
Surface Representation of Particle Based Fluids

by

Jihun Yu

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September 2011

Professor Chee K. Yap

To my mother, Insuk Lee, who made me what I am today.

iii

Acknowledgements

I would like to thank my mother, Insuk, and my wife, Mijung, for their constant

belief and support, and for creating an environment that encouraged learning and

achievement.

I would like to thank to my collaborators, Greg Turk and Chris Wojtan, without

whose help this dissertation would not exist.

I am also grateful for the members of the Geometry group at Georgia Tech,

especially Karthik Raveendran, Jie Tan, Yuting Ye and Sumit Jain for their will-

ingness to always help me during the intense conference deadline periods.

I would like to thank my good friends, Joonho Baek and Sehoon Ha. They

always welcomed and accommodated me during my visit to Atlanta.

I wish to particularly thank Greg Turk, who invited me to the GVU group of

Georgia Tech as a visiting member. I feel truly fortunate to collaborate with Greg

upon my exploration to the world of computer animation.

Most of all, I would like to thank my advisor, Professor Chee Yap for his

remarkable support and patience. Chee always allowed me to pursue my own

interest, and guided me with his unique and fresh perspective. The last six years

I spent as his apprentice was the most wonderful and fruitful period in my life.

iv

Abstract

In this thesis, we focus on surface representations for particle-based fluid sim-

ulators such as Smoothed Particle Hydrodynamics (SPH). We first present a new

surface reconstruction algorithm that formulates the implicit function as a sum of

anisotropic smoothing kernels. The direction of anisotropy at a particle is deter-

mined by performing Weighted Principal Component Analysis (WPCA) over the

neighboring particles. In addition, we perform a smoothing step that re-positions

the centers of these smoothing kernels. Since these anisotropic smoothing kernels

capture the local particle distributions more accurately, our method has advan-

tages over existing methods in representing smooth surfaces, thin streams and

sharp features of fluids. This method is fast, easy to implement, and the results

demonstrate a significant improvement in the quality of reconstructed surfaces as

compared to existing methods. Next, we introduce the idea of using an explicit

triangle mesh to track the air/liquid interface in a SPH simulator. Once an initial

surface mesh is created, this mesh is carried forward in time using nearby particle

velocities to advect the mesh vertices. The mesh connectivity remains mostly un-

changed across time-steps; it is only modified locally for topology change events or

for the improvement of triangle quality. In order to ensure that the surface mesh

does not diverge from the underlying particle simulation, we periodically project

the mesh surface onto an implicit surface defined by the physics simulation. The

mesh surface presents several advantages over previous SPH surface tracking tech-

niques: Our method for surface tension calculations clearly outperforms the state

of the art in SPH surface tension for computer graphics. Our method for tracking

detailed surface information (like colors) is less susceptible to numerical diffusion

than competing techniques. Finally, a temporally-coherent surface mesh allows us

v

to simulate high-resolution surface wave dynamics without being limited by the

particle resolution of the SPH simulation.

vi

Contents

Dedication . iii

Acknowledgements . iv

Abstract . v

List of Figures . x

List of Tables . xiii

List of Appendices . xiv

1 Introduction 1

1.1 Surface Reconstruction for Particle Based Fluids Using Anisotropic

Kernels . 3

1.2 Surface Tracking for Particle Based Fluids With an Explicit Surface

Mesh . 4

1.3 Contributions . 7

2 Previous Work 9

2.1 Surface Extraction . 9

2.2 Surface Tracking . 14

2.3 Surface Tension Models . 16

2.4 Small Scale Surface Dynamics . 17

vii

3 SPH Fluid Simulator 18

3.1 Eulerian and Lagrangian Viewpoint of the Material Derivative . . . 18

3.2 Formulation and Algorithm of Smoothed Particle Hydrodynamics . 22

4 Surface Extraction of Particle Based Fluids Using Anisotropic

Kernels 28

4.1 Implicit Surface Representation . 28

4.2 Determining the Anisotropy . 31

4.3 Alleviating Attraction Artifacts . 35

4.4 Implementation Overview . 37

4.5 Optimization of Performance . 39

4.6 Results . 40

4.7 Comparison . 45

4.8 Limitations . 49

4.9 Conclusion and Future Work . 49

5 Explicit Mesh Surface for Particle Based Fluids 51

5.1 Mesh Advection and Topology Changes 51

5.2 Surface Property Advection . 58

5.3 Surface Tension Models . 59

5.4 Small Scale Surface Dynamics . 61

5.5 Implementation Overview . 64

5.6 Results . 65

5.7 Limitations . 73

5.8 Conclusion and Future Work . 73

Appendices 75

viii

Bibliography 83

ix

List of Figures

1.1 Interactive double dam break (Image courtesy of Simon Green).

Left: Visualization of anisotropic particles. Right: Extracted Sur-

face. 4

1.2 Left image is original water crown. Right is water crown that has

been augmented with capillary waves on the surface mesh as a post-

process. 6

2.1 Comparison between different surface reconstruction approaches on

the Double dam break animation. 12

3.1 Illustration of the Lagrangian form of the material derivative. Par-

ticle p flows with the background velocity field (diagonal arrows)

and a reference frame moves along with the particle. The change of

the quantity φ is represented by the change of color of the particle.

As we sit on the particle, only the change on particle p is observed. 20

x

3.2 Illustration of the Eulerian form of the material derivative. A refer-

ence frame is fixed in space while particles flow with the background

velocity field. In contrast to the Lagrangian form, both the advec-

tion and the material derivative influence our observation to the

change of the quantity. 21

4.1 A comparison between the surface reconstruction using isotropic

kernels (a) and our anisotropic kernels (b). Top row: the surface

of SPH particles from a single dam break simulation. Bottom row:

Illustration of particles at the top right corner. The shape of a parti-

cle in (b) represents the anisotropy of the corresponding smoothing

kernel. Note that our approach constructs a flat surface with sharp

edges and corners from properly stretched particles. 32

4.2 Merging spheres. Top: Not accounting for components. Bottom:

Correction using connected components. 36

4.3 Water splash. Top: Anisotropic kernels, Middle: Opaque surface,

Bottom: Transparent surface . 42

4.4 Melted chocolate falling on a Bunny. 43

4.5 Falling armadillo and bunny. 44

4.6 Double dam break simulation. 46

4.7 Interactive Double Dam Break . 47

5.1 Replication of the ring edges. Left:A red colored edge is flagged for

the collapse operation. Right: Instead of collapsing the edge, the

mesh is separated by replicating the ring edges into the blue colored

triangles. 57

xi

5.2 A dumbbell in zero gravity exhibits pinch-off due to surface tension

effects (Rayleigh-Plateau instability). Later in this animation the

separate components re-join each other. 66

5.3 Three viscous figures with surface colors are dropped on a bar. . . . 68

5.4 Comparison between different surface color tracking approaches on

the viscous figures animation. 69

5.5 Two spheres in zero gravity that merge and exhibit surface waves. . 70

5.6 A cubic water drop that oscillates and settles into a sphere. 70

5.7 A drop falling into a shallow pool creates a water crown. 72

xii

List of Tables

4.1 Average per frame timings (in minutes) for different surface recon-

struction methods on the falling figures example of Figure 4.5. . . . 43

4.2 Average per frame timings (in minutes) for four surface reconstruc-

tion methods on the double dam break simulation. 48

5.1 Mesh resolution relative to the average particle spacing and average

per frame timings (in seconds) for our simulation examples. 71

xiii

List of Appendices

A Analysis on Volume Shrinkage 75

B Source Code 77

xiv

Chapter 1

Introduction

It is increasingly popular to create animated liquids using physics-based sim-

ulation methods for feature film effects and interactive applications. There exist

two broad categories for simulation methods based on their different approaches

to spatial discretization: mesh-based (Eulerian) methods and particle-based (La-

grangian) methods. In mesh-based methods, the simulation domain is discretized

into mesh grids and the values of physical properties on grid points are deter-

mined by solving the governing equations. In particle-based methods, on the other

hand, the fluid volume is discretized into sampled particles that carry physical

properties and that are advected through space by the governing equations. In re-

cent years, particle-based methods have become a competitive alternative to mesh-

based methods due to various advantages such as their inherent mass conservation,

the flexibility of simulation in unbounded domains, capability of capturing small

scale features, and ease of implementation. Several particle-based methods such

as Smoothed Particle Hydrodynamics (SPH), Particle-in-cell (PIC), and Fluid-

implicit-particle (FLIP) are popularly employed in computer animation field for

1

the simulation of various fluid phenomena.

Although particle-based methods have been used to simulate various fluid phe-

nomena, extracting high quality fluid surfaces from particle samples is not straight-

forward. In Eulerian methods, a surface is well defined as an iso-surface on the

grid structure and is easily extracted using methods like Marching Cubes or ray-

tracing. In contrast, reconstructing a surface from the particle samples is an entire

research area and the shape of the surface is not uniquely defined by the parti-

cle samples. Classical surface reconstruction methods have difficulty in producing

smooth surfaces due to irregularly placed particles. Few researchers have success-

fully addressed this issue of reconstructing smooth fluid surfaces from particles.

The aim of this thesis is to explore the potential gains in surface quality and

visual fidelity of particle-based fluids when we introduce a new surface represen-

tation. This dissertation has two main research contributions: the smooth surface

reconstruction of particle-based fluids presented in Chapter 4, and the surface

tracking of particle-based fluids using the explicit surface mesh presented in Chap-

ter 5. In particular, we define a novel implicit surface from particle samples using

anisotropic kernels. Embedding anisotropic information, we have seen vast gains in

surface smoothness and visible details (Chapter 4.6). Furthermore, we introduce

an explicit surface tracking method for particle-based fluids. Tracking surfaces

using an explicit mesh provides benefits by augmenting the surfaces with visual

details such as colors, surface tension and small scale capillary waves (Chapter 5.6).

Chapter 2 will cover previous work in fluids and the background material nec-

essary to understand research about the fluid surfaces. Chapter 3 will cover the

concept of the material derivative, and it will cover the formulation and the im-

plementation of SPH simulator for computer graphics. All our running examples

2

are produced based on SPH simulations.

1.1 Surface Reconstruction for Particle Based Flu-

ids Using Anisotropic Kernels

In Chapter 4, we present a novel surface extraction method that significantly

improves the quality of the reconstructed surfaces by using ellipsoidal smoothing

kernels. The new method can create smooth surfaces and thin streams while

preserving sharp features such as edges and corners (Figure 1.1). The key to

the method is to use a stretched, anisotropic smoothing kernel to represent each

particle in the simulation. The orientation and scale of the anisotropy is determined

by capturing each particle’s neighborhood spatial distribution. The neighborhood

distribution is obtained in the form of a covariance tensor that is given through

Principle Component Analysis (PCA). Then these principal components are used

to orient and scale the anisotropic kernel. The centers of these kernels are adjusted

using a variant of Laplacian smoothing to counteract the irregular placement of

particles. A new density field is then constructed by the weighted mass contribution

from the smoothing kernels. Finally, the renderable surface is reconstructed from

the iso-surface of the given density field.

The method that we present allows us to extract smooth surface meshes from a

newly defined implicit surface. Other published methods for particle-based fluids

in the graphics literature simply cannot represent smooth surfaces [Blinn, 1982],

or they require to apply an additional smoothing step on the implicit surface or

the extracted mesh [Zhu and Bridson, 2005; Williams, 2008; Sin et al., 2009].

Our new method has been well received in the graphics industry. Numerous

3

Figure 1.1: Interactive double dam break (Image courtesy of Simon Green). Left:
Visualization of anisotropic particles. Right: Extracted Surface.

production studios have asked us to share our implementation code and our method

is also available in a commercial software package FROST (c©2011 ThinkSoft).

We expect our method to be added into many production toolboxes where it will

complement other surface extraction methods that are currently available.

1.2 Surface Tracking for Particle Based Fluids

With an Explicit Surface Mesh

In Chapter 5, we introduce a new explicit method for tracking the surface of a

particle-based fluid simulation. “Explicit” means that we maintain surface meshes

that are advected by the velocity flows, while implicit methods extract surface

meshes from the iso-surface of an implicit function. Our method builds the idea of

reconstructing fluid surfaces using anisotropic kernels. All the published methods

for extracting surfaces from particle-based fluids, including our anisotropic kernel

method, provide implicit representations for the fluid surfaces. However, they

do not give us any flow information from one surface to the same surface at a

4

later time instance. In the computer animation field, surface representation is

considered more important than the computational accuracy because the emphasis

is primarily on visual fidelity. In this context, surface flow (surface tracking) is a

very attractive concept because it allows us to track various quantities such as

colors, textures or bump maps on the time evolving surface. Also, embedding a

high resolution surface simulation in the lower resolution fluid simulation leads

to detailed surface animation like capillary waves (Figure 1.2). By concentrating

computation resources only on the 2D surfaces rather than on the entire 3D volume,

it becomes possible to augment realistic visual features on the surfaces without

imposing a significant computational overhead. In recent years, several surface

tracking methods have been introduced into the field. In particular, the explicit

mesh tracking methods equipped with topology changes have been successfully

applied to the Eulerian fluid simulation [Wojtan and Turk, 2008; Müller, 2009;

Wojtan et al., 2009; Brochu et al., 2010; Thürey et al., 2010] and their results

demonstrate that the explicit mesh well preserves thin and sharp features and

surface wave dynamics can be separately simulated on the mesh.

Our surface tracking approach is the first mesh tracker for a particle-based

fluid. We begin by constructing a surface mesh for the fluid at the first time step

in the simulation. This initial mesh is an isosurface given by our anisotropic kernel

surface representation. For subsequent simulation time steps, the old mesh vertices

are advected using the velocity of the fluid particles. Then the new vertex locations

are projected back onto the implicit surface in order to alleviate numerical drift,

ensuring that accumulating numerical errors do not cause the surface to diverge

from the simulation particles. Where the mesh is stretched or compressed, we

perform edge splits or collapses in order to improve the triangle shapes, and when

5

Figure 1.2: Left image is original water crown. Right is water crown that has been
augmented with capillary waves on the surface mesh as a post-process.

the fluid surface splits or merges we use a robust technique for changing the mesh

topology. Here we follow ideas from [Wojtan et al., 2009].

There are several advantages to carrying a mesh between time steps instead

of reconstructing a new mesh for each frame. Our method allows us to calculate

surface tension forces in a stable manner from the mesh itself, and propagate these

forces back to the particles. We can carry surface properties such as color along

with the mesh in a manner that retains a high level of detail. A final advantage

that we demonstrate is to simulate high-resolution surface wave dynamics on the

mesh using vertical displacements that are carried between time steps.

