
Pseudo Approximation Algorithms with Applications to Optimal

Motion Planning

Tetsuo Asano
School of Information Science, JAIST, Japan

David Kirkpatrick ∗

University of British Columbia, Canada
Chee Yap †

Courant Institute, New York University, USA

October 10, 2003

Abstract

We introduce a technique for computing approximate solutions to optimization problems. If X is the
set of feasible solutions, the standard goal of approximation algorithms is to compute x ∈ X that is an
ǫ-approximate solution in the following sense:

d(x) ≤ (1 + ε)d(x∗)

where x
∗
∈ X is an optimal solution, d : X → R≥0 is the optimization function to be minimized,

and ε > 0 is an input parameter. Our approach is to first devise algorithms that compute pseudo

ε-approximate solutions satisfying the bound

d(x) ≤ d(x∗
R) + εR

where R > 0 is a new input parameter. Here x
∗
R denotes an optimal solution in the space XR of R-

constrained feasible solutions. The parameter R provides a stratification of X in the sense that (1)
XR ⊆ XR′ , for R < R

′ and (2) XR = X for R sufficiently large.
We first describe a highly efficient scheme for converting a pseudo ε-approximation algorithm into a

true ε-approximation algorithm. This scheme is useful because pseudo approximation algorithms seem
to be easier to construct than ε-approximation algorithms. Another benefit is that our algorithm is
automatically precision-sensitive.

We apply our technique to two problems in robotics: (A) Euclidean Shortest Path (3ESP), namely
the shortest path for a point robot amidst polyhedral obstacles in 3D, and (B) d1-optimal motion for a
rod moving amidst planar obstacles (1ORM). Previously, no polynomial time ε-approximation algorithm
for (B) was known. For (A), our new solution is simpler than previous solutions and has an exponentially
smaller complexity in terms of the input precision.

1 Introduction

The design of approximation algorithms is an important theme in the study of optimization problems. The
standard goal here is to compute feasible solutions x that are ε-approximate in the following sense. Suppose
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X is the space of feasible solutions, and d : X → R≥0 is the criterion for minimization. Then

d(x) ≤ (1 + ε)d(x∗) (1)

where x∗ is an optimum solution.

Especially in geometric settings, we can often parametrize the space X by a real parameter R to yield
subspaces {XR ⊆ X : R ≥ 0} with two properties: (1) if R < R′ then XR ⊆ XR′ , and (2) XR = X for
R sufficiently large. We call R the search radius. Let x∗

R denote the optimum solution in XR. Then a
pseudo ε-approximation algorithm is one1 that constructs x satisfying

d(x) ≤ d(x∗
R) + εR (2)

for any given ε > 0 and R ≥ 0. In many situations such algorithms are easier to construct than a true
ε-approximation algorithm. (Intuitively, the parameter R serves to offset the complexity attributable to the
size of the search space by permitting a larger relative error.)

We will show that, under some fairly natural assumptions on d(x∗
R), we can systematically convert

a pseudo ε-approximation algorithm into an efficient ε-approximation algorithm which is automatically
precision-sensitive. The advantage for this approach derives from (i) the relative ease of constructing
pseudo approximation algorithms as compared to approximation algorithms, (ii) the use of the above generic
conversion scheme, and (iii) a clearer understanding of those aspects of the approximation process that are
sensitive to the precision of the input (as well as the nature of this dependence).

Two NP -Hard Optimum Motion Planning Problems. Approximation algorithms take on a special
significance when applied to problems that are provably intractable. We will apply the above technique to
derive approximation algorithms for two NP -hard problems in the area of robot motion planning. Although
motion planning [1, 2, 9, 11, 24, 26] has been extensively studied since the early 1980s, very little is known
about the problem of shortest length motion. Indeed, the only known efficient general algorithms apply only
to the case where robot body is a disc in 2D. This paucity of efficient algorithms is not for lack of interest
in optimum motion (see below for an overview of the literature in the case of a rod). In retrospect, we now
understand the lack of success:

(A) In 3D, Canny and Reif [6] show that the shortest path for a point robot moving amidst polyhedral
obstacles is NP -hard to compute. This problem is known as Euclidean Shortest Path in 3D (3ESP).

