
Complexity Analysis of Algorithms in

Algebraic Computation

by

Vikram Sharma

A dissertation submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

January 2007

Approved:
Research Advisor: Prof. Chee K. Yap

c© Vikram Sharma

All Rights Reserved, 2007

To my parents.

iii

Acknowledgments

My foremost gratitude is to my thesis advisor, Professor Chee Yap, for his guidance and motiva-

tion; without them I would not have reached the milestones where I stand now. He was always

there when I needed his support and his sage advice has been helpful in the past four years and

I am sure will be even more so in the future. I am also in debt to Professor Richard Pollack for

his wise words and who through his own example has given me a deeper understanding of the

aesthetics of research. Apart from them, I am obliged to Professor Michael Overton, Professor

Margaret Wright, and Professor Victor Shoup who generously consented to be members of my

thesis defence committee and provided me with invaluable feedback on my dissertation. I am

also grateful to my collaborators Zilin Du and Arno Eigenwillig for the insightful discussions that

I exchanged with them and for the knowledge that I acquired in the process. I would also like

to express my gratitude towards the staff at the Department of Computer Science, NYU, and

especially to Rosemary Amico and Anina Karmen for their efficient handling of the bureaucratic

hurdles that I faced in my stay at the department.

Many people have contributed in other ways to my five years of doctoral study. My friends,

who have always challenged, in a jocular manner I suppose, my ability to successfully complete

these years and forced me to dig deep within myself to change their convictions, and who have

gifted me memorable moments during these years. My final debt, which I cannot clear in a

lifetime, is to my parents and brother for having faith in me even when I had lost all hope and

courage.

iv

Abstract

Numerical computations with real algebraic numbers require algorithms for approximating and

isolating real roots of polynomials. A classical choice for root approximation is Newton’s method.

For an analytic function on a Banach space, Smale introduced the concept of approximate zeros,

i.e., points from which Newton’s method for the function converges quadratically. To identify

these approximate zeros he gave computationally verifiable convergence criteria called point esti-

mates. However, in developing these results Smale assumed that Newton’s method is computed

exactly. For a system of n homogeneous polynomials in n + 1 variables, Malajovich developed

point estimates for a different definition of approximate zero, assuming that all operations in

Newton’s method are computed with fixed precision. In the first half of this dissertation, we

develop point estimates for these two different definitions of approximate zeros of an analytic

function on a Banach space, but assume the strong bigfloat computational model of Brent, i.e.,

where all operations involve bigfloats with varying precision. In this model, we derive a uniform

complexity bound for approximating a root of a zero-dimensional system of n integer polynomials

in n variables. We also derive a non-asymptotic bound, in terms of the condition number of the

system, on the precision required to implement the robust Newton method.

The second part of the dissertation analyses the worst-case complexity of two algorithms

for isolating real roots of a square-free polynomial with real coefficients: The Descartes method

and Akritas’ continued fractions algorithm. The analysis of both algorithms is based upon

amortization bounds such as the Davenport-Mahler bound. For the Descartes method, we give

a unified framework that encompasses both the power basis and the Bernstein basis variant of

the method; we derive an O(n(L + logn)) bound on the size of the recursion tree obtained by

applying the method to a square-free polynomial of degree n with integer coefficients of bit-

length L, the bound is tight for L = Ω(logn); based upon this result we readily obtain the best

known bit-complexity bound of Õ(n4L2) for the Descartes method, where Õ means we ignore

logarithmic factors. Similar worst case bounds on the bit-complexity of Akritas’ algorithm were

not known in the literature. We provide the first such bound, Õ(n8L3), for a square-free integer

polynomial of degree n with coefficients of bit-length L.

v

Table of Contents

Dedication iii

Acknowledgments iv

Abstract v

List of Figures ix

List of Tables x

List of Appendices xi

Introduction 1

1 Robust Approximate Zeros 9

1.1 Approximate Zeros . 12

1.1.1 Relation amongst various approximate zeros 13

1.2 Point Estimate of Second Kind . 15

1.2.1 The Exact Model . 16

1.2.2 The Weak Model . 24

1.2.3 The Strong Model . 28

1.3 Point Estimate of Fourth Kind . 30

1.3.1 The Exact Model . 31

1.3.2 The Weak Model . 34

1.3.3 The Strong Model . 38

1.4 One Step of Robust Newton . 40

1.5 Robust Newton Iteration . 43

1.5.1 Distance between an approximate zero and its associated zero 44

1.6 Uniform Complexity of Robust Newton . 46

1.6.1 Bound on the number of iterative steps. 47

1.6.2 An upper bound on ‖JF(Z̃i)
−1‖ . 48

1.6.3 An upper bound on ‖JF(Z̃i)‖. 48

1.6.4 Worst case lower bound on the distance to a zero 49

vi

TABLE OF CONTENTS

1.6.5 Worst-case complexity . 49

1.7 Experiments . 51

1.8 Future Work . 53

2 Real Root Isolation: The Descartes Method 57

2.0.1 Previous work . 58

2.1 The Descartes Method . 59

2.1.1 A Basis-free Framework . 59

2.1.2 Termination . 62

2.2 The Size of the Recursion Tree . 63

2.2.1 The Davenport-Mahler Bound . 63

2.2.2 The Recursion Tree . 64

2.2.3 Almost Tight Lower Bound . 70

2.3 The Bit Complexity . 71

2.4 Conclusion and Future Work . 73

3 Real Root Isolation: Continued Fractions 75

3.1 Tight Bounds on Roots . 77

3.2 The Continued Fraction Algorithm by Akritas . 80

3.3 Continued Fractions and Möbius Transformations 82

3.4 Termination . 83

3.5 The Size of the Recursion Tree: Real Roots Only 87

3.5.1 Bounding the Inverse Transformations . 88

3.5.2 Bounding the Taylor Shifts . 88

3.5.3 Worst Case Size of the Tree . 96

3.6 The Size of the Recursion Tree: The General Case 100

3.6.1 Bounding the Inverse Transformations . 101

3.6.2 Bounding the Taylor Shifts . 101

3.6.3 Worst Case Size of the Tree . 109

3.7 The Bit-Complexity . 111

3.8 Conclusion and Future Work . 113

Appendices 114

vii

TABLE OF CONTENTS

Bibliography 134

viii

List of Figures

1 (a) Four points in the plane; (b) Is s outside the triangle ∆pqr?; (c) Incorrect

orientation of s relative to the line segment (r, p); (d) The wrong convex hull. . . 2

2.1 Three discs associated with the interval J = (c, d). 62

2.2 The two-circles figure around J0 can overlap with that of J1 but not with any

two-circles figure further right. 65

2.3 A type-0 and type-1 leaf sharing the same root. 69

3.1 The effect of M−1(z) on the three circles . 85

3.2 The roots of the polynomial AMv
(X) in C. 107

ix

List of Tables

1.1 A comparison of weak and robust Newton iteration I 55

1.2 A comparison of weak and robust Newton iteration II 56

x

List of Appendices

Appendix A

Multilinear maps and Banach Space

114

Appendix B

The Condition Number

117

Appendix C

BigFloat Computation

130

xi

LIST OF TABLES

xii

Introduction

Numerical non-robustness is a recurring phenomenon in scientific computing. It is primarily

caused by numerical errors arising because of fixed precision arithmetic. Most of these errors

can be considered harmless, but occasionally there are “catastrophic” errors in the computation

that cause non-robust behaviour such as crashing of the program, or infinite loops. Geometric

algorithms are especially vulnerable to such non-robust behaviour. To illustrate the vulnerability,

we consider the case of computing convex hull of four points in the plane, as shown in Figure 1(a).

We proceed by forming the convex hull of any three non-colinear points, say p, q, r, and try to

identify whether the fourth point s is inside or outside the convex hull of p, q, r (see Figure 1(b)).

For the purpose of this identification we need the orientation predicate

orientation(p, q, r) := sign((qx − px)(ry − py) − (qy − py)(rx − px))

that takes as input three points p, q, r and returns +1,−1 or 0 based upon the following:

• orientation(p, q, r) = +1 iff the polyline (p, q, r) is a left turn.

• orientation(p, q, r) = −1 iff the polyline (p, q, r) is a right turn.

• orientation(p, q, r) = 0 iff the three points p, q, r are collinear.

Thus for the point s to lie outside the triangle determined by the points p, q, r there must be

one edge of the triangle such that the point s is to the right of it. We next check the orientation

of s relative to the edges of the triangle defined by points p, q, r, where the edges are considered

in counter-clockwise direction. To check the orientation, however, we use a fixed precision im-

plementation float orient(p, q, r) of the orientation predicate, i.e., where each operation is done

with fixed relative precision. Let the output of float orient(p, q, s) and float orient(q, r, s) be

+1 as expected. Now we compute float orient(r, p, s). But it may so happen that the output is

+1 instead of −1, because of numerical errors, see Figure 1(c). Thus we incorrectly identify the

point s to be inside the triangle determined by the points p, q, r and hence output the incorrect

convex hull, as shown in Figure 1(d).

In general, geometric algorithms consist of two parts: a combinatorial structure characterizing

the discrete relations between various geometric objects, and a numerical representation of the

geometric objects; in our illustration, the combinatorial part was the positioning of the points rel-

ative to various line segments, and the numerical part was the coordinates of the four points. Ge-

ometric algorithms characterize the combinatorial structure by computing the discrete relations

1

(d)

qp

rs

(b)

s

qp

rs

qp

rs

(a)

(c)
qp

r

Figure 1: (a) Four points in the plane; (b) Is s outside the triangle ∆pqr?; (c) Incorrect orientation

of s relative to the line segment (r, p); (d) The wrong convex hull.

between geometric objects using numerical computations; for instance, using float orient(p, q, r)

to identify the orientation of r w.r.t. the line segment with endpoints p, q. However, numerical

errors may yield us an incorrect characterization of the combinatorial structure which leads to

non-robustness in the algorithm [Hof89, Yap97a, YM01]; in our example above, incorrect output

of float orient(r, p, s), resulting from numerical errors, resulted in computing the wrong convex

hull.

In computational geometry, many approaches have been proposed to overcome the issue of

non-robustness in geometric algorithms (see [Hof89, For96, Sch99, Yap04] for surveys). There

is one approach which has become significant in the past years: Exact Geometric Computation

(EGC) [Yap97b]. The principle of this approach is to ensure that a geometric algorithm computes

the correct combinatorial structure. This principle is guaranteed by ensuring correct evaluation

of all geometric predicates; to achieve this guarantee, the EGC approach does not necessarily

require “exact arithmetic”, but relies on guaranteed precision arithmetic, i.e., arithmetic where

operations are done with sufficient precision to guarantee a priori precision requirements on the

output of operations. The most alluring aspect of the EGC approach is its applicability to a

large domain of problems. Moreover, the development of Filter Techniques [FvW93] has made

this approach practically viable, which is evident from the success of CGAL and LEDA, two general

libraries based upon the EGC model.

Most geometric predicates are determined by evaluating the sign of a polynomial at a real

algebraic number. For instance, to determine whether a point p ∈ R2 is to the left, right, or on

the line {(x, y) : ℓ(x, y) = 0}, we can compute the sign of ℓ(p). In general, correct evaluation

of geometric predicates requires the ability to represent and compute with algebraic numbers.

There are two general approaches for representing algebraic numbers: Algebraic and Numeric.

The Algebraic approach represents real algebraic numbers based upon their algebraic proper-

ties. For example, Thom’s encoding [CR88] of a real algebraic number α is given by the sequence

2

0 Introduction

of signs obtained by evaluating all the derivatives of a polynomial that vanishes at α; comparing

two algebraic numbers is straightforward in this representation (see [BPR03]). Other repre-

sentations are the minimal polynomial representation, the standard representation, the matrix

representation and the conjugate vector representation; of these four, the last three represen-

tations assume that the algebraic number is in some algebraic field (see [Coh93] for details).

Arithmetic of algebraic numbers, in most of these representations, amounts to computing with

polynomials. Even though robust and exact, this approach is inefficient.

The Numerical approach represents real algebraic numbers by expressions. An expression is

a directed acyclic graph whose internal nodes are operators such as {+,−, ∗, /, k
√} and whose

leaves are integers. To encompass all the real algebraic numbers, however, we need an operator

that constructs an expression representing the real root of an arbitrary polynomial in Z[X]. This

operator is called the RootOf operator in Core Library[YLP+04], and the diamond operator

in LEDA Real[Sch05]; the latter operator is more general since it can construct an expression

representing the root of a polynomial whose coefficients are real algebraic numbers. The RootOf

operator constructs a special expression that has two components: first, an integer polynomial

A(X) which has the real algebraic number as its root and the multiplicity of all its roots is

one, and second an interval with rational endpoints, called the isolating interval, that contains

the number inside it and excludes all other roots of A(X). This representation is the standard

isolating interval representation of algebraic numbers [Yap00]. To compare two expressions we

use constructive zero bounds [BFM+01, MS00, LY01, PY03, Sek98]. A zero bound is a lower

bound on the absolute value of a non-zero real number. A constructive zero bound is a function

that takes as input an expression representing a real algebraic number and constructs a lower

bound on its absolute value; the lower bound is valid only if the the real algebraic number is

non-zero. Now to compare two real algebraic numbers α and β, represented as expressions, we

first use the constructive zero bound function on the expression representing their difference α−β
to get a lower bound of the form |α−β| > 2−k; then compute a numerical approximations α̃ and

β̃ to α and β such that |α̃−α|, |β̃−β| < 2−k−3; then |α̃− β̃| < 2−k−1 iff α = β. Thus comparison

of two algebraic numbers represented as expressions, or even evaluating an expression that has

an algebraic number at its leaves, requires the ability to approximate the number to any desired

precision. Moreover, constructing the RootOf operator entails the capability to get an isolating

interval for a real root of an integer polynomial. These two problems, namely approximating a

real algebraic number to any desired precision and getting an isolating interval for a real root of

3

a polynomial, are the focus of this dissertation.

The problem of approximating a unique root of a polynomial in an isolating interval is a special

instance of the general problem of approximating the root of a continuous function which has

different signs at the endpoints of an interval that contains a unique root of the function. There is

a rich literature of algorithms solving this general problem [Dek67, Ost60, Bre73, Kea90, Abb06];

for a detailed list see Bracketing Methods in [McN93]. One straightforward method is to bisect

the interval until the width of the interval is smaller than the desired precision and the function

has different signs at the endpoints of the interval. This procedure only yields one extra bit of

precision at each bisection; nonetheless, it guarantees the desired precision, assuming the sign of

the evaluated is computed correctly. Ideally, one would like to choose a point in the interval and

iteratively apply methods that have super-linear convergence, such as Newton’s method or Secant

method. The problem with this approach is that these methods are not guaranteed to converge

from an arbitrary point. In light of this drawback, methods have been proposed [Dek67, Bre73,

Abb06] that combine the bisection method with super-linearly convergent methods and yield

methods that are both fast in practice and have guaranteed convergence. Usually, these hybrid

methods keep testing whether a bisection is required even when the interval is contained in an

area around the root where super-linear convergence is guaranteed. To stop these unnecessary

tests, we need the ability to identify whether a point is in a neighbourhood of a root where

super-linear convergence sets in, i.e., the point is an approximate zero. The usual convergence

criteria [KA64, OR70, Ost73], however, are based upon bounds on a neighbourhood of the root

and hence are not easy to verify computationally. Smale [Sma81b, Sma85], on the other hand,

developed computational convergence criteria called point estimates that depend only upon the

knowledge of the point and are easily verifiable. The first chapter of the dissertation studies

the notion of approximate zeros and point estimates under three computational models, which

depend upon the amount of numerical precision one uses to compute various operations.

The problem of real root isolation is to assign an enclosing interval to each real root of

a polynomial such that distinct roots are assigned disjoint intervals. It is a special case of the

classical problem of root isolation, which has a rich literature of algorithms associated with it (see

[Pan97] for a survey and [McN93] for a detailed bibliography). We may classify these algorithms

as follows:

1. Bisection based approaches: Algorithms in this approach are generalizations of the bisection

method used in root-approximation. The idea is to start with a region that encompasses all

4

0 Introduction

the roots of the polynomial and then divide it into smaller parts until we reach a region that

contains just one root. Clearly, we need the ability to identify whether a region contains

a root or not, and for termination we need to further know when there is exactly one

root in the region. For isolating complex roots, one can either use Sturm sequences in

one or two dimensions [Ped91, Mil92], or use Turan’s proximity test [Tur84]; the former

has been used in [Wil78], and the latter in [Wey24] and its modifications mentioned in

[Pan97]. For isolating only real roots, in addition to the methods mentioned, one can use

the Descartes’ rule of signs [Wan04]. In practice, real root isolation using the Descartes’

rule of signs is faster [Joh98, RZ04] than using Sturm sequences. For polynomials with

only real roots, [BOT90] gives a specialized version of Sturm sequences. Algorithms based

upon the Descartes’ rule of signs come in two variants depending upon the basis used to

represent the polynomial: power basis [CA76, Kra95, Joh98] or Bernstein basis [LR81,

Spe94, MRR04, MRR05]; the latter approach is preferred in CAGD [Far90], because of

its stability and conditioning properties [FR87, FR88]. Another choice for determining

whether an interval contains a root or not is based upon interval arithmetic [Moo66, AH83,

Kea87, Mit91]. All the algorithms in this approach can be used to isolate a subset of roots

in a specific region, unlike the approaches mentioned below (with the exception of the

continued fractions approach) which necessarily isolate all the roots; another distinction is

that all the operations in this approach are exact as long as extended precision is available.

2. Companion Matrix and Eigenvalue based approach: It is well known [Wil63] that the prob-

lem of root-approximation is ill-conditioned, i.e., small perturbations in the coefficients can

distort the distribution of roots by a large amount. But one can reduce the problem of

root isolation to finding the eigenvalues of the corresponding Frobenius companion matrix

[EM95]; this is the preferred approach in numerical analysis, and root isolation in MATLAB

is based upon this approach. The benefit of this reduction is that there are many stable

algorithms for eigenvalue approximation [TB97]. A straightforward implementation, how-

ever, has poor accuracy for polynomials with high degree; algorithms have been proposed

in [ACGR01] that overcome this drawback. Other forms of companion matrices have been

used in [MV95], such as Fiedler’s companion matrix which uses root approximations ob-

tained from previous stages; a partial complexity analysis of the algorithm is provided in

[For01]. An extensive survey of these approaches can be found in [PMR+06]. Problems

with this approach are that the algorithms consume O(n2) space, where n is the degree

5

of the polynomial whose roots we are trying to find, and each iteration could potentially

cost O(n2), though improvements have been made [DAB04, DAB05] utilizing the special

structure of the companion matrices.

3. The Durand-Kerner or Weierstrass method: The methods under this approach are Durand-

Kerner [Dur60, Ker66], Aberth’s method [Abe73] and Werner’s method [Wer82]. These

methods are iterative in nature and each iteration takes O(n2) time, where n is the degree

of the polynomial. In [Pan02], a general derivation of the convergence behaviour of such

algorithms is given; also, the computation has been modified to be carried out in single

precision, a feature which was missing in the original approach. A key drawback of these

algorithms is that their convergence is not guaranteed from any set of initial estimates. In

practice, however, these methods are very efficient. MPSolve [BF00] is a multiple-precision

library that provides an implementation of an algorithm for real root isolation based upon

Aberth’s method.

4. Factorization based approach: This approach is also called the Divide-and-Conquer ap-

proach or the splitting circle method. The algorithms (for example Schönhage’s [Sch82])

produce a factorization of the polynomial into non-constant factors of lower degree , i.e.,

given an input precision ǫ these algorithm produce an approximation xi to the roots of a

degree n polynomial A(X) such that

‖A(X) −
n∏

i=1

(X − xi)‖ ≤ ǫ‖A(X)‖.

To isolate roots of an integer polynomial A(X) using this approach, we require ǫ = 2Ω(−n2L),

where L is the bit-length of the coefficients A(X). One would expect that ǫ = 2Ω(−nL) would

suffice, but the extra precision is needed to ensure that the distance between xi and the

closest root x∗i of A(X) is smaller than the root separation bound. Schönhage had showed

that the bit-complexity of root isolation using his algorithm is Õ(n3L). The arithmetic

complexity of his algorithm has been subsequently improved (see [NR94, Pan96]), but the

bit-complexity has not improved substantially. Pan [Pan96] has provided optimal algo-

rithms under this approach. These algorithms have the best known complexity bounds,

but in practice they have not been as promising as the algorithms in the Durand-Kerner

approach.

5. Homotopy or Path lifting: This a common method in numerical analysis. The method starts

6

0 Introduction

with a polynomial whose zeros are known and constructs a sequence of polynomials, each

of whose zeros it has approximated, that converges to the input polynomial whose roots

we want to approximate. Algorithms in this category are [Sma85, KS94, HSS01]. These

algorithms have been extended (see [SS93a, SS96, BCSS98, Mal93]) to approximating roots

of systems of polynomials and their complexity in terms of condition numbers is also well

studied.

6. Continued Fractions: The algorithms under this category are Vincent’s algorithm [Vin36],

its modification by Akritas [Akr78b], and Uspensky’s algorithm [Usp48]. These algorithms

also rely on the Descartes’ rule of signs. The algorithms construct a continued fraction

approximation to the real roots of the polynomial; we may subsequently apply Lagrange’s

method [Yap00, p. 470] to approximate the isolated root to any desired accuracy.

The above classification does not purport to cover all algorithms in the literature, but only gives

a perspective on some of the interesting algorithms. Other perspectives have also been suggested,

such as the partitioning between algorithms that are iterative in nature and algorithms that are

exact.

The last two chapters of this dissertation focus on studying the worst-case complexity of

two algorithms: the Descartes method, in its two equal formulations, i.e., when the polynomials

are represented either in the power basis or in the Bernstein basis, and the continued fractions

algorithm by Akritas. Both Akritas’ algorithm [Akr78b] and the power basis variant of the

Descartes method by Collins and Akritas [CA76] were proposed to improve the exponential

running time of Vincent’s algorithm [Vin36] for real root isolation. The algorithm proposed by

Akritas is a simple modification of Vincent’s algorithm and preserves its spirit. The algorithm

by Collins and Akritas, however, is substantially different from Vincent’s; their algorithm first

constrains all the roots of the input polynomial in an interval and then sub-divides this interval

into two equal parts and searches for roots in each of these halves. Both the algorithms rely on

the Descartes’ rule of signs for termination and have comparable running times.

The second chapter of this dissertation gives a uniform framework that encompasses both the

power and Bernstein basis variant of the Descartes method. We derive tight bounds on the size

of the recursion tree of the algorithm; based upon this we obtain the best known bit-complexity

bounds for the algorithm. In the third chapter of this dissertation, we derive a polynomial bound

on the worst-case running time of Akritas’ algorithm.

7

Acknowledgments. The results in the first chapter are a generalization of my joint work with

Zilin Du and Chee Yap [SDY05]. The results in the second chapter are from my joint work with

Arno Eigenwillig and Chee Yap [ESY06].

8

1
Robust Approximate Zeros

Over the centuries Newton’s method has been studied in many settings; for a history of the

method see [Caj11, Ypm95]. We will focus on studying convergence criteria for Newton’s method,

and specifically those criteria which are based upon “point data”, i.e., that depend only upon

the “knowledge” of a given point. Moreover, we will only be interested in the case of analytic

functions on Banach space (see Appendix A for a brief overview). Let f : E → F be an analytic

map between two Banach spaces E and F . For a point z ∈ E such that the Fréchet derivative

Df(z) : E → F of f at z is non-singular we can define the Newton map Nf : E → E as

Nf (z) = z −Df(z)−1f(z). (1.1)

The sequence (zi) of Newton iterates starting from a point z0 ∈ E is defined by the recurrence

zi :=Nf(zi−1). This sequence is said to be well-defined if Df(zi) is non-singular for all i ≥ 0.

A classic convergence criteria [Ost73] for Newton’s method states the following: Let τ∗ ∈ E

be a fixed point of Nf , i.e., Nf (τ
∗) = τ∗, such that |DNf (τ∗)| < 1; then there exists an open

convex neighbourhood S ⊆ E of τ∗ such that Nf is closed (i.e., Nf (S) ⊆ S) and differentiable

on S, and for all τ ∈ S the sequence (Nn
f (τ))n≥1 converges to τ∗. This criterion depends upon

the knowledge of the fixed point of Nf , or equivalently the zero of f , and hence is not useful in

practice.

Kantorovich [Kan52] developed a convergence criterion that does not depend upon knowing

the zero. He stated that if there are constants A,B such that for a point z (1) ‖Df(z)−1‖ ≤ A,

(2) ‖Df(z)−1f(z)‖ ≤ B, (3) there exists an open convex set S containing z such that Df(z)

is Lipschitz on S with constant C, i.e., ‖Df(x) − Df(w)‖ ≤ C‖x − w‖ for all x,w ∈ S, and

(4) ABC ≤ 1
2 , then there exists a unique zero z∗ ∈ S of f such that the sequence of Newton

iterates starting from z converge to it. A proof based upon majorant sequences can be found

in [KA64, Ort68, GT74]. Yamamoto [Yam85, Yam86] gives sharp bounds on the size of S.

The drawback of Kantarovich’s result is that the third constraint depends upon bounding the

derivative in a region and hence is not easy to verify computationally.

Smale [Sma81a, Sma85] gave a computationally verifiable criterion based upon point data,

which he later called point estimate. An example of a point estimate is the following: For

a polynomial f(z) ∈ C[z], if a point z ∈ C is such that 9|f(z)| ≤ min(|f(θ)| : f ′(θ) = 0)

then the Newton iterates starting from z converge to a zero z∗ of f ; at first it may appear

that this is not computationally verifiable, but assuming that f(z) has roots with multiplicity 1,

9

we can derive (see [Yap00, p. 183]) lower bounds on |f(θ)|, where θ is a critical point of f(z).

Shub and Smale [SS85, SS86] generalized this result to iterative methods with higher order of

convergence, such as the k-th Euler incremental algorithm that has an order of convergence k+1.

The proof in these results relied on Bieberbach conjecture from the theory of Schlicht functions

[Dur77]. This dependency was later removed by Smale in [Sma86] by changing the definition

of approximate zeros so that it depends upon the behaviour of the iterates in the domain space

(see Definition 1.1). Moreover, in the same paper he developed results for analytic functions in

Banach spaces; this assumption of analytic functions is stronger than Kantorovich’s requirement

of differentiability in a neighbourhood. In particular, Smale showed that if α(f, z) < 0.13 then z

is an approximate zero for an analytic function f : E → F , where E and F are Banach spaces

and α(f, z) is a standard function in the theory of point estimates (see (1.4) below). Similar

point estimates were shown by Kim [Kim86, Kim88]. For the same definition of approximate

zeros as in [Sma86], Curry [Cur87] has developed point estimates for the k-th Euler incremental

algorithm. The constant (0.13 above) involved in the point estimate by Smale was improved

to 3 − 2
√

2 ≃ 0.17 . . . by Wang and Zhao [DF95] using Kantorovich’s approach of majorant

sequences; they also developed point estimates for the Weierstrass method [Dur60, Ker66], as

was done by Petkovic et al. [PCT95, PHI98] and Batra [Bat98]. Shub and Smale [SS93a]

have derived point estimates for the special case of a system of multivariate polynomials in the

affine and projective space. Chen [Che94] has developed point estimates for any quadratically

convergent algorithm.

All the above results assume that Nf (z) is computed using exact arithmetic. This is hardly

possible in practice, and even when it is possible, such as the case of polynomials with rational

coefficients, it is undesirable because of inefficiency. In practice, the iterates are represented by

floating-point numbers. In this chapter we compute with bigfloats, i.e., rational numbers of

the form n2m, for integers n,m (see Appendix C). Bigfloat arithmetic is basically the multiple-

precision arithmetic of Brent [Bre76a, Bre76b]. There are two ways of computing with bigfloats:

the weak model where all the operations are done to a fixed precision, similar to the IEEE

floating-point arithmetic [IEE85]; and the strong model where all the operations can be done

with varying precision.

Malajovich [Mal93] has developed point estimates in the weak model, whereas Sharma, Du

and Yap [SDY05] have developed point estimates in the strong model; however, unlike Malajovich

their result was developed for the restricted case of analytic functions in the complex plane.

10

1 Robust Approximate Zeros

This chapter extends the results in [SDY05]: We develop point estimates in the weak (Theo-

rem 1.5) and the strong (Theorem 1.7) model for analytic functions on Banach spaces; we derive

the complexity (Theorem 1.16) of approximating a common root of a zero-dimensional system

of polynomials when the computations are done in the strong bigfloat model. In developing the

complexity result we give a non-asymptotic worst-case bound (Lemma 1.21) on the precision

needed to implement robust Newton iteration, Algorithm RN in §1.5.

The complexity estimates in this chapter are based upon Schönhage’s pointer machine model

[Sch80], rather than the standard multi-tape Turing machines, because the latter introduce un-

wanted complications in our complexity estimates involving unbounded bigfloats (i.e., bigfloats

with arbitrary large exponents); for instance, if a bigfloat n2m is represented in the obvious way

on a Turing tape (say m followed by n and the tape head on m), we cannot read n without

scanning m, which unnecessarily distorts the complexity of basic operations such as truncation.

Functions used in error analysis. Let f : E → F be an analytic map as earlier and z ∈ E

such that Df(z) is non-singular. Following Smale [Sma86] we can define the following functions:

• The beta function

β(f, z) := ‖Nf(z) − z‖ = ‖Df(z)−1f(z)‖. (1.2)

• The gamma function

γ(f, z) := sup
k>1

(
1

k!
‖Df(z)−1Dkf(z)‖

)1/k−1

. (1.3)

• The alpha function

α(f, z) := β(f, z)γ(f, z). (1.4)

• For z, w ∈ E define

u(z, w) := γ(f, z)‖z − w‖. (1.5)

For the special case when z is a zero of f , we use the succinct notation uw.

If Df(z) is singular the first three functions are defined to be ∞. We will shorten the three

functions to β(z), γ(z) and α(z) if f is clear from the context. We always use z∗ to represent a

zero of f and γ∗ to denote γ(f, z∗). For z ∈ E and r ∈ R≥0 let

B(z, r) :={w ∈ E : ‖z − w‖ ≤ r}. (1.6)

11

1.1 Approximate Zeros

In addition to the above, we define the following polynomial which will be useful in our

analysis:

ψ(x) := 1 − 4x+ 2x2. (1.7)

Remark 1.1. The least positive zero of this polynomial is 1 − 1/
√

2. Moreover, the polynomial

is monotonically decreasing from left to right in the interval [0, 1 − 1/
√

2].

In what follows, unless stated otherwise, we take f : E → F to be an analytic map between

Banach spaces, and z to be a point in E.

Error Notation. We borrow two convenient notations for error bounds from [SDY05]: we

shall write

[z]t (resp., 〈z〉t) (1.8)

for any relative (resp., absolute) t-bit approximation of z.

The following meta-notation is convenient: whenever we write “z = z̃±ǫ” it means “z = z̃+θǫ”

for some θ ∈ [−1, 1]. More generally, the sequence “±h” is always to be rewritten as “+θh” where

θ is an implicit real variable satisfying |θ| ≤ 1. Unless the context dictates otherwise, different

occurrences of ± will introduce different θ-variables. E.g., x(1±u)(1±v) means x(1+θu)(1+θ′v)

for some θ, θ′ ∈ [−1, 1]. The effect of this notation is to replace inequalities by equalities, and to

remove the use of absolute values.

1.1 Approximate Zeros

Let (zi) be the sequence of Newton iterates for f starting from a point z0. Suppose that the

sequence converges to a root z∗ of f . Intuitively, z0 is called an approximate zero if the sequence

converges “quadratically” to z∗. We may quantify the rate of convergence in two ways: first,

in the range space by using the value of the residual ‖f(zi)‖, or second, in the domain space

by using the value ‖zi − z∗‖, or even ‖zi − zi−1‖. Based upon these two ways to measure the

rate of convergence, we may broadly classify the different definitions of approximate zeros in the

literature. We only focus on definitions of the second type, i.e., those that measure the rate of

convergence in the domain space. In this setting, one possible definition for an approximate zero is

that the sequence converges quadratically in the standard sense, i.e., if ‖zi−z∗‖ ≤ C‖zi−1−z∗‖2,

for some constant C ∈ R>0. However, this definition is too strong for our purposes, because it

12

1 Robust Approximate Zeros

is hard to guarantee in the presence of errors in the computation. Following the nomenclature

suggested by Smale [Sma86], we have the following.

Definition 1.1. Let z0 ∈ E be such that the sequence of Newton iterates (zi), given by the

recurrence zi :=Nf(zi−1), is well defined. Then

• z0 is an approximate zero of the first kind if there is a unique zero z∗ ∈ E of f such

that for all i ∈ N≥1

‖zi − zi−1‖ ≤ 21−2i−1‖z1 − z0‖;

• z0 is an approximate zero of the second kind if there is a unique zero z∗ ∈ E of f

such that for all i ∈ N≥0

‖zi − z∗‖ ≤ 21−2i‖z0 − z∗‖;

• z0 is an approximate zero of the third kind if there is a unique zero z∗ ∈ E of f such

that for all i ∈ N≥0

‖zi − z∗‖ ≤ 2−2i

;

• z0 is an approximate zero of the fourth kind if there is a unique zero z∗ ∈ E of f such

that for all i ∈ N≥0

‖zi − z∗‖
‖zi‖

≤ 21−2i

.

We call z∗ the associated zero of z0.

The first two definitions are by Smale [Sma86]; the third definition is by Kantorovich [Kan52];

the fourth definition is by Malajovich [Mal93]. We next clarify the relations amongst these

definitions.

1.1.1 Relation amongst various approximate zeros

Consider the definitions of approximate zeros of the first and second kind. We show that the

two definitions are almost equivalent. If z0 is an approximate zero of the first kind then for any

N > i we know

‖zN − zi‖ ≤
N∑

j=i+1

‖zj − zj−1‖ ≤ ‖z1 − z0‖
N∑

j=i+1

21−2j−1

.

Letting N tend to ∞ we get

‖zi − z∗‖ ≤ 22−2i‖z1 − z0‖ . 22−2i‖z0 − z∗‖ (1.9)

13

1.1 Approximate Zeros

since from Lemma 1.12 below we know that ‖z1 − z0‖ ∼ ‖z0 − z∗‖. Assuming that z0 is an

approximate zero of the second kind we get for any i ≥ 1,

‖zi − zi−1‖ ≤ ‖zi − z∗‖ + ‖zi−1 − z∗‖

≤ 21−2i−1

(2−2i−1

+ 1)‖z0 − z∗‖

≤ 22−2i−1‖z0 − z∗‖

. 22−2i−1‖z1 − z0‖.

Overlooking the additional constant factors in the result above and (1.9), we get the desired

equivalence of approximate zeros of the first and second kind.

The relation between approximate zeros of the second and third kind is trivial: the former

implies the latter if ‖z0− z∗‖ ≤ 1
2 , which is quite likely to hold in practice, and the latter implies

the former only if ‖z0 − z∗‖ = 1
2 , which is unlikely to hold.

The definition of approximate zeros of the fourth kind was proposed by Malajovich [Mal93].

It is obvious that the definition holds only if zi 6= 0. This assumption is justified when the points

zi and the zero z∗ are elements in the projective space Pn(C), which is the original setting of the

definition as proposed by Malajovich. To accommodate the presence of ‖zi‖ in the definition,

Malajovich has used different definitions of the three functions α(f, z), β(f, z), γ(f, z) (see §1.3);

in the same section, we will show that point estimates for approximate zeros of the fourth kind

can be derived from the results for approximate zeros of the second kind.

For each kind of approximate zero above there are three computational models to consider,

namely the exact, the weak and the strong model. For each of these models two results can be

developed: a point estimate and the complexity of approximating the root of a zero-dimensional

system of polynomials in terms of the condition number of the system. In this categorization,

we can reconsider the literature on point estimates.

Smale [Sma86] developed point estimates in the exact model, for approximate zeros of the

first kind; later Shub and Smale [SS93a] derived complexity results for approximate zeros of the

first kind; Blum et al. [BCSS98] derived point estimates and complexity results for approximate

zeros of the second kind. Malajovich [Mal93] developed both point estimates and complexity for

approximate zeros of the fourth kind in the exact and the weak model. Sharma et al. [SDY05]

have developed point estimates and complexity for approximate zeros of the second kind in the

strong model. There have been no explicit point estimates for approximate zeros of the third

kind, though from our observation earlier we can easily derive them from point estimates of the

14

1 Robust Approximate Zeros

second kind.

The aim of the rest of the chapter is to derive point estimates and complexity for approximate

zeros of the second kind in the weak and the strong model. For the sake of understanding,

however, we will first re-derive the results in the exact model. From now on an approximate

zero will always mean an approximate zero of the second kind. We will also re-derive the point

estimates for approximate zeros of the fourth kind in the exact and the weak model, following

an approach different from Malajovich’s, and extend the result to the strong model.

1.2 Point Estimate of Second Kind

In this section we start by re-deriving a result of Smale [Sma86] that identifies a set of approximate

zeros in the neighbourhood of a root, and the subsequent point estimate given in [BCSS98]. Based

upon this result we will derive a point estimate in the weak model, which readily yields us the

point estimate in the strong model. All the derivations proceed in two steps similar to [BCSS98]:

• We first identify a closed set B(z∗, R1) around a simple zero z∗ such that all points in this

set are approximate zeros.

• Then we identify a criterion such that if any point z satisfies it then there is a zero z∗ of f

in B(z,R2). Thus for z to be an approximate zero we additionally want R2 ≤ R1.

The following property of bounded linear maps will be useful later on:

Lemma 1.1. Let M : E → F be a bounded linear map such that ‖M‖ < 1. Then

1. (I −M)−1 =
∑∞

i=0M
i and

2. ‖(I −M)−1‖ < 1
1−‖M‖ .

Proof. It is not hard to verify that (I −M)
∑∞
i=0M

i = I. From the first property we know that

‖(I −M)−1‖ ≤
∑∞

i=0 ‖M‖i, and since ‖M‖ < 1 we get the desired result.

As a consequence of this lemma we have the following ([Sma86, Lem. 1])

Lemma 1.2. Let A,B : E → F be bounded linear maps such that A is invertible and c :=

‖A−1B − I‖ < 1. Then B is invertible and ‖B−1A‖ < 1
1−c .

This follows by choosing M = I −A−1B in Lemma 1.1.

15

1.2 Point Estimate of Second Kind

1.2.1 The Exact Model

Let z′ :=Nf (z), be well defined, i.e., Df(z) be non-singular. Let z∗ be a zero of f such that

Df(z∗) is non-singular. Consider

‖z′ − z∗‖ = ‖z − z∗ −Df(z)−1f(z)‖

= ‖Df(z)−1(Df(z)(z − z∗) − f(z))‖.

Consider the termDf(z)(z−z∗)−f(z). By writingDf(z) and f(z) in terms of Taylor’s expansion

around z∗ we get

Df(z)(z − z∗) − f(z) =

∞∑

k=2

1

k!
Dkf(z∗)(z − z∗)k.

Thus

z − z∗ −Df(z)−1f(z) = Df(z)−1Df(z∗)
∞∑

k=2

1

k!
Df(z∗)−1Dkf(z∗)(z − z∗)k.

Taking norms on both sides we obtain

‖z′ − z∗‖ ≤ ‖Df(z)−1Df(z∗)‖
∞∑

k=2

1

k!
‖Df(z∗)−1Dkf(z∗)‖‖z − z∗‖k

≤ ‖Df(z)−1Df(z∗)‖‖z − z∗‖
∞∑

k=2

(k − 1)(γ∗‖z − z∗‖)k−1

≤ ‖Df(z)−1Df(z∗)‖‖z − z∗‖
∞∑

k=2

(k − 1)uk−1
z .

Assuming uz < 1 we obtain

‖z′ − z∗‖ ≤ ‖Df(z)−1Df(z∗)‖‖z − z∗‖ uz
(1 − uz)2

. (1.10)

We next bound ‖Df(z)−1Df(z∗)‖. The following lemma gives us the desired bound.

Lemma 1.3. If z, w ∈ E are such that u(z, w) < 1 − 1/
√

2 then

‖Df(w)−1Df(z)‖ < (1 − u(z, w))2

ψ(u(z, w))
.

Proof. Let u :=u(z, w). Then the Taylor expansion of Df(w) about z gives us

Df(w) =

∞∑

k=0

1

k!
Dk+1f(z)(w − z)k.

Multiplying across by Df(z)−1 we obtain

Df(z)−1Df(w) = I −
∞∑

k=1

k + 1

(k + 1)!
Df(z)−1Dk+1f(z)(w − z)k

16

1 Robust Approximate Zeros

and hence

‖Df(z)−1Df(w) − I‖ ≤
∞∑

k=1

k + 1

(k + 1)!
‖Df(z)−1Dk+1f(z)‖‖w− z‖k

≤
∞∑

k=1

(k + 1)(γ(z)‖w − z‖)k

= (1 − u)−2 − 1

since by assumption u(z, w) < 1. Since u < 1− 1/
√

2 we know that (1− u)−2 − 1 < 1 and hence

we can apply Lemma 1.2 to obtain

‖Df(w)−1Df(z)‖ ≤ (1 − u)2

ψ(u)
.

