|1 /(x+\theta)| \leq \varepsilon / x \\
|\exp (x+\varepsilon)-\exp x| & =\varepsilon|\exp (x+\theta)| \leq 2 \varepsilon \exp (x)
\end{aligned}
$$

Q.E.D.

Now we give the detailed reduction algorithms for most common elementary functions.
§63. Natural Log function If $x>2$, we let $x=2^{k} r$ where $k \in \mathbb{N}$ and $1<r \leq 2$. Then

$$
\log (x)=k \log (2)+\log (r)
$$

Here are the steps to approximate this expression:

1. First compute $k=\left\lfloor\log _{2} x\right\rfloor$.
2. Compute $\widetilde{\log (2)}$ as an approximation of $\log (2)$ to absolute error $\leq \varepsilon /(2 k)$.
3. Compute \widetilde{r} such that $|r-\widetilde{r}| \leq \varepsilon / 4$ where $r=x 2^{-k}$.
4. Compute $\widetilde{\log (\widetilde{r})}$ as an approximation of $\log (\widetilde{r})$ to absolute error $\leq \varepsilon / 4$.
5. Return $z=k \widetilde{\log (2)}+\widetilde{\log (\widetilde{r})}$.

It is easy to show, using Lemma 44 that this procedure is correct. That is, $|z-\log (x)| \leq \varepsilon$. Moreover, each of the steps is easily computed using the Core Library. Step 2 requires an approximation to the constant $\log (2)$, which we pre-compute (see Section 3.5.3).
§64. Exponential function Let $k=\lfloor x / \log (2)\rfloor$ and $r=x-k \log (2)$. Then

$$
\exp (x)=2^{k} \exp (r)
$$

Note that $1 \leq r<2$.

1. First, we compute k (the details of this computation are omitted, but will require a suitable approximation to $\log 2$).
2. Compute \widetilde{r} as an approximation to $r=x-k \log 2$, to absolute error $\varepsilon 2^{-k-2} e^{-2}$.
3. Compute $\widetilde{\exp (\widetilde{r})}$ as an approximation to $\exp (\widetilde{r})$ to absolute error $\varepsilon 2^{-k-1}$.
4. Return $z=2^{k} \widetilde{\exp (\widetilde{r})}$.
§65. Trigonometric functions reduction-trig To compute $\arcsin (x)$ when $0.5<x \leq 1$, we use

$$
\arcsin (x)=\frac{\pi}{2}-2 \arcsin \left(\sqrt{\frac{1-x}{2}}\right)
$$

From Lemma 44. we see that it is sufficient to compute π to absolute error bound of $\varepsilon / 2$ and compute $\sqrt{(1-x) / 2}$ to absolute error bound of $\varepsilon / 8$. A
similar reduction applies for $\arccos (x)$. For $\arctan (x)$ when $|x|>1$, we use

$$
\arctan (x)=\frac{\pi}{2}-\arctan \left(\frac{1}{x}\right) .
$$

Again, we need to compute $1 / x$ to absolute error bound of $\varepsilon / 2$. The cases for \sin , \cos , \tan, cot are even simpler.

3.5.2 Parameter Pre-processing

Hypergeometric parameters are sometimes artificially introduced in order to achieve the standard form of these series. For instance, one of the upper parameters in $x \cdot{ }_{2} F_{1}(1,1 ; 2 ;-x)(=\log (1+x))$ amounts to canceling the implicit lower parameter $b_{0}=1$. This leads to a factor $k!/ k!$ in the k th term t_{k}. While mathematically harmless, this has major performance impact in the Core Library evaluation mechanism. The example of $\log (1+x)$ also illustrates another improvement possible: the upper parameter of 1 with a lower parameter of 2 amounts to the factor $1 /(k+1)$ in the ratio t_{k+1} / t_{k}. Again, it is important not to evaluate this factor as $(1)_{k} /(2)_{k}$. More generally, whenever an upper and a lower parameter differ by an integer, cancellations occur and one can gain improvements in efficiency by recognizing this.
§66. Parameter Pre-processing Algorithm We outline a general algorithm for pre-processing the hypergeometric parameters. Let $a_{1}, a_{2}, \ldots, a_{p}$ and $b_{0}, b_{1}, \ldots, b_{q}$ be the upper and lower parameters of ${ }_{p} F_{q}$. Note that we have added $b_{0}=1$ to the standard list of lower parameters.
(1) We first sort the a 's and then the b 's. Let $a_{1} \leq a_{2} \leq \cdots \leq a_{p}$ and $b_{0} \leq b_{1} \leq \cdots \leq b_{q}$ be the sorted result. In implementation, we use a simple insertion sort. The advantage of this is that the insertion sort of a sorted list of
length n only requires $n-1$ comparisons. Conventionally, parameter lists are given in sorted order.
(2) By a merge-like algorithm we eliminate common terms from both lists. Note that we still maintain the separate lists.
(3) Next we form the maximum number of $\left(a_{i}, b_{j}\right)$ of an upper and a lower parameter where $a-i-b_{i}$ is an integer. Let us call two real numbers x, y equivalent if $x-y \in \mathbb{Z}$. Let $\left(A_{i}, B_{i}\right)(i=1, \ldots, r)$ be the set of such equivalent pairs; these are called $a b$-pairs since A_{i} is an upper parameter and B_{i} a lower parameter. Their corresponding values A_{i}, B_{i} are deleted from the original parameter lists. It is easy to see that the maximum number r of $a b$-pairs is unique. However, the set of these pairs are not unique. To ensure the most efficient code, we must minimize the sum $\sum_{i=1}^{r}\left|A_{i}-B_{i}\right|$ because this is the number of linear factors that the pairs contribute to the term t_{n}. Below, we present a quadratic-time algorithm to solve this matching problem.
(4) We compute the successive terms t_{n} as follows: Let s_{n} be the term that is computed from the upper and lower parameter list in the usual way:

$$
s_{n}=s_{n-1} \times f_{n}
$$

where $f_{n}=\left(a_{1}+n\right)\left(a_{2}+n\right) \cdots\left(a_{p}+n\right) /\left(b_{0}+n\right) \cdots\left(b_{q}+n\right)$. We then initialize t_{n} to s_{n}. Then for each pair (A, B) where $B-A=k \geq 1$, we update

$$
t_{n}:=t_{n} * \frac{A(A+1) \cdots(A+k-1)}{(A+n) \cdots(A+k+n-1)} .
$$

If $A-B \geq 1$, there is an analogous factor. There is a special type of pair that can be further exploited: when A, B are multiples of halves (this can be generalized too). In case $A=\alpha / 2$ and $B-A=k \geq 1$, then (A, B) contributes
the following factor to t_{n} :

$$
\frac{\alpha(\alpha+2) \cdots(\alpha+2(k-1))}{(\alpha+2 n) \cdots(\alpha+2(k+n-1))} .
$$

In the Core Library, this formulation will again lead to expressions of smaller depth, and to a more efficient evaluation. The following table shows the speedup as a result of exploiting parameter reduction (using the standard series for $\log (1+x))$.

| Number of digits | 100 | 200 | 300 | 400 | 500 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| No preprocessing (sec) | 1. | 5.01 | 6.99 | 8.89 | 10.46 |
| Parameter preprocessing (sec) | 0.22 | 0.52 | 0.88 | 1.35 | 1.83 |
| Speedup: | 4.5 | 9.6 | 7.9 | 6.8 | 5.7 |

We give a solution to the following problem: given two lists a_{1}, \ldots, a_{p} and b_{1}, \ldots, b_{q} of $p+q$ distinct numbers, compute a maximal set $\left\{\left(A_{1}, B_{1}\right), \ldots,\left(A_{r}, B_{r}\right)\right\}$ of $a b$-pairs such that $\sum_{i=1}^{r}\left|A_{i}-B_{i}\right|$ is minimized. We present an $O(n \log n)$ solution, by a reduction to sorting. Put the a_{i} 's and b_{j} 's into a common list and sort them. The sort key for any number x is the pair $k e y(x)=(x \bmod 1, x)$. The comparison of two sort keys $k e y(x): \operatorname{key}(y)$ is lexicographic (first compare $x \bmod 1: y \bmod 1$, and if there is a tie, we then compare $x ; y)$. This puts the a 's and b 's into groups based on their equivalence classes. Then, we march through the sorted lists of each equivalent classes:
§67. Minimum Matching Problem Consider the following problem 2 where we are given two sorted lists of real numbers, $\left(A_{1}<A_{2}<\cdots<A_{m}\right)$ and

[^1]$\left(B_{1}<B_{2}<\cdots<B_{n}\right)$. Assume $m \leq n$. We want to compute a set of m pairs $\left(A_{1}, B_{\alpha(1)}\right), \ldots,\left(A_{m}, B_{\alpha(m)}\right)$ such that the sum
\[

$$
\begin{equation*}
S=\sum_{i=1}^{m}\left|A_{i}-B_{\alpha(i)}\right| \tag{3.19}
\end{equation*}
$$

\]

is minimized where $(\alpha(1), \cdots, \alpha(n))$ is a permutation of $(1, \cdots, m)$. We give an $O(m n)$ time algorithm. Two pairs $\left(A_{i}, B_{\alpha(i)}\right)$ and $\left(A_{j}, B_{\alpha(j)}\right)$ are said to cross if $i<j$ and $\alpha(i)>\alpha(j)$. It is easy to see that if we "uncross" such a pair, we obtain a solution whose sum S in (3.19) is not more than the original. Consider the subproblems $P(i, j)$ comprising the input lists $\left(A_{1}, \ldots, A_{i}\right)$ and $\left(B_{1}, \ldots, B_{j}\right)$. Let $S(i, j)$ be the minimum value for subproblem $P(i, j)$. When $i=j$, the solution is unique in the obvious way. Otherwise, for $i<j$,

$$
S(i, j)=\min \left\{S(i, j-1), S(i-1, j-1)+\left|A_{i}-B_{j}\right|\right\} .
$$

Then, using standard dynamic programming, we can solve this problem in time $O(m n)$.

3.5.3 Mathematical Constants: Evaluation, File Formats

The hypergeometric evaluation algorithm requires arbitrarily precise constants. For instance, when doing argument reduction for trigonometric functions, we need π. For argument reduction for $\exp (x)$ and for $\log (1+x)$ we need $\log 2$. For the error function $\operatorname{erf}(x)$, we need $1 / \sqrt{\pi}$. While it is possible to compute these constants on the fly, we can improve performance by pre-computing these constants, storing them in files, and accessing them as needed. The following raw timing results give some idea about possible gains: we compare the number of seconds to compute π to a certain number of bits (using Machin's formula) versus the time it takes to read the same number of bits from a text file.

| Bits | 100 | 1000 | 3000 | 5000 | 7000 | 9000 | 10000 | 20000 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| On the fly (sec) | 0.04 | 0.50 | 2.49 | 5.88 | 10.66 | 17.19 | 21.38 | 107.61 |
| Pre-computed (sec) | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.03 | 0.11 |
| Speedup | 4 | 50 | 249 | 588 | 533 | 859 | 713 | 978 |

Thus, for 5000 bits or more, we can expect gains of up to three orders of magnitude. Hence, we now describe facilities to compute, to store and to read constants in file formats. A fundamental decision was to use text files rather than binary files as the former is human readable. The reason for this choice is that files admits better human interfaces, as an ordinary text editor can be used to enter and modify values. The main drawback is a constant factor overhead in storage as well as in speed. Storage is not an issue, considering that storage is practically free within the modest space requirements of our applications. The format supports both integer, floating point and rational number representations. Next, the base of the numbers can be binary, hexadecimal or decimal. The advantage of binary/hexadecimal is that conversion into the internal format of the Core Library takes linear time. The advantage of the decimal format is that they are directly comprehensible by humans (a useful fact for experimentation). Our files also allow comments, which also facilitates memorization and collaboration. The formal specification is distributed with the Core Library version 1.3 or higher.

[^2]
3.6 Integration of Hypergeometric Functions into the Core Library

Now we are ready to integrate hypergeometric functions into the Core Library using the new extension framework we developed in Section 2.4. The main function we provided for hypergeometric functions is

Expr hyper(const std::vector<BigRat>\& A, const std::vector<BigRat>\& B, const Expr\& fx, const Expr\& fz);

It is used to evaluate the hypergeometric series

$$
{ }_{p} F_{q}=f_{z} F\left(a_{1}, a_{2}, \ldots, a_{p}, b_{1}, b_{1}, b_{2}, \ldots, b_{p} ; f_{x}\right)
$$

The upper and lower parameters of the series are stored in the vectors A and B respectively; $f z$ and $f x$ are scalars. We also defined the interfaces for the following common elementary functions:

$$
\log , \text { exp, erf, sin, cos, tan, arccos, arcsin, arctan }
$$

which are just inline functions to call hyper().
Like other functions, sum(), root0f(), in the implementation of hyper() a new type of node HyperRep is constructed. Inside HyperRep, we implemented most functionalities. HyperRep is designed as a unary node. With the new extension mechanism in the Core Library, we need to overload the following functions: compute_filter(), compute_sgn(), compute_uMSB(), compute_1MSB(), comput_r_approx() and compute_a_approx(). Actually, we only need implement compute_a_approx () which basically uses the algorithms we developed in Section 3.2. While we can easily compute the approximation of the summation
using Expr class, a more efficient method is to use the newly developed sum() function to avoid build large expression DAGs.

Argument reduction and parameter pre-processing are done in the constructor of HyperRep. The constants used in the argument reduction are read from pre-computed files when it is available, otherwise computed on the fly.

To obtain more efficiency, we design some leaf nodes to compute those mathematical constants using fast algorithms. For example, we use AGM to compute the approximations of π and $\log 2$.

Since we have no root bound for hypergeometric functions, the escape bound inside the Rootbd class is used when it is needed. Hence users should realize that in the presence of hypergeometric functions, the sign computation is conditional, i.e., it is only guaranteed to some finite precision.

3.7 Final Remarks and Open Problems

In work closely related to the new results of this chapter, van der Hoeven 90, 91 presented fast algorithms for evaluating holonomic functions $f(x)$. Such an $f(x)$ satisfies a linear differential equation $\sum_{i=0}^{k} P_{i}(x) f^{(i)}(x)=0$ where $P_{i}(x) \in \mathbb{Z}[x]$. For instance, if $f(x)={ }_{2} F_{1}(a, b ; c ; x)$ then it satisfies the equation

$$
x(1-x) f^{\prime \prime}(x)+(c-x(1+a+b)) f^{\prime}(x)-a b f(x)=0 .
$$

Van der Hoeven's setting is more general than ours in two ways: first, hypergeometric functions are holonomic and second, he treats complex functions which live on Riemann surfaces. He shows that $f(x)$ can be approximated to absolute n-bits in time $O\left(M\left(n \log ^{2} n\right)\right)$. But this complexity bound is a "local result" in the sense that f is fixed and x restricted to a local neighborhood. In contrast,
our complexity bounds are global results: x is unbounded and our functions f are specified by input parameters \mathbf{a}, \mathbf{b}. As seen in Section 3.4, global bounds can be nontrivial with subtle difficulties. In any case, it remains a challenge to give a global complexity bound in van der Hoeven's setting.

We have shown for the first time that the general hypergeometric function is absolutely approximable. Our complexity bound for H is the first step towards gauging the inherent complexity of H or ${ }_{p} F_{q}$ (for fixed p, q), which is useful for many applications (see, e.g., 48). In particular, we are interested in lower bounds for H and its relation to other important problems in algebraic complexity.

Another natural question is the relative approximation of H. The zero problem for H is this:
(ZD): Given rational $\mathbf{a}, \mathbf{b}, x$, is $H(\mathbf{a} ; \mathbf{b} ; x)=0$?
This seems to be a difficult problem and is currently wide open. For instance, Beukers has shown that

$$
{ }_{2} F_{1}(1-3 a, 3 a ; a ; 1 / 2)=2^{2-3 a} \cos (\pi a) .
$$

By setting $a=1 / 2$, we obtain ${ }_{2} F_{1}\left(-\frac{1}{2}, \frac{3}{2} ; \frac{1}{2} ; \frac{1}{2}\right)=0$.
So the issue is to detect identities of this sort automatically. It is shown in 94 that a real function f is relatively approximable iff it is absolutely approximable and the zero problem for f is decidable. Since H is absolutely approximable, we conclude:

Lemma 45. The general hypergeometric problem is relatively approximable iff the zero problem for H is decidable.

We can consider related problem:
(RD): Given rational $\mathbf{a}, \mathbf{b}, x$, is $H(\mathbf{a} ; \mathbf{b} ; x)$ rational?
(RE): Given rational $\mathbf{a}, \mathbf{b}, x, r$, is $H(\mathbf{a} ; \mathbf{b} ; x)=r$?

Lemma 46. The problem (ZD) can be reduced to the special case of (RE) in which the parameters \mathbf{a}, \mathbf{b} are positive.