(B) In 2D, Asano et al [3] define the “d1-distance” of a rod motion to be the length of the trajectory of
the midpoint of the rod and prove the d1-optimal motion of a rod amidst polygonal obstacles is NP -hard to
compute. Let 1ORM be the acronym for this problem. The rod is a directed line segment, and for now the
reader may interpret the “d1-distance” of a rod motion to be the length of the trajectory of the midpoint of
the rod (see Appendix 1 for details).

Both (A) and (B) are the simplest optimum motion planning problems in dimensions 3 and 2, respectively,
that go beyond a planar disc robot. These NP -hardness results were unexpected when they were first
obtained. In any case, they immediately motivated the search for approximation algorithms. For Problem
(A), Papadimitriou [16] gave the first approximation algorithm. This was improved and sharpened by Choi
et al [8]. Sellen et al [20] further constructed the first precision-sensitive algorithm that constructs the
true combinatorially shortest path sequence, as well as an ε-approximate path on this sequence.

For Problem (B), no previous ε-approximation algorithm was known. Asano et al [3] provided an ap-
proximation algorithm that, for any ε, ε′ > 0, produces a motion µ for the rod satisfying

d1(µ) ≤ (1 + ε)d1(µ
∗) + O(n2ε′) (3)

1In combinatorial optimization, the term “pseudo-approximation” sometimes refer to a feasible solution when the original
constraints are relaxed.
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where µ∗ is a d1-optimal motion. The algorithm runs in time is O(n4α(n)K) where α(n) is the inverse
Ackermann function and

K = K(L, ε, ε′) =
L− log ε′

log(1 + εL−L)

It is assumed that the input description involves only rational numbers, L is the maximum bit length of the
input integers, and n is the number of obstacle corners. We will use the same parameters in the algorithms
of this paper. All complexity bounds in this paper are in the algebraic complexity model [8].

Unfortunately, this algorithm falls short of being a true ε-approximation algorithm in two respects. First,
the analysis assumes a quantitative form of their shortest path characterization that, while plausible, has
not actually been proved. Second, the bound has an additive term “+O(n2ε′)”. which is independent of the
main term “(1+ ε)d1(µ

∗)”. Since ε′ can be set as small as we like (at some increase in the running time), we
will obtain a ǫ-approximation algorithm if we could choose it so that the main term dominates the additive
term. To do this, we need some á priori lower bound on d1(µ

∗) and then choose ε′ accordingly.

Both of these deficiencies are addressed in this paper. A lower bound on d1(µ
∗) is established in section

7, which overcomes the second of these shortcomings. With regard to the first, while we can prove a
quantitative form of the shortest path characterization theorem, the associated path complexity bound
turns out to be poorly suited for the purposes of constructing an efficient ε-approximation algorithm because
of its dependence on L. (Recall that the characterization of shortest paths for a point or disc has no such
dependence.) The development of an ε-approximation algorithm for 1ORM that depends only on a qualitative
shortest path characterization theorem was the driving motivation for pseudo approximation framework that
forms the key innovation of this paper.

This general framework shows how to start with any pseudo approximation algorithm satisying some
simple properties and derive an efficient ε-approximation algorithm. While the formal definition of “pseudo
approximations” is somewhat specialized for the current applications, it should be understood that the
intuitive concept of a pseudo approximation is that of having an arbitrary additive term which can be made
as small as one likes. In this sense, almost any straightforward discretization of a continuous optimization
problem is a pseudo approximation. Therein lies the power of this framework.

Optimum Motion Planning of a Rod. The configuration space for the motion of a rod is 3-
dimensional (as for 3ESP) but it is non-Euclidean. A rod is a fixed directed line segment AB of unit
length, as shown in Figure 1(a). The problem is to find a motion of the rod from some initial placement
Z0 to some final placement Z1 while confined to a closed polygonal region Ω ⊆ R

2. The complementary set
R

2 \ Ω is the obstacle set. See Figure 1(b). Let F be a fixed point on AB, called the focus point. If µ is a
motion of the rod, the corresponding trajectory of F is called the trace of µ; the length of this trace is the
d1-distance of µ, denoted by d1(µ). If µ∗ has the minimum d1-distance among motions from Z0 to Z1, we
write d1(Z0, Z1) = d1(µ

∗) and call µ∗ a d1-optimum motion. Thus the input to our algorithms is (Z0, Z1, Ω),
plus other input parameters such as ε when appropriate. We refer to Appendix I for further background,
including a description of the free space FP = FP (Ω). Although we focus on d1-optimality, other notions
of optimality have been considered in the interesting history of this problem:

• The oldest work here is Kakeya’s problem [5], which asks for the smallest area swept by the rod
while moving it from any position to its “dual position” (this is the position reached by rotating the
rod 180◦ about its midpoint), in the absence of obstacles. The obvious rotation motion sweeps out an
area of π/4 which turns out to be far from optimal.

