
CORE Library Tutorial:

A Library for Robust Geometric Computation

Chen Li and Chee Yap

Courant Institute of Mathematical Sciences

January 18, 1999†

Abstract

The CORE package contains a set of C++ classes for exact computation with
constructible real numbers. It embodies our precision-driven approach to “exact
geometric computation”. In this tutorial we give an overview for this package,
and basic instructions for using it.

Table of Contents

1 Introduction

2 Getting Started

3 Composite Precision Bound

4 Introduction to the CORE Classes

5 Converting Existing C/C++ Programs

6 Linear Algebra and Geometry Extensions

7 Differences from Version 1.1

8 Bugs and Future Work

Appendix The CORE Classes: A Complete Reference

†Revised: Sep 9, 1999.

1

1 Introduction

The CORE library is a collection of classes written in the C++ language which facil-
itate numerical computation which has a variety of precision requirements. The
library is comprised of two main parts: the Real subpackage which provides a
uniform interface to a heterogeneous collection of arbitrary precision real number
system (usually called Big Number packages), and the Expr subpackage which
supports a precision-driven approach to high precision computation. In particu-
lar, our library is designed to support the Exact Geometric Computation (EGC)
approach to robust geometric computation [12, 13]. The EGC approach is one of
the many routes that researchers have taken towards addressing the seemingly
intractable problem of robust algorithms in geometric settings. Recent research
have shown the effectiveness of EGC in many specific algorithms (such as convex
hulls, Delaunay triangularion, etc) [5, 4, 7, 3, 1, 10]). Our goal in this project
aims to make such EGC a useful and widely accessible tool. Through the CORE

library, any (C/C++) programmer can create robust geometric algorithms without
any prior knowledge of EGC techniques.

The CORE library defines three accuracy levels to meet users’ different needs:

Machine Accuracy (level 1) This may be identified with the IEEE Floating-
Point Standard 754.

Arbitrary Accuracy (level 2) Users can specify any desired accuracy in term
of the number of bits used in the computation. E.g. “200 bits” means that
the numerical operations will not cause an overflow or under flow until 200
bits are exceeded.

Guaranteed Accuracy (level 3) Users can specify the absolute or relative
precision that is guaranteed to be correct in the final results. E.g. “200
relative bits” means that the first 200 significant bits of a computed quan-
tity are correct.

The mechanism for delivering these three accuracy levels to the users is al-
most transparent. The users just need to insert a simple preamble as described
in Section 2.2 to “simultaneously” access the different levels. Then the user
compiles and executes the resulting C++ program in the conventional way. Con-
sequently, the effort required to write new robust programs or convert existing
non-robust programs into robust ones is minimal.

It should be clear that a conventional C++ program, if it is to have accuracy
levels 2 or 3, must have its basic number types re-interpreted. Specifically, in
level 3, the primitive type double is now re-interpreted to refer to the class
Expr. The class Expr in turn depends on the class Real. The user may iden-
tify instances of class Real with various types of rational numbers (possibly
rational intervals). Similarly, instances of class Expr can be identified with alge-
braic expressions built up from instances of Real via the operators +,−,×,÷,
and

√
. Each instance of Expr maintains an approximate value as well a pre-

cision. Users can freely set and modify the precision of any expression and
its approximate value will automatically adjust to satisfy this precision in the
evaluations thereafter. Users can compare the values of two instances of Expr
exactly. Mathematically, our system allows one to perform exact computations
with any constructible real numbers (subject to physical limitations).

2

The recent paper of Burnikel et al [2] proposed a library of leda real that
is similar in many aspects to our work. Our work is directly derived from
the Real/Expr Package; however, there are significant changes in philosophy.
Specifically, the user interface represents a major improvement for usability.
The CORE accuracy API was first proposed in Yap [11], and this was realized
in Karamcheti, Li, Pechtchanski and Yap [6]. The initial implementation was
based on the Real/Expr package designed by Dubé and Yap (circa 1993) and
rewritten by Ouchi [9]. Further details about the basic underlying algorithms
and their error analysis can be found in the Ouchi’s thesis [9]. The current
version 1.2 incorporates some techniques to provide significant speedup to the
system. Moreover, various bugs have been fixed.

Our library has been tested on the Sun SPARC, SGI and Intel/Linux plat-
forms. The complete source codes, together with examples and documentation,
is about 2.5 MB (about half of this are documentation). It can be downloaded
from our project homepage

http://cs.nyu.edu/exact/core

This tutorial describes the CORE Package, version 1.2, released in September
1999.

2 Getting Started

2.1 Installing the CORE library

In the following, we assume that the CORE distribution files are extracted in a
directory called core. The README file in core will describe the simple steps to
compile the library. The directory structure is as follows:

core/src: The source codes for the CORE library.
core/inc: The header files.
core/lib: The compiled libraries is found here.
core/ext: The extensions for linear algebra and geometry.
core/progs: Some examples using the CORE library.

The source files for the CORE library are stored in core/src. The Makefile
there builds the core library “libcore.a” and places it in the core/lib(but this
is automatically done by the Makefile at the top level).