Resolution mismatch between the surface mesh and the physics simulation often

results in surface artifacts such as surface kinks and small voids. In particular, the

low resolution physics simulation does not capture high resolution surface features

because it cannot see anything below its resolution unit. Other published methods

resolve this issue by re-sampling the simulation domain. Then the surface mesh

influences back to the physics simulation. In contrast, we project the explicit mesh

6

onto the implicit surface in order to prevent the mesh drifting away from particle

samples. By performing projection, our approach misses out on a major advantage

of the explicit mesh tracking that it preserves thin and sharp features. However,

the projection step enables us to apply the surface tracking as a post-process for

the already simulated animation sequences because our tracking approach does not

influence the simulation.

1.3 Contributions

The proposed surface tracking approaches discussed in this dissertation pro-

vides several advantages over previous approaches in the computer animation field.

The contributions of our thesis are as follows:

• Smooth surface reconstruction: We present a novel surface reconstruc-

tion method for particle-based fluids by repositioning particle locations and

deforming isotropic kernels to anisotropic kernels. Our approach significantly

reduces surface noise and produces unprecedented high quality fluid surfaces

compared to previous approaches.

• Explicit mesh tracking: We introduce the first mesh-based surface tracker

for a particle-based simulation. The explicit mesh is advected by the back-

ground particle simulation and projected onto the iso-surface defined by the

particle samples to prevent the mesh diverging from the particle locations.

Our surface tracker does not influence the physical simulation and can be

easily applied to an already-compute simulation as a post-process.

• Surface property tracking: Our mesh-based surface tracker allows for

7

accurate tracking of surface data like colors and textures. Our method is

virtually free of common artifacts such as numerical diffusion or irregular

sampling by carrying surface data on the mesh vertices along the simulation.

• Accurate surface tension: We present a new surface tension model that

clearly outperforms the state of the art in SPH for computer graphics. The

explicit mesh representation allows us to directly apply surface tension forces

by exploiting the cotangent based mean curvature computation on the mesh.

• Post-processed capillary waves: We introduce a new method for adding

subtle ripple details to an animation that has already been simulated — this

is first technique that adds surface tension dynamics as a post-process to

an already-computed simulation. Our non-linear capillary waves model pro-

duces small scale waves at varying speeds.

8

Chapter 2

Previous Work

2.1 Surface Extraction

Because the representation of a fluid surface is crucial for realistic animation,

methods for reconstructing and tracking fluid surfaces have been a topic of re-

search ever since fluid simulation was first introduced in computer graphics. In

mesh-based frameworks, numerous methods for surface representation have been

been proposed. The levelset method [Osher and Sethian, 1988] has been success-

fully applied to track the free surface of a fluid in an Eulerian simulation scheme.

They evolve an implicit signed distance field by advection and sample the field on

the Eulerian grid. To overcome volume loss and the blurring of features of the

basic levelset method, Enright et al. [2002; 2005] introduced the particle levelset

method that advects explicit particles along with an implicit signed distance func-

tion. Lossaso et al. [2004] proposed an adaptive simulation method that captures

fine surface details by using an octree data structure to increase the simulation res-

olution. Bargteil et al. [2005] introduced the semi-Lagrangian contouring method.

9

They create a new mesh by advecting a signed distance field to maintain a more

accurate surface representation, and their method can track free surfaces of liquid

along with surface properties such as colors and texture maps.

In the particle-based framework, Blinn [1982] introduced the classic blobby

spheres approach. In this method, an iso-surface S is extracted from a scalar field

φ(x):

S = {x|φ(x) = α}, (2.1)

φ(x) =
∑
i

wi(x), (2.2)

that is constructed from a sum of a radial basis kernel P that is placed at each

particle center xi:

wi(x) =
∑
i

P (‖x− xi‖). (2.3)

Typical value of α is 0 or a small positive value in order to obtain some smoothing

effect.

One of the drawbacks of Blinn’s original formulation is that high or low densities

of particles will cause bumps or indentations on the surface (top left of Figure 2.1).

Noting this problem, Zhu and Bridson [2005] modified this basic algorithm to

compensate for local particle density variations. They calculate a scalar field from

the particle positions that is much like a radial basis function that is centered at

a particle. For arbitrary location x, they calculate a scalar value from a basis

function whose center is a weighted sum of nearby particle centers xi’s, and whose

radius is a weighted sum of particle radii ri’s:

φ(x) = ‖x− x̄‖ − d̄, (2.4)

10

x̄ =

∑
iwi(x)xi∑
wi(x)

, (2.5)

d̄ =

∑
iwi(x)ri∑
wi(ri)

. (2.6)

They then sample this scalar distance function on a grid, perform a smoothing

pass over the grid, and then extract an isosurface mesh from the grid. Their results

are considerably smoother than the classic blobby spheres surface (top right of

Figure 2.1). Adams et al. [2007] further improved upon the method of Zhu and

Bridson by tracking the particle-to-surface distances di’s over time and using them

instead of the static particle radii:

d̄ =

∑
iwi(x)di∑
wi(x)

. (2.7)

Specifically, they retain a sampled version of a signed distance field at each time

step, and they use this to adjust per-particle distances to the surface. They perform

particle redistancing by propagating the distance information from surface particles

to interior particles using a fast marching scheme. The final surface is from the

Zhu and Bridson scalar field, but calculated using these new per-particle distances.

This method is successful at generating smooth surfaces both for fixed-radius and

adaptively-sized particles (bottom left of Figure 2.1).

One drawback of these aforementioned methods is a typical assumption that

the smoothing kernel of each particle is isotropic, and the spherical shape of the

kernel makes it difficult to produce flat surfaces and sharp features. In contrast

to these methods, our approach uses anisotropic kernels to stretch spheres into

11

Isotropic Kernel Method Method of Zhu & Bridson

Method of Adams et al. Our Anisotropic Kernel Method

Figure 2.1: Comparison between different surface reconstruction approaches on
the Double dam break animation.

12

ellipsoids in order to alleviate those limitations (bottom right of Figure 2.1).

Desbrun and Cani-Gascuel [1998] and Premoze et al. [2003] use a different

surface tracking method in which an implicit scalar field is updated by solving

the advection equation on a Eulerian grid. Unfortunately this approach is more

difficult to use for large scale simulations due to the storage overhead on the large-

sized regular grids.

Recently, an alternative method of surface reconstruction was proposed by

Williams [2008]. In his method, a nonlinear optimization problem is solved itera-

tively to achieve global smoothness on surface mesh. The important contribution

of the method is that the perfectly flat surfaces can be generated under certain con-

ditions. Williams’ method occasionally produces temporally incoherent smoothed

meshes because the convergence of smoothing scheme is sensitive to the renewed

mesh connectivity between rendering frames. Sin al. [2009] use level-set variants

of the original method to alleviate the problem of temporal coherence.

Our anisotropic kernel approach is inspired by the work of Owen et al. [1998]

and Liu et al. [2006]. They adapt anisotropic kernels to simulate large deformations

of materials in the SPH framework, and their primary interest is in simulation

accuracy. In their approach, the axes of their anisotropic kernels evolve in time

according to the strain-rate tensor estimates. Our approach is also related to the

work of Kalaiah and Varshney [2003] and Dinh et al. [2001]. Kalaiah and Varshney

apply PCA to point clouds for point-based modeling. Dinh et al. reconstruct

surfaces from voxel carving data by combining anisotropic kernels with variational

implicit surfaces.

13

2.2 Surface Tracking

In this section, we focus on previous methods for tracking surfaces of the fluid

simulation. In computer graphics field, surface tracking and surface extraction

are similar terms referring to the methods that captures 2D the surface geometry

from the fluid volume. In this thesis, we use surface tracking for the methods

which track the geometry of time evolving surfaces along with associated surface

properties.

A large body of techniques in surface tracking have been developed by re-

searchers in recent years. In Eulerian simulation, an implicit surface is sampled

on the discrete simulation grid and is evolved in time. This includes the levelset

method [Osher and Sethian, 1988], the particle levelset method [Enright et al.,

2002; Enright et al., 2005], the adaptive levelset method [Losasso et al., 2004] and

semi-Lagrangian contouring method [Bargteil et al., 2005].

While these implicit surface techniques easily handle changes in surface topol-

ogy, the size of the features that they can represent is limited by a grid resolution.

To alleviate this limitation, researchers have turned to explicit tracking methods

that maintain and advect a triangle mesh along with the fluid velocity field. The

method presented by Müller [2009] globally re-samples the surface using a march-

ing cubes grid, but then retains previous mesh samples in order to preserve fine

surface features. Brochu and Bridson [2009] use a mesh surgery technique that is

purely based on geometric intersections. They later combined this with an Eu-

lerian simulation in which pressure samples are placed in order to capture fine

surface geometry [Brochu et al., 2010]. To handle changes in topology when using

a mesh surface representation, Du et al. [2006] and Wojtan et al. [2009] use local

re-meshing techniques in regions where the mesh topology differs from that of an

14

isosurface representation of the fluid interface. In [Wojtan et al., 2010], a local con-

vex hull procedure is used for local re-meshing to preserve thin fluid features. The

mesh-based surface tracking in our research makes use of techniques from [Wojtan

et al., 2009] and [Wojtan et al., 2010].

Surface tracking is difficult in particle-based fluid simulation schemes because

particles do not retain any connectivity information. As mentioned in previous

section, researchers have developed a number of methods for reconstructing sur-

faces from such particle simulations : The blobby sphere approach [Blinn, 1982],

the method of Desbrun and Cani [1998], the method of Zhu and Bridson [2005],

and the method of Adams et al. [2007], the mesh smoothing approach [Williams,

2008], the levelset smoothing approach [Sin et al., 2009] and anisotropic surface

extraction approach [Yu and Turk, 2010].

One limitation of these aforementioned surface reconstruction methods for par-

ticle based fluids is that carrying surface properties on the surface from one frame

to a next frame is not straightforward, because a new surface mesh is constructed

at each rendering step. In contrast, our approach facilitates the surface tracking

by advecting the explicit mesh surface at each frame.

In addition to surface front tracking, special techniques have been developed

for tracking surface characteristics such as colors, texture coordinates and physical

properties. Texture mapped particles are advected through the fluid velocity field

in [Rasmussen et al., 2004], while texture color and local orientation is advected

and used as a constraint to synthesize temporally coherent textures in [Kwatra

et al., 2007] and [Bargteil et al., 2006]. Bargteil et al. [2006] showed that semi-

Lagrangian surface tracking [Bargteil et al., 2005] can be used to track surface

properties during a simulation.

15

2.3 Surface Tension Models

Surface tension forces are responsible for essential details in fluid simulation.

For example, the formation and oscillation of a water droplet and ripples on the

fluid surface are driven by surface tension forces. Surface tension forces have been

applied in a number of Eulerian grid simulation methods. Kang et al. [2000] esti-

mate surface curvature from a levelset function in order to produce surface tension

forces. Lossaso et al. [2004] calculated the surface tension forces at free surfaces

more accurately by employing an octree structure. Hong and Kim [2005] treat sur-

face tension effects as discontinuous boundary conditions at the interface. Using

an explicit surface representation, discrete curvature operators such as that of Des-

brun et al. [1999] can be used to compute accurate surface tension forces. Brochu

et al. [2010] added a discontinuous pressure jump based on the mean curvature

of the surface. The method of Thürey et al. [2010] computes the surface tension

forces from a mesh using volume preserving mean curvature flow, and these forces

are used as a boundary condition to the grid-based pressure solve.

In particle-based simulations, there have also been several approaches to mod-

eling surface tension. Müller et al. [2003] approximate the surface tension force as

the divergence of the surface normal field. Clavet et al. [2005] used a double den-

sity relaxation to achieve effects similar to surface tension. Hu and Adams [2006]

discussed a surface tension model for a multi-phase SPH simulation, and Becker

and Teschner [2007] proposed a molecular cohesive force approach for surface ten-

sion effects. Zhang [2010] detects boundary particles and measures the curvature

from a local surface representation constructed from moving least squares (MLS).

All previous methods in particle-based simulations use particle samples to gen-

erate surface tension effects. Consequently, the particle resolution explicitly limits

16

the resolution of the surface tension force. Our approach is able to push beyond

this limit by combining a standard SPH solver with a detailed explicit surface

mesh.

2.4 Small Scale Surface Dynamics

One method of creating finely detailed surfaces at a low computational cost is

to couple a high resolution surface representation with a lower resolution solver

for the bulk of the fluid. Goktekin et al. [2004] and Kim et al. [2009] couple a

high resolution particle levelset with the low resolution fluid solver. Bargtiel et

al. [2006] used an octree contouring method that is coupled with the uniform grid

fluid solver. Sifakis et al. [2007] embedded high resolution particle samples on the

simulation mesh, and a low resolution finite element solver [Bargteil et al., 2007]

is coupled with a detailed surface mesh in [Wojtan and Turk, 2008].

Our surface dynamics approach has commonalities with the work of Wang et

al. [2007] and Thürey et al. [2010]. Wang et al. solve a general shallow water

equation on a surface mesh, while Thürey et al. use a dynamic surface mesh to

solve the wave equation. In our approach, capillary waves of variable speed are

generated by minimizing thin plate energy. We use a per-vertex displacement along

the normal of the surface mesh in order to create surface dynamics.

17

Chapter 3

SPH Fluid Simulator

3.1 Eulerian and Lagrangian Viewpoint of the

Material Derivative

In the SPH simulation scheme, particles are used to represent discretely sam-

pled physical quantities and the Navier stokes equations are numerically solved in

Lagrangian way using these samples. In this section, we present the Lagrangian

and Eulerian interpretation of the material derivative. Later in Chapter 3.2, the

Lagrangian form of the material derivative is used in SPH to solve the Navier

stokes equations. A momentum conservation part of the Navier Stokes equations

appears as:

ρ
Du

Dt
= −∇p+∇ ·T + f , (3.1)

where ρ is density, u is velocity, −∇p is gradient of pressure, ∇·T is divergence of

the stress tensor, and f is an external body force. On the left side of the momentum

equation, we encounter the material derivative form D(∗)
Dt

, which describes the time

18

rate of change of some quantity (such as heat or momentum) by following it, while

moving with a space and time dependent velocity field. Let’s use a particle to

represent an infinitesimal fluid element moving with the flow. Suppose that we

measure a scalar quantity φ(x, t). At time t1, the quantity of particle i at x1 is

φ1(x1, t1). At a later time t2, particle i has moved to x2 and has a new value

φ2(x2, t2). Then, the material derivative measures the instantaneous time rate of

change of the quantity, of particle i at time t1.