In fact, if $F={ }_{p} F_{q}(\mathbf{a} ; \mathbf{b} ; x)=S_{n}+R_{n}$ where $R_{n}=\sum_{k \geq n} t_{k}$, then

$$
R_{n}=t_{n p+1} F_{q+1}(\mathbf{a}+n, 1 ; \mathbf{b}+n, 1+n ; x)
$$

For instance, Beuker's example above can be transformed in this way to

$$
{ }_{2} F_{1}\left(-\frac{1}{2}, \frac{3}{2} ; \frac{1}{2} ; \frac{1}{2}\right)=1+t_{1} \cdot{ }_{3} F_{2}\left(\frac{1}{2}, \frac{5}{2}, 1 ; \frac{3}{2}, 2 ; \frac{1}{2}\right)
$$

where $t_{1}=-3 / 4$. Hence,

$$
{ }_{3} F_{2}\left(\frac{1}{2}, \frac{5}{2}, 1 ; \frac{3}{2}, 2 ; \frac{1}{2}\right)=3 / 4 .
$$

Chapter 4

Non-asymptotic Error Analysis of AGM Algorithm

Brent showed that an n-bit approximation of an elementary function f may be evaluated in $O\left(M(n) \lg ^{2}(n)\right)$ operations. His algorithms depend on the theory of elliptic integrals, and uses the arithmetic-geometric mean (AGM) iteration and ascending Landen transformations. However, he only gave the asymptotic error analysis and the precision for each operations in the algorithms are not given explicitly. Thus, they cannot be used for direct implementation. In this chapter, we present a non-asymptotic error analysis for these AGM-based algorithms. With this analysis and the new mechanism we introduced in Chapter 2, we can implement and incorporate many elementary functions into the Core Library.

Overview of this chapter In Section 4.1, we describe the AGM algorithm and some of its properties. We give an error analysis for the AGM algorithm in Section 4.2. In Section 4.3, we first present Brent's AGM-based algorithm for computing π, then we modify it with explicit precision given for each operation. In Section 4.4, we describe the Brent's method for computing the exponen-
tial and logarithm functions first, then with non-asymptotic error analysis we present our modified algorithms which can be directly implemented.

4.1 Arithmetic-geometric Mean Iteration

Arithmetic-geometric mean (AGM) iteration was known to Gauss [33]. Let a_{0}, b_{0} be two positive numbers. We iterate as follows:

$$
a_{i+1}=\frac{a_{i}+b_{i}}{2} \quad \text { (arithmetic mean) }
$$

and

$$
b_{i+1}=\sqrt{a_{i} b_{i}} \quad \text { (geometric mean) }
$$

for $i=0,1, \ldots$.
$\S 68$. Second-order convergence AGM converges very fast. If $b_{i} \ll a_{i}$, then

$$
\frac{b_{i+1}}{a_{i+1}}=\frac{2 \sqrt{b_{i} / a_{i}}}{1+b_{i} / a_{i}} \simeq 2 \sqrt{\frac{b_{i}}{a_{i}}},
$$

so only about $\left|\lg \left(a_{0} / b_{0}\right)\right|$ iterations are required before b_{i} / a_{i} is of order 1 . Once a_{i} and b_{i} get close, the convergence is second order, since for $b_{i} / a_{i}=1-\epsilon_{i}$, then

$$
\epsilon_{i+1}=1-b_{i+1} / a_{i+1}=1-2\left(1-\epsilon_{i}\right)^{\frac{1}{2}} /\left(2-\epsilon_{i}\right)=\epsilon_{i}^{2} / 8+O\left(\epsilon_{i}^{3}\right) .
$$

§69. Monotonicity of AGM From the definitions of a_{i+1} and b_{i+1}, we have

$$
a_{i+1}=\frac{a_{i}+b_{i}}{2} \geq \sqrt{a_{i} b_{i}}=b_{i+1}
$$

for $i=0,1, \ldots$. Hence, if $i \geq 1$, we have

$$
a_{i+1}=\frac{a_{i}+b_{i}}{2} \leq \frac{a_{i}+a_{i}}{2}=a_{i}
$$

and

$$
b_{i+1}=\sqrt{a_{i} b_{i}} \geq \sqrt{b_{i} b_{i}}=b_{i},
$$

i.e., $\left\{a_{i}\right\}$ is monotone decreasing and $\left\{b_{i}\right\}$ is monotone increasing. Thus, for $i \geq 1$, we have

$$
\begin{equation*}
a_{1} \geq \cdots \geq a_{i} \geq a_{i+1} \geq b_{i+1} \geq b_{i} \geq \cdots \geq b_{1} . \tag{4.1}
\end{equation*}
$$

Without loss of generality, we assume $a_{0} \geq b_{0}$. Then we have

$$
a_{0} \geq a_{1} \geq \cdots a_{i} \geq a_{i+1} \geq b_{i+1} \geq b_{i} \geq \cdots \geq b_{1} \geq b_{0}
$$

for $i=1,2, \ldots$.
§70. Limit of AGM By monotone convergence principle, $\left\{a_{i}\right\}$ is a convergent sequence. Let A be the limit of $\left\{a_{i}\right\}$, i.e.,

$$
A=\lim _{i \rightarrow \infty} a_{i} .
$$

Note that $\lim _{i \rightarrow \infty} b_{i}=\lim _{i \rightarrow \infty} a_{i}$ and

$$
\begin{equation*}
b_{0} \leq A \leq a_{0} \tag{4.2}
\end{equation*}
$$

4.2 Error Analysis of AGM

The algorithms that we are going to present in the rest of this chapter depend on computing A, i.e., the limit of $\left\{a_{i}\right\}$. Now we present the error analysis of computing $\lim _{i \rightarrow \infty} a_{i}$ using the AGM iteration.

From (4.1), we have

$$
a_{i} \geq \lim _{i \rightarrow \infty} a_{i} \geq b_{i}
$$

for $i=1,2, \ldots$ Hence,

$$
\left|a_{i}-\lim _{i \rightarrow \infty} a_{i}\right| \leq\left|a_{i}-b_{i}\right|
$$

If $\left|a_{i}-b_{i}\right| \leq 2^{-n}$, then $\left|a_{i}-\lim _{i \rightarrow \infty} a_{i}\right| \leq 2^{-n}$, i.e., we can use a_{i} as an approximation of $\lim _{i \rightarrow \infty} a_{i}$ with absolute precision n. Since the AGM iteration converges with order $2(\S 68)$, we need $\lg (n)+O(1)$ iterations. The following lemma gives us the exact number of iterations we need in order to guarantee $\left|a_{i}-b_{i}\right| \leq 2^{-n}:$

Lemma 47. Let $\delta_{i}=a_{i}-b_{i}$, then

$$
\begin{equation*}
\delta_{i+1} \leq \frac{1}{8 b_{0}} \delta_{i}^{2} \tag{4.3}
\end{equation*}
$$

for $i=0,1, \ldots$ Moreover, let

$$
C_{1}(n)=\log _{2}\left(n+3+\log _{2} b_{0}\right)-\log _{2}\left(3+\log _{2} \frac{b_{0}}{\delta_{0}}\right)
$$

If $\frac{b_{0}}{a_{0}} \geq \frac{1}{9}$, then after $i \geq C_{1}(n)$ iterations, $\delta_{i} \leq 2^{-n}$. If $\frac{b_{0}}{a_{0}} \geq \frac{1}{5}$, then after $i \geq \log _{2}\left(n+3+\log _{2} b_{0}\right)$ iterations, $\delta_{i} \leq 2^{-n}$.

Proof. Note that

$$
\begin{aligned}
\delta_{i}^{2}=\left(a_{i}-b_{i}\right)^{2} & =\left(a_{i}+b_{i}\right)^{2}-4 a_{i} b_{i} \\
& =4 a_{i+1}^{2}-4 b_{i+1}^{2} \\
& =4\left(a_{i+1}+b_{i+1}\right)\left(a_{i+1}-b_{i+1}\right) \\
& \geq 8 b_{0} \delta_{i+1} .
\end{aligned}
$$

Hence,

$$
\delta_{i+1} \leq \frac{1}{8 b_{0}} \delta_{i}^{2}
$$

Moreover,

$$
\begin{aligned}
\delta_{i} & \leq \frac{1}{8 b_{0}} \delta_{i-1}^{2} \\
& \leq \frac{1}{8 b_{0}}\left(\frac{1}{8 b_{0}} \delta_{i-2}^{2}\right)^{2} \\
& =\left(\frac{1}{8 b_{0}}\right)^{3} \delta_{i-2}^{4} \\
& \leq \cdots \\
& \leq\left(\frac{1}{8 b_{0}}\right)^{2^{i}-1} \delta_{0}^{2^{i}}
\end{aligned}
$$

In order to compute $\delta_{i} \leq 2^{-n}$, it suffices to have

$$
\left(\frac{1}{8 b_{0}}\right)^{2^{i}-1} \delta_{0}^{2^{i}} \leq 2^{-n}
$$

If $\frac{\delta_{0}}{8 b_{0}}<1$, i.e., $b_{0}>\frac{1}{9} a_{0}$, then

$$
i \geq \log _{2}\left(n+3+\log _{2} b_{0}\right)-\log _{2}\left(3+\log _{2} \frac{b_{0}}{\delta_{0}}\right)
$$

If $b_{0} \geq \frac{1}{5} a_{0}$, then we can choose

$$
i \geq \log _{2}\left(n+3+\log _{2} b_{0}\right)
$$

since $\log _{2}\left(3+\log _{2} \frac{b_{0}}{\delta_{0}}\right) \geq 0$.

Q.E.D.

However, the above analysis assumes that the initial values are exact and arithmetic operations in each iteration can be performed exact. In our setting, we use bigfloat computation. We would like to compute an approximation $\widetilde{a_{i}}$ of a_{i}. To obtain n bit accuracy in a_{i}, we need work out the precision that we need for the initial values and each arithmetic operations. The following lemma gives the error propagation rules for the AGM iterations:

Lemma 48. Let $a>0$ and $b>0$.
(i) If $c=(a+b) / 2$, to guarantee p relative bits in c, it suffices to guarantee $p+1$ relative bits in a and b and perform the addition in $p+2$ bits relative precision. (ii) If $c=\sqrt{a b}$, to guarantee p relative bits in c, it suffices to guarantee $p+1$ relative bits in a and b and $p+2$ relative bits in the performing multiplication and square root extraction.

$$
\text { Proof. Assume } \widetilde{a}=a(1+\delta), \widetilde{b}=b\left(1+\delta^{\prime}\right)
$$

(i) If $\delta \leq 2^{-(p+1)}$, $\delta^{\prime} \leq 2^{-(p+1)}, \rho_{+} \leq 2^{-(p+2)}$, then we have

$$
\begin{aligned}
\widetilde{c} & =\frac{\widetilde{\widetilde{a}+\widetilde{b}}}{2} \\
& =\frac{a(1+\delta)+b\left(1+\delta^{\prime}\right)}{2}\left(1+\rho_{+}\right) \\
& \leq \frac{a+b}{2}\left(1+2^{-(p+1)}\right)\left(1+2^{-(p+2)}\right) \\
& \leq c\left(1+2^{-p}\right) .
\end{aligned}
$$

(ii) If $\delta \leq 2^{-(p+1)}, \delta^{\prime} \leq 2^{-(p+1)}, \rho_{\times} \leq 2^{-(p+2)}$ and $\rho_{+} \leq 2^{-(p+2)}$,

$$
\begin{aligned}
\widetilde{c} & =\widetilde{\sqrt{\widetilde{a} \vec{b}}} \\
& =\sqrt{a b(1+\delta)\left(1+\delta^{\prime}\right)\left(1+\rho_{\times}\right)}\left(1+\rho_{\sqrt{ }}\right) \\
& \leq \sqrt{a b} \sqrt{(1+\delta)\left(1+\delta^{\prime}\right)\left(1+\frac{\rho_{\times}}{2}\right)\left(1+\rho_{\sqrt{ }}\right)} \\
& \leq \sqrt{a b}\left(1+2^{-(p+1)}\right)\left(1+2^{-(p+3)}\right)\left(1+2^{-(p+2)}\right) \\
& \leq c\left(1+2^{-p}\right) .
\end{aligned}
$$

Q.E.D.

From the above lemma, we can see that in the AGM iteration, if a_{i}, b_{i} have $p+1$ bit relative precision and we perform the addition, multiplication and square root in $p+2$ relative precision (divide by 2 can be done exactly), then
a_{i+1} and b_{i+1} have p bits relative precision, i.e., 1 bit precision is lost in each iteration. Thus, we have the following lemma:

LEMMA 49. If $0 \leq b_{0} \leq a_{0} \leq 1$ and $\frac{b_{0}}{a_{0}} \geq \frac{1}{9}$, then it suffices to approximate a_{0}, b_{0} within relative $n+1+C_{1}(n+1)$ bits and guarantee $n+2+C_{1}(n+1)-i$ bits relative precision in the addition, multiplication and square root operations in ith iteration in order to compute $\lim _{n \rightarrow \infty} a_{n}$ to absolute n bits using the $A G M$ iteration, where $C_{1}(n)$ is given in Lemma 47

Proof. By Lemma 47, if $\frac{b_{0}}{a_{0}} \geq \frac{1}{9}$, in $C_{1}(n+1)$ iterations, we can guarantee $\left|a_{i}-b_{i}\right| \leq 2^{-(n+1)}$, hence

$$
\left|a_{i}-\lim _{i \rightarrow \infty} a_{i}\right| \leq 2^{-(n+1)}
$$

By Lemma 48 if we approximate a_{0}, b_{0} within $n+1+C_{1}(n+1)$ bits relative precision and perform the addition, multiplication and square root operations in $n+2+C_{1}(n+1)-i$ in i-th iteration, then after $C_{1}(n+1)$ iteration, the computed a_{i} and b_{i} have $n+1$ bits relative precision, i.e.,

$$
\left|\widetilde{a_{i}}-a_{i}\right| \leq\left|a_{i}\right| \cdot 2^{-(n+1)} \leq 2^{-(n+1)} .
$$

Hence,

$$
\left|\widetilde{a}_{i}-\lim _{i \rightarrow \infty} a_{i}\right| \leq\left|\widetilde{a_{i}}-a_{i}\right|+\left|a_{i}-\lim _{i \rightarrow \infty} a_{i}\right| \leq 2^{-n} .
$$

Q.E.D.

4.3 Fast Multiple-precision Evaluation of π

The classical methods for evaluating π to precision n take time $O\left(n^{2}\right)$. Brent described a $O\left(M(n) \log ^{2}(n)\right)$ method using Machin's formula in [9. Asymptotically the fastest known methods require time $O(M(n) \log (n))$. Brent presented
such a method in 10 which is based on the AGM iteration and Legendre's Identity. In this section, we present this algorithm with non-asymptotic analysis.

Assume $a_{0}=1$ and $b_{0}=\cos \alpha$ for some α. If $A(\alpha)=\lim _{i \rightarrow \infty} a_{i}=\lim _{i \rightarrow \infty} b_{i}$, then

$$
\begin{equation*}
A(\alpha)=\frac{\pi}{2 F(\alpha)}, \tag{4.4}
\end{equation*}
$$

where $F(\alpha)$ is the complete elliptic integral of the first kind, i.e.,

$$
F(\alpha)=\int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{1-\sin ^{2} \alpha \sin ^{2} \theta}} .
$$

(A simple proof of (4.4) is given in [8, 60].) Also if $c_{0}=\sin \alpha, c_{i+1}=a_{i}-a_{i+1}$, $i=0,1, \ldots$, then

$$
\begin{equation*}
\sum_{i=0}^{\infty} 2^{i-1} c_{i}^{2}=1-\frac{E(\alpha)}{F(\alpha)} \tag{4.5}
\end{equation*}
$$

where $E(\alpha)$ is the complete elliptic integral of the second kind, i.e.,

$$
E(\alpha)=\int_{0}^{\pi / 2} \sqrt{1-\sin ^{2} \alpha \sin ^{2} \theta} d \theta
$$

Both (4.4) and (4.5) were known by Gauss. Let $t_{i}=\frac{1}{2}-\sum_{j=0}^{i} 2^{j-1} c_{j}^{2}$ for $i \geq 0$, and $T(\alpha)=\lim _{i \rightarrow \infty} t_{i}$. Then

$$
\begin{equation*}
T(\alpha)=\frac{E(\alpha)}{F(\alpha)}-\frac{1}{2} . \tag{4.6}
\end{equation*}
$$

§71. Legendre's Identity and Gauss-Legendre Method The following Legendre's Identity is used in Brent's method:

$$
\begin{equation*}
F(\alpha) E\left(\alpha^{\prime}\right)+F\left(\alpha^{\prime}\right) E(\alpha)-F(\alpha) F\left(\alpha^{\prime}\right)=\frac{\pi}{2} \tag{4.7}
\end{equation*}
$$

where $\alpha+\alpha^{\prime}=\frac{\pi}{2}$. Taking $\alpha=\alpha^{\prime}=\pi / 4$, we obtain

$$
\begin{equation*}
2 E(\pi / 4) F(\pi / 4)-F^{2}(\pi / 4)=\pi / 2 \tag{4.8}
\end{equation*}
$$

Thus, from (4.4), (4.6) and (4.8), we have

$$
\begin{equation*}
\pi=A^{2}(\alpha) / T(\alpha) \tag{4.9}
\end{equation*}
$$

Let $a_{0}=1, b_{0}=c_{0}=\frac{\sqrt{2}}{2}$. Then $t_{0}=\frac{1}{4}$. Using (4.9) and the AGM iteration, we obtain the following algorithm evaluating π :

```
Brent's Algorithm for computing \(\pi\)
    // \(A=a_{i}, B=b_{i}, T=t_{i}, X=2^{i}\)
    \(A \leftarrow 1 ; ~ B \leftarrow 2^{-\frac{1}{2}} ; T \leftarrow \frac{1}{4} ; \quad X \leftarrow 1 ;\)
    while \(\left(A-B>2^{-n}\right)\) \{
        \(Y \leftarrow A ; A \leftarrow(A+B) / 2 ; \quad B \leftarrow \sqrt{B Y} ;\)
        \(T \leftarrow T-X(A-Y)^{2} ; \quad X \leftarrow 2 X ;\)
    \}
    return \(A^{2} / T\);
```

Note that $T(\alpha)$ is a summation. Hence this AGM-based algorithm for computing π is not self-correcting, i.e., we cannot start with low precision and increase it. Brent showed that to obtain precision n, it is necessary to work with precision $n+O(\lg \lg (n))$. But no constant was given explicitly in his asymptotic analysis.

