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Abstract

This paper introduces the concept of precision-sensitive algorithms,

in analogy to the well-known output-sensitive algorithms. We exploit this

idea in studying the complexity of the 3-dimensional Euclidean shortest

path problem. Speci�cally, we analyze an incremental approximation ap-

proach based on ideas in [CSY], and show that this approach yields an

asymptotic improvement of running time. By using an optimization tech-

nique to improve paths on �xed edge sequences, we modify this algorithm

to guarantee a relative error of O(2

�r

) in a time polynomial in r and 1=�,

where � denotes the relative di�erence in path length between the shortest

and the second shortest path.

Our result is the best possible in some sense: if we have a strongly

precision-sensitive algorithm then we can show that USAT (unambiguous

SAT) is in polynomial time, which is widely conjectured to be unlikely.

Finally, we discuss the practicability of this approach. Experimental

results are provided.

1 Introduction

1.1 Precision-Sensitivity versus Output-Sensitivity

The complexity of geometric algorithms generally falls under one of two dis-

tinct computational frameworks. In the algebraic framework, the (time) com-

plexity of an algorithm is measured by the number of algebraic operations (such

�
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as +;�; x;�;

p

�) on real-valued variables, assuming exact computations. In

simple cases, the input size has one parameter n corresponding to the number

of input values. In the bit framework, (time) complexity is measured by the

number of bitwise Boolean operations, assuming input values are encoded as

binary strings. The input size parameter n above is usually supplemented by

an additional parameter L which is an upper bound on the bit-size of any input

value. See [CSY].

Currently, practically every computational geometry algorithm is based on

the algebraic model. For instance, we usually say that the planar convex hull

problem can be solved in optimal O(n logn) time. This presumes the algebraic

framework. What about the bit framework? One can easily deduce that the bit

complexity is O(n logn�(L)) where �(L) is the bit complexity of multiplying two

L-bit integers. However, it is not clear that this is optimal. Thus the possibility

for faster planar convex hull algorithms seems wide open in the bit model. Of

course, the situation with other problems in computational geometry is similar.

This paper is interested in bit complexity, and may be seen as a follow-up

on [CSY]. Besides its inherent interest, there are other reasons for believing

that the bit model will become more important for computational geometry in

the future. As the �eld now begins to address implementation issues in earnest,

it must focus on low-level operations (what was previously dismissed as \con-

stant time operations"). In low-level operations, it is the bit size of numbers

that is the main determinant of complexity. Second, there are reasons to think

that \exact computation" (see [Ya]) will be an important paradigm for future

implementations of geometric algorithms. [The emphasis here is on \implement-

ations" since exact computation is already the de facto standard in theoretical

algorithms.] In exact computation, complexity crucially depends on the bit-sizes

of input numbers.

The main conceptual contribution in this paper is the idea of precision-

sensitive algorithms. Today, the concept of output-sensitive algorithms has be-

come an important pillar of computational geometry. But output-sensitivity

is basically a concept in the algebraic framework. We suggest that precision-

sensitivity is the analogous concept in the bit framework. As in output-sensitive

algorithms, we may de�ne some implicit parameter � = �(I) for any input in-

stance I. Instead of measuring the output size, � now measures the \precision-

sensitivity" of I. Intuitively, the parameter � measures the precision or number

of bits needed for output. We seek to design algorithms that can take advantage

of this parameter �. (Our idea is related to recent work in numerical analysis

which quanti�es the distance from an input instance to the nearest singularity.)

As an example, consider the well-studied 2-dimensional Euclidean shortest

path problem. In the algebraic model, the time complexity of this problem

was recently shown to be O(n logn) [HS], a signi�cant improvement upon the

previous O(n

2

) techniques. But little is known about this problem in the bit

model. Here, the question reduces to whether we can compare the sums of

n square roots of integers in polynomial time. This problem may require
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exponential time because the di�erence between two such sums, as far as we

know, may be as small as 2

�2

Cn

for some C > 0. Bl�omer [Bl, Bl2] considers

this problem

�

and its extensions. We may let the precision-sensitive parameter

� be the di�erence in path length between the sought shortest path and the next

shortest path. In practical situations, the gap � is unlikely to be exponentially

small. For such inputs, it may be possible to compute the shortest path in time

polynomial in n (the number of obstacle vertices), L (the bit length of input

numbers) and �, provided our algorithm is \precision-sensitive".

The introduction of precision-sensitivity paves the way for studying problems

that were previously considered hopeless or \solved". Notice that the same

situation arises with the introduction of output-sensitivity. To take one example,

the hidden surface elimination which is trivially �(n

2

) in the usual complexity

model (ergo \uninteresting") becomes very interesting when we consider output-

sensitive algorithms. See [Berg, Bern] for some interesting results that exploit

output-sensitivity in this problem.

1.2 Precision-Sensitive Approach to 3ESP

This paper focuses on the 3-dimensionalEuclidean shortest path (3ESP) prob-

lem: given a collection of polyhedral obstacles in R

3

, and source and target

points s; t 2 R

3

, construct an obstacle-avoiding polygonal path

p

min

= (s; x

1

; : : : ; x

k

; t); (1)

k � 0, from s to t with minimal Euclidean length. Here, the x

i

's are called

breakpoints of the path, and are required to lie on edges of the obstacles. This

problem is ideal for introducing precision-sensitivity because conventional ap-

proaches are doomed to failure due to its NP -hardness, a result of Canny and

Reif [CR]. It is also useless to introduce output-sensitivity here because the

output-size is O(n).

On the other hand, something interesting is going on in the bit model: the

algebraic numbers that describe the lengths of the shortest paths may have ex-

ponential degrees (see subsection 2.2). This means that to compare the lengths

of two combinatorially distinct shortest paths may require exponentially many

bits. \Combinatorially distinct" means that the respective paths pass through

di�erent sequences of edges, and each is shortest for its edge sequence. In this

paper, we use the relative di�erence between the length d

1

of a shortest path and

the length d

2

of the combinatorially distinct next shortest path as our measure

of \precision-sensitivity"

� = �(I) := (d

2

� d

1

)=d

1

: (2)

�

Interestingly, Bl�omer and Yap [Bl, Bl2] noted that the equality of two sums of square roots

can be decided in polynomial time.