Dφ

Dt

∣∣∣∣
t1

= lim
t2→t1

φ2 − φ1

t2 − t1
(3.2)

The material derivative can be interpreted using two different viewpoints: La-

grangian and Eulerian. In the Lagrangian viewpoint, the material derivative mea-

sures the rate of change φ on particle i by using a reference frame whose origin is

attached to the particle (Figure 3.1). On this moving reference frame, the particle

position is always fixed at the origin (x1 = x2 = 0). Then φ of particle i becomes a

function of time t and position x just indicates the position of particle i. Therefore,

the rate of change of φ is simply a partial derivative of a quantity with respect to

time t:

Dφ(x, t)

Dt
=
∂φ(x, t)

∂t
. (3.3)

In the Eulerian viewpoint, on the other hand, we now use a fixed reference

frame in space and measure the rate of change of φ at position x. As illustrated

in Figure 3.2, at time t1, we have particle i with a quantity φi(t1) located at x.

At a later time t2, this particle flows away, and there will be a new particle j with

a new quantity φj(t2) at x. Now, the rate of change of φ at x accounts for the

two separate factors: One from the particle replacement i → j due to the flow

19

at time t1 at time t2

Figure 3.1: Illustration of the Lagrangian form of the material derivative. Particle
p flows with the background velocity field (diagonal arrows) and a reference frame
moves along with the particle. The change of the quantity φ is represented by
the change of color of the particle. As we sit on the particle, only the change on
particle p is observed.

(advection), and the other from the change of the quantity of the replaced particle

φj(t1) → φj(t2). By taking infinitesimal time step dt, we can observe that the

location of the new particle j at time t is −u(x, t)dt. Therefore, the rate of change

due to the advection factor is

φ(x, t+ dt) = φ(x− u(x, t)dt, t) = φ(x, t)− (u(x, t)dt) · ∇φ(x, t). (3.4)

By a simple rearrangement and substituting dt to ∂t, we obtain

∂φ(x, t)

∂t
= −u(x, t) · ∇φ(x, t). (3.5)

What is the second factor φj(t) → φj(t + δt)? By the definition, it is simply the

material derivative
Dφj
Dt

! We can assume i = j by taking the infinitesimal time step,

and by adding this factor to (3.5), we obtain a form for the time rate of change of

20

at time t1 at time t2

Figure 3.2: Illustration of the Eulerian form of the material derivative. A reference
frame is fixed in space while particles flow with the background velocity field. In
contrast to the Lagrangian form, both the advection and the material derivative
influence our observation to the change of the quantity.

φ at x:

∂φ(x, t)

∂t
= −u(x, t) · ∇φ(x, t) +

Dφ(x, t)

Dt
. (3.6)

By a simple rearrangement, the material derivative in the Eulerian viewpoint yields

Dφ(x, t)

Dt
=
∂φ(x, t)

∂t
+ u(x, t) · ∇φ(x, t). (3.7)

Note that (3.7) is augmented with the advection term u ·∇φ compared to (3.3)

due to the velocity that we feel by choosing of the fixed reference frame.

The material derivative also can be derived from the total derivative. In fact,

(3.2) stands for the total derivative of φ with respect to time. The total derivative

is expanded through the multivariate chain rule:

Dφ(x, t)

Dt
=
dφ(x, t)

dt
=
∂φ(x, t)

∂t
+
∂x

∂t
· ∇φ(x, t). (3.8)

Let’s treat x as the location of particle i moving with the flow. When we take

21

the Lagrangian viewpoint by attaching a reference frame to the particle, x remain

constant with respect to time (∂x
∂t

= 0) and we obtain (3.3). When we take the

Eulerian viewpoint, x does change in time and the rate of change corresponds to

the velocity field evaluation at x that is u(x, t). Then we obtain (3.7).

In Eulerian fluid simulation, the Eulerian form (3.7) is discretized on the sim-

ulation mesh to solve the Navier stokes equations. For the advection part, several

algorithms such as semi-Lagrangian method [Stam, 1999] are used in computer

graphics field, but they generally introduce numerical diffusion because they re-

sample the quantity on the mesh at simulation time steps. In particle-base fluids,

on the contrary, numerical diffusion does not occur during the advection because

particles carry the quantity in a Lagrangian way.

3.2 Formulation and Algorithm of Smoothed Par-

ticle Hydrodynamics

SPH was originally developed by Monahan and Gingold [1977], and Lucy [1977]

to solve astronomical problems. Because of its efficiency in computation and its

advantage of being a fully Lagrangian method, SPH has been widely used for

solving applied mechanics problem. In graphics, SPH is a popular method for

interactive fluid simulation. In this section we summarize the basic formulation

of SPH and its application to fluid dynamics. For comprehensive introduction to

SPH and its application, we refer to [Monaghan, 2005; Liu and Liu, 2003]. For

application of SPH to fluid simulation in graphics, we refer to [Adams and Wicke,

2009].

The core of SPH is based on a function approximation method (also called Re-

22

producing Kernel Method) on a finite discrete sampling of points. The derivation

of the method starts from the representation of a scalar function f in space in the

integral form

f(x) =

∫
Ω

f(x′)δ(x− x′)dx′, (3.9)

where Ω is a given domain and δ(x) is a Dirac-Delta function. For a finite set of

discrete sampling locations {xj}, the above equation gives

f(xj) =

∫
Ω

f(x′)δ(xj − x′)dx′. (3.10)

After this spatial discretization over the domain, we still need to discretize the

term δ(x − x′)dx′ to approximate function values in regions between samples. A

good way is to smooth out the function values at each sampling location over the

space by replacing the Dirac-Delta function with a smoothing kernels W (x, h) and

discretizing dx′ by Vj as a volume at xj. For any scalar or vector function f , denote

the spatial discretization of f at x by 〈f〉(x)1.

〈f〉(x) =
∑
j

f(xj)W (x− xj, h)Vj, (3.11)

where W is commonly chosen to be a isotropic smoothing kernel of finite support

with the support radius h for computational efficiency. In SPH for physics sim-

ulations, physical quantities such as density and pressure are irregularly sampled

at discrete spatial particle points and particles carry the prescribed mass with it.

Then Vj can be approximated further by
mj
ρj

where mj and ρj are the mass and

the density of the particle j. Denote f(xj) by fj. Now the approximation formula

1This notation should not be confused with the usual angle brackets for inner product, since
it is applied to a single argument.

23

for f at any location is given by

〈f〉(x) =
∑
j

fj
mj

ρj
W (x− xj, h). (3.12)

Although there is a wide range of options for choosing kernel functions, kernel

functions are required to satisfy several requirements to ensure the convergence of

(3.12) to (3.9) in limit. In particular,

∫
Ω

W (x, h)dx = 1, lim
h→0

W (x, h) = δ(x). (3.13)

A popular kernel in graphics community is a cubic spline with a support radius 2h

(M4 kernel in [Monaghan, 2005])given by

W (x, h) =
σ

hd

(2− η)3 − 4(1− η)3 if 0 < η ≤ 1

(2− η)3 if 1 < η ≤ 2

0 otherwise

, (3.14)

where d denotes dimension of the simulation, and η =
∥∥x
h

∥∥. The derivatives of f

such as gradient or Laplacian are also easily approximated by applying differential

operators to the kernel function of (3.9)

〈∇f〉(x) =
∑
j

fj
mj

ρj
∇W (x− xj, h), (3.15)

〈∆f〉(x) =
∑
j

fj
mj

ρj
∆W (x− xj, h). (3.16)

Alternative approximations are possible for differential operators to conserve phys-

24

ical quantities such as linear or angular momentum. We refer to [Monaghan, 2005]

and [Adams and Wicke, 2009] for different differential operators and their usage

in the approximation. Now, we can numerically solve the Navier-Stokes equation

with a SPH formulation. The Navier-Stokes equations consist of the momentum

equation and the continuity equation. If we assume that fluid is incompressible

and Newtonian, which is typical in graphics, The continuity equation is given as

∇ · u = 0. (3.17)

The continuity equation is not needed in the Lagrangian formulation since the

mass is carried by particles, and the total mass is preserved unless particles are

inserted or removed. The momentum equation is given as

ρ
Du

Dt
= −∇p+ µ∆u + f ext, (3.18)

where u, p, µ, f ext denote velocity, pressure, viscosity constant and external forces,

respectively. Note that the shear stress term ∇T of (3.1) is replaced by the New-

tonian viscosity term ∆u in the equation. The pressure p is typically a function

of the density ρ of the fluid such as given by the Tait equation [Monaghan, 1994],

which is

p = k

((
ρ

ρ0

)γ
− 1

)
, (3.19)

where k and γ are stiffness parameters and ρ0 is the rest density of the fluid.

In Weakly Compressible SPH scheme (WCSPH) [Becker and Teschner, 2007], a

stiff value of γ is 7 and k is computed to allow the small density fluctuation. As

an alternative to the stiff pressure solver that restricts the time step of WCSPH,

25

Predictive-Corrective Incompressible SPH scheme (PCISPH) [Solenthaler and Pa-

jarola, 2008] is recently proposed. In PCISPH scheme, a new iteration step is

introduced that allows much larger time steps. During each iteration, pressure

values are predicted and corrected by minimizing the predicted variation of the

density from the reference density.

To spatially discretize (3.18), we need to evaluate ρ and f ext at discrete loca-

tions, and discretize differential operators D
Dt

, ∇ and ∆. Denote W (xi − xj, h) by

W ij
h . The density of the particle i, ρi is sampled by substituting fj with ρj in the

approximation equation (3.12)

ρi =
∑
j

mjW
ij
h . (3.20)

The material derivative D
Dt

= ∂
∂t

+u ·∇ becomes the partial derivative with respect

to time ∂
∂t

in the Lagrangian veiwpoint, since the particles move along with the

material and the advection part u · ∇ disappears. The ∇ and ∆ operators are

derived from a SPH formulation such as (3.15), (3.16) or alternative formulations

[Adams and Wicke, 2009]. An alternative to (3.15) [Adams and Wicke, 2009] is

used to ensure momentum conservation for the pressure driven force, which yields

〈∇p〉(xi)
ρi

=
∑
j

mj

(
pi
ρ2
i

+
pj
ρ2
j

)
∇W ij

h , (3.21)

where pi and pj are the pressure of the particle i and j computed by (3.19). Now

the straightforward spatial discretizaion of (3.18) becomes

ρi
∂ui
∂t

= −〈∇p〉(xi) + µ〈∆u〉(xi) + f exti . (3.22)

26

Discretization in time is also straightforward. The velocity and the position of

particles are updated at each time step. Leap-Frog or Euler scheme is commonly

used for the integration scheme. The size of time step at each integration is global

and usually determined by the Courant-Friedrichs-Lewy (CFL) condition. The

basic SPH simulation algorithm is described in algorithm 1.

Algorithm 1 The SPH simulation algorithm

1: for all i do
2: \\ find neighborhood indices
3: Ni = {j : |xi − xj| < 2h}
4: \\ compute density
5: ρi =

∑
j∈NimjW

ij
h

6: \\ compute pressure

7: pi = k
((

ρ
ρ0

)γ
− 1
)

8: \\ compute net acceleration
9: for all i do
10: ai = 1

ρi
(−〈∇p〉(xi) + µ〈∆v〉(xi) + fi)

11: \\ integrate velocity and location
12: for all i do
13: ui = ui + ∆tai
14: xi = xi + ∆tvi

The location xi, the velocity ui and the mass mi of the particle i are maintained

along the time integration and used for updating the particle configuration, while

density ρi, pressure pi and the net acceleration ai are computed at each time step,

but not stored. In the first pass of the algorithm, density and pressure for each

particle is computed. In the second pass, forces are computed. At last, forces

are integrated and particle positions are updated. For the neighboring search,

k-d trees and spatial hash grids have been popular data structures in graphics

since searching neighbors in a finite range is simple and efficient, and their data

structures is independent of the size of the domain.

27

Chapter 4

Surface Extraction of Particle

Based Fluids Using Anisotropic

Kernels

4.1 Implicit Surface Representation

Our surface definition is based on the approach proposed in [Müller et al., 2003],

where the surface is defined as an isosurface of a scalar field

φ(x) =
∑
j

mj

ρj
W (x− xj, hj), (4.1)

and W is an isotropic smoothing kernel of the form

W (r, h) =
σ

hd
P

(
‖r‖
h

)
. (4.2)

28

In the above equation, σ is a scaling factor, h is a smoothing radius, d is the

dimension of the simulation, ‖r‖ is the l2 norm of a radial vector r and P is a

symmetric decaying spline with finite support. The scalar field φ(x) is designed as

a normalized density field that smooths out the scalar value of 1 at each particle’s

position over a continuous domain, and an isosurface from φ(x) gives a surface

representation that coats the particles. The typical isovalue use for the surface is

simply zero, or a small positive value to remove small sharp features. However,

the resulting surfaces often have bumps, and there are two reasons for this. First,

the irregular placement of particles makes it difficult to represent an absolutely

flat surface. Although irregular sampling is an essential feature of any Lagrangian

scheme, this irregularity of the positions of the boundary particles can make sur-

faces appear blobby. Second, the spherical shape of the smoothing kernels is not

suitable to describe the density distribution near a surface. That is, in order to

correctly model surface geometry, it is necessary for the density of the near-surface

particles to decrease at different rates in different directions.

To resolve the problem of irregular particle placement, we apply one step of

diffusion smoothing to the location of the kernel centers. This process can be

interpreted as a 3D variant of Laplacian smoothing as described in [Taubin, 2000],

and has the effect of denoising point clouds. The updated kernel centers xi are

calculated by

xi = (1− λ)xi + λ
∑
j

wijxj/
∑
j

wij, (4.3)

where w is a suitable finite support weighting function and λ is a constant

with 0 < λ < 1. See (4.8) below for the of wij. We use λ between 0.9 and

29

1 in our examples to maximize the smoothing effect. Note that this smoothing

process is used only for surface reconstruction, and the averaged positions are not

carried back into the simulation. Typically, Laplacian smoothing results in volume

shrinking, and our approach also shrinks the fluid volume slightly by moving the

kernels for boundary particles towards the inside. However, in contrast to level-

set methods, our approach does not shrink volume continuously as the simulation

evolves. Furthermore, the analysis in Appendix 5.8 shows that the maximum

distance from our reconstructed surfaces to the original particle positions is within

a small constant of the particle radius scale.

