
QuickMul: Practical FFT-based Integer Multiplication

Chee Yap and Chen Li

Department of Computer Science

Courant Institute, New York University

email: {yap,chenli}@cs.nyu.edu

October 6, 2000

1 Introduction

The use of arithmetic packages for arbitrarily large integers is growing in many areas of application, beyond
their traditional applications which is mainly in computer algebra. For instance, the BigInteger class library
that is considered a standard part of the popular Java programming language. One recent area of application
is in robust geometric algorithms (e.g., [4, 2]). The critical algorithm in all these applications is the integer
multiplication algorithm. The fastest known algorithm here is due to Schönhage and Strassen (1971) [5],
achieving the time bound

T (N) = O(N log N log log N) (1)

for multiplying two N -bit integers. In this note, we are interested in exploring integer multiplication al-
gorithms which, like the Schönhage-Strassen algorithm, are based on the Fast Fourier Transform (FFT).

These algorithms may not achieve the record bound (1), but has order T (N) = O(N logO(1) N) with small
implicit constants. The hope is that the small implicit constants may make such algorithms more efficient
for practical values of N . The original Schönhage-Strassen algorithm is relatively complex; a simplified
algorithm is given in [8, chap. 1] with time bound O(N log1+ǫ N) for any ǫ. Such simplified algorithms are
quite easy to implement (as this paper will show). Because such simplifications are not well-known, many
important big number packages continue to avoid FFT-multiplications algorithms. Two notable exceptions
among the freely available packages are David Bailey’s MPFUN package (written in Fortran) [1] and Bruno
Haible’s CLN (written in C++) [3]. For instance, only recently (August 2000) did the widely used Gnu gmp

package implement FFT-multiplication.

2 The One-Prime FFT Multiplication

The present paper implements an FFT-multiplication algorithm described in [7]. The basic idea is to perform
the FFT in the ring ZM = {0, 1, . . . , M−1} of numbers modulo M . Here M is specially chosen prime number.
It was suggested in [7] that such an algorithm should have “small” constants, but input numbers must be
less than some finite but very large limit. This finite limitation plus small constants is what we mean1

by “practical” in the title. Typically, small constants imply that the algorithm is simple. In particular,
some optimization steps in the Schönhage-Strassen algorithm will be discarded. We specify choose two
“game rules” help to further ensure small constants: (1) assume a 32-bit machine and (2) insist that the
multiplication algorithm is non-recursive.

Rule (1) means that we want M at most 32-bits so that arithmetic in ZM can be performed in O(1)
time. Rule (2) does not imply that we do not use recursion at all – indeed, the FFT algorithm which we will
use is inherently recursive. However, the recursion in FFT algorithms is relatively simple and do not incur
large overhead. So, what does rule (2) really exclude? A simplified FFT-based multiplication algorithm has

1For inputs larger than this limit, one can proceed in any number of ways. But we will not discuss this possibility as our

limit seems quite adequate for most applications.

1

the following basic steps. Assume we are given two N -bit integers U and V , and we want to compute their
produce W = UV .

I. Preparation Break up U and V into two K-vectors U and V in (ZM)K (for suitable natural numbers
K and M).

II. DFT Computation Compute their discrete Fourier transforms, DFT (U), DFT (V) ∈ (ZM)K .

III. Component-wise Product Compute the component-wise product of DFT (U) and DFT (V). This
results in a vector in (ZM)K which we may denote as DFT (W).

IV. Inverse DFT Compute the inverse discrete Fourier transform (IDFT) of DFT (W) to obtain W . Ba-
sically, W is the convolution of U and V .

V. Re-assembly It is relatively straightforward to re-assemble W = U · V from W .

Normally, the Component-wise Product step requires recursive calls to the multiplication algorithm. But rule
(2) forbids this. In combination with rule (1), this says that M is at most 32-bits so that the component-wise
product can be done in O(1) machine operations. In a certain sense, such an algorithm is only “O(N log N)”
since the most complex of the above steps takes O(N log N) time. Moreover, the implicit constants in this
big-Oh is small, as noted before. On the other hand, there is no real asymptotics here: our insistence on no
recursion implies a finite limit on N . What is this limit?