2.2 Programming with the CORE library

It is simple to use the core library in your C/C++ programs. There are two steps
you need to follow:

1. Add a compiler directive to set the constant “Level”

#define Level <level_number> // this line can be omitted when

// using the default value 3.

3

where the value of <level number> could be 3 for guaranteed accuracy, 2
for arbitrary accuracy and 1 for machine accuracy.

2. Include the header file “CORE.h” (in core/inc directory)

#include "CORE.h"

Of course, you need to set the correct INCLUDE path for compilation,
which should include the directory core/inc.

Thus, the simplest preamble you need to add to your usual C/C++ program
is

#define Level <level_number> // defaults to 3 if omitted

#include "CORE.h"

Please see Section A.4 for an example. This preamble should appear before your
code in which you want to utilize the exact arithmetic, but after all the standard
header files, e.g. <iostream.h>, etc.

At levels 2 and 3, in all the codes after this preamble, the built-in machine
types double and long will be replaced with our number classes. But you can
still access the original double and long types by using machine double and
machine long instead.

Some examples are collected in core/progs. There are also Makefile tem-
plates which could be easily modified to compile your own programs.

2.3 I/O

I/O streams understand CORE expressions. Simply writing “cout << e” would
output an approximate value of e to the stream cout . In our implementation,
that value is always a BigFloat. Please see Section A.1.6 for more details about
BigFloat’s output.

There is a global variable defPrtDgt which specifies at most how many
significant decimal digits would be printed out. The users can set this variable
by calling the function setDefaultPrintDigits(int).

Our system can read arbitary long numbers from streams. Currently num-
bers read from streams are internally represented as BigFloats. Beware that
only binary fractions can be exact else the BigFloat is correct save the last bit.
E.g., to get an exact rational input, you may need to read in 2 BigInts and then
divide them.

An alternative method is to read the number into a variable of machine build-
in types e.g. int or floatat first, and then convert them to the CORE objects by
either object initialization or assignment.

2.4 A Simple Example

We give a simple program to compare the following two expressions, numerically:

√
x +

√
y :

√
x + y + 2

√
xy.

Of course, these expressions are algebraically identical, and hence the comparison
should result in equality regardless of the values of x and y.

4

#ifndef Level

define Level 3

#endif

#include <iostream.h>

#include "CORE.h"

main() {
double x = Rational(12345, 56789);

double y = "1234567890.0987654321"; // string input

double e = sqrt(x) + sqrt(y);

double f = sqrt(x + y + 2 * sqrt(x*y));

cout << "e == f ? " << ((e == f) ?

"yes (CORRECT!)" :

"no (INCORRECT!)") << endl;

}

3 Composite Precision Bound

Given a real number X, integers a and r, we say that a real number X̂ is an
approximation of X to (composite) precision [r, a], denoted

X̂ ≃ X [r, a] ,

provided either ∣∣∣X̂ − X
∣∣∣ ≤ 2−r |X|
OR∣∣∣X̂ − X

∣∣∣ ≤ 2−a.

Intuitively, r and a bound the number of “bits” of relative and absolute error
(respectively) when X̂ is used to approximate X. Note that we use the “or” se-
mantics (either the absolute “or” relative error has the indicated bound). In the
above notation, we view the combination “X[r, a]” as the given data (although
X is really a blackbox, not an explicit number representation) from which our
system is able to generate an approximation X̂ . For any given data X[r, a], we
are either in the “absolute regime” (if 2−a ≥ 2−r|X|) or in the “relative regime”
(if 2−a ≤ 2−r|X|).

To force a relative precision of r, we can specify a = ∞. Thus X[r,∞] denotes

any X̂ of X which satisfies
∣∣∣X̂ − X

∣∣∣ ≤ 2−r |X|. Likewise, if X̂ ≃ X[∞, a] then

X̂ is an approximation of X to the absolute precision a, |X̂ − X| ≤ 2−a.
In our implementation, r must be unsigned long or INFTY, and a is long

or ±INFTY. We also use two global variables to specify those two precisions

[defRelPrec, defAbsPrec]

whose default values are initialized to [35,∞]. The user can change these values
at compile time as well as run time by calling the functions:

5

long setDefaultRelPrecision(long r); // returns previous value

long setDefaultAbsPrecision(long a); // returns previous value

void setDefaultPrecision(long r, long a);

4 Introduction to the CORE Classes

There are three main classes in the CORE package: Expr, Real and BigFloat.
Although users do not have to directly access these classes, understanding them
is still useful for understanding the behavior of the CORE. Advanced users may
want to program with these classes directly. Here we briefly introduce them.
Users can find more details in Appendix A.

BigFloat is an arbitrary precision floating point number representation that we
built on top of GNU’s BigInt and Rational.

Real is a “heterogeneous” number system that incorporates the following six
subclasses: int, long, double, BigInt, Rational, and BigFloat.

Expr , the most interesting class in the package, supports level 3 accuracy. This
class depends on Real and BigFloat and represents a subset of the real
numbers and the expressions over them.