To cope with the problem of density distributions near the surface, our new ap-

proach is designed to capture the density distribution more accurately by allowing

the smoothing kernels to be anisotropic. By replacing h with a d× d real positive

definite matrix G, we can simply redefine W to be an anisotropic kernel

W (r,G) = σdet(G)P (‖Gr‖). (4.4)

The linear transformation G rotates and stretches the radial vector r. Therefore

W (r,G) becomes an anisotropic kernel, and isosurfaces of W are ellipsoids instead

of spheres. Note that the isotropic kernel can be treated as a special case of the

anisotropic kernel by letting G = h−1I where I is an identity matrix. The key idea

of our new method is to associate an anisotropy matrix G with each particle so

that for particle j, Gj describes better the neighborhood density distribution.

Once all Gj’s and xj’s have been computed, we extract an isosurface (cf. (4.1))

30

from a redefined scalar field

φnew(x) =
∑
j

mj

ρj
W (x− xj,Gj). (4.5)

It is necessary to point out that the equation of W is depending on the SPH

simulation, since different SPH schemes can use different W ’s for density com-

putation. For our examples, we use the B-cubic spline kernel from [Becker and

Teschner, 2007].

4.2 Determining the Anisotropy

As mentioned in the previous subsection, our new approach determines an

anisotropy matrix G for each particle in order to more accurately describe the

density distribution around the particle. For example, in the neighborhood of a

particle that is inside the fluid volume, the density is likely to be constant in all

directions, making the corresponding G a scalar multiple of an identity matrix to

keep the smoothing kernel W isotropic. On the other hand, around a particle that

is near a flat surface, the particle density will decay faster along the normal axis

than along the tangential axes. Then G should stretch W along the tangential

axes and shrink W along the normal axis. At a sharp feature, the density will

decay sharply in several directions, and G should shrink W in order to capture the

sharp feature. See Figure 4.1 for a comparison between isotropic and anisotropic

kernels that are near the surface of a region of fluid.

In order to determine G, we apply the weighted version of Principal Component

Analysis (WPCA) that is proposed in [Koren and Carmel, 2003] to the neighbor-

hood particle positions. A drawback of the conventional PCA is its sensitivity to

31

(a) (b)

Figure 4.1: A comparison between the surface reconstruction using isotropic ker-
nels (a) and our anisotropic kernels (b). Top row: the surface of SPH particles
from a single dam break simulation. Bottom row: Illustration of particles at the
top right corner. The shape of a particle in (b) represents the anisotropy of the
corresponding smoothing kernel. Note that our approach constructs a flat surface
with sharp edges and corners from properly stretched particles.

32

outliers, and it often produces inaccurate information when the number of samples

is small and the sample positions are noisy, which commonly happens in particle-

based fluids. In contrast, WPCA achieves significant robustness against outliers

and noisy data by assigning appropriate weights to the data points. Specifically,

WPCA begins by computing a weighted mean of the data points. Next, WPCA

constructs a weighted covariance matrix C with a zero empirical mean and per-

forms an eigendecomposition on C. The resulting eigenvectors give the principal

axes, and the eigenvalues indicates the variance of points along the corresponding

eigenvalues. We then construct an anisotropy matrix G to match the smoothing

kernel W with the output of WPCA.

In our approach, the weighted mean xwi and the covariance matrix Ci of particle

i are formulated as follows:

xwi =
∑
j

wijxj/
∑
j

wij. (4.6)

Ci =
∑
j

wij(xj − xwi)(xj − xwi)T/
∑
j

wij, (4.7)

The function wij is an isotropic weighting function with respect to particle i

and j with support ri.

wij =

 1− (‖xi − xj‖)/ri)3 if ‖xi − xj‖ < ri,

0 otherwise
(4.8)

With the finite support of wij, the computation is confined to the neighborhood

particles within the radius ri. In our examples, we choose ri to be 2hi in order to

include enough neighborhood particles and obtain reasonable anisotropy informa-

33

tion. This kernel is also used to compute the averaged position of the particles in

Eq. 4.3.

With each particle, the singular value decomposition (SVD) of the associated

C gives the directions of stretch or compression for deforming the smoothing kernel

W in terms of eigenvectors and eigenvalues. The SVD yields

C = RΣRT , (4.9)

Σ = diag(σ1, . . . , σd). (4.10)

where R is a rotation matrix with principal axes as column vectors, and Σ is

a diagonal matrix with eigenvalues σ1 ≥ . . . ≥ σd. In order to deal with singular

matrices and prevent extreme deformations, we check whether σ1 ≥ krσd with a

suitable positive constant kr > 1. This condition is true when the largest variance

in one principal axis is much bigger than the smallest variance in another axis. In

this case, we modify C so that the ratio between any two eigenvalues are within kr.

Also, when the number of particles in the neighborhood is small, we reset W to a

spherical shape by setting G = knI in order to prevent poor particle deformations

for nearly isolated particles. In addition, we multiply C by scaling factor ks such

that ‖ksC‖ ≈ 1 for the associated particle inside the fluid volume, in order to

keep the volume of W constant for particles with the full neighborhood. The

aforementioned processes are formulated as follows to obtain a modified covariance

matrix C̃.

C̃ = RΣ̃RT (4.11)

34

Σ̃ =

 ksdiag(σ1, σ̃2, . . . , σ̃d) if N > Nε,

knI otherwise
(4.12)

where σ̃k = max(σk, σ1/kr), N is the number of neighboring particles, and Nε

is a threshold constant. In our examples, we use kr = 4, ks = 1400, kn = 0.5 and

Nε = 25.

In order to make the kernel W of particle i deform according to C̃i, Gi must

be an inversion of C̃i and scaled by 1/hi to reflect the original radius of particle i.

Then our approach produces Gi as a symmetric matrix of the form:

Gi =
1

hi
RΣ̃−1RT . (4.13)

4.3 Alleviating Attraction Artifacts

Our particle relocation approach improves the qualify of fluid surfaces by de-

noising particle samples. However, as a side effect, the particle relocation may

introduce unphysical attraction effects between fluid components. These artifacts

are mainly noticeable in the case where two separate fluid components are ap-

proaching one another. When two separate fluid components become closer than

the radial support ri of (4.8), particles in one component begin to classify parti-

cles in the other component as neighbors, and thus are moved closer to the other

component by the relocation step. This artifact occurs because we use a large

support ri = 2hi, where hi is approximately twice the average particle spacing ra.

Therefore, the relocation step pulls particles together even when they are further

apart than ra, as long as they are within the range of 4ra.

35

Figure 4.2: Merging spheres. Top: Not accounting for components. Bottom:
Correction using connected components.

In order to alleviate this problem, we use a connected-component (CC) al-

gorithm to mark simulation particles. We define two particles i and j as being

connected if ‖xi − xj‖ ≤ ra. For a given particle, other connected particles are

those neighboring particles within ra. These nearby particles are easily identified

by a neighborhood search. Starting with a seed particle, we compute its CC by a

depth-first search graph traversal, and we label these connected particles with the

index of the seed particle. To find all the CC’s, we iterate through all the parti-

cles, and start a new traversal whenever we find a particle that has not yet been

labeled. Once all of the particles have been labeled, we use a modified version of

the weight wij of Eq. 4.8 that uses the CC information. Let the label of a particle

i be denoted by ci. The definition of wij is then modified to be

wij =

 1− (‖xi − xj‖)/ri)3 if ‖xi − xj‖ < ri and ci = cj,

0 otherwise
(4.14)

36

With modified wij , the covariance matrix Ci and the anisotropic kernel W (x −

xi,Gi) is no longer affected by the neighbors that belong to different components.

As a comparison between the original approach and the modified CC approach,

Figure 4.2 shows two spheres approaching each other. As shown in the top row,

the two spheres begin attracting each other before the collision when not using

the CC labels. In contrast, the bottom row shows that the CC approach avoids

this artifact and delays the merge due to the collision until the two spheres are

much closer. This simulation used 23k particles. The overhead imposed by the

CC computation is rather small. On average, the CC computation required 0.17

seconds per frame, while the surface reconstruction took 1.69 seconds per frame.

4.4 Implementation Overview

We use the Marching Cubes algorithm [Lorensen and Cline, 1987] to create

a mesh that represents the fluid surface from the scalar field of Equation 4.5.

We represent walls and geometric obstacles as signed distance fields for collision

detection with particles. We refers readers to Appendix 5.8 for the C++ source

codes used for determining anisotropic kernels.

4.4.1 Singular Value Decomposition

In order to capture the anisotropy for each particle, a robust and efficient

SVD algorithm needs to be implemented. In our 3D examples, we use Cardano’s

method [Smith, 1961], [Kopp, 2008] to determine three singular values of the sym-

metric matrix C of (4.9). Although iterative methods such as two-sided Jacobi

or QL are numerically more accurate, Cardano’s method is efficient because it

37

analytically determines singular values, and it is robust enough for our approach

because C is not ill-conditioned in most cases. From Cardano’s method, we obtain

three singular values σ1, σ2, σ3 ((4.10)). Then we use a cofactor matrix of C− σiI

to determine a corresponding normalized singular vector vi [Carchidi, 1986].

Since the cofactor method works best for singular values of multiplicity one,

we identify different cases based upon the multiplicity of the singular values. Let

us denote the machine precision by ε, and define a relation a ≈ b to be true when

|a − b| < εa. When σ1 ≈ σ3 we assume that the three singular values are nearly

identical, and we set the singular vectors to be the column vectors of an identity

matrix. When σ1 6≈ σ2 and σ2 ≈ σ3, we compute a singular vector v1, and choose

v2 and v3 as two arbitrary orthonormal vectors in the plane normal to v1. The

other multiplicity two case is handled by exchanging σ1 and σ3 in the previous

case. If the singular values do not match any of the previous cases, we assume

that they all have multiplicity one. We first compute v1 and v3. In order to

correct the numerical error, we make sure that v1 are v3 orthogonal by computing

v3−v1(v1 ·v3) and using this as an updated version of v3. The remaining singular

vector v2 is computed by the cross product v1 × v3.

4.4.2 Neighborhood Search

For neighborhood searches, we use a variation of the hash grid described in

[Adams and Wicke, 2009] that handles the ellipsoidal support of our smoothing

kernels. At every reconstruction step, we first compute an axis aligned bounding

box (AABB) for the ellipsoid that is associated with each particle. Then we select

the uniform grid cells that overlap with the AABB and retrieve the hash grid cells

corresponding to these selected cells. We then store an index of the particle in

38

these retrieved cells. In order to find the neighboring particles at a given point, we

determine the hash grid cell that contains the point, examine the particles whose

indices are stored in the cell, and tag as neighbors the ones whose ellipsoids contain

the point.

4.5 Optimization of Performance

One bottleneck of our approach is that we perform SVD on all particles in or-

der to stretch them. A simple performance optimization is to only create stretched

particles near the surface of the fluid, and not in the fluid bulk, in order to acceler-

ate the process of surface reconstruction. We use a simple criterion to isolate the

near-surface particles: For a particle i, we count the number N of neighborhood

particles within the smoothing radius ri of (4.8) and compute the center of mass

m of these particles. A particle i is tagged as near-surface particles if N < 0.9Ns

or ‖m−xi‖ > 0.1ri, where Ns is the number of neighborhood particles for a inner-

volume particle with rest density ρ0. Once all of the particles have been examined,

we perform SVD only on the tagged particles, while untagged particles remain

unstretched using G = I.

Another bottleneck of our approach comes from the evaluation of the scalar

field φ at the Marching Cubes grid points. In contrast to the isotropic kernel,

the anisotropic kernel involves an extra matrix-vector multiplication ‖G(x− xi)‖,

and the scalar field value at one grid point is usually contributed to by multiple

neighborhood kernels. In order to reduce this extra computational cost, we first

introduce a fast exclusion test to check whether a grid point is out of the smoothing

kernel support, formulated as ‖G(x − xi)‖ > hi. Because G transforms a sphere

39

into an ellipsoid, the smallest singular value σmin of G determines a radius of the

inner sphere bounded by an ellipsoid that is transformed from the unit sphere.

Therefore σmin‖(x−xi)‖ > hi is a sufficient condition for ‖G(x−xi)‖ > hi, and a

matrix-vector multiplication can be avoided when this condition holds. In addition

to the exclusion test, we further reduce the computation cost by observing that the

value of φ is close to zero near the surface and increases to one towards the inside

of the fluid volume. Therefore, we can assume that a grid point at x is inside the

volume and far away from the surface if φ(x) > t, where t is a positive threshold

less than one. At each grid point, we start adding contributions from the nearby

particles to the grid point’s scalar value. Once the scalar value reaches t, we stop

adding contributions for the remaining particles and use t as a scalar field value for

the point. For our simulation examples, the value t = 0.2 is used. This technique

eliminates many of the smoothing kernel evaluations for a given simulation. We

refer readers Section 4.6 for the timings on the performance improvement.

4.6 Results

In this section, we describe four simulations that were used to evaluate our sur-

face reconstruction method: a water crown, flow on the bunny, falling figures, and

a double dam break. All of our simulations and surface reconstruction algorithms

were run on a 2.4 GHz Intel Core2 Duo CPU with 1.72GB of memory. We use

NVIDIA Gelato for rendering the resulting animations. For the double dam break

example, we present an interactive animation created by Simon Green at NVIDIA,

who parallelized our method on the GPU. All of our results were simulated using

the Weakly Compressible SPH (WCSPH) approach of Becker et al. [Becker and

40

Teschner, 2007]. We used a fixed time step of 0.0002s for running our simulations.

Figure 4.3 is an animation of a small drop of water that splashes into a larger

body of water, causing a water crown. Only 24k particles were used to create this

simulation. Note that even at this low particle count, the particle-based nature

of the simulation is difficult to discern from the images. Our anisotropic kernel

reconstruction of the surface creates a water crown that is smooth and unbroken

near its base, and produces plausible pinch-off at the top. When the fluid rebounds

in the center, a thin spike of water is maintained due to the stretching of the

smoothing kernels along the spike’s axis. When the water settles, the surface is

smooth.

Figure 4.4 shows a viscous fluid that is poured over the Stanford Bunny. The

fluid sheet that runs off the bunny is thin, usually just one particle thick, and yet

the sheet is flat and smooth. In this sheet, the kernels are stretched in the two

dimensions that run parallel to the sheet, and are compressed perpendicular to the

sheet.