3



It should be noted that � may be 0. One possibility for � = 0 is when the shortest

path passes through a concave corner. Taking into account of � is a crucial step

towards a practical 3ESP algorithm, but it is not enough.

First we clarify some further aspects of 3ESP. The exponential behavior of

3ESP has two sources: not only is the bit complexity apparently exponential,

the number of combinatorially distinct shortest paths can also be exponential. In

fact, Canny and Reif's NP -hardness construction exploits the latter property of

3ESP. We can separate the combinatorial aspects from the algebraic aspects as

follows. De�ne the combinatorial 3ESP problem which, with input as in 3ESP,

asks for a shortest edge sequence

S

min

= (e

1

; : : : ; e

k

); (3)

such that x

i

2 e

i

for i = 1; : : : ; k, where the x

i

are the breakpoints of some

shortest path p

min

given by (1). Once S

min

is obtained, there are e�ective

numerical methods to zoom into the actual breakpoints x

1

; : : : ; x

k

, as we shall

see. Thus the \purely" numerical part of ESP is delegated to a subsequent phase

of computation.

How hard is the combinatorial 3ESP problem? De�ne the implicit parameter

s(I) of an input I to 3ESP to be s = s(I) = j log(jd

1

� d

2

j)j. We say an

algorithm for the combinatorial 3ESP problem is strongly precision-sensitive if

it is polynomial-time in the parameters n; L; s. By a careful analysis of the

Canny-Reif proof, we show:

Theorem 1 If there exists a strongly precision-sensitive algorithm for the com-

binatorial 3ESP problem then USAT can be solved in polynomial-time.

Here USAT is the unambiguous satis�ability problem, commonly believed

not to be in polynomial-time [Pa2, VV]. Note that the parameter s(I) is an

absolute measure while our sensitivity parameter �(I) is a relative one. But this

di�erence is not crucial. What is more important is the fact that s(I) is roughly

logarithmic in �(I). In some sense, this theorem justi�es our choice of �(I).

1.3 Towards a Practical Algorithm

In hopes of developing a \practical algorithm", Papadimitriou [Pa1] introduces

the approximate 3ESP problem. The input is as in 3ESP plus a new input

parameter " > 0. The problem is to compute an "-approximate shortest path,

i.e., one whose length is at most (1 + ") times the length of the shortest path.

The bit-complexity of this approach is resolved in [CSY], yielding an algorithm

with time

T (n;M;W ) = O((n

3

M logM + (nM )

2

) � �(W )); (4)

where M = O(nL=�), W = O(log(n=�)+L) and �(W ) = O(W logW log logW )

is the complexity of multiplying two W -bit numbers. Despite initial hopes, this

result is still impractical, even for small examples, because the stated complexity
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is, roughly speaking, achieved for every input instance. Our goal is to remedy

this by introducing precision-sensitivity.

Recall that Papadimitriou's approach is to subdivide each obstacle edge into

segments in a clever way and, by treating these segments as nodes in a weighted

graph, to reduce the problem to �nding the shortest path in a graph.

In order to introduce precision-sensitivity, we exploit the alternative scheme

introduced in [CSY] for subdividing edges into segments. The subdivision is

parameterized by a choice of � > 0. Our scheme has the property that the

�=2-subdivision is a re�nement of the �-subdivision, hence we can incrementally

reduce the approximation error. The idea is to discard - in each re�nement step

- all segments that are provably not used by the shortest path; what remains are

called essential segments. While it is obvious that such an implementation can

drastically decrease running time in practice, we show that { depending on the

parameter � { this improvement is also asymptotical.

Assuming non-degeneracy (see section 2.1) of S

min

in (3), we prove the

following theorem:

Theorem 2 There is an incremental algorithm to compute an "-approximate

shortest path in time that is polynomial in 1=� and 1=". Omitting logarithmic

factors, the dependency on 1=" is only linear rather than quadratic.

In case the shortest path sequence S

min

is unique (i.e., � > 0), we can

use techniques from mathematical optimization as soon as we have reached a

re�nement in which only S

min

is left. The convergence depends on the spectral

bounds

�; �

corresponding to the minimum and maximum (respectively) eigenvalue of the

Hessian H of the path length function l(�

1

; : : : ; �

k

), where �

1

; : : : ; �

k

2 R para-

meterize the points x

1

; : : : ; x

k

on S

min

.

Theorem 3 The length of the shortest path can be approximated to relative

error " in time polynomial in 1=�; log(1="); n; L and the spectral bounds �; �.

This theorem, and the remark in theorem 2 about a linear dependency on

1=" are of practical signi�cance.

It is important to note that the given running times in theorem 2 and 3 are

upper bounds, they are tight only for " � �. For " > �, and in particular for

� = 0, the running time of both algorithms can be bounded by the running time

of the non-incremental approach in [CSY].

In section 5, we shall provide some experimental results, addressing the prac-

ticability of the incremental technique.

2 Preliminaries

Throughout the paper, we assume that the input is given by a source point s,

a target point t, and a set of pairwise disjoint polyhedral obstacles, with a total
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of less than n edges. For each obstacle edge e, denote its endpoints by s(e), t(e)

and write e = s(e)t(e). Let [e] denote the in�nite line through e. We assume

that s, t as well as endpoints of edges are speci�ed by L-bit rational numbers.

For any point q 2 R

3

, kqk denotes its Euclidean norm. The scalar product of

two k-tuples x; y is denoted hx; yi.

2.1 Basic Properties

We assume the notation in the preceding introduction. In particular, p

min

is

a global shortest path from s to t in the free space FS de�ned by the obstacles.

Here, FS is de�ned as the closure of the complement of the union of the obstacles.

First we �x an edge sequence S = (s; e

1

; : : : ; e

k

; t). The sequence S is degen-

erate if s 2 [e

1

], t 2 [e

k

], or [e

j

] = [e

j+1

] for some j 2 f1; : : : ; k � 1g. Note that

non-degeneracy of S excludes two edges e

i

and e

j

from lying in a common line

[e

i

] = [e

j

] only when ji� jj = 1, but not if ji� jj > 1.