5 Converting Existing C/C++ Programs

Besides inserting the preamble mentioned before, there are a few more things
you may need to pay attention to:

a) Beware that your code appearing after the following preamble

#define Level 3

#include "CORE".h

will have the machine built-in types double and long replaced by the CORE

class Expr. An analogous promotion occurs at level 2. If you do not want such
promotions to occur, please use machine double and machine long instead.

b) All the objects implicitly (e.g. automatically promoted from double) or
explicitly declared to be of type Expr must be initialized appropriately. In most
cases, this is not a problem since a default Expr constructor is defined. How-
ever if your existing code declares any Expr object, or container object which
includes, either implicitly or explicitly, one or more Expr objects, and such ob-
ject is dynamically allocated using malloc(), then it is usually not initialized
properly. You probably want to use the “new” operator instead.

6

double *pe, *pf;

// The following is incorrect at Levels 2 and 3:

pf = (double *)malloc(sizeof(double));

cout << *pf << endl;

// prints: Segmentation fault

// because the object pointed by pf was not initialized properly!

// This is the correct way:

pe = new double();

cout << *pe << endl;

// prints: zero (the default initial value)

c) The system’s built-in printf and scanf functions cannot be used to out-
put/input the Expr objects directly. You need to use C++ stream I/O instead.

d) The variables of machine type int or float are never promoted to Expr
objects. For example,

// set Level 3

int i;

double d = sqrt(i);

Here the “sqrt” actually refers to the standard C function defined in math.h,
and not our precision sensitive sqrt in the Expr class. Hence d holds only a fixed
approximation to

√
i, and the exact value can not be recovered. Here is a fix:

// set Level 3

int i;

double e = i; // promote to an Expr object

double d = sqrt(e); // the precision sensitive sqrt is called.

e) Type promotion does not affect arithmetic of the constant literals appear-
ing in the programs. For example,

long la = 1/3; // the value of la would be zero.

// To receive the exact value of 1/3, do this instead:

long lb = Rational(1, 3);

f) Note that since all the double and long variables would be promoted to
Expr class during the C/C++ preprocessing, certain C/C++ semantics does not
work in level 3 anymore. For example,

double e;

if (e) { ...}

7

The usual semantics of this code says that if the value of e is not zero, then
do Since e is now an Expr object, you should write instead:

double e;

if (e != 0) { ...}

6 Linear Algebra and Geometry Extensions

We plan to provide various basic extensions (COREX for short) for our library. In
the current distribution, we include a basic linear algebra and geometry exten-
sion. The header files for these COREX’s are found in the files linearAlgebra.h,
geometry2d.h and geometry3d.h under the core/inc. To use any of these
COREX’s, just insert the appropriate include statements: e.g.,

#include "linearAlgebra.h"

Note that geometry3d.h and geometry2d.h already include linearAlgebra.h.
The source codes for the extensions are found under the sub-directory core/ext

and some examples under core/progs.
linearAlgebra defines two classes: Matrix for general m × n matrices,

and Vector for general n-dimension vectors. They support basic matrix and
vector operations. Gaussian elimination with pivoting is implemented here.
Geometry3d defines classes such as 3-dimensional Point, Line and Plane based
on the linear algebra API, while geometry2d defines the analogous 2-dimensional
objects.

The makefile at the top level automatically builds two versions of the COREX

libraries, named libcorex level1.a and libcorex level3.a respectively. If
you use the COREX classes in your own program, it is vital to link with the
correct library depending on the accuracy level you choose for your program.
There are some examples under core/progs which use both versions of the
COREX library.

7 Difference from Version 1.1

New root bound. An improved root separation bound based on the paper
of Burnikel et al [8] has been implemented. Users can still build a version of
our library based on the degree-length bound which was used in the previous
version of the library. [See the Makefile in core/src for how to do this.]

Dynamic error bound checking. The current system utilizes the error
bound of the computed approximate value to decide whether or not to re-
evaluate a node in an expression. This is faster than just looking at the precision
bound at that node because the precision bound is only a lower bound on the
computed precision.

8

Progressive and non-progressive evaluation Users can dynamically
toggle a flag to instruct the system to turn off progressive evaluation, just by
calling setIncrementalEvalFlag(false). This feature might conceivably be
useful in comparisons in which there is a strong possibility of an equality out-
come. To turn back progressive evaluation, call the same function with a true

argument.

Expression constructor from string. We can now initialize an expres-
sion object using a string representation. Consider the declaration:

Expr e = 0.023;

Expr f = "0.023";

Note that 0.023 cannot be exactly represented as a BigFloat. For Expr e, the
input value will first be converted into machine double with relative precision of
u (= 2−53, the machine precision). For Expr f , we approximate 0.023 to within
some absolute precision which we now explain. Intuitively, if a decimal number
has k ≥ 1 positions to the right of the decimal point, we want to guarantee an
absolute error of ≤ 10−k. For 0.023, k = 3 so that the error should be at most
10−3. However, since we work with binary representation internally, we choose
an error bound of 2−k·C where C is any constant ≥ log2 10. The default value of
C is 4. In core/src, the file Defs.cc provides the constant defInputPrec whose
value specifies C. Note: if the input is an integer (i.e., k ≤ 0) then of course the
input is read without error. Thus, to to avoid any error in the input numbers,
you need to read in two integers and form a rational value.

Exception handling. We introduced some simple facility for C++ exception
handling. They are defined in CoreExceptions.h under core/inc.