The lemma above along with (1.10) gives us

Lemma 1.4. If z ∈ E is such that uz < 1 − 1/
√

2 then

‖Nf(z) − z∗‖ ≤ uz
ψ(uz)

‖z − z∗‖.

Again, let z′ :=Nf(z). Then from the lemma above we know that uz′ ≤ uz

ψ(uz)uz. If z ∈ E be

such that uz <
5−

√
17

4 then we get uz′ ≤ uz and hence ψ(uz′) ≥ ψ(uz) (see Remark 1.1).

Based upon these results we can inductively show the following:

Lemma 1.5. Let z0 be such that uz0 <
5−

√
17

4 . Then the sequence of Newton iterates zi starting

from z0 satisfy

‖zi − z∗‖ ≤
(

uz0
ψ(uz0)

)2i−1

‖z0 − z∗‖.

Proof. For sake of succinctness let ui := uzi
. The proof is inductive; the base case is trivial.

Suppose the hypothesis holds for i− 1, i.e.,

‖zi−1 − z∗‖ ≤
(

u0

ψ(u0)

)2i−1−1

‖z0 − z∗‖.

The we know that ui−1 < u0 <
5−

√
17

4 and hence from Lemma 1.4 we obtain

‖zi − z∗‖ ≤ ui−1

ψ(ui−1)
‖zi − z∗‖ ≤ γ∗

ψ(ui−1)
‖zi − z∗‖2.

From Remark 1.1 we further know that ψ(ui−1) > ψ(u0). Thus

‖zi − z∗‖ ≤ γ∗
ψ(u0)

‖zi − z∗‖2.

17

1.2 Point Estimate of Second Kind

Applying the inductive hypothesis we obtain

‖zi − z∗‖ ≤ γ∗
ψ(u0)

(
u0

ψ(u0)

)2i−2

‖z0 − z∗‖2 =

(
u0

ψ(u0)

)2i−1

‖z0 − z∗‖.

Furthermore, if we choose z0 such that
uz0

ψ(uz0
) ≤ 1

2 then we have shown that z0 is an ap-

proximate zero of f with associated zero z∗. But this follows if uz0 ≤ 3−
√

7
2 . Thus we have the

following result:

Theorem 1.2 ([Sma86, Thm. C]). Let z∗ be a simple zero of f . If z ∈ E is such that

‖z − z∗‖ ≤ 3 −
√

7

2γ(z∗)

then z is an approximate zero of f with z∗ as the associated zero.

This result corresponds to the first part mentioned in the beginning of §1.2. To obtain the

second part, we will need the concept of a contracting operator: A map Γ : X ⊂ E → X is called

a contracting operator if there exists a κ < 1, called the contraction bound of Γ, such that

for all z, w ∈ X we have

‖Γ(z) − Γ(w)‖ ≤ κ‖z − w‖.

The Banach principle of contracting operator is that if X is complete then there is a z∗ ∈ X such

that Γ(z∗) = z∗, i.e., there is a unique fixed point of Γ in X . Moreover, for any point z ∈ X the

sequence (Γn(z)), n ≥ 0, converges to z∗. Also, for such a Γ we can show that (see [Ost73, Thm.

32.1])
‖Γ(z)− z‖

1 + κ
≤ ‖z − z∗‖ ≤ ‖Γ(z)− z‖

1 − κ
.

Suppose that X is convex and Γ is differentiable over X . If for all z ∈ X ,

‖DΓ(z)‖ ≤ C < 1,

then by the mean value theorem we know that C is a contraction bound for Γ.

Given the results above, we need to determine for what points z is the Newton map Nf

a contracting operator. To do this, we will bound ‖DNf(w)‖, where w is a point in some

neighbourhood of z. What is DNf (w)? From the definition of the Newton operator we know

that

Df(w)Nf (w) = Df(w)w − f(w).

18

1 Robust Approximate Zeros

Differentiating both sides and moving the term D2f(w)Nf (w) to the right we obtain

Df(w)DNf (w) = D2f(w)w −D2f(w)Nf (w)

= D2f(w)w −D2f(w)(w −Df(w)−1f(w))

= D2f(w)Df(w)−1f(w).

Thus we have

DNf (w) = Df(w)−1D2f(w)Df(w)−1f(w)

and hence

‖DNf (w)‖ ≤ ‖Df(w)−1D2f(w)‖‖Df(w)−1f(w)‖ ≤ 2γ(w)β(w) = 2α(w). (1.11)

To derive bounds on ‖DNf (w)‖, we need to bound α(w). This will be done by first expressing

α(w) in terms of α(z). The following lemma will be useful in deriving this relation:

Lemma 1.6. For 0 ≤ x < 1 and k ∈ N we have

∞∑

i=0

(
k + i

i

)
xi =

1

(1 − x)k+1
.

Proof. Notice the right hand side is just
∏k+1
l=1

∑∞
jl=0 x

jl . Thus we need to show that the coeffi-

cient of xi in this product is
(
k+i
i

)
. This is the same as the number of choices of jl, l = 1, . . . , k+1,

such that
∑k+1

l=1 jl = i. Clearly, there are
(
i+k
k

)
such options; since the coefficient of each xjl is

one, the coefficient of xi is
(
k+i
i

)
.

The following lemma gives us the relation amongst the three functions for z and a point w in

a neighbourhood of z.

Lemma 1.7. Let w ∈ E be such that u :=u(z, w) < 1 − 1/
√

2. Then

• β(w) ≤ 1−u
φ(u) ((1 − u)β(z) + ‖z − w‖),

• γ(w) ≤ γ(z)
(1−u)φ(u) , and

• α(w) ≤ α(z)+u
φ(u)2 .

Proof. From (1.2) we know that

β(w) = ‖Df(w)−1f(w)‖ ≤ ‖Df(w)−1Df(z)‖‖Df(z)−1f(w)‖.

19

1.2 Point Estimate of Second Kind

Since u < 1 − 1/
√

2, from Lemma 1.3 we obtain

β(w) ≤ (1 − u)2

ψ(u)
‖Df(z)−1f(w)‖

=
(1 − u)2

ψ(u)
‖Df(z)−1f(z) +

∞∑

k=1

1

k!
Df(z)−1Dkf(z)(w − z)k‖

≤ (1 − u)2

ψ(u)

(
‖Df(z)−1f(z)‖ +

∞∑

k=1

1

k!
‖Df(z)−1Dkf(z)‖‖w − z‖k

)

≤ (1 − u)2

ψ(u)

(
‖Df(z)−1f(z)‖ + ‖w − z‖

∞∑

k=2

‖Df(z)−1Dkf(z)‖
k!

‖w − z‖k
)

≤ (1 − u)2

ψ(u)

(
β(z) + ‖w − z‖

∞∑

k=1

uk−1

)

=
1 − u

φ(u)
((1 − u)β(z) + ‖z − w‖).

From (1.3) we know that

γ(w) sup
k>1

(
1

k!
‖Df(w)−1Dkf(w)‖

)k−1

. (1.12)

Consider the following term

1

k!
‖Df(w)−1Dkf(w)‖ =

1

k!
‖Df(w)−1

∞∑

i=0

1

i!
Dk+if(z)(w − z)i‖

≤ ‖Df(w)−1Df(z)‖‖
∞∑

i=0

1

k!i!
Df(z)−1Dk+if(z)(w − z)i‖.

Applying Lemma 1.3 we obtain

1

k!
‖Df(w)−1Dkf(w)‖ ≤ (1 − u)2

ψ(u)

∞∑

i=0

1

k!i!
‖Df(z)−1Dk+if(z)(w − z)i‖

≤ (1 − u)2

ψ(u)

∞∑

i=0

(k + i)!

k!i!

‖Df(z)−1Dk+if(z)‖
(k + i)!

‖w − z‖i

≤ (1 − u)2

ψ(u)

∞∑

i=0

(k + i)!

k!i!
γ(z)k+i−1‖w − z‖i

≤ (1 − u)2

ψ(u)
γ(z)k−1

∞∑

i=0

(k + i)!

k!i!
ui

=
1

ψ(u)

(
γ(z)

1 − u

)k−1

where the last step follows from Lemma 1.6. Applying this bound in (1.12) we obtain

γ(w) ≤ γ(z)

1 − u
(sup
k>1

ψ(u)−1/(k−1)) ≤ γ(z)

(1 − u)ψ(u)

20

1 Robust Approximate Zeros

since for 0 < u < 1 − 1/
√

2, ψ(u) < 1.

Multiplying the bounds on β(w) and γ(w) above we obtain

α(w) ≤ (1 − u)α(z) + u

ψ(u)2
≤ α(z) + u

ψ(u)2

since u is positive.

The above lemma along with (1.11) yields us: if w is such that u(z, w) < 1 − 1/
√

2 then

‖DNf(w)‖ ≤ 2
α(z) + u(z, w)

ψ(u(z, w))2
.

Notice that if we show that the RHS in the above inequality is smaller than one then we know

that Nf is a contraction map on the set B(z, u0

γ(z)), where u0 is a constant smaller than 1−1/
√

2.

Let α0 be a constant such that α(z) < α0. Define C0 := 2α0+u0

ψ(u0)2
. Then from the result above we

know that for all w ∈ B(z, u0

γ(z)),

‖DNf(w)‖ ≤ C0.

Thus to show that Nf is a contracting operator on B(z, u0

γ(z)) it suffices to choose constants α0

and u0 < 1 − 1/
√

2 such that

• C0 < 1 and

• Nf is closed on the set B(z, u0

γ(z)).

The second condition follows if for all w ∈ B(z, u0

γ(z)) we have

‖Nf(w) − z‖ ≤ u0

γ(z)
.

This would follow if

‖Nf(w) −Nf (z)‖ + β(z) ≤ u0

γ(z)

or in other words if β(z) ≤ (1 − C0)
u0

γ(z) , i.e., if α0 ≤ (1 − C0)u0. Thus we have shown the

following:

Lemma 1.8. Suppose there exist constants α0, u0 and C0 := 2(α0+u0)
φ(u0)2 which satisfy the following

criteria:

1. 0 ≤ u0 < 1 − 1/
√

2,

2. C0 < 1, and

3. α0 ≤ (1 − C0)u0.

21

1.2 Point Estimate of Second Kind

Then for any z such that α(z) < α0 Nf , is a contracting operator on B(z, u0

γ(z)) with contraction

bound C0.

Thus we know that there is a zero z∗ of f in B(z, u0

γ(f,z)), and all the Newton iterates starting

from z stay within this neighbourhood. To show that z is indeed an approximate zero, it suffices

(from theorem 1.2) to show that

‖z − z∗‖ ≤ 3 −
√

7

2γ∗
.

This would follow if

u0

γ(z)
≤ 3 −

√
7

2γ∗
.

Since z∗ ∈ B(z, u0

γ(f,z)) we know that u(z∗, z) < u0. Thus we can apply the second result in

Lemma 1.7 to obtain the following:

Lemma 1.9. Suppose there exist constants α0, u0 and C0 := 2(α0+u0)
φ(u0)2 which satisfy the following

criteria:

1. 0 ≤ u0 < 1 − 1/
√

2,

2. C0 < 1,

3. α0 ≤ (1 − C0)u0, and

4. u0

(1−u0)ψ(u0) ≤ 3−
√

7
2 .

If z ∈ E is such that α(z) < α0 then we have the following:

(a) Nf is a contracting operator on B(z, u0

γ(z)) with contraction bound C0.

(b) z is an approximate zero of f , with the associated zero z∗ ∈ B(z, u0

γ(z)).

One choice of constants is u0 = 0.1 and α0 = 0.03. Thus we have the following point estimate:

Theorem 1.3 ([BCSS98, Thm. 2,p. 260]). Any z ∈ E such that α(f, z) < 0.03 is an approximate

zero of f , with the associated zero z∗ ∈ B(z, 0.1
γ(f,z)).

We next derive similar results for the weak model. Before we do that we derive some tight

estimates on β(z) and ‖z − z∗‖, when z is an approximate zero.

22

1 Robust Approximate Zeros

Some tight estimates

We will later need a criterion for terminating Newton iteration starting from an approximate

zero such that in the end we have approximated the associated zero to the desired precision. The

criterion we use depends upon the value of β(z) = ‖Df(z)−1f(z)‖. There are two advantages of

choosing the value of β(z): first, it is computed in the course of the algorithm and hence is easily

available at no extra cost; and second it is tightly related to ‖z − z∗‖, as we will show shortly.

Lemma 1.10. Let z, w ∈ E and u := γ(z)‖z − w‖ < 1 − 1√
2
. Then we have

ψ(u)

(1 − u)2
≤ ‖Df(z)−1Df(w)‖ ≤ (1 − u)−2.

Proof. Consider the upper bound first:

‖Df(z)−1Df(w)‖ = ‖I +

∞∑

k=1

1

k!
Df(z)−1Dk+1f(z)(w − z)k‖

≤ 1 +

∞∑

k=1

1

k!
‖Df(z)−1Dk+1f(z)‖‖w − z‖k

= 1 +

∞∑

k=1

(k + 1)uk

= (1 − u)−2,

since u < 1 the last step follows from Lemma 1.6. For the lower bound, we proceed in a similar

manner:

‖Df(z)−1Df(w)‖ = ‖I +
∞∑

k=1

1

k!
Df(z)−1Dk+1f(z)(w − z)k‖

≥ 1 −
∞∑

k=1

1

k!
‖Df(z)−1Dk+1f(z)‖‖w − z‖k

≥ 1 −
∞∑

k=1

(k + 1)uk

=
ψ(u)

(1 − u)2
,

again the last step follows Lemma 1.6.

In the neighbourhood of a simple zero we have the following:

Lemma 1.11. Let z ∈ E be such that u = γ(z∗)‖z − z∗‖ < 1, where z∗ ∈ E is a simple zero of

f . Then
‖z − z∗‖(1 − 2u)

1 − u
≤ ‖Df(z∗)−1f(z)‖ ≤ ‖z − z∗‖

1 − u
.

23

1.2 Point Estimate of Second Kind

Proof. Consider the upper bound first:

‖Df(z∗)−1f(z)‖ = ‖(z − z∗) +

∞∑

k=2

1

k!
Df(z∗)−1Dkf(z∗)(z − z∗)k‖

≤ ‖z − z∗‖(1 +
∞∑

k=1

uk)

=
‖z − z∗‖

1 − u
,

where the last step holds since u < 1. The lower bound can be shown in a manner similar to the

way it was obtained in Lemma 1.10.

Based on the two lemmas above we have the following tight relation between ‖z − z∗‖ and

‖Df(z)−1f(z)‖:

Lemma 1.12. If z ∈ E is such that u :=γ(z∗)‖z − z∗‖ < 1− 1√
2
, where z∗ ∈ E is a simple zero

of f , then

‖z − z∗‖(1 − 2u)(1 − u) ≤ ‖Df(z)−1f(z)‖ ≤ ‖z − z∗‖1 − u

ψ(u)
.

Proof. We only prove the upper bound:

‖Df(z)−1f(z)‖ ≤ ‖Df(z)−1Df(z∗)‖‖Df(z∗)−1f(z)‖ ≤ ‖z − z∗‖1 − u

ψ(u)
,

where the last step follows from the upper bound in Lemma 1.11, and the lower bound in

Lemma 1.10 along with Lemma 1.2. The lower bound can be shown similarly.

1.2.2 The Weak Model

We first adapt our definitions of Newton iteration and approximate zeros for the weak model.

For any z0 ∈ E and some 0 ≤ δ ≤ 1 define the robust Newton sequence relative to δ as

a sequence (z̃i)i≥0 such that z̃0 := z0 and for all i ≥ 1,

z̃i+1 :=Nf(z̃i) ± δ, (1.13)

where ‖z̃i‖ is bounded. Recalling our error notation, (1.13) means ‖z̃i+1 − Nf (z̃i)‖ ≤ δ. Note

that the definition assumes that the robust Newton sequence relative to δ is well-defined.

A z0 ∈ E is called a weak approximate zero of f relative to δ if there exists a zero z∗

of f such that any robust Newton sequence (z̃i) of z0 relative to δ satisfies

‖z̃i − z∗‖ ≤ max(21−2i‖z0 − z∗‖, κδ), (1.14)

24

1 Robust Approximate Zeros

for some constant κ > 0; the zero z∗ is called the associated zero of z0.

We will proceed by developing the two parts, corresponding to those mentioned in the begin-

ning of §1.2. For the first part we have the following analog of Theorem 1.2:

Theorem 1.4. Let z∗ be a simple zero of f . Then any z0 ∈ E such that

γ(z∗)‖z0 − z∗‖ ≤ 4 −
√

14

2
and γ(z∗)δ ≤ 4 −

√
14

2

is a weak approximate zero of f relative to δ with z∗ as its associated zero. That is, the robust

Newton sequence (z̃i) relative to δ, defined in (1.13), satisfies

‖z̃i − z∗‖ ≤ max(21−2i‖z0 − z∗‖, 2δ).

Proof. Our proof is by induction on i; the base case holds trivially. For sake of succinctness let

ui :=uezi
, βi :=β(z̃i) and γi := γ(z̃i). Assuming the hypothesis holds for i, we consider two cases.

• Case 1: 2δ ≤ 21−2
i+1‖z0 − z∗‖.

Our induction hypothesis in this case is

‖z̃i − z∗‖ ≤ 21−2i‖z0 − z∗‖. (1.15)

In particular, this implies ui ≤ u0 < 1 − 1/
√

2, for i ≥ 0, and hence

‖z̃i+1 − z∗‖ ≤ ‖z̃i+1 −Nf(z̃i)‖ + ‖Nf(z̃i) − z∗‖ ≤ δ +
γ∗

ψ(ui)
‖z̃i − z∗‖2, (1.16)

where the last step follows from (1.13) and Lemma 1.4. Furthermore, from Remark 1.1 we

know that ψ(ui) ≥ ψ(u0), and hence we get

‖z̃i+1 − z∗‖ ≤ δ +
γ∗

ψ(u0)
‖z̃i − z∗‖2.

Applying the inductive hypothesis (1.15) and the condition of this case to this equation we

get

‖z̃i+1 − z∗‖ ≤ 2−2i+1‖z0 − z∗‖ +
u0

ψ(u0)
22−2i+1‖z0 − z∗‖.

Since u0 <
4−

√
14

2 we know u0

ψ(u0) ≤ 1
4 . Thus

‖z̃i+1 − z∗‖ ≤ 21−2i+1‖z0 − z∗‖

which proves the inductive step.

25

1.2 Point Estimate of Second Kind

• Case 2: 2δ > 21−2
i+1‖z0 − z∗‖.

In this case our induction hypothesis is

‖z̃i − z∗‖ ≤ max(21−2i‖z0 − z∗‖, 2δ). (1.17)

This gives us

ui ≤ 2 max(2−2i

u0, δγ∗) < 1 − 1/
√

2, (1.18)

since 2δγ∗, 2u0 ≤ 4 −
√

14 < 1 − 1/
√

2; thus (1.16) still holds. From (1.17) we also know

that

‖z̃i − z∗‖2 ≤ max(22−2i+1‖z0 − z∗‖2, 4δ2) ≤ max(4δ‖z0 − z∗‖, 4δ2),

where the last step holds from the condition of the case. Now we consider two sub-cases:

1. If δ ≤ ‖z0 − z∗‖ then from (1.18) we know ui ≤ u0 and hence from (1.16) it follows

that

‖z̃i+1 − z∗‖ ≤ δ +
4δγ∗
ψ(u0)

‖z0 − z∗‖ = δ + 4δ
u0

ψ(u0)
≤ 2δ

since u0 ≤ 4−
√

14
2 implies 4 u0

ψ(u0)
≤ 1.

2. If δ > ‖z0 − z∗‖ then from (1.18) we know ui ≤ 2δ. Hence from (1.16) we get

‖z̃i+1 − z∗‖ ≤ δ + 4δ2
γ∗

ψ(ui)
.

Since ui ≤ 2δγ∗ < 1 − 1/
√

2, we know that ψ(ui) ≥ ψ(2δγ∗). Thus

‖z̃i+1 − z∗‖ ≤ δ + 4δ2
γ∗

ψ(2δγ∗)
.

But δγ∗ ≤ 4−
√

14
2 implies 4δ γ∗

ψ(2δγ∗) ≤ 1, and hence

‖z̃i+1 − z∗‖ ≤ 2δ.

In both sub-cases we have proved the inductive step.

Based upon the above result we now derive the point estimate in the weak model. To achieve

this we first prove the following analog of Lemma 1.9:

Lemma 1.13. Suppose there exist constants α0, u0 and C0 := 2(α0+u0)
ψ(u0)2

which satisfy the following

criteria:

26

1 Robust Approximate Zeros

1. 0 ≤ u0 < 1 − 1/
√

2,

2. C0 < 1,

3. α0 ≤ (1 − C0)u0, and

4. u0

(1−u0)ψ(u0) ≤ 4−
√

14
2 .

If z0 ∈ E is such that α(z0) + γ(z0)δ < α0 and γ(z0)δ ≤ 4−
√

14
2 then we have the following:

(a) Nf is a contracting operator on B(z0,
u0

γ(z0)
) with contraction bound C0 and

(b) z0 is a weak approximate zero of f relative to δ, with the associated zero z∗ ∈ B(z0,
u0

γ(z0)
).

Proof. The first part follows as a direct consequence of Lemma 1.9; thus we know that there is

a zero z∗ of f in B(z0,
u0

γ(z0)
).

We will next show that all the iterates z̃i are contained in the set B(z0,
u0

γ(z0)
). This will be

done using induction; the base case trivially holds. Inductively assume z̃i ∈ B(z0,
u0

γ(z0)
). The

distance between z̃i+1 and z0 is

‖z̃i+1 − z0‖ ≤ ‖z̃i+1 −Nf (zi)‖ + ‖Nf (zi) −Nf (z0)‖ + ‖Nf(z0) − z0‖

≤ δ + C0‖zi − z0‖ + β(z0)

where the last step follows from (1.13) and the fact that Nf is a contracting operator. Moreover,

from our inductive assumption we obtain

‖z̃i+1 − z0‖ ≤ δ + C0
u0

γ(z0)
+ β(z0).

Thus z̃i+1 ∈ B(z0,
u0

γ(z0)
) if

δ + C0
u0

γ(z0)
+ β(z0) ≤

u0

γ(z0)

or if

α(z0) + γ(z0)δ ≤ (1 − C0)u0

which is true by the conditions of the lemma.

To show that z0 is a weak approximate w.r.t. δ with the associated zero z∗, we need to show,

in addition to the above, that

‖z0 − z∗‖ ≤ u0

γ(z0)
≤ 4 −

√
14

2γ(z∗)
.

From Lemma 1.7 this follows if

u0

(1 − u0)ψ(u0)
≤ 4 −

√
14

2
.

27

1.2 Point Estimate of Second Kind

By choosing u0 = 0.07 and α0 = 0.03 we obtain the following point estimate in the weak

model:

Theorem 1.5 (Weak Point Estimate). Any z0 ∈ E such that

α(f, z0) + γ(f, z0)δ < 0.03 and γ(f, z0)δ ≤
4 −

√
14

2

is a weak approximate zero of f relative to δ, with the associated zero z∗ ∈ B(z0,
0.07

γ(f,z0)
).

Deriving the point estimates in the strong model is straightforward, given the results in the

weak model. This is our objective in the next section.

1.2.3 The Strong Model

We begin with adapting the definition of approximate zero in the weak model to our current

setting.

For any z0 ∈ C and C ∈ R, a robust iteration sequence of z0 (relative to C and f) is

an infinite sequence (z̃i)i≥0 such that z̃0 = z0, and for all i ≥ 1,

z̃i = 〈Nf (z̃i−1)〉2i+C , (1.19)

where ‖z̃i‖ is bounded.

Our key definition is as follows: z0 is a robust approximate zero of f if there exists a zero

z∗ of f such that for all C satisfying

2−C ≤ ‖z0 − z∗‖, (1.20)

any robust iteration sequence (z̃i)i≥0 of z0 (relative to C and f) is such that for all i ≥ 0,

‖z̃i − z∗‖ ≤ 21−2i‖z0 − z∗‖. (1.21)

Call z∗ the associated zero of z0.

We have the following theorem as a direct consequence of Theorem 1.4:

Theorem 1.6. Let z∗ be a simple zero of f . Then any z0 ∈ E such that

γ(z∗)‖z0 − z∗‖ ≤ 4 −
√

14

2

is a robust approximate zero of f with z∗ as the associated zero.

28

1 Robust Approximate Zeros

Proof. It is straightforward to see that a robust iteration sequence of z0 relative to C (and f)

is a robust iteration sequence of z0 relative to δ where δ = 2−1−C . Thus we only need to verify

that γ∗2−1−C ≤ 4−
√

14
2 . But this holds since

γ∗2
−1−C ≤ 1

2
γ∗‖z0 − z∗‖ < 4 −

√
14

2
.

Similarly, we have the following analog of Lemma 1.13:

Lemma 1.14. Suppose there exist constants α0, u0 and C0 := 2(α0+u0)
ψ(u0)2

which satisfy the following

criteria:

1. 0 ≤ u0 < 1 − 1/
√

2,

2. C0 <
3
4 ,

3. α0 ≤ (3
4 − C0)u0, and

4. u0

(1−u0)ψ(u0) ≤ 4−
√

14
2 .

If z0 ∈ E is such that α(z0) < α0 then we have the following:

(a) Nf is a contracting operator on B(z0,
u0

γ(z0)
) with contraction bound C0 and

(b) z0 is a robust approximate zero of f with the associated zero z∗ ∈ B(z0,
u0

γ(z0)
).

Proof. We will show that robust Newton iterates z̃i are contained in B(z0,
u0

γ(z0)
). Proceeding

in the same way as in Lemma 1.13, i.e., assuming that z̃i ∈ B(z0,
u0

γ(z0)
), z̃i+1 will also be in

B(z0,
u0

γ(z0)
) if

α(z0) + γ(z0)2
−2i+1−C ≤ u0(1 − C0),

or if

α(z0) + γ(z0)2
−2−C ≤ u0(1 − C0),

since i ≥ 0. Since 2−C ≤ ‖z0 − z∗‖, the above follows if

α(z0) ≤ (
3

4
− C0)u0

since i ≥ 1. But this is true from the constraints of the lemma.

Choosing u0 = 0.07 and α0 = .02 we obtain the following generalization of [SDY05, Thm. 2]:

Theorem 1.7 (Robust Point Estimate). Any z0 ∈ E such that α(f, z0) < 0.02 is a robust

approximate zero of f , with the associated zero z∗ ∈ B(z0,
0.07

γ(f,z0)
).

In the next section we develop similar results for approximate zeros of fourth kind.

29

1.3 Point Estimate of Fourth Kind

1.3 Point Estimate of Fourth Kind

Malajovich [Mal93] was the first to derive point estimates for approximate zeros of the fourth

kind. However, from his proofs the uniqueness of the associated zero is not clear. We give an

alternative derivation of point estimates for approximate zeros of the fourth kind. Our approach

follows the two steps mentioned in the beginning of §1.2. In order to achieve this, we propose an

alternative definition of approximate zeros of the fourth kind which is stronger than the original

definition, in the same sense as the definition of approximate zeros of the second kind is stronger

than the definition of approximate zeros of the third kind.

Definition 1.8. Let z0 ∈ E be such that the sequence of Newton iterates (zi), given by the

recurrence zi :=Nf (zi−1), is well defined. Then z0 is called an approximate zero of the

fourth kind if there is a unique zero z∗ of f such that for all i ∈ N≥0

‖zi − z∗‖
‖zi‖

≤ 21−2i ‖z0 − z∗‖
‖z0‖

. (1.22)

We call z∗ the associated zero of z.

It is clear that if ‖z0−z∗‖
‖z0‖ ≤ 1 then the original definition follows. Our definition also helps

us to utilize the results developed for approximate zeros of the second kind. To achieve this

reuse, we modify the definitions of the three functions α(z), β(z) and γ(z) to take into account

the presence of ‖z‖ in the denominator of (1.22) above; this modification is originally given by

Malajovich. Let the three functions be α′(z), β′(z) and γ′(z). Then the relation between these

new definitions and the old ones is as follows:

β′(z) :=
β(z)

‖z‖ , (1.23)

γ′(z) := max{1, ‖z‖γ(z)}, and (1.24)

α′(z) :=β′(z)γ′(z) ≥ α(z). (1.25)

Corresponding to u(z, w) in (1.5), define the function

u′(z, w) :=
γ′(z)

‖z‖ ‖z − w‖. (1.26)

For the special case when z = z∗ is a root of f we often use the shorthand γ′∗ for γ′(z∗) and u′z

for u′(z∗, w); if z∗ is a simple root of f , i.e., Df(z∗) is non-singular, then these are well-defined

quantities. Since γ′(z∗) ≥ γ(z∗)‖z∗‖, we have

u′z ≥ ‖z − z∗‖γ(z∗) = uz. (1.27)

30

1 Robust Approximate Zeros

Moreover, since γ′(z) ≥ 1 we also have

u′(z, w) ≥ ‖z − w‖
‖z‖

, which gives us

1 − u′(z, w) ≤ ‖z‖
‖w‖ ≤ 1 + u′(z, w); (1.28)

from this inequality it follows that if 0 ≤ u′(z, w) < 1 then both ‖z‖ and ‖w‖ are bounded

away from zero. We start with deriving point estimates in the exact model for the definition of

approximate zeros given above.

1.3.1 The Exact Model

The results here are derived from the analogous results in §1.2.1. We begin with deriving the

analog of Lemma 1.4; this will instead depend upon the following lemma which follows in a

straightforward manner from (1.27), Lemma 1.4 and Remark 1.1:

Lemma 1.15. If z ∈ E is such that u′z < 1 − 1/
√

2 then

‖Nf(z) − z∗‖ ≤ u′z
ψ(u′z)

‖z − z∗‖.

Let z′ :=Nf (z). From this lemma we know that

‖z′ − z∗‖
‖z′‖ ≤ u′z

‖z′‖ψ(u′z)
‖z − z∗‖

=
‖z‖2

‖z′‖‖z∗‖
γ′∗

ψ(u′z)

(‖z − z∗‖
‖z‖

)2

.

Using the upper bound from (1.28) we obtain

‖z′ − z∗‖
‖z′‖ ≤ ‖z‖

‖z′‖
(1 + u′z)γ

′
∗

ψ(u′z)

(‖z − z∗‖
‖z‖

)2

. (1.29)

Since z′ = Nf (z) we have

‖z′‖
‖z‖ ≥ ‖z‖ − ‖Df(z)−1‖‖f(z)‖

‖z‖ ≥ 1 − β′(z). (1.30)

Using (1.27) we also have the following tight relation between β′(z) and ‖z−z∗‖
‖z∗‖ :

Lemma 1.16. If z ∈ E is such that u′z < 1 − 1√
2
, where z∗ ∈ E is a simple zero of f , then

‖z − z∗‖
‖z∗‖ (1 − 2u′z)(1 − u′z)(1 + u′z)

−1 ≤ β′(z) ≤ ‖z − z∗‖
‖z∗‖ψ(u′z)

.

31

1.3 Point Estimate of Fourth Kind

Proof. From Lemma 1.12 and (1.27) it follows that

‖z − z∗‖
‖z∗‖ (1 − 2u′z)(1 − u′z) ≤ β′(z)

‖z‖
‖z∗‖ ≤ ‖z − z∗‖1 − u′z

ψ(u′z)
.

Applying the inequality from (1.28) gives us the desired result.

Based upon the these results we have the following analog of Lemma 1.4:

Lemma 1.17. If z ∈ E is such that u′z <
5−

√
17

4 , where z∗ ∈ E is a simple zero of f , then

‖Nf(z) − z∗‖
‖Nf(z)‖

≤ (1 + u′z)

φ(u′z)
γ′∗

(‖z − z∗‖
‖z‖

)2

,

where

φ(x) :=ψ(x) − x = 1 − 5x+ 2x2. (1.31)

Proof. From (1.29) and (1.30) we know that

‖z′ − z∗‖
‖z′‖ ≤ (1 + u′z)γ

′
∗

(1 − β′(z))ψ(u′z)

(‖z − z∗‖
‖z‖

)2

.

Since γ′∗ ≥ 1, from the upper bound in Lemma 1.16 we know that

1 − β′(z) ≥ 1 − β′(z)γ′∗ ≥ 1 − u′z
ψ(u′z)

≥ φ(u′z)

ψ(u′z)
.

Thus
‖z′ − z∗‖

‖z′‖ ≤ (1 + u′z)γ
′
∗

φ(u′z)

(‖z − z∗‖
‖z‖

)2

.

Moreover, the right hand side is well defined since u′z <
5−

√
17

4 implies φ(u′z) > 0.

Remark 1.2. The smallest positive root of φ(x) is 5−
√

17
4 . Moreover, φ(x) is strictly decreasing

from left to right in the interval [0, 5−
√

17
4].

Based upon the results above we have the following analog to Theorem 1.2:

Theorem 1.9. Let z∗ ∈ E be a simple zero of f . If z ∈ E is such that

‖z − z∗‖
‖z∗‖ γ′(z∗) ≤ 0.13

then z is an approximate zero fourth kind of f with z∗ as the associated zero.

Proof. Let u′i :=
‖zi−z∗‖
‖z∗‖ γ′∗. The proof is by induction. The base case i = 0 trivially holds.

Suppose the hypothesis is true for i, i.e.,

‖zi − z∗‖
‖zi‖

≤ 21−2i ‖z0 − z∗‖
‖z0‖

.

32

1 Robust Approximate Zeros

For i ≥ 1 this implies u′i
‖z∗‖
‖zi‖ ≤ 1

2u
′
0
‖z∗‖
‖z0‖ , or from (1.28) that

u′

i

1+u′

i
≤ 1

2
u′

0

1−u′

0

≤ u′0; from this

we deduce that u′i ≤ u′0/(1 − u′0), which is smaller than 5−
√

17
4 since u′0 ≤ 0.13. Thus from

Lemma 1.17, along with the observation from Remark 1.2 that φ(u′i) ≥ φ(u′0), we obtain

‖zi+1 − z∗‖
‖zi+1‖

≤ (1 + u′0)

φ(u′0)
γ′∗

(‖zi − z∗‖
‖z‖

)2

.

Applying the inductive hypothesis we further get

‖zi+1 − z∗‖
‖zi+1‖

≤ (1 + u′0)

φ(u′0)
γ′∗

(
(1 + u′0)u

′
0

(1 − u′0)φ(u′0)

)2i+1−2(‖z0 − z∗‖
‖z0‖

)2

≤ (1 + u′0)u
′
0

φ(u′0)

‖z∗‖
‖z0‖

(
(1 + u′0)u

′
0

(1 − u′0)φ(u′0)

)2i+1−2 ‖z0 − z∗‖
‖z0‖

≤
(

(1 + u′0)u
′
0

(1 − u′0)φ(u′0)

)2i+1−1 ‖z0 − z∗‖
‖z0‖

where the last step follows from (1.28). This proves the inductive step. Furthermore, we can

verify that u′z0 ≤ 0.13 implies
(1+u′

0)u
′

0

(1−u′

0
)φ(u′

0
) ≤ 1

2 .

Based upon this theorem, we have the following analog of Lemma 1.9:

Lemma 1.18. Suppose there exist constants α0, u0 and C0 := 2(α0+u0)
φ(u0)2

which satisfy the following

criteria:

1. 0 ≤ u0 < 1 − 1/
√

2,

2. C0 < 1,

3. α0 ≤ (1 − C0)u0, and

4. u0

(1−u0)ψ(u0) ≤ 0.13.

If z ∈ E is such that α′(z) < α0 then we have the following:

(a) Nf is a contracting operator on B(z, u0‖z‖
γ′(z)) with contraction bound C0.

(b) z is an approximate zero of fourth kind of f , with the associated zero z∗ ∈ B(z, u0‖z‖
γ′(z)).

Proof. The first part is a straightforward consequence of Lemma 1.9 and (1.24); thus we know that

there is a root z∗ of f in B(z, u0‖z‖
γ′(z)). For the second part observe that from Theorem 1.9 we know

that z is an approximate zero of fourth kind with z∗ as the associated zero if ‖z− z∗‖ ≤ 0.13‖z∗‖
γ′
∗

;

since z∗ ∈ B(z, u0‖z‖
γ′(z)) this follows if

u0‖z‖γ′∗
γ′(z)‖z∗‖ ≤ 0.13. (1.32)

33

1.3 Point Estimate of Fourth Kind

For any w ∈ B(z, u0‖z‖
γ′(z)), let u :=u′(w, z) > ‖z − w‖γ(z). If u < 1 − 1/

√
2, then from (1.24),

Lemma 1.7 and Remark 1.1 we get that

γ′(w) ≤ max

{
1,

‖w‖
‖z‖

γ′(z)

(1 − u)ψ(u)

}
.

But by definition we know that γ′(z) ≥ 1; moreover, from (1.28) we know that ‖w‖
‖z‖(1−u) ≥ 1.

Thus we have

γ′(w) ≤ ‖w‖
‖z‖

γ′(z)

(1 − u)ψ(u)
. (1.33)

Thus (1.32) follows from the fourth assumption of the lemma.

One choice of constants is u0 = 0.06 and α0 = 0.03. Thus we have the following point estimate

for approximate zeros of fourth kind:

Theorem 1.10 (Point Estimate of Fourth Kind). Any z ∈ E such that α′(f, z) < 0.03 is an

approximate zero of f , with the associated zero z∗ ∈ B(z, 0.06‖z‖
γ′(f,z)).

We now proceed to develop the same results in the weak model.

1.3.2 The Weak Model

We first modify the definition of a robust Newton sequence relative to δ from §1.2.2: For any

z0 ∈ E and some 0 ≤ δ ≤ 1 define the robust Newton sequence (z̃i) relative to δ as a

sequence (z̃i)i≥0 such that z̃0 := z0, and for all i ≥ 1

‖z̃i+1 −Nf (z̃i)‖
‖z̃i‖

≤ δ, (1.34)

where ‖z̃i‖ is bounded. Based upon this we have the following: A z0 ∈ E is called a weak

approximate zero of fourth kind of f relative to δ if there exists a zero z∗ of f such that

any robust Newton sequence (z̃i) of z0 relative to δ satisfies

‖z̃i − z∗‖
‖z̃i‖

≤ max

(
21−2i ‖z̃0 − z∗‖

‖z̃0‖
, κδ

)
(1.35)

for some constant κ > 0; z∗ is called the associated zero of z0.

We have our first main result, an analog of Theorem 1.4:

Theorem 1.11. Let z∗ ∈ E be a simple zero of f . Then any z0 ∈ E such that

γ′(z∗)
‖z0 − z∗‖

‖z∗‖ ≤ 0.05 and γ′(z∗)δ ≤ 0.01

34

1 Robust Approximate Zeros

is a weak approximate zero of fourth kind of f relative to δ, and z∗ is the associated zero. That

is, the robust Newton sequence (z̃i), defined in (1.13), relative to δ satisfies

‖z̃i − z∗‖
‖z̃i‖

≤ max

(
21−2i ‖z̃0 − z∗‖

‖z̃0‖
, 3δ

)
.

Proof. Our proof is by induction on i; the base case trivially holds. For sake of succinctness let

u′i :=u′
ezi

, β′
i :=β′(z̃i) and γ′i := γ′(z̃i). Assume the hypothesis holds for i. We consider two cases.

• Case 1: 3δ ≤ 2−2
i+1 ‖z0−z

∗‖
‖z0‖ .

Our induction hypothesis in this case is

‖z̃i − z∗‖
‖z̃i‖

≤ 21−2i ‖z̃0 − z∗‖
‖z̃0‖

. (1.36)

In particular, for i ≥ 1 this implies
u′

i

‖ezi‖ ≤ 1
2
u′

0

‖ez0‖ , or from (1.28) that
u′

i

1+u′

i

≤ 1
2

u′

0

1−u′

0

≤ u′0 <

5−
√

17
4 . Thus we have

‖z̃i+1 − z∗‖
‖z̃i+1‖

≤ ‖z̃i+1 −Nf (z̃i)‖
‖z̃i+1‖

+
‖Nf (z̃i) − z∗‖

‖z̃i+1‖

≤ δ
‖z̃i‖

‖z̃i+1‖
+

‖Nf (z̃i) − z∗‖
‖z̃i+1‖

,

where the last step follows from (1.34). Furthermore, from Lemma 1.17 and the fact that

u′i ≤ u′0 implies φ(u′i) ≥ φ(u′0) (see Remark 1.2), we get

‖z̃i+1 − z∗‖
‖z̃i+1‖

≤ δ
‖z̃i‖

‖z̃i+1‖
+

‖Nf(z̃i)‖
‖z̃i+1‖

(1 + u′0)γ
′
∗

φ(u′0)

(‖z̃i − z∗‖
‖z̃i‖

)2

, (1.37)

Now we derive upper bound on the fractions
‖Nf (ezi)‖
‖ezi+1‖ and ‖ezi‖

‖ezi+1‖ . Since u′i ≤ u′0 < 1−1/
√

2,

from Lemma 1.16 we know that

β′
i ≤

u′i
ψ(u′i)(1 − u′i)

≤ u′0
ψ(u′0)(1 − u′0)

≤ 1

4
;

and since δγ′∗ ≤ 0.01, we also know that δ < 1
4 . Thus β′

i+δ <
1
2 , and we have the following:

1. ‖ezi‖
‖ezi+1‖ < 2. Since from (1.34) we have

‖ezi+1−Nf (ezi)‖
‖ezi‖ ≤ δ

⇒ ‖Nf (ezi)‖
‖ezi‖ − δ ≤ ‖ezi+1‖

‖ezi‖

⇒ 1 − β′
i − δ ≤ ‖ezi+1‖

‖ezi‖

⇒ 1
2 < ‖ezi+1‖

‖ezi‖ .