• Ulam’s problem [25, 15] is to minimize the average length of the trajectories of the two endpoints
A, B while moving from Z0 to Z1. This is also in the absence of obstacles. Icking et al [13] introduced
the Cauchy surface area formula as a tool for analyzing such motions. They define the dn-distance for
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B = (−b, 0) A = (a, 0)

F = (0, 0)

(a)

Figure 1: (a) Canonical position of rod AB with focus F . (b) Moving from Z0 to Z1 amidst polygonal
obstacles (shaded area).

rod motion, where n ≥ 1 is any integer or n = ∞. This distance is a metric for n ≥ 2, and Ulam’s
problem corresponds to d2.

• An optimality notion that is not based on distance is to maximize the the minimum clearance (i.e.,
distance to the nearest obstacle) of the motion. Here, O’Dunlaing et al [14, 22, 23] gave a quadratic
time solution based on the retraction approach.

• Although the d1-distance is not a metric, it is a natural and interesting measure. Restricted forms
of d1-motions were investigated by Papadimitriou and Silverberg [17], Sharir [21] and O’Rourke [15].
The surprising result of Asano et al [3] is that d1-optimal motion is NP -hard whenever F lies in the
relative interior of the rod. The authors recently succeeded in extending the NP-hardness result to the
case when F is at an endpoint of the rod. This result will be presented in near future.

Contributions of this work.

(I) We introduce the framework of pseudo approximation algorithms and derive an efficient search
scheme for converting any suitable pseudo approximation algorithm into a true ε-approximation algo-
rithm. The approximation algorithm is precision sensitive.

(II) We construct an efficient ε-approximation algorithm for the d1-optimal motion of a rod. This is based on
a new and simplified strongly polynomial pseudo ε-approximation algorithm. Instead of Equation (3),
our pseudo approximate motion µ satisfies

d1(µ) ≤ d1(µ
∗
R) + εR (4)

where ε > 0 and R > 0 are arbitrary parameters. Here µ∗
R is the optimal d1-motion when the trace is

restricted to a ball of radius R centered at the initial position of the focus (denoted by F [Z0]).

4



(III) As another application, we provide a new ε-approximation algorithm for the shortest path for a point
amidst polyhedral obstacles in 3D. This algorithm depends logarithmically on the input precision
parameter L. Previous ε-approximation algorithms are polynomial (or even exponential) in L. Be-
ing simpler than previous solutions, it is possibly implementable (a hope that was expressed for the
algorithm in [16]). See also [20] for some experimental results.

(IV) An improved analysis of the boundary ∂FP of the space of free placements of a rod. This boundary
is important for d1-optimal motion. We introduce a 2-complex structure for this set.

Paper Overview. In Section 2, we introduce the framework of pseudo approximations. Section 3 shows
how to convert a pseudo approximation algorithm into an ε-approximation algorithm. Section 4 gives a
pseudo approximation algorithm for 3ESP, leading to a new ε-approximation algorithm. Section 5 reviews
known results about the local structure of d1-optimal rod motion. Based on this, we present in Section 6
a pseudo approximation algorithm for d1-optimal rod motion (1ORM). Section 7 proves a lower bound on
any non-zero d1-distance. We conclude in Section 8. Appendices I and II summarize some background on
d1-optimal rod motion.

2 The Pseudo Approximation Framework

We describe an abstract framework for pseudo approximation algorithms.

Suppose that we are searching for an optimum solution x∗ in a search space X , where optimality is based
on minimizing the function d : X → R≥0. Assume that the space X that has been “stratified” into the sets
{XR ⊆ X : R ≥ 0} such that (a) XR ⊆ XR′ for R < R′, and (b) we know a value R∗ such that X = XR∗ .
The parameter R should be interpreted as “search radius”.