We propose the following modified algorithm using the Kernel class that we described in Chapter 2.

Modified Algorithm $\operatorname{Pi}()$ for computing π to relative precision n

```
    \(c \leftarrow C_{1}(n+6) ; p \leftarrow n+6+c ; p p \leftarrow p+1 ;\)
    \(A \leftarrow 1 ; B \leftarrow \operatorname{sqrt}(2, p) / 2 ; T \leftarrow \frac{1}{4} ;\)
    for (i=0; i<c; ++i) \{
    \(Y \leftarrow A ; \quad A \leftarrow a d d(A, B, p p) ; \quad A \leftarrow \operatorname{div} \_2 \exp (A, 1) ;\)
    \(B \leftarrow \operatorname{mul}(B, Y, p p) ; B \leftarrow \operatorname{sqrt}(B, p p) ;\)
    \(P \leftarrow \operatorname{sub}(A, Y, p p) ; P \leftarrow \operatorname{mul}(P, P, p p) ; P \leftarrow \operatorname{mul} \_2 \exp (P, i) ;\)
    \(T \leftarrow \operatorname{sub}(T, P, p p) ; p p \leftarrow p p-1 ;\)
\}
    \(A \leftarrow \operatorname{mul}(A, A, n+4) ;\)
    return \(\operatorname{div}(A, T, n+2)\);
```

All these operations (add (A, B, p), sub (A, B, p), mul (A, B, p), sqrt (B, p)) in above algorithm assume that p is a specified relative precision.

From Lemma $]_{\text {and }}$ Lemma we know that to guarantee n relative bits in computing π, it is sufficient to guarantee $n+4$ relative bits in $A(\alpha)$ and $n+2$ relative bits in $T(\alpha)$ and to perform the multiplication in $n+4$ and division in $n+2$ relative precision. Since $A(\alpha) \geq b_{0}=\frac{\sqrt{2}}{2} \geq \frac{1}{2}, T(\alpha)=A(\alpha)^{2} / \pi \geq \frac{1}{8}$, the lower bound of $\lg |A(\alpha)|$ is -1 and the lower bound of $\lg |T(\alpha)|$ is -3 . By Lemma (ii), it is enough to guarantee $n+5$ absolute precision $A(\alpha)$ and $n+5$ absolute bits in $T(\alpha)$. While Lemma 49 can show the above modified algorithm can approximate $A(\alpha)$ to $n+5$ absolute bits, it remains to show that it compute $T(\alpha)$ within $n+5$ absolute bits:

Lemma 50. The modified Algorithm $\operatorname{Pi}()$ computes $T(\alpha)$ within $n+5$ absolute precision.

Proof. We can first estimate the upper bound of c_{i} using Lemma 47

$$
\begin{aligned}
c_{i+1} & =a_{i}-a_{i+1} \\
& =\frac{a_{i}-b_{i}}{2} \\
& \leq\left(\frac{1}{8}\right)^{2^{i}-1} \cdot\left(a_{0}-b_{0}\right)^{2^{i}} \\
& \leq\left(\frac{1}{8}\right)^{2^{i}-1} \cdot\left(\frac{1}{2}\right)^{2^{i}} \quad\left(\text { since } a_{0}-b_{0} \leq 1 / 2\right) \\
& =2^{-\left(2^{i+2}-4\right)}
\end{aligned}
$$

After $c=C_{1}(n+6)$ iterations, we have

$$
\left|t_{c}-\lim _{i \rightarrow \infty} t_{i}\right|=\left|\sum_{j=c+1}^{\infty} 2^{j-1} c_{j}^{2}\right| \leq 2^{-2^{c+1}} \leq 2^{-(2 n)}
$$

Let \widetilde{a}_{i} be the approximation of a_{i} in i-th iteration, then from Lemma 49, we have $\widetilde{a}_{i} \leq a_{i}\left(1+2^{-(p-i)}\right)$ where $p=n+6+c$. Hence

$$
\begin{aligned}
\widetilde{c_{i}} & =\left(\widetilde{a_{i-1}}-\widetilde{a_{i}}\right)\left(1+\rho_{-}\right) \\
& \leq\left(a_{i-1}-a_{i}\right)\left(1+2^{-(p-i)+1}\right)\left(1+2^{-(p+1-i)}\right) \\
& \leq c_{i}\left(1+2^{-(p-i)+2}\right)
\end{aligned}
$$

Thus, $\widetilde{c}_{i}^{2} \leq c_{i}^{2}\left(1+2^{-(p-i)+2}\right)^{2} \leq c_{i}^{2}\left(1+2^{-(p-i)+4}\right)$. After c iterations, we have

$$
\left|\widetilde{t_{c}}-t_{c}\right|=\sum_{j=0}^{c} 2^{j-1}\left(\widetilde{c_{j}}-c_{j}\right)^{2} \leq \sum_{j=0}^{c} 2^{j-1} c_{j}^{2} 2^{-2(p-i)+8} \leq 2^{-2 p} \leq 2^{-2 n}
$$

Therefore

$$
\left|\widetilde{t_{c}}-\lim _{i \rightarrow \infty} t_{i}\right| \leq 2^{-2 n)}+2^{-2 n)} \leq 2^{-(n+5)}
$$

Q.E.D.

4.4 Fast Evaluation of Exponential and Logarithm Functions

Brent's fast evaluation algorithms of elementary functions are based on elliptic integral theory.

4.4.1 Elliptic Integrals

Elliptic integrals of the first and second kind are defined by

$$
\begin{equation*}
F(\psi, \alpha)=\int_{0}^{\psi} \frac{d \theta}{\sqrt{1-\sin ^{2} \alpha \sin ^{2} \theta}} \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
E(\psi, \alpha)=\int_{0}^{\psi} \sqrt{1-\sin ^{2} \alpha \sin ^{2} \theta} d \theta \tag{4.11}
\end{equation*}
$$

The complete elliptic integrals, $E(\pi / 2, \alpha)$ and $F(\pi / 2, \alpha)$, are simply written as $E(\alpha)$ and $F(\alpha)$, respectively, as seen in the previous section.
§72. Small Angle Approximation From (4.10) it is clear that

$$
F(\psi, \alpha) \geq \int_{0}^{\psi} d \theta=\psi
$$

and

$$
\begin{equation*}
F(\psi, \alpha) \leq \int_{0}^{\psi} \frac{d \theta}{\sqrt{1-\sin ^{2} \alpha}}=\frac{\psi}{\cos \alpha} \leq \frac{\psi}{1-\alpha^{2} / 2} \leq \psi\left(1+\alpha^{2}\right) \tag{4.12}
\end{equation*}
$$

as $|\alpha| \rightarrow 0$.
§73. Large Angle Approximation From (4.10),

$$
\begin{equation*}
F(\psi, \alpha) \leq \int_{0}^{\psi} \frac{d \theta}{\sqrt{1-\sin ^{2} \theta}}=F(\psi, \pi / 2) \tag{4.13}
\end{equation*}
$$

If $0 \leq \psi \leq \psi_{0}<\pi / 2$ and $|\pi / 2-\alpha| \rightarrow 0$, then

$$
\begin{aligned}
\frac{\sqrt{1-\sin ^{2} \theta}}{\sqrt{1-\sin ^{2} \alpha \sin ^{2} \theta}} & =\frac{\sqrt{1-\sin ^{2} \theta}}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta\left(1-\sin ^{2} \alpha\right)}} \\
& =\frac{1}{\sqrt{1+\tan ^{2} \theta \cos ^{2} \alpha}} \\
& \geq 1-\tan ^{2} \theta \cos ^{2} \alpha \\
& \geq 1-C(\pi / 2-\alpha)^{2}
\end{aligned}
$$

for $0 \leq \theta \leq \psi$ and $C=\tan ^{2} \psi_{0}$. Hence,

$$
\begin{equation*}
F(\psi, \alpha) \geq F(\psi, \pi / 2)\left(1-C(\pi / 2-\alpha)^{2}\right) \tag{4.14}
\end{equation*}
$$

Also, we note that

$$
\begin{equation*}
F(\psi, \pi / 2)=\log \tan (\pi / 4+\psi / 2) \tag{4.15}
\end{equation*}
$$

§74. Ascending Landen Transformation Let α_{i}, ψ_{i} be two sequences satisfying

$$
\begin{align*}
& 0<\alpha_{i}<\alpha_{i+1}<\pi / 2, \\
& 0<\psi_{i+1}<\psi_{i}<\pi / 2, \\
& \sin \alpha_{i}=\tan ^{2}\left(\alpha_{i+1} / 2\right), \tag{4.16}
\end{align*}
$$

and

$$
\begin{equation*}
\sin \left(2 \psi_{i+1}-\psi_{i}\right)=\sin \alpha_{i} \sin \psi_{i} . \tag{4.17}
\end{equation*}
$$

Then

$$
\begin{equation*}
F\left(\psi_{i+1}, \alpha_{i+1}\right)=\frac{1+\sin \alpha_{i}}{2} F\left(\psi_{i}, \alpha_{i}\right) . \tag{4.18}
\end{equation*}
$$

If $s_{i}=\sin \alpha_{i}$ and $v_{i}=\tan \left(\psi_{i} / 2\right)$, then (4.16) gives

$$
\begin{equation*}
s_{i+1}=\frac{2 \sqrt{s_{i}}}{1+s_{i}}, \tag{4.19}
\end{equation*}
$$

and (4.17) gives

$$
\begin{equation*}
v_{i+1}=\frac{W_{i}}{1+\sqrt{1+W_{i}^{2}}}, \tag{4.20}
\end{equation*}
$$

where

$$
\begin{gather*}
W_{i}=\tan \psi_{i+1}=\frac{v_{i}+W_{i}^{\prime}}{1-v_{i} W_{i}^{\prime}}, \tag{4.21}\\
W_{i}^{\prime}=\tan \left(\psi_{i+1}-\psi_{i} / 2\right)=\frac{W_{i}^{\prime \prime}}{1+\sqrt{1-W_{i}^{\prime \prime 2}}}, \tag{4.22}
\end{gather*}
$$

and

$$
\begin{equation*}
W_{i}^{\prime \prime}=\sin \left(2 \psi_{i+1}-\psi_{i}\right)=\frac{2 s_{i} v_{i}}{1+v_{i}^{2}} . \tag{4.23}
\end{equation*}
$$

(4.18) becomes

$$
\begin{equation*}
F\left(\psi_{i+1}, \alpha_{i+1}\right)=\frac{1+s_{i}}{2} F\left(\psi_{i}, \alpha_{i}\right) . \tag{4.24}
\end{equation*}
$$

It is clear that s_{i} can be computed using (4.19) and v_{i} can be computed using (4.20)-(4.23) recursively.
§75. Monotonicity of Ascending Landen Transformation It is interesting to see how these transformation changed when i is increasing. Since $0<\psi_{i+1}<\psi_{i}<\pi / 2$,

$$
v_{i+1}<v_{i}<1 .
$$

From (4.23), we have

$$
\frac{\partial W_{i}^{\prime \prime}}{\partial v_{i}}=\frac{2\left(1-v_{i}^{2}\right)}{1+v_{i}^{2}}>0,
$$

hence $W_{i+1}^{\prime \prime}<W_{i}^{\prime \prime}$. From (4.22), we have

$$
\frac{\partial W_{i}^{\prime}}{\partial W_{i}^{\prime \prime}}=\frac{1}{1+\sqrt{1-W_{i}^{\prime \prime 2}}}-\frac{W_{i}^{\prime \prime} /\left(2 \sqrt{1-W_{i}^{\prime \prime}}\right)}{\left(1+\sqrt{1-W_{i}^{\prime \prime}}\right)^{2}}>0
$$

hence $W_{i+1}^{\prime}<W_{i}^{\prime}$. From (4.21), we have

$$
\frac{\partial W_{i}}{\partial W_{i}^{\prime}}=\frac{1+W_{i}^{\prime 2}}{\left(1-v_{i} W_{i}^{\prime}\right)^{2}}>0,
$$

and

$$
\frac{\partial W_{i}}{\partial v_{i}}=\frac{1+v_{i}^{2}}{\left(1-v_{i} W_{i}^{\prime}\right)^{2}}>0,
$$

hence $W_{i+1}<W_{i}$.

4.4.2 Brent's method

$\S 76 . U_{k}(m)$ and $T_{k}(m)$ We can apply the ascending Landen transformation (4.24) with $i=0,1, \cdots, k-1$ and $\psi_{0}=\pi / 2$ which gives

$$
\begin{equation*}
F\left(\psi_{k}, \alpha_{k}\right)=F\left(\alpha_{0}\right) \prod_{i=0}^{k-1} \frac{1+s_{i}}{2} \tag{4.25}
\end{equation*}
$$

where $F\left(\alpha_{0}\right)$ may be evaluated using (4.4) and the AGM iteration. On the other hand, from (4.13), (4.14) and (4.15), we have

$$
\begin{equation*}
F\left(\psi_{k}, \alpha_{k}\right) \leq \log \tan \left(\pi / 4+\psi_{k} / 2\right) \tag{4.26}
\end{equation*}
$$

and

$$
\begin{equation*}
F\left(\psi_{k}, \alpha_{k}\right) \geq \log \tan \left(\pi / 4+\psi_{k} / 2\right)\left(1-C\left(\pi / 2-\alpha_{k}\right)^{2}\right) . \tag{4.27}
\end{equation*}
$$

Define the functions

$$
\begin{equation*}
U_{k}(m)=F\left(\alpha_{0}\right) \prod_{i=0}^{k-1} \frac{1+s_{i}}{2} \tag{4.28}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{k}(m)=\tan \left(\pi / 4+\psi_{k} / 2\right)=\frac{1+v_{k}}{1-v_{k}} . \tag{4.29}
\end{equation*}
$$

Then, we have

$$
\log T_{k}(m) \geq U_{k} \geq \log T_{k}(m)\left(1-C\left(\pi / 2-\alpha_{k}\right)^{2}\right)
$$

Taking the limit as k tends to ∞, we have

$$
\lim _{k \rightarrow \infty} U_{k}(m)=\lim _{k \rightarrow \infty} \log T_{k}(m)=\log \lim _{k \rightarrow \infty} T_{k}(m) .
$$

Define

$$
\begin{equation*}
U(m)=\lim _{k \rightarrow \infty} U_{k}(m) \tag{4.30}
\end{equation*}
$$

and

$$
\begin{equation*}
T(m)=\lim _{k \rightarrow \infty} T_{k}(m), \tag{4.31}
\end{equation*}
$$

we obtain the following fundamental identity:

$$
\begin{equation*}
U(m)=\log T(m) . \tag{4.32}
\end{equation*}
$$

This identity is used to evaluate the exponential and logarithm functions.
Using (4.19) - (4.23), we can evaluate $U_{k}(m)$ and $T_{k}(m)$ as follows:

AlGorithm for computing $U_{k}(m)$

$$
\begin{aligned}
& A \leftarrow 1 ; B \leftarrow \sqrt{1-m} ; \\
& \text { while }\left(A-B>2^{-n / 2}\right)\{ \\
& \quad C \leftarrow(A+B) / 2 ; B \leftarrow \sqrt{A B} ; A \leftarrow C ; \\
& \} \\
& A \leftarrow \pi /(A+B) ; S \leftarrow \sqrt{m} ; \\
& \text { while }\left(1-S>2^{-n / 2}\right)\{ \\
& \quad A \leftarrow A(1+S) / 2 ; S \leftarrow 2 \sqrt{S} /(1+S) ; \\
& \} \\
& \text { return } A(1+S) / 2 ;
\end{aligned}
$$

Algorithm for computing $T_{k}(m)$

$$
\begin{aligned}
& V \leftarrow 1 ; S \leftarrow \sqrt{m} ; \\
& \text { while } \quad\left(1-S>2^{-n}\right)\{ \\
& \qquad W \leftarrow 2 S V /(1+V * V) ; W \leftarrow W /(1+\sqrt{1-W * W}) ; \\
& \quad W \leftarrow(V+W) /(1-V * W) ; V \leftarrow W /(1+\sqrt{1+W * W}) ; \\
& \quad S \leftarrow 2 \sqrt{S} /(1+S) ; \\
& \} \\
& \text { return }(1+V) /(1-V) ;
\end{aligned}
$$

Some values of $U(m)$ and $T(m)$ for $m \in(0,1)$ are shown in Table 4.1 and Figure 4.1

| m | $U(m)$ | $T(m)$ | m | $U(m)$ | $T(m)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.10 | 0.982438 | 2.670961 | 0.60 | 1.722836 | 5.600387 |
| 0.20 | 1.154937 | 3.173824 | 0.70 | 1.902090 | 6.699886 |
| 0.30 | 1.297205 | 3.659055 | 0.75 | 2.009459 | 7.459284 |
| 0.36 | 1.378276 | 3.968054 | 0.78 | 2.082689 | 8.026022 |
| 0.40 | 1.432174 | 4.187795 | 0.80 | 2.136394 | 8.468844 |
| 0.50 | 1.570796 | 4.810477 | 0.90 | 2.511507 | 12.323487 |

Table 4.1: The Functions $U(m)$ and $T(m)$

Brent showed that in $O(M(n) \log (n))$ operations, the above algorithms can compute $U_{k}(m)$ and $T_{k}(m)$ to precision. However, the precision in each operations are unclear.