35

1.3 Point Estimate of Fourth Kind

2.
‖Nf (ezi)‖
‖ezi+1‖ < 3. Since

‖Nf(z̃i)‖
‖z̃i+1‖

≤ ‖Nf(z̃i)‖
‖z̃i‖

‖z̃i|
‖z̃i+1‖

=
‖z̃i −Df(z̃i)

−1f(z̃i)‖
‖z̃i‖

‖z̃i|
‖z̃i+1‖

≤ 1 + β′
i

1 − (β′
i + δ)

< 3.

Plugging these bounds in (1.37) we infer that

‖ezi+1−z∗‖
‖ezi+1‖ < 2δ + 3

(1+u′

0)γ
′

∗

φ(u′

0
)

(
‖ezi−z∗‖

‖ezi‖

)2

< 2δ + 3
u′

0(1+u
′

0)
φ(u′

0
) 22−2i+1 ‖z0−z∗‖

‖z0‖ (from (1.36)).

Since 3δ ≤ 22−2i+1 ‖z0−z∗‖
‖z∗‖ we further obtain

‖z̃i+1 − z∗‖
‖z̃i+1‖

< 2−2i+1 ‖z0 − z∗‖
‖z∗‖ + 3

u′0(1 + u′0)

φ(u′0)
22−2i+1 ‖z0 − z∗‖

‖z0‖

< 21−2i+1 ‖z0 − z∗‖
‖z0‖

,

where the last step follows from the fact that u′0 ≤ 0.05 implies 12
u′

0(1+u
′

0)
φ(u′

0
) ≤ 1.

• Case 2: 3δ > 22−2
i+1 ‖z0−z

∗‖
‖z∗‖ .

Our induction hypothesis in this case is

‖z̃i − z∗‖
‖z̃i‖

≤ max

{
3δ, 21−2i ‖z0 − z∗‖

‖z0‖

}
. (1.38)

Multiplying throughout by γ′∗, and applying (1.28) gives us for i ≥ 1

u′i
1 + u′i

≤ max{3γ′∗δ, u′0},

and since u′0 ≤ 0.05 and 3γ′∗δ ≤ 0.03, we know that u′i <
5−

√
17

4 . Thus we still have

‖z̃i+1 − z∗‖
‖z̃i+1‖

≤ 2δ + 3
(1 + u′0)γ

′
∗

φ(u′0)

(‖z̃i − z∗‖
‖z̃i‖

)2

. (1.39)

Moreover, from (1.38) we obtain

(‖z̃i − z∗‖
‖z̃i‖

)2

≤ max

{
9δ2, 22−2i+1

(‖z0 − z∗‖
‖z0‖

)2
}

≤ 3δmax

{
3δ,

‖z0 − z∗‖
‖z0‖

}
,

36

1 Robust Approximate Zeros

where the last step follows from the condition of the case. Now if 3δ ≤ ‖z0−z∗‖
‖z0‖ , then from

(1.39) we get

‖z̃i+1 − z∗‖
‖z̃i+1‖

≤ 2δ + 9δ
(1 + u′0)u

′
0

φ(u′0)
≤ 3δ,

since u′0 ≤ 0.05 implies 9
(1+u′

0)u
′

0

φ(u′

0
) ≤ 1. On the other hand if 3δ > ‖z0−z∗‖

‖z0‖ , then from (1.39)

we obtain

‖z̃i+1 − z∗‖
‖z̃i+1‖

≤ 2δ + 3
(1 + u′0)γ

′
∗

φ(u′0)
· 9δ2 ≤ 3δ,

since 27γ′∗δ
1+u′

0

φ(u′

0
) ≤ 1 for γ′∗δ ≤ 0.01 and u′0 ≤ 0.05. In either situation the inductive step

holds.

We now derive the point estimate for the weak model.

Lemma 1.19. Suppose there exists constants α0, β0, C0 := 2α0+u0

ψ(u0)2 , and 0 ≤ δ ≤ 1 be such that

1. 0 ≤ u0 < 1 − 1√
2
,

2. C0 <
1
2 , δ < 1

2 ,

3. α0 ≤ (1 − C0 − δ)u0, and

4. u0

(1−u0)ψ(u0) ≤ 0.13.

If z0 ∈ E is such that α′(z0) + γ′(z0)δ < α0 and γ′(z0)δ ≤ 0.01 then we have the following:

(a) Nf is a contracting operator on B(z0,
u0‖z0‖
γ′(z0)

) with contraction bound C0.

(b) z0 is a weak approximate zero of the fourth kind of f relative to δ, with the associated zero

z∗ ∈ B(z0,
u0‖z0‖
γ′(z0)

).

Proof. The first part follows directly from Lemma 1.18. We now show that the iterates z̃i are

contained in B(z0,
u0‖z0‖
γ′(z0)

). We prove this by induction on i. Clearly, z0 ∈ B(z0,
u0‖z0‖
γ′(z0)

). Assume

that

‖z̃i − z0‖ ≤ u0‖z0‖
γ′(z0)

. (1.40)

Then ‖z̃i+1 − z0‖ ≤ u0‖z0‖
γ′(z0) if

‖z̃i+1 −Nf(z̃i)‖ + ‖Nf(z̃i) −Nf(z0)‖ + ‖Nf(z0) − z0‖ ≤ u0‖z0‖
γ′(z0)

.

37

1.3 Point Estimate of Fourth Kind

Applying (1.34), and the fact that Nf is a contraction map on B(z0,
u0‖z0‖
γ′(z0)

), the inequality above

follows if

|z̃i‖δ + C0‖z̃i − z0‖ + ‖z0‖β′(z0) ≤
u0‖z0‖
γ′(z0)

.

From (1.40), we know that this inequality follows if

‖z0‖(1 +
u0

γ′(z0)
)δ + C0u0

‖z0‖
γ′(z0)

+ ‖z0‖β′(z0) ≤
u0‖z0‖
γ′(z0)

,

or equivalently if

α′(z0) + γ′(z0)δ ≤ u0(1 − C0 − δ).

But this is true since by assumption α′(z0) + γ′(z0)δ < α0 ≤ u0(1 − C0 − δ).

To show that z0 is a weak approximate zero of the fourth kind with z∗ as the associated zero,

it suffices to show that
u0‖z0‖
γ′(z0)

≤ 0.13‖z ∗ ‖
γ′∗

and γ′∗δ ≤ 0.01.

From (1.33), the first condition follows if u0

(1−u0)ψ(u0)
≤ 0.13; the second condition is true by

assumption.

One choice of constants is u0 = 0.06 and α0 = 0.01. Thus our point estimate is

Theorem 1.12. If z0 ∈ E is such that α′(z0) + γ′(z0)δ < 0.01 and γ′(z0)δ ≤ 0.01 then z0 is a

weak approximate zero and the associated zero z∗ ∈ B(z, 0.06‖z0‖
γ′(z0)

).

1.3.3 The Strong Model

We now derive point estimates in the strong bigfloat model. Deriving these results is straight-

forward given the results in the weak model above. Again, we first modify the definition of a

robust iteration sequence relative to C and f as given in §1.2.3: For any z0 ∈ C and C ∈ R, a

robust iteration sequence of z0 (relative to C and f) is an infinite sequence (z̃i)i≥0 such that

z̃0 = z0, and for all i ≥ 1,

‖z̃i+1 −Nf (z̃i)‖
‖z̃i‖

≤ δi+1 := 2−2i+1−C , (1.41)

where ‖z̃i‖ is bounded. It is not hard to see that the definition is similar to (1.34), except δ

varies with i now.

Based upon the above we have the following: z0 is a robust approximate zero of fourth

kind of f if there exists a zero z∗ of f such that for all C satisfying

2−C ≤ ‖z0 − z∗‖
‖z0‖

, (1.42)

38

1 Robust Approximate Zeros

any robust iteration sequence (z̃i)i≥0 of z0 (relative to C and f) is such that for all i ≥ 0,

‖z̃i − z∗‖
‖z̃i‖

≤ 21−2i ‖z0 − z∗‖
‖z0‖

. (1.43)

Call z∗ the associated zero of z0.

As a direct consequence of Theorem 1.11, we have

Theorem 1.13. Let z∗ ∈ E be a simple root of f . Then any z0 such that

‖z0 − z∗‖
‖z∗‖ γ′∗ ≤ 0.01

is a robust approximate zero of fourth kind of f .

Proof. We only need to show that under the above constrains γ′∗δ0 ≤ 0.01. But from (1.41) we

know that

γ′∗δ0 = γ′∗2
−1−C ≤ 1

2
γ′∗

‖z0 − z∗‖
‖z0‖

≤ 1

2

u′z0
1 − u′z0

< u′z0 ≤ 0.01.

Similarly, corresponding to Lemma 1.19 we have:

Lemma 1.20. Suppose there exists constants α0, β0, and C0 := 2α0+u0

ψ(u0)2 such that

1. 0 ≤ u0 < 1 − 1√
2
,

2. C0 <
1
2 ,

3. α0 ≤ u0(1 − C0 − u0+1
4), and

4. u0

(1−u0)ψ(u0) ≤ 0.01.

If z0 ∈ E is such that α′(z0) < α0 then we have the following:

(a) Nf is a contracting operator on B(z0,
u0‖z0‖
γ′(z0)

) with contraction bound C0.

(b) z0 is a robust approximate zero of the fourth kind with the associated zero z∗ ∈ B(z0,
u0‖z0‖
γ′(z0)

).

Proof. We will show that under the above constraints the robust Newton iterates as defined in

(1.41) are contained in B(z0,
u0‖z0‖
γ′(z0)

). Following a line of argument similar to Lemma 1.19, i.e.,

assuming z̃i ∈ B(z0,
u0‖z0‖
γ′(z0)

), z̃i+1 is also in the same region if

α′(z0) + γ′(z0)2
−2i+1−C ≤ u0(1 − C0 − 2−2i+1−C).

39

1.4 One Step of Robust Newton

Since i ≥ 0, and 2−C ≤ ‖z0−z∗‖
‖z0‖ , the inequality above follows if we show that

α′(z0) +
u0

4
≤ u0(1 − C0 −

u0

4
).

But this is straightforward from the condition that α′(z0) < α0 ≤ u0(1 − C0 − u0+1
4).

To show that z0 is a robust approximate zero of fourth kind, from Theorem 1.13 it suffices

to show that ‖z0 − z∗‖ ≤ 0.01‖z∗‖
γ′(z∗) , or that u0γ

′(z∗)‖z0‖
γ′(z0)‖z∗‖ ≤ 0.01; but this follows from (1.33) since

u0

ψ(u0)(1−u0)
≤ 0.01.

A judicious choice of the constants is u0 = 0.009 and α0 = 0.006. This gives us a point

estimate in the strong setting:

Theorem 1.14. If z0 ∈ E is such that α′(z0) < 0.006 then z0 is a robust approximate zero of

fourth kind of f , and the associated zero z∗ ∈ B(z0,
0.009‖z0‖
γ′(z0)

).

Given the dependency of the results for approximate zeros of fourth kind on those of the

second kind, from now on we only focus on the latter kind of zeros.

1.4 One Step of Robust Newton

In this section we give the details of how to implement one step of the robust Newton method

when f is a system of multivariate polynomials, i.e., given the (i − 1)-th iterate z̃i−1 how to

obtain z̃i such that

z̃i = 〈Nf (z̃i−1)〉2i+C ,

for some C ≥ 0. We give the details to compute Nf(z)± δ for any z and δ ≥ 0, since by choosing

δ := 2−2i−C we will get the desired result.

We start with some definitions that will be used subsequently:

Definition 1.15.

1. Let F : Cn → Cn be a zero-dimensional system of n integer polynomials F1, . . . , Fn ∈
Z[Z1, . . . , Zn], i.e., the system has only finitely many common roots.

2. Let Di be the degree of Fi and D :=max(D1, . . . , Dn).

3. Let S(Fi) be the number of non-zero coefficients in Fi, and S(F) be the number of non-zero

coefficients in the whole system.

4. Let JF (Z) be the Jacobian matrix of F at the point Z ∈ Cn, i.e.,

JF(Z) :=

[
∂Fi
∂Zj

(Z)

]

i,j

, for 1 ≤ i, j ≤ n.

40

1 Robust Approximate Zeros

5. Let F̂ : Cn+1 → Cn represent the homogenized version of F , i.e., the polynomials Fi are

homogenized to F̂i ∈ Z[Z0, Z1, . . . , Zn] by introducing a new variable Z0 such that degree of F̂i

is Di.

6. The norm ‖ · ‖ is the max-norm, i.e., ‖Z‖ = max(|Z1|, . . . , |Zn|); the matrix norm is the

corresponding operator norms.

7. The Newton operator is NF(Z) := Z− JF(Z)−1F(Z), where Z ∈ Cn.

We make the following assumption:

Our input point Z ∈ Fn is a robust approximate zero, such that α(F ,Z) < 0.02,

with the associated root Z∗. Moreover, Z and Z∗ are such that

‖Z‖, ‖Z∗‖ ≤ B(F), (1.44)

where

B(F) :=(21.5NK)D
′

2(n+1)D1···Dn , (1.45)

N :=

(
1 +

∑
Di

n

)
,

K := max(
√
nH(F))

and

D′ :=(1 +
∑

D−1
i)

∏
Dj .

This is a reasonable assumption, because from [Yap00, Cor. 11.49,p. 355] we know that the norm

‖Z∗‖ ≤ B(F), so without loss of generality we may assume that ‖Z‖ satisfies the same.

The algorithm to compute one step of the Newton method is fairly standard [Tis01, Hig96];

it takes as input F and Z ∈ Fn such that α(F ,Z) < 0.02, and produces an output Z′ ∈ Fn such

that

‖Z′ −NF (Z)‖ ≤ δ. (1.46)

The algorithm is as follows:

1. Compute the vector F(Z) and the matrix JF(Z) exactly.

2. Compute matrices P1, P2, L̂, and Û using Gaussian elimination with partial pivoting such

that P1JF (Z)P2 = L̂Û .

3. Compute w̃ = L̂−1F(Z) by forward substitution.

41

1.4 One Step of Robust Newton

4. Compute ṽ = Û−1w̃ by backward substitution.

5. Return Z′ :=Z − ṽ.

Since ring operations are exact and F is a system of integer polynomials, we know that the first

and the last step have no errors. For steps 2,3 and 4 we use the weak model of computation where

all the operations (including ring operations) are done to a fixed precision ǫ. The advantage of

doing this is not in the implementation, but in the analysis since the three sub-routines (Gaussian

elimination, forward and backward substitution) are very well studied in the weak model. Our

aim is to bound ǫ such that Z′ satisfies (1.46).

From the definition of NF(Z) we can verify that

‖Z′ −NF(Z)‖ = ‖ṽ − JF(Z)−1F(Z)‖.

Using backwardly stable algorithms for Gaussian elimination, forward substitution and backward

substitution we know from [Hig96, p. 177] that

(JF (Z) + ∆)ṽ = F(Z)

where

‖∆‖ ≤ n32n+2‖JF(Z)‖ ǫ

1 − 3nǫ
. (1.47)

Thus

‖ṽ − JF(Z)−1F(Z)‖ = ‖(JF (Z) + ∆)−1F(Z) − JF(Z)−1F(Z)‖

= ‖(I + JF (Z)−1∆)−1JF(Z)−1F(Z) − JF(Z)−1F(Z)‖

≤ ‖(I + JF (Z)−1∆)−1 − I‖‖JF(Z)−1F(Z)‖.

Choose ǫ such that ‖JF(Z)−1∆‖ ≤ 1
2 . Then from Lemma 1.1 we know that

(I + JF(Z)−1∆)−1 − I =
∞∑

i=1

(−JF (Z)−1∆)i

and hence

‖(I + JF (Z)−1∆)−1 − I‖ ≤ ‖JF(Z)−1∆‖
1 − ‖JF(Z)−1∆‖

≤ 2‖JF(Z)−1∆‖

≤ 2‖JF(Z)−1‖‖∆‖.

42

1 Robust Approximate Zeros

This yields

‖ṽ − JF (Z)−1F(Z)‖ ≤ 2‖JF(Z)−1‖‖∆‖‖JF(Z)−1F(Z)‖.

Plugging in the upper bound from (1.47) we get that

‖ṽ − JF (Z)−1F(Z)‖ ≤ n32n+3κ(JF(Z))‖JF (Z)−1F(Z)‖ ǫ

1 − 3nǫ
, (1.48)

where κ(M) represents the condition number of a matrix M . Suppose that 3nǫ ≤ 1
2 , in addition

to the earlier restriction on ǫ, then along with the definition of β(F ,Z) (Equation (1.2)) we have

‖Z′ −NF(Z)‖ ≤ n32n+4κ(JF (Z))β(F ,Z)ǫ ≤ n32n+7κ(JF (Z))B(F)ǫ,

since from our assumption α(F ,Z) < 0.02 we know from Theorem 1.7 that u = 0.07, and hence

from Lemma 1.12 we obtain

1

2
‖Z− Z∗‖ ≤ β(F ,Z) ≤ 4‖Z− Z∗‖; (1.49)

and from (1.44) we know that ‖Z − Z∗‖ ≤ 2B(F).

Thus we have the following:

Lemma 1.21. Let F be a system of integer polynomials and Z ∈ Fn be a robust approximate zero

such that α(F ,Z) < 0.02 with the associated zero Z∗; moreover, assume Z,Z∗ satisfy (1.44). The

amount of “machine precision” ǫ with which we need to do Gaussian elimination, forward and

backward substitution in one step of robust Newton applied to Z such that the computed output

Z′ satisfies (1.46) is bounded by the maximum of

δ
(
n32n+7κ(JF(Z))B(F)

)−1
and (6n)−1,

where B(F) is defined as in (1.45).

Based upon the above lemma we next give the robust Newton iteration that takes as input a

robust approximate zero and approximates the associated zero to any precision.

1.5 Robust Newton Iteration

In this section we generalize the algorithm in [SDY05] to a system of integer polynomials. The

algorithm will take as input a system F and a robust approximate zero Z0 ∈ Fn such that

43

1.5 Robust Newton Iteration

α(F ,Z0) < 0.02, and the associated zero Z∗ and Z0 satisfy (1.44); it will construct a robust

iteration sequence (Z̃i), relative to C, such that

Z̃i =
〈
NF(Z̃i−1)

〉

2i+C
.

In order to do so, we first need to determine a C such that 2−C ≤ ‖Z0 − Z∗‖, where Z∗ ∈ Rn is

the associated zero of Z0.

NOTE: We restrict ourselves to the case when the zero is in Rn. To handle the case when the

zero is in Cn, we need to compute with Gaussian bigfloats instead of bigfloats, i.e., members

of the ring F[i], i2 = −1, .

1.5.1 Distance between an approximate zero and its associated zero

Since F is a system of integer polynomials we can compute F(Z0) and JF (Z0) exactly. Now

compute ṽ0 such that JF (Z0)ṽ0 = F(Z0), where the precision used in solving the system is such

that it satisfies Lemma 1.21 with δ = 1/4. Then from (1.48) we obtain

‖ṽ0 − JF (Z0)
−1F(Z0)‖

‖JF (Z0)−1F(Z0)‖
≤ 1

4
. (1.50)

Thus ṽ0 is a relative approximation to JF(Z0)
−1F(Z0); this also implies

3β(F ,Z0) ≤ 4‖ṽ0‖ ≤ 5β(F ,Z0). (1.51)

Since α(F ,Z0) < 0.02 we know from Theorem 1.7 that u = 0.07, and hence from Lemma 1.12

we obtain
1

2
‖Z0 − Z∗‖ ≤ β(F ,Z0) ≤ 4‖Z0 − Z∗‖. (1.52)

Combining this with (1.51) we get

3

8
‖Z0 − Z∗‖ ≤ ‖ṽ0‖ ≤ 5‖Z0 − Z∗‖.

Thus we have the following lemma on computing C:

Lemma 1.22. Let Z0 be a robust approximate zero such that α(F ,Z0) < 0.02 and Z∗ be its

associated zero; moreover, assume Z0 and Z∗ satisfy (1.44). Let ṽ0 be the solution to the linear

system JF(Z0)X = F(Z0), where the precision used in solving the system is

(
n32n+9κ(JF (Z0))B(F)

)−1
,

B(F) is defined as in (1.45). Then C := 3 − ⌊log ‖ṽ0‖⌋ satisfies

1

8
‖Z0 − Z∗‖ < 2−C < ‖Z0 − Z∗‖.

44

1 Robust Approximate Zeros

The complete robust Newton iteration is the following:

Algorithm RN

INPUT: A zero-dimensional system of multi-variate integer polynomials F ,

precision p ∈ N≥0 and a Z0 ∈ Fn such that α(F ,Z0) < 0.02.

OUTPUT: 〈Z∗〉p, where Z∗ is the associated zero of Z0.

1. Let ṽ0 be as described in Lemma 1.22. Let C := 3 − ⌊log ‖ṽ0‖⌋.
2. Assign Z̃0 :=

〈
Z̃0

〉

C+2
.

3. do

Compute F(Z̃i), JF (Z̃i) and an upper bound κ̃ on κ(JF (Z̃i)).

Compute solution ṽi to JF (Z̃i)X = F(Z̃i) using Gaussian elimination

with partial pivoting where all operations are done to precision

ǫi = 2−2i

2−C(n32n+7B(F)κ̃)−1.

Let Z̃i+1 := Z̃i − ṽi.

while(ṽi 6= 0 and ‖ṽi‖ ≥ 2−p−2)

4. Return Z̃i.

Correctness of termination. Similar to (1.52) we can show that

‖Z̃i − Z∗‖ ≤ 2β(F , Z̃i).

But β(F , Z̃i) ≤ 2‖ṽi‖, since the precision needed to compute ṽi satisfies Lemma 1.21 with δ < 1
2

and hence from (1.48) we know that

‖ṽi − JF(Z̃i)
−1F(Z̃i)‖ ≤ 1

2
‖JF(Z̃i)

−1F(Z̃i)‖.

Thus

‖Z̃i − Z∗‖ ≤ 4‖ṽi‖. (1.53)

So if ‖ṽi‖ < 2−p−2 then ‖Z̃i − Z∗‖ < 2−p.

We next bound the complexity of the algorithm. This bound will be expressed in terms of

the condition number of the system of polynomials. Our next section gives the necessary details

of this concept.

45

1.6 Uniform Complexity of Robust Newton

1.6 Uniform Complexity of Robust Newton

In this section, we bound the complexity of approximating, to a given absolute precision, a root

of a zero-dimensional system of integer polynomials using Algorithm RN.

The algorithm takes as input the system of polynomials F , precision p ∈ N≥0 and a Z0 ∈ Fn

such that α(F ,Z0) < 0.02, and produces an output 〈Z∗〉p, where Z∗ is the associate zero of Z0.

We further assume that Z0 and Z∗ satisfy (1.44).

We now show that the robust Newton iterates ‖Z̃i‖ satisfy a bound similar to (1.44). Since

Z0 is a robust approximate zero, from Theorem 1.7 we know that ‖Z̃i − Z0‖ ≤ 0.07
γ(z0)

. From the

second inequality in Lemma 1.7 we further get

‖Z̃i − Z0‖ ≤ 0.07

ψ(u0)(1 − u0)γ∗
≤ γ−1

∗ (1.54)

since u0 = 0.07. We next derive a lower bound on γ∗. This will be done by generalizing a result of

Kalantari [Kal05, Thm. 3.2] from analytic functions on the complex plane to our general setting

of analytic functions on Banach spaces.

Lemma 1.23. Let f be an analytic function between two Banach spaces E and F . The distance

from any root z∗ ∈ E of f such that Df(z∗) is non-singular to any other root of f is at least

1
2γ(f,z∗) .

Proof. Let τ be any other root of f distinct from z∗. The result follows easily from the claim

that if z ∈ E is such that u := ‖z − τ‖γ(z) < 1 then

‖Nf(z) − τ‖ ≤ ‖z − τ‖u
1 − u

. (1.55)

The reason is that if we choose z := z∗, and suppose u := ‖z∗ − τ‖γ(z∗) < 1, then we get

‖Nf(z∗) − τ‖ ≤ ‖z∗ − τ‖u
1 − u

.

But both τ and z∗ are fixed points of Nf , and hence we obtain

‖z∗ − τ‖γ(z∗)
1 − ‖z∗ − τ‖γ(z∗) ≥ 1,

which implies that

‖z∗ − τ‖ ≥ 1

2γ(z∗)
;

46

1 Robust Approximate Zeros

On the other hand if ‖z∗ − τ‖γ(z∗) ≥ 1 then the lower bound on ‖z∗ − τ‖ trivially holds. We

now prove (1.55). We have

‖Nf(z) − τ‖ = ‖z − τ −Df(z)−1f(z)‖

= ‖z − τ −Df(z)−1f(z) +Df(z)−1f(τ)‖

= ‖z − τ −Df(z)−1f(z) +

∞∑

k=0

Df(z)−1Dkf(z)

k!
(τ − z)k‖

= ‖
∞∑

k=2

1

k!
Df(z)−1Dkf(z)(τ − z)k‖

≤ ‖z − τ‖
∞∑

k=2

(γ(z)‖z − τ‖)k−1

≤ ‖z − τ‖u
1 − u

,

where the last step follows from the assumption that u < 1.

Remark 1.3. Following a line of argument as above, it seems possible to generalize the other

results of Kalantari [Kal05] to our setting of analytic functions on Banach spaces.

Applying the lemma above to (1.54) we get that ‖Z̃i−Z0‖ is smaller than twice the separation

between the roots of F , but from (1.44) we know that the maximum separation between any two

roots of F is 2B(F), and hence we obtain ‖Z̃i‖ ≤ ‖Z0‖ + 2B(F) ≤ 3B(F).

To bound the worst-case complexity of the algorithm we will first bound the number of

iterative steps needed by the algorithm, then we will bound the worst-case precision required at

each iteration; this latter bound will depend upon deriving a worst-case bound on C, as defined

in Lemma 1.22, and κ(JF (Z̃i)).

1.6.1 Bound on the number of iterative steps.

From (1.21) and (1.53) it is clear that the algorithm needs at most 2 + log(p + 1 + ‖Z0 − Z∗‖)
to compute 〈Z∗〉p. Moreover, since Z0 and Z∗ satisfy (1.44) we know that ‖Z0 − Z∗‖ ≤ 2B(F).

Thus the number of iterative steps needed by the algorithm is

O(log(p+ 1 +B(F))). (1.56)

We next give an upper bound on the condition number κ(JF (Z̃i)) by deriving upper bounds

on ‖JF(Z̃i)
−1‖ and ‖JF(Z̃i)‖, starting with the former.

47

1.6 Uniform Complexity of Robust Newton

1.6.2 An upper bound on ‖JF(Z̃i)
−1‖

Since u :=u(Z̃i,Z
∗) ≤ 4−

√
14

2 , from (B.5) we know that

‖JF(Z̃i)
−1‖ ≤ 2(1 + ‖Z∗‖2)

µ(F̂ , (1, Z̃i))
‖F̂‖k

.

From [Mal93, Lem. 31,p. 75] we further get that,

µ(F̂ , (1, Z̃i)) ≤
(1 − u)2

ψ(u)
µ(F̂ , (1,Z∗)) ≤ 2µ(F̂ , (1,Z∗)) ≤ 2µ(F̂).

Applying the bound (B.3) on µ(F̂) we obtain

‖JF(Z̃i)
−1‖ ≤ 4

‖F̂‖k
(1 + ‖Z∗‖2)µ(Σ)H(F̂)d(Σ). (1.57)

Thus we need a lower bound on ‖F̂‖k, which amounts to a lower bound on ‖F̂i‖k. But

‖F̂i‖k ≥ (
∑

|J|=Di

|F̂iJ |2(Di!)
−1)1/2 ≥ (

∑

|J|=Di

Di!
−1)1/2

since the coefficients of F̂i are integers. Moreover, there are S(F̂i) ≥ 1 terms in F̂i thus

‖F̂i‖k ≥
√
S(F̂i)/Di! ≥ (D!)−1/2.

Therefore

‖F̂‖k ≥
√
n(D!)−1/4.

Applying this bound in (1.57), along with the upper bound on ‖Z∗‖ from (1.44), we obtain

‖JF (Z̃i)
−1‖ ≤ 4√

n
(D!)1/4B(F)2µ(Σ)H(F̂)d(Σ). (1.58)

1.6.3 An upper bound on ‖JF(Z̃i)‖.

It is straightforward to show that for 1 ≤ i, j ≤ n,
∣∣∣∣
∂Fi
∂Zj

(Z̃i)

∣∣∣∣ ≤ DiS(Fi)H(Fi)‖Z̃i‖Di .

Thus

‖JF(Z̃i)‖ ≤ nDS(F)H(F)‖Z̃i‖D.

Since ‖Z̃i‖ = O(B(F)) we further get

‖JF(Z̃i)‖ ≤ nDS(F)H(F)B(F)D . (1.59)

Combining this with the bound on ‖JF(Z̃i)
−1‖ in (1.58) gives us the bound

κ(JF (Z̃i)) ≤ 4
√
nDD+1µ(Σ)H(F)1+d(Σ)S(F)B(F)D+2. (1.60)

48

1 Robust Approximate Zeros

1.6.4 Worst case lower bound on the distance to a zero

In §1.5.1 we had given a computational method to give a tight estimate on the distance ‖Z0−Z∗‖
by computing a C as in Lemma 1.22. Here we derive a worst-case bound on C. From the lemma

just mentioned we know that

2−C = Θ(‖JF(Z0)
−1F(Z0)‖),

thus it suffices to derive a lower bound on ‖JF(Z0)
−1F(Z0)‖. Since the matrix JF(Z0) is a

non-singular square matrix we know that

‖F(Z0)‖ = ‖JF(Z0)JF (Z0)
−1F(Z0)‖ ≤ ‖JF(Z0)‖‖JF(Z0)

−1F(Z0)‖.

Thus to derive a lower bound on ‖JF(Z0)
−1F(Z0)‖ it suffices to derive a lower bound on ‖F(Z0)‖

and an upper bound on ‖JF(Z0)‖; it can be shown that the latter bound is similar to the bound

in (1.59), so we only focus on deriving the lower bound on ‖F(Z0)‖.
We know that Z0 is not a zero of the system, thus there must be some polynomial Fi in F

such that |Fi(Z0)| > 0. Let L0 be a bound on the bit-size of the coordinates (which are bigfloats)

of Z0; this means that if we treat these coordinates as rational numbers then their denominator

has at most bit-length L0. Since the coefficients of Fi are integers it is not hard to see that

|Fi(Z0)| is a rational number whose denominator is at most 2DiL0 ≤ 2DL0, and the numerator

is at least one. Thus |Fi(Z0)| ≥ 2−DL0. This lower bound combined with the upper bound in

(1.59) gives us

C = O(DL0 + log(nDH(F)S(F)B(F)D)). (1.61)

1.6.5 Worst-case complexity

The two most expensive steps in the loop of Algorithm RN are computing the Jacobian matrix

JF (Z) and solving the linear system of equations using Gaussian elimination. The precision used

at the i-th iteration of this loop is bounded by

O(2i + C + n+ log κ(JF (Z̃i))).

Plugging in the bounds from (1.61) and (1.60) we know that this is bounded by

O(2i + DL0 + logT (F)),

where

T (F) :=O(
√
nDD+1µ(Σ)H(F̂)d(Σ)S(F)H(F)B(F)D). (1.62)

49

1.6 Uniform Complexity of Robust Newton

The bound above is also a bound on the precision of the coordinates of Z̃i. Thus from Appendix

C, we know that the complexity of computing JF(Z̃i) is

O(n2DnM(2i + DL0 logT (F))).

The cost of computing the solution to the system of linear equations JF(Z̃i)X = F(Z̃i) is

O(n3M(2i + DL0 + logT (F))),

since we require O(n3) operations each with the precision mentioned above. From these two

bounds we conclude that the cost of the i-th iteration in Algorithm RN is bounded by

O(n3DnM(2i + DL0 + logT (F))),

and hence the total cost of Algorithm RN is

O(n3Dn

log(p+B(F))∑

i=0

M(2i))

+O(n3Dn+1L0 log(p+B(F)) + n3Dn log(p+B(F))M(log T (F)).

Since M(n) satisfies the weak regularity condition, i.e., M(an) ≤ bM(n) for a, b ∈ (0, 1) and

sufficiently large n, we know that
∑k

i=0M(2i) = O(M(2k)) (see [Bre76a, Lem. 2.1]). Thus the

cost of Algorithm RN is bounded by

O[n3Dn(M(p+B(F)) + DL0 log(p+B(F)) + log(p+B(F))M(log T (F)))].

It is not hard to see that the complexity of approximating a root in the weak model is

O[n3Dn log(p+B(F))M(p+B(F))

+ n3Dn+1L0 log(p+B(F))

+ n3Dn log(p+B(F))M(log T (F))].

Assuming the system of polynomials F is fixed, this complexity exceeds the complexity in the

strong model by a factor of log p.

Theorem 1.16. Let F be a zero-dimensional system of n integer polynomials in n variables.

Given a robust approximate zero Z0 ∈ Rn, such that α(F ,Z0) < 0.02, we can compute 〈Z∗〉n ∈
Rn, where Z∗ is the associated root of Z0, in time

O[n3Dn(M(p+B(F)) + DL0 log(p+B(F)) + log(p+B(F))M(log T (F)))],

where L0 is an upper bound on the bit-size of the coordinate of Z0, D is the maximum amongst

the degrees of the polynomials in F , B(F) is defined as in (1.45), and T (F) is defined as in

(1.62).

50

1 Robust Approximate Zeros

1.7 Experiments

In this section we provide experimental results on the running time of Algorithm RN for the

special case when F is a single univariate integer polynomial f(z) not identically zero. Such an

algorithm has been provided by [SDY05], but we further simplify their algorithm by making use

of the fact that the polynomials have integer coefficients.

The Jacobian JF in this setting is just the derivative f ′, thus from Lemma 1.22 we deduce

that if C := 3 − ⌊log |ṽ0|⌋, where ṽ0 :=
[∣∣∣ f(z0)
f ′(z0)

∣∣∣
]

2
, then

|z0 − z∗|
8

< 2−C < |z0 − z∗|. (1.63)

Similarly if we define ṽi :=
[
f(ezi)
f ′(ezi)

]

2i+5
∈ F we have the following:

Lemma 1.24. Let f(z) ∈ Z[z] and z0 be any bigfloat such that α(f, z0) < 0.02. Recursively

define z̃i+1 := z̃i − ṽi. Then z̃i+1 = 〈Nf (z̃i)〉2i+1+C, for i ≥ 0.

Proof. Our definition of z̃i+1 implies

|z̃i+1 −Nf (z̃i)| ≤
∣∣∣∣
f(z̃i)

f ′(z̃i)

∣∣∣∣ 2
−2i−5.

Applying the upper bound from Lemma 1.12 we obtain

|z̃i+1 −Nf(z̃i)| <
|z̃i − z∗|
ψ(uezi

)
2−2i−5.

Since α(f, z0) < 0.02, we know from Theorem 1.7 that uezi
≤ 4−

√
14

2 and hence ψ(uezi
) ≥ 1

2 . Thus

we get

|z̃i+1 −Nf(z̃i)| < |z̃i − z∗|2−2i−4.

Since z̃i satisfies (1.21) we further obtain

|z̃i+1 −Nf (z̃i)| < 2−2i+1 |z0 − z∗|2−3 < 2−2i+1−C ,

where the last step follows from the lower bound in (1.63).

It can be verified that our termination criterion for Algorithm RN still holds. Thus we have

the following simplification of Algorithm RN:

51

1.7 Experiments

Algorithm A

Input: f(z) ∈ Z[z], p ≥ 0, and z0 ∈ F where α(f, z0) < 0.02

Output: 〈z∗〉p, z∗ is the associated root of z0

1 Compute C := 3 −
⌊
log
[∣∣∣ f(z0)
f ′(z0)

∣∣∣
]

2

⌋
.

Let z̃0 := 〈z0〉C+3, i = 0.

2 do

ṽi :=
[
f(ezi)
f ′(ezi)

]

2i+5
.

z̃i+1 := z̃i − ṽi.

i := i+ 1.

while(ṽi 6= 0 and |ṽi| ≥ 2−n−2).

3 Return z̃i.

Algorithm A assumes the strong model. The corresponding algorithm in the weak model is

obtained by computing ṽi :=
[
f(ezi)
f ′(ezi)

]

p
. From now on, we call this modification the full version,

and call Algorithm A the robust version. The results below compare the running times of these

two versions.

For each of the polynomials in the tables below we will approximate a fixed root of that

polynomial to precision n = 1000, 5000, 10000, 20000, 40000 using the two versions above. The

starting point is chosen such that empirically it is both a robust approximate zero and guarantees

the quadratic convergence of the full version. We did not apply the point estimate mentioned

in Theorem 1.7, because these polynomials have very large γ(f, z), which forces a very high

accuracy for the starting point. This shows that there is still a gap between the theory of point

estimates and their use in practice.

The initial approximation, around 20 digits of accuracy, for each of the roots was obtained

using the MPSolve package of Bini and Fiorentino [BF00]; the polynomials are also taken from

the same resource. We briefly describe the polynomials that we used for our test.

The polynomials chebyshev40 and chebyshev80 are the Chebyshev polynomials of the first

kind of degree 40 and 80 respectively; the degree n+1 Chebyshev polynomial of first kind Tn+1(X)

satisfies the recurrence Tn+1(X) = 2xTn(X) − Tn−1(X), where T0(X) = 1 and T1(X) = X .

The polynomials hermite40 and hermite80 are the physicists Hermite polynomials of degree 40

and degree 80 ; the degree n + 1 physicist Hermite polynomial Hn+1(X) satisfies the recur-

rence Hn+1(X) = 2XHn(X) − 2nHn−1(X), where H0(X) = 1 and H1(X) = 2X . Similarly

52

1 Robust Approximate Zeros

laguerre40 and laguerre80 represent the Laguerre polynomials; the degree n + 1 Laguerre poly-

nomial Ln+1(X) satisfies the recurrence (n + 1)Ln+1(X) = (2n + 1 − X)Ln(X) − nLn−1(X),

where L0(X) = 1 and L1(X)−1−X . The polynomials mand31 and mand63 are the Mandelbrot

polynomials of degree 31 and 63; the degree n + 1 Mandelbrot polynomial Mn+1(X) is defined

as Mn+1(X) = XMn(X)2 + 1, where M0(X) = 1; the roots of these polynomials lie on a fractal.

The last polynomial wilk40 is the Wilkinson polynomial of degree 40; the degree n Wilkinson

polynomial is defined as
∏n
k=1(X − k).

Tables 1.1 and 1.2 show the time in seconds taken by the two versions. Note that for wilk40

the robust version always takes the same time, because rounding produces the exact root after a

fixed number of steps. The last column shows the relative running times of the two algorithms:

theoretically, this should grow as log(p); although this ratio is increasing with p, it seems to be

smaller than expected.

The implementations were done using the bigfloat package of Core Library [KLPY99]. The

code and the sequence of tests are available under progs/newton in the files newton.h and

test.h, respectively. Our implementation exploits a particular property of the bigfloat package

in Core Library, viz., the ring operations (+,−,×) are error-free. This is in contrast to certain

bigfloat packages, such as gmp’s mpfr, where each operation is guaranteed up to some arbitrarily

specified precision. The workstation is Sun Blade 1000, 2x750 MHz UltraSPARC III CPU, 8 MB

Cache each, with 2 GB of RAM.

1.8 Future Work

The difficulty with the point estimates presented above is that they are expensive to compute.

For instance, a naive computation of α(f, z), for a univariate polynomial f(z) of degree n, re-

quires evaluating all the derivatives of f(z), which takes O(n2) algebraic operations; this can

be improved to O(n), see [Sma86, Thm. B]. This prohibitive cost makes them ineffective in the

context of our original motivation, which was to prevent the unnecessary checks performed by

bracketing methods even when we have entered a region of super-linear convergence; the effec-

tiveness will only become evident if we want to approximate the root to a very high precision.

Thus the desirable aim of making point estimates practically useful is far from achieved.

