
QuickMul: Practical Fast Integer Multiplication

Chee Yap

Jan, 1993. Updated: July, 2000

1 The One-Prime FFT Multiplication

We are interested in “practical” methods for exploiting modular FFT techniques
in the multiplication of very large integers. At issue is to reduce the overhead in
implementing such algorithms. Our method exploits the fact that real machines
has non-negligible machine word sizes (say 32- or 64-bit).

In the following, we are given two N -bit positive integers U, V and we want
to compute their produce W = UV . The method shown below works for N up
to 250 Million bits on a 32-bit machine.

1.1 Computation Modulo M = 2013265921

We want to compute in ZM = {0, 1, . . . , M − 1} where M = 2, 013, 265, 921 is
is a prime number that is less than 32 bits. We can express M as

M = 227m + 1

where m = 15. In the following, we write a ≡ b to mean a − b ≡ 0(modM)
and write (a)M for the value (a mod M) ∈ ZM . We claim that the number 31
is a primitive element of ZM in the sense that {(31i)M : i = 0, 1, . . . , M − 2} =
{1, 2, . . . , M − 1}. It is easy to verify this using Lucas’ criterion: this amounts
to checking that 31(M−1)/p 6= 1 mod M) for p = 2, 3, 5. Setting

ω :=(31m)M = 440564289,

we easily check that ω is a 227-th primitive root of unity.
We use these facts to implement the DFT algorithm on vectors of length 227

in ZM . To implement the FFT, we compute everything mod M . At the level
of machine instructions, we can multiply U, V ∈ ZM as to normal integers at
double precision, and then reduce the result mod M . Alternatively, to avoid
double precision machine arithmetic, we can split a number U mod M into two
parts (U1, U0), each part with at most 16 bits. Then we can multiply two such
numbers with 3 single-precision multiplications (as in Karatsuba’s method).

The implementation of FFT is then straightforward.

1



1.2 Fast Multiplication

Recall our simplified version of the Schöhage-Strassen integer multiplication
algorithm. We break up an N -bit integer U into K integers each with L-bits,
where

N = KL.

We view this as a (2K)-vector, after padding with zeros. The steps are:

1. Compute the (2K)-point DFT of vectors obtained from U and V .

2. Recursively multiply the above two DFT’s, componentwise.

3. Compute the inverse DFT of the resulting vector. This gives us the con-
volution of the original vector.

4. Evaluate the polynomial corresponding to the convolution.

1.3 Non-Recursive Multiplication

Our goal is to carry out this algorithm with values of K and L which will allow
all arithmetic operations to be done with 32-bit machine arithmetic. Also, we
insist that step 2 is to be non-recursive: it must be carried out directly, with
machine multiplications. Let us estimate the largest value of N which can be
achieved this way.

Suppose we break up U and V into K pieces and perform steps 1-3 as
outlined above. This gives us a (2K)-vector W = (W2K−1, . . . , W0) which is
the convolution of the input vectors U and V . We must make sure that W has
not lost any information because we computed in ZM . But each Wi is the sum
of ≤ 2K numbers, each with ≤ 2L bits. Thus Wi has ≤ 2L + lg(2K) bits. So
we need

2L + lg(2K) ≤ lg M.

Note that lg M = 30.9 . . .. Clearly N = KL is maximized by making K as
large as possible. Let Nmax be this maximum value. Letting L = 1, we have
lg(2K) ≤ (lg M)−2 or K ≤ M/8. Thus we have Nmax = ⌊M/8⌋ = 251, 658, 240.
Thus the method works for integers up to 250 megabits or over 7.8 megabytes.

In general, if we are given two numbers with N ≤ Nmax bits, we choose
positive K, L so as to maximize L (and hence minimize K) while subject to

KL ≥ N, 2L + lg(2K) ≤ lg M.

So it is enough to choose

L =

⌊

(lg

(

M

2N
)

)

+ lg(L))/2

⌋

, K = ⌈N/L⌉ .

For instance, with N = 1, 000, 000 then we choose L = 6 and K = 166, 667.
The following table gives the upper bound on N for any L = 1, 2, . . . , 8.

2



L Largest Possible N

8 122,880
7 430,080
6 1,474,560
5 4,915,200
3 47,185,920
2 125,829,120
1 251,658,240

How fast can we multiply two such numbers? Well, FFT on 2K-vectors takes
1.5(2K) lg(2K) arithmetic operations. If N = Nmax, the number of double-
precision machine multiplications is 3 · (2.52 × 108) · 28.9 which is less than 22
megaflops. Counting a factor of 10 for the overhead per flop, this computation
takes 220 seconds on a megaflop machine.

3


