
(Extended Abstract)
A New Constructive Root Bound for Algebraic Expressions

Chen Li Chee Yap∗

Courant Institute of Mathematical Sciences

New York University, New York, NY 10012, USA.

Email: {chenli, yap}@cs.nyu.edu

July 7, 2000

Abstract

Computing effective root bounds for constant algebraic expressions is a critical problem in
the Exact Geometric Computation approach to robust algorithms. Classical root bounds are of-
ten non-constructive. Recently, various authors have proposed bounding methods which might
be called constructive root bounds. For the important class of radical expressions, Burnikel et
al (BFMS) have provided a constructive root bound which, in the division-free case, is an im-
provement over previously known bounds and is essentially tight. In the presence of division,
their bound requires a quadratic blowup in root bit-bound compared to the division-free case.
We present a new constructive root bound that avoids this quadratic blowup and which is
applicable to a more general class of algebraic expressions. This leads to dramatically better
performance in some computations. We also give an improved version of the degree-measure
bound from Mignotte and BFMS. We describe our implementation in the context of the Core

Library, and report on some experimental results.

1 Introduction

There is considerable recent interest in robust implementation of geometric algorithms [17, 14].
Exact Geometric Computation (EGC) [19] is one general approach to achieve robust algorithms.
This is the approach in, for instance, the LEDA [3, 8] and CGAL [6] libraries. A fundamental
task in EGC is to determine the exact sign of a constant algebraic expression E. For example,
the following expression arises in the implementation of Fortune’s sweepline algorithm [5] for the
Voronoi diagram of a planar point set:

E =
a +

√
b

d
− a′ +

√
b′

d′
, (1)

where a, a′, b, b′, d, d′ are integer constants. Typically, the sign determination task reduces to first
finding some root bound b for E. We call b > 0 a root bound for E if the following holds: if E 6= 0
then |E| ≥ b. With this root bound, we can determine the sign of E by computing a numerical
approximation Ẽ such that |E − Ẽ| < b

2 . The sign of E is the same as that of Ẽ if |Ẽ| ≥ b
2 ,
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otherwise we can conclude that E = 0. In practice [19], the precision required in approximation
can be progressively increased until one of two events occurs: either (i) the approximation Ẽ
satisfies |Ẽ| > |E − Ẽ|, or (ii) the approximation satisfies |E − Ẽ| < b

2 . Note that if |E| is large,
then condition (i) will be reached first, and the root bound does not play a role in the actual
complexity of the sign determination. However, if E is zero (as happens in, say, degenerate cases
or theorem proving application [15]), then the root bound plays a critical role. The Real/Expr

Package [19] is the first system to systematically exploit such root bounds. More recently, the
LEDA Library [1] and the Core Library [9, 7] have made such sign determination techniques easily
accessible to any programmer.

The problem of root bounds and more generally, root location, is a very classical one with an
extensive literature (e.g., [10] or [12, chap. 2]). We are mainly interested in bounding roots
away from 0. Some classical bounds are highly non-constructive. If a bound for a root α of a
polynomial P (x) is given in terms of some simple function of P ’s coefficients and degree, it can
be considered constructive. For instance, Landau’s bound says that any non-zero root α of P (x)
satisfies |α| ≥ ‖P (x)‖−1

2 where P (x) =
∑n

i=0 aix
i and ‖P (x)‖2 =

√∑n
i=0 |ai|2. Unfortunately, in

many applications, the coefficients of P (x) are not explicitly given. For instance, in the LEDA and
Core libraries, an algebraic number α is presented as a radical expression which is constructed from
the integers, and recursively built-up using the four arithmetic operations (+,−,×,÷) and radical
extraction k

√· (k ≥ 2). Thus, the notion of “constructive” depends on the presentation of α; we
call such a presentation an expression. If E is a presentation of α, we will write val(E) = α. The
constructive root bound problem is this: given a set E of expressions (e.g., the radical expressions),
give a set of inductive rules for computing a root bound for each expression in E . If b is a root
bound for an expression E, we will call − log2 b a root bit-bound for E. In the worst case, the root
bit-bound determines the complexity of our sign determination algorithms. It is important to
realize that in our paper, the term “expression” roughly corresponds to a directed acyclic graph
in which nodes are labeled by the appropriate constants and operations (see Section 3).