In the animation of Figure 4.5, we demonstrates the performance of our ap-

proach on a large scale simulation with one million particles. Two fluid versions

of the bunny and the armadillo fall down an inclined plane into a pool. In this

example, our optimization techniques from Section 4.5 are used. Table 4.1 shows

the improvement on the timings when these optimization techniques are applied.

For this example, the surface reconstruction method equipped with the optimiza-

tion techniques improves timings three times as compared to the non-optimized

reconstruction method. For anisotropic kernel computation (second column of Ta-

ble 4.1), the speed gain is not as significant as expected, and we believe that this

is due to an overhead of the neighborhood search for each particle that is unavoid-

41

Figure 4.3: Water splash. Top: Anisotropic kernels, Middle: Opaque surface,
Bottom: Transparent surface

42

Figure 4.4: Melted chocolate falling on a Bunny.

able unless the search is implemented on GPU’s or multi-core CPU’s. For triangle

mesh construction using Marching Cubes (third column of Table 4.1), We gain the

substantial speed improvement of 5.2× due to the fast evaluation of the scalar field

φnew(x).

Table 4.1: Average per frame timings (in minutes) for different surface reconstruc-
tion methods on the falling figures example of Figure 4.5.

Anisotropy Marching Cubes Total

Unoptimized method 1.07 3.09 4.16
Optimized method 0.83 0.59 1.42

Speed gain 1.3x 5.2x 2.9x

Our last simulation is a double dam break (Figure 4.6), in which two blocks of

water at opposite sides of a tank are suddenly released. The two parcels of water

rush towards each other, collide in the center of the tank, and this throws up a

43

Figure 4.5: Falling armadillo and bunny.

44

thin sheet of water that runs diagonally across the tank. Similar to the bunny

simulation, this thin sheet is often just one particle thick.

Figure 4.7 is an interactive animation of the double dam break, using NVIDIA’s

CUDA as our parallel programming architecture. For the surface reconstruction,

a CUDA kernel with a thread per particle is used for particle relocation and

anisotropic kernel computation. The fluid surfaces are rendered using ray-casting

in a pixel shader instead of marching cubes. For each particle, the pixel shader

calculates the intersection between the view ray and the ellipsoid (defined by the

matrix), and also calculates the depth and surface normal. Then the screen ori-

ented quads are extracted on the ellipsoids as point sprites. 128k particles were

used for this example. The simulation, surface reconstruction, and rendering were

simultaneously run on a GeForce GTX 460 video card and the interactive frame

rate of 25fps was achieved. This example successfully demonstrates that paral-

lelizing the surface creation process is simple and effective, since the approach

only depends on local information about particle information.

4.7 Comparison

Figure 2.1 shows a comparison between an isotropic surface reconstruction ap-

proach [Müller et al., 2003], Zhu and Bridson’s approach [Zhu and Bridson, 2005],

the method of Adams et al. [Adams et al., 2007] and our anisotropic kernel ap-

proach. The simulation that is used for comparison is the double dam break

simulation with 140K particles. As the figure shows, the isotropic reconstruction

method produces unacceptably bumpy surfaces. Zhu and Bridson’s approach cre-

ates noticeably smoother surfaces, but some surface bumps are still apparent. In

45

Figure 4.6: Double dam break simulation.

46

Figure 4.7: Interactive Double Dam Break

47

fairness to their method, Zhu and Bridson also perform a small amount of addi-

tional grid-based smoothing that we have omitted. The method of Adams et al.

produces a still smoother surface, and this method creates the highest quality sur-

faces from among the prior methods that we have tested. Our anisotropic kernel

method produces surfaces that are even smoother than the method of Adams et

al. Moreover, our method creates a thin sheet of water in the center of the image

that is largely unbroken, where the method of Adams et al. creates a sheet with

many holes in a lace-like pattern.

Table 4.2 shows timings for the double dam break example. The dimensions

of the marching cubes grid for these results is 230 × 190 × 350. The timings

are per-frame averages (in minutes) across all of the frames of the animation.

Our surface reconstruction approach is roughly twice as expensive as the isotropic

kernel method and Zhu and Bridson’s approach. The method of Adams et al. is

the most time consuming of the four methods, due to the need to re-calculate the

signed distance field at a rate of 300 frames-per-second. When we dropped this

re-calculation to a lower rate, the surface results from the Adams method became

noticeably lower in quality.

Table 4.2: Average per frame timings (in minutes) for four surface reconstruction
methods on the double dam break simulation.

Method Surface reconstruction Simulation Opaque rendering

Isotropic 0.39

2.19 0.64
Zhu and Bridson 0.50

Adams 1.76
Anisotropic 0.96

48

4.8 Limitations

There are several limitations to our approach for surface reconstruction. Per-

haps the most important caveat is that the surfaces that are created using this

method contain less volume than prior approaches. This is due to the averag-

ing of particle centers. Appendix 5.8 gives an analysis of this volume difference,

and demonstrates that a particle near a flat surface will move a fraction of the

smoothing kernel radius hi. Unlike mesh-based smoothing approaches, however,

our method does not shrink the surface near thin sheets of fluids. Also note that

this smaller volume is only a side-effect of the surface reconstruction process, and

it is not carried into the physics of the simulation.

Even though our method produces surfaces that have less noise than the other

methods that we tested, it is still possible to see small bumps when the surface

is magnified. These slight variations in the surface can be seen in the pattern of

the caustics of the water crown animation when the water settles. We think that

these slight ripples could easily be smoothed away using mesh-based smoothing,

but we left our meshes un-altered in order to clarify what can be achieved using

anisotropic kernels alone.

4.9 Conclusion and Future Work

We have presented a new method of reconstructing surfaces from particle-based

fluid simulations. This method relies on repositioning and stretching the kernels for

each particle according to the local distribution of particles in the surrounding area.

Our method preserves thin fluid sheets, maintains sharp features, and produces

smooth surfaces when the simulated fluid settles. This method is also competitive

49

in speed compared to other recent techniques for SPH surface reconstruction.

There are several avenues for future work using this method. One possibility is

to smooth away the slight ripples on the reconstructed surface by using the smooth

particle skinning method [Williams, 2008] or its level-set improvement [Sin et al.,

2009] on the ellipsoidal kernel representation. In addition, this approach to surface

creation should be applicable to particle-based simulations other than SPH, and in

particular, this approach can be tried for PIC/FLIP simulation [Zhu and Bridson,

2005] that is popular in the visual effects industry. Finally, it would be interesting

to investigate whether there is a way to carry texture information along with the

surface, as is possible using Semi-Lagrangian contouring [Bargteil et al., 2006].

Our contribution described in Chapter 5 is inspired by this insight: We adopt the

explicit mesh tracking method of [Wojtan et al., 2009] to carry surface properties

like color or texture with the surface.

50

Chapter 5

Explicit Mesh Surface for Particle

Based Fluids

5.1 Mesh Advection and Topology Changes

Our new approach to surface tracking maintains an explicit mesh that is consis-

tent with an isosurface defined by the position of the SPH particles. This isosurface

φ(x) is used in two ways: 1) to create the initial surface mesh, and 2) as a surface

to project mesh vertices onto during subsequent SPH simulation time steps. We

use the anisotropic kernel method of Yu and Turk [2010] to define our isosurface

based on the particle positions. This method is similar to defining an isosurface

based on the sum of per-particle radial basis functions, but differs in that each

basis function may be stretched according to the particle distribution in a local

neighborhood. The anisotropic kernel method yields an isosurface that is quite

close to the center of SPH particles that are on the boundary, and this helps us

to interpolate boundary particle velocities onto the mesh vertices. Specifically, we

51

define the iso-surface as a zero-levelset of the scalar function φ(x). The function

φ(x) is defined as

φ(x) = φnew(x)− α, (5.1)

where φnew(x) is the scalar field of (4.5) in Section 4.1 and α is an user-defined

isovalue and the value of 0.05 is used for running our examples.

Our method begins by constructing an initial surface mesh by applying March-

ing Cubes to the isosurface φ(x). Once this initial mesh is created, our surface

tracking method consists of repeating the following four tasks for each time step:

1. Advect the mesh vertices according to the SPH particle velocities.

2. Improve triangle shapes using edge split and collapse operations.

3. Project the mesh vertices onto the implicit surface.

4. Perform topological changes when the fluid bulks merges or splits.

Task 1: To prepare for the advection of a vertex at a given time step, we

retrieve all of the simulation particles within the SPH smoothing radius of the

vertex using a spatial hash grid. We calculate normalized weights for each of these

selected particles by evaluating SPH’s smoothing kernel of their distances to the

vertex. The vertex velocity is given by summing the weighted velocity of these

neighborhood particles. Therefore, the velocity of vertex i is given by

vi =
∑
j

Wijvj/
∑
j

Wij, (5.2)

where Wij is the SPH smoothing kernel evaluation using (4.2) on a distance

between vertex i and particle j, and vj is the velocity of particle j.

52

Then we advect both the surface mesh and the SPH particles. We chose sim-

pletic Euler as our numerical advection scheme because it is stable, energy pre-

serving, and simple to implement.

Task 2: We perform edge collapses and edge splits at the end of each advection

step to maintain good mesh quality. Maintaining good mesh quality has several

advantage: the surface mesh resolution remains regular for property advection and

we can robustly evaluate curvatures and bilaplacians on the mesh. In this task,

we ignore topological inconsistencies at this stage except a sub-grid scale splitting

event that we will describe later in Section 5.1.1.

Task 3: Although the advection step keeps the surface vertices near to the

isosurface, accumulated numerical errors may cause inconsistency between the ex-

plicit mesh and the isosurface. In addition, topological changes to the fluid such

as merging and splitting will produce surface vertices that are too far off the iso-

surface. Our projection step is designed to keep the surface mesh closely matched

to the isosurface. In addition, it is during this projection step that we detect the

regions where topological changes occur (to be discussed below). For an updated

vertex vi at xi after the advection step, we project the vertex onto the isosurface of

φ(x) by performing a binary search along the ray segment from xi to xi+εni where

ni is the vertex normal obtained from the discrete mean curvature computation.

The value of ε is sign(φ(xi)) · ra where φ(xi) is the evaluation of the isovalue at vi

and ra is a global constant representing the average particle spacing. The value of

ra is used 0.04 in our examples. When φ(xi) ·φ(xi+ εni) ≤ 0, we refine the interval

until the new vertex is located where the isovalue is close enough to zero or until

the maximum number of iterations has been performed. For all examples in this

chapter, we use four iterations and the value of 0.001 for the isovalue threshold.

53

Task 4: This projection step will fail if φ(xi) · φ(xi + εni) ≥ 0, because we

cannot locate the zero isovalue position along the ray. This condition signals a

topological change — the isosurface of φ(x) has either merged or split, so we need

to merge or split the surface mesh as well in order for it to remain consistent with

the simulation. Topological merges may produce vertices inside the fluid volume

with a positive isovalue, while topological splits may produce vertices out outside

the fluid volume with a negative isovalue. For both cases, we first move vi to

xi + εni in case |φ(xi + εni)| < |φ(xi)|. We also set a topology change flag that

indicates that we need to identify and fix such local changes. We then use the

method of Wojtan et al. [2009] described in Section 5.1.1 to repair the topology of

the mesh.

It is worth mentioning that by projecting the surface mesh onto the SPH isosur-

face, we sacrifice one benefit of using an explicit mesh — that it can easily represent

thin features. We can easily allow these thin sheets if we advect the surface mesh

without projection. Unfortunately, ignoring the projection would lead to drift in

the simulation (either the surface drifting too far away from the SPH particles, or

the SPH particles drifting far outside of the surface mesh). One way to correct

this drift is to re-sample the SPH particles inside the surface mesh. However, con-

tinual re-sampling negates the Lagrangian benefits of SPH, ultimately leading to

an inefficient meshless approximation of an Eulerian method. Instead, we chose

to project the surface mesh onto the SPH isosurface in order to remain faithful to

the Lagrangian simulation.

54

5.1.1 Repairing the Topology of the Mesh

The method of Wojtan et al. performs a local re-meshing of the surface mesh

in order to handle the topology changes. We refer the reader to [Wojtan et al.,

2009] for details of resolving topology changes of the mesh, but we briefly outline

the steps here. After the projection step, we calculate a signed distance field D on

a regular grid for the surface mesh. In our examples, the value of the grid is 0.002.

Since topological changes only occur at the grid cells that intersect with the mesh,

we calculate signed distances only for those cells and we mark them as “surface

cells”. Specifically, we calculate the distances to the nearby triangles from each

grid point of the surface cell and take the minimum as the exact distance for that

point. Then we flag grid points as inside of the mesh or outside of the mesh by

the voxelization technique described in [Müller, 2009]. We assign positive signed

distance to the points inside and assign negative signed distance to the points

outside.

We now have three different surfaces: the levelset of φ(x), one is defined as a

surface mesh and the other defined by a zero level-set L of D. This signed distance

field D (and not the implicit function φ(x)) will be used to recognize grid cells that

require changing the mesh. We first mark each cell as a “complex-cell” in which the

explicit mesh surface is connected significantly differently than the level-set, i.e.

the eight corner samples of the distance field disagrees with the mesh in terms of

topology. Specifically, a cell is marked as a complex cell if any of its edge intersects

with the surface mesh more than once, or any of its face intersects the surface mesh

in the shape of a closed loop, or it has the same sign of the signed distance function

at its all eight corners while also having explicit geometry of the mesh inside of

it. Complex cells contrast the inconsistent regions between the explicit mesh and

55

the levelset. However, we do not want to re-sample the explicit mesh on all of

the complex cells to preserve the surface details such as sharp corners. We further

mark some of complex cells as “deep cells” and perform topological changes only

to those deep cells. We ignore any complex cells that are close within one cell to

both surface representations. We only mark a complex cell as a deep cell that is

at least one cell away from the level-set.

Next, we alter the topology of the surface mesh in the deep cells. The surface

mesh is clipped to these cells, and the polygons inside such cells are removed. New

triangles are created using Marching Cubes inside these deep cells, and these trian-

gles are sewn together with the mesh at the cell faces. This approach handles most

of the topology change mesh events, including surface merging, surface splitting

and other self-intersection events at the resolution of the grid.