For each R ≥ 0, let x∗
R ∈ XR denote an optimum solution in XR. It follows that

d(x∗
R) ≥ d(x∗

R′ ) ≥ d(x∗) (5)

for R < R′. Now assume that we have a pseudo approximation function,

π : (0, 1]× R≥0 → X

such that for all ε ∈ (0, 1] and R ≥ 0, π(ε, R) ∈ XR (and hence d(π(ε, R)) ≥ d(x∗
R)) and

d(π(ε, R)) ≤ d(x∗
R) + εR. (6)

Since the parameter ε > 0 in (6) is fixed throughout this discussion, we may suppress it: we simple write
“π(R)” instead of “π(ε, R)” where we view π as the function π : R≥0 → X .

There is one additional property we need:

d(x∗) ≤ R =⇒ d(x∗
R) = d(x∗). (7)

This says that the search radius parameter R has some direct correlation with d(x∗
R) (i.e., the stratification

of X is tied to the underlying cost function).

Some Claims. To interpret what the following claims say, it is convenient to call R a high value in
case d(π(R)) ≤ R, and a low value otherwise.
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Claim 1 If R is a high value, i.e., d(π(R)) ≤ R, then R ≥ d(x∗) and d(x∗) = d(x∗
R).

Proof. The first relation follows from R ≥ d(π(R)) ≥ d(x∗
R) ≥ d(x∗). The second relation d(x∗

R) = d(x∗) is
then a consequence of the “correlation property” (7). Q.E.D.

Claim 2 If R is a low value, i.e., d(π(R)) > R, then d(x∗) > R(1− ε).

Proof. By way of contradiction, suppose d(x∗) ≤ R(1 − ε). Then by (7), d(x∗
R) = d(x∗). Hence d(π(R)) ≤

d(x∗
R) + εR = d(x∗) + εR ≤ R(1− ε) + εR = R. This gives the desired contradiction. Q.E.D.

Claim 3 Fix any constant α > 1. If Rmin is a low value, Rmax a high value and Rmax ≤ αRmin, then

d(π(Rmax)) < d(x∗)
(

1 + α ε
1−ε

)

.

Proof. Since Rmin is a low value it follows from Claim 2 that

d(x∗) > (1− ε)Rmin. (8)

Thus
d(π(Rmax)) ≤ d(x∗

Rmax
) + εRmax (Equation (6))

= d(x∗) + εRmax (Claim 1)
≤ d(x∗) + εαRmin

< d(x∗) + εαd(x∗)
1−ε (Equation (8))

= d(x∗)
(

1 + αε
1−ε

)

.

Q.E.D.

Corollary 1 Assuming ε ≤ 1/2, if Rmin is a low value, Rmax a high value and Rmax ≤ 2Rmin, then

d(π(Rmax)) < d(x∗)(1 + 3ε) (9)

We will also need the following:

Claim 4 If R is a low value and d(x∗
R) = d(x∗), then d(π(R)) < d(x∗)/(1− ε).

Proof. By Claim 2, d(π(R)) > R implies d(x∗) > R(1 − ε). Thus d(π(R)) ≤ d(x∗
R) + εR = d(x∗) + εR <

d(x∗) + εd(x∗)/(1− ε) = d(x∗)/(1− ε). Q.E.D.

Suppose our pseudo-approximation function π(R) has the following monotonicity property:

d(π(R − r)) ≥ d(π(R)), for all r ≥ 0. (10)

This property is not hard to ensure in the two main examples in this paper. It has an interesting consequence:

Claim 5 If the pseudo approximation function satisfies (10), then it induces a 0 − 1 ordering of the real
numbers in the following sense: if R is a low value then R− r is a low value, for all r ≥ 0.
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Proof. If R is a low value, then d(π(R)) > R. Hence d(π(R− r)) ≥ d(π(R)) > R > R− r, i.e., R− r is a low
value. Q.E.D.

3 Conversion to Precision Sensitive ε-Approximations

We now show how any pseudo approximation algorithm in the previous section can be converted into an
ε-approximation algorithm.

Our analysis uses two simple assumptions: (1) d(π(0)) > 0 (i.e. 0 is a low value) and (2) ε ≤ 1/2. Note
that if (1) fails, then d(π(0)) = 0 and π(0) is already an optimal solution. As for (2), we could have used
any C < 1 in place of 1/2.