A path

p = (s; x

1

; : : : ; x

k

; t); (5)

is called an S-path if x

i

2 [e

i

] for all i. An S-path p is admissible if x

i

2 e

i

for

all i.

A breakpoint x

i

of p that lies on the line between its neighboring vertices,

x

i

2 x

i�1

x

i+1

, is called redundant. W.l.o.g. we may assume that p

min

in (1)

contains no redundant vertices.

We will parameterize points x

i

2 [e

i

] by a scalar �

i

according to the equation

x

i

= s(e

i

) + �

i

u(e

i

); with u(e

i

) =

t(e

i

)� s(e

i

)

kt(e

i

)� s(e

i

)k

:

Let x

0

= s and x

k+1

= t. Then the polygonal path p = (s; x

1

; : : : ; x

k

; t) over S

has length

l

S

(�

1

; : : : ; �

k

) =

k

X

i=0

kx

i+1

� x

i

k:

We also write jpj for l

S

(�

1

; : : : ; �

k

). Let p

min

(S) be de�ned to be the path p

over S that minimizes the function l

S

(�

1

; : : : ; �

k

), without consideration of the

obstacles and without requiring admissibility.

A necessary condition for l

S

: R

k

! R to take its global minimum at � =

(�

1

; : : : ; �

k

) is that all partial derivatives vanish at �. This condition can be

interpreted as Snell's law, and, as the next lemma will reveal, is also a su�cient

condition to specify shortest paths:

Lemma 1 The function l

S

: R

k

! R is convex. If the shortest path over the

lines [e

i

] has no redundant breakpoints, then l

S

has a unique minimizer � 2 R

k

.
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Proof: (1) Let l = l

S

=

P

k

i=0

l

i

, where

l

i

(�

1

; : : : ; �

k

) := jjx

i+1

� x

i

jj:

We may interpret l

i

as a function in 2 variables �

i

and �

i+1

(unless i = 0 or k,

in which case l

i

depends on a single variable �

1

or �

k

).

To show that l is convex, it su�ces to show that each of the l

i

is convex (the

sum of convex functions is convex). The convexity of l

i

is a special case of a

general result in convex analysis: for any norm jj:jj : R

k

! R and any linear

function f : R

m

! R

k

, the function jjf jj : R

m

! R is convex (see e.g. [Ro]).

(2) The convexity of l guarantees that every local minimum of l is a global

minimum, say, d

S

, and that the set of points � 2 R

k

satisfying l(�) = d

S

(the

set of minimizers) is convex.

Assume that there are two distinct minimizers �

1

; �

2

2 R

k

. Then every

�(t) = (�

1

(t); : : : ; �

k

(t)) := �

1

+ t(�

2

� �

1

), t 2 [0; 1], is a minimizer, and hence

l(�(t)) � const. But

l(�(t)) =

k

X

i=0

l

i

(�(t));

where

l

i

(�(t)) =

p

A

i

(t� B

i

)

2

+C

i

with A

i

� 0 and C

i

� 0.

This can be constant only if each of the functions l

i

(�(t)) is linear in t, i.e.,

A

i

= 0 or C

i

= 0 (this directly follows from @

2

l(�(t))=@t

2

� 0).

Now let j be the �rst index for which �

i

(t) is not constant, i.e., �

i

(t) �

const 8 i = 1; : : : ; j � 1 and �

j

(t) 6� const (j may be equal to 1).

The fact that l

j

(�(t)) is linear then implies that x

j�1

2 [e

j

]: the point

x

j

(t) := s(e

j

) + �

j

(t)u(e

j

) is moving on the line [e

j

] while keeping distance

l

j

(�(t)) to the �xed point x

j�1

= s(e

j�1

) + �

j�1

(t)u(e

j�1

).

Thus x

j�1

and x

j

(t) lie on the same line [e

j

] for all t 2 [0; 1]. From Snell's

law it follows that also x

j+1

(t) must lie on this line, showing that the vertex

x

j

(t) is redundant. 2

Note that, in contrast to this proof, the known proof for the uniqueness of

the shortest path [SS] (see also [Ya, appendix]) uses geometrical arguments.

Lemma 2 Let S = (s; e

1

; : : : ; e

k

; t) be non-degenerate.

(i) If [e

i

] \ [e

i+1

] = ; for all i then the Hessian H = H(�) of l

S

= l

S

(�) is

positive-de�nite.

(ii) If a path p = (s; x

1

; : : : ; x

k

; t) is such that

x

i

62 [e

i�1

] [ [e

i+1

]; i = 1; : : : ; k;

then H(�) is locally positive-de�nite at p.
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Proof: The Hessian H = H(�) of l = l

S

is a tridiagonal k � k-matrix

H =

0

B

B

B

B

B

B

@

a

1

b

1

b

1

a

2

b

2

b

2

.

.

.

b

k�1

b

k�1

a

k

1

C

C

C

C

C

C

A

:

Let H

i

be the Hessian of the function l

i

= jjx

i+1

� x

i

jj, interpreted as function

over �

i

and �

i+1

if 1 � i � k � 1, and over �

1

(resp., �

k

) if i = 0 (resp., i = k):

H

0

= (a

�

1

); H

i

=

 

a

+

i

b

i

b

i

a

�

i+1

!

; H

k

= (a

+

k

);

with

a

+

i

=

@

2

l

i

@�

2

i

; a

�

i+1

=

@

2

l

i

@�

2

i+1

; b

i

=

@

2

l

i

@�

i

@�

i+1

:

Then H and the H

i

are related by a

i

= a

�

i

+ a

+

i

. Abusing the notation, we may

write H = H

0

+ : : :+H

k

.

To prove that H is positive-de�nite, it remains to show that the determinant

of H is not zero. Write

H =

0

B

B

B

@

a

1

b

1

b

1

H

0

1

C

C

C

A

; H

+

=

0

B

B

B

@

a

+

1

b

1

b

1

H

0

1

C

C

C

A

:

where H

0

is the matrix obtained by deleting the �rst row and �rst column of H.