The topological event that the above procedure does not handle is a sub-grid

scale splitting event, as occurs with a droplet pinch-off. We treat this case as

in [Wojtan et al., 2010], during edge collapse operations of Task 2. As illustrated

in Figure 5.1, when a short edge is identified for collapse, we first check to see

whether the edge is part of a thin tunnel surrounded by a ring of three edges

that would be flattened if the edge were to be collapsed. Such a case indicates a

topological split, and we do not perform the edge collapse. Instead, we replicate

the vertices along the ring of edges, separate the mesh into two parts at this ring,

and cap off these rings with one triangle each.

56

Figure 5.1: Replication of the ring edges. Left:A red colored edge is flagged for the
collapse operation. Right: Instead of collapsing the edge, the mesh is separated
by replicating the ring edges into the blue colored triangles.

57

5.2 Surface Property Advection

By maintaining the explicit surface mesh representation, we are able to easily

track surface quantities such as colors, textures or physical properties. We choose

to carry surface quantities on the mesh vertices because the interpolation and

extrapolation schemes at vertices are straightforward. As the surface mesh is ad-

vected, a local re-meshing happens when we perform edge operations or topological

changes.

When a new vertex is created by the edge split operation, the properties in one-

ring neighbor vertices are linearly averaged according to the edge length weight.

When two vertices are merged by the edge collapse operation, two properties are

averaged on a new vertex. In the event of topological changes, we remove local

invalid mesh patches and replace them with newly created correct topology trian-

gle patches. To assign surface properties to the newly created vertices, all vertices

connected to an original mesh vertex (one that was not replaced by the topologi-

cal operation) are assigned extrapolated properties from the original vertices and

pushed into a queue. Then we propagate the properties of the original vertices

to the interior of the patch by iteratively popping the vertex at the front of the

queue, extrapolating its properties onto the unvisited one-ring neighbor vertices,

and then pushing the neighbors into the queue. We could use more sophisticated

methods such as fast marching, but we found that our flood-fill approach is sim-

ple and accurate enough, especially because the size of newly created patches is

usually fairly small.

The main benefit of tracking surface quantities using the explicit mesh is that

we introduce little dissipation of the quantities over time. Most mesh vertices

are carried across many time steps undisturbed, and thus the properties at these

58

vertices remain untouched. This is in contrast to mesh-based surface tracking

methods that perform global re-meshing at each time step.

Another benefit of keeping an explicit representation is that we can delay the

quantity tracking and perform it as a post-process. Instead of transferring surface

quantities during the simulation, we can make a separate sequence by storing each

quantity transferring process per-timestep. That is, for each newly created vertex

we make a list of the influencing vertices and their weights. Once we build this

transferring sequence, we can track different quantities on the identical simulation.

The most interesting application of this post-processing approach to tracking sur-

face properties is the generation of surface waves on a mesh sequence. We refer

readers Section 5.6 for the details of this method.

5.3 Surface Tension Models

We now want to apply surface tension to the SPH particles as a body force.

The curvature normal at each mesh vertex is computed by applying the discrete

mean curvature operator on the surface mesh. We then create a per-vertex surface

tension force and transfer these forces to the SPH particles. To do this, we first

insert mesh vertices into a hash table. Then for each particle, we locate the nearby

mesh vertices within the SPH smoothing radius. For a near boundary particle pi

that has mesh vertices nearby, the surface tension force fi is given by:

fi = γ
∑
j

WijAjκj/
∑
j

WijAj, (5.3)

where γ is the surface tension coefficient, Wij is the SPH smoothing kernel

evaluation on a distance between particle i and vertex j, and κj is the curvature

59

normal of vertex j. The value Aj is the area of the mesh closest to vertex j, that

is, Aj is one-third of the sum of the area of the triangles adjacent to j. We use

the shape operator of Meyer et al. [2002] to calculate the curvature κj from the

one-ring of triangles around vertex j. We use area-based weights to generate the

surface tension forces of Equation 5.3 since small area triangles are often obtuse

and Meyer’s approach is unstable for such poorly-shaped triangles. By weighting

these curvature estimates using triangle areas, we are able to attenuate the noise

caused by these cases.

The double density relaxation method [Clavet et al., 2005] and the molecular

cohesive force approach [Becker and Teschner, 2007] also result in the effect of

surface tension. In these formulations, the surface tension is rather an emergent

feature from the methods and the tension force is not induced from the mean

curvature of the fluid surface. In contrast, our surface tension model captures the

detailed curvature from the explicit surface representation and the tension force is

explicitly induced from the fluid surface.

The color field approaches to surface tension [Müller et al., 2003], [Hu and

Adams, 2006] suffer from numerical errors caused by irregular particle samples.

In contrast, our approach is unaffected by the particle distribution because the

curvature information on the surface is computed from the high resolution mesh

representation. We refer readers Section 5.6 for the comparison of our approach

with one of the previous SPH tension approaches.

60

5.4 Small Scale Surface Dynamics

Our mesh-based surface tension induces forces on the SPH particles, and causes

smoothing of the fluid that is characteristic of small-scale flows. There is, how-

ever, another phenomena due to surface tension that would be computationally

prohibitive to simulate using forces on particles, namely capillary waves. Capil-

lary waves are nonlinear waves traveling on the surface of a fluid, whose dynamics

are dominated by the effects of surface tension. We take a different approach to

simulating this phenomena, and in particular we simulate this form of wave prop-

agation directly on the surface mesh. In order to do this, we treat these waves as

displacements from a base mesh in the normal direction. These displacements are

properties that we store directly on the mesh vertices, much like color values.

We perform our surface wave physics on a dynamic surface mesh D that is

constructed from a base surface mesh B that represents the fluid surface. Initially,

D is just a duplicate of the base mesh B. At each simulation step, we perform

surface wave dynamics on D and the updated displacements of D are stored back

on B and carried to the next step by advecting B. Similar to the wave equation

model used in [Wang et al., 2007] and [Thürey et al., 2010], we allow the vertices

of D to move along the normal rays of the corresponding vertices of B. We store

the height scalar h and a scalar representing the normal component of the velocity

v from D on the corresponding vertices in B. By maintaining the configuration of

D as scalar quantities on the vertices of B, tracking D is simple under topological

events or edge operations. That is, we treat h and v as surface quantities (similar

to color) and assign influence values on the newly created vertices using the method

described in Chapter 5.2.

We use a thin-plate bending energy model that is similar to [Williams, 2008]

61

and [Bergou et al., 2006] for our surface wave simulation. The method of Thüery

et al. [2010] computes a surface tension model at the highest resolution by solving

a wave equation on the surface. As mentioned in their paper, this linearized ap-

proximation is limited by an unphysical, user-specified constant wave speed, while

natural capillary waves experience a wave speed dependent on the wave number.

By directly modeling bending energy instead of the linearized wave equation, we

successfully generate small waves at varying speeds, which appear visually less dis-

turbing. To overcome numerical drift and volume loss of D under bending energy

minimization, we add a shaping energy force by linking linear springs from the

vertices of D to the corresponding vertices of B.

We model bending energy as a weighted surface bilaplacian as described in

[Williams, 2008]. Given a dynamic mesh with n vertices, let W be a 3n × 3n

matrix representing angle cotangent weights, let A be a 3n × 3n diagonal matrix

representing scaled vertex areas, and let X be a 3n× 1 vector representing vertex

locations, so that the discretized curvature normal is expressed as A−1WX. We

approximate bending energy as:

Eb = kbX
T (W TA−1W)X, (5.4)

where kb is a bending stiffness coefficient. By assigning lumped mass on the

surface, the discrete shape energy is formulated as:

Es =
ks
2

(X −Xb)
TA(X −Xb), (5.5)

where Xb is a vector representing vertex locations of the base mesh B and ks is

a spring stiffness coefficient. Xb remains unchanged during the surface dynamics

62

integration to provide a reference mesh location. The total kinetic energy of the

surface is given to be T = 1
2
ẊTAẊ. From the Lagrangian L = T − (Eb +Es), the

Euler-Lagrange equation is given as:

Ẍ = 2kb(A
−1W)2X + ks(X −Xb). (5.6)

To ensure that our capillary waves propagate over long distances and do not

dissipate too early, we apply a variational integrator [Stern and Desbrun, 2006] to

the Lagrangian and obtain a symplectic Euler method for our time integration rule.

For each SPH simulation step, we perform 5 ∼ 10 iterations of wave dynamics.

The wave frequency is proportional to ks and the wave height is proportional to

kb. W and A are recomputed at every iteration as D is updated. Instead of

explicitly constructing W and A matrices, we exploit the mesh connectivity to

compute (A−1W)2X: First, A−1WX is computed by gathering from the one-ring

neighbors of each vertex and storing the computed value back on each vertex. In

a similar fashion, A−1W (A−1WX) is computed by gathering the stored values of

the one-ring neighbor of each vertex.

We found that the bending force becomes noisy when D is displaced more than

the average edge length from B due to poorly-shaped triangles. To maintain a

higher mesh quality, we project the location of vertices in D onto the vertex normal

ray of the corresponding vertices in B. As long as these displacements are small

enough, this is justifiable since the volume preserving curvature flow runs along

the normal direction. This adds a small but acceptable amount of viscosity. We

can manually introduce energy dissipation by adding velocity damping. Taming

the wave height can be done by clamping the height above a fixed limit. We can

also turn off surface waves for small features and high curvature regions based on

63

the curvature information of the base mesh B.

5.5 Implementation Overview

Throughout the Chapter 5, we introduce three different time scales for the

proposed surface tracking method: the SPH simulation time step, the rendering

frame rate and the capillary waves simulation time step. For SPH simulations,

we use a fixed SPH simulation time step 0.0002s (5000 fps) to evolve the particle

system. For the high quality rendering of the surfaces, we use various frame rates

of 30, 60 or 120fps, i.e. one simulation step out of every few hundred steps is chosen

for the high quality rendering. Capillary waves simulation are decoupled from the

SPH simulation and performed on the dynamics mesh D between simulation steps.

A fixed time step of 0.001s is used for running our capillary wave examples.

In order to exploit the benefits of the explicit mesh tracking, it is crucial to

employ a simple and efficient data structure for the mesh connectivity represen-

tation and the mesh traversal. For our explicit mesh representations, we decided

to use the corner table (CT) structure [Safonova and Szymczak, 2003] to perform

edge operations and traverse one-ring neighbors of a vertex. Regarding the edge

operations, an edge e is split if l(e) > αra and is collapsed, if l(e) < βra, where

l(e) is the length of e and ra is the average particle spacing. To prevent oscillatory

splits and collapses, β should be smaller than half of α. We use α = 2 and β = 0.5

for all our simulations.

In our tracking method, the neighborhood search is a globally employed routine

used in various situations. It is used for the velocity interpolation (5.2) from SPH

particles to mesh vertices, and the mean curvature force interpolation from mesh

64

vertices to SPH particles (5.3). SPH simulation itself heavily uses the neighbor-

hood search to compute density and force of particles. Our surface reconstruction

method [Yu and Turk, 2010] also determines the anisotropic kernels according to

the neighboring particle distributions. Furthermore, during the projection step,

we use the neighborhood search for evaluating the iso-value several times in order

to couple the explicit mesh with the implicit iso-surface. We use a single-threaded

CPU implementation of the spatial hash grid to perform the neighborhood search.

Although the hash grid is well suited for unbounded simulations, it is the major

computational bottleneck for our approach. In the future, we plan to implement a

parallel version of the hash grid structure on GPU to gain significant performance

improvements over the surface tracking, reconstruction and the SPH simulation,

compared to the current timings shown in Table 5.1.

5.6 Results

We have used our mesh-based surface tracker to produce several SPH anima-

tions, and we describe them in this section.

Figure 5.2 shows an example of a Raleigh-Plateau instability. The initial con-

dition for this example is a dumbbell in zero gravity. Due to the surface tension

forces (induced by the surface mesh), portions of the bar become thin and even-

tually pinch off. This illustrates that our mesh surfaces can undergo topological

splits. As can be seen in our video, the separation of these components also induce

ripples on the surface of the different drops. In this example, these ripples are

purely based on the positions of the SPH particles, and no mesh-based dynamics

is used. This simulation used 7,279 particles.

65

Figure 5.2: A dumbbell in zero gravity exhibits pinch-off due to surface tension
effects (Rayleigh-Plateau instability). Later in this animation the separate com-
ponents re-join each other.

Figures 5.3 and 5.4 show various methods for carrying properties such as color

on the surface of an object that is represented using particles. In the sequence of

Figure 5.3, three highly viscous figures (a bunny, a cube, and an armadillo) are

dropped. The bunny and the armadillo spill over both sides of a bar, and they

all pool onto the floor. We use the vertices of our surface mesh to carry color

information for each of these three objects. We use an average edge length that

is one quarter of the average inter-particle distance, and this allows us to carry

a more fine resolution of color information than per-particle colors. Our method

blends color values when a mesh triangle becomes overly stretched, at which time

we subdivide the triangle and use interpolation to create a color value at the

new vertices. We also blend colors during topological changes to the mesh. The

surface of this material in this example is heavily stretched, yet the colors do not

blend together at their common borders. This simulation used 29,172 particles.

Figure 5.4 shows how our method compares to the logical alternatives. Part (a)

of this figure shows a color-per-particle view, which is the information used for

parts (b) and (c). Part (b) uses a distance-weighted average of per-particle colors.

66

Part (c) demonstrates coloring the surface mesh based on the color of the nearest

neighbor particle. Part (d) shows our mesh-based method of carrying colors.

The simulation of Figure 5.5 demonstrates two spheres of water merging in

zero gravity. This animation was produced using 12,532 particles. When the

drops merge, this causes ripples on the water’s surface. Along with the simulation,

we added surface dynamics to these drops based on the surface bilaplacian. Please

watch the accompanying video to observe the differences between these animations.

Figure 5.6 shows the effect of surface tension on a cube of water in zero gravity,

inspired by the example of [Brochu et al., 2010]. This was our lowest resolution

simulation, and used 4,096 particles. Our mesh-based surface tension rounds off

the corners of the cube and causes the bulk of the fluid to be drawn to a more

spherical shape. Due to the momentum of the fluid, the sphere shape is overshot

and the fluid moves to a nearly octahedral shape before being drawn back towards

the sphere. As can be seen in the accompanying video, this oscillation between the

cube and octahedron occurs several times before the fluid settles into a sphere. In

the video, we compare our results to the method of Becker and Teschner [2007].

Their particle-based surface tension approach also draws the cube towards a sphere,

but this motion is considerably more damped than the motion from using our

mesh-based surface tension forces.