Another direction to pursue is to develop robust point estimates for other iterative methods,

such as the secant method; this method is of special interest, because it does not depend upon

the derivative of the function. One can also extend the point estimate by Curry [Cur87] in the

53

1.8 Future Work

exact model for the k-th Euler incremental algorithm to the weak and the strong model.

As was done in [DF95], one may possibly improve the constants involved in the point estimates

above by developing the results using the majorant sequence approach.

54

1 Robust Approximate Zeros

Polynomial Initial Approximation n Time by Time by T/t

Robust (t) Full (T)

1000 0.09 0.26 2.89

5000 1.27 3.00 2.76

chebyshev40 -0.99922903624072293 10000 3.64 11.39 3.12

20000 9.59 34.00 3.56

40000 27.39 107.00 3.92

1000 0.33 0.75 2.27

5000 5.14 15.17 2.95

chebyshev80 -0.862734385977791819 10000 14.64 46.00 3.18

20000 38.49 151.00 3.93

40000 112.22 444.00 3.96

1000 0.1 0.18 1.8

5000 1.32 3.00 2.68

hermite40 -8.098761139250850052 10000 3.64 11.40 3.13

20000 9.56 35.00 3.68

40000 27.31 107.00 3.94

1000 0.32 0.70 2.18

5000 5.11 14.68 2.87

hermite80 -1.364377457054006838 10000 14.75 46.00 3.16

20000 39.37 148.00 3.76

40000 110.68 447.03 4.04

Table 1.1: A comparison of weak and robust Newton iteration I

55

1.8 Future Work

Polynomial Initial Approximation n Time by Time by T/t

Robust (t) Full (T)

1000 0.09 0.18 2

5000 1.38 3.00 2.56

laguerre40 0.0357003943088883851 10000 3.61 11.35 3.14

20000 9.87 35.00 3.64

40000 27.47 109.00 3.98

1000 0.34 0.70 2.06

5000 5.32 14.75 2.77

laguerre80 0.0179604233006983654 10000 14.68 46.00 3.17

20000 38.68 143.00 3.72

40000 112.56 445.00 3.96

1000 0.06 0.11 1.83

5000 0.80 2.05 2.56

mand31 -1.996376137711193750 10000 2.15 6.73 3.13

20000 5.57 21.00 3.78

40000 16.28 64.00 3.99

1000 0.20 0.43 2.15

mand63 -1.999095682327018473 5000 3.19 9.25 2.90

10000 8.86 29.00 3.30

20000 23.99 88.00 3.68

wlik40 11.232223434543512321 1000 0.03 0.40 13.67

5000 0.03 5.00 166.67

Table 1.2: A comparison of weak and robust Newton iteration II

56

2
Real Root Isolation: The Descartes

Method

Let A(X) be a polynomial of degree n > 1 with real coefficients. A classic approach to real root

isolation starts from an open interval I0 containing all real roots of A(X) and bisects it recursively

as follows: Given an interval J , test for the number #(J) of real roots in it. If #(J) = 0 is known,

stop. If #(J) = 1 is known, report J as an isolating interval and stop. Otherwise, subdivide

J = (c, d) at its midpoint m = (c+ d)/2; report [m,m] if f(m) = 0; recur on (c,m) and (m, d).

To carry out this approach, we need a method for estimating the number of roots in an

interval. Two possible choices are Sturm sequences (e.g., [Yap00, chap. 7]), which give an

exact count of distinct real roots in an interval, and

Descartes’ rule of signs (e.g., Proposition 2.1 below), which counts real roots with multiplicity

and may overestimate this number by an even positive integer. Despite the apparent inferiority

of Descartes’ rule as compared to Sturm sequences, there is considerable recent interest in the

Descartes approach because of its excellent performance in practice [Joh98, RZ01, MRR05, RZ04].

This chapter1 shows that the asymptotic worst case bound on recursion tree size for the

Descartes method (Theorem 2.2) is no worse than the best known bound for Sturm’s method

(Theorem 6 of [DSY05]). For the particular case of polynomials with L-bit integer coefficients,

the recursion tree is O(n(L+logn)) both for Sturm’s method [Dav85, DSY05] and the Descartes

method (Corollary 2.1); and the work at each node of this tree can be done with Õ(n3L) bit

operations (using asymptotically fast basic operations), where Õ indicates that we are omitting

logarithmic factors (see [Rei97, LR01, DSY05] or Theorem 2.5, respectively).

The connection between root isolation in the power basis using the Descartes method, and

root isolation in the Bernstein basis using de Casteljau’s algorithm and the variation-diminishing

property of Bézier curves was already pointed out by Lane and Riesenfeld [LR81], but this

connection is often unclear in the literature. In Section 2.1, we provide a general framework for

viewing both as a form of the Descartes method. In Section 2.2, we present the main result,

which is a new upper bound on the size of the recursion tree in the Descartes method. Up to

that point, our analysis holds for all square-free polynomials with real coefficients. We then

restrict to the case of integer polynomials with coefficients of bit-length L to show that this new

1The results in this chapter are from joint work with Arno Eigenwillig, and Chee Yap [ESY06].

57

bound on tree size is optimal under the assumption L = Ω(logn) (Section 2.2.3) and allows a

straightforward derivation of the best known bit complexity bound (Section 2.3).

2.0.1 Previous work

Root isolation using Descartes’ rule of signs was cast into its modern form by Collins and Akritas

[CA76], using a representation of polynomials in the usual power basis. Rouillier and Zimmer-

mann [RZ04] summarize various improvements of this method until 2004.

The algorithm’s equivalent formulation using the Bernstein basis was first described by Lane

and Riesenfeld [LR81] and more recently by Mourrain, Rouillier and Roy [MRR05] and Mour-

rain, Vrahatis and Yakoubsohn [MVY02]; see also [BPR03, §10.2]. Johnson et al. [JKL+06] have

developed an architecture aware implementation of the Bernstein basis variant of the Descartes

method that automatically generates architecture-aware high-level code and leaves further opti-

mizations to the compiler.

The crucial tool for our bound on the size of the recursion tree is Davenport’s generalization

[Dav85] of Mahler’s bound [Mah64] on root separation. Davenport used his bound for an analysis

of Sturm’s method (see [DSY05]). He mentioned a relation to the Descartes method but did not

work it out. This was done later by Johnson [Joh98] and, filling a gap in Johnson’s argument,

by Krandick [Kra95]. However, they bound the number of internal nodes at each level of the

recursion tree separately. This leads to bounds that imply2 a tree size of O(n logn (logn+L)) and

a bit complexity of O(n5(logn+L)2) for a polynomial of degree n with L-bit integer coefficients.

Their arguments use a termination criterion for the Descartes method due to Collins and Johnson

[CJ89].

Krandick and Mehlhorn [KM06] employ a theorem by Ostrowski [Ost50] that yields a sharper

termination criterion. However, they just use it to improve on the constants of the bounds in

[Kra95]3. We will show that Ostrowski’s result allows an immediate bound on the number of all

internal nodes of the recursion tree. This bound is better by a factor of logn and leads to the

same bit complexity bound in a simpler fashion.

2Personal communication, Krandick and Mehlhorn.
3This potential use of Ostrowski’s result is mentioned but not carried out in the Ph.D. thesis of P. Batra

[Bat99].

58

2 Real Root Isolation: The Descartes Method

2.1 The Descartes Method

2.1.1 A Basis-free Framework

The Descartes method is based on the following theorem about sign variations. A sign variation

in a sequence (a0, . . . , an) of real numbers is a pair i < j of indices such that aiaj < 0 and

ai+1 = · · · = aj−1 = 0. The number of sign variations in a sequence (a0, . . . , an) is denoted

Var(a0, . . . , an).

Proposition 2.1. [Descartes’ rule of signs]

Let A(X) =
∑n
i=0 aiX

i be a polynomial with real coefficients that has exactly p positive real

roots, counted with multiplicities. Let v = Var(a0, . . . , an) be the number of sign variations in its

coefficient sequence. Then v ≥ p, and v − p is even.

See [KM06] for a proof with careful historic references. Already Jacobi [Jac35, IV] made the

observation that this extends to estimating the number of real roots of a real polynomial A(X)

of degree n over an arbitrary open interval (c, d) by applying Descartes’ rule to (X+1)nA((cX+

d)/(X + 1)) =
∑n
i=0 a

∗
iX

i, because the Möbius transformation X 7→ (cX + d)/(X + 1) maps

(0,∞) in one-to-one and onto correspondence with (c, d). So we define DescartesTest(A, (c, d)) :=

Var(a∗0, . . . , a
∗
n). Since v−p is non-negative and even, the Descartes test yields the exact number

of roots whenever its result is 0 or 1.

The Descartes method for isolating the real roots of an input polynomial Ain(X) in an open

interval J consists of a recursive procedure Descartes(A, J) operating on a polynomial A(X) and

an interval J where the roots of A(X) in (0, 1) correspond to the roots of Ain(X) in J as follows:

(*)
There is a constant λ 6= 0 and an affine transformation φ : R → R such that

J = φ((0, 1)) and λA = Ain ◦ φ.

To isolate all the roots of Ain(X), we choose an interval I0 = (−B1,+B2) enclosing all real roots of

Ain (see, e.g., [Yap00, §6.2]). The recursion begins with Descartes(A, I0), whereA(X) :=Ain((B1+

B2)X − B1); thus initially the roots of A(X) in (0, 1) correspond to the real roots of Ain(X) in

I0 via the affine transformation φ(X) = (B1 +B2)X −B1. The procedure goes as follows:

59

2.1 The Descartes Method

procedure Descartes(A, (c, d))

{Assert: Invariant (*) holds with J = (c, d).}
1. v := DescartesTest(A, (0, 1)).

2. if v = 0 then return.

3. if v = 1 then report (c, d) and return.

4. m := (c+ d)/2.

5. (AL, AR) := (H(A), TH(A)).

6. if AR(0) = 0 then report [m,m].

7. Call Descartes(AL, (c,m)), Descartes(AR, (m, d)) and return.

The polynomials AL(X) and AR(X) are constructed using the homothetic transformation

H(A)(X) := 2nA(X/2) and the translation transformation T (A)(X) := A(X + 1). For later

use, we also introduce the reversal transformation R(A)(X) := XnA(1/X). Given two such

transformations Φ,Ψ and a polynomial A(X), let ΦΨ(A) := Φ(Ψ(A)).

Note that in the initial invocation of Descartes(A, (c, d)), one has

DescartesTest(A, (0, 1)) = DescartesTest(Ain, (c, d)).

In its recursive calls, one has

DescartesTest(AL, (0, 1)) = DescartesTest(Ain, (c,m))

and

DescartesTest(AR, (0, 1)) = DescartesTest(Ain, (m, d)),

and so on.

The above description of Descartes() does not refer to any basis in the vector space of poly-

nomials of degree at most n. However, an implementation needs to represent polynomials by

coefficients with respect to some specific basis.

The classical choice of basis for Descartes() is the usual power basis

(1, X,X2, . . . , Xn).

The transformations H , T and R are carried out literally. DescartesTest(A, (0, 1)) consists in

counting the number of sign changes in the coefficient sequence of TR(A). The test whether

60

2 Real Root Isolation: The Descartes Method

AR(0) = 0 amounts to inspection of the constant term. We call the resulting algorithm the

power basis variant of the Descartes method.

An alternative choice of basis is the [0, 1]-Bernstein basis

(Bn0 (X), Bn1 (X), . . . , Bnn(X)),

with Bni (X) :=Bni [0, 1](X) where

Bni [c, d](X) :=

(
n

i

)
(X − c)i(d−X)n−i

(d− c)n
, 0 ≤ i ≤ n.

Its usefulness for the Descartes method lies in the following: Since

TR(Bni)(X) =

(
n

i

)
Xn−i, (2.1)

for A(X) =
∑n

i=0 biB
n
i (X) one has that

DescartesTest(A, (0, 1)) = Var(b0, . . . , bn),

without any additional transformation.

To obtain AL and AR from A(X) =
∑n

i=0 biB
n
i (X), we use a fraction-free variant of de

Casteljau’s algorithm [PBP02]: For 0 ≤ i ≤ n set b0,i := bi. For 1 ≤ j ≤ n and 0 ≤ i ≤ n− j set

bj,i := bj−1,i + bj−1,i+1. From this, one obtains coefficients of 2nA(X) =
∑n
i=0 b

′
iB

n
i [0, 1

2](X) =
∑n

i=0 b
′′
iB

n
i [12 , 1](X) by setting b′i := 2n−ibi,0 and b′′i := 2ibn−i,i. Since

H(2−nBni [0, 1
2])(X) = Bni [0, 1]

TH(2−nBni [12 , 1])(X) = Bni [0, 1],

one has

AL(X) = H(A)(X) =
n∑

i=0

b′iB
n
i (X)

and

AR(X) = TH(A)(X) =

n∑

i=0

b′′i B
n
i (X).

Finally, the test whether AR(0) = 0 amounts to inspection of b′′0 , since Bni (0) = 0 for i > 0. We

call the resulting algorithm the Bernstein basis variant of the Descartes method.

For consistency with the power basis variant, we have described the Bernstein basis variant

as passing transformed polynomials AL and AR expressed in a globally fixed basis (Bin[0, 1])i

in recursive calls. Equivalently, one can think of it as passing (a constant multiple of) the

61

2.1 The Descartes Method

same polynomial all the time, but converting it to the Bernstein basis w.r.t. the interval under

consideration.

Both variants of the Descartes method as presented above work for polynomials with arbitrary

real coefficients. However, if the initial coefficients are integers, then integrality is preserved. If

this is not needed, one can leave out the factor 2n in the definition of H(A) and, for the Bernstein

basis variant, apply the ordinary instead of the fraction-free de Casteljau algorithm.

2.1.2 Termination

Since the Descartes test only gives an upper bound on the number of real roots in an interval, an

extra argument is needed that each path in the recursion tree of the Descartes method eventually

reaches an interval for which it counts 0 or 1 and thus terminates. We use a result from Krandick

and Mehlhorn [KM06] based on a theorem by Ostrowski [Ost50]. To describe this result, following

[KM06], we associate three open discs in the complex plane with an open interval J = (c, d). The

disc CJ is bounded by the circle that has centre (c + d)/2, and radius (d − c)/2; the disc CJ is

bounded by the circle that has centre (c+ d)/2 + i(
√

3/6)(d− c)/2, and passes through the end-

points of J ; and the disc CJ is bounded by the circle that has centre (c+d)/2− i(
√

3/6)(d−c)/2,

and passes through the end-points of J . The three discs are illustrated in Figure 2.1.

C
J

CJ

CJ

c d

Figure 2.1: Three discs associated with the interval J = (c, d).

Consider a real polynomial A(X) and its roots in the complex plane. Let J = (c, d) be an

open interval, and let v = DescartesTest(A, J).

Proposition 2.2. [One-Circle Theorem] If the open disc CJ does not contain any root of

A(X), then v = 0.

62

2 Real Root Isolation: The Descartes Method

Proposition 2.3. [Two-Circle Theorem] If the union of the open discs CJ and CJ contains

precisely one simple root of A(X) (which is then necessarily a real root), then v = 1.

See [KM06] for proofs. In the sequel, we call the union of discs CJ and CJ the two-circles

figure around interval J . Notice that the two-circles figure contains the disc CJ .

2.2 The Size of the Recursion Tree

2.2.1 The Davenport-Mahler Bound

The Davenport-Mahler theorem gives a lower bound on the product of differences of certain

pairs of roots of a polynomial A(X) = an
∏n
i=1(X −αi) in terms of its discriminant discr(A) =

a2n−2
n

∏
1≤i<j≤n(αi − αj)

2 and Mahler measure

M(A) = |an|
n∏

i=1

max{1, |αi|}; (2.2)

see [Yap00, §6.6, §4.5] [Mc99, §1.5, §2.1]. This theorem appears in the literature in several

variants that all use the same proof but formulate different conditions on how roots may be

paired so that the proof works. We give the most general condition supported by the proof. It

is equivalent to Johnson’s formulation [Joh98] and generalizes Davenport’s original formulation

[Dav85, Prop. I.5.8].

Theorem 2.1. Let A(X) = an
∏n
i=1(X − αi) be a square-free complex polynomial of degree n.

Let G = (V,E) be a directed graph whose nodes {v1, . . . , vk} are a subset of the roots of A(X)

such that

1. If (vi, vj) ∈ E then |vi| ≤ |vj |.

2. G is acyclic.

3. The in-degree of any node is at most 1.

If exactly m of the nodes have in-degree 1, then

∏

(vi,vj)∈E
|vi − vj | ≥

√
|discr(A)| · M(A)−(n−1) · (n/

√
3)−m · n−n/2.

Proof. This proof is not self-contained, but refers to the standard argument from Davenport

[Dav85, Yap00]. Let (v1, . . . , vk) be the topologically sorted list of the vertices of G, where

63

2.2 The Size of the Recursion Tree

(vi, vj) ∈ E implies j < i. Given such an ordering we modify the n × n Vandermonde matrix

WA = (αj−1
i)j,i as follows: For j = 1 to k in turn, we process vj . If there exists an i > j

such that (vi, vj) ∈ E then in WA we subtract the column of vi from the column of vj ; if no

such i exists then the column of vj remains unchanged. This finally yields a transformed matrix

M such that detWA = detM . Note that exactly m columns of M are modified from WA.

Moreover, detM =
∏

(vi,vj)∈E(vj − vi) · detM ′, where M ′ is a matrix similar to the one in

[Yap00, Theorem 6.28, Eqn. (19)]. As in the proof in [Yap00], we conclude:

| det(WA)| ≤

∏

(vi,vj)∈E
|vi − vj |

 · M(A)(n−1)

(
n√
3

)m
nn/2.

But
√
|discr(A)| = | detWA|, thus giving us the desired result.

Remark 2.1. The bound in Theorem 2.1 is invariant under replacing A(X) by a non-zero scalar

multiple λA(X).

Remark 2.2. A bound similar to Theorem 2.1 appears in [Mig95]. Instead of M(A)n−1, it uses

a product of root magnitudes with varying exponents of n− 1 or less.

Remark 2.3. Let sep(A) be the minimum distance between two distinct roots of A(X). Then

we have

sep(A) ≥
√

discr(A)M(A)−(n−1) · (n/
√

3) · n−n/2.

2.2.2 The Recursion Tree

Our application of the Davenport-Mahler theorem rests on the following lemma. It reflects an

important structural advantage of Proposition 2.3 over the weaker two-circle theorem by Collins

and Johnson [CJ89]: An intersection of the two-circles figures of two non-overlapping intervals

can only occur if the intervals are adjacent, even if they reside on very different levels of the

recursion tree.

Lemma 2.1. Let J0 and J1 be any two open intervals appearing in the recursive subdivision of

some initial interval I0. If the two-circles figures of Proposition 2.3 around J0 and J1 intersect,

then J0 and J1 overlap or have a common endpoint.

Proof. We show that non-overlapping intervals with intersecting two-circles figures have a com-

mon endpoint. Let us choose indices such that w(J0) ≥ w(J1). Assume J0 lies to the left of

64

2 Real Root Isolation: The Descartes Method

R

J0 J1 J ′
1

R′

Figure 2.2: The two-circles figure around J0 can overlap with that of J1 but not with any two-

circles figure further right.

J1 (the opposite case is symmetric). All intervals right of J0 that have width w(J1) and appear

in the recursive subdivision of I0 have distance k · w(J1) from J0 for a non-negative integer k.

They are depicted in Figure 2.2. The interval with k = 0 has a two-circles figure intersecting

the two-circles figure of J0. For k > 0, we claim that the two-circles figure of J0 is disjoint from

the two-circles figure of J1. To see this, consider the convex cone delimited by the two tangent

rays (R,R′) of the two-circles figure of J0 at its right endpoint. The two-circles figure of J0 lies

outside that cone, but if k > 0, then the two-circles figure of J1 lies inside the cone. Figure 2.2

illustrates this for the case k = 1: the corresponding interval is J ′
1, and the two-circles figure of

J ′
1 is covered by six equilateral triangles. Since the rays R,R′ meet the x-axis at 60◦, this shows

that the six equilateral triangles lie within the cone. Hence there is no intersection.

The recursion tree T of the Descartes method in Section 2.1 is a binary tree. With each node

u ∈ T we can associate an interval Iu; the root is associated with I0. A leaf u of T is said to be

of type-i if the open interval Iu contains exactly i real roots; the termination condition of the

algorithm implies i is either 0 or 1.

Our aim is to bound the number of nodes in T , denoted by #(T). We next introduce a

subtree T ′ of T by pruning certain leaves from T :

• If a leaf u has a sibling that is a non-leaf, we prune u.

65

2.2 The Size of the Recursion Tree

• If u, v are both leaves and siblings of each other, then we prune exactly one of them; the

choice to prune can be arbitrary except that we prefer to prune a type-0 leaf over a type-1.

Clearly, #(T) < 2#(T ′); hence it is enough to bound #(T ′). Let U be the set of leaves in T ′.

Then the number of nodes along the path from any u ∈ U to the root of T ′ is exactly log w(I0)
w(Iu) .

Thus

#(T ′) ≤
∑

u∈U
log

w(I0)

w(Iu)
. (2.3)

Our next goal is to reduce this bound to the Davenport-Mahler type bound in Theorem 2.1.

Let u be a leaf of T ′, and v be its parent. We will define two roots αu, βu such that the

number of nodes along the path from u to the root is

O

(
log

w(I0)

|αu − βu|

)
.

Furthermore, we will show that if u, u′ are two leaves of the same type (both type-0 or both

type-1), then {αu, βu} and {αu′ , βu′} are disjoint.

1. If u is type-1 then its interval Iu contains a real root α. Consider its parent v. By

Proposition 2.3, CIv
∪ CIv

must contain a root apart from αu; let βu be any root in this

region. Then it follows that

|αu − βu| <
2√
3
w(Iv) =

4√
3
w(Iu). (2.4)

Thus the number of nodes in the path from u to the root of T ′ is

log
w(I0)

w(Iu)
< log

4w(I0)√
3|αu − βu|

. (2.5)

Let u′ be another type-1 leaf different from u. Clearly, αu 6= αu′ . We claim that βu and

βu′ can be chosen such that βu 6= βu′ . From Lemma 2.1 it is clear that we only need to

consider the case when Iv and Iv′ are adjacent to each other. Moreover, assume βu and

βu are the only non-real roots in CIv
∪ CIv

and CIv′
∪ CIv′

. Then it must be that either

βu ∈ CIv
∩ CIv′

or βu ∈ CIv
∩ CIv′

. In either case we can choose βu′ = βu distinct from

βu.

2. If u is type-0, it had a type-0 sibling that was pruned. Consider their parent node v and

let Iv be the interval associated with it. There are two cases to consider:

66

2 Real Root Isolation: The Descartes Method

• Iv does not contain a real root. Thus Proposition 2.2 implies that CIv
must contain

some non-real root αu and its conjugate βu :=αu. Moreover,

|αu − βu| ≤ w(Iv) = 2w(Iu). (2.6)

• The midpoint of Iv is a real root, say α. Since DescartesT est(A, Iv) ≥ 2, there is a

pair of non-real roots (β, β) in CIv
∪ CIv

. If β ∈ CIv
then let αu := β and βu := β;

otherwise, let αu = α and βu = β. It can be verified that (2.6) still holds.

Hence the number of nodes on the path from u to root of T ′ is

log
w(I0)

w(Iu)
≤ log

2w(I0)

|αu − βu|
. (2.7)

Again, if u′ is another type-0 leaf different from u, then αu 6= αu′ , since αu ∈ CIu
, αu′ ∈ CI′u

and CIu
∩ CIu′

= ∅. Furthermore, we can choose βu and βu′ such that βu 6= βu′ . This is

clear if both αu and αu′ are not real, since then βw = αw, w = u, u′; if both are real then

βu and βu′ can be chosen as in the argument of type-1 leaves; otherwise, say αu is real and

αu′ is not, we can choose βu = αu′ and βu′ = αu′ without affecting (2.7).

Let U0 ⊆ U and U1 ⊆ U denote the set of type-0 and type-1 leaves respectively. Then

substituting (2.5) and (2.7) in (2.3) we get

#(T ′) ≤
∑

u∈U0

log
2w(I0)

|αu − βu|
+
∑

u∈U1

log
4w(I0)√

3|αu − βu|
. (2.8)

We obtain a bound on the number of type-0 and type-1 leaves:

Lemma 2.2. For U0 and U1 defined as above we have:

1. |U0| is at most the number of non-real roots of A(X).

2. |U1| is at most the number of real roots of A(X).

Proof. As shown above, with each u ∈ U0 we can associate a unique pair of roots (αu, βu), where

at least one of them is complex and uniquely chosen, thus implying the upper bound on |U0|.
Again by the arguments given earlier, for each u ∈ U1 we can associate a unique real root αu,

and hence the upper bound on |U1|.

Now we can show our main result:

67

2.2 The Size of the Recursion Tree

Theorem 2.2. Let A(X) ∈ R[X] be a square-free polynomial of degree n. Let T be the recursion

tree of the Descartes method run on (A, I0). Then the number of nodes in T is

O(log(
1

|discr(A)|) + n(log M(A) + logn+ logw(I0))).

Proof. From (2.8), we know that the number of nodes in T ′ is bounded by

#(T ′) ≤ |U | log 4w(I0) −
∑

u∈U
log(|αu − βu|). (2.9)

Consider the graph G whose edge set is E1 ∪E0, where

E0 :={(αu, βu)|u ∈ U0} and E1 :={(αu, βu)|u ∈ U1}.

We want to show that G satisfies the conditions of Theorem 2.1. First of all, for any u ∈ U we

can reorder the pair (αu, βu) to ensure that |αu| ≤ |βu| without affecting (2.8).

Now we show that the in-degree of G may be assumed to be at most one. Clearly, the edge

sets E0 and E1 have in-degree one. However, in E0 ∪ E1 cases like that illustrated in Figure 2.3

may occur. But we can reduce the in-degree of βu to one in both cases: in (a), we can always

re-order the edge (αu′ , βu′) to (βu′ , αu′), since βu′ = αu′ ; in (b), we can choose βu′ = βu.

Applying Theorem 2.1 to G we get:

∏

u∈U
|αu − βu| ≥

√
|discr(A)| · M(A)−(n−1) ·

(
n√
3

)−|U|
n−n/2. (2.10)

Taking logarithms on both sides yields:

∑

u∈U
log |αu − βu| ≥

1

2
log(|discr(A)|) − (n− 1) logM(A)

− n log
n√
3
− n

2
logn;

(2.11)

since |U | ≤ n (by Lemma 2.2). Plugging this into (2.9) gives us:

#(T ′) ≤ |U | logw(I0) + 2|U | + n log M(A)

+
1

2
log

1

|discr(A)| + 2n logn.

Using |U | ≤ n again, the claim follows.

Remark 2.4. (i) There exist an interval I0 enclosing all real roots of A(X) such that w(I0) ≤
2M(A)/|an|, because M(A)/|an| is an upper bound on the magnitude of all roots.

(ii) Landau’s inequality M(A) ≤ ‖A‖2 (e.g., [Yap00, Lem. 4.14(i)]) and the obvious estimate

‖A‖2 ≤
√
n+ 1‖A‖∞ immediately yield bounds on the number of nodes in T in terms of these

norms of A(X).

68

2 Real Root Isolation: The Descartes Method

y

C
Iu

C
Iu

y

x

x

CIu

CIu

CIv′

βu = βu′

βu

Iu′

αu αu′

CI
v′

C
Iv′

CIv

C
Iv

αu

βu′ = βu

CIv′CIu′

CIv

αu′

(b)

(a)

C
Iv

Figure 2.3: A type-0 and type-1 leaf sharing the same root.

Corollary 2.1. Let A(X) be a square-free polynomial of degree n with integer coefficients of

magnitude less than 2L. Let I0 be an open interval enclosing all real roots of A(X) such that

logw(I0) = O(L). Let T be the recursion tree of the Descartes method run on (A, I0). Then the

number of nodes in T is O(n(L + logn)).

Proof. Since A(X) is a square-free integer polynomial, |discr(A)| is at least one. From the remark

above, we have M(A) < 2L
√
n+ 1. Finally, logw(I0) ≤ L+ 1.

The condition logw(I0) = O(L) is no restriction, as 2L is an upper bound on the absolute

value of all roots of A(X) (e.g., [Yap00, Cor. 6.8]).

69

2.2 The Size of the Recursion Tree

2.2.3 Almost Tight Lower Bound

We show that for integer polynomials our tree size bound O(n(L + logn)) is optimal under the

assumption L = Ω(logn). To do so, we construct a family of inputs of unbounded degree n and

coefficient length L for which the height of the recursion tree is Ω(nL).

Mignotte [Mig81] gave a family of polynomials P (X) = Xn − 2(aX − 1)2 parametrized by

integers n ≥ 3 and a ≥ 3. By Eisenstein’s criterion, P (X) is irreducible (use the prime number

2). Let h = a−n/2−1. Since P (a−1) > 0 and P (a−1±h) = (a−1±h)n−2a−n < 0, there exist two

distinct roots α and β of P (X) in (a−1 − h, a−1 + h). Clearly, |α − β| < 2h. In the sequel, we

shall restrict to the case that the degree n is even. This allows us to conclude that any interval

I0 enclosing all roots of P (X) is a superset of (0, 1), because the sign of P (X) is positive for

X → ±∞ but negative for X = 0 and X = 1.

If one is willing to accept certain assumptions on the choice of the initial interval I0 =

(−B1,+B2), such as integrality of B1 and B2, the input P (X) can be used to demonstrate the

necessity of Ω(nL) bisections before α and β are separated. However, less customary choices of

I0 could cause some bisection to separate α and β much earlier.

We shall avoid this problem. Let us consider the closely related polynomial P2(X) = Xn −
(aX − 1)2 which appears in a later work of Mignotte [Mig95] on complex roots. Again, we see

that P2(a
−1) > 0, and furthermore P2(a

−1 − h) = (a−1 − h)n − a−n < 0. Hence there is a root

γ of P2(X) in (a−1 − h, a−1). By irreducibility of P (X), the product Q(X) = P (X) · P2(X) is

square free and has three distinct roots α, β, and γ in (a−1 − h, a−1 + h).

Theorem 2.3. Let a ≥ 3 be an L-bit integer and n ≥ 4 be an even integer. Consider the square-

free polynomial Q(X) = P (X) ·P2(X) of degree 2n. Its coefficients are integers of at most O(L)

bits. The Descartes method executed for Q(X) and any initial interval I0 enclosing all roots of

Q(X) has a recursion tree of height Ω(nL).

Proof. As discussed above, I0 is a superset of (0, 1) and thus has width w(I0) > 1. Let I1 be the

isolating interval reported by the Descartes method for the median of α, β, γ ∈ (a−1−h, a−1+h).

Clearly, w(I1) < 2h. The number of bisections needed to obtain I1 from I0 is logw(I0)/w(I1) >

log(1/2h) ≥ (n/2 + 1)(L − 1) − 1 = Ω(nL).

Clearly, the same argument applies to any form of root isolation by repeated bisection, in-

cluding Sturm’s method.

70

2 Real Root Isolation: The Descartes Method

2.3 The Bit Complexity

We derive the bit complexity of the Descartes method for a square-free polynomial Ain(X) with

integer coefficients of magnitude less than 2L in the power basis. We can enclose all its real roots

in an interval (−B1,+B2) such that B1 and B2 are positive integers of magnitude less than 2L+1

(e.g., [Yap00, Cor. 6.8]).

We discuss the bit complexity of the power basis and Bernstein basis variants of the Descartes

method applied to the scaled polynomial

A(X) :=

n∑

i=0

aiX
i :=Ain((B1 +B2)X −B1).

We can bound the bit length of its coefficients as follows. The power basis coefficients ai of A(X)

have bit lengths O(nL). For conversion from power basis to Bernstein basis, one has [PBP02,

§2.8]

n!A(X) =

n∑

i=0

Bni (X)

i∑

k=0

i(i− 1) · · · (i− k + 1)(n− k)!ak. (2.12)

To avoid fractions, we use n!A(X) for the Bernstein basis variant. Observe that l(l−1) · · · (l−k+

1)(n−k)! ≤ n! ≤ nn, so that the Bernstein coefficients of n!A(X) have bit length O(nL+n log n).

From Corollary 2.1 we know that the size of the recursion tree is O(n(L+ logn)). Note that

the transformation from Ain(X) to A(X) does not affect the size of the recursion tree, i.e., the

size does not increase to O(n(L′ +logn)) where L′ bounds the bit size of the coefficients of A(X)

or n!A(X).

Let us now bound coefficient length at depth h > 0. For the power basis variant, we start

with coefficients of length O(nL). Both the H and TH transformations increase the length of

the coefficients by O(n) bits on each level. It is known that we can perform the T -transformation

in O(n2) additions [Kra95, JKR05, vzGG99]; the H-transformation needs O(n) shift operations.

Hence a node at recursion depth h has bit cost O(n2(nL + nh)) for the power basis. In the

Bernstein basis, we need O(n2) additions and O(n) shifts for the fraction-free de Casteljau

algorithm, which also increases the length of the coefficients by O(n) bits on each level. This

gives us a bit cost of O(n2(nL+n logn+nh)). Since h = O(n(L+ logn)), the worst-case cost in

any node is O(n4(L+log n)) for both variants. Multiplied with the tree size, this yields an overall

bit complexity of O(n5(L+ logn)2), cf. [Joh98, Thm. 13] [Kra95, Thm. 50]. To summarize:

Theorem 2.4. Let A(X) be a square-free polynomial of degree n with integer coefficients of

magnitude less than 2L. Then the bit complexity of isolating all real roots of A(X) using the

71

2.3 The Bit Complexity

Descartes method (in either the power basis or the Bernstein basis variant) is O(n5(L+ logn)2)

using classical Taylor shifts in the power basis and de Casteljau’s algorithm in the Bernstein

basis. Except for the initial transformation, only additions and shifts are used.

For the Bernstein basis variant, this result is an improvement by a factor of n on the result

in [MRR05]. For the power basis variant, this bound was already achieved by Krandick [Kra95].

Theorem 2.4 can be improved using a fast Taylor shift algorithm [vzGG99, Method F]:

Theorem 2.5. Let A(X) be a square-free polynomial of degree n with integer coefficients of

magnitude less than 2L. Then the bit complexity of isolating the real roots of A(X) using the

Descartes method in the power basis with a fast Taylor shift is O(nM(n3(L+ logn))(L+ logn)).

Here, M(n) is the bit complexity of multiplying two n-bit integers.

Proof. The work at a node at depth h of the recursion tree has bit cost

O(M(n2 logn+ n2L+ n2h)

[vzGG99]. Substituting h = O(n(L+ logn)), we get the bound O(M(n3(L+ logn)). Multiplied

by the tree size O(n(L + logn)), we obtain the desired result.

To obtain a similar speedup for the Bernstein basis variant, Emiris, Mourrain, and Tsigaridas

[EMT06] describe the following approach: Suppose the vector (bi)i of Bernstein coefficients of

A(X) =
∑n
i=0 biB

n
i (X) is given and the Bernstein coefficients (b′i)i of

AL(X) = H(A)(X) =

n∑

i=0

b′iB
n
i (X)

are wanted. Define the auxiliary polynomial

Q(X) = TR(A(X)) =
n∑

i=0

bn−i

(
n

i

)
X i

and transform it by substituting 2X + 1 for X . It is straightforward to verify that if QL(X) :=

H2T (Q), where H2(Q) = Q(2X), then QL(X) = Q(2X + 1) =
∑n

i=0 b
′
n−i
(
n
i

)
X i. Thus one can

compute the Bernstein coefficients of AL(X) from the Bernstein coefficients of A(X) using one

asymptotically fast Taylor shift and scalings of coefficients. By symmetry, the same holds for

the Bernstein coefficients of AR(X). More precisely, if QR(X) := RH2TR(Q), then QR(X) =

(2+X)nQ(X/(2+X)) =
∑n
i=0 b

′′
n−i
(
n
i

)
X i. Thus we get b′′i ’s, the Bernstein coefficients of AR(X).

Together with bounds on the size of the recursion tree (Cor. 2.1) and the lengths of coefficients,

72

2 Real Root Isolation: The Descartes Method

this leads [EMT06] to a bit complexity of Õ(n4L2) for the Bernstein basis variant of the Descartes

method.

However, repeatedly putting in and taking out the extra factor
(
n
i

)
in the i-th coefficient is

an unnecessary artifact of insisting on the Bernstein basis. A more natural formulation of this

approach avoids this extra scaling and the reversal of the coefficient sequence by representing

polynomials in the scaled and reversed Bernstein basis B̃ni (X) =
(
n
i

)−1
Bnn−i(X) = (1−X)iXn−i.

Now the steps from A(X) to Q(X) and back from Q(2X + 1) to AL(X) are purely conceptual:

reinterpret the coefficients of B̃ni (X) as coefficients of X i and vice versa. The resulting algorithm

is the scaled Bernstein basis variant of the Descartes method.

An alternative view on this variant is to regard it as an optimization of the power basis

variant: By Eq. (2.1), the reinterpretation of coefficients is equivalent to the transformation TR.

Recall that each recursive invocation of the power basis variant handles four polynomials: A(X)

is received from the parent, the Descartes test constructs TR(A)(X), and subdivision computes

AL(X) and AR(X). In these terms, the scaled Bernstein basis variant receives TR(A)(X) in-

stead of A(X), eliminating the need for a separate transformation in the Descartes test, and it

subdivides TR(A)(X) into TR(AL)(X) and TR(AR)(X) directly, without explicitly constructing

AL(X) and AR(X). Over the entire recursion tree, this saves one third of the T transformations

in the power basis formulation.

2.4 Conclusion and Future Work

The aim of this chapter was to achieve the best possible complexity bounds for the Descartes

method (using either the power basis or the Bernstein basis), and to match similar bounds for

Sturm’s method. We achieved matching bounds for two measures: (1) the size of the recursion

tree, and (2) the bit complexity of the overall algorithm. Moreover, we showed that the tree size

bound is the best possible under the assumption that L = Ω(logn). It would be of some interest

to completely resolve this optimality question.

Another direction of interest is to extend these algorithms and results to the case of poly-

nomials that are not square-free. The standard way to achieve such extensions is to apply the

above results to the square-free part A/gcd(A,A′) of a given polynomial A (see, e.g., [BPR03,

Algo. 10.41] [EMT06]) – but the real challenge is to provide an algorithm based on the Descartes

method that works directly on polynomials that are not square-free.

A desirable aim would be to match the best know complexity bound of Õ(n3L) which is at-

73

2.4 Conclusion and Future Work

tained by Schönhage’s algorithm [Sch82]. However, this calls for more insight and understanding

of the Descartes method.

74

3
Real Root Isolation: Continued

Fractions

In his paper, Sur la résolution des équations numériques [Vin36], Vincent made the follow-

ing observation: Given a square-free polynomial A(X) ∈ R[X] of degree n, recursively define

Ai(X) :=XnAi−1(ai+X−1), where A0(X) :=A(X) and ai’s are arbitrary positive integers, then

for i sufficiently large Ai(X) will have at most one sign variation; for Vincent’s original proof

and extensive historic information on related work, see [AG98]. Based upon this observation

he suggested an algorithm that isolates the real roots of a polynomial. The algorithm can be

described as a recursive procedure that at each recursion step takes as input a polynomial A(X)

and a Möbius transformation M(X) = pX+q
rX+s such that A(X) = (rX + s)nAin(M(X)), where

Ain(X) is the original input polynomial of degree n; initially A(X) = Ain(X) and M(X) is X

or −X depending upon whether we want to isolate the positive or the negative roots of Ain(X).

It then constructs two polynomials AR(X) :=A(X + 1), AL(X) :=(X + 1)nA(1/(X + 1)) and

two Möbius transformations MR(X) :=M(X + 1), ML(X) :=M(1
X+1); the polynomial AL(X)

and the transformation ML(X) are constructed only if the number of sign variations (i.e., the

number of changes from positive to negative and vice versa) in the coefficients of AR(X) are less

than those in A(X). It can be verified that the roots of A(X) greater than one correspond to

the positive roots of AR(X) and the roots of A(X) in the unit interval correspond to the positive

roots of AL(X); the transformations MR(X) and ML(X) respectively define these correspon-

dence. The algorithm then proceeds recursively on (AR(X),MR(X)), and on (AL(X),ML(X))

if AL(X) was constructed. The algorithm stops whenever it counts zero or one sign variation

in the coefficients of A(X); in the latter case, it outputs the interval with endpoints M(0) and

M(∞).

The search tree generated by the algorithm is a binary tree, and with each node of this tree

we can associate a pair (A(X),M(X)). At a node along any path in this tree we transform the

polynomial associated with the node by either the inverse transformation X → (X + 1)−1 or

the Taylor shift X → (X+1). Uspensky [Usp48] gave an explicit bound on the number of inverse

transformations along any path of the tree. In particular, it can be deduced from his result that

for a square-free integer polynomial of degree n with coefficients of bit-length L, the number of

inverse transformations along any path in the search tree is Õ(nL) (see [Yap00, Cor. 14.6,p. 477]

75

or Equation (3.36) below), where Õ() means we omit logarithmic terms. The number of Taylor

shifts, however, can be exponential; the length of the right most path is at least the floor of the

smallest positive root of Ain(X), which may be exponentially large.