One of the best constructive root bounds for the class of radical expressions is from Burnikel
et al [2] (hereafter called the “BFMS bound”). The BFMS approach is based on a well-known
transformation of an expression E to eliminate all but one division, producing two associated
division-free expressions U(E) and L(E) such that val(E) = val(U(E))/val(L(E)). If E is division-
free, then L(E) = 1 and val(E) is an algebraic integer. For an expression E having r radical nodes
with indices k1, k2, . . . , kr, the BFMS bound is given by

val(E) 6= 0 ⇒ |val(E)| ≥ (u(E)D(E)2−1l(E))−1, (2)

where D(E) =
∏r

i=1 ki, and u(E) and l(E) are (respectively) upper bounds on the absolute
values of algebraic conjugates of val(U(E)) and val(L(E)). For division-free expressions, the
BFMS bound improves to

val(E) 6= 0 ⇒ |val(E)| ≥ (u(E)D(E)−1)−1. (3)

This was shown to be essentially sharp. Note that the root bit-bound in (2) is quadratic in D(E),
while in (3), it is linear in D(E). Our experience is that this quadratic factor can be a serious
efficiency issue. Consider a simple example: E = (

√
x +

√
y) −

√
x + y + 2

√
xy where x, y are

L-bit integers (i.e., |x|, |y| < 2L). Of course, this expression is identically 0 for any x, y. The
BFMS bound yields a root bit-bound of 7.5L + O(1) bits. But in case, x and y are viewed as
rational numbers (with denominator 1), the bit-bound becomes 127.5L + O(1). The example
shows that introducing rational numbers at the leaves of expressions has a major impact on the
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BFMS bound. In practice, this is an important and common situation: for instance, it is usual
to have floating point numbers as input constants in an expression. Since these are special cases
of rational numbers, the BFMS bound becomes quite pessimistic.

Main Results. In this paper, we address two issues raised by the BFMS bound. First, is the
quadratic factor D(E)2 in the root bit-bound of E essential for radical expressions? We show
that it is not: D(E) is sufficient. However, this requires a new approach in which we also need
to maintain, among other things, upper bounds on the leading as well as tail coefficients of the
minimal polynomial of the algebraic number E. The second issue is whether the BFMS technique
can be extended to more general algebraic expressions. For instance, suppose we introduce a new
kind of leaves into our expressions denoted by Root(P (x)) where P (x) is an integer polynomial.
Our new approach can handle this kind of extension. But the framework of BFMS cannot handle
this extension since there is no analogue of the E 7→ (U(E), L(E)) transformation.

For any algebraic number α, we will exploit the following relation:

α 6= 0 ⇒ |α| ≥ (µ(α)deg(α)−1lead(α))−1, (4)

where µ(α) = max{|ξ| : ξ is a conjugate of α}, deg(α) is the degree of the minimal polynomial
Irr(α) of α and lead(α) is the leading coefficient of Irr(α).

For radical expressions without divisions, our new bound turns out to be exactly same as the
BFMS bound; but for those with divisions, our root bit-bound is only linear in D(E). To see the
effects of this improvement, recall the expression in Fortune’s algorithm given in (1). Suppose
the inputs to Fortune’s algorithm are L-bit integers. Then it can be shown that the bit lengths
for a and a′ are 3L, for b and b′ are 6L and for d and d′ are 2L. The BFMS bit-bound for this
predicate is (79L + 30) bits. Our new bit-bound gives (19L + 9) bits. Sellen and Yap [16] have
shown that 15L + O(1) bits are sufficient, and this is the best possible.