8 Bugs and Future Work

A big integer is limited to MAXIntRep SIZE (= 264−1) shorts. (see src/Integer.hP).
Users can increase this if necessary.

Some future plans include floating point filters, improved big number pack-
ages, real algebraic numbers, more efficient root bounds (including common
subexpression detection), optimized implementation of absolute precision bounds
and optimized level 2.

We would like to hear your comments, suggestions and bug reports at
exact@cs.nyu.edu.

A The CORE Classes

A.1 The Class BigFloat

The class BigFloat is an arbitrary precision floating point number representa-
tion that we built on top of big integers.

9

Fix B = 214. A BigFloat number is given as a triple x = 〈m, err, exp〉 where
m is an integer, err ∈ {0, 1, . . . , B − 1} and exp is an integer. The “number” x
really represent the interval

[(m − err)Bexp, (m + err)Bexp] (1)

We say that a real number X belongs to x if X is contained in this interval. In
our implementation of BigFloat, m is BigInt, err is unsigned long, and exp
is long for efficiency. Here BigInt is the class of big integers from GNU.

We call err the error-bound of x. If err = 0 then we say the BigFloat x
is error-free. When we perform the operations +,−, ∗, / and

√
on BigFloat

numbers, the error-bound is automatically propagated subject in the following
sense: if X belongs to BigFloat x and Y belongs to BigFloat y, and we compute
BigFloat z = x ◦ y (where ◦ ∈ {+,−,×,÷}) then X ◦Y belongs to z. A similar
condition holds for the unary operations. In other words, the error-bound in
the result z must be “large enough.”

There is leeway in the choice of the error-bound in z. Basically, our algo-
rithms try to minimize the error-bound in z subject to efficiency and algorithmic
simplicity. This usually means that the error-bound in z is within a small con-
stant factor of the optimum error-bound (see [9] for full details). But this may be
impossible if both x and y are error-free: in this case, the optimum error-bound
is 0 and yet the result z may not be representable exactly as a BigFloat. This
is the case for the operations of div and

√·. In this case, our algorithm ensures
that the error in z is within some default precision. This is discussed under the
class Real below.

A practical consideration in our design of the class BigFloat is that we insist
that the error-bound err is at most B. To achieve this, we may have to truncate
the number of significant bits in the mantissa m in (1) and modify the exponent
exp appropriately.

A.1.1 Class Constructors for BigFloat

BigFloat();

BigFloat(int);

BigFloat(long);

BigFloat(double);

BigFloat(const BigInt&, unsigned long = 0, long = 0);

BigFloat(const char *);

The default constructor declares an instance with a value zero. The instances
of BigFloat can also be constructed from int, long, float, double, BigInt
and string.

BigFloat B;

BigInt I(5);

BigFloat B(I);

BigFloat bf1("0.023");

BigFloat bf2("1234.32423e-5");

10

A.1.2 Assignment

BigFloat& operator =(const BigFloat&);

// arithmetic and assignment operators
BigFloat& operator +=(const BigFloat&);

BigFloat& operator -=(const BigFloat&);

BigFloat& operator *=(const BigFloat&);

BigFloat& operator /=(const BigFloat&);

A.1.3 Arithmetic Operations

friend BigFloat operator +(const BigFloat&, const BigFloat&);

friend BigFloat operator -(const BigFloat&, const BigFloat&);

friend BigFloat operator *(const BigFloat&, const BigFloat&);

friend BigFloat operator /(const BigFloat&, const BigFloat&);

friend BigFloat sqrt(const BigFloat&);

A.1.4 Comparison

friend int operator ==(const BigFloat&, const BigFloat&);

friend int operator !=(const BigFloat&, const BigFloat&);

friend int operator <(const BigFloat&, const BigFloat&);

friend int operator <=(const BigFloat&, const BigFloat&);

friend int operator >(const BigFloat&, const BigFloat&);

friend int operator >=(const BigFloat&, const BigFloat&);

A.1.5 BigFloat Approximations

void approx(const BigInt& I, const extULong& r, const extLong& a);

void approx(const BigFloat& B, const extULong& r, const extLong& a);

void approx(const Rational& R, const extULong& r, const extLong& a);

Another important source of BigFloat numbers is via the approximation of
BigInt, BigFloat and Rational numbers. We provide the member functions
approx which take such a number, and precision bounds r and a and assigns
to the BigFloat a value that approximates the input number to the specified
precision bounds:

Rational R(1,3);

// declares R to have value 1/3.

BigFloat B;

BigFloat B.approx(R,16,16);

// now B contains an approximation of 1/3 to precision [16,16].
// Note that B is in the absolute regime.

11

A.1.6 BigFloat I/O

ostream& operator <<(ostream&) const;

istream& operator >>(istream&);

friend ostream& operator <<(ostream&, const BigFloat&);

friend istream& operator >>(istream&, BigFloat&);

Stream I/O operators are defined. The numbers read in are represented
exactly if and only if the value can be represented exactly in binary. Otherwise,
it is correct to at least the last digit (for more details, see the discussion in
section 7 in connection to the constant defInputPrec).