We first present a simple binary search method. The idea is to exploit the Corollary to Claim 3, by
maintaining a pair (Rmin, Rmax) satisfying the invariant that Rmin is a low value and Rmax a high value. We
start from the largest search radius R∗. At each iteration, we halve the gap Rmax −Rmin, halting when the
gap is at most Rmin. The basic comparison of the binary search is testing if a number R > 0 is high or low.
This amounts to a call of the pseudo approximation function to compute d(π(R)) and comparing it with R.

Simple Binary Search
Output: R such that d(π(R)) ≤ d(x∗)(1 + 3ε).
Base Case: if R∗ is low, Return R∗.
Rmin ← 0 and Rmax ← R∗.
Do {

R← (Rmax + Rmin)/2.
If R is low, then Rmin ← R
else Rmax ← R.

} while (Rmax > 2Rmin)
Return Rmax.

Correctness: The base case is justified by Claim 4 (use the fact 1/(1− ε) = 1 + ε + ε2/(1− ε) ≤ 1 + 2ε).
The loop invariant is maintained as we update Rmin and Rmax. Upon termination, the output is correct by
the corollary of Claim 3.

Complexity: We claim that the number of iterations is at most 2 + lg(R∗/d(x∗)). Each iteration reduces
the gap Rmax−Rmin by a factor of two, and the initial gap is R∗. So it suffices to show that the final gap is at
least d(x∗)/4. Let rmax and rmin be the values of the variables Rmax and Rmin in the previous iteration (i.e.,
the last iteration for which Rmax > 2Rmin). Now, (rmax + rmin)/2 is equal to either Rmax or Rmin. Hence,
either Rmax = (rmax + rmin)/2 and Rmin = rmin or Rmax = rmax and Rmin = (rmax + rmin)/2. Therefore,
since rmax > 2rmin,

Rmax −Rmin = (rmax − rmin)/2 > rmax/4 ≥ Rmax/4 ≥ d(x∗)/4

(the last inequality follows from Claim 1). This concludes the proof.

Geometric Search. We can significantly speed up the above search using the following 2-tiered search:
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Geometric Search
Output: R such that d(π(R)) ≤ d(x∗)(1 + 3ε).

0. Base Case: if (R∗ is low) then Return R∗.
1. Key Test: If (R = 1 is low)

then Rmin = 1, k = ⌈lg lg R∗⌉, and go to Search 2 directly.
else Rmin = 1/2, k = 0, and go to Search 1 first.

2. Search 1: // Now Rmin22k

is high
While (Rmin is high) do

Rmin ← Rmin2−2k

; k ← k + 1;

// Invariant 1: Rmin2
2k

is high

3. Search 2: // Now Rmin is low and Rmin2
2k

is high
lo← 0; hi← 2k;
While (hi− lo > 1) do

// Invariant 2: Rmin2
lo is low, Rmin2

hi is high
m← (hi + lo)/2;
if (Rmin2m is low) then lo← m;
else hi← m;

Rmin ← Rmin2
lo; Rmax ← Rmin2

hi;
4. Return Rmax.

Correctness: The base case is justified as for the simple binary search. The two loop invariants are easily
verified. The final return statement is again justified by the Corollary to Claim 3.

Complexity: After k ≥ 1 iterations in Search 1, the variable Rmin reaches the value rk := 2−20

2−20

2−21

· · · 2−2k−1

= 2−2k

. If rk is high, then rk ≥ d(x∗); hence 22k ≤ 1/d(x∗) and so k ≤ lg lg(1/d(x∗)). But the total
number of iterations in Search 1 is just one more than the last value of k for which rk is high. This proves the
first search has ≤ 1 + lg lg(1/d(x∗)) iterations. In Search 2, we begin with a pair of values (lo, hi) = (0, 2k).
If we came directly from Step 1 (Key Test), then k = ⌈lg lg R∗⌉; otherwise we just completed Search 1 and
k ≤ ⌊lg lg(1/d(x∗))⌋. We conclude that

k ≤ max{⌈lg lg R∗⌉ , ⌊lg lg(1/d(x∗))⌋ .

Initially hi − lo = 2k but finally we have 1/2 < hi − lo ≤ 1. The number of iterations is ≤ 1 + k =
1 + max{⌈lg lg R∗⌉ , ⌊lg lg(1/d(x∗))⌋ .

In summary:

Lemma 2 The geometric search procedure determines R such that d(π(R)) ≤ d(x∗)(1 + 3ε) using at most

2 + max{⌈lg lg R∗⌉ , 2 ⌊lg lg(1/d(x∗))⌋}

calls to the pseudo approximation function.