Akritas [Akr78b] gave a modification of Vincent’s algorithm, which maintains the spirit of

the original, but tries to avoid exponential behaviour. Unlike Vincent, who tries to approximate

the floor of the least positive root of the polynomial with shifts of unit length, Akritas shifts by

a lower bound on the least positive root, thus speeding the process of approximation. Assuming

the ideal Positive Lower Bound (PLB) function, i.e., a function which returns the floor of

the least positive root of the polynomial and can identify if there is no such root, Akritas showed

that his algorithm has a worst case complexity of Õ(n5L3) if the Taylor shifts are done in the

classical way using O(n2) operations; but, as mentioned in [ET06], his analysis does not account

for the increased coefficient size after performing the Taylor shifts. Again assuming the ideal PLB

function, Emiris and Tsigaridas [ET06] have derived an expected bound of Õ(n4L2) on Akritas’

algorithm using bounds by Khinchin [Khi97] on the expected bit-size of the partial quotients

appearing in the continued fraction approximation of a real number. In practice, however, we

never use the ideal PLB function because of its prohibitive cost (intuitively it is almost equivalent

to doing real root isolation), but instead use functions that are based upon upper bounds on the

absolute value of the roots of a polynomial, such as Cauchy’s bound, Zassenhaus’ bound (see §3.1

for details). The advantage of the latter bounds are that they are easy to implement and give us

a good lower bound on the least positive root. Thus the complexity analysis of Akritas’ algorithm

in the current literature does not correspond with the actual implementation of the algorithm.

Moreover, given the similarity between Akritas’ and Vincent’s algorithm, it may appear that the

former is also exponential in the worst case, though we do not know of any example where this

is the situation.

In this chapter, we derive a worst case bound of Õ(n8L3) on Akritas’ algorithm without

assuming the ideal PLB function. But if we are allowed to make this assumption then we can

improve this worst case bound to Õ(n5L2).

Since the key distinction between Vincent’s and Akritas’ algorithm is the use of lower bounds

on the positive real roots of the polynomial, it is clear that the worst case analysis of the latter

algorithm has to hinge upon the tightness of these lower bounds. This is the subject that we

treat next.

76

3 Real Root Isolation: Continued Fractions

3.1 Tight Bounds on Roots

Given a polynomial A(X) =
∑n
i=0 aiX

i ∈ Z[X], a0 6= 0, let PLB(A) be any procedure that

returns a lower bound on the least positive root of A(X). If µ(A) denotes the largest absolute

value over all the roots of a polynomial A(X), then PLB(A) is usually computed by taking the

inverse of an upper bound on µ(R(A)), where R(A)(X) :=XnA(1/X). Thus in order to get a

tight lower bound on the positive roots of a polynomial we need a tight upper bound on µ(A).

One way of getting such an upper bound is to use the function:

S(A) := 2 max
i=1,...,n

∣∣∣∣
an−i
an

∣∣∣∣
1/i

.

Van der Sluis [vdS70] showed that S(A) is at most twice the optimal bound amongst all bounds

based solely upon the absolute value of the coefficients; he also showed the following:

µ(A) < S(A) ≤ 2nµ(A). (3.1)

The proof for the lower bound on S(A) can be found, for instance, in [Yap00, Lem. 6.5, p. 147].

The upper bound on S(A) will follow if we show for all 0 < i ≤ n that
∣∣∣an−i

an

∣∣∣
1/i

≤ nµ(A). Let

α1, . . . , αn be the roots of A(X). Then we know that

∣∣∣∣
an−i
an

∣∣∣∣ ≤
∑

1≤j1<···<ji≤n
|αj1 · · ·αji | ≤

(
n

i

)
µ(A)i.

Taking the i-th root on both sides, along with the observation that for 1 ≤ i ≤ n,
(
n
i

)1/i ≤(
ni

i!

)1/i

≤ n, shows the upper bound in (3.1).

Clearly, S(A) cannot be computed exactly in general. Instead, we use a procedure U(A),

similar to that suggested by Akritas [Akr89, p. 350], which computes an upper bound on µ(A)

when A(X) ∈ R[X].

77

3.1 Tight Bounds on Roots

Procedure U(A)

INPUT: An integer polynomial A(X) =
∑n

i=0 aix
i, ai ∈ R, an > 0.

OUTPUT: A power of two that is an upper bound on the roots of A(X).

1. Let m be the number of negative coefficients of A(X).

2. If n = 0 or m = 0 then return.

3. q′ :=−∞.

4. For i from 1 to n do the following:

p := ⌊log |an−i|⌋ − ⌊log |an|⌋ − 1.

Let q = ⌊p/i⌋.
q′ := max(q′, q + 2).

5. Return 2q
′

.

Remark 3.1. If A(X) is an integer polynomial with coefficients of bit-length L then the cost of

computing U(A) is Õ(nL). The reason is that most expensive operation in the loop on Line 4

is computing the floor of the coefficients which can be done in O(L) time; since the loop runs n

times we have the desired bound.

We have the following relation between U(A) and S(A):

Lemma 3.1.
U(A)

4
< S(A) < U(A).

Proof. Suppose S(A) = 2
(

|an−i|
|an|

)1/i

. Let p := ⌊log |an−i|⌋−⌊log |an|⌋−1, q = ⌊p/i⌋ and r := p−
q · i, 0 ≤ r < i. Then we know that

2p <
|an−i|
|an|

< 2p+2.

Taking the i-th root we get

2q <

(|an−i|
|an|

)1/i

< 2q+2,

since q ≤ p/i and (p + 2)/i = q + (r + 2)/i ≤ q + 2. But U(A) = 2q+2, and hence we get our

desired inequality.

The lemma above along with (3.1) gives us

µ(A) < U(A) < 8nµ(A). (3.2)

78

3 Real Root Isolation: Continued Fractions

Define

PLB(A) :=
1

U(R(A))
(3.3)

where R(A) = XnA(1/X). Then from (3.2) we know that

1

8nµ(R(A))
< PLB(A) <

1

µ(R(A))
.

Let κ(A) denote the minimum of the absolute values of the roots of A(X), assuming that zero is

not a root of A(X). Then we have

κ(A)

8n
< PLB(A) < κ(A), (3.4)

since κ(A) = 1
µ(R(A)) .

In practice one can use bounds from [Kio86, Şte05] that utilize the sign of the coefficients and

give a better estimate than S(A). For instance, Kioustelidis [Kio86] has shown that the bound

K(A) := 2 max
ai<0

∣∣∣∣
an−i
an

∣∣∣∣
1/i

,

where ai is a coefficient of A(X), is an upper bound on the largest positive root of A(X); by

definition we have K(A) ≤ S(A). We do not use this bound in our analysis because we do not

know a relation corresponding to (3.1) between K(A) and the largest positive root of A(X). But

such a relation seems unlikely to hold. Consider the situation when there is only one negative

root of A(X), which has the largest absolute value amongst all the roots of A(X). Then the

summation in ∣∣∣∣
aj
an

∣∣∣∣ =

∣∣∣∣∣∣

∑

1≤i1<···<in−j≤n
αi1 · · ·αin−j

∣∣∣∣∣∣
,

where α1, . . . , αn are the roots of A(X), will be dominated by the negative root. Thus, it

appears, that the best we can say is K(A) ≤ 2nµ(A). The same argument applies to the bound

by Ştefănescu [Şte05].

Hong [Hon98] has given bounds on the positive roots of a polynomial in more than one

variable. For univariate polynomials, his bound is

2 max
aj<0

min
ak>0,k>j

∣∣∣∣
aj
ak

∣∣∣∣
1/(k−j)

.

It is clear that this bound is an improvement over the bound by Kioustelidis. However, again it is

not obvious whether a tight relation similar to (3.1) holds between the largest positive root and

the bound above. This is because Hong’s bound is on the absolute positiveness of a polynomial,

79

3.2 The Continued Fraction Algorithm by Akritas

i.e., a bound such that the evaluation of the polynomial and all its derivatives at any point larger

than the bound is strictly positive. In case of univariate polynomials this means Hong’s bound

is an upper bound on the positive roots of the polynomial and its derivatives. The difficulty

in obtaining a tight relation suggested above is that the real roots of the derivatives may be

greater than the positive roots of the polynomial. For example, the derivative of the polynomial

3X3 − 15X2 + 11X − 7 = 3(X − 1)(X − 2 + i/
√

3)(X − 2 − i/
√

3) has a real root 5/3 which is

greater than the real root (in this case one) of the polynomial. The desired tight relation may

be derived, if we can find a relation between the largest positive root of the polynomial and the

largest positive root of its derivative.

Now that we have a procedure to obtain lower bounds on the absolute values of the roots of

the polynomial, we give the details of Akritas’ algorithm for real root isolation.

3.2 The Continued Fraction Algorithm by Akritas

Definition 3.1. Given a polynomial A(X) = anX
n + an−1X

n−1 + · · · + a0, let Var(A) repre-

sent the number of sign changes (positive to negative and negative to positive) in the sequence

(an, an−1, . . . , a0).

The two crucial components of the algorithm are the procedure PLB(A), described above,

and the Descartes’ rule of signs:

Proposition 3.1. Let A(X) = anX
n+an−1X

n−1+· · ·+a0 be a polynomial with real coefficients,

which has exactly p positive real roots counted with multiplicities. Then Var(A) ≥ p, and Var(A)−
p is even.

Akritas’ algorithm for isolating the real roots of a square-free input polynomial Ain(X) uses

a recursive procedure CF(A,M) that takes as input a polynomial A(X) and a Möbius transfor-

mation M(X) = pX+q
rX+s , where p, q, r, s ∈ N and ps− rq 6= 0. With the transformation M(X) we

can associate an interval IM that has endpoints p/r and q/s. The relation among Ain(X), A(X)

and M(X) is

A(X) = (rX + s)nAin(M(X)). (3.5)

From this relation it follows that 1) for every root α ∈ IM of Ain(X) there is a unique root β > 0

of A(X) such that M−1(α) = β and vice versa, i.e., for every root β > 0 of A(X) there is a

unique root α ∈ IM of Ain(X) such that α = M(β); and 2) that A(X) is square-free. Given (3.5),

80

3 Real Root Isolation: Continued Fractions

the procedure CF(A,M) returns a list of isolating intervals for the roots of Ain(X) in IM . To

isolate all the positive roots of Ain(X) initiate CF(A,M) with A(X) = Ain(X) and M(X) = X ;

to isolate the negative roots of Ain(X) initiate CF(A,M) on A(X) :=Ain(−X) and M(X) = X

and flip the signs of the intervals returned.

The procedure CF(A,M) is as follows:

Procedure CF(A,M)

Input: A square-free polynomial A(X) ∈ R[X] and a Möbius

transformation M(X) satisfying (3.5).

Output: A list of isolating intervals for the roots of Ain(X) in IM .

1. If A(0) = 0 then

Output interval [M(0),M(0)].

A(X) :=A(X)/X ; return CF(A,M).

2. If Var(A) = 0 then return.

3. If Var(A) = 1 then

Output the interval IM and return.

4. b :=PLB(A).

5. If b > 1 then A(X) :=A(X + b) and M(X) :=M(X + b).

6. AR(X) :=A(1 +X) and MR(X) :=M(1 +X).

7. CF(AR,MR).

8. If Var(AR) < Var(A) then

9. AL(X) :=(1 +X)nA
(

1
1+X

)
and ML(X) :=M

(
1

1+X

)
, n = deg(A).

10. If AL(0) = 0 then AL(X) :=AL(X)/X .

11. CF(AL,ML).

Some remarks on the procedure:

• Removing lines 4 and 5 gives us the procedure proposed by Vincent for isolating positive

roots.

• The positive roots of AR(X) are in bijective correspondence with the roots of Ain(X) in the

interval IMR
and those of AL(X) are in bijective correspondence with the roots of Ain(X)

in the interval IML
.

• Line 8 avoids unnecessary computations of AL(X) since if Var(AR) = Var(A) then from

81

3.3 Continued Fractions and Möbius Transformations

Budan’s theorem [Akr82] we know that there are no real roots of A(X) between 0 and b+1.

This test is missing in Uspensky’s formulation of the algorithm [Usp48, p. 128] and was

pointed out in [Akr86].

• Line 10 is necessary to avoid recounting; since AL(0) = 0 if and only if AR(0) = 0, the root

would have been reported in the recursive call at line 7.

• AL(X) can be computed from A(X) by performing a Taylor shift by one on the reverse

polynomial XnA(1/X).

To show that each path in the recursion tree of the above algorithm terminates we need to

revise some basic relations between Möbius transformations and continued fractions; for details

see [Yap00, Ch. 15].

3.3 Continued Fractions and Möbius Transformations

A continued fraction is a possible infinite expression of the form

q0 +
p1

q1 +
p2

q2 +
p3

q3 + · · ·

where pi, qi are in C := C ∪ {∞}; pi is called the i-th partial numerator and qi the i-th partial

denominator. For ease of writing, we express the above continued fraction as

q0 +
p1

q1+

p2

q2+
· · · .

The value Pi/Qi of the continued fraction

q0 +
p1

q1+

p2

q2+
· · · pi−1

qi−1+

pi
qi

is called the i-th quotient of the continued fraction; it may be infinite if Pi 6= 0 and Qi = 0, or

indefinite if Pi = Qi = 0. In particular, for i = 0 we have P0 = q0 and Q0 = 1. If we choose

P−1 = 1 and Q−1 = 0 then we have

Pi = piPi−2 + qiPi−1 and Qi = piQi−2 + qiQi−1. (3.6)

82

3 Real Root Isolation: Continued Fractions

An ordinary continued fraction 1 is of the form

q0 +
1

q1+

1

q2+

1

q3+
· · · ,

i.e., a continued fraction all of whose partial numerators are one. Again, for the ease of writing

we express it as

[q0, q1, q2, . . .].

For example, the ordinary continued fraction [1, 1, 1, . . .] is the golden ratio (
√

5+1)/2. With the

finite ordinary continued fraction [q0, . . . , qm] = Pm

Qm
we can associate the Möbius transformation

M(X) :=
Pm−1 + PmX

Qm−1 +QmX
.

We denote by IM the interval with endpoints M(∞) = Pm/Qm and M(0) = Pm−1/Qm−1. Since

[q0, q1, . . . , qm] is an ordinary continued fraction, we know that [Yap00, p. 463]

|PmQm−1 − Pm−1Qm| = 1; (3.7)

thus the Möbius transformation associated with an ordinary continued fraction is unimodal. For

any two numbers α, η ∈ C, if α = M(η) then by applying the inverse transformation M−1(X)

we get

η = −Pm−1 −Qm−1α

Pm −Qmα
. (3.8)

For a complex number z let ℜ(z) represent its real part and ℑ(z) its imaginary part.

3.4 Termination

Consider the recursion tree of the procedure CF(A,M), described in §3.2, initiated with A(X) =

Ain(X) ∈ R[X] and M(X) = X , for a square-free polynomial Ain(X). The right child of any

node in this tree corresponds to the Taylor shift X → X + δ, δ ≥ 1, and the left child of

the node corresponds to the inverse transformation X → (X + 1)−1. A sequence of Taylor

shifts X → X0 + δ0, X0 → X1 + δ1, . . . , Xi−1 → Xi + δi can be thought of as a single Taylor

shift X → X + q, q =
∑i

j=0 δj . Moreover, a sequence of Taylor shifts by a total amount q

followed by an inverse transformation X → (X + 1)−1 is the same as the transformation X →
q+(1+X)−1. Thus with each node in the recursion tree we can associate an ordinary continued

fraction [q0, q1, . . . , qm] = Pm/Qm, for some qi ∈ N, and hence the Möbius transformation (PmX+

1They are also called simple continued fractions, or regular continued fractions.

83

3.4 Termination

Pm−1)/(QmX + Qm−1); note that the nodes on the right most path of the recursion tree are

associated with the continued fraction [q0], for some q0 ∈ N, and the Möbius transformation

X + q0, because there are no inverse transformations along the right most path. Based upon the

Möbius transformation (PmX + Pm−1)/(QmX +Qm−1) associated with a node in the recursion

tree, we can further associate the polynomial AM (X) :=(QmX+Qm−1)
nAin(PmX+Pm−1) with

the same node.

Vincent’s observation, mentioned earlier, says that if m is large enough then AM (X) will

exhibit at most one sign variation. Uspensky [Usp48, p. 298] quantified this by showing the

following: Let Ain(X) ∈ R[X] be a square-free polynomial of degree n and ∆ be the smallest

distance between any pair of its roots. If m is such that

Fm−1
∆

2
> 1 and Fm−1Fm∆ > 1 + ǫ−1

n (3.9)

where Fi is the i-th Fibonacci number and ǫn :=(1 + 1/n)1/(n−1) − 1, then AM (X) exhibits at

most one sign variation 2.

Ostrowski [Ost50] later improved and simplified Uspensky’s criterion (3.9) to FmFm−1∆ ≥
√

3. Similar criterion were derived by Alesina and Galuzzi [AG98, p. 246] and Yap [Yap00,

Thm. 14.5,p. 476]. We next derive a termination criterion that depends on ∆α, the shortest

distance from α to another root of A(X). To achieve this we recall from §2.1.2 the definitions of

the three open discs, CI , CI and CI w.r.t. an interval I. Also, following [KM06] we define the

cone

C :=
{
a+ ib|a ≤ 0 and |b| ≤ |a|

√
3
}
.

We have the following key observation which is implicit in Ostrowski’s proof and is also used by

Alesina and Galuzzi in [AG98, p. 249]:

Lemma 3.2. Let a, b, c, d ∈ R>0, I be an interval with unordered endpoints a
c ,

b
d , and define the

Möbius transformation M(z) := az+b
cz+d . Then M−1(z) maps the closed region C − (CIM

∪ CIM
)

bijectively on the cone C, and maps the open disc CIM
bijectively on the half plane ℜ(z) > 0.

Proof. Since Möbius transformations map circles to circles (lines are circles with infinite radius)

we only show the effect of M−1(z) on three points of the circles.

Suppose a/c < b/d. Then it can be verified that M−1(b/d) = 0, M−1(a/c) = ∞, and

M−1(z) = −d
2c (1 + i

√
3), M−1(z) = −d

2c (1 − i
√

3) where

z :=
1

2
(a/c+ b/d) + i(b/d− a/c)

√
3/2.

2Uspensky’s original proof incorrectly states Fm−1∆ > 1

2
. This was later corrected by Akritas [Akr78a].

84

3 Real Root Isolation: Continued Fractions

This proves the first bijection. The second bijection follows from the additional fact that for

w =
1

2
(a/c+ b/d) + i

1

2
(b/d− a/c)

we have M−1(w) = −id/c and M−1(w) = id/c. This correspondence is illustrated in Figure 3.1.

a/c b/dI

∞

d/c

−d/c

CI

− d

2c
(1 + i

√
3)

− d

2c
(1 + i

√
3)

C
I

CI

Figure 3.1: The effect of M−1(z) on the three circles

The lemma holds if a/c > b/d because the point 1
2 (a/c + b/d) + i(a/c − b/d)

√
3/2 is the

conjugate of the point z defined above, and similarly the point 1
2 (a/c+ b/d) + i 12 (a/c − b/d) is

the conjugate of the point w.

From Lemma 3.2 it follows that Var(AM) = DescartesT est(A, IM), and hence from Propo-

sition 2.3 we know the following:

Theorem 3.2. Let A(X) be a square-free polynomial of degree n,

M(X) :=
PmX + Pm−1

QmX +Qm−1

and AM (X) :=(QmX + Qm−1)
nA(M(X)). If α is the only simple root of A(X) in the interval

IM and there are no other roots of A(X) in CIM
∪ CIM

then Var(AM) = 1.

As a corollary to the above we have the following termination criterion:

85

3.4 Termination

Corollary 3.1. Let A(X) be a square-free polynomial of degree n,

M(X) :=
PmX + Pm−1

QmX +Qm−1

and AM (X) :=(QmX+Qm−1)
nA(M(X)). If IM is an isolating interval for a real root α of A(X)

and m is such that QmQm−1∆α ≥ 2/
√

3 then Var(AM) = 1.

Proof. We know from (3.7) that the width of I is 1/(QmQm−1). By our assumption this is less

than
√

3∆α/2. Thus all the roots of A(X) except α are in C − (CIM
∪ CIM

). From Lemma 3.2

we know that all the roots of AM (X) except the one corresponding to α lie in the cone C and

from Proposition 2.3 we get that Var(AM) = 1.

Remark 3.2. This result seems to be the one hinted in [ET06, p. 5] as an interesting problem.

Their Remark 7, however, is equivalent to this result but cannot be derived directly by substituting

∆α for ∆ in the standard proofs by Uspensky, Ostrowski, Akritas and Yap, since all of them

depend upon the fact that the imaginary parts of all the imaginary roots are at least ∆/2, a

criterion which may not hold in case of ∆α. The result, however, is straightforward if we replace

∆ by ∆α in the proof of the termination criterion derived by Alesina and Galuzzi.

The above theorem corresponds to the two-circle theorem in [KM06]. The corresponding

one-circle theorem, which again is a direct consequence of Lemma 3.2 and Proposition 2.2, is the

following :

Theorem 3.3. Let A(X) be a square-free polynomial of degree n,

M(X) :=
PmX + Pm−1

QmX +Qm−1

and AM (X) :=(QmX+Qm−1)
nA(M(X)). If CIM

does not contain any roots then Var(AM) = 0.

As a corollary to the above we have:

Corollary 3.2. Let A(X) be a square-free polynomial of degree n,

M(X) :=
PmX + Pm−1

QmX +Qm−1

and AM (X) :=(QmX+Qm−1)
nA(M(X)). If CIM

does not contain any roots and m is such that

QmQm−1∆ ≥ 2 then Var(AM) = 0, where ∆ is the root separation bound for A(X).

Proof. Again the width of the interval IM is less than ∆/2 and hence the open disc CIM
does not

contain any roots. Thus all the roots of AM (X) have a negative real part and hence Var(AM) =

0.

86

3 Real Root Isolation: Continued Fractions

3.5 The Size of the Recursion Tree: Real Roots Only

In this section we will bound the size #(T) of the recursion tree T of the procedure CF(Ain, X),

where Ain(X) ∈ R[X] is a square-free polynomial of degree n with only real roots. Consider a

sub-tree T ′ of T obtained by pruning certain leaves from T :

• Prune all the leaves of T that declare the absence of roots.

• If two leaves are siblings of each other, prune the left one.

Clearly, #(T ′) < #(T) < 2#(T ′); thus it suffices to bound #(T ′).

Let U be the set of leaves in T ′. Recall from §3.4 that with each node of T we can associate

an ordinary continued fraction. In particular, for a leaf u ∈ U let [q0, . . . , qm+1] = Pm+1/Qm+1

be the associated ordinary continued fraction. Then we can associate with u the Möbius trans-

formation

Mu(X) :=
Pm+1X + Pm
Qm+1X +Qm

(3.10)

and the interval Iu := IMu
. Moreover, we can also associate with u a unique pair (αu, βu), where

αu and βu are roots of Ain(X). The way T ′ has been constructed we know that for all u ∈ U

there is a real root αu ∈ Iu. To define the root βu we consider the interval associated with the

parent v of u. Let the Möbius transformation Mv(X) associated with v be

Mv(X) =
PmX + Pm−1 + Pmδv
QmX +Qm−1 +Qmδv

, (3.11)

for some δv ∈ N such that 1 ≤ δv < qm+1, and the interval associated with v be Iv := IMv
.

Since Var(AMv
) > 1, from Theorem 3.2 we know that there must be a root apart from αu in the

interval Iv; choose βu ∈ Iv to be the root closest to αu. It is clear that for two leaves u, u′ ∈ U ,

the corresponding pairs (αu, βu) and (αu′ , βu′) are such that αu 6= αu′ , even though βu may be

the same as βu′ ; from this uniqueness it follows that the size |U | of the set U is at most n, the

degree of the polynomial Ain(X).

We will bound the length of the path from the root of T ′ to a leaf u ∈ U by bounding the

number of inverse transformations X → 1/(X + 1) and Taylor shifts X → (X + b), b ≥ 1, along

the path. For the remaining part of this section, let Mu(X), Iu, v, Mv(X) and Iv be as defined

above.

87

3.5 The Size of the Recursion Tree: Real Roots Only

3.5.1 Bounding the Inverse Transformations

Since both αu and βu are in the interval Iv we get

(QmQm−1)
−1 ≥ (Qm(Qm−1 +Qmδv))

−1 ≥ |αu − βu|. (3.12)

But Qi ≥ Fi+1, the (i+ 1)-th Fibonacci number; this follows from the recurrence equation (3.6)

and the fact that pi = 1 and qi ≥ 1. Moreover, Fi+1 ≥ φi, where φ = (
√

5 + 1)/2. Thus Qi ≥ φi

and hence from (3.12) we have

φ2m−1 ≤ |αu − βu|−1,

which implies

m ≤ 1

2
(1 − logφ |αu − βu|). (3.13)

Thus the total number of inverse transformations in T ′ are bounded by

∑

u∈U

1

2
+

1

2
logφ

∏

u∈U
|αu − βu|−1.

Since |U | ≤ n, the above bound is smaller than

n+
1

2
logφ

∏

u∈U
|αu − βu|−1. (3.14)

3.5.2 Bounding the Taylor Shifts

The purpose of the Taylor shifts in the procedure CF(A,M) was to compute the floor of the least

positive root of a polynomial. Using property (3.4) of the PLB(A) function (defined in (3.3)) we

will bound the number of Taylor shifts required to compute the floor of the least positive root

of some polynomial B(X) ∈ R[X]. We start with the simple case when B(X) has only positive

roots. We introduce the following notation for convenience: for any x ∈ C let

logm(x) := log max(1, |x|).

Lemma 3.3. Let B1(X) :=B(X), and for i > 1 recursively define

Bi(X) :=

Bi−1(X + PLB(Bi−1) + 1) if PLB(Bi−1) > 1

Bi−1(X + 1) otherwise.

(3.15)

Let αi denote the least positive real root of Bi(X). Then αi ≤ 1 if i ≥ 2 + 8n+ γnlogmα1 where

γn :=(log 8n− log(8n− 1))−1.

88

3 Real Root Isolation: Continued Fractions

Proof. Let bi :=PLB(Bi). Then from (3.4) we get that for all i ≥ 1, αi

8n < bi < αi. Let j be the

index such that for all i < j, αi > 8n. Then for i < j we know that bi > 1. Thus

αi = αi−1 − bi−1 − 1 < αi−1

(
1 − bi−1

αi−1

)
< αi−1(1 − 1

8n
)

and recursively we get αi < α1(1 − 1
8n)i−1. So αj ≤ 8n if αj−1 ≤ 8n, but this follows if

α1(1 − 1
8n)j−2 ≤ 1 or if j ≥ 2 + γnlogmα1.

Since αi is monotonically decreasing, for i ≥ j we have αi ≤ 8n. Hence we need 8n additional

shifts, i.e., if i − j > 8n then αi < 1. Combining this with the lower bound on j gives us our

result.

The following lemma extends this result to the case when B(X) has both positive and negative

roots but B(0) 6= 0. In order to do this we introduce some notation: Let LP(B) denote the least

positive root of B(X) and LN(B) denote the largest negative root of B(X).

Lemma 3.4. Let B1(X) :=B(X), and recursively define Bi(X) as in the above lemma. Let

αi :=LP(Bi) and βi :=LN(Bi). Then αi ≤ 1 if

i > 3 + 16n+ κnlogm

(
α1

β1

)
+ logmα1

where

κn :=(log(8n+ 1) − log 8n)−1. (3.16)

Proof. We suppose |α1| > |β1|, since otherwise the result trivially follows from Lemma 3.3.

Let j be the first index such that for i ≥ j, |βi| > |αi|; once this holds we know that αi,

i ≥ j, is the root with the smallest absolute value and hence from Lemma 3.3 it follows that if

i− j > 2 + 8n+ γnlogmαi then αi ≤ 1; but κn > γn and hence if

i− j > 2 + 8n+ κnlogmαi (3.17)

then we are sure αi ≥ 1. We next give a lower bound on j.

Again, let bi :=PLB(Bi). Since for i ≤ j, βi is the root with smallest absolute value, we know

from (3.4) that
|βj |
8n < bj < |βj |. Assume that |βi| > 8n. Then bi > 1 and from the definition of

Bi(X) we know that

|βi| = |βi−1|
(

1 +
1 + bi−1

|βi−1|

)
> |βi−1|

(
1 +

bi−1

|βi−1|

)
> |βi−1|

(
1 +

1

8n

)
.

And recursively, |βi| > |β1|(1 + 1
8n)i−1. Thus if

j > 1 + κnlogm

(
α1

β1

)

89

3.5 The Size of the Recursion Tree: Real Roots Only

then we are sure |βj | ≥ |α1| > |αj |. In addition to these shifts, we initially need 8n shifts to

ensure that |βi| > 8n. Combining these additional shifts with the bound on j and the bound on

i− j in (3.17) we get that if

i > 3 + 16n+ κnlogm

(
α1

β1

)
+ κnlogmαi

then αi ≤ 1. Since |αi| ≤ |α1| we have our result.

To bound the number of Taylor shifts along the path from the root of T ′ to the leaf u, we

will bound the number of Taylor shifts that compose each qi, i = 0, . . . ,m+ 1, in the continued

fraction approximation of αu.

Definition 3.4. For 0 ≤ i ≤ m+ 1 define the following quantities:

1. Mi(X) :=[q0, . . . , qi, 1 +X] = PiX+Pi−1+Pi

QiX+Qi−1+Qi
;

2. Ai(X) :=(QiX +Qi−1 +Qi)
nAin(Mi(X)), i.e., the polynomial obtained by performing the

ith inverse transformation and on which we will perform a Taylor shift by the amount qi+1;

3. ηi :=M−1
i (αu)

4. ri :=Pi/Qi, si :=
Pi+Pi−1

Qi+Qi−1
and

5. Ji := IMi
, i.e., the interval with endpoints ri and si.

Clearly, for 0 ≤ i ≤ m, Iv ⊆ Ji and hence we have

(QiQi−1)
−1 ≥ |αu − βu|. (3.18)

The same cannot be said for Qm+1, because Jm+1 ⊆ Iv is an isolating interval.

Since αu ∈ Ji we know from (3.8) that ηi > 0. Based upon the above lemmas we derive an

upper bound on the number of Taylor shifts needed to obtain qi+1.

Let B1(X) :=Ai(X) and recursively define Bi(X) as in (3.15); we may safely assume that

Ai(0) 6= 0 since the procedure CF(Ai,Mi) would replace Ai(X) by Ai(X)/X otherwise. Define

the sequence of indices

i0 = 1 ≤ i1 < i2 < · · · < iℓ, (3.19)

where the index ij is such that LP(Bij) is contained in the unit interval; if i < m the last index

iℓ is such that the root in Biℓ(X) corresponding to ηi is in the unit interval; for i = m the index

90

3 Real Root Isolation: Continued Fractions

iℓ is such that the node that has Biℓ(X) as the corresponding polynomial is the parent v of the

leaf u; these constraints imply that ℓ ≤ n.

From Lemma 3.4 we get

ij+1 − ij = O

(
n+ κnlogm

LP(B1+ij)

LN(B1+ij)
+ κnlogmLP(B1+ij)

)
.

But LP(Bk), k = 1, 2, . . . , iℓ, corresponds to a positive root, say ηk, of Ai(X); moreover, ηk >

LP(Bk), thus

ij+1 − ij = O

(
n+ κnlogm

η1+ij
LN(B1+ij)

+ κnlogm η1+ij

)
.

Summing this inequality for j = 0, . . . , ℓ− 1 < n we get that

iℓ = O(n2) +O

ℓ−1∑

j=0

κnlogm
η1+ij

LN(B1+ij)
+ κnlogm η1+ij

 . (3.20)

The last term in the summation above is smaller than

κn

(
logm

ηi
LN(B1+iℓ−1

)
+ logm ηi.

)
(3.21)

We consider this term as the contribution of αu to qi+1, 0 ≤ i ≤ m. Our aim now is to bound it

primarily as a function of log |αu − βu|−1; the advantage becomes evident when we try to sum

the term over all u ∈ U , since then we can use the Davenport-Mahler bound to give an amortized

bound on the sum
∑

u∈U log |αu − βu|−1. The remaining terms in the summation above are the

contributions of different αu′ to qi+1, where u′ ∈ U − {u} is such that η1+ij = M−1
i (αu′), and

can be bounded in terms of |αu′ − βu′ |. Note that the contribution of αu to q0 is not accounted

for, but this will be taken care of later.

We next derive an upper bound on |ηi| and a lower bound on |LN(B1+iℓ−1
)|. In deriving

these bounds we will often require lower bounds on |α − P/Q|, where α is a root of a degree n

polynomial A(X) and P/Q is a fraction such that 0 < |α − P/Q| ≤ 1 and A(P/Q) 6= 0. The

lower bounds in the literature can be parametrized by some N ∈ R≥1 as follows:

|α− P/Q| ≥ C(A,N) ·Q−N ; (3.22)

note that the lower bound holds for all conjugates of α. For example, in case of Liouville’s

inequality [Lio40] we have N = n; in case of Roth’s theorem [Rot55] we have N > 2; for Thue’s

result [Thu09] we have N > 1+n/2; and for Dyson’s result [Dys47] we have N >
√

2n. However,

explicit bounds on C(A,N) are known only for Liouville’s inequality.

91

3.5 The Size of the Recursion Tree: Real Roots Only

In bounding |ηi| and |LN(B1+iℓ−1
)|, we need to consider two separate cases depending upon

whether Qi is zero or not. The situation Qi = 0 occurs only on the right-most path of the tree T

since there are no inverse transformations along this path. In bounding the length of the right-

most path we will also account for the contribution of αu to q0, for all u ∈ U . The argument for

bounding the length of the path is similar to the argument that was used to derive the bound in

(3.20) above.

Define the polynomial B1(X) :=Ain(X) and the polynomials Bi(X) as in (3.15). Since we

only perform Taylor shifts, the roots of Bi(X) are of the form α − δ, where α > 0 is some root

of Ain(X) and δ ∈ N. We define the sequence of indices (3.19) as was done earlier and follow the

same line of argument used to obtain the bound in (3.20), where ηij now is some positive root of

Ain(X). But |ηij | ≤ µ(Ain), the largest absolute value amongst all the roots of Ain(X). To get a

lower bound on |LN(B1+iℓ−1
)|, we use the fact that LN(B1+iℓ−1

) = η1+iℓ−1
− δ, where η1+iℓ−1

is

some positive root ofAin(X) and δ ∈ N. Thus from (3.22) we get that |LN(B1+iℓ−1
)| ≥ C(Ain, N),

and hence the length of the right-most path in the recursion tree T is bounded by

∑

u∈U
κn(logmµ(Ain) − logmC(Ain, N));

since |U | ≤ n this bound is smaller than

κnn(logmµ(Ain) − logmC(Ain, N)). (3.23)

We next derive bounds on |ηi| and |LN(B1+iℓ−1
)| assuming that Qi ≥ 1.

An upper bound on log ηi. Recall from Definition 3.4 that ηi = M−1
i (αu). Thus from (3.8)

we get

ηi =
Qi +Qi−1

Qi

|si − αu|
|ri − αu|

.

But |si − αu| ≤ (Qi(Qi +Qi−1))
−1 since αu ∈ Ji. Thus

ηi ≤ Q−2
i |ri − αu|−1.

Khinchin [Khi97, Thm. 13,p. 15] has shown that

|αu − ri| ≥
1

Qi(Qi +Qi+1)
;

the proof is based upon the observation that the fraction (Pi+Pi+1)/(Qi+Qi+1) lies between the

value αu of the continued fraction and the i-th quotient Pi/Qi. Using this result from Khinchin

92

3 Real Root Isolation: Continued Fractions

we get

ηi ≤ 2

(
Qi+1

Qi

)2

.

For i < m, we can apply (3.18) and take the logarithm to obtain

log ηi ≤ 1 − log |αu − βu|.

For i = m we cannot apply (3.18) because Jm+1 is an isolating interval, but we will obtain a

bound that is asymptotically the same as the bound on ηi for i < m. To obtain this result we

will show that Qm+1 = O(|αu − βu|−1); this will follow if qm+1 ≤ |αu − βu|−1, because we know

from (3.6) that Qm+1 = Qm−1+qm+1Qm, and from (3.18) that both Qm and Qm−1 are bounded

by |αu − βu|−1. Recall from the construction of T ′ from the starting of this section that the leaf

u is the right child of its parent v; so qm+1 = δv + δ + 1, where δv is defined as in (3.11) and

δ = PLB(AMv
) ∈ Z≥0 is the amount of Taylor shift done at v. Since all the roots are real we

know that AMv
(X + δ) has at least two positive roots; so Var(AMv

(X + δ)) ≥ 2 and hence from

Theorem 3.2 it follows that the interval with endpoints Mv(δ) and Mv(∞) must contain the roots

αu and βu, which implies that

|Mv(δ) −Mv(∞)| = (Qm(Qm−1 +Qm(δv + δ)))−1 ≥ |αu − βu|

and hence it follows that

qm+1 = 1 + δv + δ ≤ Qm−1 +Qm(δv + δ) ≤ |αu − βu|−1

as desired. Thus for i ≤ m we have

log ηi = O(− log |αu − βu|). (3.24)

A lower bound on |LN(B1+iℓ−1
)|.

We may safely assume that |LN(B1+iℓ−1
)| 6= 0 since if zero is a root of B1+iℓ−1

(X) then in the

procedure CF(A,M) we always divide the polynomial by X and remove this degenerate case.

We will consider two cases: first, when the root LN(B1+iℓ−1
) corresponds to a positive root of

Ai(X), and second when it corresponds to a negative root of Ai(X). If γ is the root of Ain(X)

that corresponds to LN(B1+iℓ−1
) then the first case is equivalent to the condition γ ∈ Ji and the

second to γ 6∈ Ji. We derive bounds on |LN(B1+iℓ−1
)| under these two conditions, starting with

the first case.

93

3.5 The Size of the Recursion Tree: Real Roots Only

1. In this case the polynomial B1+iℓ−1
(X) = Ai(X + δ), where δ is defined as

δ = 1 +

iℓ−1∑

j=1

1 +

PLB(Bj) if PLB(Bj) > 1

0 otherwise;

(3.25)

note that δ as defined is a natural number since PLB(Bj) is a natural number if it is greater

than one. The transformation

M ′(X) :=
PiX + Pi−1 + Piδ

QiX +Qi−1 +Qiδ

gives the bijective correspondence between the roots of Ain(X) and the roots of B1+iℓ−1
(X).

In particular, it follows that

γ = M ′(LN(B1+iℓ−1
))

and hence

|LN(B1+iℓ−1
)| = |M ′−1(γ)|

=

∣∣∣∣
Pi−1 + Piδ − (Qi−1 +Qiδ)γ

Pi −Qiγ

∣∣∣∣

=
δQi +Qi−1

|Pi −Qiγ|

∣∣∣∣γ − δPi + Pi−1

δQi +Qi−1

∣∣∣∣

(observe that δPi+Pi−1

δQi+Qi−1
= M ′(0)). From (3.22) we get

|LN(B1+iℓ−1
)| ≥ C(Ain, N)

|Pi −Qiγ|
(δQi +Qi−1)

−(N−1).

Since δQi > Qi−1 we further get

|LN(B1+iℓ−1
)| > C(Ain, N)

|Pi −Qiγ|
(2δQi)

−(N−1) > C(Ain, N)(2δQi)
−(N−1),

where the last step follows from the fact that |Pi−Qiγ| ≤ (QiQi−1)
−1 ≤ 1. But δ ≤ qi+1 <

Qi+1, for i < m, and for i = m, δ ≤ δv, where δv is defined as in (3.11); along with (3.18)

and (3.12) it follows that δ,Qi < |αu − βu|−1. Thus

|LN(B1+iℓ−1
)| ≥ C(Ain, N)(2|αu − βu|)2(N−1)

and hence

− log |LN(B1+iℓ−1
)| = O(−N log |αu − βu| − logC(Ain, N)). (3.26)

2. If LN(B1+iℓ−1
) corresponds with a negative root of Ai(X) then B1+iℓ−1

(X) = Ai(X),

because for j ≥ i1, LN(Bj) corresponds to a positive root of Ai(X). Thus deriving a

94

3 Real Root Isolation: Continued Fractions

lower bound on |LN(B1+iℓ−1
)| amounts to deriving a lower bound on |LN(Ai)|. Also,

γ = Mi(LN(Ai)) 6∈ Ji. From (3.8) we obtain

|LN(Ai)| =
Qi +Qi−1

Qi

|si − γ|
|ri − γ| ≥

1

Qi|ri − γ|C(Ain, N)(Qi +Qi−1)
1−N ,

where the last step follows by applying (3.22) to |si − γ|. Since γ is outside Ji and αu is

inside Ji we have

|ri − γ| ≤ |γ − αu| + |αu − ri| ≤ |γ − αu| + (QiQi−1)
−1.