Improved degree-measure bound. Mignotte and Burnikel et al [2, 11, 12] presented a con-
structive root bound, called the degree-measure bound. As a side product of our new root bound,
we obtain improvements to this degree-measure bound. This can lead to much improved perfor-
mance, as seen in our theorem proving application [15].

Overview of Paper. In Section 2, we review previous work on constructive root bounds.
Section 3 formalizes the constructive root bound problem. We present our new constructive
root bound in Section 4, and give an improved degree-measure bound in Section 5. In Section 6,
experimental results are reported. We conclude in Section 7.

2 Previous Work

A number of constructive root bounds have been proposed. Here we briefly recall some of them.

Canny’s bound. For a zero-dimensional system Σ of n polynomial equations with n unknowns,
Canny [4] shows that if (α1, . . . , αn) is a solution, then |αi| ≥ (3dc)−ndn

for each non-zero com-
ponent αi. Here c (resp., d) is an upper bound on the absolute value of coefficients (resp., the
degree) of any polynomial in the system. An important proviso in Canny’s bound is that the
homogenized system Σ̂ has a non-vanishing U -resultant. See Yap [18, p. 350] for the general
treatment, based on the notion of “generalized U -resultant”. Such multivariate root bounds are
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easily translated into a bound on expressions, as discussed in [2].

Degree-length and degree-height bounds. The degree-length bound [18] is a general bound
for algebraic expressions, based on Landau’s root bound. A similar degree-height bound based
on Cauchy’s root bound is found in [19]. Here “length” and “height” refer to the 2-norm and
∞-norm of a polynomial, respectively. These results are based on the resultant calculus.

Degree-measure bound. Given a polynomial P (x) = am
∏m

i=1(x − αi), with am 6= 0, the
measure of P , m(P ), is defined as |am| · ∏m

i=1 max{1, |αi|}. Furthermore, the measure m(α) of
an algebraic number α is defined as the measure of Irr(α). It is known that if α 6= 0, we have

1
m(α) ≤ |α| ≤ m(α). Based on Mignotte’s work, Burnikel et al [2] develop recursive rules to
maintain the upper bounds for degrees and measures and call it the degree-measure bound. These
rules are given in the last two columns of Table 3 where M ′(E) and D′(E) are (respectively)
upper bounds on m(E) and deg(E). Similar rules are given in [12]. The degree-measure bound
turns out to be always better than the degree-length bound.

BFMS bound. Burnikel et al [2] discovered a bound for radical expressions (see (2) and (3)).
Their bound for division-free expressions (3) is proved to be better than any of the previous
bounds. But in presence of divisions, the BFMS bound is not necessarily a strict improvement of
the above bounds.

Scheinerman bound. This adopts an interesting approach based on matrix eigenvalues [13].
Let Λ(n, b) denote the set of eigenvalues of n×n matrices with integer entries with absolute value
at most b. It is easy to see that Λ(n, b) is a finite set of algebraic integers. Moreover, if α ∈ Λ(n, b)
is non-zero then |α| ≥ (nb)1−n. Scheinerman gives a constructive root bound for division-free
radical expressions E by maintaining two parameters, n(E) and b(E), satisfying the property
that the value of E is in Λ(n(E), b(E)). These recursive rules are given by the following table.

E n(E) b(E)

1. integer a 1 |a|
2.

√
ab 2 max{|a|, |b|}

3. E1 ± E1 n1n2 b1 + b2

4. E1 × E1 n1n2 b1b2

5. k
√

E1 kn1 b1

6. P (E1) n1 P (nb)

Note that the rule for
√

ab is rather special, but it can be extremely useful. In Rule 6, the
polynomial P (x) is given by

∑d
i=0 |ai|xi when P (x) =

∑d
i=0 aix

i. This rule is not explicitly stated
in [13], but can be deduced from an example he gave. An example given in [13] is to test whether

α =
√

2 +
√

5 − 2
√

6−
√

3 is zero. Scheinerman’s bound requires calculating α to 39 digits while
the BFMS bound says 12 digits are enough.