2.1 Computation Modulo M = 2013265921

Our goal is to compute in ZM = {0, 1, . . . , M − 1}. We choose M = 2, 013, 265, 921, a prime number with
only 31 bits. Let us now indicate how large N can be with this choice of M . In the field ZM , we need
primitive K-th roots of unity. Moreover, for the recursion to proceed, we need K to be a power of 2. We
can express M as

M = 227m + 1

where m = 15. In the following, we write a ≡ b to mean a − b ≡ 0(mod M) and write (a)M for the
value (a mod M) ∈ ZM . The number 31 turns out to be a primitive element of ZM in the sense that
{(31i)M : i = 0, 1, . . . , M − 2} = {1, 2, . . . , M − 1}. Setting

ω :=(31m)M = 440564289,

we have (ωi)M = (31mi)M 6= 1 for i = 1, 2, 3, . . . , 227−1. But ω227

= 31M−1 ≡ 1, by Fermat’s little theorem.
This proves ω is a 227-th primitive root of unity.

Using ω, we can implement the FFT algorithm on vectors of length K = 227 in ZM . To implement the
FFT, we compute everything mod M . At the level of machine instructions, we can multiply U, V ∈ ZM as
to normal integers at double precision, and then reduce the result mod M . Alternatively, to avoid double
precision machine arithmetic, we can split a number U mod M into two parts (U1, U0), each part with at most
16 bits. Then we can multiply two such numbers with 3 single-precision multiplications (as in Karatsuba’s
method). The implementation of FFT is relatively standard, and we will not discuss this further.

2.2 Fast Multiplication

We break up an N -bit integer U into K integers each with L-bits, where

N = KL.

We view this as a (2K)-vector, after padding with K additional zeros. Let

U = (0, 0, . . . , 0, UK−1, UK−2, . . . , U0).

Similarly, let
V = (0, 0, . . . , 0, VK−1, VK−2, . . . , V0).

2

Let us estimate the largest value of N which can be achieved under rules (1) and (2).
Suppose we compute the 2K-vector W = (W2K−1, . . . , W0) as outlined above. Since W is the convolution

of U and V , it is easy to see that each Wi is the sum of ≤ K numbers, each with ≤ L bits. Thus Wi has
≤ 2L + lg(K) bits. [Note: lg is logarithm to base 2.] So we need

2L + lg(K) ≤ lg M = 30.9

Since L and lg(K) are integers, we have have 2L + lg(K) ≤ 30. Clearly N = KL is maximized by making
K as large as possible. Let Nmax be this maximum value. Setting L = 1, we have lg(K) ≤ (lg M) − 2
or K ≤ M/4 = 503, 316, 480. Since K is a power of 2, we obtain lg(K) = ⌊lg(503, 316, 480)⌋ = 28 or
Nmax = 228. So this method works for integers up to 256 megabits or 32 MB long (counting “1024” rather
than “1000” as one kilo).

In general, given two numbers each with N ≤ Nmax bits, we choose positive K, L so as to minimize K
(and hence maximize L) and subject to

KL ≥ N, 2L + lg(K) ≤ lg M.

The following table gives the upper bound on N for any L = 1, 2, . . . , 8.

L N upper bound lg(K)

8 131,072 = 217 14
7 458,752 = 7 · 216 16
6 1,572,864 = 3 · 219 18
5 5,242,880 = 5 · 220 20
4 16,777,216 = 224 22
3 50,331,648 = 3 · 224 24
2 134,217,728 = 227 26
1 268,435,456 = 228 28

For instance, for N = 1, 000, 000, we choose L = 6 and K = 218 = 262, 144. How fast can we multiply
two such numbers? Well, FFT on 2K-vectors takes 1.5(2K) lg(2K) (properly implemented) arithmetic
operations. This gives 3 · 218 · 19 or about 15 million floating point operations (flops). Counting a factor of
f per flops, we have about 15f seconds on a megaflop machine. This factor f can be estimated for various
platforms. For instance, if f = 20, this is 300 seconds.