Let us simply write max{⌈lg lg R∗⌉ , 2 ⌊lg lg(1/d(x∗))⌋ = Θ(lg lg(R∗/d(x∗))) As corollary, if computing
π(R) and d(π(R)) takes time T = T (ε, R∗), we achieve an ε-approximation algorithm whose time is O(T ×
lg lg(R∗/d(x∗))).

Note that Search 2 can be viewed as a “geometric mean” search: we can view the search as maintaining
an interval (Rmin, Rmax) in which each “halving step” involves replacing one endpoint of the interval by the
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geometric mean
√

RminRmax. Even Search 1 can be interpreted in this way (except that in the absense of a
low value, we replace Rmin by 1). This explains why we call this search method “Geometric Search”.

Note that when R is high, the combination of Search 1 and Search 2 is really a disguised form of
“unbounded search” in the sense of Bentley and Yao [4]. The difference is that standard unbounded search
uses an absolute error bound, while we use a relative error bound (cf. Corollary to Claim 2). Our complexity
bound is 2 + ⌊lg lg(1/d(x∗))⌋. Known techniques for unbounded searching can be applied here to improve
the upper bound to ⌊lg lg(1/d(x∗)⌋+ o(lg lg(1/d(x∗)). We leave such improvements as an exercise.

One variant is to compute an á priori lower bound r∗ on d(x∗). We can perform a simultaneous search
for critical value radius from above (starting from R∗, as in Search 1) and from below (starting from r∗).
The number of iterations is then

min{lg(lg(R∗/d(x∗)), lg lg(d(x∗)/r∗)}.

In this way, we lose precision sensitivity but gain the potential to have speed up when d(x∗) is very large
(near R∗) or very small (near r∗).

Precision-Sensitive Solution. The running time of our ε-approximation algorithm depends on d(x∗).
In our applications below, R∗ ≤ cL for some c > 1 and the maximum bit length L of the input numbers.
Hence if d(x∗) < c−L then lg lg(R∗/d(x∗)) = Θ(lg lg(1/d(x∗))); otherwise lg lg(R∗/d(x∗)) = Θ(lg lg(R∗)).
We call lg(1/d(x∗)) the “output precision” of the problem instance since it is proportional to the number
of bits needed to express d(x∗) to within a constant factor. In this sense, we say that our algorithm is
precision sensitive. Note that despite being sensitive to d(x∗), our algorithm does not explicitly know x∗

or d(x∗).

The notion of precision sensitivity was first introduced in Choi et al [8]. It should be noted that the
3ESP approximation algorithm there has a stronger objective than our version here: their objective was to
determine a sequence of edges that determines the shortest path, as well as to determine an ε-approximate
feasible motion along this sequence. Call this the “Combinatorial 3ESP Approximation Problem”. In this
version, it is natural to define the “output precision” as log(1/∆) where ∆ = d(x∗) − d(x2) and x2 is a
combinatorially distinct next shortest path. The gap ∆ is a measure of the necessary number of bits that
must be evaluated if we want to distinguish x∗ from x2. The current best lower bound for non-zero ∆ is
doubly exponentially small (so lg(1/∆) is single exponential). The precision-sensitive algorithm of [8] is only
polynomial in the output precision, and hence the overall algorithm is not known to be polynomial time. In
contrast, for our two applications below, we show a linear upper bound on lg(1/d(x∗)) and so the running
time of our algorithms are actually logarithmic in the output precision.

4 Approximation Algorithm for 3ESP

We now construct a pseudo approximation algorithm for 3ESP that has the properties required for our
binary search method in the previous section. This serves three purposes: (1) It gives the first indication
that our abstract setting in the previous section is non-vacuous. (2) It will serve as a model for our next
section, where we give a pseudo approximation algorithm for rod motion. Additional complications will arise
in the case of rod motion. (3) Finally, our new algorithm has advantages over previous solutions (some of
which address shortest path problems in more general settings) [16, 9, 8, 1, 2, 20, 24]. One is its simplicity,
thus making it a more likely candidate for implementation. Another is its running time complexity being
O(log L), in contrast to previous algorithms whose complexity is polynomial (or even exponential) in L.

The main result of this section is this:
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Theorem 3 There is a pseudo approximation algorithm for 3ESP whose running time is O(n4/ε2), or more
precisely O(n4ε−2 lg lg(2L/d(x∗))).