Then

det(H) = det(H

+

) + a

�

1

det(H

0

):

As all H

i

are positive-semi-de�nite, it follows H

+

= H

1

+ : : :+H

k

is positive-

semi-de�nite, and thus det(H

+

) � 0.

This implies

det(H) � a

�

1

det(H

0

):

Continuing recursively, we �nally get

det(H) � a

�

1

� : : : � a

�

k

:

Abbreviating

v

i

=

x

i+1

� x

i

jjx

i+1

� x

i

jj

;
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we have

a

�

i

=

1� hv

i�1

; u(e

i

)i

2

jjx

i

� x

i�1

jj

:

This is strictly positive under conditions (i) or (ii) in the statement of the lemma.

Hence det(H) > 0. 2

2.2 Bit Complexity

The goal of this subsection is to provide some background on the algebraic

complexity of 3ESP.

First, we specify shortest paths over edge sequences algebraically. Let S =

(s; e

1

; : : : ; e

k

; t) be a �xed edge sequence.

For given intervals I

i

2 f f0g; fje

i

jg; [0; je

i

j] g, we de�ne a Boolean formula

(in the free variables �

1

; : : : ; �

k

)

B

S

(I

1

; : : : ; I

k

) :

k

^

i=1

(Essential(e

i

) ^ Optimal(e

i

))

with the predicate

Essential

i

, h

x

i+1

� x

i

kx

i+1

� x

i

k

;

x

i

� x

i�1

kx

i

� x

i�1

k

i

2

6= 1

specifying that x

i

is non-redundant, and the predicate

Optimal

i

,

8

>

<

>

:

Snell(e

i

) ; I

i

= [0; je

i

j]

�

i

= 0 ; I

i

= f0g

�

i

= je

i

j ; I

i

= fje

i

jg

specifying that { according to I

i

{ the point x

i

is �xed at an endpoint of e

i

or

obeys Snell's law Snell(e

i

) at some point in the relative interior of e

i

(so I

i

only

serves as a `ag').

It is obvious that the predicates Essential

i

and Optimal

i

can be written as a

Boolean combination of a constant number of polynomial inequalities of bounded

degree over the variables �

i�1

; �

i

; �

i+1

and a constant number of `additional

variables'. (Note that roots

p

r can be eliminated by introducing a new variable

a, substituting

p

r by a and adding (a

2

= r ^ a � 0) to the formula. The

variable a may be introduced by the quanti�er 9.)

As a corollary of lemma 1, we get

Lemma 3 For any �xed edge sequence S and intervals I

1

; : : : ; I

k

, the formula

B

S

(I

1

; : : : ; I

k

) is satis�ed by at most one algebraic point � = (�

1

; : : : ; �

k

). If

p

min

(S) is a shortest path over S with non-redundant vertices x

i

= s(e

i

) +

�

i

u(e

i

), then there exist intervals I

1

; : : : ; I

k

such that � satis�es B

S

(I

1

; : : : ; I

k

).

9



In particular, there exists a sequence S = (s; e

1

; : : : ; e

k

; t) and intervals

I

1

; : : : ; I

k

such that the shortest path p

min

is parameterized by the single solution

� of B

S

(I

1

; : : : ; I

k

).

To derive some upper bounds on the bit complexity of the 3ESP problem, we

shall use several results on quanti�er elimination and root separation (see e.g.

[Re]):

� Quanti�er elimination:

Given a Tarski formula with free variable y

(P) 9x 2 R

n

:

_

i

^

j

p

ij

(x; y)�

ij

0

with � m polynomials p

ij

(x; y) each of degree � d, with integer coe�cients

of bit-size � L, and �

ij

2 f>;�;=g, then there exists an equivalent

predicate

(P')

_

i

^

j

h

ij

(y)�

0

ij

0

with (md)

O(n)

polynomials h

ij

of degree (md)

O(n)

and coe�cients of bit-

size L(md)

O(n)

. (`Equivalent' means that (P) is true for a �xed y = c if

and only if (P') is true for y = c.) The predicate (P') can be constructed

in time polynomial in L and (md)

O(n)

.

� Cauchy's bound:

Given any univariate polynomial A(y) =

P

d

i=0

a

i

y

i

with integer coe�-

cients a

i

of bit-size � L, every root � 6= 0 of A satis�es j�j � 2

�2L

.

� Root separation:

If � and � are two distinct roots of A(y), then j� � �j � (d2

L

)

�Cd

(for

some C > 0 that does not depend on A). Isolating intervals for all roots

of A(y) can be computed in time polynomial in L and d.

Let us consider the formula B

S

(I

1

; : : : ; I

k

) from lemma 3. With the above

results we immediately get:

Lemma 4 Every coordinate �

i

of a parameter tuple � satisfying B

S

(I

1

; : : : ; I

k

)

has a de�ning polynomial h

�

i

of degree n

O(n)

with integer coe�cients of bit-size

Ln

O(n)

. The polynomial h

�

i

together with an isolating interval for �

i

can be

computed in time polynomial in L and n

O(n)

.

Proof: Consider the formula

(P1) 9�

1

: : :9�

i�1

9�

i+1

: : :9�

k

: B

S

(I

1

; : : : ; I

k

):

The formula (P1) contains O(n) polynomials in O(n) variables of bounded

degree with rational (resp., integer) coe�cients of size O(L). The stated quan-

ti�er elimination result provides n

O(n)

polynomials h

ij

of degree n

O(n)

, with

integer coe�cients of bit-size Ln

O(n)

.

10



If there is a tuple � satisfying (P1), then �

i

will be a root of one of the

polynomials h

ij

(recall that � is unique).

Now consider the product

h :=

Y

i;j

h

ij

:

Using root separation, we compute isolating intervals for each of the n

O(n)

roots of h. For each root, we can check if it satis�es (P1).