When outputing, the error bits in a BigFloat representation are first trun-
cated. Next, the output routine will print out at most defPrtDgt digits using a
rounding to the nearest digit rule. If the absolute value of the exponent is equal
to or larger than defPrtDgt, the output strings use the scientific notation of the
form

m1.m2m3 · · ·mℓ e ± e1e2 · · · em

where the m’s and e’s are in decimal notation and e is a literal character indi-
cating the start of the exponent. Otherwise, the usual decimal representation
would be adopted. Note that we may actually print out less than defPrtDgt

many digits.
This output represents decimal floating point number whose value approx-

imates the value of x correctly to the last digit. That means that the last
significant digit mℓ really lies in the range mℓ ± 1. The number of significant
digits in this output is ℓ, and it is controlled by the global variable defPrtDgt.
The value of defPrtDgt is defaulted to 10, but the user can change this at run
time. The value ℓ is equal to the minimum of defPrtDgt and the number of
significant digits in the internal representation of x.

It is interesting to see the interplay between defPrtDgt and the composite
precision [defAbsPrec, defRelPrec].

Keep in mind that defAbsPrec and defRelPrec refer to binary bits; while
defPrtDgt refers to decimal digits. For instance, if B is the BigFloat in the
preceding example (an approximation of 1/3 to precision [16,16]) then here is

12

the output for B:

setDefaultPrintDigits(4);

// sets the number of output digits to 4.
cout << B;

// prints the value 0.333.
setDefaultPrintDigits(6) ;

cout << B;

// prints the value 0.33333.
setDefaultPrintDigits(20);

cout << B;

// prints the value 0.3333333320915699005.
// the precision is not high enough to get all printed digits right.
setDefaultPrecision(67, CORE INFTY);

// set adequate precision for 20 correct significant decimal digits.
cout << B;

// prints the value 0.3333333333333333333

Our output algorithm may not determine the optimal number of significance
that B has. It is programmers’ responsibility to set the precisions high enough
to have all printed digits correct.

A.1.7 Miscellaneous

Get sign of a BigFloat
int sign() const;

friend int sign(const BigFloat&);

Absolute value
BigFloat abs() const;

friend BigFloat abs(const BigFloat&);

A.2 The Class Real

The class Real is a “heterogeneous” number system that incorporates subclasses
of the real number system. We currently support the following six subclasses:

int, long, double, BigInt, Rational, and BigFloat.
Here int, long and double are standard C++ types, BigInt and Rational are
classes of arbitrary long numbers (from GNU), BigFloat is our arbitrary precision
floating point number representation.

There is a natural type coercion among these types as one would expect. It
is as follows:

int ≺ long ≺ double ≺ BigFloat ≺ Rational ,
int ≺ long ≺ BigInt ≺ Rational .

13

To use the class Real, a program simply includes the file Real.h.

#include "Real.h"

A.2.1 Class Constructors for Real

Real();
Real(int);
Real(long);
Real(double);
Real(BigInt);
Real(BigFloat);
Real(Rational);
Real(const Real&);

The default constructor declares an instance with an default RealInt value
zero. Also, being consistent with the C++ language, an instance can be initial-
ized to be any subtype of Real: int, long, double, BigInt, Rational, and
BigFloat.

A.2.2 Assignment

inline Real& operator =(const Real&);

// arithmetic and assignment operators
inline Real& operator +=(const Real&);

inline Real& operator -=(const Real&);

inline Real& operator *=(const Real&);

inline Real& operator /=(const Real&);

// post- and pre- increment and decrement operators
inline Real operator ++();

inline Real operator ++(int);

inline Real operator --();

inline Real operator --(int);

14

Users can assign values of type int, long, double, BigInt, Rational, and
BigFloat to any instance of Real.

Real X;

X = 2;

// assigns the machine int 2 to X.

X = BigInt(4294967295);

// assigns the BigInt 4294967295 to X.

X = Rational(1, 3);

// assigns the Rational 1/3 to X.

A.2.3 Arithmetic Operations

// unary minus

inline virtual Real operator -() const;

// addition

inline virtual Real operator +(const Real&) const;

// subtraction

inline virtual Real operator -(const Real&) const;

// multiplication

inline virtual Real operator *(const Real&) const;

// division

inline virtual Real operator /(const Real&) const;

// square root

friend Real sqrt(const Real&);

The class Real supports binary operators +, -, *, / and the unary oper-
ators -, and sqrt() with standard operator precedence.

The rule for the binary operators bin op ∈ {+,−,×} is as follows: let typX

and typY be the underlying types of Real X and Y, respectively. Then the type
of X bin op Y would be MGU = max{typ1, typ2} where the order ≺ is defined
as in the type coercion in the Section A.2. Note that overflow or underflow may
occur.

Real X, Y, Z;

X = 1; // X is of type RealInt

Y = 4294967295; // 232 − 1, RealInt too!

Z = X + Y;

cout << "Z = " << Z << endl;

// prints: Z = -2147483648
// Overflow in the int (RealInt) addition.!!

15

Square Root. The result of sqrt() is always a BigFloat. There are two
cases: in case the original error-bound is err > 0, then the result of the sqrt()

operation has error-bound at most 16
√

err [9]. If err = 0, then the absolute
error of the result is at most 2−a where a=defAbsPrec.