Our final example is that of a water crown that was created by a falling drop

of water hitting the surface of a still pool (Figure 5.7). Note that this example

demonstrates numerous topological changes to the surface, and these are handled

by the local topology repair method. In Figure 1.2, we show opaque renderings

from two versions of this animation, one without surface dynamics and one that

adds surface ripples using our surface dynamics post-process. Note that in the

67

Figure 5.3: Three viscous figures with surface colors are dropped on a bar.

68

(a) (b)

(c) (d)

Figure 5.4: Comparison between different surface color tracking approaches on the
viscous figures animation.

69

Figure 5.5: Two spheres in zero gravity that merge and exhibit surface waves.

Figure 5.6: A cubic water drop that oscillates and settles into a sphere.

70

Table 5.1: Mesh resolution relative to the average particle spacing and average per
frame timings (in seconds) for our simulation examples.

Example Mesh Tracking Reconstruction Simulation Wave Total

Cube
0.5 0.54 0.24 1.15 N/A 1.93

(Figure 5.6)

Dumbbell
0.5 0.54 0.20 2.67 N/A 3.42

(Figure 5.2)

Two Sphere
0.5 1.767 5.08 3.69 11.41 21.70

(Figure 5.5)

Viscous Figures
0.25 41.08 24.37 22.49 N/A 87.94

(Figure 5.3)

Water Crown
0.37 46.87 38.54 63.32 24.57 173.31

(Figure 5.7)

version without the capillary ripples the surface around the water crown looks

unnaturally flat. The images in Figure 5.7 include the surface dynamics for added

realism. This was our largest simulation, and it required 200,000 particles to

simulate.

Although our method incurs a per-timestep cost of the mesh vertex projection,

it turns out that this projection does not adversely affect our running time. In

a typical timestep, most of our projections require just one implicit surface eval-

uation. In contrast, a high-quality Marching Cubes surface extraction requires a

root-finding step to locate the zero-value point along each edge, and this typically

requires around ten implicit surface evaluations (see [Bloomenthal, 1994] for de-

tails). Although the Marching Cubes surface extraction is needed only per-frame

and not per-timestep, the higher cost of the Marching Cubes is roughly equal to our

per-timestep projection cost for the examples in this section. In the zero-gravity

cube example of Figure 5.6, our surface tracking requires 0.78 seconds per frame,

while the Marching cubes requires 0.67 seconds per frame.

71

Figure 5.7: A drop falling into a shallow pool creates a water crown.

72

5.7 Limitations

There are a few limitations of our mesh-based surface tracking method. When

we use our surface wave dynamics as a post-process, we have to prohibit the cre-

ation of new waves by highly curved regions. If we do not take this step, then many

tiny waves are initiated and this quickly fills the entire surface with a noisy wave

field. Although the projection step matches the explicit surface with the boundary

of the particle volume, a small number of boundary particles with high velocity

occasionally escape the mesh volume, and the mesh tracker loses them until they

collide with the mesh again. We think that this can be corrected by evaluating

the sign distance of each particle with respect to the explicit mesh, and skinning

particles with a sphere mesh that are outside of the mesh. Another limitation of

our method is that our surface dynamics do not exactly preserve the volume of

the surface. This is not noticeable for large fluid volumes, but very small drops

can be seen to slightly oscillate in volume. We think that this can be corrected by

calculating the volume of each connected component and then re-scaling, but we

have not yet implemented this.

5.8 Conclusion and Future Work

We have introduced a new way of tracking SPH fluids that carries an explicit

surface mesh from one time step to the next. This approach allows us to create

surface tension forces, carry properties on the surface such as colors, and add

capillary waves to these dynamic surfaces.

There are several avenues for future work. One possibility is to re-sample SPH

particles nearby the high resolution surface mesh to resolve the resolution mis-

73

match, instead of projecting the surface mesh onto the isosurface. We expect

that re-sampling process can preserve thin and sharp features of the explicit mesh,

while the mesh still produces smoother SPH surfaces as well as support surface

tension and capillary waves. Our capillary wave model is orthogonal to the SPH

application as long as the explicit mesh is used for the surface tracking. It will be

interesting to apply capillary waves to other particle-based simulation or even Eu-

lerian simulations as a post-process. In addition, we want to validate the capillary

wave dynamics beyond visualization. In particular, we plan to investigate whether

our capillary wave formulation is stable or not. Another challenge is to use our

surface mesh to carry foam on the fluid surface in order to increase the visual

realism of SPH fluids. It is also possible is to perform dynamic texture synthesis

on SPH fluid surfaces, similar to the work of [Bargteil et al., 2006] and [Kwatra

et al., 2007]. Finally, there are other particle-based methods used for animation

besides SPH, and it is likely that our mesh tracking approach can be useful for

these other simulators.

74

Appendix A

Analysis on Volume Shrinkage

Our new approach applies a volume smoothing to sampled particles, and pulls

boundary particles inside. Typically, this results in the volume shrinkage when the

fluid surface is reconstructed. In this appendix, we estimate the maximum distance

between the original position and the smoothed position of a particle on a flat

surface. Suppose that a particle i is located at the origin of an Eulerian coordinate

system and the neighboring particles are continuously located in a hemisphere of

radius ri above the xy plane. Due to the spatial symmetry, the weighted mean

is on the positive z-axis. We compute the length of the weighted mean ‖xi‖

from (4.6) (4.8) using spherical coordinates. The numerator and the denominator

of ‖xwi ‖ are formulated as

‖
∑
j

wijxj‖ = 2π

∫ ri

0

∫ π
2

0

sin 2φ(r3 − r6r−3
i)drdφ, (7)

and ∑
j

wij = 2π

∫ ri

0

∫ π
2

0

sinφ(r2 − r5r−3
i)drdφ. (8)

75

A simple algebraic manipulation yields

‖xwi ‖ = 9ri/28. (9)

Using (4.3), we estimate a bound between the particle position xi and the updated

position xi after the volume smoothing by

‖xi − xi‖ = ‖λ(xwi − xi)‖ ≤ 9λri/28. (10)

With λ = 0.9, ri = 2hi used in our examples, we obtain ‖xi − xi‖ ≤ 0.58hi. Since

the extracted isosurface encloses xi’s, the maximal distance from the reconstructed

surface to the simulation particles is less than 0.58hi. This analysis shows that the

volume shrinkage effect does not cause significant visual artifacts, since hi is small

compared to the size of simulation domain. In fact, the volume shrinkage of our

method results in surface erosion which often generates thin features. The surface

erosion method proposed in [Williams, 2008] has a risk of creating non-manifold

surfaces such as self-intersecting surfaces. In contrast, our new approach produces

an eroded surface as a manifold, since we erode particles instead of a polygonal

mesh.

76

Appendix B

Source Code

This appendix contains the verbatim source code used to compute anisotropic

kernels for the particles samples. First, we have StretchParticles, the top

level function for determining anisotropic kernels of each particle.

void StretchParticles() {
enum {kTensorScale=2, kMatrixScale=1600};

static const TS radius_tensor =
interaction_radius_*kTensorScale;

static const int neighbor_size_max =
4*kPi*cube(radius_tensor)*rest_density_/(3*particle_mass_);

static const int reserved_cell_size =
3*cube(radius_tensor)*rest_density_/particle_mass_;

static SpatialPartitionUniGrid<TV>
uni_grid(bounding_box_,radius_tensor,reserved_cell_size);

static SpatialPartitionUniGrid<TV>::PairListType pair_list;

uni_grid.AssignPointList(particles_.x_);

particles_aniso_.Resize(particles_.Size());
particles_aniso_.r_ = particles_.r_;

for(size_t i=0; i<particles_.Size(); ++i) {
TV center;

77

uni_grid.QueryPairCenter(particles_.x_[i], particles_.x_,
pair_list, center);

TV center_of_mass(TV::Zero());
TS total_mass(0);
vector<TS> neighbor_weight;
neighbor_weight.reserve(neighbor_size_max);
int small_neighbor(0);

// check inner volume particles
// check density and the neighbor size.
static const size_t neighbor_size_e =

neighbor_size_max*0.9;
if(OPT && pair_list.size() > neighbor_size_e) {

particles_aniso_.x_[i] = particles_.x_[i];
particles_aniso_.scale_[i].setIdentity();
particles_aniso_.rot_[i].setIdentity();
particles_aniso_.G_[i].setIdentity();
particles_aniso_.scale_min_sqr_[i] = 1;

continue;
}

for(size_t k=0; k<pair_list.size(); ++k) {
const size_t id = pair_list[k].first;

TS weight;
// check connected component info
if(CC && particles_.comp_[i] != particles_.comp_[id])

weight = 0;
else

weight = ComputePCAKernel(pair_list[k].second*0.5);

center_of_mass += particles_.x_[id]*weight;
total_mass += weight;
neighbor_weight.push_back(weight);

if(weight < 0.5) small_neighbor++;
}
center_of_mass /= total_mass;
particles_aniso_.x_[i] =

particles_.x_[i]*0.1+center_of_mass*0.9;

TM D;

78

// compute a covariance tensor D
for(size_t k=0; k<pair_list.size(); ++k) {

const size_t id = pair_list[k].first;
const TV d = particles_.x_[id] - center_of_mass;
D += neighbor_weight[k]*Outer_Product(d);

}
D /= total_mass;

TV& S = particles_aniso_.scale_[i];
TM& V = particles_aniso_.rot_[i];

// do the SVD analysis
EigenSolve(D, S, V);

// prevent too much deformation
static const TS maxRatio = 4;
if(S(0)> maxRatio*S(2)) {
S(2) = S(0)/maxRatio;
S(1) = max(S(2), S(1));

}
S *= kMatrixScale;

if(small_neighbor < 4)
S = TV(0.5,0.5,0.5);

particles_aniso_.G_[i] =
V*TV(1/S(0),1/S(1),1/S(2)).asDiagonal()*V.transpose();

}
}

EigenSolve and its sub-level functions implement a matrix decomposition algo-

rithm that is specialized for symmetric 3 real matrices.

void EigenSolve(const TM& D, TV& S, TM& V) {
// D is symmetric
// S is a vector whose elements are eigenvalues
// V is a matrix whose columns are eigenvectors
S = EigenValues(D);

TV V0,V1,V2;

79

if(S(0) - S(1) > S(1) - S(2)) {
V0 = EigenVector(D,S(0));

if(S(1) - S(2) < numeric_limits<TS>::epsilon()) {
V2 = Orthogonal(V0);

} else {
V2 = EigenVector(D,S(2));
V2 -= V0*V0.dot(V2);
V2.normalize();

}

V1 = V2.cross(V0);
} else {

V2 = EigenVector(D,S(2));

if(S(0) - S(1) < numeric_limits<TS>::epsilon()) {
V1 = Orthogonal(V2);

} else {
V1 = EigenVector(D,S(1));
V1 -= V2*V2.dot(V1);
V1.normalize();

}

V0 = V1.cross(V2);
}

V << V0(0), V1(0), V2(0),
V0(1), V1(1), V2(1),
V0(2), V1(2), V2(2);

}

// D is symmetric, S is an eigen value
TV EigenVector(const TM& D, const TS S) {
// Compute a cofactor matrix of D - sI.
TM F = D;
F(0,0) -= S; F(1,1) -= S; F(2,2) -= S;

// Use an upper triangle
TM C;
C(0,0) = F(1,1)*F(2,2)-sqr(F(1,2));
C(0,1) = F(1,2)*F(0,2)-F(0,1)*F(2,2);
C(0,2) = F(0,1)*F(1,2)-F(1,1)*F(0,2);
C(1,1) = F(0,0)*F(2,2)-sqr(F(0,2));
C(1,2) = F(0,1)*F(0,2)-F(0,0)*F(1,2);

80

C(2,2) = F(0,0)*F(1,1)-sqr(F(0,1));

// Get a column vector with a largest norm (non-zero).
TS norm[3];
norm[0] = sqr(C(0,0))+sqr(C(0,1))+sqr(C(0,2));
norm[1] = sqr(C(0,1))+sqr(C(1,1))+sqr(C(1,2));
norm[2] = sqr(C(0,2))+sqr(C(1,2))+sqr(C(2,2));

const int index =
IndexOfLargestValue(norm[0],norm[1],norm[2]);

TV V;

// special case
if(norm[index] == 0) {

V(0) = 1; V(1) = 0; V(2) = 0; return V;
} else if(index == 0) {

V(0) = C(0,0); V(1) = C(0,1); V(2) = C(0,2);
} else if(index == 1) {

V(0) = C(0,1); V(1) = C(1,1); V(2) = C(1,2);
} else {

V(0) = C(0,2); V(1) = C(1,2); V(2) = C(2,2);
}

return V.normalized();
}

// D is symmetric
TV EigenValues(const TM& D) {

static const TS one_third(1/(TS)3.0);
static const TS one_sixth(1/(TS)6.0);
static const TS three_sqrt(sqrt((TS)3.0));

const TS m = one_third*D.trace();

// K is D - I*diag(S)
const TS K00 = D(0,0)-m;
const TS K11 = D(1,1)-m;
const TS K22 = D(2,2)-m;

const TS K01s = sqr(D(0,1));
const TS K02s = sqr(D(0,2));
const TS K12s = sqr(D(1,2));

81

const TS q =
0.5*(K00*(K11*K22-K12s)-K22*K01s-K11*K02s)+
D(0,1)*D(1,2)*D(2,0);

const TS p =
one_sixth*(sqr(K00)+sqr(K11)+sqr(K22)+2*(K01s+K02s+K12s));

const TS p_sqrt = sqrt(p);

const TS tmp = cube(p) - sqr(q);
const TS phi = one_third*atan2(sqrt(max((TS)0,tmp)),q);

const TS phi_c = cos(phi);
const TS phi_s = sin(phi);

const TS sqrt_p_c_phi = p_sqrt*phi_c;
const TS sqrt_p_3_s_phi = p_sqrt*three_sqrt*phi_s;

TV S;

S(0) = m+2*sqrt_p_c_phi;
S(1) = m-sqrt_p_c_phi-sqrt_p_3_s_phi;
S(2) = m-sqrt_p_c_phi+sqrt_p_3_s_phi;

Sort(S(0),S(1),S(2));

return S;
}

82

Bibliography

[Adams and Wicke, 2009] Bart Adams and Martin Wicke. Meshless approxima-

tion methods and applications in physics based modeling and animation. In

Eurographics 2009 Tutorials, pages 213–239, 2009.

[Adams et al., 2007] Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J.