Clearly, the whole computation can be done in time polynomial in L and in

n

O(n)

. 2

To determine which choice of intervals I

1

; : : : ; I

k

speci�es the shortest path

over a given sequence S, and to determine the shortest path p

min

, we need to

compute and compare shortest path lengths.

Lemma 5 Let � and �

0

be solutions of B

S

(I

1

; : : : ; I

k

) and B

S

0

(I

0

1

; : : : ; I

0

k

0

), re-

spectively, and let p and p

0

be the corresponding paths. Then jpj = jp

0

j or

j(jpj � jp

0

j)j � 2

�Ln

Cn

(for a global constant C > 0).

Proof: The di�erence in path length between p and p

0

is the unique solution

y of

(P2) 9�

1

: : : �

k

9�

0

1

: : :�

0

k

0

:

(y =

k

X

i=0

jjx

i+1

� x

i

jj �

k

0

X

i=0

jjx

0

i+1

� x

0

i

jj)

^ B

S

(I

1

; : : : ; I

k

) ^ B

S

0

(I

0

1

; : : : ; I

0

k

0

)

The formula (P2) can again be written as a Tarski formula. Analogous

to lemma 4, one can use quanti�er elimination to obtain a polynomial h with

h(y) = 0. The coe�cients of h are of bit-size Ln

O(n)

. The claim follows imme-

diately from Cauchy's bound. 2

In order to actually compute the shortest path p

min

, we have to �lter out

those shortest paths, or solutions to B

S

(I

1

; : : : ; I

k

), which would collide with

obstacles. Having calculated the parameter � satisfying B

S

(I

1

; : : : ; I

k

), this

amounts to answering the query `x

i

x

i+1

2 FS?', for i = 0; : : : ; k. But this query

can be expressed as Tarski sentence in a �xed number of variables, and can be

decided in time polynomial in L and n

O(n)

. We �nally obtain:

Theorem 4 It is possible to compute algebraic representations of all combinat-

orially distinct shortest paths in time polynomial in L and n

O(n)

.

11



Here, we may assume that each shortest path is represented by a sequence

(S; I

1

; : : : ; I

k

; �

1

; : : : ; �

k

) where S = (s; e

1

; : : : ; e

k

; t) is an edge sequence, the

I

j

's are interval ags for S, and the �

j

satisfy the formula B

S

(I

1

; : : : ; I

k

). Fur-

thermore, each �

j

is represented by one of its isolated interval representations.

3 Combinatorial 3ESP is as hard as USAT

Recall that the exponential complexity of the 3ESP problem has a combinat-

orial and an algebraic source. We give evidence that 3ESP remains intractable

even after eliminating the algebraic source of complexity.

We briey review the Canny-Reif construction ([CR], section 2.5): Given a

3SAT-formula f in conjunctive form with m clauses and n variables b

1

; : : : ; b

n

,

it is possible to construct an environment E(f) such that the following holds for

a �xed \reference length" l = 2

3n

, and � = 2

�nm�3n�4

: To each instantiation

of (b

1

; : : : ; b

n

), there corresponds an edge sequence S = S(b

1

; : : : ; b

n

) such that

the shortest path p over S lies in free space and satis�es

jpj 2

(

[l; l +�] if f(b

1

; : : : ; b

n

) = 1;

[l + 2�;1) if f(b

1

; : : : ; b

n

) = 0:

The number of edges of E(f) as well as the maximal bit-size of coordinates is

polynomial in n and m. Deciding the satis�ability of f is reduced to deciding if

the shortest path in E(f) has length � l +�.

A careful analysis shows the following property of E(f): if the formula f

is unique satis�able, i.e., by exactly one instantiation of (b

1

; : : : ; b

n

), then the

shortest path in E(f) is unique and the gap in length between this path and

any path that passes over a di�erent edge sequence is single-exponential (i.e.,

> c

�nm

for some c > 1).

The argument is as follows: The basic construction elements in [CR] are

parallel, 2-dimensional plates with (for ease of description) 1-dimensional slots.

The construction is based on a scene with 2

n

shortest paths, with length l

0

�

l + �. In the �nal step, obstacles are introduced which stretch all paths that

correspond to non-satisfying instances by at least �. It remains to verify that

there are no further locally shortest paths that use other edge sequences and have

length close to l

0

. The use of parallel plates ensures that these paths would have

additional legs between slots. The spacing between plates and between the break

points of the shortest paths in the slots gives a lower bound on the additional

length, and is again roughly �. Finally, the gap � is single-exponential.

Now assume that we have a strongly precision-sensitive algorithm as de�ned

in subsection 1.2. Consider the satis�ability problem restricted to 3SAT formulas

that are satis�able by at most one variable instance, known as the unambigu-

ous satis�ability problem USAT. Assume we are given such a formula f . By
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constructing E(f) and running our algorithm, we would be able to decide the

satis�ability of f in polynomial time. This proves theorem 1.

4 Approximation

For simplicity, we shall describe algorithms in this section in the algebraic

framework. It is important to note that the hardness result of section 3 is

not valid in this model. However, as in [CSY], the technique extends to the

bit framework. In particular, it su�ces to compute intermediate numbers to

precision W = O(log(n=") + L).

We review the approximation scheme for 3ESP in [CSY]: the algorithm

mainly consists of three steps. In the �rst step, the edges are subdivided into

segments using a method that depends on some given parameter "

0

> 0. This

"

0

-subdivision (as it is called) satis�es the following properties:

Lemma 6 ([CSY])

(1) Each edge is divided into O(L="

0

) segments.

(2) Each segment � of the subdivision satis�es j�j � "

0

dist(s; �).

(3) The "

0

=2-subdivision is a re�nement of the "

0

-subdivision.

In the second step of the algorithm, the visibility graph G

0

= (V

0

; E

0

) of

the segments is constructed. The nodes of the graph comprise the subdivision

segments including s and t. The edges comprise pairs (�; �

0

) of segments that

can \see each other", meaning that there exists x 2 � and x

0

2 �

0

such that

xx

0

2 FS. In the third step, the visibility graph G

0

is weighted by assigning

to each edge (�; �

0

) the Euclidean distance between the midpoints of � and �

0

.