This is a worst case complexity bound: the actual complexity is O(min{n2/ε, |A| log(n2/ε)}), where |A|
denotes the number of edges in the graph that is searched to find the shortest path. It is also worth noting
that this complexity does not depend on the parameter R (at least in the algebraic complexity model).
While it is possible to convert this bound into the bit complexity model, a tight analysis can be intricate.
Reference [8] is one of the few papers that gave a careful accounting of the bit complexity of an approximation
algorithm.

Coupled with the geometric search procedure in the previous section, and using the estimate R∗ = 2L,
we obtain an ε-approximation algorithm with complexity

O(n4ε−2 lg lg(2L/d(x∗))).

As this expression depends on d(x∗), to obtain an á priori bound on the running time, we need a lower
bound on d(x∗) in terms of the input parameters. This is not hard: we may assume Z0 6= Z1 or else the
problem is trivial. Then we obtain d(x∗) ≥ ‖Z0 − Z1‖ ≥ c−L, for some constant c > 1.

Input Parameters and Representation. Let R ≥ 1 and ε′ > 0 be given. (Later we will choose
ε′ = ε/6 where ε is the corresponding pseudo approximation parameter.) There is also the the standard
input (Z0, Z1, Ω) for motion planning, where Z0, Z1 ∈ R

3 and Ω ⊆ R
3 is a closed polyhedral set. There are

n obstacle edges and vertices, and the numbers used in their description are L-bit rational numbers, i.e.,
the numerators and denominators are L-bit integers. We shall write ΩR for the restriction of Ω to a ball of
radius R centered at Z0. Let µ∗

R denote a shortest path from Z0 to Z1 when restricted to ΩR. Our goal is
to compute a path in ΩR that is a “pseudo approximation” to µ∗

R.

Fragment Visibility Graph. We describe a fragmentation of the obstacle edges (that depends on
the parameters R, ε′ and n) and a “visibilty graph” FV G = (N, A; W ) on the resulting set of fragments.
Specifically, FV G is a weighted undirected graph, N is the node set, A the arc set, and W : A → R>0

is the weight function. Note that we use the node/arc terminology to avoid conflict with the vertex/edge
terminology reserved for the obstacle set Ω. First, we specify the node set N . For each obstacle edge e ∈ Ω,
we replace it with eR = e∩ΩR. Then we subdivide eR into ⌈n/ε′⌉ fragments, each of length at most Rε′/n.
Summed over all edges, we have O(n2/ε′) fragments. Next, the node set N comprises these fragments,
including Z0 and Z1 as special fragments. The arc set A comprises those pairs (σa, σb) of fragments that are
“weakly visible”, i.e., there is a line segment [σ∗

a, σ∗
b ] ⊆ ΩR such that σ∗

a ∈ σa and σ∗
b ∈ σb. We define the

arc’s weight W (σa, σb), not as ‖σ∗
a − σ∗

b‖, but as ‖σ̌a − σ̌b‖ where σ̌a and σ̌b are the midpoints of σa and σb.
We refer to [8] for the details of these computations (deciding weak visibility, etc).

Given the fragment visibility graph FV G = (N, A; W ), we can compute the shortest path P ∗ from the
source Z0 to Z1 using standard techniques such as Dijkstra’s algorithm. Since |A| = O(n4/ε′2) this algorithm
can be implemented in time O(|N | log |N |+ |A|) = O(n4/ε′2), using Fibonacci heaps (E.g., [10]).

Relation between the Fragment Visibility Graph shortest path P ∗ and the restricted Eu-
clidean shortest path µ∗

R. The relation is indirect: from P ∗, we construct an Euclidean motion µ(P ∗).
Then we derive a relation between µ(P ∗) and the restricted Euclidean shortest path µ∗

R. First we set out
some basic properties that follow immediately from the definition of the fragmentation process:

Observation A. If P is any single edge path in FV G joining two fragments σa and σb of different obstacle
edges, then their exists an Euclidean path µ(P ) in ΩR joining σ̌a and σ̌b such that d(µ(P )) ≤W (P )+ε′R/n.
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Observation B. If P is any path in FV G joining two fragments σa and σb of the same obstacle edge, then
their exists an Euclidean path µ(P ) in ΩR joining σ̌a and σ̌b such that d(µ(P )) ≤W (P ) + ε′R/n.