Thus

|LN(Ai)| ≥ 1

Qi|γ − αu| +Q−1
i−1

C(Ain, N)(Qi +Qi−1)
1−N

≥ 1

Qi(1 + |γ − αu|)
C(Ain, N)(Qi +Qi−1)

1−N

≥ 1

1 + |γ − αu|
C(Ain, N)(QiQi−1)

1−N .

Applying the bound from (3.18) we get

|LN(Ai)| ≥
1

1 + |γ − αu|
C(Ain, N)|αu − βu|N .

But from the definition of µ(Ain) we know that |γ − αu| ≤ 2µ(Ain), and hence we have

|LN(Ai)| ≥
1

1 + 2µ(Ain)
C(Ain, N)|αu − βu|N

which gives us

− log |LN(Ai)| = O(−N log |αu − βu| − logC(Ain, N) + logmµ(Ain)). (3.27)

From (3.26) and (3.27) we safely conclude that in general

− log |LN(B1+iℓ−1
)| = O(−N log |αu − βu| − logC(Ain, N) + logmµ(Ain)). (3.28)

Given the bound on C(Ain, N) in Lemma 3.5 and the fact that |αu − βu| < 1 it follows that

the bound in (3.28) dominates the bound on log |ηi| in (3.24) and hence asymptotically the term

(3.21) is the same as the bound in (3.28) multiplied by κn. Thus the total contribution of αu to

each qi, i = 1, . . . ,m+ 1, is bounded by

m+1∑

i=1

κnO(−N log |αu − βu| − logC(Ain, N) + logmµ(Ain)), (3.29)

95

3.5 The Size of the Recursion Tree: Real Roots Only

where m satisfies (3.13); to show the dependency of the number inverse transformations along

a path we write m as mu, where u ∈ U is the leaf we are interested in. Thus the total number

of Taylor shifts along the path starting from the root of the tree T ′ and terminating at the leaf

u ∈ U is bounded by

mu+1∑

i=1

∑

u′∈U
κnO(−N log |αu′ − βu′ | − logC(Ain, N) + logmµ(Ain)),

where u′ are the leaves that are to the left of u and that share an ancestor with u.

Recall that this bound is valid for all the leaves u ∈ U except the leaf corresponding to the

right-most path in the tree. Thus the summation of the above bound for all u ∈ U , along with

the bound in (3.23) on the length of the right-most path of the tree, gives us the following bound

on the total number of Taylor shifts in the tree T ′

∑

u∈U

mu+1∑

i=1

∑

u′∈U
κnO(−N log |αu′ − βu′ | − logC(Ain, N) + logmµ(Ain)). (3.30)

Combined with the bound in (3.14) on the total number of inverse transformations we get the

following bound on the size of the tree T ′

#(T ′) = O(n−
∑

u∈U
logφ |αu − βu|)

+
∑

u∈U

mu∑

i=1

∑

u′∈U
κnO(−N log |αu′ − βu′ | − logC(Ain, N) + logmµ(Ain)).

(3.31)

3.5.3 Worst Case Size of the Tree

In order to derive a worst-case bound on the size of the tree T , from the bound given in (3.31), we

need an upper bound on
∑
u∈U log |αu−βu|−1. For this purpose we employ the Davenport-Mahler

bound.

Consider the graph G whose edge set is {(αu, βu)|u ∈ U}. Re-order the edge (αu, βu) in G

such that |αu| < |βu|. Since all the roots are real, it is not hard to see that the in-degree of G is

at most one. Thus G satisfies the conditions of Theorem 2.1 and hence

−
∑

u∈U
log |αu − βu| = O(B(Ain)), (3.32)

where

B(Ain) :=O(n log M(Ain) + n logn− log discr(Ain)), (3.33)

96

3 Real Root Isolation: Continued Fractions

M(Ain) is the Mahler measure of Ain(X) (see (2.2) in §2.2.1), and discr(Ain) is its discriminant.

Based upon this bound we have the following:

Theorem 3.5. Let Ain(X) ∈ R[X] be a square-free polynomial of degree n which has only real

roots. The size of the recursion tree of Akritas’ algorithm applied to Ain(X) is bounded by

nO(NB(Ain)2 − nB(Ain) logC(Ain, N) + nB(Ain) logµ(Ain)),

where B(Ain) is defined as above, C(Ain, N) is the constant involved in the inequality (3.22) and

µ(Ain) is the largest absolute value amongst all the roots of Ain(X).

Proof. Applying the bound in (3.32), along with the observation that |U | ≤ n, to (3.31) we get

that the size of the tree is bounded by

O(n+B(Ain)) +
∑

u∈U

mu∑

i=1

κnO(NB(Ain) − n logC(Ain, N) + nlogmµ(Ain)).

Note that the summation term dominates the first term in the bound, so we omit the latter term.

From (3.14) we further get that the bound above is smaller than

κnO(NB(Ain) − n logC(Ain, N) + nlogmµ(Ain))
∑

u∈U

1

2
(1 − logφ |αu − βu|).

Again applying (3.32) we get that the size of the tree is bounded by

κnO(NB(Ain)2 − nB(Ain) logC(Ain, N) + nB(Ain)logmµ(Ain)).

From the observation that κn = Θ(n) (see the definition in (3.16)), we get the desired result.

We will next give a specialization of the above theorem for the case of integer polynomials,

but for achieving this we need to derive bounds on the quantities N and C(A,N) involved in

(3.22).

Lemma 3.5. Let α be a root of an integer polynomial A(X) of degree n. Suppose P/Q ∈ Q,

Q > 0, is such that 0 < |α− P/Q| ≤ 1 and A(P/Q) 6= 0, then |α− P/Q| ≥ C(α) ·Q−n where

C(α) ≥ 2−n−logn−(n+1) log ‖A‖∞ . (3.34)

Proof. From the mean value theorem we know that

|A(α) −A(P/Q)| = |A′(β)||α − P/Q|,

97

3.5 The Size of the Recursion Tree: Real Roots Only

where β = (1 − t)α + tP/Q, 0 ≤ t ≤ 1. But |A(P/Q)| ≥ Q−n, so

|α− P/Q| =

∣∣∣∣
A(P/Q)

A′(β)

∣∣∣∣ ≥ |A′(β)|−1Q−n.

Since |α − P/Q| ≤ 1 we know that |β| ≤ 1 + |α|. and hence it can be showed that |A′(β)| is

smaller than n‖A‖∞(1 + |α|)n. Using Cauchy’s upper bound [Yap00, Cor. 6.8,p. 149] on |α| we

get the bound on the constant C(α) mentioned in the lemma.

We now have the desired specialization of the theorem above.

Corollary 3.3. Let A(X) be a square-free polynomial of degree n with integer coefficients of

magnitude less than 2L. If A(X) has only real roots then the number of nodes in the recursion

tree of Akritas’ algorithm run on A(X) is Õ(n4L2).

Proof. From Remark 2.4 we know that

M(A) ≤ ‖A‖2 ≤
√
n+ 1‖A‖∞ <

√
n+ 12L.

Moreover, |discr(A)| ≥ 1 since A(X) is square-free and its coefficients are integers. From these

observations we conclude that B(A) = Õ(nL). Furthermore, from Cauchy’s bound [Yap00, Cor.

6.8,p. 149] we know that µ(A) ≤ 2L. Plugging these bounds along with the bounds in Lemma 3.5

in the theorem above gives us the desired result.

How good is this bound? The answer depends upon the tightness of the bounds derived

on the number of inverse transformations and Taylor shifts. The bound derived on the former,

in (3.14), is perhaps the best one can expect, considering that the same bound holds for root

isolation using Sturm’s method [Dav85, DSY05] and for the Descartes method [ESY06, EMT06].

Thus we may ask what is the best bound on the number of Taylor shifts. The answer depends

upon the effectiveness of PLB(A). Consider the ideal positive lower bound function, i.e., one that

returns the floor of the least positive root of A(X) and −1 if none exists. Then the total number

of Taylor shifts required along a path is proportional to the number of inverse transformations

along the path, because between two consecutive inverse transformations we only perform a

constant number of Taylor shifts. Thus the total number of Taylor shifts in the recursion tree

is proportional to the number of inverse transformations in the tree and hence the best possible

bound on the size of the recursion tree is Õ(nL). This shows that there is a huge gap to be

overcome in the bound derived in Corollary 3.3.

98

3 Real Root Isolation: Continued Fractions

In retrospect, one may ask why the bound on the number of inverse transformations is so

good compared to the bound on the Taylor shifts. The answer lies in the relation of the width

of the interval associated with a node and the width of the intervals associated with its left and

its right child, which are respectively obtained by an inverse transformation and Taylor shift.

Suppose the continued fraction associated with an internal node v in the recursion tree T is

[q0, . . . , qi] = Pi/Qi, where we assume Qi > 0; thus the interval associated with the node v has

endpoints Pi/Qi and Pi−1/Qi−1, and hence its width is (QiQi−1)
−1. Now the continued fraction

associated with the left child of v is [q0, . . . , qi, 1] = Pi+1/Qi+1 that has width (QiQi+1)
−1. The

decrease in the width of the interval in going from the parent v to its left child is the ratio

Qi−1/Qi+1 = 1/(1 + Qi/Qi−1) ≤ 1
2 since Qi ≥ Qi−1. This means that whenever we take a left

path in the tree T the width of the interval decreases by at least half and hence the number of

inverse transformations is bounded by the logarithm of the separation bound as stated in (3.13).

The same relation does not always hold between a node and its right child. Suppose the right

child w of the node v is obtained by a Taylor shift by an amount δ1 > 0. Then the interval

associated with w has endpoints Pi/Qi and (Pi−1 + Piδ1)/(Qi−1 + Qiδ1), and hence has width

(Qi(Qi−1 +δ1Qi))
−1. Again we can show, assuming that Qi, δ > 0, that the width of the interval

associated with w is at most half the width of the interval associated with v. However, this

relation does not necessarily hold between w and its right child. More precisely, let the right

child of w be obtained by performing a Taylor shift by an amount δ2 > 0. Then the width of

the interval associated with the right child of w is 1
Qi(Qi−1+Qi(δ1+δ2))

. Thus the decrease in the

width of the interval in going from w to its right child is

Qi−1 + δ1Qi
Qi−1 + (δ1 + δ2)Qi

=

(
1 +

δ2Qi
Qi−1 + δ1Qi

)−1

≤
(

1 +
δ2

1 + δ1

)−1

which is a fraction that is less than half if δ2 > δ1 + 1; however, this condition is less likely to

hold since δ2 is a lower bound on the absolute value of the root α − δ1, where δ1 was a lower

bound on the root α. This implies that along a path where we only take the right branch at each

node the width of the interval decreases, but not necessarily by half. This difference between the

effect of inverse transformations and Taylor shifts on the width of the interval gives some insight

to the difference between the bounds achieved above.

Following the same line of argument as in this section, we next derive a bound on the size of

the recursion tree for isolating the real roots of a general polynomial.

99

3.6 The Size of the Recursion Tree: The General Case

3.6 The Size of the Recursion Tree: The General Case

In this section we bound the worst-case size of the recursion tree T of the procedure described

in §3.2 initiated with a square-free polynomial Ain(X) ∈ R[X] of degree n and the Möbius

transformation X , without assuming that all the roots of A(X) are real.

We partition the leaves of T into two types: type-0 leaves are those that declare the absence

of a real root and type-1 leaves are those that declare the presence of a real root.

Consider the tree T ′ obtained by pruning certain leaves from T : prune all the type-0 leaves

that have either a non-leaf or a type-1 leaf as sibling; if two leaves are siblings of each other then

arbitrarily prune one of them. Again, #(T ′) < #(T) ≤ 2#(T ′). Thus we bound #(T ′).

Let U be the set of leaves of T ′. Consider a leaf u ∈ U and let v be its parent. As was

supposed in §3.5, let [q0, . . . , qm+1] = Pm+1/Qm+1 be the continued fraction associated with the

leaf u. Define the Möbius transformation Mu(X) and Mv(X) as in (3.10) and (3.11); moreover,

let Iu := IMu
and Iv := IMv

. Since v is not a leaf we know that Var(AMv
) > 1. To each leaf u ∈ U

we assign a unique pair (αu, βu) of roots of Ain(X) as follows:

1. If u is a type-1 leaf then there is a unique root αu ∈ Iu. Since Var(AMv
) > 1, from

Theorem 3.2 we know that there must be a root in CIv
∪CIv

apart from αu; let βu be one

such root. Thus with each type-1 leaf we can associate a pair (αu, βu). Moreover, this can

be done in a unique manner. Suppose u′ is another type-1 leaf and v′ is its parent then

αu 6= αu′ . From Lemma 2.1 it is clear that we only need to consider the case when Iv and

Iv′ are adjacent to each other. Moreover, assume βu and βu are the only non-real roots in

CIv
∪CIv

and CIv′
∪CIv′

. Then it must be that either βu ∈ CIv
∩CIv′

or βu ∈ CIv
∩CIv′

.

In either case we can choose βu′ = βu distinct from βu.

2. If u is a type-0 leaf then we know that it had a type-0 leaf as its sibling in T . We consider

two sub-cases:

• If Iv does not contain a real root then we know from Theorem 3.3 that there must

be a pair of complex conjugate roots in CIv
. Let (αu, βu), βu :=αu, be one such pair.

The uniqueness of the pair is immediate since CIv
does not overlap with CIv′

for the

parent v′ of any other type-0 leaf.

• If Iv does contain a root then it must be the midpoint of the interval Iv; let αu denote

this root. From Theorem 3.2 we also know that there must be a pair of complex

100

3 Real Root Isolation: Continued Fractions

conjugates (β, β) in CIv
∪ CIv

; choose βu :=β. The pair is unique because αu is

unique.

Note the similarity of the above assignment with Section 2.2.2. As was done there, we will try to

bound the size of the path terminating at the leaf u in terms of the distance |αu−βu|. Before we

proceed further, we have two observations: first, because of the uniqueness of the pair (αu, βu)

it follows that the size of the set |U | ≤ n; and second, since αu, βu ∈ CIv
∩ CIv

we know that

(Qm(Qm−1 + δvQm))−1 >

√
3

2
|αu − βu| >

1

2
|αu − βu|, (3.35)

where δv is defined as in (3.11). We again start with a bound on the transformations of the form

1/(X + 1) along any path in T ′.

3.6.1 Bounding the Inverse Transformations

From (3.35) it follows that

|αu − βu| < 2(QmQm−1)
−1.

Recall that Qi ≥ Fi+1, the (i+ 1)-th Fibonacci number, and Fi+1 ≥ φi, where φ = (
√

5 + 1)/2.

Thus

φ2m−1 ≤ 2|αu − βu|−1

and hence

m ≤ 1

2
(1 + logφ 2 − logφ |αu − βu|). (3.36)

So the total number of inverse transformations in T ′ are bounded by

∑

u∈U

1

2
(1 + logφ 2 − logφ |αu − βu|) ≤ 2n+

∑

u∈U
logφ(|αu − βu|)−1. (3.37)

3.6.2 Bounding the Taylor Shifts

In §3.5, the key components used to bound the number of Taylor shifts were Lemma 3.3 and

Lemma 3.4. We derive similar results in the general case. Before we do so, we have the following

observation on the effect of shifts in the complex plane:

Lemma 3.6. If α, β ∈ C are such that |α| ≤ |β| and |α − δ| ≥ |β − δ|, for any positive real

number δ, then ℜ(β) ≥ ℜ(α).

101

3.6 The Size of the Recursion Tree: The General Case

Proof. |α− δ| ≥ |β − δ| implies

2δ(ℜ(β) −ℜ(α)) ≥ |β|2 − |α|2 ≥ 0.

Since δ is positive we have our result.

Intuitively, this lemma says if the origin is shifted to the right then only the complex numbers

to the right of the number α and in absolute value greater than α can possibly become smaller

than α in absolute value.

Let B(X) ∈ R[X] be a polynomial all of whose roots are in the open half plane ℜ(z) > 0.

Then we having the following analogue to Lemma 3.3:

Lemma 3.7. Let B1(X) :=B(X), and for i > 1 recursively define

Bi(X) :=Bi−1(X + δi−1)

where

δi−1 :=

PLB(Bi−1) + 1 if PLB(Bi−1) > 1

1 otherwise.

Let α1 denote a root of B1(X) with the smallest absolute value, and recursively let αi = αi−1 −
δi−1. Then ℜ(αi) ≤ 1 if i ≥ 2 + 8n+ γnlogmℜ(α1).

Proof. Let bi := PLB(Bi), and βi be the root of Bi(X) with the smallest absolute value. The

difficulty in this case, as compared to Lemma 3.3, is that βi may not be the same as αi, except

initially. But there is still some relation between the two, namely ℜ(αi) ≤ ℜ(βi), for i ≥ 1. The

proof is by induction; the base case holds by the definition of α1.

Suppose inductively ℜ(αi−1) ≤ ℜ(βi−1). Let β be the root ofBi−1(X) such that βi = β−δi−1.

Then we know by the definition of βi−1 that |βi−1| ≤ |β|. However, we also have

|βi| = |β − δi−1| ≤ |βi−1 − δi−1|.

Thus from Lemma 3.6 we know that ℜ(β) ≥ ℜ(βi−1) and hence

ℜ(βi) = ℜ(β) − δi−1 ≥ ℜ(βi−1) − δi−1 ≥ ℜ(αi−1) − δi−1 = ℜ(αi).

Since βi is the root of Bi(X) with the smallest absolute value, from (3.4) we know that

|βi|
8n < bi < |βi|. Moreover, because ℜ(βi) ≥ ℜ(αi) we have bi > ℜ(αi)/8n. Let j be the

index such that ℜ(αi) > 8n for i < j. Then for i < j we know that bi > 1. Thus ℜ(αi) =

102

3 Real Root Isolation: Continued Fractions

ℜ(αi−1) − bi−1 − 1 < ℜ(αi−1)(1 − 1
8n) and recursively ℜ(αi) < ℜ(α)(1 − 1

8n)i−1. So ℜ(αj) ≤ 8n

if ℜ(αj−1) ≤ 8n or if

j ≥ 2 + γnlogmℜ(α1).

For i ≥ j we know that ℜ(αi) ≤ 8n, because ℜ(αi) is monotonically decreasing. Thus if i > j

is such that i − j ≥ 8n then ℜ(αi) ≤ 1. Combining this lower bound on i − j with the lower

bound on j we get the result of the lemma.

We can derive an analogous result to Lemma 3.4, but now we assume that the roots with the

smallest absolute value can have negative real parts and B(0) 6= 0; note that this cannot be the

case in the previous lemma because of Lemma 3.6. To derive the result we extend the definition

of LP(B) and LN(B) in §3.5 as follows:

Definition 3.6. Let LP(B) denote the root of B(X) in ℜ(z) > 0 that has the smallest real part

and the smallest absolute value, and LN(B) denote the root of B(X) in ℜ(z) ≤ 0 that has the

largest real part and the smallest absolute value.

Lemma 3.8. Let B1(X) :=B(X), and recursively define δi, and Bi(X) as in the above lemma.

Let α1 := LP(B1), β1 :=LN(B1) and recursively define αi = αi−1 − δi−1 and βi = βi−1 − δi−1. If

i = Ω

(
n+ κnlogm

|α1|
|β1|

+ κnlogm |α1|
)

then ℜ(αi) ≤ 1.

Proof. Let bi :=PLB(Bi). We assume that |β1| < |α1|, otherwise the bound in the lemma trivially

follows from the previous lemma. Let γi, denote the root of Bi(X) with the smallest absolute

value; by definition and our assumption that |β1| < |α1| we initially have γ1 = β1. Let j be the

first index i such that γi 6= βi. Then for i > j, ℜ(γi) ≥ ℜ(αi); this follows from the fact that

α1 = LP(B1) and from Lemma 3.6. Thus if i > j is such that

i− j > 1 + 8n+ κnlogm |α1| > 1 + 8n+ γnlogm |αi|

then from Lemma 3.7 we are sure that ℜ(αi) ≤ 1. But if we choose j such that |βi| > |αi|, for

i > j, then γi 6= βi for i > j, because all the roots with negative real parts are to the left of βi

and in absolute value greater than |βi|. We next give a lower bound on j.

For i < j we have from (3.4)

bi >
|βi|
8n

. (3.38)

103

3.6 The Size of the Recursion Tree: The General Case

Assume that bi > 1, then we know that δi = bi + 1. Since βi+1 = βi − δi it follows that

ℑ(βi+1) = ℑ(βi) and hence

|βi+1| = |βi−1 − (bi + 1)| = = ((|ℜ(βi−1)| + bi + 1)2 + ℑ(βi−1)
2)

1
2

> (|ℜ(βi−1)|2 + b2i + 1 + ℑ(βi−1)
2)

1
2

= (|βi−1|2 + b2i + 1)
1
2 .

Applying the bound from (3.38) we get

|βi+1| > (|βi−1|2(1 + (8n)−2) + 1)
1
2 > |βi−1|(1 +

1

8n
),

because 2 < 8n for n ≥ 1, which is trivially true. Thus recursively we know that |βi+1| >
|β1|(1 + 1/8n)i. Hence if

j > 1 + 8n+ log
|α1|
|β1|

(3.39)

then |βi| > |α1| ≥ |αi|, for i > j. From (3.38) it is clear that we need 8n shifts initially to ensure

bi > 1. These additional shifts, along with (3.39) and the bound on i−j above give us the desired

lower bound on i which ensures that ℜ(αi) ≤ 1.

Based upon the above two lemmas we will bound the number of Taylor shifts from the root of

T ′ to the leaf u, with the associated continued fraction [q0, . . . , qm+1], by bounding the number

of Taylor shifts that compose each qi, i = 0, . . . ,m+ 1. Recall from the beginning of this section

the definitions of the two Möbius transformation Mu(X) and Mv(X), the intervals Iu and Iv,

and the pair (αu, βu) for a leaf u ∈ U . Following §3.5, we define the following:

Definition 3.7. For 0 ≤ i ≤ m+ 1 let

• Mi(X) :=[q0, . . . , qi, X] = PiX+Pi−1+Pi

QiX+Qi−1+Qi
,

• Ai(X) :=(QiX +Qi−1 +Qi)
nA(Mi(X)),

• ηi :=M−1
i (αu),

• ri = Pi/Qi, si :=
Pi+Pi−1

Qi+Qi−1
and

• Ji := IMi
.

By its definition Ji, for 0 ≤ i ≤ m, contains Iu and hence it follows from (3.35) that for

0 ≤ i ≤ m

(QiQi−1)
−1 ≥ |αu − βu|

2
. (3.40)

104

3 Real Root Isolation: Continued Fractions

Based upon the above lemmas we can bound the total number of Taylor shifts needed to obtain

qi+1. Let B1(X) :=Ai(X), and recursively define the polynomials Bi(X) as in Lemma 3.7. Define

the sequence of indices

1 = i0 ≤ i1 < i2 < · · · < iℓ, (3.41)

where the index ij is such that ℜ(LP(Bij)) is contained in the unit interval; if i < m the last

index iℓ is such that the real part of the root in Biℓ(X) corresponding to ηi is in the unit interval;

for i = m the index iℓ is such that the node that has Biℓ(X) as the corresponding polynomial is

the parent v of the leaf u. Clearly, ℓ ≤ n.

From Lemma 3.8 we know that

ij+1 − ij = O

(
n+ κnlogm

|LP(B1+ij)|
|LN(B1+ij)|

+ κnlogm |LP(B1+ij)|
)
.

Summing this inequality for j = 0, . . . , ℓ− 1 < n we get that if

iℓ = O(n2) +O

ℓ−1∑

j=0

κnlogm
|LP(B1+ij)|
|LN(B1+ij)|

+ κnlogm |LP(B1+ij)|

 (3.42)

then the real part of the root in Biℓ(X) that corresponds to ηi is in the unit interval, i.e., the

number of Taylor shifts which constitute qi+1 are bounded by this bound.

The last term in the summation above is smaller than

κn

(
logm

|ηi|
|LN(B1+iℓ−1

)| + logm |ηi|
)
, (3.43)

because |LP(B1+iℓ−1
)| is smaller than |ηi|. We call this term the contribution of αu to qi+1.

Again, we will derive an upper bound on this term by deriving an upper bound on |ηi| and a

lower bound on |LN(B1+iℓ−1
)| mainly in terms of log |αu − βu|−1. Following §3.5 we separately

consider the two cases Qi = 0 and Qi > 0.

The situation Qi = 0 only occurs on the right-most path of the tree since there are no

inverse transformations along this path. The argument for bounding the length of this path

is the similar to the one used to derive the bound in (3.42) above. Let B1(X) :=Ain(X) and

recursively define Bi(X) as in Lemma 3.7. Define the sequence of indices as in (3.41) and follow

the same line of argument used to obtain (3.42), except now we can replace |LP(B1+ij)| by |ηij |,
the absolute value of some root of Ain(X) in ℜ(z) > 0. Moreover, we know that |ηij | ≤ µ(Ain).

To obtain a lower bound on |LN(B1+ij)| we observe that LN(B1+ij) = α − δ, where α is some

root of Ain(X) and δ ∈ N is such that B1+ij (X) = Ain(X + δ), and hence from (3.22) we get

105

3.6 The Size of the Recursion Tree: The General Case

|LN(B1+ij)| ≥ C(Ain, N). Thus the length of the right-most path in the tree T ′ is bounded by

the same bound as in (3.23), namely

κnn(logmµ(Ain) − logmC(Ain, N)). (3.44)

We next derive an upper bound on |ηi| and a lower bound on |LN(B1+iℓ−1
)| assuming that

Qi ≥ 1.

Upper bound on |ηi|. Recall from Definition 3.7 that ηi = M−1
i (αu). Thus from (3.8) we get

ηi =
Qi +Qi−1

Qi

|si − αu|
|ri − αu|

≤ Qi +Qi−1

Qi

|si − αu|
C(Ain, N)

QNi ,

where the second inequality follows from (3.22). But

|si − αu| ≤
√

3|Ji| < 2(QiQi−1)
−1.

Thus

ηi < 2C(Ain, N)−1QNi .

Moreover, from (3.40) we know that Qi ≤ 2|αu − βu|−1. Plugging this bound on Qi into the

bound on ηi we obtain

ηi < 2N+1|αu − βu|−NC(Ain, N)−1.

Taking logarithm on both sides we get

log ηi ≤ −N log |αu − βu| − logC(Ain, N) +N + 1. (3.45)

Remark 3.3. Notice that this bound is not as good as the bound in (3.24) which was obtained

under the assumption that all the roots of the polynomial were real. The reason is that now we

cannot show Qm+1 = O(− log |αu − βu|) and use the result from Khinchin for i = m, though

for i < m this bound still holds. To see why we cannot obtain the desired bound on Qm+1 we

recall from the argument for deriving the bound (3.24) that we had showed that δ :=PLB(AMv
) =

O(− log |αu − βu|), where AMv
(X) is the polynomial associated with the parent v of u; this was

possible because Var(AMv
(X + δ)) ≥ 2, but now a situation like that shown in Figure 3.2 may

occur, namely the polynomial AMv
(X) has a pair (α, α) of complex roots that have positive real

part and also the smallest absolute value and a real root β > ℜ(α); in this case δ is a lower bound

on |α|, but it is greater than ℜ(α), so when we shift the origin to the right by δ the resulting

polynomial AMv
(X+ δ) contains at most one sign variation and hence the two circle figure w.r.t.

the interval with endpoints Mv(δ) and Mv(0) does not contain two roots, which was necessary to

obtain (3.24).

106

3 Real Root Isolation: Continued Fractions

δ

α

α

β

Figure 3.2: The roots of the polynomial AMv
(X) in C.

A lower bound on |LN(B1+iℓ−1
)|.

The approach is the same as the one used to obtain (3.28), except now we use (3.40) instead

of (3.18); we may again safely assume that LN(B1+iℓ−1
) 6= 0. We derive lower bounds for two

different cases: first, when the root LN(B1+iℓ−1
) corresponds to a root of Ai(X) in ℜ(z) > 0,

and second when LN(B1+iℓ−1
) corresponds to a root of Ai(X) in ℜ(z) ≤ 0. Let γ be the root of

Ain(X) that corresponds to LN(B1+iℓ−1
). Then the first case is equivalent to saying that γ ∈ CJi

and the second to the condition that γ 6∈ CJi
. We will derive bounds on |LN(B1+iℓ−1

)| under

these two conditions, starting with the first.

1. Suppose the polynomial B1+iℓ−1
(X) = Ai(X + δ), where δ is defined as in (3.25). Then

the transformation

M ′(X) :=
PiX + Pi−1 + Piδ

QiX +Qi−1 +Qiδ

gives the bijective correspondence between the roots of Ain(X) and the roots of B1+iℓ−1
(X).

In particular, γ = M ′(LN(B1+iℓ−1
)). Then

|LN(B1+iℓ−1
)| = |M ′−1(γ)|

=

∣∣∣∣
Pi−1 + Piδ − (Qi−1 +Qiδ)γ

Pi −Qiγ

∣∣∣∣

=
δQi +Qi−1

|Pi −Qiγ|

∣∣∣∣γ − δPi + Pi−1

δQi +Qi−1

∣∣∣∣

107

3.6 The Size of the Recursion Tree: The General Case

(observe that δPi+Pi−1

δQi+Qi−1
= M ′(0)). From (3.22) we get

|LN(B1+iℓ−1
)| ≥ C(Ain, N)

|Pi −Qiγ|
(δQi +Qi−1)

−(N−1).

Since δQi ≥ Qi−1 we further get

|LN(B1+iℓ−1
)| ≥ C(Ain, N)

|Pi −Qiγ|
(2δQi)

−(N−1) ≥ C(Ain, N)2−N (δQi)
−(N−1),

where the last step follows from the fact that since γ ∈ CJi
, |Pi −Qiγ| ≤ (QiQi−1)

−1 ≤ 1.

But δ ≤ qi+1 < Qi+1, for i < m, and for i = m, δ ≤ δv, where δv is defined as in (3.11);

along with (3.40) and (3.35) it follows that δ,Qi < 2|αu − βu|−1. Thus

− log |LN(B1+iℓ−1
)| = O(−N log |αu − βu| − logC(Ain, N)). (3.46)

2. If LN(B1+iℓ−1
) corresponds to a negative root of Ai(X) then from Lemma 3.6 we know

that LN(Bj), j = 1, . . . , 1 + iℓ−1, correspond to the same negative root of Ai(X). Thus we

derive a lower bound on |LN(B1)| = |LN(Ai)|. From (3.8) we know that

|LN(Ai)| =
Qi +Qi−1

Qi

|si − γ|
|ri − γ| ≥

1

Qi|ri − γ|C(Ain, N)(Qi +Qi−1)
1−N ,

where the last step follows by applying (3.22) to |si − γ|. Since γ is outside CJi
and

αu ∈ CJi
∪ CJi

, we have

|ri − γ| ≤ |γ − αu| + |αu − ri| ≤ |γ − αu| + 2(QiQi−1)
−1.

Thus

|LN(Ai)| ≥ Qi−1

Qi|γ − αu| + 2Q−1
i−1

C(Ain, N)Q−N
i−1

≥ 1

Qi(2 + |γ − αu|)
C(Ain, N)Q−N

i−1

≥ 1

2 + |γ − αu|
C(Ain, N)(QiQi−1)

−N .

From (3.35), and the fact that Iv ⊆ Ji, we know that QiQi−1|αu − βu| ≤ 2. Thus

|LN(Ai)| ≥
1

1 + |γ − αu|
C(Ain, N)(2|αu − βu|)N .

But from the definition of µ(Ain) we know that |γ − αu| ≤ 2µ(Ain), and hence we have

|LN(Ai)| ≥
1

2 + 2µ(Ain)
C(Ain, N)(2|αu − βu|)N

which gives us

− log |LN(Ai)| = O(−N log |αu − βu| − logC(Ain, N) + logmµ(Ain)). (3.47)

108

3 Real Root Isolation: Continued Fractions

From (3.46) and (3.47) we may safely conclude that

− log |LN(B1+iℓ−1
)| = O(−N log |αu − βu| − logC(Ain, N) + logµ(Ain)). (3.48)

Moreover, since |αu − βu|, C(Ain, N) < 1 this bound dominates the bound on log |ηi| in (3.45),

and hence the term in (3.43) is bounded by

κnO(−N log |αu − βu| − logC(Ain, N) + logµ(Ain)).

Thus the total contribution of αu to each qi, i = 1, . . . ,m + 1, is bounded by the sum of this

bound from i = 1, . . . ,m+ 1, i.e., by

m∑

i=1

κnO(−N log |αu − βu| − logC(Ain, N) + logµ(Ain)),

where m satisfies (3.36); to show the dependency of m on the choice of the leaf u, from now

on we write m as mu. Thus the total number of Taylor shifts along the path starting from the

root of the tree T ′ and terminating at the leaf u ∈ U , except the leaf of the right-most path, is

bounded by
mu∑

i=1

∑

u′∈U
κnO(−N log |αu′ − βu′ | − logC(Ain, N) + logµ(Ain)),

where u′ are the leaves to the left of u and that share a common ancestor with u. The total

number of Taylor shifts in the tree T ′ is obtained by summing the above bound for all u ∈ U

and adding to it the bound in (3.44) on the length of the right-most path:

∑

u∈U

mu∑

i=1

∑

u′∈U
κnO(−N log |αu′ − βu′ | − logC(Ain, N) + logµ(Ain)). (3.49)

Combined with the bound in (3.37) on the total number of inverse transformations in the tree

T ′, we get the following bound on the size of the tree T ′

#(T ′) = O(n+
∑

u∈U
logφ |αu − βu|−1)

+
∑

u∈U

mu∑

i=1

∑

u′∈U
κnO(−N log |αu′ − βu′ | − logC(Ain, N) + logµ(Ain)).

(3.50)

3.6.3 Worst Case Size of the Tree

In order to derive a worst-case bound on the size of the tree T , from the bound given in (3.50),

we need to derive an upper bound on
∑
u∈U − log |αu − βu|. For this purpose we resort to the

Davenport-Mahler bound.

109

3.6 The Size of the Recursion Tree: The General Case

Consider the graph G whose edge set is E1 ∪ E0, where E0 :={(αu, βu)}, u is a type-0 leaf

and E1 :={(αu, βu)}, u is a type-1 leaf. We want to show that G satisfies the conditions of

Theorem 2.1. First of all, for any u ∈ U we can reorder the pair (αu, βu) to ensure that

|αu| ≤ |βu| without affecting the summation
∑
u∈U − log |αu − βu|. We note that the graph so

obtained is similar to the graph described in §2.2.2; thus after properly reordering the edges as

was mentioned there we may directly apply Theorem 2.1 to G to get

∑

u∈U
− log |αu − βu| = O(B(Ain)), (3.51)

where B(Ain) is as defined in (3.33). Based upon this bound we have the following:

Theorem 3.8. Let Ain(X) ∈ R[X] be a square-free polynomial of degree n. Let T be the recursion

tree of Akritas’ algorithm applied to Ain(X). The number of nodes in T is

nO(NB(Ain)2 − nB(Ain) logC(Ain, N) + nB(Ain) logµ(Ain)),

where B(Ain) is defined in (3.33), C(Ain, N) is the constant involved in the inequality (3.22),

and µ(Ain) is the largest absolute value amongst all the roots of A(X).

Proof. Applying the bound in (3.51), along with the observation that |U | ≤ n, to (3.50) we get

that the size of the tree is bounded by

O(n +B(Ain)) +
∑

u∈U

mu∑

i=1

κnO(−NB(Ain) − n logC(Ain, N) + n logµ(Ain)).

From (3.36) we further get that the above bound is smaller than

κnO(−NB(Ain) − n logC(Ain, N) + n logµ(Ain))
∑

u∈U

1

2
(1 + logφ 2 − logφ 2|αu − βu|).

Again applying (3.51), we get that the size of the tree is bounded by

κnO(NB(Ain)2 − nB(Ain) logC(Ain, N) + nB(Ain) logµ(Ain)).

From the observation that κn = Θ(n), we get the desired result.

Following the proof of Corollary 3.3, we get the following special case of the above theorem:

Corollary 3.4. Let A(X) be a square-free polynomial of degree n with integer coefficients of

magnitude less than 2L. The number of nodes in the recursion tree of Akritas’ algorithm run on

A(X) is Õ(n4L2).

110

3 Real Root Isolation: Continued Fractions

Remark 3.4. Notice that asymptotically the bounds in (3.45) and (3.48) are the same, so even

showing the tightness (as in (3.1)) of the bounds in [Kio86, Şte05, Hon98] does not improve upon

the complexity result in the above corollary, though it will definitely lead to a simplification of the

analysis.

3.7 The Bit-Complexity

In this section we derive the bit-complexity of Akritas’ algorithm for a square-free polynomial

Ain(X) such that ‖Ain‖∞ < 2L. To do this we will bound the worst-case complexity at any node

in the recursion tree; then along with Corollary 3.4 we have a bound on the bit-complexity of

the algorithm.

Recall from starting of §3.6 the definitions of the set U , and of the pair (αu, βu) for any u ∈ U .

Let

Mu(X) = [q0, . . . , qm+1, X] =
Pm+1X + Pm
Qm+1X +Qm

,

Mi(X) = [q0, . . . , qi, X] =
PiX + Pi−1

QiX +Qi−1
,

Ai(X) = (QiX +Qi−1)
nA(Mi(X)), Li be such that ‖Ai‖∞ < 2Li , and bi the bit-length of qi for

i = 0, . . . ,m+ 1.

To construct Ai+1(X) from Ai(X) we need to construct a sequence of polynomials Bj(X),

1 ≤ j ≤ ℓ, such that B1(X) :=Ai(X) and for j > 1, Bj(X) :=Bj−1(X + δj−1), where

δj := 1 +

PLB(Bj−1) if PLB(Bj−1) > 1

0 otherwise.

Moreover, qi+1 =
∑ℓ−1
j=1 δj . The two most important operations in computing Bj(X) from

Bj−1(X) are computing PLB(Bj−1) and the Taylor shift by δj . We only focus on the latter

operation since its cost dominates the cost of computing the former operation, which we know

from Remark 3.1 is Õ(nLi). Since δj ≤ qi+1, for j < ℓ, the cost of computing each of Taylor

shifts, i.e., the cost of computing Bj(X) from Bj−1(X) for all j ≤ ℓ, is bounded by the cost of

computing Ai(X + qi+1); we bound this latter cost.

We know (see [Kra95]) that the computation of the Taylor shift can be arranged in a triangle

of depth n; at each depth the multiplication by qi+1 increases the bit-length by bi+1, so the bit-

length of the coefficients of Ai(X+ qi+1) is bounded by Li+nbi+1. Moreover, using the classical

approach, Taylor shifts can be performed in O(n2) additions [Kra95, JKR05, vzGG97]. Thus the

111

3.7 The Bit-Complexity

cost of computing Ai(X+qi+1) isO(n2(Li+nbi+1)). We further claim that Li = O(L+n
∑i
j=0 bj);

this is straightforward from the observation that Lj ≤ Lj−1 + nbj−1. Thus the bit-complexity

of computing Ai(X + qi+1) is bounded by O(n2(L + n
∑i+1
j=0 bj)), if we use the classical Taylor

shift. We next bound
∑i+1

j=0 bj, i ≤ m.

We know thatQm = qmQm−1+Qm−2; thusQm ≥ qmQm−1, and recursively we get thatQm ≥
∏m
j=1 qj . Moreover, from (3.40) and the worst-case separation bound (see Remark 2.3 in §2.2.1)

we know that logQm = Õ(nL). Thus
∑m

j=0 bj = Õ(nL). The troublesome part is bounding

qm+1, since Qm+1 does not satisfy (3.40). However, we do know that qm+1 ≤ |M−1
m (αu)|, and

from (3.45) that

log |M−1
m (αu)| = O(−N log |αu − βu| − logC(Ain, N)).

But from Lemma 3.5 we have N = n and − logC(Ain, N) = Õ(nL), and from the separation

bound it follows that − log |αu − βu| = Õ(nL). Thus bm+1 = Õ(n2L) and hence
∑m+1
j=0 bj =

Õ(n2L).

So the worst-case bit-complexity at any node is asymptotically the same as computing Am(X),

which we know is Õ(n2(L + n
∑i+1

j=0 bj)) = Õ(n5L), when we use classical Taylor shifts. Along

with the result in Corollary 3.4 we get the following:

Theorem 3.9. Let A(X) be a square-free integer polynomial of degree n with integer coefficients

of magnitude less than 2L. Then the bit-complexity of isolating all the real roots of A(X) using

Akritas’ algorithm based upon classical Taylor shift is Õ(n9L3).

We can improve on the above bound by a factor of n using the fast Taylor shift [vzGG97].

Theorem 3.10. Let A(X) be a square-free integer polynomial of degree n with integer coefficients

of magnitude less than 2L. Then the bit-complexity of isolating all the real roots of A(X) using

Akritas’ algorithm based upon a fast Taylor shift is Õ(n8L3).