3 Implementation of QuickMul

We have implemented our algorithm in C++, in a relatively straightforward implementation. This code and
experimental results can be obtained from our website http://cs.nyu.edu/exact/. The following is a table
comparing our algorithm QMUL (for “quickMul”) to the latest Gnu’s gmp (version 3.1), Bruno Haible’s CLN

(as incorporated into LiDIA). For historical2 reasons, we also include a comparison with the original Gnu’s
big Integer. The platform for these tests is a “Sun UltraSPARC-IIi” 440 MHz CPU machine with 512MB
main memory.

N 10000 50000 100000 200000 500000 1M 2M 5M 10M

QMUL 0.087 0.409 0.865 1.86 4.076 8.9 18.45 92.11 185.38

CLN 0.007 0.054 0.105 0.27 0.746 1.012 2.079 11.171 24.646

GMP 0.002 0.024 0.05 0.106 0.365 1.061 3.048 11.832 31.628

old GNU 0.033 0.801 3.244 13.012 82.134 331.51 1334.40 > 3600 –

Here, N is in bits and time is in seconds. This table shows that in the range N = 50, 000 to 10M, our
implemention is about 8 to 9 times slower than CLN and GMP 3.1. Also, CLN and GMP are comparable
in the tested range, with CLN slowly gaining on and surpassing GMP after 1 million bits.

2It was used by our Core Library before version 1.3.

3

How well has QMUL stood up in this experiment? We note that QMUL is written in C++ only, and in
a relatively straightforward manner (basically, as outlined above). In contrast, both CLN and GMP exploit
level-level optimized assembly code for critical parts, and perform specialized memory management.

Another difference between QMUL and both CLN and GMP is this: QMUL uses a single algorithm
(as outlined above). CLN and GMP are hybrid algorithms in that they use some various multiplication
algorithms for different ranges of N , invoking some FFT-based algorithms for the final range. For instance,
CLN starts with an O(N2) method, then switches to Karatsuba’s O(N log

2
(3)) = O(N1.58) algorithm for

larger N . At 12, 000 digits, it switches over to Schonhage-Strassen’s algorithm. These implies a fairly
complicated code. Our program has less than 400 lines of C++ code.

Considering all these factors, we may have reason to hope that a low-level tuning of our algorithm may
compete directly with CLN and GMP. In particular, we note the experience of Serpette et al [6] in their
implementation of another big number package, BigNum. Low-level optimization improved their speed about
10 fold.

Remarks: Our implementation above reflects an improvement of about 15% after we switched to a “non-
recursive variant” of FFT. FFT is inherently recursive, so this just mean that we manage our own recursion
in FFT calls. There are other “high-level” ideas that may further speedup our code. It may be interesting
to exploit the increasingly available 64-bit architecture by choosing a larger M with similar properties, thus
increasing the range of QuickMul.

References

[1] D. H. Bailey. Multiprecision translation and execution of
Fortran programs. ACM Trans. on Math. Software, 19(3):288–319, 1993. URL for MPFUN software
http://science.nas.nasa.gov/Groups/AAA/db.webpage/mpdist/mpdist.html.

[2] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Exact geometric computation made easy. In
Proc. 15th ACM Symp. Comp. Geom., pages 341–450, 1999.

[3] CLN Homepage, 2000. CLN is a C++ library for arbitrary precision arithmetic and other
elementary functions. In implements that Schönhage-Strassen multiplication algorithm. URL
http://clisp.cons.org/ haible/packages-cln.html/.

[4] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A Core library for robust numerical and ge-
ometric libraries. In 15th ACM Symp. Computational Geometry, pages 351–359, 1999. Download,
ftp://cs.nyu.edu/pub/local/yap/exact/core.ps.gz.

[5] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281–292, 1971.

[6] B. Serpette, J. Vuillemin, and J. Hervé. BigNum: a portable and efficient package for arbitrary-precision
arithmetic. Research Report 2, Digital Paris Research Laboratory, May, 1989.

[7] C. Yap. Quickmul: Practical fast integer multiplication, July 1993. Preprint:
ftp://cs.nyu.edu/pub/local/yap/exact/quickMul.ps.gz.

[8] C. K. Yap. Fundamental Problems in Algorithmic Algebra. Oxford University Press, 2000. A version is
available at URL ftp:/Preliminary/cs.nyu.edu/pub/local/yap/algebra-bk.

4