3 The General Framework

We formalize the constructive root bound problem as follows. For the purposes of this paper, a
“DAG” is an ordered, directed acyclic graph with a unique node that has out-degree 0, called the
root. The DAG is ordered in the sense that the set of incoming edges to each node u is given a
total ordering. Nodes with in-degree 0 are called leaves. Let Ω be a set of algebraic operations:
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each ω ∈ Ω represents a partial function fω : Ck → C where C are the complex numbers and
k = k(ω) is called the arity of ω. If k(ω) = 0 then ω may be identified with an element of C and is
called a constant. An expression over Ω (or Ω-expression) is a DAG where each node u of in-degree
ku is labeled by an operation ω ∈ Ω where k(ω) equals the in-degree of u. In particular the leaves
are labeled by constants. In case1 the DAG is a tree, then we call it a tree expression. Each node
in an expression induces a natural subexpression. Let E(Ω) denote the set of Ω-expressions. The
following classes of expressions are the main ones in this paper:

• Ω0 = {±,×} ∪ Z (where Z are the integers). Thus Ω0-expressions are polynomials.

• Ω1 = Ω0 ∪ {÷}. Thus Ω1-expressions are rational expressions.

• Ω2 = Ω1 ∪ { n
√· : n ≥ 2}. Thus Ω2-expressions are radical expressions.

• Ω3 = Ω2 ∪ {Root(P ) : P ∈ Z[x]}. Our main root bound applies to Ω3-expressions. We
assume the polynomial P is presented by its sequence of n+1 integer coefficients if deg(P ) =
n.

We need to clarify the Root(P ) operation in Ω3 above. This is intended to be a constant referring
to some root α of P . In practice, we will need some method for identifying the root α. For
instance, if α is real and is the kth largest real root of P , we could identify α as “Root(P, k)”.
Instead of k, we could also use, say, an isolating interval for α. It turns out that our root bounds
do not depend on the choice of the root of P , and hence, we normally write “Root(P )” instead
of “Root(P, k)”.

For any set E of expressions, there is a partial function val : E → C that is naturally defined by
applying the appropriate functions fω (ω ∈ Ω) at each node of an expression. We simply write
“E” instead of “val(E)” when the context is unambiguous. All our statements about val(E) are
also conditioned about val(E) being defined. The constructive root bound problem for a class E of
expressions is that of providing a bounding function

B : R
m → R (R = reals)

and a set of “recursive rules” to compute for each E ∈ E a set of real parameters {ai(E) : i =
1, . . . ,m}, plus possibly other non-numeric parameters, such that the following holds:

val(E) 6= 0 ⇒ |val(E)| ≥ B(a1(E), . . . , am(E)).

The rules are “recursive” in the sense that the parameters for each node in the DAG can be
effectively computed from the parameters of its predecessors. In practice, the function B will be
non-negative, with both B and the recursive rules relatively simple to compute. Another desirable
property is that the bound B(a1(E), . . . , am(E)) should be as large as possible. Also, we call m
the order of constructive root bound.

Example: In the degree-measure bound, we compute two parameters, a1(E) and a2(E) where
a1 and a2 are upper bounds on the degree and measure of E. Moreover, the bounding function
B : Rm → R is given by B(a, b) = 1/b (the first parameter is ignored by B). So the order of the
degree-measure bound is m = 2.