Proof. The cost of computing Ai(X+qi+1) using the convolution method (method F in [vzGG97])

is O(M(n2bi+1 + nLi)), where M(n) is the complexity of multiplying two n-bit integers. From

above we know that Li = O(L+n
∑i
j=0 bj), thus the cost is O(M(nL+n2

∑i+1
j=0 bj)). Moreover,

we also know that
∑m+1

j=0 bj = Õ(n2L). Assuming the Schönhage-Strassen method, and the

Turing machine model of computation, we have M(n) = O(n log(n) log log(n)) = Õ(n). Hence

the worst-case bit-complexity of a node is Õ(n4L). Multiplying with the bound Õ(n4L2) (from

Corollary 3.4) on the size of the tree we get the complexity as mentioned in the theorem.

112

3 Real Root Isolation: Continued Fractions

Remark 3.5. If we were to use the ideal PLB function then the worst case bit complexity of

Akritas’ algorithm is Õ(n5L2), since in this case the size of the tree is Õ(nL) and we know that

the worst case complexity of each node is Õ(n4L).

3.8 Conclusion and Future Work

The bound in Theorem 3.10 is not as impressive as the complexity of the Descartes method,

which we know (see Theorem 2.5) is Õ(n4L2). One of the reasons for this difference is that in

our analysis we have used Liouville’s inequality instead of Roth’s theorem. For the latter result

we know N = O(1), but we do not know any bounds on the constant C(A,N). However, if we

assume that the constant C(A,N) for Roth’s theorem is the same as that in Lemma 3.5 then it

follows that the size of the recursion tree of Akritas’ algorithm is Õ(n3L2) and the worst case

complexity at a node in the recursion tree is Õ(n3L), and hence the worst case complexity of the

algorithm is Õ(n6L3); note that under this assumption log qm+1 = Õ(nL) (instead of Õ(n2L)) as

would be expected. Moreover, if we additionally assume the ideal PLB function then we would

get a worst case complexity of Õ(n4L2), which matches the expected bound in [ET06] and also

the worst case complexity of the Descartes method. The assumption that C(A,N) satisfies the

same bound as in Lemma 3.5 is reasonable since it is known that in (3.22) C(A,N) = 1 except for

a finitely many rationals. Thus the bound Õ(n6L3) is a more accurate statement on the actual

performance of Akritas’ algorithm than the bound in Theorem 3.10, which is an artefact of our

analysis.

Another possibility is to devise functions that compute an upper bound on the absolute value

of the roots of a polynomial and that satisfy a tighter inequality compared to the inequality, (3.1),

satisfied by Zassenhaus’ bound; for instance, if in (3.1) the upper bound was off by a constant

factor then our complexity estimate improves by a factor of n.

A likely direction to pursue is to modify Akritas’ algorithm so that its complexity bound

improves without affecting its efficiency in practice. One way to modify the algorithm is to

ensure that at each recursive level the width of the interval decreases by half 3; recall that this

was not guaranteed if we do consecutive Taylor shifts. However, this direction is different from our

pursuit in this chapter, namely, to understand the worst case behaviour of the original algorithm

by Akritas.

3I am grateful to Bernard Mourrain for suggesting this modification.

113

Appendix A

Multilinear maps and Banach Space

This appendix aims to attain self sufficiency in understanding the tools and techniques used

in first chapter. The rigorous details of these definitions can be found in [Kre74]; for a quick

reference Ostrowski’s book [Ost73] is recommended.

Matrices, Norms and Inverse. Let E and F be vector spaces. Then a multilinear map

M : Ek → F is a mapping that is linear in each of the k coordinates. More precisely, for any

(z1, . . . , zk) ∈ Ek, y ∈ E and scalar c we have

M(z1, . . . , czi + y, . . . , zk) = cM(z1, . . . , zi, . . . , zk) +M(

i︷ ︸︸ ︷
z1, . . . , y, . . . , zk). (A.1)

Let E and F be normed vector spaces and let ‖ ·‖ be a norm on them; even though the norms

on E and F may be different, we represent them by the same symbol. The induced matrix

norm for M is defined as

‖M‖ := sup

{‖M · zk‖
‖z‖k : z ∈ E − {0}

}
, (A.2)

where zk is used to represent the k-tuple

k︷ ︸︸ ︷
(z, . . . , z). M is said to be a bounded map if ‖M‖ is

bounded; it is not hard to show that this also implies that M is continuous. Clearly, the norm is

consistent, i.e., for any z ∈ E, ‖M · zk‖ ≤ ‖M‖‖z‖k. An equivalent version of the definition of

norm is

‖M‖ = sup{‖M · zk‖ : z ∈ E and ‖z‖ = 1}. (A.3)

We prove the equivalence of the two definitions. It is not hard to see that the norm defined in

(A.3) is smaller than the norm defined previously; we will prove the converse. Consider (A.2),

for any z

‖M · zk‖
‖z‖k = ‖M · zk

‖z‖k ‖

= ‖M · (z

‖z‖ , . . . ,
z

‖z‖)‖

= ‖M · yk‖

114

3 Real Root Isolation: Continued Fractions

where y = z
‖z‖ is such that ‖y‖ = 1. The induced matrix norms are submultiplicative, i.e., for

multilinear maps M , N we have ‖M ·N‖ ≤ ‖M‖‖N‖. Most of this can be found in [HJ85].

A multilinear map M : Ek → F is said to be symmetric if

M(z1, . . . , zk) = M(zσ(1), . . . , zσ(k)),

where z1, . . . , zk ∈ E, and σ is any permutation of indices 1, . . . , k. Thus for any z ∈ E, we write

M · z to represent M(z,

k−1︷ ︸︸ ︷
1, . . . , 1).

The inverse of a linear map M : E → F exists if and only if Mz = 0 implies z = 0; it is a

map from the range of M to E. We will call M non-singular if M−1 exists. Moreover, M−1 is

a linear isomorphism from the range space of M to E. Thus if E and F are finite dimensional,

then this implies that the dimension of E is not larger than the dimension of F . In particular,

if the dimension of E is m and that of F is n then m ≤ n, and the size of M−1 is m ∗ n, where

m ≤ n; thus M−1M is a square-matrix of size m ∗m.

We can generalize the above definition of inverse to the case when the dimension of E may

be larger than F . Again let M : E → F be a linear map, and let S ⊆ E. Then the inverse of

M relative to the set S is written as M−1
|S and satisfies

M−1
|S Mz = z for all z ∈ S.

This implies that the dimension of S is at most the dimension of F , and that S ⊆ (ker(M))⊥.

The definition of the inverse given earlier is the case when S = E. If we choose S = (ker(M))⊥,

i.e., the set of all elements in E that are not mapped to zero in F , then this definition of the

inverse coincides with the Moore-Penrose pseudoinverse, which is represented as M−1
|(ker(M))⊥

.

The norm ‖M−1
|S ‖ of the inverse map M−1

|S is defined as

‖M−1
|S ‖ := sup

{
‖M−1

|S w‖
‖w‖ : w = Mz, z ∈ S

}
.

Note that for defining the norm we can use the equivalent form as given in (A.3). We have the

following relation:

‖M−1
|S ‖ = (inf

‖z‖=1,z∈S
‖Mz‖)−1. (A.4)

The proof is as follows:

(inf
‖z‖=1,z∈S

‖Mz‖)−1 = sup
‖z‖=1,z∈S

1

‖Mz‖ = sup
‖z‖=1,z∈S

‖z‖
‖Mz‖ ;

115

3.8 Conclusion and Future Work

if w = Mz then we get

(inf
‖z‖=1

‖Mz‖)−1 = sup
w

‖M−1
|S w‖
‖w‖ = ‖M−1

|S ‖.

The set of all bounded linear maps from E to F is represented as L(E,F); it is a Banach

space with the norm as the induced matrix norm [Kre74, Thm. 2.10-2].

Functions on Banach Spaces. A Banach space is a complete normed vector space. By its

definition, a complete space contains the limits of all the Cauchy sequences defined on that space.

An example of Banach space that will be of interest to us is the finite-dimensional vector space

Cn for n ≥ 0. Let E and F be two Banach spaces and let ‖ · ‖ be a norm on these spaces. Let

f : E → F be an analytic map; thus there is a power series approximation in the neighbourhood

of any point. For any z ∈ E let Df(z) denote the Fréchet derivative of f at z. By definition,

it is a bounded linear map M : E → F such that

lim
h→0

‖f(z + h) − f(z) −M(z)‖
‖h‖ = 0,

here the limit is taken over all sequences of non-zero elements in E which converge to zero. In

case E and F are finite dimensional Df(z) is the Jacobi matrix. The inverse of Df(z), if it exists,

is represented as Df(z)−1, which is map from F to E. Since Df(z) is bounded and L(E,F) is

a Banach space, we can recursively apply the definition above to obtain the higher derivatives.

More precisely, the function f is k + 1 times differentiable on E if it is k times differentiable on

E and for all z ∈ E there exists a continuous symmetric multilinear map A of k + 1 arguments

such that the limit

lim
hk+1→0

‖Dkf(z + hk+1)(h1, . . . , hk) −Dkf(z)(h1, . . . , hk) −A(h1, . . . , hk, hk+1)‖
‖hk‖

= 0

exists uniformly for all h1, . . . , hk in bounded sets in E. The multilinear map A is the k + 1-th

derivative of f at z and is represented as Dk+1f(z) : Ek+1 → F .

Now we can write the Taylor’s expansion of f in the neighbourhood of a point z as follows:

f(z + h) = f(z) +

∞∑

k=1

1

k!
Dkf(z) · hk,

here the notation hk is used as in (A.2).

116

Appendix B

The Condition Number

Let F : Cn → Cn be a zero-dimensional system of n polynomials in n variables, F̂ : Cn+1 → Cn

be its homogenized form, and JF (Z) be the Jacobian matrix of F at a point Z ∈ Cn. Usually,

the condition number of F at a point Z ∈ Cn is ‖JF(Z)−1‖, but this definition is not invariant

under scalings of the form F to ρF and Z to ρZ, for some ρ ∈ C. Shub-Smale [SS93a] have

proposed a definition that is invariant under such scalings. According to their definition the

condition number of F at a point Z depends upon the condition number of F̂ ; this also explains

the stress on invariance under scalings.

There are two key components in the definition of condition number by Shub-Smale. The

first is a weighted two-norm called the Kostlan norm ‖F̂‖k on F̂ and is defined as

‖F̂‖k :=

√√√√
n∑

i=1

‖F̂i‖2
k,

where

‖F̂i‖k :=

∑

|J|=Di

|F̂iJ |2
(
Di

J

)−1

1/2

,

and
(
Di

J

)
:= Di!

J0!J1!···Jn! . The advantage of using Kostlan norm over the two-norm is that it is

unitary invariant (see [Mal] for a proof); this property is useful in the complexity results by

Shub-Smale, and Malajovich. The second key component is the set of vectors orthogonal to some

vector Ẑ ∈ Cn+1

N
Ẑ

:={Ŷ ∈ Cn+1|〈Ẑ, Ŷ〉 = 0}

where 〈X,Y 〉 =
∑n

i=0 Y iXi denotes the Hermitian inner product. This set is the set of all vectors

orthogonal to Ẑ and hence has dimension n.

The condition number µ(F̂ , Ẑ) of a homogenized system F̂ at a point Ẑ ∈ Pn(C) is defined

as

µ(F̂ , Ẑ) := ‖F̂‖k‖JF̂(Ẑ)−1
|N

Ẑ

diag(
√
Di‖Ẑ‖Di−1)‖ (B.1)

where diag(ai) represents a matrix whose diagonal entries are ai and remaining entries are

zero. The definition is well-defined if the inverse JF̂ (Ẑ)−1
|N

Ẑ

is well-defined, or equivalently if the

117

3.8 Conclusion and Future Work

matrix JF̂ (Ẑ) has rank n. For a root Ẑ∗ of F̂ , the matrix JF̂ (Ẑ∗)−1
|N

Ẑ∗
is the Moore-Penrose

pseudoinverse. This will follow if we show that N
Ẑ∗ = (ker(JF̂ (Ẑ∗))⊥. Since F̂ is a system of

homogeneous polynomials, we know that for all Ẑ ∈ Cn+1,

JF̂(Ẑ) · Ẑ = [D1F̂1(Ẑ), D2F̂2(Ẑ), . . . , DnF̂n(Ẑ)]T .

Thus the root Ẑ∗ belongs in the kernel of JF̂ (Ẑ∗); since this matrix has rank n, the kernel only

contains Ẑ∗, which implies the complement of the kernel is the set of all vectors orthogonal to

Ẑ∗, i.e., the set N
Ẑ∗ .

For various properties of µ(F̂ , Ẑ) see [SS93b]. Intuitively, µ(F̂ , Ẑ) is inversely proportional

to the distance between F̂ and the nearest polynomial system that vanishes at Ẑ and whose

Jacobian at Ẑ is non-singular, see [SS93a] for a proof; the metric used for measuring the distance

is based is based upon the Kostlan norm. The condition number µ(F ,Z) of the system F at a

point Z ∈ Cn is defined as

µ(F ,Z) :=µ(F̂ , (1,Z)). (B.2)

Define the condition number of the system F̂ as

µ(F̂) := max
τ̂ :F̂(τ̂)=0

µ(F̂ , τ̂).

Following (B.2) we define the condition number µ(F) of the system F as µ(F̂), the condition

number of the homogenized system F̂ .

Malajovich [Mal93, Thm. 13,p. 50] has shown the following bound on the condition number

of the system:

µ(F̂) ≤ µ(Σ)H(F̂)d(Σ), (B.3)

where D = max(D1, . . . , Dn),

d(Σ) :=n
∏

Di

∑
Dj ,

µ(Σ) :=
√
D!d(Σ)

[
3(n− 1)!n2(d(Σ) + maxS(F̂i))2

n(
∑

Dj)
n
∏

Dj

]d(Σ)

,

and H(F̂) is the maximum absolute value over all the coefficients of F̂i, i = 1, . . . , n.

Let Z∗ be any root of F such that JF (Z∗) is invertible. If Z is such that

u := ‖Z − Z∗‖γ(F ,Z∗) < 1 − 1/
√

2

then we know

‖JF(Z)−1‖ ≤ ‖JF(Z)−1JF (Z∗)‖‖JF(Z∗)−1‖.

118

3 Real Root Isolation: Continued Fractions

Applying the bound from Lemma 1.3 we get that

‖JF(Z)−1‖ ≤ (1 − u)2

ψ(u)
‖JF(Z∗)−1‖.

We will next show that

‖JF(Z∗)−1‖ ≤ (1 + ‖Z∗‖2)‖JF(Ẑ∗)−1
N

Ẑ∗
‖ ≤ (1 + ‖Z∗‖2)

µ(F̂ , Ẑ∗)

‖F̂‖k
, (B.4)

where Ẑ∗ :=(1,Z∗). This implies the following: if Z is such that

u := ‖Z − Z∗‖γ(F ,Z∗) < 1 − 1/
√

2

then

‖JF(Z)−1‖ ≤ (1 − u)2

ψ(u)
(1 + ‖Z∗‖2)

µ(F̂ , Ẑ∗)

‖F̂‖k
. (B.5)

We start with the second inequality in (B.4). From the definition of the condition number we

know that
µ(F̂ , Ẑ)

‖F̂‖k
= ‖JF̂(Ẑ)−1

|N
Ẑ

diag(
√
Di‖Ẑ‖Di−1)‖.

Since Ẑ = (1,Z) we know that ‖Ẑ‖ ≥ 1, and hence all the diagonal entries in diag(
√
Di‖Ẑ‖Di−1)

are greater than one. Thus it remains to show that

‖JF̂(Ẑ)−1
|N

Ẑ

diag(
√
Di‖Ẑ‖Di−1)‖ ≥ ‖JF̂(Ẑ)−1

|N
Ẑ

‖.

We prove this for the general setting of a linear map M : Cn → Cn+1. More precisely we will

show that ‖Mdiag(ci)‖ ≥ ‖M‖, where diag(ci) is a diagonal matrix of dimension n and ci ≥ 1,

for i = 1, . . . , n. From the definition of norm we know that

‖M diag(ci)‖ = max
‖y‖=1

‖M diag(ci)y‖ = max
‖y‖=1

‖My′‖,

where y′ := diag(ci)y. Since ci ≥ 1 it follows that ‖y′‖ ≥ ‖y‖ = 1, thus

‖M diag(ci)‖ = max
‖y‖=1

‖My′‖ = max
‖y‖=1

‖y′‖‖M y′

‖y′‖‖ ≥ max
‖z‖=1

‖Mz‖ = ‖M‖,

where in the second last step we have z := y′

‖y′‖ .

We now prove the first inequality in (B.4). We first look at the structure of the matrix

JF̂ (Ẑ∗). The dimensions of this matrix is n ∗ (n+ 1). We observe that the n ∗ n square-matrix

that is obtained from this matrix by removing its first column, i.e., the column that corresponds

to the partial derivatives with respect to the homogenizing variable, is JF (Z∗). So we can write

119

3.8 Conclusion and Future Work

the matrix JF̂ (Ẑ∗) :=[w|JF (Z∗)], where w :=−JF(Z∗)Z∗; this guarantees that JF̂ (Ẑ∗)Ẑ∗ = 0.

The inverse matrix

JF̂ (Ẑ)−1
|N

Ẑ

=
1

1 + ‖Z∗‖2

[
vT

JF (Z)−1

]
,

where v ∈ Cn is defined as (JF (Z∗)−1)TZ∗; Z∗ means we take the conjugate of the elements in

Z∗. This implies that the (n+ 1) ∗ (n+ 1) square-matrix

M := JF̂(Ẑ)−1
|N

Ẑ

JF̂(Ẑ)

has the following form

M =
1

1 + ‖Z∗‖2

 ‖Z∗‖2 −Z∗T

−Z∗ I

where I is the identity matrix of size n∗n. Clearly, M is Hermitian as expected, since JF̂(Ẑ∗)−1
|N

Ẑ∗

is the Moore-Penrose pseudoinverse. Moreover, it can be verified that M · (1,Z∗) = 0, and

M · Ŷ = Ŷ, for all Ŷ ∈ N
Ẑ∗ ; we note that N

Ẑ∗ contains elements of the form (0,Y) where

Y ∈ Cn is such that 〈Z∗,Y〉 = 0, and the element (1,Y) where 〈Z∗,Y〉 = −1; thus to prove

that M is the “identity” transformation on N
Ẑ∗ it suffices to show that M(0,Y) = (0,Y), when

〈Z∗,Y〉 = 0, and M(1,Y) = (1,Y), when 〈Z∗,Y〉 = −1. In addition to these properties it can

be easily shown that JF̂ (Ẑ∗)M = JF̂ (Ẑ∗) and MJF̂(Ẑ∗)−1
|N

Ẑ∗
= JF̂(Ẑ∗)−1

|N
Ẑ∗

.

From the above description of JF̂ (Ẑ)−1
|N

Ẑ

it follows that

‖JF̂(Ẑ)−1
|N

Ẑ

‖ =
1

1 + ‖Z∗‖2
max
‖Y‖=1

‖JF̂(Ẑ)−1
|N

Ẑ

Y‖

=
1

1 + ‖Z∗‖2
max
‖Y‖=1

‖(vTY, JF (Z)−1Y)t‖

which implies

‖JF (Z)−1‖ ≤ (1 + ‖Z∗‖2)‖JF̂(Ẑ)−1
|N

Ẑ

‖.

Thus we have showed the first inequality in (B.4).

For the sake of completeness, we now show why the definition of the condition number as

given in (B.1) is suitable instead of the usual one ‖JF̂(Ẑ)−1‖. This proof specializes the proof of

Dégot [Dég00], who has shown the result for an underdetermined system of polynomials, i.e., a

system containing more polynomials than the number of variables.

Let HD denote the linear space of all homogeneous polynomial systems F̂ : Cn+1 → Cn. For

two homogeneous polynomials Fi, Qi : Cn+1 → C of degree Di, Bombieri’s scalar product is

defined by

[F̂i, Ĝi](Di) =
∑

|J|=Di

aJbJ

(
Di

J

)−1

, (B.6)

120

3 Real Root Isolation: Continued Fractions

where F̂i(Z) =
∑

|J|=Di
aJ Ẑ

J and Ĝi(Z) =
∑

|J|=Di
bJ Ẑ

J . The norm of a homogeneous polyno-

mial F̂ of degree D is ‖F̂‖ :=[F̂ , F̂]
1/2
(D). We can show that the Bombieri’s scalar product satisfies

the Cauchy-Schwarz inequality:

|[F̂ , Ĝ](D)| ≤ ‖F̂‖‖Ĝ‖.

The above scalar product induces a Hermitian inner product on HD: for F̂ , Ĝ ∈ HD,

[F̂ , Ĝ] =

n∑

i=1

[F̂i, Ĝi](Di).

We denote by ‖F̂‖ and d(F̂ , Ĝ) the associated norm and the distance; it is not hard to see that

the norm is the same as the Kostlan norm ‖F̂‖k. For any X̂ ∈ Cn+1, let δ
X̂

be the homogeneous

polynomial of degree one defined as

δ
X̂

(Z) =

n∑

i=0

XiZi.

From this it follows that [δ
X̂
, δ

Ŷ
] = 〈Ŷ, X̂〉. In the following, all the vector norms are the

Euclidean norm. Moreover, we will simply use [F̂ , Ĝ] to denote [F̂ , Ĝ](D) wherever the degree D

of the two polynomials can be understood from the context.

Bombieri’s scalar product gives us a convenient way to represent evaluation of homogeneous

polynomials:

Lemma B.1. If F̂ is a homogeneous polynomial of degree D, then for all X̂ ∈ Cn+1 we have

F̂ (X̂) = [F̂ , δD
X̂

](D).

The proof easily follows from the observation that δD
X̂

=
∑

|J|=D
(
D
J

)
(X̂Ẑ)J .

Based upon this we bound |F̂ (X̂)|. From the Cauchy-Schwarz inequality we know that

|[F̂ , δD
X̂

](D)| ≤ ‖F̂‖‖δD
X̂
‖.

Moreover, we can verify that

‖δD
X̂
‖ =

∑

‖J‖=D

(
d

J

)
(|X0| · · · |Xn|)2J = ‖X̂‖2D.

Thus we have

|F̂ (X̂)| ≤ ‖F̂‖‖X̂‖D. (B.7)

Let X̂ ∈ Cn+1 be a zero of the polynomial system F̂ . The condition number of the system

should measure the relative sensitivity of the solution with respect to the change of the data.

121

3.8 Conclusion and Future Work

More precisely, let ∆F̂ be an infinitesimal perturbation in F̂ , and let ∆X̂ be the corresponding

smallest first order perturbation in X̂ such that

(F̂ + ∆F̂)(X̂ + ∆X̂) = 0.

This implies

F̂(X̂ + ∆X̂) + ∆F̂(X̂ + ∆X̂) = 0.

Doing a first order analysis we get

F̂(X̂) + JF̂ (X̂)∆X̂ + ∆F̂(X̂) = 0.

Since F̂(X̂) = 0 we get

JF̂(X̂)∆X̂ + ∆F̂(X̂) = 0.

Because the system is zero-dimensional we know that ∆X̂ ∈ N
X̂

= (ker(JF̂ (X̂)))⊥, otherwise we

would have (F̂ + ∆F̂)(X̂) = 0 for all perturbations ∆F̂ . Thus we have

∆X̂ = −JF̂(X̂)+∆F̂(X̂),

where for convenience we write JF̂ (X̂)−1
|N

X̂

as JF̂(X̂)+. This implies

‖∆X̂‖ = ‖JF̂ (X̂)+∆F̂(X̂)‖

= ‖JF̂ (X̂)+diag(‖X̂‖Di)diag(‖X̂‖−Di)∆F̂(X̂)‖

≤ ‖JF̂ (X̂)+diag(‖X̂‖Di)‖‖diag(‖X̂‖−Di)∆F̂(X̂)‖.

We now bound the term

‖diag(D−1/2
i ‖X̂‖−Di)∆F̂(X̂)‖ = (

n∑

i=1

|∆F̂i(X̂)|2‖X̂‖−2Di)1/2.

From (B.7) we know that |∆F̂i(X̂)| ≤ ‖∆F̂i‖‖X‖Di. Thus

‖diag(‖X̂‖−Di)∆F̂(X̂)‖ ≤ (

n∑

i=1

|∆F̂i‖2)1/2 = ‖∆F̂‖.

From this we get that

‖∆X̂‖ ≤ ‖JF̂(X̂)+diag(‖X̂‖Di)‖‖∆F̂‖

and hence
‖∆X̂‖‖F̂‖
‖X̂‖‖∆F̂‖

≤ ‖F̂‖‖JF̂(X̂)+diag(‖X̂‖Di−1)‖.

122

3 Real Root Isolation: Continued Fractions

As compared to our condition number in (B.1), this condition number is off by a factor of Di

in the diagonal matrix on the right hand side. However, this factor can be introduced if we

overestimate the upper bound in (B.7) by the factor
√
D. This overestimation was required by

Shub-Smale to get better complexity results.

We next derive the condition number theorem. Intuitively the condition number µ(F̂ , Ẑ) of

the system F̂ at its root X̂ is the inverse of the distance to the nearest system Ĝ that has X̂ as

its root and the Jacobian of Ĝ at X̂ is singular, or in other words, the distance to the nearest

ill-posed problem. More precisely, define the set Σ
X̂

of all ill-posed problems at X̂ as

Σ
X̂

:={Ĝ ∈ HD : Ĝ(X̂) = 0 and rank of JĜ(X̂) is less than n}. (B.8)

Let d(F̂ ,Σ
X̂

) denote the smallest distance ‖F̂ − Ĝ‖ for all Ĝ ∈ Σ
X̂

. The condition number

theorem states the following:

Theorem B.1. Let F̂ : Cn+1 → Cn be a system of homogeneous polynomials, and let X̂ ∈ Cn+1

be such that F̂(X̂) = 0 and JF̂ (X̂) has rank n. Then

µ(F̂ , X̂) =
1

d(F̂ ,Σ
X̂

)
.

The proof is again obtained by specializing the proof of Dégot [Dég00]. The proof of the

theorem depends upon the following properties of Bombieri’s scalar product.

Lemma B.2. If F̂ , Ĝ, and Ĥ are three homogeneous polynomials with degrees D1, D2, and D3

such that D1 +D2 = D3 then

[F̂ Ĝ, Ĥ] =
D2!

D3!
[Ĝ, F̂ (∂)Ĥ],

where F̂ (∂) is the differential operator defined as

F̂ (∂) = F̂ (
∂

∂Z0
,
∂

∂Z1
, . . . ,

∂

∂Zn
),

i.e., each monomial of the form Zi00 · · ·Zinn in F̂ is replaced by ∂i0

∂Z
i0
0

· · · ∂in

∂Zin
n

.

123

3.8 Conclusion and Future Work

Proof. Let F̂ =
∑

|J|=D1
aJ Ẑ

J , Ĝ =
∑

|J|=D2
bJ Ẑ

J and Ĥ =
∑

|J|=D3
cJ Ẑ

J . Then it follows that

F̂ (∂)Ĥ =
∑

|J|=D1

aJ
∂D1

(∂Z0 · · · ∂Zn)J
∑

|J′′|=D3

cJ′′ẐJ
′′

=
∑

|J|=D1

∑

|J′′|=D3

aJcJ′′

∂D1

(∂Z0 · · · ∂Zn)J
ẐJ

′′

=
∑

|J|=D1

∑

J′′≥J
|J′′|=D3

aJcJ′′

J ′′!

(J ′′ − J)!
ẐJ

′′−J

=
∑

|J′|=D2

∑

|J|=D1

aJcJ+J′

(J + J ′)!

J ′!
ẐJ

′

.

Thus

[Ĝ, F̂ (∂)Ĥ] =
∑

|J′|=D2

∑

|J|=D1

aJcJ+J′bJ′

(J + J ′)!

J ′!

J ′!

D2!
.

Cancelling the term J ′! we get that

[Ĝ, F̂ (∂)Ĥ] =
∑

|J′|=D2

∑

|J|=D1

aJcJ+J′bJ′

(J + J ′)!

D2!
. (B.9)

Also, from the definition of the scalar product it is not hard to see that

[F̂ Ĝ, Ĥ] =
∑

|J′′|=D3

∑

|J|=D1,|J′|=D2

J+J′=J′′

aJbJ′

 cJ′′

J ′′!

D3!
.

By re-arranging the summation indices in the above equation we get

[F̂ Ĝ, Ĥ] =
∑

|J′|=D2

∑

|J|=D1

aJbJ′cJ+J′

(J + J ′)!

D3!
.

From this and (B.9) we get that

[F̂ Ĝ, Ĥ] =
D2!

D3!
[Ĝ, F̂ (∂)Ĥ],

Based upon the above lemma we can show the following:

Lemma B.3. Let F̂1, . . . , F̂k and Ĝ1, . . . , Ĝk be homogeneous polynomials of degree one. Then

[F̂1 · · · F̂k, Ĝ1 · · · Ĝk](k) =
1

k!

∑

σ

[F̂1, Ĝσ(1)] · · · [F̂k, Ĝσ(k)],

where σ varies over the set of all permutations of {1, . . . , k}.

124

3 Real Root Isolation: Continued Fractions

Proof. The proof is by induction on k; the base case for k = 1 trivially holds. Suppose the

hypothesis holds for two sets of k − 1 polynomials. From Lemma B.2 we know that

[F̂1 · · · F̂k, Ĝ1 · · · Ĝk](k) =
1

k
[F̂1 · · · F̂k−1, F̂ k(∂)Ĝ1 · · · Ĝk](k−1)

=
1

k
[F̂1 · · · F̂k−1,

k∑

j=1

(Ĝ1 · · · Ĝj−1 · Ĝj+1 · · · Ĝk)F̂ k(∂)Ĝj](k−1)

=
1

k

k∑

j=1

[F̂1 · · · F̂k−1, (Ĝ1 · · · Ĝj−1 · Ĝj+1 · · · Ĝk)F̂ k(∂)Ĝj](k−1).

But F̂ k(∂)Ĝj = [F̂k, Ĝj]. Thus

[F̂1 · · · F̂k, Ĝ1 · · · Ĝk](k) =
1

k

k∑

j=1

[F̂1 · · · F̂k−1, (Ĝ1 · · · Ĝj−1 · Ĝj+1 · · · Ĝk)](k−1)[F̂k, Ĝj].

Applying the induction hypothesis to the term

[F̂1 · · · F̂k−1, (Ĝ1 · · · Ĝj−1 · Ĝj+1 · · · Ĝk)](k−1)

for j = 1, . . . , k we get

[F̂1 · · · F̂k, Ĝ1 · · · Ĝk](k) =
1

k!

k∑

j=1

∑

σj

[F̂1, Ĝσj(1)] · · · [F̂k−1, Ĝσj(k−1)][F̂k, Ĝj].

But we can define σ such that σ(i) = σj(i), for i = 1, . . . , k − 1, and σ(k) = j; moreover, the

set of all such σ’s covers all the possible permutations on the set {1, . . . , k}. Thus the above

equation can be re-written as

[F̂1 · · · F̂k, Ĝ1 · · · Ĝk](k) =
1

k!

∑

σ

[F̂1, Ĝσ(1)] · · · [F̂k, Ĝσ(k)],

hence proving the lemma.

We also have the following representation for the vector JF̂ (X̂)Ŷ, for Ŷ ∈ Cn+1.

Lemma B.4. Let F̂ = (F̂1, . . . , F̂n) be a system of homogeneous polynomials such that F̂i has

degree Di. Then for X̂, Ŷ ∈ Cn+1 the i-th coordinate of the vector JF̂(X̂)Ŷ is Di[F̂i, δ
Di−1

X̂
δ
Ŷ

],

for i = 1, . . . , n.

Proof. The i-th coordinate of JF̂Ŷ is
∑n

j=0 Yj
∂F̂i

∂Zj
(X̂); but

∑n
j=0 Yj

∂F̂i

∂Zj
= δ

Ŷ
(∂)F̂i. Thus from

Lemma B.1 we get that
n∑

j=0

Yj
∂F̂i
∂Zj

(X̂) = [δ
Ŷ

(∂)F̂i, δ
Di−1

X̂
].

Applying Lemma B.2, we get the desired result.

125

3.8 Conclusion and Future Work

Now we proceed to prove the condition number theorem, Theorem B.1. Recall the definition

of d(F̂ ,Σ
X̂

) which was infĤ∈Σ
X̂

‖F̂ − Ĥ‖; this is the same as the infimum of ‖Ĝ‖ such that

1. (F̂ + Ĝ)(X̂) = 0, and

2. rank of JF̂+Ĝ(X̂) is less than n.

The proof consists of two parts: in the first part, we show that the norm of any Ĝ that satisfies

the above constraints is greater than µ(F̂ , X̂)−1, thus implying d(F̂ ,Σ
X̂

) ≥ µ(F̂ , X̂)−1; in the

second part we construct a specific Ĝ that satisfies the above constraints and show that its

norm is less than µ(F̂ , X̂)−1, which implies that d(F̂ ,Σ
X̂

) ≤ µ(F̂ , X̂)−1. From these two parts

it follows that d(F̂ ,Σ
X̂

) = µ(F̂ , X̂)−1.

We begin with proving the first part. Since (F̂ + Ĝ)(X̂) = 0 it follows from Euler’s identity

that X̂ ∈ ker(JF̂+Ĝ(X̂)). We want to characterize the polynomial Ĝ that satisfies the above two

constraints and has the smallest norm. Consider the following set

S :={Ĥ ∈ HD : Ĥ(X̂) = 0 and ker(JF̂+Ĝ(X̂)) ⊆ ker(JĤ(X̂))}.

We claim that Ĝ belongs to the complement of S; this is because the rank of JĜ(X̂) is the

same as the rank of JF̂ (X̂), which is n, and since rank of ker(JF̂+Ĝ(X̂)) is less than n we know

ker(JĜ(X̂)) ⊂ ker(JF̂+Ĝ(X̂)). Moreover, the complement of S is the set

{(Ĥ1, . . . , Ĥn) : Ĥi = δDi−1

X̂
δ
Ŷi
, Ŷi ∈ ker(JF̂+Ĝ(X̂))}.

The reason is that for all Ĥ ∈ S, ker(JF̂+Ĝ(X̂)) ⊆ ker(JĤ(X̂)) implies JĤ(X̂)Ŷ = 0 for all

Ŷ ∈ ker(JF̂+Ĝ(X̂)); along with Lemma B.4 this implies that [Ĥi, δ
Di−1

X̂
δ
Ŷ

] = 0. Thus we have

that the polynomial system Ĝ = (Ĝ1, . . . , Ĝn) is such that

Ĝi = δDi−1

X̂
δ
Ŷi
,

where Ŷi ∈ ker(JF̂+Ĝ(X̂)). Since Ĝ(X̂) = 0 we know from Lemma B.1 that

Ĝi(X̂) = [Ĝi, δDi−1

X̂
] = [δDi−1

X̂
δ
Ŷi
, δDi

X̂
] = ‖X̂‖2(Di−1)〈X̂, Ŷi〉 = 0,

or that 〈X̂, Ŷi〉 = 0, here the last step follows from Lemma B.3. We next derive a lower bound

on ‖Ĝ‖ and will show that it is greater than the inverse of the condition number. We know

‖Ĝ‖2 =

n∑

i=1

[Ĝi, Ĝi] =

n∑

i=1

[δDi−1

X̂
δ
Ŷi
, δDi−1

X̂
δ
Ŷi

] =

n∑

i=1

1

Di
‖Ŷi‖2‖X̂‖2(Di−1),

126

3 Real Root Isolation: Continued Fractions

where the last step follows from Lemma B.3 along with the fact that 〈X̂, Ŷi〉 = 0. We need

to derive a lower bound on ‖Ŷi‖. Consider any Ẑ ∈ ker(JF (X̂))⊥ ∪ ker(JF̂+Ĝ(X̂)) such that

‖Ẑ‖ = 1. Then we know that JF̂+Ĝ(X̂)Ẑ = 0, and hence from Lemma B.4 that for i = 1, . . . , n

[F̂i + Ĝi, δ
Di−1

X̂
δ
Ẑi

] = 0

or equivalently

[F̂i, δ
Di−1

X̂
δ
Ẑi

] = −[Ĝi, δ
Di−1

X̂
δ
Ẑi

] = −[δDi−1

X̂
δ
Ŷi
, δDi−1

X̂
δ
Ẑi

] = − 1

Di
‖X̂‖2(Di−1)〈Ẑ, Ŷi〉,

where the last step follows from Lemma B.3 along with the fact that 〈X̂, Ŷi〉 = 0. This implies

|[F̂i, δDi−1

X̂
δ
Ẑi

]| ≤ 1

Di
‖X̂‖2(Di−1)‖Ŷi‖,

because ‖Ẑ‖ = 1 and 〈Ẑ, Ŷi〉 ≤ ‖Ẑ‖‖Ŷi‖. Thus we have

‖Ĝ‖2 ≥
n∑

i=1

Di‖X̂‖−2(Di−1)|[F̂i, δDi−1

X̂
δ
Ẑi

]|2.

But from Lemma B.4 we know that [F̂i, δ
Di−1

X̂
δ
Ẑi

] is the i-th component of the vector JF̂ (X̂)Ẑ.

Thus the summation on the right hand side can be expressed as the square of norm of the vector

diag(D
−1/2
i ‖X̂‖−2(Di−1))JF̂ (X̂)Ẑ.

Thus

‖Ĝ‖2 ≥ ‖diag(D−1/2
i ‖X̂‖−2(Di−1))JF̂ (X̂)Ẑ‖2.

But the right hand side is clearly greater than

inf ‖diag(D−1/2
i ‖X̂‖−2(Di−1))JF̂ (X̂)Ẑ‖2,

where the infimum is taken over all Ẑ ∈ ker(JF̂ (X̂))⊥ such that ‖Ẑ‖ = 1. Applying the relation

(A.4) we get that

‖Ĝ‖2 ≥ (‖JF̂(X̂)+diag(D
1/2
i ‖X̂‖2(Di−1))‖)−1 = µ(F̂ , X̂)−1

as desired. This brings us to the conclusion of the first part mentioned earlier. Now we proceed

to prove the second part.

Recall that in this part we construct a specific Ĝ that satisfies the two constraints mentioned

earlier and whose norm is less than µ(F̂ , X̂)−1. Let Ẑ in ker(JF̂ (X̂))⊥ be such that ‖Ẑ‖ = 1

and it attains the minimum norm for

‖diag(D−1/2
i ‖X̂‖−2(Di−1))JF̂ (X̂)Ẑ‖

127

3.8 Conclusion and Future Work

amongst all the elements in ker(JF̂ (X̂))⊥. Define the system of homogeneous polynomials Ĝ as

Ĝi :=D−1
i ‖X̂‖−2(Di−1)|[F̂i, δDi−1

X̂
δ
Ẑi

]|δDi−1

X̂
δ
Ẑ
, (B.10)

for i = 1, . . . , n. Then Ĝ has the following properties:

1. (F̂ + Ĝ)(X̂) = 0. Consider the evaluation

Ĝi(X̂) = [Gi, δ
Di

X̂
]

= D−1
i ‖X̂‖−2(Di−1)|[F̂i, δDi−1

X̂
δ
Ẑi

]|[δDi−1

X̂
δ
Ẑ
, δDi

X̂
]

= |[F̂i, δDi−1

X̂
δ
Ẑi

]|〈Ẑ, X̂〉,

where the last step follows from Lemma B.3. But 〈Ẑ, X̂〉 = 0, since Ẑ ∈ ker(JF̂ (X̂))⊥ and

X̂ ∈ ker(JF̂ (X̂)).

2. Rank of JF̂+Ĝ(X̂) is less than n. We already know that X̂ ∈ ker(JF̂+Ĝ(X̂)), but we claim

that Ẑ ∈ ker(JF̂+Ĝ(X̂)), and hence we will get the desired result. To prove the claim we will

show that the sum of the i-th coordinate of the two vectors JF̂ (X̂)Ẑ and JĜ(X̂)Ẑ is zero.

From Lemma B.4 we know that the i-th coordinate of JF̂ (X̂)Ẑ is [F̂i, δ
Di−1

X̂
δ
Ẑ
]; moreover,

from the same lemma and (B.10) we also know that the i-th coordinate of JĜ(X̂)Ẑ is

−Di‖X̂‖−2(Di−1)[F̂i, δ
Di−1

X̂
δ
Ẑ
][δDi−1

X̂
δ
Ẑ
, δDi−1

X̂
δ
Ẑ
] = −[F̂i, δ

Di−1

X̂
δ
Ẑ
]

since from Lemma B.3 we know that [δDi−1

X̂
δ
Ẑ
, δDi−1

X̂
δ
Ẑ
] = D−1

i ‖X̂‖2(Di−1). Thus the the

sum of the i-th coordinate of the two vectors JF̂ (X̂)Ẑ and JĜ(X̂)Ẑ is indeed zero.