Finally, the shortest path � in G

0

is computed by running Dijkstra's shortest

path algorithm. This path is a segment sequence � = (s; �

1

; : : : ; �

k

; t). Its

\weight' according to the midpoint distances is further denoted as j�j.

The following lemma relates j�j to jp

min

j (and shows the correctness of the

approximation scheme):

Lemma 7 For "

0

= "=Cn, C a given constant, � satis�es j�j � (1+2"=C)jp

min

j

and jp

min

j � (1 + 2"=C)j�j.

Proof: Consider the path �

min

in G

0

which corresponds to p

min

(�

min

is equivalent to a path that connects the midpoints of the segments used by

p

min

). By the triangle inequality, the weight of each leg (�

i

; �

i+1

) of �

min

can

be bounded by the length of the corresponding leg of p

min

, plus the length of

the segments �

i

and �

i+1

. Hence, we obtain

j�j � j�

min

j � jp

min

j+ 2

k

X

j=1

j�

j

j:

With k � n, j�

j

j � "

0

dist(s; �

j

), and dist(s; �

j

) � jp

min

j, we get

j�j � (1 + 2"=C)jp

min

j:
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To prove the second inequality, we consider the path p over � which connects

pairwise visible points x

1

i

2 �

i

, x

2

i+1

2 �

i+1

, and which connects the points x

1

i

,

x

2

i

on each �

i

by additional legs. By the triangle inequality, we obtain

jp

min

j � jpj � j�j+ 2

k

X

j=1

j�

j

j:

With k � n, j�

j

j � "

0

dist(s; �

j

), and dist(s; �

j

) � j�j, we �nally get

jp

min

j � (1 + 2"=C)j�j:

2

4.1 An Incremental Algorithm

The above algorithmuses a �xed subdivision. In the following, we shall exploit

property (3) in lemma6 by successively halving the error bound ", and by re�ning

only those segments which the global shortest path could potentially use.

Let "

i

= 2

�i

and "

0

i

= "

i

=Cn, for the �xed constant C = 32. (This is a

signi�cant improvement to the conference version of this paper where we divide

by Cn

2

instead of Cn.) Let G

i

= (V

i

; E

i

) be the weighted visibility graph for

any set of segments V

i

ful�lling the basic inequality (2) of lemma 6, and let l

i

denote the length of the shortest path from s to t in G

i

. By lemma 7, we get

l

i

� (1 + "

i

=16)jp

min

j and jp

min

j � (1 + "

i

=16)l

i

.

Lemma 8 If � = (s; �

1

; : : : ; �

k

; t), k � n, is a path in G

i

with j�j > (1+"

i

=4)l

i

,

then any path p over � satis�es jpj > jp

min

j.

Proof: Assume jpj � jp

min

j. By the triangle inequality, we get

j�j � jpj+ 2

k

X

j=1

j�

j

j:

With k � n, j�

j

j � "

i

dist(s; �

j

)=32n and dist(s; �

j

) � jpj � jp

min

j, we get

j�j � (1 + "

i

=16)jp

min

j:

With jp

min

j � (1 + "

i

=16)l

i

, we �nally get

j�j � (1 + "

i

=4)l

i

;

contradiction. 2

We de�ne the essential subgraph G

ess

i

= (V

ess

i

; E

ess

i

) ofG

i

to be the subgraph

which is spanned by the union of all (s; t){paths � in G

i

with j�j � (1+ "

i

=4)l

i

.
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Corollary 1 If p

min

leads over a segment sequence � = (s; �

1

; : : : ; �

k

; t) in G

i

,

then � is in G

ess

i

.

To approximate a shortest path p

min

by successive re�nement, we need thus

only to consider the segments in V

ess

i

in the next step.

We can compute G

ess

i

as follows: run Dijkstra's single source shortest path

algorithm on G

i

twice, starting at s and starting at t, and assign to each � 2 V

i

the distances d

s

(�) (resp., d

t

(�)) to s (resp., t) in G

i

. This implies l

i

= d

s

(t) =

d

t

(s). Let the weight of edge (�; �

0

) in G

i

be denoted by !(�; �

0

). Then we can

choose E

ess

i

to be the set of all (�; �

0

) 2 E

i

that satisfy

d

s

(�) + d

t

(�

0

) + !(�; �

0

) � (1 + "

i

=4)l

i

:

In practice, G

ess

i

should be signi�cantly smaller than G

i

. In fact, it ap-

proaches the 1-dimensional skeleton formed by all global shortest paths as "

i

!

0. In the next lemma we show that, depending on the precision-sensitivity para-

meter �, the incremental construction of G

ess

i

will eventually resolve the edge

sequence S

min

of the global shortest path p

min

:

Lemma 9 Let "

i

< � and let (�; �

0

) be an arbitrary edge of G

ess

i

with � 2

e; �

0

2 e

0

(e and e

0

are obstacle edges). Then either e = e

0

or (e; e

0

) is an edge

of S

min

.

Proof: The graph G

ess

i

contains a path � = �

1

� (�; �

0

) ��

2

, where �

1

is a

shortest path from s to � and �

2

is a shortest path from �

0

to t. By construction

of G

ess

i

, � satis�es j�j � (1 + "

i

=4)l

i

. Let p = p

1

� (x; x

0

) � p

2

be an admissible

path over �, i.e., a path which realizes the visibility relation (p is a zig-zag path

which uses additional legs on segments). As �

m

, m = 1; 2, is a shortest path in

G

ess

i

, �

m

enters and leaves an obstacle edge e at most once (else, there would

be a cycle and a shortcut on e). Hence, each �

m

leads over k � n segments �

j

.

By the triangle inequality, we get

jpj � j�j+ 4

k

X

j=1

j�

j

j:

With j�

j

j � "

i

dist(s; �

j

)=32n and dist(s; �

j

) � j�j, we get

jpj � (1 + "

i

=4)j�j:

With j�j � (1+ "

i

=4)l

i

and l

i

� (1+ "

i

=4)jp

min

j, we obtain jpj < (1+ "

i

)jp

min

j.