1In some literature, our tree expressions are simply called “expressions” while our expressions are essentially

“straightline programs” or “circuits”.
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Table 1: Recursive rules for lc(E) (and associated tc(E) and M(E))

E lc(E) tc(E) M(E)

1. rational a
b |b| |a| max{|a|, |b|}

2. Root(P ) |lead(P )| |tail(P )| ‖P‖2

3. E1 ± E2 lcD2

1 lcD1

2 MD2

1 MD1

2 2D(E) MD2

1 MD1

2 2D(E)

4. E1 × E2 lcD2

1 lcD1

2 tcD2

1 tcD1

2 MD2

1 MD1

2

5. E1 ÷ E2 lcD2

1 tcD1

2 tcD2

1 lcD1

2 MD2

1 MD1

2

6. k
√

E1 lc1 tc1 M1

7. Ek
1 lck

1 tck
1 Mk

1

4 New Constructive Root Bound

In this section, we develop a constructive root bound for Ω3-expressions. In order to obtain a
root bound for an expression E using the relation (4), we need three parameters: deg(E), µ(E)
and lead(E). The definitions of these parameters involve the minimal polynomial of E, which is
usually expensive to compute. Instead, we give recursive rules to maintain upper bounds

D(E), µ(E), lc(E)

on the corresponding parameters.

First we consider D(E), using the same approach as BFMS. Suppose that E has k radical nodes
or root-of-polynomial nodes {r1, r2, . . . , rk}. Assume some topological sorting r1 ≺ r2 ≺ · · · ≺ rk

of these nodes so that if ri is a predecessor of rj then i < j. Clearly, the degree of E over

Q is no more than
∏k

i=1 di where di is the degree of ri over the extension field Q(r1, . . . , ri−1).

Define D(E) =
∏k

i=1 ki where ki is either the index of ri if ri is a radical node, or the degree of
the polynomial if ri is a polynomial-root node. Thus, D(E) is an upper bound on deg(E) since
di ≤ ki for all i.

Given a non-zero polynomial P (x), we denote its leading coefficient, its tail coefficient and its
constant coefficient (respectively) by lead(P ), tail(P ), and const(P ). Note that the tail(P ) is
defined to be the last non-zero coefficient of P . By definition, lead(P ), tail(P ) 6= 0. Also, let
m(P ) denote the measure of P . Given an algebraic number α, we define lead(α), tail(α) and
m(α) as lead(Irr(α)), tail(Irr(α)) and m(Irr(α)) respectively.

Bound on Leading Coefficient and Table 1. We now consider lc(E), which is an upper
bound on |lead(E)|. The admission of divisions makes it necessary to bound tail coefficients as
well. Moreover, we also need to bound the measure of E to help bound |tail(E)| (this is only used
when E has the form E = E1 ± E2). Let tc(E) and M(E) denote upper bounds on tail(E) and
m(E). Table 1 gives the recursive rules to maintain lc(E), tc(E) and M(E).

The upper bound M(E) on the measure of E is shown2 in the last column. We note that the
invariant tc(E) ≤ M(E) is implicitly assumed. In other words, if the rule for tc(E) gives a
value larger than M(E), it is implicit in our rules to replace tc(E) by M(E). Also note that
we introduce a special node for the power operation E = Ek

1 . This is not just a shortcut for
(k − 1) multiplications; it leads to much better bounds too. For example, in computing lc(E) by

2This information is copied from column 2 in Table 3, and is discussed in conjunction with that table.
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Table 2: Recursive rules for µ(E) and ν(E)

E µ(E) ν(E)

1. rational a
b |ab | |ab |

2. Root(P ) 1 + ‖P‖∞ (1 + ‖P‖∞)−1

3. E1 ± E2 µ(E1) + µ(E2) (µ(E)D(E)−1lc(E))−1

4. E1 × E2 µ(E1)µ(E2) ν(E1)ν(E2)
5. E1 ÷ E2 µ(E1)/ν(E2) ν(E1)/µ(E2)

6. k
√

E1
k

√
µ(E1)

k

√
ν(E1)

7. Ek
1 µ(E1)

k ν(E1)
k

naively expanding E into (k − 1) multiplications, we get lc(E) = lc
(Dk+1

1
−1)/(D1−1)

1 ≫ lck
1 . Similar

improvements can be shown for tc(E) and m(E).