Real X = 2.0;

cout << sqrt(X) << endl;

// prints: 1.414213562

Division. The type typZ of Z=X / Y is either Rational or BigFloat. If both
typX and typY are not float, double or BigFloat, then typZ is Rational;
otherwise, it is BigFloat.

If the output type is Rational, the output is exact. For output type of
BigFloat, the error bound in Z is determined as follows. Inputs of type float

or doubleare considered to be error-free, so only BigFloat can have positive
error. If the error-bounds in X or Y are positive, then the relative error in Z is at
most 12max{relerrX , relerrY } where relerrX , relerrY are the relative errors in
X and Y, respectively. If both X and Y are error-free then the relative error in Z

is at most defRelPrec.

A.2.4 Comparison

inline virtual int operator ==(const Real&) const;

inline int operator !=(const Real&) const;

inline virtual int operator <(const Real&) const;

inline int operator <=(const Real&) const;

inline int operator >(const Real&) const;

inline int operator >=(const Real&) const;

A.2.5 Real Output

virtual ostream& operator <<(ostream&) const;

friend ostream& operator <<(ostream&, const Real&);

16

To output the value of an instance of Real, we overload the standard C++

output stream operator <<. Output values are in the decimal representation.
There are two kinds of decimal outputs: for int, long, BigInt and Rational,
this is the exact value of Real. But for double and BigFloat we use the
decimal floating point notation described under BigFloat output. For the latter
output format, the number of output precision is controlled by the global variable
defPrtDgt described under Section A.1.6.

The operator << simply outputs the current value of the instance.

Rational R(1, 3);

BigFloat B(R);

BigInt I = 2147483647;

setDefaultPrintDigits(8); // set defPrtDgt to be 8

Real Q = R;

Real X = B;

Real Z = I;

cout << Q << endl;

// prints: 1/3

cout << X << endl;

// prints: 0.3333333

cout << Z << endl;

// prints: 2147483647

A.2.6 Approximation

inline virtual Real approx(const extULong& r, const extLong& a) const;

Force the evaluation of the approximate value to the composite precision
[r, a]. The returned value is always a RealBigFloat value. Actually it is built
upon the BigFloat functions described in Section A.1.5.

A.2.7 Miscellaneous

// get the sign of a Real value
inline virtual int sgn() const;

friend int sgn(const Real&);

A.3 The Class Expr

To use the class Expr, a program simply includes the file Expr.h. (The file
Real.h is automatically included then.)

#include "Expr.h"

17

As will be seen below, we can use an Expr instance almost exactly as we
would use a Real instance. Indeed, for most users, the ideal way to use our
package is to have the user access only the class Expr indirectly by setting the
accuracy level to 3 so that double andlong will be prompted to Expr.

An instance of the class Expr E is formally a triple

E = (T, P,A)

where T is an expression tree, P a composite precision, and A is some real
number or is ↑ (undefined value). The internal nodes of T are labeled with one
of those operators

+,−,×,÷,
√
·, (2)

and the leaves of T are labeled by Real values or is ↑. P = [r, a] is a pair of
integers or infinity, with r non-negative. If all the leaves of T are labeled by
Real values, then there is a real number V that is the value of the expression
T ; otherwise, if at least one leaf of T is labeled by ↑, then V =↑. Finally, the
value A satisfies the relation

A ≃ V [r, a].

This is interpreted to mean either V = A =↑ or A approximates V to precision
P .

In implementation, the value A is always a BigFloat. The nodes of expres-
sion trees are instances of the class ExpRep. More precisely, each instance of Expr
has a member rep that points to an instance of ExpRep. Each instance of ExpRep
is allocated on the heap (so it goes away after a function call) and has a type,
which is either one of the operations in (2) or type “constant”. Depending on
its type, each instance of ExpRep has zero, one or two pointers to other ExpRep.
For instance, a constant ExpRep, a

√·-ExpRep and a +-ExpRep has zero pointers,
one and two pointers, respectively. The collection of all ExpReps together with
their pointers constitute a directed acyclic graph (DAG). Every node N of this
DAG defines an expression tree E(N) in the natural way: the expression tree
is obtained by taking the sub-DAG DN comprising all nodes reachable from N ,
and for any node N ′ in DN whose in-degree indeg(N ′) is > 1, we duplicate the
expression tree E(N ′) for indeg(N ′) times. Note that E(N ′) is, recursively, the
expression tree defined by N ′.

To understand the semantics of assignment for expressions, it is useful to
classify all instances of Expr as either parameters or variables. A parameter
expression is, by definition, an instance of Expr whose rep has no pointers (i.e.,
is a sink in the DAG of ExpReps). A variable expression is, by definition, a
non-parameter expression. Hence, parameters are used to hold Real values and
a variable are used to represent an expression. In particular, all operator nodes
must be referenced via variables.

18

A.3.1 Class Constructors for Expr

Expr();

Expr(int);

Expr(long int);

Expr(unsigned int);

Expr(unsigned long int);

Expr(float);

Expr(double);

Expr(const BigInt &);

Expr(const BigFloat &);

Expr(const Rational &);

Expr(const char *s);

Expr(const Real &);

Expr(const Expr &); // copy constructor

The default constructor of Expr declares a parameter which contains an
undefined Real value.