Figure 4.1: The Functions $U(m)$ and $T(m)$ for $m \in(0,1)$

4.4.3 Convergence of $U_{k}(m)$ and $T_{k}(m)$

Suppose $\delta>0$ fixed, and $m \in[\delta, 1-\delta]$. If $s_{0}=\sin \alpha_{0}=\sqrt{m}$, it follows from (4.19) that $s_{i} \rightarrow 1$ as $i \rightarrow \infty$. In fact, we have following lemma:

Lemma 51. Let $\delta_{i}=1-s_{i}$. If $0<\delta_{i}<1 / 2$, then

$$
\begin{equation*}
\delta_{i+1} \leq \frac{3}{8} \delta_{i}^{2}, \tag{4.33}
\end{equation*}
$$

i.e., s_{i} converges to 1 with order 2 .

Proof. From (4.19), we have

$$
\delta_{i+1}=1-s_{i+1}=1-\frac{\sqrt{1-\delta_{i}}}{1-\delta_{i} / 2} \leq 1-\frac{1-\frac{\delta_{i}}{2}-\frac{\delta_{i}^{2}}{4}}{1-\frac{\delta_{i}}{2}} \leq \frac{\delta_{i}^{2}}{4}\left(1+\delta_{i}\right) \leq \frac{3}{8} \delta_{i}^{2}
$$

since $0<\delta_{i}<1 / 2$. So $s_{i} \rightarrow 1$ with order 2 .
Q.E.D.

Moreover, we can compute the number of iterations k needed to guarantee $1-s_{k} \leq 2^{-n}$ using the Lemma below:

Lemma 52. Let

$$
\begin{equation*}
C_{2}(n)=\log _{2}\left(n+\log _{2} \frac{8}{3}\right)-\log _{2} \log _{2}\left(\frac{8}{3 \delta_{0}}\right) \tag{4.34}
\end{equation*}
$$

where $\delta_{0}=1-s_{0}$, then after $k \geq C_{2}(n)$ iteration $1-s_{k} \leq 2^{-n}$. Moreover, if $\delta_{0} \leq 1$, then we have $k \geq \log _{2}(n+2)$.

Proof. From Lemma 51] we see that

$$
1-s_{k}=\delta_{k} \leq \frac{3}{8} \delta_{k-1}^{2} \leq \frac{3}{8}\left(\frac{3}{8} \delta_{k-2}^{2}\right)^{2}=\left(\frac{3}{8}\right)^{3} \delta_{k-2}^{4} \leq \cdots \leq\left(\frac{3}{8}\right)^{2^{k}-1} \delta_{0}^{2^{k}}
$$

It suffices to let

$$
\left(\frac{3}{8}\right)^{2^{k}-1} \delta_{0}^{2^{k}} \leq 2^{-n}
$$

i.e.,

$$
k \geq \log _{2}\left(n+\log _{2} \frac{8}{3}\right)-\log _{2} \log _{2}\left(\frac{8}{3 \delta_{0}}\right) .
$$

Moreover, if $\delta_{0} \leq 1$, then $\log _{2} \frac{8}{3} \leq 2$ and $\log _{2} \log _{2}\left(\frac{8}{3 \delta_{0}}\right)>0$, we can choose

$$
k \geq \log _{2}(n+2)
$$

Q.E.D.

4.4.4 Approximation of $U_{k}(m)$ and $T_{k}(m)$

Since $U(m)$ and $T(m)$ are both limits which we cannot compute directly, we will compute $U_{k}(m)$ and $T_{k}(m)$ instead for some k (we will describe how to compute k in next section). In this section, we present the algorithms for approximating $U_{k}(m)$ and $T_{k}(m)$ to n bits of absolute precision for fixed k.

Lemma 53. If $\widetilde{s_{i}}=s_{i}\left(1+\epsilon_{i}\right)$ and $\left|\epsilon_{i}\right| \leq 2^{-n}$, then to guarantee relative n bits in s_{i+1}, it suffices to perform division with relative precision $n+4$ and square root extraction with relative precision $n+4$ bits when computing s_{i+1} using 4.19).

Proof. From (4.19), we have

$$
\begin{aligned}
\widetilde{s_{i+1}} & =\left(\widetilde{\left(\frac{2 \sqrt{s_{i}}}{1+\widetilde{s_{i}}}\right.}\right) \\
& =\frac{2 \sqrt{s_{i}} \sqrt{1+\epsilon_{i}}\left(1+\rho_{i}\right)}{1+s_{i}\left(1+\epsilon_{i}\right)}\left(1+\rho_{i}^{\prime}\right)
\end{aligned}
$$

If $0<\epsilon_{i} \leq 1 / 2$, we have

$$
\widetilde{s_{i+1}} \leq \frac{2 \sqrt{s_{i}} \sqrt{1+\epsilon_{i}}\left(1+\rho_{i}\right)}{1+s_{i}}\left(1+\rho_{i}^{\prime}\right) \leq s_{i+1}\left(1+\epsilon_{i} / 2\right)\left(1+\rho_{i}\right)\left(1+\rho_{i}^{\prime}\right) .
$$

If $-1 / 2<\epsilon_{i} \leq 0$, we have

$$
\widetilde{s_{i+1}} \leq \frac{2 \sqrt{s_{i}} \sqrt{1+\epsilon_{i}}\left(1+\rho_{i}\right)}{\left(1+s_{i}\right)\left(1+\epsilon_{i}\right)}\left(1+\rho_{i}^{\prime}\right) \leq s_{i+1}\left(1-3 \epsilon_{i} / 4\right)\left(1+\rho_{i}\right)\left(1+\rho_{i}^{\prime}\right) .
$$

i.e.,

$$
\widetilde{s_{i+1}} \leq s_{i+1}\left(1+3\left|\epsilon_{i}\right| / 4\right)\left(1+\rho_{i}\right)\left(1+\rho_{i}^{\prime}\right) .
$$

If $\left|\rho_{i}\right| \leq 2^{-(n+4)}$ and $\left|\rho_{i}^{\prime}\right| \leq 2^{-(n+4)}$, then

$$
\left(1+3\left|\epsilon_{i}\right| / 4\right)\left(1+\rho_{i}\right)\left(1+\rho_{i}^{\prime}\right) \leq\left(1+3 \cdot 2^{-n} / 4\right)\left(1+2^{-(n+4)}\right)^{2} \leq 1+2^{-n}
$$

i.e.,

$$
\widetilde{s_{i+1}} \leq s_{i+1}\left(1+2^{-n}\right) .
$$

Q.E.D.

The above lemma shows that if we can perform division and square root extraction with relative $n+4$ bits, then we can compute s_{i} with relative n bits for $i=0,1,2, \ldots$ if we approximate s_{0} to n relative bits.

Lemma 54. We can approximate $U_{k}(m)$ to absolute n bits if we compute $s_{0}=$ \sqrt{m} to relative $n+\left\lceil\log _{2} F\left(\alpha_{0}\right)\right\rceil+\left\lceil\log _{2} k\right\rceil+2$ bits and approximate $F\left(\alpha_{0}\right)$ to relative $n+\left\lceil\log _{2} F\left(\alpha_{0}\right)\right\rceil+2$ bits. If $b_{0}=\sqrt{1-m} \geq \frac{1}{4}$, then we just need compute s_{0} to relative $n+\left\lceil\log _{2} k\right\rceil+5$ bits and approximate $F\left(\alpha_{0}\right)$ to relative $n+5$ bits.

Proof. Note that

$$
\begin{aligned}
\widetilde{U_{k}(m)} & =\widetilde{F\left(\alpha_{0}\right)} \prod_{i=0}^{k-1} \frac{1+\widetilde{s_{i}}}{2} \\
& \leq F\left(\alpha_{0}\right)(1+\rho) \prod_{i=0}^{k-1} \frac{1+s_{i}}{2} \prod_{i=0}^{k-1}\left(1+\left|\epsilon_{i}\right|\right) \\
& =U_{k}(m)(1+\rho) \prod_{i=0}^{k-1}\left(1+\left|\epsilon_{i}\right|\right)
\end{aligned}
$$

Let $\epsilon=2^{-\left(n+\log _{2} F\left(\alpha_{0}\right)+\left\lceil\left[\log _{2} k\right\rceil+2\right)\right.}$, from Lemma 53, if $0<\left|\epsilon_{0}\right| \leq \epsilon \leq \frac{1}{2}$, then $\left|\epsilon_{i}\right| \leq \epsilon$, we see that

$$
\prod_{i=0}^{k-1}\left(1+\left|\epsilon_{i}\right|\right) \leq(1+\epsilon)^{k} \leq 1+2 k \cdot \epsilon \leq 1+\frac{1}{F\left(\alpha_{0}\right)} \cdot 2^{-(n+1)}
$$

Thus, if $|\rho| \leq 2^{-\left(n+\log _{2} F\left(\alpha_{0}\right)+2\right)}$, then

$$
\begin{aligned}
\left|\widetilde{U_{k}(m)}-U_{k}(m)\right| & \leq U_{k}(m) \frac{1}{F\left(\alpha_{0}\right)} \cdot 2^{-n} \\
& \leq 2^{-n}
\end{aligned}
$$

Since $U_{k}(m) \leq F\left(\alpha_{0}\right)$. If $b_{0} \geq \frac{1}{4}$, then

$$
F\left(\alpha_{0}\right)=\frac{\pi}{2 A} \leq \frac{\pi}{2 b_{0}} \leq 8
$$

Hence, $\left\lceil\log _{2} F\left(\alpha_{0}\right)\right\rceil \leq 3$.
Q.E.D.

Now we assume $b_{0} \geq \frac{1}{4}$. From (4.4), to obtain $n+5$ relative bits in $F\left(\alpha_{0}\right)$, we need compute π and A to $n+7$ relative bits and perform the division in relative
precision $n+7$. Since $A \geq b_{0}$ and $\pi>2$, it requires to compute A to $n+5$ absolute bits and compute π to $n+8$ absolute bits using precision conversion. Both can be done using the algorithm we present in Section 4.3, Hence, we present the complete algorithm to compute $U_{k}(m)$ to absolute precision n :

Algorithm $U _k()$ For computing $U_{k}(m)$ To AbSolute precision n Input: BigFloat m, integer k and precision n.

Output: BigFloat A such that $\left|A-U_{k}(m)\right| \leq 2^{-n}$.
$c \leftarrow C_{1}(n+6) ; p \leftarrow n+6+c ; p p \leftarrow p+1 ;$
$A \leftarrow 1 ; \quad B \leftarrow \operatorname{sqrt}(1-m, p) ;$
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{c} ;++\mathrm{i}$) $\{$
$Y \leftarrow A ; A \leftarrow \operatorname{add}(A, B, p p) ; \quad A \leftarrow \operatorname{div} _2 \exp (A, 1) ;$
$B \leftarrow \operatorname{mul}(B, Y, p p) ; B \leftarrow \operatorname{sqrt}(B, p p) ;$
$p p \leftarrow p p-1 ;$
\}

```
\(A \leftarrow \operatorname{div}(P i(n+8), A, n+7) ; \quad A \leftarrow \operatorname{div} \_2 \exp (A, 1) ;\)
\(p p \leftarrow n+5+\operatorname{ceillg}(k) ;\)
\(S \leftarrow \operatorname{sqrt}(m, p p) ; S_{0} \leftarrow 0 ;\)
for ( \(i=0\); \(i<k-1 ;++i\) ) \{
    \(S_{0} \leftarrow \operatorname{add}(1, S, p p+4) ; S_{0} \leftarrow \operatorname{div} \_2 \exp \left(S_{0}, 1\right) ;\)
    \(A \leftarrow \operatorname{mul}\left(A, S_{0}, p p+4\right) ;\)
    \(S_{1} \leftarrow \operatorname{sqrt}(S, p p+4) ; S \leftarrow \operatorname{div}\left(S_{1}, S_{0}, p p+4\right) ;\)
    \}
    \(A \leftarrow \operatorname{mul}\left(A, S_{0}, p p+4\right) ;\)
    return \(A\);
```

For approximating $T_{k}(m)$ to n absolute bits, we need the following lemmas:

Lemma 55. If we have n bits relative precision in s_{i} and v_{i} and we perform all operations within $(n+1)$ bits relative precision in 4.23), then $W_{i}^{\prime \prime}$ has $n-3$ relative bits precision.

Proof. Let $\epsilon_{s_{i}}, \epsilon_{s_{i}}$ be the relative errors in s_{i} and v_{i} and $\rho_{1}, \rho_{2}, \rho_{3}$ and ρ_{4} be the relative errors in the corresponding operations. From (4.23), we have

$$
\begin{aligned}
& \widetilde{W_{i}^{\prime \prime}}= \frac{2 s_{i} v_{i}\left(1+\epsilon_{s_{i}}\right)\left(1+\epsilon_{v_{i}}\right)\left(1+\rho_{1}\right)}{\left(1+v_{i}^{2}\left(1+\epsilon_{v_{i}}\right)^{2}\left(1+\rho_{2}\right)\right)\left(1+\rho_{3}\right)}\left(1+\rho_{4}\right) \\
& \leq \frac{2 s_{i} v_{i}}{1+v_{i}^{2}}\left(1+\epsilon_{s_{i}}\right)\left(1+\epsilon_{v_{i}}\right)\left(1+\rho_{1}\right)\left(1+3\left|\epsilon_{v_{i}}\right|\right)\left(1+2\left|\rho_{2}\right|\right)\left(1+2\left|\rho_{3}\right|\right)\left(1+\rho_{4}\right) \\
& \text { If } \epsilon=2^{-n} \text {, then }\left|\epsilon_{s_{i}}\right| \leq \epsilon,\left|\epsilon_{v_{i}}\right| \leq \epsilon, \rho_{1} \leq \frac{\epsilon}{2}, \rho_{2} \leq \frac{\epsilon}{2}, \rho_{3} \leq \frac{\epsilon}{2} \text { and } \rho_{4} \leq \frac{\epsilon}{2} . \text { Hence } \\
&\left|\widetilde{W_{i}^{\prime \prime}}-W_{i}^{\prime \prime}\right| \leq\left|W_{i}^{\prime \prime}\right| \cdot(8 \epsilon)=\left|W_{i}^{\prime \prime}\right| \cdot 2^{-(n-3)} .
\end{aligned}
$$

Q.E.D.

Lemma 56. If we have n bits relative precision in $W_{i}^{\prime \prime}$ and we perform all operations within $(n+4)$ bits relative precision in 4.22), then W_{i}^{\prime} has $n-1$ relative bits precision.