Guibas. Adaptively sampled particle fluids. ACM Trans. Graph., 26(3):48, 2007.

[Bargteil et al., 2005] Adam W. Bargteil, Tolga G. Goktekin, James F. O’Brien,

and John A. Strain. A semi-lagrangian contouring method for fluid simulation.

In SIGGRAPH ’05: Proceedings of the ACM SIGGRAPH 05 electronic art and

animation catalog, pages 238–238, New York, NY, USA, 2005. ACM Press.

[Bargteil et al., 2006] Adam W. Bargteil, Funshing Sin, Jonathan E. Michaels,

Tolga G. Goktekin, and James F. O’Brien. A texture synthesis method for liquid

animations. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium

on Computer Animation, Sept 2006.

[Bargteil et al., 2007] A.W. Bargteil, C. Wojtan, J.K. Hodgins, and G. Turk. A

finite element method for animating large viscoplastic flow. ACM Trans. on

Graphics (Proc. SIGGRAPH), 26(3):16–1, 2007.

83

[Becker and Teschner, 2007] M. Becker and M. Teschner. Weakly compressible

SPH for free surface flows. In Proceedings of the 2007 ACM SIGGRAPH/Eu-

rographics symposium on Computer animation, pages 209–217. Eurographics

Association, 2007.

[Bergou et al., 2006] M. Bergou, M. Wardetzky, D. Harmon, D. Zorin, and

E. Grinspun. A quadratic bending model for inextensible surfaces. In Pro-

ceedings of the fourth Eurographics symposium on Geometry processing, pages

227–230. Eurographics Association, 2006.

[Blinn, 1982] J.F. Blinn. A generalization of algebraic surface drawing. ACM

Transactions on Graphics (TOG), 1(3):235–256, 1982.

[Bloomenthal, 1994] J. Bloomenthal. An implicit surface polygonizer. Graphics

gems IV, 1:324–349, 1994.

[Brochu and Bridson, 2009] Tyson Brochu and Robert Bridson. Robust topologi-

cal operations for dynamic explicit surfaces. SIAM Journal on Scientific Com-

puting, 31(4):2472–2493, 2009.

[Brochu et al., 2010] Tyson Brochu, Christopher Batty, and Robert Bridson.

Matching fluid simulation elements to surface geometry and topology. ACM

Trans. Graph., 29(4):1–9, 2010.

[Carchidi, 1986] M Carchidi. A method for finding the eigenvectors of an n x n

matrix corresponding to eigenvalues of multiplicity one. Am. Math. Monthly,

93:647–649, October 1986.

84

[Clavet et al., 2005] S. Clavet, P. Beaudoin, and P. Poulin. Particle-based vis-

coelastic fluid simulation. In Proceedings of the 2005 ACM SIGGRAPH/Euro-

graphics symposium on Computer animation, pages 219–228. ACM, 2005.

[Desbrun and Cani, 1998] Mathieu Desbrun and Marie-Paule Cani. Active im-

plicit surface for animation. In Wayne A. Davis, Kellogg S. Booth, and Alain

Fournier, editors, Graphics Interface 1998, June, 1998, pages 143–150, Van-

couver, BC, Canada, June 1998. Canadian Human-Computer Communications

Society. Published under the name Marie-Paule Cani-Gascuel.

[Desbrun et al., 1999] Mathieu Desbrun, Mark Meyer, Peter Schröder, and

Alan H. Barr. Implicit fairing of irregular meshes using diffusion and curvature

flow. In Proceedings of the 26th annual conference on Computer graphics and

interactive techniques, SIGGRAPH ’99, pages 317–324, New York, NY, USA,

1999. ACM Press/Addison-Wesley Publishing Co.

[Dinh et al., 2001] H.Q. Dinh, G. Turk, and G. Slabaugh. Reconstructing surfaces

using anisotropic basis functions. In Computer Vision, 2001. ICCV 2001. Pro-

ceedings. Eighth IEEE International Conference on, volume 2, pages 606–613.

IEEE, 2001.

[Du et al., 2006] J. Du, B. Fix, J. Glimm, X. Jia, X. Li, Y. Li, and L. Wu. A simple

package for front tracking. Journal of Computational Physics, 213(2):613–628,

2006.

[Enright et al., 2002] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid

particle level set method for improved interface capturing. Journal of Compu-

tational Physics, 183(1):83–116, 2002.

85

[Enright et al., 2005] D. Enright, F. Losasso, and R. Fedkiw. A fast and accu-

rate semi-Lagrangian particle level set method. Computers & Structures, 83(6-

7):479–490, 2005.

[Goktekin et al., 2004] Tolga G. Goktekin, Adam W. Bargteil, and James F.

O’Brien. A method for animating viscoelastic fluids. ACM Transactions on

Graphics (Proc. of ACM SIGGRAPH 2004), 23(3):463–468, 2004.

[Hong and Kim, 2005] Jeong-Mo Hong and Chang-Hun Kim. Discontinuous fluids.

ACM Trans. Graph., 24:915–920, July 2005.

[Hu and Adams, 2006] XY Hu and NA Adams. A multi-phase SPH method

for macroscopic and mesoscopic flows. Journal of Computational Physics,

213(2):844–861, 2006.

[Kalaiah and Varshney, 2003] A. Kalaiah and A. Varshney. Statistical point ge-

ometry. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium

on Geometry processing, page 115. Eurographics Association, 2003.

[Kang et al., 2000] M. Kang, R.P. Fedkiw, and X.D. Liu. A boundary condition

capturing method for multiphase incompressible flow. Journal of Scientific Com-

puting, 15(3):323–360, 2000.

[Kim et al., 2009] Doyub Kim, Oh-Young Song, and Hyeong-Seok Ko. Stretching

and wiggling liquids. ACM Transactions on Graphics, 28(5):120, 2009.

[Kopp, 2008] Joachim Kopp. Efficient numerical digonalization of hermitian 3 x 3

matrices. International Journal of Modern Physics C, 19(03):523–548, 2008.

86

[Koren and Carmel, 2003] Yehuda Koren and Liran Carmel. Visualization of la-

beled data using linear transformations. In Proceedings of the Ninth annual IEEE

conference on Information visualization, INFOVIS’03, pages 121–128, Washing-

ton, DC, USA, 2003. IEEE Computer Society.

[Kwatra et al., 2007] V. Kwatra, D. Adalsteinsson, T. Kim, N. Kwatra, M. Carl-

son, and M. Lin. Texturing fluids. IEEE transactions on visualization and

computer graphics, pages 939–952, 2007.

[Liu and Liu, 2003] G. R. Liu and M. B. Liu. Smoothed particle hydrodynamics:

a meshfree particle method. World Scientific Publishing, 2003.

[Liu et al., 2006] M. B. Liu, G. R. Liu, and K. Y. Lam. Adaptive smoothed particle

hydrodynamics for high strain hydrodynamics with material strength. Shock

Waves, 15:21–29, March 2006.

[Lorensen and Cline, 1987] William E. Lorensen and Harvey E. Cline. Marching

cubes: A high resolution 3d surface construction algorithm. In SIGGRAPH ’87:

Proceedings of the 14th annual conference on Computer graphics and interactive

techniques, pages 163–169, New York, NY, USA, 1987. ACM.

[Losasso et al., 2004] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and

smoke with an octree data structure. ACM Transactions on Graphics (TOG),

23(3):457–462, 2004.

[Lucy, 1977] L Lucy. A numerical approach to the testing of the fission hypothesis.

Astronomical J., 82:1013–1024, 1977.

87

[Meyer et al., 2002] M. Meyer, M. Desbrun, P. Schröder, and A.H. Barr. Discrete

differential-geometry operators for triangulated 2-manifolds. Visualization and

mathematics, 3(7):34–57, 2002.

[Monaghan and Gingold, 1977] J Monaghan and R.A. Gingold. Smoothed particle

hydrodynamics-theory and application to nonspherical starts. Mon. Not. R.

Astron. Soc., 181:357, 1977.

[Monaghan, 1994] J. Monaghan. Simulating free surface flows with sph. J. Com-

put. Phys., 110(2):399–406, 1994.

[Monaghan, 2005] J Monaghan. Smoothed particle hydrodynamics. Rep. Prog.

Phys., 68:1703–1759, 2005.

[Müller et al., 2003] Matthias Müller, David Charypar, and Markus Gross.

Particle-based fluid simulation for interactive applications. In SCA ’03: Pro-

ceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer

animation, pages 154–159, Aire-la-Ville, Switzerland, Switzerland, 2003. Euro-

graphics Association.

[Müller, 2009] M. Müller. Fast and robust tracking of fluid surfaces. In Proceedings

of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Anima-

tion, pages 237–245. ACM, 2009.

[Osher and Sethian, 1988] S. Osher and J.A. Sethian. Fronts propagating with

curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations.

Journal of computational physics, 79(1):12–49, 1988.

88

[Owen et al., 1998] J.M. Owen, J.V. Villumsen, P.R. Shapiro, and H. Martel.

Adaptive smoothed particle hydrodynamics: Methodology. ii. The Astrophysical

Journal Supplement Series, 116(2):155–209, 1998.

[Premoze et al., 2003] Simon Premoze, Tolga Tasdizen, James Bigler, Aaron

Lefohn, and Ross T. Whitaker. Particle-based simulation of fluids. In Pro-

ceedings of Eurographics 2003, pages 401–410, 2003.

[Rasmussen et al., 2004] N. Rasmussen, D. Enright, D. Nguyen, S. Marino,

N. Sumner, W. Geiger, S. Hoon, and R. Fedkiw. Directable photorealistic liq-

uids. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on

Computer animation, pages 193–202. Eurographics Association, 2004.

[Safonova and Szymczak, 2003] J.R.A. Safonova and A. Szymczak. Edgebreaker

on a corner table: A simple technique for representing and compressing triangu-

lated surfaces. Hierarchical and geometrical methods in scientific visualization,

page 41, 2003.

[Sifakis et al., 2007] E. Sifakis, T. Shinar, G. Irving, and R. Fedkiw. Hybrid sim-

ulation of deformable solids. In Proceedings of the 2007 ACM SIGGRAPH/Eu-

rographics symposium on Computer animation, pages 81–90. Eurographics As-

sociation, 2007.

[Sin et al., 2009] F.S. Sin, A.W. Bargteil, and J.K. Hodgins. A point-based method

for animating incompressible flow. In Proceedings of the ACM SIGGRAPH/Eu-

rographics Symposium on Computer Animation, 2009.

[Smith, 1961] O.K. Smith. Eigenvalues of a symmetric 3× 3 matrix. Communica-

tions of the ACM, 4(4):168, 1961.

89

[Solenthaler and Pajarola, 2008] Barbara Solenthaler and Renato Pajarola. Den-

sity contrast sph interfaces. In Proceedings of ACM SIGGRAPH / EG Sympo-

sium on Computer Animation, pages 211–218, 2008.

[Stam, 1999] Jos Stam. Stable fluids. In Proceedings of the 26th annual conference

on Computer graphics and interactive techniques, SIGGRAPH ’99, pages 121–

128, New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[Stern and Desbrun, 2006] A. Stern and M. Desbrun. Discrete geometric mechan-

ics for variational time integrators. In SIGGRAPH ’06: ACM SIGGRAPH 2006

courses, pages 75–80, New York, NY, USA, 2006. ACM.

[Taubin, 2000] G. Taubin. Geometric signal processing on polygonal meshes. Eu-

rographics State of the Art Reports, 4(3), 2000.

[Thürey et al., 2010] Nils Thürey, Chris Wojtan, Markus Gross, and Greg Turk.

A multiscale approach to mesh-based surface tension flows. In SIGGRAPH ’10:

ACM SIGGRAPH 2010 papers, pages 1–10, New York, NY, USA, 2010. ACM.

[Wang et al., 2007] H. Wang, G. Miller, and G. Turk. Solving general shallow

wave equations on surfaces. In Proceedings of the 2007 ACM SIGGRAPH/Eu-

rographics symposium on Computer animation, pages 229–238. Eurographics

Association, 2007.

[Williams, 2008] Brent Warren Williams. Fluid surface reconstruction from par-

ticles. Master’s thesis, The University of British Columbia, Canada, February

2008.

[Wojtan and Turk, 2008] Chris Wojtan and Greg Turk. Fast viscoelastic behavior

with thin features. ACM Trans. Graph., 27(3):1–8, 2008.

90

[Wojtan et al., 2009] C. Wojtan, N. Thürey, M. Gross, and G. Turk. Deforming

meshes that split and merge. In ACM SIGGRAPH 2009 papers, page 76. ACM,

2009.

[Wojtan et al., 2010] Chris Wojtan, Nils Thürey, Markus Gross, and Greg Turk.

Physics-inspired topology changes for thin fluid features. ACM Trans. Graph.,

29(4):1–8, 2010.

[Yu and Turk, 2010] Jihun Yu and Greg Turk. Reconstructing surfaces of particle-

based fluids using anisotropic kernels. In Proceedings of the 2010 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, SCA ’10, pages

217–225, Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics Associa-

tion.

[Zhang, 2010] M. Zhang. Simulation of surface tension in 2D and 3D with

smoothed particle hydrodynamics method. Journal of Computational Physics,

229:7238–7259, 2010.

[Zhu and Bridson, 2005] Y. Zhu and R. Bridson. Animating sand as a fluid. In

ACM SIGGRAPH 2005 Papers, page 972. ACM, 2005.

91

	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	Surface Reconstruction for Particle Based Fluids Using Anisotropic Kernels
	Surface Tracking for Particle Based Fluids With an Explicit Surface Mesh
	Contributions

	Previous Work
	Surface Extraction
	Surface Tracking
	Surface Tension Models
	Small Scale Surface Dynamics

	SPH Fluid Simulator
	Eulerian and Lagrangian Viewpoint of the Material Derivative
	Formulation and Algorithm of Smoothed Particle Hydrodynamics

	Surface Extraction of Particle Based Fluids Using Anisotropic Kernels
	Implicit Surface Representation
	Determining the Anisotropy
	Alleviating Attraction Artifacts
	Implementation Overview
	Optimization of Performance
	Results
	Comparison
	Limitations
	Conclusion and Future Work

	Explicit Mesh Surface for Particle Based Fluids
	Mesh Advection and Topology Changes
	Surface Property Advection
	Surface Tension Models
	Small Scale Surface Dynamics
	Implementation Overview
	Results
	Limitations
	Conclusion and Future Work

	Appendices
	Bibliography