From the above two properties of Ĝ it follows that d(F̂ ,Σ
X̂

) ≤ ‖Ĝ‖. We now need to show that

‖Ĝ‖ ≤ µ(F̂ , X̂)−1. But

‖Ĝi‖2 = [Ĝi, Ĝi] = D2
i ‖X̂‖−4(Di−1)[F̂i, δ

Di−1

X̂
δ
Ẑ
]2[δDi−1

X̂
δ
Ẑ
, δDi−1

X̂
δ
Ẑ
]

= Di‖X̂‖−2(Di−1)[F̂i, δ
Di−1

X̂
δ
Ẑ
]2,

where the last step follows from the fact that Ẑ ∈ ker(JF̂ (X̂))⊥ and X̂ ∈ ker(JF̂ (X̂)) implies

〈X̂, Ẑ〉 = 0, and hence from Lemma B.3 we get

[δDi−1

X̂
δ
Ẑ
, δDi−1

X̂
δ
Ẑ
] = D−1

i ‖X̂‖2(Di−1).

Thus we have

‖Ĝ‖2 =

n∑

i=1

Di‖X̂‖−2(Di−1)|[F̂i, δDi−1

X̂
δ
Ẑi

]|2.

128

3 Real Root Isolation: Continued Fractions

But from Lemma B.4 we know that [F̂i, δ
Di−1

X̂
δ
Ẑi

] is the i-th component of the vector JF̂ (X̂)Ẑ.

Thus the summation on the right hand side can be expressed as the square of norm of the vector

diag(D
−1/2
i ‖X̂‖−2(Di−1))JF̂ (X̂)Ẑ.

Hence

‖Ĝ‖ = ‖diag(D−1/2
i ‖X̂‖−2(Di−1))JF̂ (X̂)Ẑ‖.

But the way Ẑ was defined, we know from (A.4) that

‖diag(D−1/2
i ‖X̂‖−2(Di−1))JF̂ (X̂)Ẑ‖ = (‖JF̂(X̂)+diag(D

1/2
i ‖X̂‖2(Di−1))‖)−1

= µ(F̂ , X̂)−1,

which implies that

d(F̂ ,Σ
X̂

) ≤ ‖Ĝ‖ = µ(F̂ , X̂)−1

as desired. Thus we have proved Theorem B.1.

129

Appendix C

BigFloat Computation

We review some basic facts about bigfloats. The name “bigfloat” serves to distinguish this from

the usual programming concept of “floats” which has fixed precision. For a survey on bigfloat

computation, see [YD95]. As in Brent [Bre76b, Bre76a], we use bigfloat numbers to approximate

real or complex numbers. A (binary) bigfloat is a rational number of the form x = n2m where

n,m ∈ Z.

For an integer f , write 〈f〉 for the value f2−⌊lg |f |⌋. In the standard binary notation, 〈f〉
may be written as σ(b0.b1b2 · · · bt)2, where σ ∈ {+,−} and f = σ

∑t
i=0 bi2

t−i. We call 〈f〉
the “normalized value” of f . For example, 〈1〉 = 〈2〉 = 〈4〉 = 1, 〈3〉 = 〈6〉 = 1.5, 〈5〉 = 1.25,

〈7〉 = 1.75, etc. In general, for f 6= 0, we have |〈f〉| ∈ [1, 2).

An alternative representation of bigfloats is 〈e, f〉, for integers e and f , that represents the

bigfloat f2e−⌊lg f⌋ = 〈f〉2e. E.g., the value of 〈⌊lg |f |⌋ , f〉 is f . We say 〈e, f〉 is normalized if

e = f = 0 or if f is odd. Clearly every bigfloat has a unique normalized representation. We

say 〈e, f〉 has precision t if |f | < 2t. The advantage of this representation is that information

about the magnitude is available in the exponent e, i.e., 2e ≤ 〈e, f〉 < 2e+1, and is disjoint from

the information about the precision which is available in f . A bigfloat is said to be bounded if

e = O(1). The bit size of 〈e, f〉 is the pair (lg(2 + |e|), lg(2 + |f |)).
Consider a bigfloat number

x = 〈ex, fx〉 = fx2
ex−⌊lg |fx|⌋ = 〈fx〉2ex .

A restriction in Brent’s complexity model is that all bigfloats x used in a given computation

are bounded, i.e., ex = O(1) for any bigfloat x = 〈ex, fx〉. We are however interested in

unbounded bigfloats. For unbounded bigfloats, we found it to be essential to adopt a more

flexible computational model based on the Pointer machines of Schönhage [Sch80] rather than

Turing machines.

Theorem C.1. Let x = 〈ex, fx〉, y = 〈ey, fy〉 be unbounded bigfloats, and n be a positive natural

number. Also, fxfy 6= 0.

1. We can compute [x]n in C0(n+ lg(2 + |ex|)) time.

130

3 Real Root Isolation: Continued Fractions

2. We can compute [xy]n in C0(M(n) + lg(2 + |exey|)) time.

3. We can compute [x+ y]n in C0(n + lg(2 + |exey|)) time provided xy ≥ 0 or |x| > 2|y| or

|x| < |y|/2. In general, computing [x+ y]n can be done in time O(lg(2 + |fxfyexey|)).

4. An analogous statement holds for [x− y]n, where we replace xy ≥ 0 by xy ≤ 0.

C0 is a constant that is independent of x and y.

Proof. 1. Truncation: To compute [x]n in O(n+lg(2+ |ex|)) time on a pointer model: given

the input n in binary and x = 〈ex, fx〉, we simply treat n as a binary counter and count

down to 0, it is well-known that this takes O(n) steps; simultaneously, we output the most

significant n-bits of fx. In other words, this complexity does not depend on lg |fx|. We can

also output ex in O(lg(2 + |ex|)) time.

2. Addition: We can easily check that xy ≥ 0 and |x| > 2|y| or 2|x| ≤ |y| in O(2 + lg |exey|))
time. If so, we carry out

(a) Compute [x]n+2 and [y]n+2. This takes time O(n+ lg(2 + |exey|)).

(b) Compare ex and ey. This takes O(lg (2 + |exey|)). Let ex ≥ ey.

(c) Compute ex − ey. This takes O(lg (2 + |exey|)). Shift the decimal point of y by

min{ex − ey, n} bits; this takes O(n).

(d) Add the two fractional parts; this takes O(n). Since by assumption either both the

fractional parts have the same sign, in which case no cancellation occurs, or the most

significant bit of x+ y is to the right of x or y, depending upon whether |x| ≥ 2|y| or

vice versa.

Thus the total complexity is O(n+ lg (2 + |exey|)).

In general, i.e., when the above assumptions fail, the complexity will be O(lg |fxfy| +

lg (2 + |exey|)), because the fractional parts may be equal which would lead to catastrophic

cancellation.

3. Subtraction: Has the same complexity as addition, except that the assumption xy ≥ 0

should be xy ≤ 0.

4. Multiplication: We carry these steps.

131

3.8 Conclusion and Future Work

(a) Compute [x]n+2 and [y]n+2.

(b) Multiply the fractional parts of the truncations.

(c) Add the two exponents.

Thus the total complexity is O(M(n) + lg |exey|).

It is clear from these arguments that the constants in the preceding results are independent

of the choice of x, y.

Evaluating a polynomial to absolute precision. Given f(x) =
∑d

i=0 aix
i, ai ∈ R, and

s ∈ Z, let f̃ be the result of evaluating f(x) at x ∈ R using Horner’s rule where each operation

is carried out with relative precision s. Given n ∈ Z, we want to determine s = s(n) such that

〈f(x)〉n = f̃ . Here we assume that the coefficients ai and x are “blackbox” numbers that output

a desired approximation. Moreover, we assume that given a blackbox number α, we can compute

[α]n, a bigfloat, in time B(n). For instance, if α is a bigfloat then we know from the theorem

above that B(n) = C0(n+lg(2+ | lgα|)), where C0 > 0 is independent α; in case α is an algebraic

number B(n) = O(M(n)) – in fact this is what Brent has shown – however, the constant in O

depends upon α.

Let ei be such that 2ei ≤ ai < 2ei+1, ex such that

2ex ≤ x < 2ex+1 (C.1)

and

e :=max(e0, . . . , ed). (C.2)

Similarly to Higham [Hig96, p. 105], we can show that

|f̃ − f(x)| ≤ γ2d+1

d∑

i=0

|ai||x|i

≤ γ2d+12
e+1

d∑

i=0

|x|i.

where γk := k2−s

1−k2−s . We want to choose s such that the right hand side in the above inequality

is less than 2−n. To do so, we consider the following cases:

132

3 Real Root Isolation: Continued Fractions

1. When ex ≥ 0, i.e., |x| ≥ 1. Then we have

γ2d+1

∑d
i=0 |ai||x|i ≤ 2−n

⇐ 2e+3+d(ex+1)d(d+ 1)2−s ≤ 2−n if s ≥ 2 + lg d

⇐ s ≥ n+ e+ d(ex + 3) + 4 (∗).

2. When ex < 0, i.e, |x| ≤ 1. Then

γ2d+1

∑d
i=0 |ai||x|i ≤ 2−n

⇐ γ2d+12
e+1(d+ 1) ≤ 2−n

⇐ 2e+3(d+ 1)2−s ≤ 2−n if s ≥ 2 + lg(1 + d)

⇐ s ≥ n+ e+ lg d+ 4 (∗∗).

The complexity of evaluation is evident from the following:

1. Compute [ai]s for i = 0, . . . , d and [x]s. This takes O(dB(s)) by our assumption on ai and

x.

2. Each addition and multiplication in the Horner’s evaluation is between bigfloats of precision

s. Thus the cost of each operation is O(M(s)). Since Horner’s evaluation involves O(d)

steps, its cost is O(dM(s)).

Lemma C.1. The complexity of evaluating f(x) ∈ R[x] at a point x ∈ R to absolute precision n

is

O(d[M(n+ e+ dmax{1, ex}) +B(n+ e+ dmax{1, ex})]),

where e and ex are defined in (C.1) and (C.2) respectively.

NOTE: The complexity of computing f ′(x) is the same, since only the bit-size of the coeffi-

cients is increased to e+ lg d, which can be subsumed by e+ dmax{1, ex}.
For the special case of evaluating integer polynomials we have the following:

Lemma C.2. Given f(x) =
∑d

i=0 aix
i, where ai ∈ Z are L-bit integers, and x a bigfloat, we can

evaluate f(x) in time O(dM(dL′ + dL)) where L′ is the bit size of x.

Proof. There are d algebraic operations involved in Horner’s method. At each such operation the

bit size increases by a factor of O(L′ +L) and hence the overall complexity is
∑d

i=1O(M(i(L′ +

L))) = O(dM(dL′ + dL)).

133

3.8 Conclusion and Future Work

Evaluating a system of multi-variate integer polynomials Let F be a system of poly-

nomials Fi, i = 1, . . . , n, where Fi ∈ Z[X1, . . . , Xn] is such that its coefficients have bit-length at

most L and the total degree of Fi is Di. We want to bound the complexity of evaluating F at a

point Y ∈ Fn, where the bit size of Yi, i = 1, . . . , n, is at most L′.

We start with analysing the complexity of evaluating a multi-variate polynomial F (X1, . . . , Xn)

with coefficients of bit-length L at a bigfloat that has bit size L′. To bound this complexity, we

bound the number of algebraic operations needed to evaluate F (X1, . . . , Xn) and the worst case

bit size of the bigfloats appearing in the evaluation.

Let di be the maximum degree of Xi in F (X1, . . . , Xn). The total number of monomials

appearing in F (X1, . . . , Xn) is bounded by O(
∏n
i=1 di). Thus the number of algebraic operations

needed to evaluate F (X1, . . . , Xn) is O(
∏n
i=1 di). To bound the worst-case bit size of the result of

evaluation, we observe that the worst-case bit size of the monomialX i1
1 · · ·X in

n , where 0 ≤ ij ≤ dj ,

1 ≤ j ≤ n, is O(L′∑n
i=1 di). Hence the worst-case bit size of a term aX i1

1 · · ·X in
n appearing in

F (X1, . . . , Xn) is O(L+L′∑n
i=1 di). Since the number of algebraic operations needed to evaluate

F (X1, . . . , Xn) is O(
∏n
i=1 di), the worst-case bit size of the result is O(

∏n
i=1 di(L+L′∑n

i=1 di)).

Thus we have the following:

Lemma C.3. Let F (X1, . . . , Xn) ∈ Z[X1, . . . , Xn] be a multi-variate polynomial with integer

coefficients of bit-length L. Let di be the maximum degree of Xi in F (X1, . . . , Xn). Then the

worst case bit-complexity of evaluating F at a bigfloat of bit size L′ is

O[(

n∏

i=1

di)M((L + L′
n∑

i=1

di)d1 · · · dn)],

where M(ℓ) is the complexity of multiplying two integers of bit-length ℓ.

From the above lemma we know that the complexity of evaluating Fi at a bigfloat Y of bit size

L′ is O(Dn
i M((L+nDiL

′)Dn
i) and hence the complexity of evaluating F at Y is O(nDnM((L+

nDL′)Dn)) where D := max(D1, . . . , Dn). Moreover, it follows easily that the complexity of

evaluating the Jacobian matrix JF (Y) is O(n2DnM((L+ nDL′)Dn)).

134

Bibliography

[Abb06] John Abbott. Quadratic Interval Refinement. Presented as a poster in ISSAC’06,

2006.

[Abe73] O. Aberth. Iteration methods for finding all zeros of a polynomial simultaneously.

Mathematics and Computation, 27:339–344, 1973.

[ACGR01] G. S. Ammar, D. Calvetti, W. B. Gragg, and L. Reichel. Polynomial zero finders

based on Szegő polynomials. J. Computational and Applied Mathematics, 127:1–16,

2001.

[AG98] Alberto Alesina and Massimo Galuzzi. A new proof of Vincent’s theorem.

L’Enseignement Mathémathique, 44:219–256, 1998.

[AH83] Göltz Alefeld and Jürgen Herzberger. Introduction to Interval Computations. Aca-

demic Press, New York, 1983.

[Akr78a] A.G. Akritas. A correction on a theorem by Uspensky. Bull. Soc. Math. Gréce (N.S.),

19:278–285, 1978.

[Akr78b] A.G. Akritas. Vincent’s theorem in algebraic manipulation. PhD thesis, Operations

Research Program, North Carolina State University, Raleigh, North Carolina, 1978.

[Akr82] A.G. Akritas. Reflections on a pair of theorems by Budan and Fourier. Mathematics

Magazine, 55(5):292–298, 1982.

[Akr86] A.G. Akritas. There is no “Uspensky’s method”. In Proceedings of the 1986 Sym-

posium on Symbolic and Algebraic Computation, pages 88–90, Waterloo, Ontario,

Canada, 1986.

[Akr89] Alkiviadis G. Akritas. Elements of Computer Algebra with Applications. John Wiley

Interscience, New York, 1989.

[Bat98] Prashant Batra. Improvement of a convergence condition for the Durand-Kerner

iteration. J. of Comp. and Appl. Math., 96:117–125, 1998.

[Bat99] Prashant Batra. Abschätzungen und Iterationsverfahren für Polynom-Nullstellen.

PhD thesis, Technical University Hamburg-Harburg, 1999.

135

BIBLIOGRAPHY

[BCSS98] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real

Computation. Springer-Verlag, New York, 1998.

[BF00] Dario Andrea Bini and Giuseppe Fiorentino. Numerical Computation of Polyno-

mial Roots Using MPSolve Version 2.2. Dipartimento di Matematica, Universitaá di

Pisa, Via Bonarroti 2, 56127 Pisa, January 2000. Manual for the Mpsolve package.

Available at ftp://ftp.dm.unipi.it/pub/mpsolve/MPSolve-2.2.tgz.

[BFM+01] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt. A separation bound

for real algebraic expressions. In 9th ESA, volume 2161 of Lecture Notes in Computer

Science, pages 254–265. Springer, 2001. To appear, Algorithmica.

[BOT90] Michael Ben-Or and Prasoon Tiwari. Simple algorithm for approximating all roots

of a polynomial with real roots. J. Complexity, 6:417–442, 1990.

[BPR03] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Alge-

braic Geometry. Algorithms and Computation in Mathematics. Springer, 2003.

[Bre73] Richard P. Brent. Algorithms for minimization without derivatives. Prentice Hall,

Englewood Cliffs, NJ, 1973.

[Bre76a] Richard P. Brent. Fast multiple-precision evaluation of elementary functions. J. of

the ACM, 23:242–251, 1976.

[Bre76b] Richard P. Brent. Multiple-precision zero-finding methods and the complexity of

elementary function evaluation. In J. F. Traub, editor, Proc. Symp. on Analytic

Computational Complexity, pages 151–176. Academic Press, 1976.

[CA76] George E. Collins and Alkiviadis G. Akritas. Polynomial real root isolation using

Descartes’ rule of signs. In R. D. Jenks, editor, Proceedings of the 1976 ACM Sym-

posium on Symbolic and Algebraic Computation, pages 272–275. ACM Press, 1976.

[Caj11] Florian Cajori. Historical Note on the Newton-Raphson Method of Approximation.

The American Mathematical Monthly, 18(2):29–32, February 1911.

[Che94] Pengyuan Chen. Approximate Zeros of Quadratically Convergent Algorithms. Math-

ematics of Computation, 63(207):247–270, July 1994.

136

BIBLIOGRAPHY

[CJ89] George E. Collins and Jeremy R. Johnson. Quantifier elimination and the sign varia-

tion method for real root isolation. In Proc. ACM-SIGSAM Symposium on Symbolic

and Algebraic Computation, pages 264–271, 1989.

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag,

1993.

[CR88] M. Coste and M. F. Roy. Thom’s lemma, the coding of real algebraic numbers and

the computation of the topology of semi-algebraic sets. J. of Symbolic Computation,

5:121–130, 1988.

[Cur87] James H. Curry. On Zero Finding Methods of Higher Order from Data at One Point.

J. of Complexity, 5:219–237, 1987.

[DAB04] V. Y. Pan D. A. Bini, L. Gemignani. Improved Initialization of the Accelerated

and Robust QR-like Polynomial Root-finding. Electronic Transactions on Numerical

Analysis, 17:195–205, 2004.

[DAB05] V. Y. Pan D. A. Bini, L. Gemignani. Fast and Stable QR Eigenvalue Algorithms for

Generalized Companion Matrices and Secular Equation. Numerische Math., 3:373–

408, 2005.

[Dav85] J. H. Davenport. Computer algebra for cylindrical algebraic decomposition. Technical

report, The Royal Institute of Technology, Department of Numerical Analysis and

Computing Science, S-100 44, Stockholm, Sweden, 1985. Reprinted as: Technical

Report 88-10, School of Mathematical Sciences, University of Bath, Claverton Down,

Bath BA2 7AY, England.

[Dég00] Jérôme Dégot. A condition number theorem for underdetermined polynomial systems.

Math. Comp., 40(233):329–335, 2000.

[Dek67] T.J. Dekker. Finding a Zero by Means of Successive Linear Interpolation. In Bruno

Dejon and Peter Henrici, editors, Constructive Aspects of the Fundamental Theorem

of Algebra, pages 37–48. Wiley Interscience, 1967.

[DF95] Wang Deren and Zhao Fengguang. The theory of Smale’s point estimation and its

applications. J. of Comp. and Appl. Math., 60:253–269, 1995.

137

BIBLIOGRAPHY

[DSY05] Zilin Du, Vikram Sharma, and Chee Yap. Amortized bounds for root isolation via

Sturm sequences. In Dongming Wang and Lihong Zhi, editors, Proc. Internat. Work-

shop on Symbolic-Numeric Computation, pages 81–93, School of Science, Beihang

University, Beijing, China, 2005. Int’l Workshop on Symbolic-Numeric Computation,

Xi’an, China, Jul 19–21, 2005.

[Dur60] E. Durand. Solutions Numériques des Équations Algébriques, Tome I: Equations du

Type F(x) = 0. Racines d’un Polyn̂ome, Masson, Paris, 1960.

[Dur77] P. Duren. Coefficients of univalent functions. Bull. Amer. Math. Soc., 83(5):891–911,

1977.

[Dys47] F. J. Dyson. The approximation to algebraic numbers by rationals. Acta Math. 79,

1947.

[EM95] Alan Edelman and H. Murakami. Polynomial roots from companion matrix eigenval-

ues. Mathematics of Computation, 64(210):763–776, 1995.

[EMT06] Ioannis Z. Emiris, Bernard Mourrain, and Elias P. Tsigaridas. Real algebraic numbers:

Complexity analysis and experimentations. Research Report 5897, INRIA, April 2006.

http://www.inria.fr/rrrt/rr-5897.html.

[ESY06] Arno Eigenwillig, Vikram Sharma, and Chee Yap. Almost tight complexity bounds

for the Descartes method. In Proc. Int’l Symp. Symbolic and Algebraic Computation

(ISSAC’06), 2006. Genova, Italy. Jul 9-12, 2006.

[ET06] Ioannis Z. Emiris and Elias P. Tsigaridas. Univariate polynomial real root isolation:

Continued fractions revisited. To appear in ESA 2006. Appeared on CS arxiv, Apr.

2006.

[Far90] Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design: A Prac-

tical Guide. Academic Press, Inc, second edition, 1990.

[For96] Steven Fortune. Robustness Issues in Geometric Algorithms. In WACG: 1st Workshop

on Applied Computational Geometry: Towards Geometric Engineering. LNCS, March

1996.

[For01] Steve Fortune. Polynomial root finding using an iterated eigenvalue computation. In

ISSAC, pages 121–128, 2001.

138

BIBLIOGRAPHY

[FR87] R.T. Farouki and V.T. Rajan. On the numerical condition of polynomials in Bernstein

form. Computer Aided Geometric Design, 4:191–216, 1987.

[FR88] R.T. Farouki and V.T. Rajan. Algorithm for polynomials in Bernstein form. Com-

puter Aided Geometric Design, 5:1–26, 1988.

[FvW93] Steven J. Fortune and Christopher J. van Wyk. Efficient exact arithmetic for compu-

tational geometry. In Proc. 9th ACM Symp. on Computational Geom., pages 163–172,

1993.

[GT74] W.B. Gragg and R.A. Tapia. Optimal error bounds for the Newton-Kantorovich

Theorem. SIAM Journal of Numerical Analysis, 11(1), March 1974.

[Hig96] Nicholas J. Higham. Accuracy and stability of numerical algorithms. Society for

Industrial and Applied Mathematics, Philadelphia, 1996.

[HJ85] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University

Press, 1985.

[Hof89] Christoff M. Hoffmann. The problems of accuracy and robustness in geometric com-

putation. IEEE Computer, 22(3):31–42, March 1989.

[Hon98] Hoon Hong. Bounds for absolute positiveness of multivariate polynomials. J. of

Symbolic Computation, 25(5):571–585, 1998.

[HSS01] J. H. Hubbard, D. Schleicher, and Scott Sutherland. How to find all roots of complex

polynomials by newton’s method. Inventiones Mathematicae, 146(1):1–33, 2001.

[IEE85] IEEE. IEEE Standard 754-1985 for binary floating-point arithmetic, 1985.

ANSI/IEEE Std 754-1985. From The Institute of Electrical and Electronic Engineers,

Inc.

[Jac35] C. G. J. Jacobi. Observatiunculae ad theoriam aequationum pertinentes. Jour-

nal für die reine und angewandte Mathematik, 13:340–352, 1835. Available from

http://gdz.sub.uni-goettingen.de.

[JKL+06] Jeremy R. Johnson, Werner Krandick, Kevin M. Lynch, David G. Richardson, and

Anatole D. Ruslanov. High-performance implementations of the Descartes method.

139

BIBLIOGRAPHY

In ISSAC ’06: Proceedings of the 2006 international symposium on Symbolic and

algebraic computation, pages 154–161, New York, NY, USA, 2006. ACM Press.

[JKR05] Jeremy R. Johnson, Werner Krandick, and Anatole D. Ruslanov. Architecture-aware

classical Taylor shift by 1. In Proc. 2005 International Symposium on Symbolic and

Algebraic Computation (ISSAC 2005), pages 200–207. ACM, 2005.

[Joh98] J.R. Johnson. Algorithms for polynomial real root isolation. In B.F. Caviness and J.R.

Johnson, editors, Quantifier Elimination and Cylindrical Algebraic Decomposition,

Texts and monographs in Symbolic Computation, pages 269–299. Springer, 1998.

[KA64] L.V. Kantorovich and G.P. Akilov. Functional Analysis in Normed Spaces. New York,

MacMillan, 1964.

[Kal05] Bahman Kalantari. An infinite family of bounds on zeros of analytic functions and

relationship to Smale’s bound. Mathematics of Computation, 74(250):841–852, 2005.

[Kan52] L.V. Kantorovich. Functional Analysis and Applied Mathematics. Technical Report

1509, National Bureau of Standards, 1952.

[Kea87] R. Baker Kearfott. Abstract Generalized Bisection and a Cost Bound. Mathematics

of Computation, 49(179):187–202, July 1987.

[Kea90] R. Baker Kearfott. Interval Newton/generalized bisection when there are singularities

near roots. Annals of Operation Research, 25:181–196, 1990.

[Ker66] I.O. Kerner. Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Poly-

nomen. Numer. Math., 8:290–294, 1966.

[Khi97] A. Ya. Khinchin. Continued Fractions. Dover Publications, 1997.

[Kim86] Myong-Hi Kim. Computational Complexity of the Euler Type Algorithms for the

Roots of polynomials. PhD thesis, City University of New York, January 1986.

[Kim88] Myong-Hi Kim. On approximate zeroes and root finding algorithms for a complex

polynomial. Math. Comp., 51:707–719, 1988.

[Kio86] J. Kioustelidis. Bounds for the positive roots of the polynomials. Journal of Compu-

tational and Applied Mathematics, 16:241–244, 1986.

140

BIBLIOGRAPHY

[KLPY99] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A Core library for robust nu-

merical and geometric computation. In 15th ACM Symp. Computational Geometry,

pages 351–359, 1999.

[KM06] Werner Krandick and Kurt Mehlhorn. New bounds for the Descartes method. J.

Symbolic Computation, 41(1):49–66, 2006.

[Kra95] Werner Krandick. Isolierung reeller Nullstellen von Polynomen. In J. Herzberger,

editor, Wissenschaftliches Rechnen, pages 105–154. Akademie-Verlag, Berlin, 1995.

[Kre74] Erwin Kreyszig. Introductory Functional Analysis with Applications. John Wiley &

Sons, 1974.

[KS94] Myong-Hi Kim and Scott Sutherland. Polynomial root-finding algorithms and

branched covers. SIAM J. Computing, 23:415–436, 1994.

[Lio40] J. Liouville. Sur l’irrationalite du nombre e. J. Math. Pures Appl., 1840.

[LR81] Jeffrey M. Lane and R. F. Riesenfeld. Bounds on a polynomial. BIT, 21:112–117,

1981.

[LR01] Thomas Lickteig and Marie-Françoise Roy. Sylvester-Habicht sequences and fast

Cauchy index computation. J. of Symbolic Computation, 31:315–341, 2001.

[LY01] Chen Li and Chee Yap. A new constructive root bound for algebraic expressions. In

12th SODA, pages 496–505, January 2001.

[Mah64] K. Mahler. An inequality for the discriminant of a polynomial. The Michigan Math-

ematical Journal, 11(3):257–262, 1964.

[Mal] Gregorio Malajovich. Unitary Invariance of the Kostlan Norm (Linear Algebra Proof).

http://citeseer.ist.psu.edu/206630.html.

[Mal93] Gregorio Malajovich. On the complexity of path-following Newton algorithms for

solving systems of polynomial equations with integer coefficients. PhD thesis, Berkeley,

1993.

[Mc99] Maurice Mignotte and Doru Ştefănescu. Polynomials: An Algorithmic Approach.

Springer, Singapore, 1999.

141

BIBLIOGRAPHY

[McN93] J.M. McNamee. A bibliography on roots of polynomials. J.

Comput. Appl. Math., 47:391–394, 1993. Available online at

http://www.elsevier.com/homepage/sac/cam/mcnamee.

[Mig81] Maurice Mignotte. Some inequalities about univariate polynomials. In Proc. 1981

ACM Symposium on Symbolic and Algebraic Computation (SYMSAC 1981), pages

195–199. ACM, 1981.

[Mig95] Maurice Mignotte. On the distance between the roots of a polynomial. Applicable

Algebra in Engineering, Commun., and Comput., 6:327–332, 1995.

[Mil92] Philip S. Milne. On the solutions of a set of polynomial equations. In B. R. Don-

ald, D. Kapur, and J. L. Mundy, editors, Symbolic and Numerical Computation for

Artificial Intelligence, pages 89–102. Academic Press, London, 1992.

[Mit91] D.P. Mitchell. Robust ray intersection with interval arithmetic. In Graphics Interface,

pages 68–74. 1991.

[Moo66] Ramon E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, USA, 1966.

[MRR04] Bernard Mourrain, Fabrice Rouillier, and Marie-Françoise Roy. Bernstein’s basis and

real root isolation. Rapport de recherche 5149, INRIA-Rocquencourt, March 2004.

http://www.inria.fr/rrrt/rr-5149.html.

[MRR05] Bernard Mourrain, Fabrice Rouillier, and Marie-Françoise Roy. The Bernstein basis

and real root isolation. In Jacob E. Goodman, János Pach, and Emo Welzl, editors,

Combinatorial and Computational Geometry, number 52 in MSRI Publications, pages

459–478. Cambridge University Press, 2005.

[MS00] K. Mehlhorn and S. Schirra. A generalized and improved constructive separation

bound for real algebraic expressions. Technical Report MPI-I-2000-004, Max-Planck-

Institut für Informatik, November 2000.

[MV95] F. Malek and R. Vaillancourt. A composite polynomial zerofinding matrix algorithm.

Computers and Mathematics with Applications, 30(2):37–47, July 1995.

[MVY02] B. Mourrain, M. N. Vrahatis, and J. C. Yakoubsohn. On the complexity of isolating

real roots and computing with certainty the topological degree. J. Complexity, 18:612–

640, 2002.

142

BIBLIOGRAPHY

[NR94] C. Andrew Neff and John H. Reif. An O(n1+ǫ log b) algorithm for the complex roots

problem. IEEE Foundations of Computer Science, 1994.

[OR70] J.M. Ortega and W.C. Rheinboldt. Iterative Solution of Nonlinear Equations in

Several Variables. Academic Press, 1970.

[Ort68] J.M. Ortega. The Newton-Kantarovich Theorem. The American Mathematical

Monthly, 75:658–660, June-July 1968.

[Ost50] A.M. Ostrowski. Note on Vincent’s theorem. The Annals of Mathematics, 52(3):702–

707, Nov 1950.

[Ost60] A. M. Ostrowski. Solution of Equations and Systems of Equations. Academic Press,

New York, 1960.

[Ost73] A.M. Ostrowski. Solution Of Equations In Euclidean And Banach Spaces. Pure and

Applied Mathematics. Academic Press, third edition, 1973.

[Pan96] Victor Y. Pan. Optimal and nearly optimal algorithms for approximating polynomial

zeros. Computers Mathematics and Applications, 31(12):97–138, 1996.

[Pan97] Victor Y. Pan. Solving a polynomial equation: some history and recent progress.

SIAM Review, 39(2):187–220, 1997.

[Pan02] Victor Y. Pan. Univariate polynomial root-finding with a lower computational pre-

cision and higher convergence rates, 2002.

[PBP02] Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. Bézier and B-Spline

Techniques. Springer, 2002.

[PCT95] Miodrag S. Petković, Carsten Carstensen, and Miroslav Trajkov́ıc. Weierstrass for-

mula and zero-finding methods. Numer. Math., 69:353–372, 1995.

[Ped91] Paul Pedersen. Counting Real Zeros. PhD thesis, New York University, 1991. Also,

Courant Institute Computer Science Technical Report 545 (Robotics Report R243).

[PHI98] Miodrag S. Petković, Dorde Herceg, and Snez̆ana Ilić. Safe convergence of simulta-

neous methods for polynomial zeros. Numerical Algorithms, 17:313–331, 1998.

143

BIBLIOGRAPHY

[PMR+06] Victor Y. Pan, Brian Murphy, Rhys Eric Rosholt, Dmitriy Ivolgin, and Yuqing Tang.

Root-finding with Eigen-solving. Technical report, CUNY Ph.D. Program in Com-

puter Science, 2006. http://www.cs.gc.cuny.edu/tr/techreport.php?id=185.

[PY03] Sylvain Pion and Chee Yap. Constructive root bound method for k-ary rational

input numbers. In 19th SCG, pages 256–263, San Diego, California., 2003. Accepted,

Theoretical Computer Science (2006).

[Rei97] Daniel Reischert. Asymptotically fast computation of subresultants. In ISSAC 97,

pages 233–240, 1997. Maui, Hawaii.

[Rot55] K.F. Roth. Rational approximations to algebraic numners. Mathematika 2, 1955.

[RZ01] Fabrice Rouillier and Paul Zimmermann. Efficient isolation of a polynomial[’s] real

roots. Rapport de Recherche 4113, INRIA, 2001. http://www.inria.fr/rrrt/

rr-4113.html.

[RZ04] Fabrice Rouillier and Paul Zimmerman. Efficient isolation of [a] polynomial’s real

roots. J. Computational and Applied Mathematics, 162:33–50, 2004.

[Sch80] A. Schönhage. Storage modification machines. SIAM J. Computing, 9:490–508, 1980.

[Sch82] Arnold Schönhage. The fundamental theorem of algebra in terms of computational

complexity, 1982. Manuscript, Department of Mathematics, University of Tübingen.

[Sch99] Stefan Schirra. Robustness and precision issues in geometric computation. In J.R.

Sack and J. Urrutia, editors, Handbook of Computational Geometry. Elsevier Science

Publishers, B.V. North-Holland, Amsterdam, 1999.

[Sch05] Susanne Schmitt. The diamond operator – implementation of exact real algebraic

numbers. In V.G.Ganzha, E.W.Mayr, and E.V. Vorozhtsov, editors, Computer Alge-

bra in Scientific Computing: 8th International Workshop (CASC 2005), pages 355–

366, 2005. Kalamata, Greece. Sep 12-16, 2005.

[SDY05] Vikram Sharma, Zilin Du, and Chee Yap. Robust approximate zeros. In

Gerth Stølting Brodal and Stefano Leonardi, editors, Proc. 13th European Symp.

on Algorithms (ESA), volume 3669 of Lecture Notes in Computer Science, pages

874–887. Springer-Verlag, April 2005. Palma de Mallorca, Spain, Oct 3-6, 2005.

144

BIBLIOGRAPHY

[Sek98] Hiroshi Sekigawa. Using interval computation with the Mahler measure for zero

determination of algebraic numbers. Josai Information Sciences Researches, 9(1):83–

99, 1998.

[Sma81a] S. Smale. The fundamental theorem of algebra and complexity theory. Bull. Amer.

Math, Soc., 4:1–36, 1981.

[Sma81b] Steve Smale. The fundamental theorem of algebra and complexity theory. Bull.

Amer. Math. Soc. (N.S.), 4(1):1–36, 1981.

[Sma85] Steve Smale. On the efficiency of algorithms of analysis. Bull. Amer. Math. Soc.

(N.S.), 13(2):87–121, October 1985.

[Sma86] S. Smale. Newton’s method estimates from data at one point. In R. Ewing, K. Gross,

and C. Martin, editors, The Merging of Disciplines: New Directions in Pure, Applied,

and Computational Mathematics. Springer-Verlag, 1986.

[Spe94] Melvin R. Spencer. Polynomial Real Root Finding in Bernstein Form. PhD thesis,

Brigham Young University, 1994.

[SS85] Mike Shub and Steven Smale. Computational complexity. on the geometry of poly-

nomials and a theory of cost. i. Annales Scientifiques De L’É.N.S, 18(1):107–142,

1985.

[SS86] M. Shub and S. Smale. Computational complexity: On the geometry of polynomials

and a theory of cost: Ii. SIAM J. of Comput., 15(1):145–161, February 1986.

[SS93a] Mike Shub and Steve Smale. Complexity of Bezout’s Theorem I: Geometric aspects.

J. of Amer. Math. Soc., 6(2):459–501, 1993.

[SS93b] Mike Shub and Steve Smale. Complexity of Bezout’s Theorem III: Condition number

and packing. J. of Complexity, 9:4–14, 1993.

[SS96] Michael Shub and Steve Smale. Complexity of Bezout’s theorem. IV. probability of

success and extensions. SIAM Journal on Numerical Analysis, 33(1):128–148, 1996.

[Şte05] D. Ştefănescu. New bounds for the positive roots of polynomials. Journal of Universal

Computer Science, 11(12):2132–2141, 2005.

145

BIBLIOGRAPHY

[TB97] Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra. Society for Indus-

trial and Applied Mathematics, Philadelphia, PA, USA, 1997.

[Thu09] A. Thue. Uber Annaherungswerte algebraischer Zahlen. J. Reine Angew. Math. 135,

1909.

[Tis01] Françoise Tisseur. Newton’s method in floating point arithmetic and iterative re-

finement of generalized eigenvalue problems. SIAM J. on Matrix Anal. and Appl.,

22(4):1038–1057, 2001.

[Tur84] P. Turan. On a New Method of Analysis and its Applications. Wiley, New Jersey,

1984.

[Usp48] J. V. Uspensky. Theory of Equations. McGraw-Hill, New York, 1948.

[vdS70] A. van der Sluis. Upper bounds for roots of polynomials. Numer. Math., 15:250–262,

1970.

[Vin36] A.J.H. Vincent. Sur la résolution des équations numériques. J. Math. Pures Appl.,

1:341–372, 1836.

[vzGG97] Joachim von zur Gathen and Jürgen Gerhard. Fast algorithms for Taylor shifts and

certain difference equations. In Proc. 1997 International Symposium on Symbolic and

Algebraic Computation (ISSAC 1997), pages 40–47. ACM, 1997.

[vzGG99] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge

University Press, Cambridge, 1999.

[Wan04] Xiaoshen Wang. A Simple Proof of Descartes’ Rule of Signs. The American Mathe-

matical Monthly, June-July 2004.

[Wer82] W. Werner. On the simultaneous determination of polynomial roots. Number 953 in

Lecture Notes in Mathematics, pages 188–202. Springer-Verlag, Berlin, 1982.

[Wey24] H. Weyl. Randbemerkungen zu hauptproblemen der mathematik, ii, fundamentalsatz

der algebra and grundalgen der mathematik. Mathematics Zahlen, 20:131–151, 1924.

[Wil63] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Notes on Applied Science

No. 32, Her Majesty’s Stationery Office, London, 1963. Also published by Prentice-

Hall, Englewood Cliffs, NJ, USA. Reprinted by Dover, New York, 1994.

146

BIBLIOGRAPHY

[Wil78] H.S Wilf. A global bisection algorithm for computing the zeros of polynomials in the

complex plane. Journal of the ACM, 25:415–420, 1978.

[Yam85] T. Yamamoto. A unified derivation of several error bounds for Newton’s process.

Journal of Comp. and Appl. Mathematics, 12-13:179–191, 1985.

[Yam86] T. Yamamoto. Error bounds for Newton’s method under the Kantorovich assump-

tions. In R. Ewing, K. Gross, and C. Martin, editors, The Merging of Disciplines:

New Directions in Pure, Applied, and Computational Mathematics. Springer-Verlag,

1986.

[Yap97a] Chee K. Yap. Robust geometric computation. In Jacob E. Goodman and Joseph

O’Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 35,

pages 653–668. CRC Press LLC, Boca Raton, FL, 1997.

[Yap97b] Chee K. Yap. Towards exact geometric computation. Comput. Geometry: Theory

and Appl., 7:3–23, 1997.

[Yap00] Chee K. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University

Press, 2000.

[Yap04] Chee K. Yap. Robust geometric computation. In Jacob E. Goodman and Joseph

O’Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 41,

pages 927–952. Chapmen & Hall/CRC, Boca Raton, FL, 2nd edition, 2004.

[YD95] Chee K. Yap and Thomas Dubé. The exact computation paradigm. In D.-Z. Du

and F. K. Hwang, editors, Computing in Euclidean Geometry, pages 452–492. World

Scientific Press, Singapore, 2nd edition, 1995.

[YLP+04] C. Yap, C. Li, S. Pion, Z. Du, and V. Sharma. Core library tutorial: a li-

brary for robust geometric computation, 1999–2004. Version 1.1 was released

in Jan 1999. Latest Version 1.6 (Jun 2003). Download source and documents,

http://cs.nyu.edu/exact/.

[YM01] Chee Yap and Kurt Mehlhorn. Towards robust geometric computation, 2001. In-

vited White Paper. CSTB-NSF Conference on Fundamentals of Computer Science,

Washington DC, July 25-26, 2001. See Appendix, Computer Science: Reflections

on/from the Field, The National Academies Press, Washington DC, 2004.

147

BIBLIOGRAPHY

[Ypm95] Tjalling J. Ypma. Historical Development of the Netwon-Raphson method. SIAM

Review, 37(4):531–551, December 1995.

148