Proof. Let $\epsilon_{W_{i}^{\prime \prime}}$ be the relative error in $W_{i}^{\prime \prime}$ and $\rho_{1}, \rho_{2}, \rho_{3}$ and ρ_{4} be the relative errors in the corresponding operations. From (4.22), we have

$$
\begin{aligned}
\widetilde{W_{i}^{\prime}} & =\frac{W_{i}^{\prime \prime}\left(1+\epsilon_{W_{i}^{\prime \prime}}\right)}{\left(1+\sqrt{\left(1-W_{i}^{\prime \prime 2}\left(1+\epsilon_{W_{i}^{\prime \prime}}\right)^{2}\right)\left(1+\rho_{1}\right)}\left(1+\rho_{2}\right)\right)\left(1+\rho_{3}\right)}\left(1+\rho_{4}\right) \\
& \leq \frac{W_{i}^{\prime \prime}}{1+\sqrt{1-W_{i}^{\prime \prime 2}}}\left(1+\epsilon_{W_{i}^{\prime \prime}}\right)\left(1-\left|\epsilon_{W_{i}^{\prime \prime}}\right| / 2\right)\left(1+2\left|\rho_{1}\right|\right)\left(1+2\left|\rho_{2}\right|\right)\left(1+2\left|\rho_{3}\right|\right)\left(1+\rho_{4}\right)
\end{aligned}
$$

If $\epsilon=2^{-n}$, then $\left|\epsilon_{W_{i}^{\prime \prime}}\right| \leq \epsilon, \rho_{1} \leq \frac{\epsilon}{16}, \rho_{2} \leq \frac{\epsilon}{16}, \rho_{3} \leq \frac{\epsilon}{16}$ and $\rho_{4} \leq \frac{\epsilon}{16}$. Hence

$$
\left|\widetilde{W_{i}^{\prime}}-W_{i}^{\prime}\right| \leq\left|W_{i}^{\prime}\right| \cdot(2 \epsilon)=\left|W_{i}^{\prime}\right| \cdot 2^{-(n-1)} .
$$

Q.E.D.

Lemma 57. Let $d=\left\lceil\log _{2} \frac{1}{1-v_{0} W_{0}^{\prime}}\right\rceil$. If we have n bits relative precision in W_{i}^{\prime} and v_{i} and we perform all operations within $(n+1)$ bits relative precision in (4.21), then W_{i} has $n-2-d$ relative bits precision

Proof. Let $\epsilon_{W_{i}^{\prime}}$ be the relative error in $W_{i}^{\prime}, \epsilon_{v_{i}}$ be the relative error in v_{i} and $\rho_{1}, \rho_{2}, \rho_{3}$ and ρ_{4} be the relative errors in the corresponding operations. From (4.21), we have

$$
\begin{aligned}
\widetilde{W_{i}}= & \frac{\left(v_{i}\left(1+\epsilon_{v_{i}}\right)+W_{i}^{\prime}\left(1+\epsilon_{W_{i}^{\prime}}\right)\right)\left(1+\rho_{1}\right)}{\left(1-v_{i} W_{i}^{\prime}\left(1+\epsilon_{v_{i}}\right)\left(1+\epsilon_{W_{i}^{\prime}}\right)\left(1+\rho_{2}\right)\right)\left(1+\rho_{3}\right)}\left(1+\rho_{4}\right) \\
\leq & \frac{v_{i}+W_{i}^{\prime}}{1-v_{i} W_{i}^{\prime}}\left(1+\left|\epsilon_{v_{i}}\right|\right)\left(1+\left|\epsilon_{W_{i}^{\prime}}\right|\right)\left(1+\rho_{1}\right)\left(1+2\left|\rho_{3}\right|\right)\left(1+\rho_{4}\right) \\
& \cdot\left(1+\frac{2}{1-v_{i} W_{i}^{\prime}}\left|\left(1+\epsilon_{v_{i}}\right)\left(1+\epsilon_{W_{i}^{\prime}}\right)\left(1+\rho_{2}\right)-1\right|\right)
\end{aligned}
$$

If $\epsilon=2^{-n}$, then $\left|\epsilon_{v_{i}}\right| \leq \epsilon,\left|\epsilon_{W_{i}^{\prime}}\right| \leq \epsilon, \rho_{1} \leq \frac{\epsilon}{2}, \rho_{2} \leq \frac{\epsilon}{2}, \rho_{3} \leq \frac{\epsilon}{2}$ and $\rho_{4} \leq \frac{\epsilon}{2}$. Hence

$$
\left|\widetilde{W_{i}}-W_{i}\right| \leq\left|W_{i}\right| \cdot \frac{4 \epsilon}{1-v_{i} W_{i}^{\prime}} \leq\left|W_{i}\right| \cdot \frac{4 \epsilon}{1-v_{0} W_{0}^{\prime}} \leq\left|W_{i}\right| \cdot 2^{-(n-2-d)}
$$

Since v_{i}, W_{i}^{\prime} are decreasing ($\left.\S 75\right)$.
Q.E.D.

Since $v_{0}=1, s_{0}=\sqrt{m}, W_{0}^{\prime \prime}=\sqrt{m}, W_{0}^{\prime}=\frac{\sqrt{m}}{1-\sqrt{1-m}}$. Thus,

$$
\frac{1}{1-v_{0} W_{0}^{\prime}}=\frac{1-\sqrt{1-m}}{1-\sqrt{1-m}-\sqrt{m}} .
$$

We can compute d using IEEE double.

Lemma 58. If we have n bits relative precision in W_{i} and we perform all operations within $(n+4)$ bits relative precision in 4.29), then v_{i+1} has $n-1$ relative bits precision.

Proof. Let $\epsilon_{W_{i}}$ be the relative error in W_{i} and $\rho_{1}, \rho_{2}, \rho_{3}$ and ρ_{4} be the relative errors in the corresponding operations. From (4.20), we have

$$
\begin{aligned}
\widetilde{v_{i+1}} & =\frac{W_{i}\left(1+\epsilon_{W_{i}}\right)}{\left(1+\sqrt{\left.\left(1+W_{i}^{2}\left(1+\epsilon_{W_{i}}\right)^{2}\right)\left(1+\rho_{1}\right)\left(1+\rho_{2}\right)\right)\left(1+\rho_{3}\right)}\left(1+\rho_{4}\right)\right.} \\
& \leq \frac{W_{i}}{1+\sqrt{1+W_{i}^{2}}}\left(1+\epsilon_{W_{i}}\right)\left(1-\left|\epsilon_{W_{i}}\right| / 2\right)\left(1+2\left|\rho_{1}\right|\right)\left(1+2\left|\rho_{2}\right|\right)\left(1+2\left|\rho_{3}\right|\right)\left(1+\rho_{4}\right)
\end{aligned}
$$

If $\epsilon=2^{-n}$, then $\left|\epsilon_{W_{i}}\right| \leq \epsilon, \rho_{1} \leq \frac{\epsilon}{16}, \rho_{2} \leq \frac{\epsilon}{16}, \rho_{3} \leq \frac{\epsilon}{16}$ and $\rho_{4} \leq \frac{\epsilon}{16}$. Hence

$$
\left|\widetilde{v_{i+1}}-v_{i+1}\right| \leq\left|v_{i+1}\right| \cdot(2 \epsilon)=\left|v_{i+1}\right| \cdot 2^{-(n-1)} .
$$

Q.E.D.

Therefore, we can see that if v_{i}, s_{i} has precision n, then after one iteration, v_{i+1} has only $(((n-3)-1)-2-d)-1=n-7-d$ bits because of accumulation of errors. Now we describe the complete algorithm to compute $T_{k}(m)$ to absolute precision n :

Algorithm $T_{-} k()$ For computing $T_{k}(m)$ To Precision n Input: BigFloat m, integer k and precision n.

Output: BigFloat T such that $\left|T-T_{k}(m)\right| \leq 2^{-n}$.

$$
m_{1} \leftarrow \operatorname{sqrt}(m) ; m_{2} \leftarrow \operatorname{sqrt}(1-m) ;
$$

$$
d \leftarrow i \log b\left(\left(1-m_{2}\right) /\left(1-m_{2}-m_{1}\right)\right) ;
$$

$$
p \leftarrow n+k *(7+d)+2 ; V \leftarrow 1 ; S \leftarrow \operatorname{sqrt}(m, p) ;
$$

$$
\text { for (i=0; } i<k ;++i)\{
$$

$$
p p \leftarrow p+1 ; W_{0} \leftarrow \operatorname{mul}(S, V, p p) ;
$$

$$
W_{0} \leftarrow \operatorname{mul} _2 \exp \left(W_{0}, 1\right) ; W_{1} \leftarrow \operatorname{mul}(V, V, p p) ;
$$

$$
W_{1} \leftarrow \operatorname{add}\left(1, W_{1}, p p\right) ; W \leftarrow \operatorname{div}\left(W_{0}, W_{1}, p p\right) ;
$$

$$
p p \leftarrow p+1 ; W_{1} \leftarrow \operatorname{mul}(W, W, p p) ;
$$

$$
W_{1} \leftarrow \operatorname{sub}\left(1, W_{1}, p p\right) ; W_{1} \leftarrow \operatorname{sqrt}\left(W_{1}, p p\right) ;
$$

$$
W_{1} \leftarrow \operatorname{add}\left(1, W_{1}, p p\right) ; W \leftarrow \operatorname{div}\left(W, W_{1}, p p\right) ;
$$

$$
p p \leftarrow p-3 ; W_{0} \leftarrow a d d(V, W, p p) ;
$$

$$
W_{1} \leftarrow \operatorname{mul}(V, W, p p) ; W_{1} \leftarrow \operatorname{sub}\left(1, W_{1}, p p\right) ;
$$

$$
W \leftarrow \operatorname{div}\left(W_{0}, W_{1}, p p\right) ; p p \leftarrow p-2-d ;
$$

$$
W_{1} \leftarrow \operatorname{mul}(W, W, p p) ; W_{1} \leftarrow \operatorname{add}\left(1, W_{1}, p p\right) ;
$$

$$
W_{1} \leftarrow \operatorname{sqrt}\left(W_{1}, p p\right) ; W_{1} \leftarrow \operatorname{add}\left(1, W_{1}, p p\right) ;
$$

$$
V \leftarrow \operatorname{div}\left(W, W_{1}, p p\right)
$$

$$
S_{0} \leftarrow a d d(1, S, p+4) ; \quad S_{0} \leftarrow \operatorname{div} _2 \exp \left(S_{0}, 1\right) ;
$$

$$
S \leftarrow \operatorname{div}\left(S_{1}, S_{0}, p+4\right) ; p \leftarrow p-7-d ;
$$

$T_{1} \leftarrow a d d(1, V, p+2) ; T_{2} \leftarrow \operatorname{sub}(1, V, p+2) ;$
$T \leftarrow \operatorname{div}\left(V_{1}, V_{2}, p+2\right) ;$
return T;

4.4.5 Approximation of $U(m)$ and $T(m)$

Lemma 59. For $k \geq C_{2}\left(n+\left\lceil\log _{2} F\left(\alpha_{0}\right)\right\rceil+1\right)$, we have

$$
U_{k}(m)-U(m) \leq 2^{-n} .
$$

Proof. Note that

$$
\begin{aligned}
\left|U_{k}(m)-U(m)\right| & =U_{k}(m)-U_{k}(m) \prod_{i=k}^{\infty} \frac{1+s_{i}}{2} \\
& =U_{k}(m)\left(1-\prod_{i=k}^{\infty} \frac{1+s_{i}}{2}\right) \quad\left(s_{i}<1\right) \\
& \leq F\left(\alpha_{0}\right)\left(1-\prod_{i=k}^{\infty} \frac{1+s_{i}}{2}\right)
\end{aligned}
$$

Let $\delta_{i}=\frac{1-s_{i}}{2}$. If $0<\delta_{i} \leq 1 / 2$, then

$$
\prod_{i=k}^{\infty} \frac{1+s_{i}}{2}=\prod_{i=k}^{\infty}\left(1-\delta_{i}\right) \geq \prod_{i=k}^{\infty} e^{-\frac{4}{3} \delta_{i}}=e^{-\frac{4}{3} \sum_{i=k}^{\infty} \delta_{i}} \geq e^{-\frac{8}{3} \delta_{k}} \geq 1-\frac{8}{3} \delta_{k}
$$

From Lemma 52, if $k \geq C_{2}\left(n+\left\lceil\log _{2} F\left(\alpha_{0}\right)\right\rceil+1\right)$ iterations, then

$$
2 \delta_{k}=\left(1-s_{k}\right) \leq 2^{-\left(n+\log _{2} F\left(\alpha_{0}\right)+1\right)} .
$$

Thus,

$$
U_{k}(m)-U(m) \leq F\left(\alpha_{0}\right) \frac{8}{3} \delta_{k} \leq 2 F\left(\alpha_{0}\right)\left(1-s_{k}\right) \leq 2^{-n}
$$

Q.E.D.

Lemma 60. To approximate $U(m)$ to n absolute bits, it suffices to evaluate $U_{k}(m)$ to $(n+1)$ absolute bits with $k \geq C_{2}\left(n+\left\lceil\log _{2} F\left(\alpha_{0}\right)\right\rceil+2\right)$.

Proof. If $k \geq C_{2}\left(n+\left\lceil\log _{2} F\left(\alpha_{0}\right)\right\rceil+2\right)$, then from Lemma 59 we have

$$
\left|U(m)-U_{k}(m)\right| \leq 2^{-(n+1)} .
$$

Hence, if $\widetilde{U_{k}(m)}$ is $(n+1)$ bits absolute approximation of $U_{k}(m)$, we see that

$$
\begin{aligned}
\left|\widetilde{U_{k}(m)}-U(m)\right| & \leq\left|\widetilde{U_{k}(m)}-U_{k}(m)\right|+\left|U(m)-U_{k}(m)\right| \\
& \leq 2^{-(n+1)}+2^{-(n+1)} \\
& =2^{-n} .
\end{aligned}
$$

Q.E.D.

Lemma 61. To approximate $T(m)$ to n absolute bits, it suffices to evaluate $T_{k}(m)$ to $(n+1)$ absolute bits with $k=C_{2}\left(n+2\left\lceil F\left(\alpha_{0}\right)\right\rceil+\left\lceil\log _{2} F\left(\alpha_{0}\right)\right\rceil+2\right)$.

Proof. Note that

$$
\left|T(m)-T_{k}(m)\right| \leq e^{\theta}\left|\log T(m)-\log T_{k}(m)\right|
$$

where $\log T(m) \leq \theta \leq \log T_{k}(m)$. Since $\log T_{k}(m) \leq U_{k}(m) \leq F\left(\alpha_{0}\right)$,

$$
\begin{aligned}
\left|T(m)-T_{k}(m)\right| & \leq e^{F\left(\alpha_{0}\right)}\left(\log T_{k}(m)-\log T(m)\right) \\
& \leq e^{F\left(\alpha_{0}\right)}\left(U_{k}(m)-U(m)\right)
\end{aligned}
$$

From Lemma 59, after $k=C_{2}\left(n+2\left\lceil F\left(\alpha_{0}\right)\right\rceil+\left\lceil\log _{2} F\left(\alpha_{0}\right)\right\rceil+2\right)$ iterations,

$$
\left|U(m)-U_{k}(m)\right| \leq 2^{-\left(n+2\left\lceil F\left(\alpha_{0}\right)\right\rceil+1\right)} .
$$

Hence, if $\widetilde{T_{k}(m)}$ is $(n+1)$ bits absolute approximation of $T_{k}(m)$, we see that

$$
\begin{aligned}
\left|\widetilde{T_{k}(m)}-T(m)\right| & \leq\left|\widetilde{T_{k}(m)}-T_{k}(m)\right|+\left|T(m)-T_{k}(m)\right| \\
& \leq 2^{-(n+1)}+e^{F\left(\alpha_{0}\right)} \cdot 2^{-\left(n+2\left\lceil F\left(\alpha_{0}\right) 7+1\right)\right.} \\
& \leq 2^{-n} .
\end{aligned}
$$

Q.E.D.

4.4.6 Discrete Newton Iteration

Our algorithms for evaluating exponential and logarithm functions also involve solving nonlinear equations, which we use discrete Newton iteration.

Consider the classical Newton iteration of the form:

$$
\begin{equation*}
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)-c}{f^{\prime}\left(x_{i}\right)} . \tag{4.35}
\end{equation*}
$$

for solving the equation $f(x)=c$. By Taylor's expansion, we have

$$
0=f(x)-c=f\left(x_{i}\right)-c+f^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)+f^{\prime \prime}(\zeta)\left(x-x_{i}\right)^{2} / 2
$$

where ζ is between x and x_{i}. Hence

$$
x=x_{i}-\frac{f\left(x_{i}\right)-c}{f^{\prime}\left(x_{i}\right)}-\frac{f^{\prime \prime}(\zeta)}{2 f^{\prime}\left(x_{i}\right)}\left(x-x_{i}\right)^{2} .
$$

If $\epsilon_{i}=\left|x_{i}-x\right|$ is sufficiently small, then

$$
\begin{equation*}
\left|x_{i+1}-x\right|=\left|\frac{f^{\prime \prime}(\zeta)}{2 f^{\prime}\left(x_{i}\right)}\right|\left(x-x_{i}\right)^{2}=O\left(\epsilon_{i}^{2}\right) . \tag{4.36}
\end{equation*}
$$

so the convergence of Newton iteration is quadratic. The classical Newton iteration assumed that (4.35) is satisfied exactly, but a results like (4.36) holds if we evaluated $f(x)$ with absolute error $O\left(\epsilon_{i}^{2}\right)$ and $f^{\prime}(x)$ with absolute error $O\left(\epsilon_{i}\right)$ and perform the division with relative error $O\left(\epsilon_{i}\right)$ [9, 88].