Users can declare a parameter with some initial value. When a constructor
is called with some Real value, then a parameter which contains the specified
Real value is declared.

A variable is declared if a constructor is called with an algebraic expression
which involves operators +, -, *, / or sqrt(), instances of Expr (can be either
parameters or variables), and Real values. However, the expressions must be
dags (i.e., cycles are not allowed).

A.3.2 Assignments

Expr& operator=(const Expr&);

Expr& operator+=(const Expr&);

Expr& operator-=(const Expr&);

Expr& operator*=(const Expr&);

Expr& operator/=(const Expr&);

Expr& operator++();

Expr operator++(int);

Expr& operator--();

Expr operator--(int);

19

A.3.3 Arithmetic Operations

// unary minus
Expr operator-() const;

friend inline Expr operator+(const Expr&, const Expr&); //addition

friend inline Expr operator-(const Expr&, const Expr&); //substraction

friend inline Expr operator*(const Expr&, const Expr&); //multiplication

friend inline Expr operator/(const Expr&, const Expr&); //division

friend Expr sqrt(const Expr&); // square root

friend Expr fabs(const Expr&); // absolute value

friend Expr pow(const Expr&, unsigned long); // power

Partly for the convenience, integer powers can be constructed by applying
the function pow():

Expr e = 3 * pow(B, 5);

// An alternative for ”Expr e = 3 * B*B*B*B*B”.

A.3.4 Comparisons

friend int operator==(const Expr&, const Expr&);

friend int operator!=(const Expr&, const Expr&);

friend int operator< (const Expr&, const Expr&);

friend int operator<=(const Expr&, const Expr&);

friend int operator> (const Expr&, const Expr&);

friend int operator>=(const Expr&, const Expr&);

The standard C++ comparison operators <, >, <=, >=, ==, and != perform
“exact comparison”. When A < B is tested, A and B are evaluated to sufficient
precision so that the decision is made correctly. Because of root bounds, such
comparisons always terminate. The returned value is a non-negative integer,
where 0 means “false” while non-0 means “true”.

An example,

Expr e[2];

Expr f[2];

e[0] = 10.0; e[1] = 11.0;

f[0] = 5.0; f[1] = 18.0;

Expr ee = sqrt(e[0])+sqrt(e[1]);

Expr ff = sqrt(f[0])+sqrt(f[1]);

if (ee>ff) cout << "sr(10)+sr(11) > sr(5)+sr(18)" << endl;

else cout << "sr(10)+sr(11) <= sr(5)+sr(18)" << endl;

// prints: sr(10) + sr(11) > sr(5) + sr(18)

20

There is another interesting example in Section 2.4 illustrating this feature.

A.3.5 I/O

friend ostream& operator<<(ostream&, const Expr&);

friend istream& operator>>(istream&, Expr &);

The standard C++ operator << outputs the stored approximate value (see the
Section A.2.5 on Real outputs). If there is no approximate value available, it will
force an evaluation. It prints as many digits of significance as is currently known
as correct (to certain precisions specified), provided that it does not exceed
defPrtDgt decimal digits. Otherwise, the extra digits would be truncated. See
Section A.1.6 for examples.

A.3.6 Approximation

Real approx(const extULong& = defRelPrec, const extLong& = defAbsPrec);

This function explicitly forces one evaluation to the specified precision bounds.
The expression would not be evaluated until the evaluation is requested explic-
itly (e.g. by calling approx()) or implicitly (e.g. by some I/O operations).

Users can force an instance of Expr to recompute its approximate value by
applying the member function approx(). A.approx(r, a) evaluates A and get
its approximate value to precision [r, a]. If no argument is passed, then A

is evaluated to the default global precision [defRelPrec, defAbsPrec]. If the
required precision is less than current, the function just returns the current
approximate value for efficiency. The stricter of the old and new precisions is
remembered, and the corresponding approximate value stored.

Expr e;

Real X;

unsigned r; int a;

X = e.approx(r, a);

// e is evaluated to precision at least [r, a]

// and this value is given to X;

A.3.7 Conversion Functions

double doubleValue() const; // convert to a machine built-in double
float floatValue() const; // convert to a machine built-in float
long longValue() const; // convert to a machine built-in long
int intValue() const; // convert to a machine built-in int

21

Please be very cautious in using these operators. Overflow or underflow errors
might happen silently during the conversion, while users may not be aware of
them.

We do not recommend extensive use of these APIs. They were provided
only for easier conversion of existing C/C++ programs. More specifically, these
operator can be applied on the printf() arguments. See Section 5 for details.

A.3.8 Memory Management

static void* operator new(size t);

static void operator delete(void *p, size t);

To improve performance, we implemented our own customized new and
delete operators for the Expr and other CORE classes.

A.4 Another Example

The following is a simple program from O’Rourke’s book to “compute” the
Delaunay triangulation for n points. The program basically tests all triples of
points to see if their interior is empty of other points, and outputs the number
of “empty” triples.