The justification of Table 1 is omitted in this extended abstract. The basic techniques come
from resultant calculus. One subtlety arises for expressions of the form E = E1 ± E2. In this
case, resultant calculus gives us a polynomial PE(x) where val(E) vanishes. We can also deduce
a bound on const(PE). Unfortunately, this constant coefficient may vanish and tell us nothing
about tail(E). Hence we need to resort to m(E) as a bound for |tail(E)|.

Bound on Conjugates and Table 2. Now we consider µ(E), which is an upper bound on the
absolute value of all the conjugates of val(E). Because of the admission of divisions, we also have
to maintain ν(E), which is a lower bound on the absolute value of all the conjugates of val(E)
whenever val(E) 6= 0. The recursive rules to maintain these two bounds are given in Table 2. The
most noteworthy entry in Table 2 is the bound for ν(E) when E = E1 ± E2. In this case, we use
the relation (4). In practice, we might want to take the maximum of this value and 1/M(E). We
also note that our bounds on µ(Root(P )) and ν(Root(P )) are based on Cauchy’s root bound [18,
p. 148]. Of course, any of the classical root bounds can be used as convenient.

The justification of Table 2 is omitted in this abstract.

Finally, we obtain the new root bound in the following theorem:

Theorem 1 Given an Ω3-expression E, if E 6= 0, then

|E| ≥ (µ(E)(D(E)−1)lc(E))−1. (5)

By an examination of our tables, we can also assert:

Lemma 2 For a division-free radical expression E, our bound is exactly the same as the BFMS

bound.

5 Improved Degree-Measure Bound

Let E be a Ω3-expression. As explained in Section 2, M ′(E) and D′(E) in Table 3 are the original
degree-measure bound [11, 12, 2]. Recall the definition of D(E) which gives an upper bound
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on deg(E). It is clear that D(E) is never larger than D′(E). Based on D(E), we now give an
improved upper bound on measures (this is denoted by M(E) in Table 3).

Table 3: The original and our improved degree-measure bounds

E M(E) (new) M ′(E) (old) D′(E) (old)

1. rational a
b max{|a|, |b|} max{|a|, |b|} 1

2. Root(P ) ‖P‖2 – –

3. E1 ± E2 MD2

1 MD1

2 2D(E) M ′
1
D′

2M ′
2
D′

12D′

1D′

2 D′
1D

′
2

4. E1 × E2 MD2

1 MD1

2 M ′
1
D′

2M ′
2
D′

1 D′
1D

′
2

5. E1 ÷ E2 MD2

1 MD1

2 M ′
1
D′

2M ′
2
D′

1 D′
1D

′
2

6. k
√

E1 M1 M ′
1 kD′

1

7. Ek
1 Mk

1 M ′
1
k –

When E = Root(P ) for some polynomial P , we use ‖P‖2 as the upper bound M(E) because
‖P‖2 ≥ m(P ). Besides the introduction of the new operations of Root(P ) and power (Ek

1 ) in
Table 3, we give a slightly improved rule for the measure of E1 ± E2. Basically, we can replace
the factor of 2D′

1
D′

2 by 2D. Here is the justification:

Lemma 3 If α and β are algebraic numbers with degrees m,n, respectively, then the measure of

α ± β is bounded by 2dm(α)nm(β)m where d = deg(α ± β).

Proof is omitted for this abstract.

The improvement can be significant when there is sharing of subexpressions. For example, consider

E = ((
√

x +
√

y) − 2
√

x + y + 2
√

x
√

y) · ((√x +
√

y) + 2
√

x + y + 2
√

x
√

y) where x and y are

L-bit integers. The original degree-measure bound for E is 23584L+7148. But when all the common
subexpressions of E are merged, our new bound gives 2896L+1408.