When $f^{\prime}(x)$ is not available, we can approximate $f^{\prime}\left(x_{i}\right)$ using the one-sided difference

$$
f^{\prime}\left(x_{i}\right) \approx \frac{f\left(x_{i}+h_{i}\right)-f\left(x_{i}\right)}{h_{i}}
$$

To obtain $O\left(\epsilon_{i}\right)$ bits of absolute precision in $f^{\prime}(x)$, it requires h_{i} is of order $O\left(\epsilon_{i}\right)$ and the evaluation of $f\left(x_{i}+h_{i}\right)$ and $f\left(x_{i}\right)$ are performed with an absolute error $O\left(\epsilon_{i}^{2}\right)$. This is called discrete Newton Iteration. It has the following form:

$$
\begin{equation*}
x_{i+1}=x_{i}+\frac{\left(f\left(x_{i}\right)-c\right) h_{i}}{f\left(x_{i}+h_{i}\right)-f\left(x_{i}\right)} \tag{4.37}
\end{equation*}
$$

where we can choose $h=2^{-i}$. A pseudo code is shown below:

Algorithm Newton() for Discrete Newton Iteration:

Input: BigFloat x_{0}, callback function f and precision n.
Output: BigFloat x such that $|x-\zeta| \leq 2^{-n}$ where ζ is the root of f.
$x \leftarrow x_{0}$; del $\leftarrow 1$;
$f \leftarrow 0 ; f^{\prime} \leftarrow 0 ; p \leftarrow 2 ;$
do \{

$$
p p \leftarrow 2 * p ; h \leftarrow d i v _2 \exp (1, p) ;
$$

$f \leftarrow f(x, p p) ; f^{\prime} \leftarrow f(x+h, p p) ; f^{\prime} \leftarrow \operatorname{sub}\left(f^{\prime}, f, p p\right) ;$
$f \leftarrow \operatorname{sub}(f, c, p p) ; f \leftarrow d i v _2 e x p(f, p) ;$
$\operatorname{del} \leftarrow \operatorname{div}\left(f, f^{\prime}, p\right) ; x \leftarrow \operatorname{sub}(x, \operatorname{del}, p p) ;$
$p \leftarrow p p ;$
\} while $(-$ del.uMSB ()$<n)$;
return x;

4.4.7 Evaluation $\exp (x)$ and $\log (x)$

We present our final algorithms for evaluating $\exp (x)$ and $\log (x)$:
§77. Evaluation of $\exp (x)$ To evaluate $\exp (x)$ to absolute precision n, we first reduce the argument to a suitable domain (see below), then we solve the equation:

$$
\begin{equation*}
U(m)=x \tag{4.38}
\end{equation*}
$$

obtaining m to absolute precision $n+1+\left\lceil\log M_{\text {exp }}\right\rceil$ using discrete Newton iteration where $M_{\text {exp }}$ is the Lipschitz constant of $U(m)$ on this domain. Finally
we evaluate $T(m)$ to absolute precision $n+1$. From (4.32) and (4.38), $T(m)=$ $\exp (x)$, so we have computed $\exp (x)$ to absolute precision n. The complete algorithm is as follows:

Algorithm for Computing $\exp (x)$ to absolute precion n :
Input: BigFloat x, integer $M_{\exp }$ and precision n.
Output: BigFloat y such that $\left|y-e^{x}\right| \leq 2^{-n}$.

1. find an initial value m_{0} for solving $U(m)=x$ using Table 4.1.
2. solve $U(m)=x$ using discrete Newton iteration with the initial value m_{0} and precision $n+1+M_{\text {exp }}$.
3. compute $T(m)$ with precision $n+1$.

The correctness of this algorithm is shown by the following lemma:

Lemma 62. If $\infty<a<b<+\infty, M_{\text {exp }}$ be the Lipschitz constants of $U(m)$ for the domain $[a, b]$, then the above algorithm can compute $\exp (x)$ to n absolute bits for $x \in[a, b]$.

Proof. Let $\widetilde{T(\widetilde{m})}$ be the $(n+1)$ absolute bits approximation of $T(\widetilde{m})$, then

$$
\begin{aligned}
\left|\widetilde{T(\widetilde{m})}-e^{x}\right| & \leq|\widetilde{T(\widetilde{m})}-T(\widetilde{m})|+\left|T(\widetilde{m})-e^{x}\right| \\
& \leq|\widetilde{T(\widetilde{m})}-T(\widetilde{m})|+M_{\text {exp }} \cdot|\widetilde{m}-m| \\
& \leq 2^{-(n+1)}+M_{\text {exp }} \cdot 2^{-\left(n+1+\left\lceil\log M_{\text {exp }}\right\rceil\right)} \\
& \leq 2^{-n} .
\end{aligned}
$$

Q.E.D.
§78. Evaluation of $\log (x)$ Similarly, to evaluate $\log (x)$ to absolute precision n, we first reduce the argument to some domain (see below), then we solve the
equation:

$$
\begin{equation*}
T(m)=x, \tag{4.39}
\end{equation*}
$$

obtaining m to absolute precision $n+1+\left\lceil\log M_{l o g}\right\rceil$ using discrete Newton iteration where $M_{l o g}$ is the Lipschitz constant of $T(m)$ on this domain Finally we evaluate $U(m)$ to absolute precision n. From (4.32) and (4.39), $U(m)=\log (x)$, we obtained $\log (x)$ within absolute precision n. The complete algorithm is as follows:

Algorithm for Computing $\log (x)$ to AbSolute precion n :
Input: BigFloat x, integer $M_{\text {log }}$ and precision n.
Output: BigFloat y such that $|y-\log x| \leq 2^{-n}$.

1. find an initial value m_{0} for solving $T(m)=x$ using Table 4.1
2. solve $T(m)=x$ using discrete Newton iteration with the initial value m_{0} and precision $n+1+M_{\text {log }}$.
3. compute $U(m)$ with precision $n+1$.

Lemma 63. If $0<a<b<+\infty, M_{\text {log }}$ be the Lipschitz constants of $T(m)$ for the domain $[a, b]$, then the above algorithm can compute $\log (x)$ to n absolute bits for $x \in[a, b]$.

Proof. Let $\widetilde{U(\widetilde{m})}$ be the $(n+1)$ absolute bits approximation of $U(\widetilde{m})$, then

$$
\begin{aligned}
|\widetilde{U(\widetilde{m})}-\log (x)| & \leq \widetilde{(\widetilde{U(\tilde{m})}}-U(\widetilde{m})|+|U(\widetilde{m})-\log (x)| \\
& \leq \widetilde{U(\widetilde{m})}-U(\widetilde{m})\left|+M_{l o g} \cdot\right| \widetilde{m}-m \mid \\
& \leq 2^{-(n+1)}+M_{l o g} \cdot 2^{-\left(n+1+\left\lceil\log M_{l o g}\right\rceil\right)} \\
& \leq 2^{-n} .
\end{aligned}
$$

Q.E.D.
§79. Lipschitz Constants of $U(m)$ and $T(m)$ Our algorithms require to find Lipschitz constants of $U(m)$ and $T(m)$. So we need to find a more explicit formula for $U(m)$ with respect to m.

Let $a_{0}=1$ and $b_{0}=\sin \alpha_{0}=\cos \left(\frac{\pi}{2}-\alpha_{0}\right)$ where α_{0} is defined in $\S 74$. Then $s_{0}=\sin \alpha_{0}=b_{0} / a_{0}$. From (4.16) and the AGM iteration, it follows that $s_{i}=a_{i} / b_{i}$ for all $i \geq 0$. Thus, $\left(1+s_{i}\right) / 2=a_{i+1} / a_{i}$, and

$$
\prod_{i=0}^{\infty} \frac{1+s_{i}}{2}=\lim _{i \rightarrow \infty} a_{i}=A\left(\frac{\pi}{2}-\alpha_{0}\right)=\frac{\pi}{2 F\left(\frac{\pi}{2}-\alpha_{0}\right)}
$$

Substituting it into (4.28), we obtain another formula for $U(m)$:

$$
U(m)=\frac{\pi}{2} \cdot \frac{F\left(\alpha_{0}\right)}{F\left(\frac{\pi}{2}-\alpha_{0}\right)}
$$

From [8, page 9], we can derive the following two derivatives (with respect to m):

$$
F^{\prime}\left(\alpha_{0}\right)=\frac{E\left(\alpha_{0}\right)-(1-m) F\left(\alpha_{0}\right)}{2 m(1-m)}
$$

and

$$
F^{\prime}\left(\frac{\pi}{2}-\alpha_{0}\right)=-\frac{E\left(\frac{\pi}{2}-\alpha_{0}\right)-m F\left(\frac{\pi}{2}-\alpha_{0}\right)}{2 m(1-m)} .
$$

Hence,

$$
\begin{aligned}
U^{\prime}(m) & =\frac{\pi}{2} \cdot \frac{F^{\prime}\left(\alpha_{0}\right) F\left(\frac{\pi}{2}-\alpha_{0}\right)-F\left(\alpha_{0}\right) F^{\prime}\left(\frac{\pi}{2}-\alpha_{0}\right)}{F^{2}\left(\frac{\pi}{2}-\alpha_{0}\right)} \\
& =\frac{\pi}{2} \cdot \frac{E\left(\alpha_{0}\right) F\left(\frac{\pi}{2}-\alpha_{0}\right)-F\left(\alpha_{0}\right) F\left(\frac{\pi}{2}-\alpha_{0}\right)+F\left(\alpha_{0}\right) E\left(\frac{\pi}{2}-\alpha_{0}\right)}{2 m(1-m) F^{2}\left(\frac{\pi}{2}-\alpha_{0}\right)} \\
& =\frac{1}{2 m(1-m)} \cdot \frac{\left(\frac{\pi}{2}\right)^{2}}{F^{2}\left(\frac{\pi}{2}-\alpha_{0}\right)} \\
& =\frac{1}{2 m(1-m)} A^{2}\left(\frac{\pi}{2}-\alpha_{0}\right) .
\end{aligned}
$$

Here we use Legendre's Identity (4.7). From (4.2), we have $A\left(\frac{\pi}{2}-\alpha_{0}\right) \leq a_{0}=1$, therefore, we obtain the following upper bound function for $U^{\prime}(m)$:

$$
U^{\prime}(m) \leq \frac{1}{2 m(1-m)}
$$

From the identity (4.32), we have

$$
U^{\prime}(m)=\frac{T^{\prime}(m)}{T(m)}
$$

Hence, we have the following upper bound function for $T^{\prime}(m)$:

$$
T^{\prime}(m)=T(m) U^{\prime}(m) \leq \frac{T(m)}{2 m(1-m)}
$$

The graphs for these upper bound functions are shown in Figure 4.2,

Figure 4.2: Upper Bound Functions of $U^{\prime}(m)$ and $T^{\prime}(m)$ for $m \in(0,1)$

We can easily see that the function

$$
G(m):=\frac{1}{2 m(1-m)}
$$

decreases for $m<0.5$ and increases for $m>0.5$. So $G(m)$ achieves its maximal value on the endpoints of the specified domain.

For the $\exp (x)$ evaluation algorithm, we can reduce the argument x to $[1,2]$ (see $\S 64$ for detailed algorithm). From Table 4.1, we can see that solution m of (4.38) lies in ($0.10,0.75$). Hence,

$$
\frac{1}{2 m(1-m)}<G(0.10)<6
$$

We can choose the Lipschitz constant $M_{\text {exp }}$ of $U(m)$ to be 6 .
For the $\log (x)$ evaluation algorithm, we reduce x to $[4,8]$ (using a similar algorithm in §63). We can see from Table 4.1 that the solution m of (4.39) lies in $(0.36,0.78)$. Hence

$$
\frac{1}{2 m(1-m)}<G(0.78)<3
$$

Thus,

$$
T^{\prime}(m) \leq 3 \cdot T(m)<3 \cdot 8.03<25
$$

i.e, we can choose $M_{l o g}=25$.

For any continuous function $f(x)$, we can also compute an approximation $\widetilde{f^{\prime}(x)}$ of $f^{\prime}(x)$ using $f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}$. We compare the approximations of $U^{\prime}(m)$ and $T^{\prime}(m)$ with the computed values of their upper bound functions in Table 4.2

| m | $\widehat{U^{\prime}(m)}$ | $G(m)$ | $\widehat{T^{\prime}(m)}$ | $T(m) G(m)$ | m | $\widehat{U^{\prime}(m)}$ | $G(m)$ | $\widehat{T^{\prime}(m)}$ | $T(m) G(m)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.10 | 2.057144 | 5.555556 | 5.500076 | 14.838675 | 0.60 | 1.628218 | 2.083333 | 9.125906 | 11.667473 |
| 0.20 | 1.512100 | 3.125000 | 4.802686 | 9.918201 | 0.70 | 2.002509 | 2.380952 | 13.429708 | 15.952109 |
| 0.30 | 1.363641 | 2.380952 | 4.992963 | 8.712036 | 0.75 | 2.319130 | 2.666667 | 17.318653 | 19.948216 |
| 0.36 | 1.344962 | 2.170139 | 5.340387 | 8.611229 | 0.78 | 2.319130 | 2.913753 | 17.318653 | 23.385845 |
| 0.40 | 1.352635 | 2.083333 | 5.668301 | 8.724573 | 0.80 | 2.805413 | 3.248863 | 23.791176 | 26.465136 |
| 0.50 | 1.436182 | 2.000000 | 6.913569 | 9.620955 | 0.90 | 5.296746 | 5.555556 | 65.443490 | 68.463815 |

Table 4.2: Approximations and Upper Bounds of $U^{\prime}(m)$ and $T^{\prime}(m)$

4.5 Summary

We presented a non-asymptotic error analysis of AGM algorithms in this chapter to further investigate the evaluation problems of transcendental functions. Our analysis gave the explicit precision required in each step of AGM based evaluation algorithms. It will help users implement and verify their applications. Moreover, this analysis make it possible for us to incorporate elementary functions into the Core Library using AGM algorithms. An implementation of computing π, exponential and logarithm functions have been incorporated into the Core Library.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

This dissertation investigates the first effort at bringing transcendental functions into Exact Geometric Computation (EGC).

The key technique in EGC computation is the use of "constructive root bounds". It makes it possible to compute the exact sign of expressions. However, existing constructive root bounds apply only available to algebraic expressions. In this thesis, we incorporate transcendental functions into expressions by introducing an "escape bound" mechanism in lieu of root bounds. This is not going to be the ultimate solution but it makes it possible for EGC to handle transcendental applications.

Approximation algorithms for transcendental functions are essential for our implementation. We present a complete algorithm for absolute approximation of the general hypergeometric function and various AGM based algorithms for the elementary functions. Although the hypergeometric functions include the elementary functions, the performance of the general algorithm is inferior to the

AGM-based algorithms.
General EGC software libraries provide a basis for robust geometric computing. While theoretically the performance of EGC is constrained by root bounds in the worst case, the design and implementation of a EGC library can impact the complexity and the performance of the whole system. We review the design and performance issues existing in our current Core Library. A new design that aims to increase the modularity, extensibility and efficiency is presented. The structure of the redesigned library is much cleaner and the code is easier to maintain and debug. The most important improvement is the performance. Our benchmark shows that our system can obtain 5-10 times speedup.

For improving usability of the Core Library, a new mechanism is provided to help users develop their own operations. Several new operations: sum(), product(), pi() are presented to demonstrate the use of this new mechanism. Such operations can lead to greater efficiency for specific applications.

In conclusion, our redesigned Core Library is more efficient and easier for both transcendental and algebraic computation. We have reasons to be optimistic that the EGC approach will become more and more effective for many problems.

5.2 Future Work

Root Bounds for Transcendental Functions While the zero problem for transcendental functions is still an open problem, even partial results for this problem would be useful. For example, in 69] several lower bounds are provided for non-algebraic expressions

$$
\left|e^{\beta}-\alpha\right| \quad \text { and } \quad|\beta-\log (\alpha)|
$$

where α, β are algebraic numbers. How to extend these results to arbitrary nonalgebraic expressions such as $\Omega_{3} \cup\{\exp (\cdot), \log (\cdot)\}, \Omega_{3} \cup\{\exp (\cdot), \pi\}$ and compute them efficiently will be a big challenge.

On Development of the Core Library Further effort is needed to improve the efficiency of our Core Library at both the algorithmic level and the system level.

At the algorithmic level, we need to continue to improve our key algorithms and develop new algorithms for root bound, filter and bigfloat computation. For instance, our expression evaluation algorithm propagates precision to the operands symmetrically for binary operations. The optimal allocation of bits is an interesting problem for future work.

In the current Core Library, only constants are allowed at the leaves of the expression DAGs. An interesting topic is to allow leaf nodes in expression DAG to be variables. This could speed up the whole computation for certain applications since we can avoid re-construction of the DAG.

At the system level, we currently implemented our exact ring operations for the BigFloat class by estimating the precision for results first and then calling MPFR functions. A more efficient solution would be to implement those operations directly using mpn functions in GMP.

We plan to support more operations in the Core Library, for example, the diamond operator. Another important future work is to apply our EGC approach to more areas of computation where guaranteed sign computation is critical.