22

In our adaptation of O’Rourke’s program below, we generate the input points
to be (exactly) co-circular. Hence any level 1 program is bound to fail to compute
the correct answer. At level 3 accuracy, our program detects all

(n
3

)
triples while

at level 1 accuracy, we expect to miss many empty triples. For example, when
n = 5, level 3 gives all the 10 (=

(
5

3

)
) triangles, while level 1 produces only 3.

#define Level 3

#include <stdio.h>

#include <CORE.h>

main() {

double x[1000],y[1000],z[1000];/* input points x y,z=x^2+y^2 */

int n; /* number of input points */

double xn, yn, zn; /* outward vector normal to (i,j,k) */

int flag; /* t if m above of (i,j,k) */

int F = 0; /* # of lower faces */

// define the rotation angle to generate points

double sintheta = 5; sintheta /= 13;

double costheta = 12; costheta /= 13;

printf("Please input the number of points on the circle: ");

scanf("%d", &n);

x[0] = 65; y[0] = 0; z[0] = x[0] * x[0] + y[0] * y[0];

for (int i = 1; i < n; i++) {

x[i] = x[i-1]*costheta - y[i-1]*sintheta; // compute x-coordinate

y[i] = x[i-1]*sintheta + y[i-1]*costheta; // compute y-coordinate

z[i] = x[i] * x[i] + y[i] * y[i]; // compute z-coordinate

}

for (int i = 0; i < n - 2; i++)

for (int j = i + 1; j < n; j++)

for (int k = i + 1; k < n; k++)

if (j != k) {

// For each triple (i,j,k), compute normal to triangle (i,j,k).

xn = (y[j]-y[i])*(z[k]-z[i]) - (y[k]-y[i])*(z[j]-z[i]);

yn = (x[k]-x[i])*(z[j]-z[i]) - (x[j]-x[i])*(z[k]-z[i]);

zn = (x[j]-x[i])*(y[k]-y[i]) - (x[k]-x[i])*(y[j]-y[i]);

if (flag = (zn < 0)) // Only examine faces on bottom of paraboloid

for (m = 0; m < n; m++)

/* For each other point m, Check if m above (i,j,k). */

flag = flag &&

((x[m]-x[i])*xn + (y[m]-y[i])*yn + (z[m]-z[i])*zn <= 0);

if (flag) {

printf("lower face indices: %d, %d, %d\n", i, j, k);

F++;

}

}

printf("A total of %d lower faces found.\n", F);

}

23

References

[1] C. Burnikel. Exact Computation of Voronoi Diagrams and Line Segment
Intersections. Ph.D thesis, Universität des Saarlandes, March 1996.

[2] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Exact geometric
computation made easy. In Proc. 15th ACM Symp. Comp. Geom., pages
341–450, 1999.

[3] C. Burnikel, J. Könnemann, K. Mehlhorn, S. Näher, S. Schirra, and
C. Uhrig. Exact geometric computation in LEDA. In Proc. 11th ACM
Symp. Computational Geom., pages C18–C19, 1995.

[4] S. J. Fortune and C. J. van Wyk. Efficient exact arithmetic for computa-
tional geometry. In Proc. 9th ACM Symp. on Computational Geom., pages
163–172, 1993.

[5] S. J. Fortune and C. J. van Wyk. Static analysis yields efficient exact integer
arithmetic for computational geometry. ACM Transactions on Graphics,
15(3):223–248, 1996.

[6] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A core library for
robust numeric and geometric computation. In Proc. 15th ACM Symp. on
Computational Geometry, pages 351–359, June 1999. Miami Beach, Florida.

[7] M. Karasick, D. Lieber, and L. R. Nackman. Efficient Delaunay triangula-
tion using rational arithmetic. ACM Trans. on Graphics, 10:71–91, 1991.

[8] K. Mehlhron, C. Burnikel, R. Fleischer, and S. Schirra. A strong and easily
computable separation bound for arithmetic expressions involving square
roots. Proc. 8th ACM-SIAM Symp. on Discrete Algorithms (SODA97),
pages 702–709, 1997. New Orleans, Lousiana.

[9] K. Ouchi. Real/Expr: Implementation of an exact computation package.
Master’s thesis, New York University, Department of Computer Science,
Courant Institute, January 1997.

[10] J. R. Shewchuk. Robust adaptive floating-point geometric predicates. In
Proc. 12th ACM Symp. on Computational Geom., pages 141–150. Associa-
tion for Computing Machinery, May 1996.

[11] C. Yap. A new number core for robust numerical and geomet-
ric libraries. In 3rd CGC Workshop on Geometric Computing,
1998. Invited Talk. Brown University, Oct 11–12, 1998. Abstracts,
http://www.cs.brown.edu/cgc/cgc98/home.html.

[12] C. K. Yap. Towards exact geometric computation. Computational Geome-
try: Theory and Applications, 7:3–23, 1997.

[13] C. K. Yap and T. Dubé. The exact computation paradigm. In D.-Z. Du
and F. K. Hwang, editors, Computing in Euclidean Geometry, volume 1
of Lecture Notes Series on Computing, pages 452–492. World Scientific,
Singapore, 2nd edition, 1995.

24