By de�nition of �, p must lie on S

min

. Finally, the edge (�; �

0

) used by p must

lie on the same obstacle edge e of S

min

or must correspond to an edge (e; e

0

) of

S

min

. 2

We are now ready to formulate the incremental algorithm to get a relative

error of " = 2

�r

:
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(1) i := 0; "

0

0

:= 1=Cn;

(2) Compute the initial "

0

0

-subdivision V

0

;

(3) Repeat

(4) Construct the visibility graph G

i

= (V

i

; E

i

);

(5) Compute G

ess

i

= (V

ess

i

; E

ess

i

);

(6) Compute V

i+1

by re�ning V

ess

i

;

(7) i := i+ 1; "

0

i

:= "

0

i�1

=2;

(9) Until i = r + 1.

4.2 Spectral Analysis

Our �rst goal in this subsection is to characterize the behavior of the incre-

mental algorithm for a �xed edge sequence S.

Let l = l

S

, and let again H be the Hessian of l with spectral bounds � and �.

Let � = (�

1

; : : : ; �

k

) be the parameter tuple specifying p

min

(S), and z

j

the break

point of p

min

(S) on e

j

, speci�ed by �

j

. Our goal is to show that a path p over

S whose length di�ers only slightly from jp

min

(S)j must also have a parameter

� which is close to �. Taylor's theorem shows that for any � 2 R

k

, there exists

� 2 R

k

such that

l(�)� l(�) = hrl(�); �� �i+

1

2

h�� �;H(� )(�� �)i: (6)

The �rst term is equal to zero as � minimizes the function l

S

(see section 2.1).

The second term can be bounded by the \spectrum" of H:

�k�� �k

2

� h� � �;H(� )(� � �)i � �k�� �k

2

: (7)

This implies

l(�) � l(�) �

�

2

k� � �k

2

:

Thus, the parameter � of any path p over S with jpj � jp

min

(S)j � ~" satis�es

k�� �k

2

� 2~"=� (for any ~" > 0).

In the next lemma, we consider G

ess

i

after the edge sequence S

min

of the

unique shortest path has been resolved:

Lemma 10 Let "

i

< �, let � 2 G

ess

i

be a segment with � � e, let x 2 � be an

arbitrary point, and let z 2 e be the breakpoint of the shortest path p

min

on e.

Then

jjx� zjj � (2"

i

jp

min

j

�

)

1

2

:

Proof: By lemma 9, we can assume that x = x

j

is the j-th vertex of a path

p over S

min

with jpj � (1 + ")jp

min

j. Accordingly, let z = z

j

be the j-th vertex

of p

min

. Now, let � be the parameter of p, and let � be the parameter of p

min

.
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Setting ~" = "

i

jp

min

j, we get

jjx

j

� z

j

jj= j�

j

� �

j

j � jj�� �jj

� (2"

i

jp

min

j

�

)

1

2

:

2

Now assume we run our incremental algorithm for the �xed edge sequence

S

min

, and are in step i. Then on each edge e

j

, those segments whose distance

from z

j

is more than const �

p

"

i

will automatically not be considered. Here,

const =

p

2jp

min

j=� depends on S but not on i.

By construction, each segment � on e

j

has length j�j � a

j

"

i

=32n (with a

j

the distance from e

j

to the source s). Thus we re�ne at most

C(S) � n"

i

�

1

2

segments on each e

j

in the i-th step, with

C(S) =

32

a

s

2

jp

min

j

�

and a = min

j

fa

j

g.

Let " = 2

�r

be the desired relative error. Summing over i = 1; : : : ; r, we

produce a total of O(r

p

1="

r

) segments. This is a signi�cant improvement

to the original (non-precision sensitive) scheme, which would produce O(1="

r

)

segments.

The described e�ect occurs in the overall algorithmas soon as "

i

< �. Lemma

9 and lemma 10 then imply that the essential subgraph G

ess

i

contains less than

O(nC(S

min

)2

i=2

) segments per edge. On the other hand, if "

i

> �, then G

ess

i

contains O(nL="

i

) = O(nL=�) segments per edge. (This is the number of seg-

ments produced by the non-incremental scheme in [CSY].) This yields:

Lemma 11 The essential subgraph G

ess

i

contains less than

M

i

= O(n(

L

�

+ C(S

min

) � 2

i

2

))

segments per edge.

We note that the number of segments per edge which are produced by the

algorithm in [CSY] is also an upper bound for M

i

.

The visibility relation between segments can be computed separately for each

of the O(r) re�nement steps by a sweep algorithm, as described in [CSY]. The

cost of this algorithm dominates the computation of G

ess

i

. Thus, the running
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time of the i-th step is T (n;M

i

;W ), with T as in equation (4). The running

time of the total algorithm can be bounded by

O(r � T (n;M

r

;W )):

Thus, we have proven theorem 2.

4.3 Path Optimization

With the incremental approach above, we have a tool to determine S

min

in (3)

in time polynomial in 1=�. As soon as there is only one possible edge sequence (or

only a few combinatorially distinct sequences) left, it is however more e�cient

to use an optimization technique to approximate the actual shortest path. We

propose to use a steepest descend method (see e.g. [Go, section C-5]):

Let the spectrum of H be bounded below by � > 0 and above by � (choose

� as the smallest, and � as the biggest eigenvalue of H). We can derive explicit

values for these bounds (especially for �) as described in subsection 4.4.

Let I = [

1

2�

;

3

2�

]. De�ne the sequence

�

i+1

= �

i

� �rl(�

i

)

with � 2 I and �

0

the known approximation. Then this sequence converges to

the unique minimizer � of l at the rate of a geometric progression with ratio

q = 1� �=�:

jj�

i+1

� �jj � qjj�

i

� �jj � q

i+1

jj�

0

� �jj:

With

jjl(�

i

)� l(�)jj �

�

2

jj�

i

� �jj

2

and

jj�

0

� �jj

2

�

2

�

(l(�

0

)� l(�)) �

2�

�

l(�);

we get

jjl(�

i

)� l(�)jj �

��

�

q

2i

jp

min

j:

To achieve jjl(�

i

) � l(�)jj < 2

�r

jp

min

j, it is su�cient to choose i > N with

N = �(

�

�

(r + j log �j+ j log

�

�

j)):

Again, it is important to note that this method { e.g., because of the freedom

of choice for � { easily extends to the bit framework. The running time of the

whole algorithm can be resolved as

O(log(1=�) � T (n;M

�

;W ) + Nn�(W ));

where M

�

= O(nL=�). This �nally proves theorem 3.
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4.4 Spectral Bounds

In this subsection, we discuss two di�erent methods to get bounds on the

spectrum of the Hessian H of the path length function l = l

S

min

. We shall use

the notations of section 2.