On Hypergeometric Functions Our approximation algorithm gives an upper bound on the number of terms needed to guarantee a given absolute precision. Such a general bound could be over-estimated. Further work should
compare the performance of this algorithm with the progressive evaluation algorithm.

Many hypergeometric series have poor convergence properties. The rate of convergence of these series can be accelerated using some techniques. For example, Gosper's algorithm 37 and WZ method 2 proved to be very efficient in series acceleration. Adding automatic transformations for series acceleration into our hypergeometric package will further improve its performance.

On AGM algorithm While we analyzed and implemented the evaluation algorithms for exponential and logarithm function in this thesis, similar work for AGM-based algorithms of other elementary functions such as trigonometric functions remains to be done.

In $\S 79$, we derive an explicit form of $U^{\prime}(m)$ (and $T^{\prime}(m)$). So we can use classical Newton iteration instead of discrete Newton iteration for solving (4.38) and (4.39). Future work should compare these two methods.

AGM iteration is simple and efficient and it connects with elliptic integrals, hypergeometric functions. We should further explore how we develop other AGM-based algorithms.

Appendix A

BFS Filter

In the section we use BfsFilter as an example to show how users can write their own Filter class. The Bfsfilter is based on BFS filter in [17.

To design a Filter class, a user needs to do the following steps:

1. Define internal data fields. BFS filter maintains 3 parameters: fpVal, maxAbs and ind.
```
class BfsFilter {
    double fpVal;
    double maxAbs;
    int ind;
};
```

2. Implement checking function is_ok(). Given an expression E, the criteria for certifying the sign of E for BFS filter is

$$
|f \mathrm{pVal}(\mathrm{E})|>\operatorname{maxAbs}(\mathrm{E}) \cdot \operatorname{ind}(\mathrm{E}) \cdot 2^{-p}
$$

where p is 52 for the standard $\mathrm{C} / \mathrm{C}++$ data type double. This can be translated into the following code in a straightforward way:

```
bool is_ok() const {
    return (get_filter_flag()&&// check if filter is enabled
    finite(fpVal)&& //test for infinite and NaNs
    (fabs(fpVal)>maxAbs*ind*CORE_EPS));
}
```

Here, CORE_EPS is pre-defined to be 2^{-52}. Note that we need to call the get_filter_flag() function.
3. Implement $\operatorname{sgn}(), \operatorname{uMSB}()$ and $\operatorname{IMSB}()$. When the filter is certified, the sign of E is as same as $\mathrm{fpVal}(\mathrm{E})$:

```
int sign() const
{return (fpVal= 0.0) ? 0: (fpVal>0.0 ? 1: - 1); }
```

and the upper and lower bound of $\lg |E|$ can be computed using the formula below:

$$
E^{+}=\left\lceil\log _{2}\left(|\mathrm{fpVal}(\mathrm{E})|+\operatorname{maxAbs}(\mathrm{E}) \cdot \operatorname{ind}(E) \cdot 2^{-p}\right)\right\rceil
$$

and

$$
E^{-}=\left\lfloor\log _{2}\left(|\mathrm{fpVal}(E)|-\operatorname{maxAbs}(E) \cdot \operatorname{ind}(E) \cdot 2^{-p}\right)\right\rfloor
$$

```
long uMSB() const
{ return long(ilogb(fabs(fpVal)+maxAbs*ind*CORE_EPS}))+1; 
long lMSB() const
{ return long(ilogb(fabs(fpVal)-maxAbs*ind*CORE_EPS)); }
```

4. Implement assignment function and arithmetic functions. The recursive computation rules for BFS filter are given in Table A.1, where \oplus, \odot, \oslash are used to represent the corresponding floating-point arithmetic operations and \tilde{E} is used to represent the $f p V a l(E) \cdot \operatorname{sqrt}(), \operatorname{cbrt}(), \operatorname{root}()$ are the functions which can computing the corresponding approximated results
in relative 52 bits precision $(\operatorname{sqrt}()$ is standard ANSI C function and we implemented $\operatorname{cbrt(}()$ and $\operatorname{root}()$ using MPFR).

| Expr E | maxAbs (E) | ind(E) |
| :---: | :---: | :---: |
| exact E | $\|E\|$ | 0 |
| approx E | $\|\operatorname{round}(E)\|$ | 1 |
| $E=F \pm G$ | $\operatorname{maxAbs}(\mathrm{F}) \oplus \operatorname{maxAbs}(\mathrm{G})$ | $1+\max \{$ ind (F) , ind (G) $\}$ |
| $E=F \times G$ | $\operatorname{maxAbs}(\mathrm{F}) \odot \operatorname{maxAbs}(\mathrm{G})$ | $1+\operatorname{ind}(\mathrm{F})+\operatorname{ind}(G)$ |
| $E=F / G$ | $\frac{(\|\tilde{F}\| \oslash\|\tilde{G}\|) \oplus(\operatorname{maxAbs}(\mathrm{F}) \oslash \operatorname{maxAbs}(\mathrm{G}))}{(\|\tilde{G}\| \oslash \operatorname{maxAbs}(\mathrm{G})) \ominus(\operatorname{ind}(\mathrm{G})+1) \cdot 2^{-p}}$ | $1+\max \{\operatorname{ind}(\mathrm{F}), \operatorname{ind}(\mathrm{G})+1\}$ |
| $E=\sqrt[2]{F}$ | $\left\{\begin{aligned}(\operatorname{maxAbs}(\mathrm{F}) \oslash \tilde{F}) \odot \operatorname{sqrt}(\tilde{F}) & \text { if } \tilde{F}>0 \\ \operatorname{sqrt}(\operatorname{maxAbs}(\mathrm{~F})) \odot 2^{p / 2} & \text { if } \tilde{F}=0\end{aligned}\right.$ | $1+\operatorname{ind}(\mathrm{F})$ |
| $E=\sqrt[3]{F}$ | $\left\{\begin{aligned}(\operatorname{maxAbs}(\mathrm{F}) \oslash \tilde{F}) \odot \operatorname{cbrt}(\tilde{F}) & \text { if } \tilde{F}>0 \\ \operatorname{cbrt}(\operatorname{maxAbs}(\mathrm{~F})) \odot 2^{p / 3} & \text { if } \tilde{F}=0\end{aligned}\right.$ | $1+\operatorname{ind}(\mathrm{F})$ |
| $E=\sqrt[k]{F}$ | $\left\{\begin{aligned}(\operatorname{maxAbs}(\mathrm{F}) \oslash \tilde{F}) \odot \operatorname{root}(\tilde{F}, k) & \text { if } \tilde{F}>0 \\ \operatorname{root}(\operatorname{maxAbs}(\mathrm{~F}), k) \odot 2^{p / k} & \text { if } \tilde{F}=0\end{aligned}\right.$ | $1+\operatorname{ind}(\mathrm{F})$ |

Table A.1: Rules for BFS filter, $\mathrm{p}=52$.

For implementing set(), we can apply the rules in the first and second row of above table. For example, we can implement it as follow when the input parameter value is long type:

```
void set(long value) {
    fpVal = value; maxAbs = value > 0 ? value : (-value);
    ind = (sizeof(long) > 4 && ceillg(value) >= 53) ? 1 : 0;
}
```

Here we set ind(E) to be 1 if the input integer has more than 53 bits since it cannot be convert to double exactly. Otherwise we set it to be 0 . The arithmetic functions add() and sub() can be implemented using the rule in the third row:

```
void add(const thisClass& f, const thisClass& s) {
    fpVal = f.fpVal + s.fpVal;
    maxAbs = f.maxAbs + s.maxAbs;
    ind = 1 + (f.ind > s.ind ? f.ind : s.ind );
```

```
}
void sub(const thisClass& f, const thisClass& s) {
    fpVal= f.fpVal - s.fpVal;
    maxAbs = f.maxAbs + s.maxAbs;
    ind = 1 + (f.ind > s.ind ? f.ind : s.ind );
}
```

Similarly, one can implement functions mul(), div(), sqrt(), cbrt(), root() using the rules in rows 4-6.

Remarks:

(1) We did not use IEEE double interval as our floating-point filter [12] since the mechanism for setting IEEE rounding modes is not very portable and switching between different rounding modes is costly.
(2) When underflow in those machine floating-point arithmetic operations happens, we can ignore it for \oplus, \ominus and $\sqrt[k]{ }$, and add a small constant MIN_DBL $=2.2250738585072014 e^{-308}$ to maxAbs(E) for \odot and \oslash. For overflow, we can detect it using the function finite() from <cmath> (see the implementation of is_ok()).

Appendix B

BFMSS Root Bound

Here we give an example of how we write a Rootbd class from a set of constructive root bound rules. We use BFMSS bound [15, [16] as an example. Conceptually, BFMSS bound first transforms a radical expression E to a quotient of two division-free expression $U(E)$ and $L(E)$. But we do not have to compute $U(E)$ or $L(E)$. Instead we maintain two parameters $u(E)$ and $l(E)$, the upper bounds on the conjugates of $U(E)$ and $L(E)$, respectively by the recursive rules in Table B. 1

| Expr E | $u(E)$ | $l(E)$ |
| :--- | :--- | :--- |
| Rational $\frac{a}{b}$ | $\|a\|$ | $\|b\|$ |
| $E=F \pm G$ | $u(F) l(G)+l(F) u(G)$ | $l(F) l(G)$ |
| $E=F \times G$ | $u(F) u(G)$ | $l(F) l(G)$ |
| $E=F \div G$ | $u(F) l(G)$ | $l(F) u(G)$ |
| $E=\sqrt[k]{F}$ | $\min \left\{\sqrt[k]{u(F) l(F)^{k-1}}, u(F)\right\}$ | $\min \left\{\sqrt[k]{u(F)^{k-1} l(F)}, l(F)\right\}$ |

Table B.1: Rules for BFMSS bound.

The BFMSS root bound function is

$$
B(E)=\frac{1}{u(E)^{d(E)-1} l(E)}
$$

where $d(E)$ is the degree bound that we mentioned in $\S 19$.
Now we are going to design our BfmssRootbd class:

1. Define internal data fields. Bfmss Rootbd maintains 3 data fields: u_e, l_e and d_e which store upper bounds on $\lg u(E), \lg l(E)$ and $d(E)$ respectively:
```
class BfmssRootbd {
    unsigned long u_e;
    unsigned long l_e;
    unsigned long d_e;
};
```

2. Implement get_bound (). We just return $-\lg (E)$, i.e.,

$$
\lg u(E) \cdot(d(E)-1)+\lg l(E)=\text { u_e * (d_e }-1)+ \text { l_e. }
$$

```
unsigned long get_bound() const
{ return u_e*(d_e-1)+l_e; }
```

3. Implement is_degree_based(), set_degree_bound() and get_degree_bound().
```
static bool is_degree_based ()
{ return true; }
void set_degree_bound (unsigned long d)
{ d_e = d; }
unsigned long get_degree_bound() const
{ return d_e; }
```

4. Implement assignment functions set() for different types:
```
void set(long value)
{ u_e = ceillg(value); l_e = 0; }
void set(unsigned long value)
{ u_e = ceillg(value); l_e = 0; }
```

```
void set(double value)
{ set(BigFloat(value)); }
void set(const BigInt& value)
{ u_e = value.ceillg(); l_e = 0; }
void set(const BigRat& value)
{ u_e = value.num().ceillg(); l_e = value.den().ceillg(); }
void set(const BigFloat& value) {
    BigInt x; exp_t e = value.get_z_exp(x);
    if (e >= 0) { // convert to integer
        x.mul_2exp(x, e); set(x);
    } else { // convert to rational
        BigRat q; q.div_2exp(x, -e); set(q);
    }
}
```

5. Implement arithmetic functions. Since we now maintain u_e and l_e, we derive logarithm form rules from above Table B. 1

| $E=F \pm G$ | $\max \left\{F\right.$. u_e $+G .1$ _e, F.1_e $\left.+G . \mathrm{u}_{-} \mathrm{e}\right\}+1$ | $F .1$ _e + G.1_e |
| :---: | :---: | :---: |
| $E=F \times G$ | $F . \mathrm{u}$-e $+G$.u_e | $F .1$ _e + G.1_e |
| $E=F \div G$ | F. u_e + G.l_e | $F .1 _$e $+G$.u_e |
| $E=\sqrt[k]{F}$ | | |

Table B.2: Rules for BFMSS bound in logarithm form.

```
void neg(const thisClass& child)
{ u_e = child.u_e; l_e = child.l_e; }
void root(const thisClass& child, unsigned long k) {
    if (child.u_e >= child.l_e) {
            u_e = (child.u_e + (k-1)*child.l_e + (k-1)) / k;
            l_e = child.l_e;
    } else {
        u_e = child.u_e;
        l_e = ((k-1)*child.u_e + child.l_e + (k-1)) / k;
    }
}
```

```
void add(const thisClass& f, const thisClass& s) {
    u_e = std::max(f.u_e + s.l_e, f.l_e + s.u_e) + 1;
    l_e = f.l_e + s.l_e;
}
void sub(const thisClass& f, const thisClass& s) {
    u_e = std::max(f.u_e + s.l_e, f.l_e + s.u_e) + 1;
    l_e = f.l_e + s.l_e;
}
void mul(const thisClass& f, const thisClass& s)
{ u_e = f.u_e + s.u_e; l_e = f.l_e + s.l_e; }
void div(const thisClass& f, const thisClass& s)
{ u_e = f.u_e + s.l_e; l_e = f.l_e + s.u_e; }
```

It is clear that once we have root bound functions and recursive rules, writing a Rootbd is straightforward. We give this information for other two root bound algorithms that we provided in the Core Library:

Degree-Measure bound: The root bound function is

$$
B(E)=\frac{1}{m(E)}
$$

The recursive rules are shown in Table B. 3 :

| Expr E | $d(E)$ | $m(E)$ |
| :--- | :--- | :--- |
| Rational $\frac{a}{b}$ | 1 | $\max \{\|a\|,\|b\|\}$ |
| $E=F \pm G$ | $d(F) d(G)$ | $m(F)^{d(G)} m(G)^{d(F)} 2^{d(E)}$ |
| $E=F \times G$ | $d(F) d(G)$ | $m(F)^{d(G)} m(G)^{d(F)}$ |
| $E=F \div G$ | $d(F) d(G)$ | $m(F)^{d(G)} m(G)^{d(F)}$ |
| $E=\sqrt[k]{F}$ | $k d(F)$ | $m(F)$ |

Table B.3: Rules for Degree-Measure bound.

Li-Yap bound: The root bound function for Li-Yap bound [54] is

$$
B(E)=\frac{1}{\mu(E)^{d(E)-1} l c(E)}
$$

| Expr E | $l c(E)$ | $t c(E)$ | $\mu(E)$ | $\nu(E)$ |
| :--- | :--- | :--- | :--- | :--- |
| Rational $\frac{a}{b}$ | $\|b\|$ | $\|a\|$ | $\left\|\frac{a}{b}\right\|$ | $\left\|\frac{a}{b}\right\|$ |
| $E=F \pm G$ | $l c(F)^{d(G)} l c(G)^{d(F)}$ | $m(F)^{d(G)} m(G)^{d(F)} 2^{d(E)}$ | $\mu(F)+\mu(G)$ | $(*)$ |
| $E=F \times G$ | $l c(F)^{d(G)} l c(G)^{d(F)}$ | $t c(F)^{d(G)} t c(G)^{d(F)}$ | $\mu(F) \mu(G)$ | $\nu(F) \nu(G)$ |
| $E=F \div G$ | $l c(F)^{d(G)} t c(G)^{d(F)}$ | $t c(F)^{d(G)} l c(G)^{d(F)}$ | $\mu(F) / \nu(G)$ | $\nu(F) / \mu(G)$ |
| $E=\sqrt[k]{F}$ | $l c(F)$ | $t c(F)$ | $\sqrt[k]{\mu(F)}$ | $\sqrt[k]{\nu(F)}$ |

Table B.4: Rules for Li-Yap bound.