6 Experimental Results

The new constructive root bound has been implemented in our Core Library [7]. Our experiments,
based on version 1.2x of the Core library, will mainly compare the performances of our new bound
and the BFMS bound. All the tests are performed on a Sun Ultra 250 with two UltraSPARC-II
296 MHz CPUs and 512MB main memory. All timings are in seconds.

1. Recall the critical test in Fortune’s sweepline algorithm is to determine the sign of the expression

E = a+
√

b
d − a′+

√
b′

d′ in Equation (1) where a (or a′), b (or b′) and d (or d′) are 3L-, 6L- and 2L-bit
integers, respectively. Our root bit-bound improves the BFMS bound from (79L + 30) bits to to
(19L+9) bits. We generate some random inputs with different L values which always make E = 0,
and put the timings of the tests in Table 4. We also converted the Fortune’s implementation of

Table 4: Timings for Fortune’s expression in (1)

L 10 20 30 50 100 200

BFMS 0.08 0.52 2.51 4.06 28.1 218.76
NEW 0.02 0.08 0.22 0.32 1.72 11.73
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this algorithm to use Core library. We ran the program on two kinds of inputs: (1) First we
test on a non-degenerate data set (100 random points provided in Fortune’s code distribution).
The time for our new bound is 7.87 seconds while the BFMS bound takes 7.96 seconds. This is
not unexpected, since as explained in the introduction, our Core library exploits the precision-
driven technique, and the signs of Fortune’s predicate on non-degenerate inputs can be determined
without reaching the root bounds. (2) We used highly degenerate inputs comprising points on a
(32 × 32) uniform grid with coordinates being L bits long. The timings are reported in Table 5.

Table 5: Timings for Fortune’s algorithm on degenerate inputs

L 10 20 30 50

BFMS 212.02 1929.27 2830.90 9948.63
NEW 83.90 217.37 232.99 404.11

2. Consider the expression E = a+b2
−r

c − d+e2
−r

f with 2r (r ≥ 1) square roots. The BFMS root

bit-bound is (5 ·24r −1)L+2(24r −1), while our new bound gives 2 ·22rL+3(22r −1) bits. Table 6
gives a comparison on these two root bit-bounds, when L = 10 and r = 1, 2, 5, 10. Our experiment
shows that when L = 10, r = 2 and E = 0, sign determination using our new bound takes 5.99
seconds; while with the BFMS bound the test program does not terminate within 2 hours.

Table 6: Root bit-bounds (in bits) when L = 10

r 1 2 5 10

BFMS 820 13300 54525940 5.7 · 1013

NEW 199 835 54259 5.6 · 107

3. The third test is to verify an expression which is identically zero. Let x = a
b and y = c

d (a, b, c, d
are L-bit integers), and E = (

√
x+

√
y)−

√
x + y + 2

√
xy. Our new bound requires computing

(40L + 38) bits, while the BFMS requires (640L + 510) bits. The timings are in Table 7.

Table 7: Timings for Example 3

L 5 10 20 30

BFMS 1830.61 8768.29 > 3hrs > 3hrs
NEW 0.71 3.17 17.04 55.43

In comparing the timings of BFMS with our new method, it is the relative speedup that should
be stressed. We expect similar relative improvements to show up if the comparisons were made
in other systems such as LEDA.

7 Conclusion

We have described a new constructive root bound for a large class of algebraic expressions. The
main achievement is that our root bit-bound is only linear in the algebraic degree (or some upper
bound thereof) of the expression.

We implemented it in our Core library and our experiments show remarkable speedup over the

9



BFMS bound in many cases. Although we have described our bounds for the class of Ω3-
expressions, it should be clear that our methods extend to more general expressions.

A challenge for the future work is to find better ways of bounding tc(E) for addition and sub-
traction nodes. The current bound on tail coefficients based on the polynomial measure seems
to be too conservative for expressions with complex structure and large depth. Also, it may be
possible to improve our current bound on ν(E1 ± E2).
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