By the theory of Gerschgorin circles, the eigenvalues of H are bounded above

by � = max

i

f a

i

+ jb

i

j+ jb

i�1

j g, with a

i

and b

i

as in the proof of lemma 2.

With the help of �, we can directly give a bound on �. As the determinant

of H is equal to the product of all k eigenvalues of H, we get

� �

det(H)

�

k�1

;

where the determinant of H satis�es the inequality

det(H) �

k

Y

i=1

a

�

i

:

A crucial de�ciency of the above bound is that it is exponential in k, the

number of intermediate vertices of p

min

.

A bound on � not depending on k can be obtained by a method based on

the theorem of Courant-Fischer (see [Wi], pp. 101-102):

Let A, B and C be positive-semi-de�nite symmetricmatrices withC = A+B,

and � (resp., �) the smallest eigenvalue of A (resp., B). Then each eigenvalue

 of C satis�es  � � + �. Assuming k to be even (the case of odd k can be

similarly treated), we split H = A +B according to

A =

k=2

X

i=0

H

2i

; B =

k=2

X

i=1

H

2i�1

:

The matricesA and B are block matrices, and the eigenvalues are the eigenvalues

of the H

i

. It follows that

� � minf �

i

; i = 0; : : : ; k g;

where �

i

is the smallest eigenvalue of H

i

. This bound has the nice property that

it depends only on pairs of edges of S

min

.

5 Experimental Results

The preceding algorithms for the approximate 3ESP problem have a high poly-

nomial dependency on the number of edges n or the desired error bound ". But

these theoretical bounds need not reect the \average behavior" or practical

situations. This suggests some empirical studies.
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Horizontal Obstacles 1

Steps 0 2 4 6 8 10

Error 1.6771 0.4193 0.1048 0.0262 0.0066 0.0016

Length 2.4852 2.3746 2.3290 2.3252 2.3250 2.3250

Segments 19 76 224 186 366 728

Table 1

To verify the practicability of our incremental approach, we implemented a

simpli�ed version of the proposed algorithm. The simpli�cation is based on the

observation that for certain special cases, the visibility relation between segments

can be replaced by the visibility of segment midpoints:

Let the obstacles be 2-dimensional facets arranged in h parallel planes sep-

arating the start and target point. Let "

0

= "=h, and consider the subdivision

de�ned in section 4. Then the following holds:

Lemma 12 There exists a free polygonal path p from s to t, which connects

segment midpoints and satis�es jpj � (1 + ")jp

min

j.

Proof: The shortest path p

min

from s to t is strictly monotone in the dir-

ection of the normal vector of the planes containing the obstacle facets. Now

pick an arbitrary vertex v of p

min

and move this vertex on the incident edge

in either direction while keeping the other path vertices �xed. We continue this

deformation until the (deformed) path hits another obstacle facet or until v hits

a segment midpoint. In the �rst case, we consider the intersection point as a
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Horizontal Obstacles 2

Steps 0 2 4 6 8 10

Error 2.2500 0.5625 0.1406 0.0352 0.0088 0.0022

Length 2.4116 2.3263 2.3085 2.3070 2.3069 2.3069

Segments 28 112 290 334 368 430

Table 2

further path vertex, and in the latter case we continue the process by picking

another path vertex until all vertices coincide with segment midpoints. It is easy

to see that this process terminates after at most h deformation steps, introducing

an absolute error of at most h"

0

jp

min

j. 2

Further, we used a uniform subdivision for each edge, by starting with the

edges as segments and successively halving the segments.

Tables 1 and 2 show the result of the incremental algorithm for the situation

in the �gures Horizontal Obstacles 1 and 2. The �gures visualize the situation

after 10 iteration steps: the essential segments are the solid black parts of the

edges, and the shortest paths from start to goal determined so far are drawn

dashed. In the �rst example there are two shortest paths, which are resolved

after the 8th iteration step. In the second example, the unique shortest path is

resolved after the 10th step.

The tables show the guaranteed relative error in path length, the length of

the shortest path in the current visibility graph, and the number of the essential
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segments. The running time of the algorithm is mostly quadratic in this number,

and was { for these examples { in the range of seconds on a state-of-the-art

workstation.

The following behavior has been typical for the examples we tried: until the

error bound "

i

is small enough to discard, the number of essential segments is

doubled per step. Then comes a phase where the segment number does not

change signi�cantly. Once the shortest paths are resolved, the number of essen-

tial segments is doubled every 2 iteration steps, as predicted by the theoretical

results.

6 Final Remarks

We have developed the �rst precision-sensitive algorithms for 3ESP. Beyond its

intrinsic interest, it demonstrates a critical exploitation of precision-sensitivity.

We conjecture that other previously intractable problems may likewise yield to

this approach.

If the sensitivity parameter � is zero, we can modify our approach to take ad-

vantage of the \next sensitivity" parameter, namely the gap between the second

and the third shortest path, etc. A general treatment of this may be interesting.

We note that attention has to be paid to degenerate situations in this problem.

But it seems unavoidable to take this into account because degeneracy seems to

be one cause of intrinsic complexity in 3ESP. Note that there has been some

recent literature on degeneracy in geometric problems.

The merits of the incremental 3ESP seem evident: in our examples, there

would have been no chance to detect the shortest path by the exhaustive approach

[CSY]. Our algorithm is a useful tool when a researcher needs to determine the

real shortest path in a particular small environment.
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