The recursive rules are shown in Table B.4

The last entry in Line 3 is missing: this special entry is

$$
\max \left\{M(E)^{-1},\left(\mu(E)^{d(E)-1} l c(E)\right)^{-1}\right\}
$$

Bibliography

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press, New York, 1983. Translated from German by Jon Rokne.
[2] T. Amdeberhan and D. Zeilberger. Hypergeometric series acceleration via the WZ method, 1996.
[3] W. N. Bailey. Generalized Hypergeometric Series. Cambridge University Press, 1935.
[4] Bernard Chazelle, et al. The computational geometry impact task force report: an executive summary. In M. C. Lin and D. Manocha, editors, Applied Computational Geometry: Towards Geometric Engineering, pages 59-66. Springer, 1996. Lecture Notes in Computer Science No. 1148.
[5] Bernard Chazelle, et al. Application challenges to computational geometry: CG impact task force report. Tr-521-96, Princeton Univ., April, 1996. See also URL www.cs.princeton.edu/~ chazelle/.
[6] J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge University Press, 1997. Translated by Hervé Brönnimann.
[7] D. Booth. Integrating Python, C and $\mathrm{C}++$. http://www.suttoncourtenay.org.uk/duncan/accu/integratingpython.html. Python Integration.
[8] J. M. Borwein and P. B. Borwein. Pi and the AGM. John Wiley and Sons, New York, 1987.
[9] R. P. Brent. The complexity of multiple-precision arithmetic. In R. S. Anderssen and R. P. Brent, editors, The Complexity of Computational Problem Solving, pages 126-165. University of Queensland Press, Brisbane, 1976. Retyped and postscript added 1999.
[10] R. P. Brent. Fast multiple-precision evaluation of elementary functions. J. of the ACM, 23:242-251, 1976.
[11] R. P. Brent. Multiple-precision zero-finding methods and the complexity of elementary function evaluation. In J. F. Traub, editor, Proc. Symp. on Analytic Computational Complexity, pages 151-176. Academic Press, 1976.
[12] H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient dynamic filters for computational geometry. Discrete Applied Mathematics, 109(1-2):25-47, 2001.
[13] C. Burnikel. Exact Computation of Voronoi Diagrams and Line Segment Intersections. Ph.D thesis, Universität des Saarlandes, Mar. 1996.
[14] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Exact efficient geometric computation made easy. In Proc. 15th ACM Symp. Comp. Geom., pages 341-450, New York, 1999. ACM Press.
[15] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily computable separation bound for arithmetic expressions involving radicals. Algorithmica, 27:87-99, 2000.
[16] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt. A separation bound for real algebraic expressions. In Lecture Notes in Computer Science, pages 254-265. Springer, 2001. to appear, Algorithmica.
[17] C. Burnikel, S. Funke, and M. Seel. Exact geometric predicates using cascaded computation. In Symposium on Computational Geometry, pages 175-183, 1998.
[18] C. Burnikel, S. Funke, and M. Seel. Exact geometric computation using cascading. Int'l. J. Comput. Geometry and Appl., 11(3):245-266, 2001. Special Issue.
[19] CGAL Homepage, 1998. URL http://www.cgal.org/. Computational Geometry Algorithms Library (CGAL) Project. A 7-institution European Community effort.
[20] J. Choi, J. Sellen, and C. Yap. Approximate Euclidean shortest paths in 3-space. Int'l. J. Comput. Geometry and Appl., 7(4):271-295, 1997. Also: 10th ACM Symp. on Comp. Geom. (1994), pp.41-48.
[21] Core Library homepage, since 1999. Software downloads, documentation and links: http://cs.nyu.edu/exact/core/.
[22] B. P. Demidovich and I. A. Maron. Computational Mathematics. MIR Publishers, Moscow, 1976. Translated from Russian by G.Yankovsky.
[23] Z. Du, M. Eleftheriou, J. Moreira, and C. Yap. Hypergeometric functions in exact geometric computation. In V. Brattka, M. Schoeder, and K. Weihrauch, editors, Proc. 5th Workshop on Computability and Complexity in Analysis, pages 55-66, 2002. Malaga, Spain, July 12-13, 2002. In Electronic Notes in Theoretical Computer Science, 66:1 (2002), http://www.elsevier.nl/locate/entcs/volume66.html.
[24] T. Dubé and C. K. Yap. A basis for implementing exact geometric algorithms (extended abstract), September, 1993. Paper from ftp://cs.nyu.edu/pub/local/yap/exact/basis.ps.gz.
[25] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, 1987.
[26] A. R. Forrest. Computational geometry and software engineering: Towards a geometric computing environment. In D. F. Rogers and R. A. Earnshaw, editors, Techniques for Computer Graphics, pages 23-37. Springer-Verlag, 1987.
[27] S. Fortune. Editorial: Special issue on implementation of geometric algorithms. Algorithmica, 27(1), 2000.
[28] S. J. Fortune and C. J. van Wyk. Static analysis yields efficient exact integer arithmetic for computational geometry. ACM Transactions on Graphics, 15(3):223-248, 1996.
[29] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. Mpfr: A multiple-precision binary floating-point library with correct round-
ing. Research Report 5753, INRIA, 2005. available electronically at http://hal.inria.fr/inria-000000818.
[30] S. Funke. Exact arithmetic using cascaded computation. Master's thesis, Max Planck Institute for Computer Science, Saarbrücken, Germany, 1997.
[31] S. Funke, K. Mehlhorn, and S. Näher. Structural filtering: A paradigm for efficient and exact geometric programs. In Proc. 11th Canadian Conference on Computational Geometry, 1999.
[32] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series. Addison-Wesley Publishing Company, New York, NY, 1995.
[33] C. F. Gauss. Carl Friedrich Gauss Werke. Göttingen, 1876.
[34] R. Geus, O. Skavhaug, and H. P. Langtangen. Python wrapper tools; a performance study. Talk at the EuroPython 2004 Conference, Gothenburg, Sweden, 2004. Presented by R. Geus.
[35] GNU MP Homepage, 2000. GNU MP (=GMP) is a free library for arbitrary precision arithmetic on integers, rational numbers and floating point numbers. URL http://www.swox.com/gmp/. GMP 3.1 released Aug 2000.
[36] D. Goldberg. What every computer scientist should know about floatingpoint arithmetic. ACM Computing Surveys, 23(1):5-48, 1991.
[37] R. W. Gosper. Acceleration of series. Artificial Intelligence Lab. Memo 340, M.I.T., 1974.
[38] G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR. LORIA, INRIA and INRIA Lorraine, 2.2.0 edition, 2005. available electronically at http://www.mpfr.org/.
[39] J. Harrison. Formal verification of floating point trigonometric functions. In Proceedings of the 3rd International Conference on Formal Methods in Computer-Aided Design, pages 217-233, 2000.
[40] J. Harrison. Formal verification of ia-64 division algorithms. In Proceedings of the 13th International Conference on Theorem Proving in Higher Order Logics, pages 234-251, 2000.
[41] J. Harrison, T. Kubaska, S. Story, and P. T. P. Tang. The computation of transcendental functions on the ia-64 architecture. pages 234-251, 1999.
[42] S. Hert, M. Hoffmann, L. Kettner, S. Pion, and M. Seel. An adaptable and extensible geometry Kernel. In Proc. 5th Int'l Workshop on Algorithm Engineering (WAE-01), pages 79-90, Berlin, 2001. Springer. Aarhus, Denmark, August 28-30, 2001.
[43] C. M. Hoffmann. The problems of accuracy and robustness in geometric computation. IEEE Computer, 22(3):31-42, March 1989.
[44] IEEE. IEEE Standard 754-1985 for binary floating-point arithmetic, 1985. ANSI/IEEE Std 754-1985. From The Institute of Electrical and Electronic Engineers, Inc.
[45] E. Jeandel. Évaluation rapide de fonctions hypergéométriques. Rapport Technique 242, INRIA, 2000. 17 pages.
[46] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A Core library for robust numerical and geometric computation. In 15th ACM Symp. Computational Geometry, pages 351-359, 1999.
[47] M. Karasick, D. Lieber, and L. R. Nackman. Efficient Delaunay triangulation using rational arithmetic. ACM Trans. on Graphics, 10:71-91, 1991.
[48] D.-S. Kim, K. Yu, Y. Cho, D. Kim, and C. Yap. Shortest paths for disc obstacles. In A. L. et al., editor, Proc. Computational Sci. and Its Applic. (ICCSA 2004), number 3045 in Lecture Notes in Computer Science, pages 62-70, 2004. Intl. Workshop on Comp. Geom. and Applic., at ICCSA 2004, S. Maria degli Angeli, Assisi (Perugia, Italy) May 14-17, 2004.
[49] LEDA Homepage, Since 1995. URL http://www.mpi-sb.mpg.de/LEDA/. Library of Efficient Data Structures and Algorithms (LEDA) Project. From the Max Planck Institute of Computer Science.
[50] V. Lefèvre. The generic multiple-precision floating-point addition with exact rounding (as in the mpfr library). In Proceedings of the 6th Conference on Real Numbers and Computers, pages 135-145, 2004.
[51] V. Lefèvre, J.-M. Muller, and A. Tisserand. Towards correctly rounded transcendentals. IEEE Trans. Computers, 47(11):1235-1243, 1998.
[52] C. Li. Exact Geometric Computation: Theory and Applications. Ph.d. thesis, New York University, Department of Computer Science, Courant Institute, Jan. 2001. Download from http://cs.nyu.edu/exact/doc/.
[53] C. Li, S. Pion, and C. Yap. Recent progress in exact geometric computation. J. of Logic and Algebraic Programming, 64(1):85-111, 2004. Special issue on "Practical Development of Exact Real Number Computation".
[54] C. Li and C. Yap. A new constructive root bound for algebraic expressions. In 12th ACM-SIAM Symp. on Discrete Algorithms, pages 496-505, Jan. 2001.
[55] D. Lozier and F. Olver. Numerical evaluation of special functions. In W. Gautschi, editor, Mathematics of Computation 1943-1993: A HalfCentury of Computational Mathematics, volume 48, pages 79-125. American Math. Soc., Providence, Rhode Island, 1994 and 2000. Proceedings of Symposia in Applied Mathematics. Updated version (2000) available from http://math.nist.gov/nesf/.
[56] Y. L. Luke. Algorithms for the Computation of Mathematical Functions. Academic Press, 1977.
[57] K. Mahler. Zur approximation der exponentialfunktionen und des logarithmus. J. Reine Angew. Math. 166, pages 118-136, 1932.
[58] M. Marden. The Geometry of Zeros of a Polynomial in a Complex Variable. Math. Surveys. American Math. Soc., New York, 1949.
[59] K. Mehlhorn and S. Schirra. Exact computation with leda_real - theory and geometric applications. In G. Alefeld, J. Rohn, S. Rump, and T. Yamamoto, editors, Symbolic Algebraic Methods and Verification Methods, pages 163-172, Vienna, 2001. Springer-Verlag.
[60] Z. A. Melzak. Companion to Concrete Mathematics. Wiley, New York, NY, 1973.
[61] M. Mignotte and D. Ştefănescu. Polynomials: An Algorithmic Approach. Springer, 1999.
[62] R. E. Moore. Interval Analysis. Series in Automatic Computation. Prentice Hall, Englewood Cliffs, NJ, 1966.
[63] MPFR Homepage, Since 2000. URL http://www.mpfr.org/. The MPFR Library.
[64] J.-M. Muller. Elementary Functions: Algorithms and Implementation. Birkhäuser, Boston, 1997.
[65] N. T. Müller. The iRRAM: Exact arithmetic in C++. In J. Blank, V. Brattka, and P. Hertling, editors, Computability and Complexity in Analysis, pages 222-252. Springer, 2000. 4th International Workshop, CCA 2000, Swansea, UK, September 17-19, 2000, Selected Papers, Lecture Notes in Computer Science, No. 2064.
[66] K. Mulmuley. Computational Geometry: an Introduction through Randomized Algorithms. Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 1994.
[67] M. Nardin, W. Perger, and A. Bhalla. Algorithm 707, CONHYP: A numerical evaluator of the confluent hypergeometric function for complex arguments of large magnitudes. ACM Trans. Math. Softw., 18(3):345-349, 1992.
[68] M. Nardin, W. Perger, and A. Bhalla. Numerical evaluation of the confluent hypergeometric function for complex arguments of large magnitudes. J. Computational and Applied Math., 39:193-200, 1992.
[69] Y. Nesterenko and M. Waldschmidt. On the approximation of the values of exponential function and logarithm by algebraic numbers. Mat. Zapiski, 2:23-42, 196. Diophantine Approximations, Proc. of papers dedicated to the memory of Prof. N.I. Feldman, Moscow. Available from http://arxiv.org/abs/math.NT/0002047.
[70] K. C. Ng. Argument reduction for huge arguments: Good to last bits. Technical report, SunPro, 1992. available electronically at http://www.validgh.com/.
[71] J. O'Rourke. Computational Geometry in C. Cambridge University Press, second edition edition, 1998.
[72] K. Ouchi. Real/Expr: Implementation of an exact computation package. Master's thesis, New York University, Department of Computer Science, Courant Institute, Jan. 1997. Download from http://cs.nyu.edu/exact/doc/.
[73] N. M. Patrikalakis, W. Cho, C.-Y. Hu, T. Maekawa, E. C. Sherbrooke, and J. Zhou. Towards robust geometric modelers, 1994 progress report. In Proc. 1995 NSF Design and Manufacturing Grantees Conference, pages 139-140, 1995.
[74] S. Pion. Interval arithmetic: An efficient implementation and an application to computational geometry. In Workshop on Applications of Interval Analysis to Systems and Control, pages 99-110, 1999.
[75] S. Pion and C. Yap. Constructive root bound method for k-ary rational input numbers. In 19th ACM Symp. on Comp. Geometry, pages 256-263, San Diego, California., 2003.
[76] J. Popken. Zur transzendenz von e. Math. Z. 29, pages 525-541, 1929.
[77] F. P. Preparata and M. I. Shamos. Computational Geometry. SpringerVerlag, 1985.
[78] Python Homepage, 1990. http://www.python.org/. Python Programming Language.
[79] Topical Python Software. http://www.scipy.org/Topical_Software. Topical Python Software.
[80] D. Richardson. Some undecidable problems involving elementary functions of a real variable. The Journal of Symbolic Logic, 33(4):511-520, 1968.
[81] D. Richardson. How to recognize zero. J. of Symbolic Computation, 24:627645, 1997.
[82] D. Richardson. The uniformity conjecture. In J. Blank, V. Brattka, and P. Hertling, editors, Computability and Complexity in Analysis, pages 253272. Springer, 2000. 4th International Workshop, CCA 2000, Swansea, UK, September 17-19, 2000, Selected Papers, Lecture Notes in Computer Science, No. 2064.
[83] Roberto Tamassia, et al. Strategic directions in computational geometry: Working group report. Computing Surveys, 28(4):591-606, Dec. 1996.
[84] S. Schirra. Robustness and precision issues in geometric computation. In J. Sack and J. Urrutia, editors, Handbook of Computational Geometry. Elsevier Science Publishers, B.V. North-Holland, Amsterdam, 1999.
[85] H. Sekigawa. Using interval computation with the Mahler measure for zero determination of algebraic numbers. Josai Information Sciences Researches, 9(1):83-99, 1998.
[86] J. Sellen, J. Choi, and C. Yap. Precision-sensitive Euclidean shortest path in 3-Space. SIAM J. Computing, 29(5):1577-1595, 2000. Also: 11th ACM Symp. on Comp. Geom., (1995)350-359.
[87] D. Shanks. Solved and Unsolved Problems in Number Theory. Dover Publications, Inc, New York, NY, 1993.
[88] V. Sharma, Z. Du, and C. Yap. Robust Approximate Zeros. In G. S. Brodal and S. Leonardi, editors, Proc. 13th European Symp. on Algorithms (ESA), volume 3669 of Lecture Notes in Computer Science, pages 874-887. Springer-Verlag, Apr. 2005. Palma de Mallorca, Spain, Oct 3-6, 2005.
[89] B. Stroustup. The Design and Evolution of $C++$. Addison Wesley, New York, NY, April 1994.
[90] J. van der Hoeven. Fast evaluation of holonomic functions. Theor. Comput. Sci., 210(1):199-215, 1999.
[91] J. van der Hoeven. Fast evaluation of holonomic functions near and in regular singularities. J. Symb. Comput., 31(6):717-743, 2001.
[92] C. Yap and K. Mehlhorn. Towards robust geometric computation, 2001. Invited White Paper. CSTB-NSF Conference on Fundamentals of Computer Science, Washington DC, July 25-26, 2001. See Appendix, Computer Science: Reflections on/from the Field, The National Academies Press, Washington DC, 2004.
[93] C. K. Yap. A new number core for robust numerical and geometric libraries. In 3rd CGC Workshop on Computational Geometry, 1998. Invited Talk. Brown University, Oct 11-12, 1998.

Abstracts, http://www.cs.brown.edu/cgc/cgc98/home.html.
[94] C. K. Yap. On guaranteed accuracy computation. In F. Chen and D. Wang, editors, Geometric Computation, chapter 12, pages 322-373. World Scientific Publishing Co., Singapore, 2004.
[95] C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 41, pages 927-952. Chapmen \& Hall/CRC, Boca Raton, FL, 2nd edition, 2004. Expanded from 1997 version.
[96] C. K. Yap and T. Dubé. The exact computation paradigm. In D.-Z. Du and F. K. Hwang, editors, Computing in Euclidean Geometry, pages 452-492. World Scientific Press, Singapore, 2nd edition, 1995.
[97] J. Yu. Exact arithmetic solid modeling. Ph.D. dissertation, Department of Computer Science, Purdue University, West Lafayette, IN 47907, June 1992. Technical Report No. CSD-TR-92-037.

[^0]: ${ }^{1}$ The results in [20] say we can evaluate $x \pm y$ to s relative bits in $O\left(s+\max \left\{e_{x}, e_{y}\right\}\right)$ time, which is not true

[^1]: ${ }^{2}$ Although this might appear to be a known problem in the literature, we have not been able to find a reference.

[^2]: ${ }^{3}$ Look under the directory progs/fileIO.