Observation C. If Euclidean line segment µ in ΩR joins two points va and vb, belonging to fragments σa

and σb of different obstacle edges, then there exists a path P (µ) in FV G joining fragments σa and σb such
that W (P (µ)) ≤ d(µ) + ε′R/n.

Observation D. If Euclidean path µ in ΩR joins two points va and vb, belonging to fragments σa and σb

of the same obstacle edge, then there exists a path P (µ) in FV G joining fragments σa and σb such that
W (P (µ)) ≤ d(µ) + ε′R/n.

Let P be any path in the FV G from Z0 to Z1. We can decompose P into k ≤ 2n subpaths P1, P2, . . . , Pk,
such that odd-indexed subpaths consist of single edges joining fragments of different obstacle edges, and even-
indexed subpaths (possibly of zero length) join fragments of the same obstacle edge. Define µ(P ) to be the
Euclidean path formed by concatenation of µ(P1), . . . , µ(Pk). By Observations A and B, we have:

d(µ(P ) =

k
∑

i=1

d(µ(Pi))

≤
k

∑

i=1

[W (Pi) + ε′R/n]

≤ W (P ) + 2ε′R. (11)

On the other hand, if µ is any Euclidean path in ΩR then µ can be decomposed into k ≤ 2n subpaths
µ1, µ2, . . . , µk such that odd-indexed subpaths consist of single line segments joining fragments of different
obstacle edges, and even-indexed subpaths (possibly of zero length) join points on fragments of the same
obstacle edge. Define P (µ) to be the path in FV G formed by concatenation of the paths P (µ1), . . . , P (µk).
By Observations C and D, we have:

W (P (µ)) =

k
∑

i=1

W (P (µi))

≤
k

∑

i=1

[d(µi) + ε′R/n]

≤ d(µ) + 2ε′R. (12)

We now put these two steps together. Begin with the shortest path P ∗ joining Z0 and Z1 in FV G. Using
the construction above, we obtain an Euclidean path µ(P ∗).

Lemma 4
d(µ(P ∗)) ≤ d(µ∗

R) + 4ε′R.

Proof.
d(µ(P ∗)) ≤ W (P ∗) + 2ε′R (by (11))

≤ W (P (µ∗
R)) + 2ε′R (by definition of P ∗)

≤ d(µ∗
R) + 4ε′R (by (12))

Q.E.D.
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We make the final connection to the abstract binary search of the previous section. The restricted search
space XR comprise all the Euclidean paths in ΩR. The pseudo approximation function π : (0, 1]×R→ X is
given by π(ε, R) = µ(P ∗) where P ∗ is the shortest path in the Fragment Visibility Graph constructed with
the parameters ε′ = ε/4 and R. By lemma 4, we know that π is a pseudo approximation function. We need
to verify the properties d(µ∗) ≤ R implies d(µ∗

R) = d(µ∗) (Equation (7)) and R∗ ≤ 2L. But they are easily
seen. This proves the main result stated above.

REMARK: This approach immediately generalizes to shortest path for a point robot moving amidst
polyhedral obstacles in any fixed dimension.

5 Local Structure of Optimum Rod Motion

In this section, we give a top level overview of the underlying geometry of optimal d1-motion of a rod. This is
necessary prerequisite for the approximation algorithm to be presented in the next section. We defer details
to the appendices because of some overlap with [3]. However, the current paper offers technical improvements
and alternative treatment.

Decomposition of ∂FP . There are three known approaches to analyzing the structure of the free
space FP = FP (Ω) of a rod. In [18], the set FP is decomposed into cells using the notion of concept of
clockwise- and counterclockwise-stops. The projection of these cells on to R

2 gives a simple decomposition
of Ω into planar regions. The second approach [22, 23] is based on the concept of Voronoi cells. Neither of
these approaches are suitable for analyzing optimum d1-motion. The third approach [3] was introduced for
d1-optimal motion, and is based on a cell decomposition of ∂FP . This boundary can be decomposed into
a 2-complex comprising 2-cells (called patches), 1-cells (called edges) and 0-cells (called vertices). The
details are given Appendix II. In particular, it is shown (theorem 8) that the number of patches, edges and
vertices in the complex is O(n2), O(n3) and O(n3), respectively.

Similar to retraction-based motion planning [14], our goal is to construct a 1-dimensional complex (i.e.,
a skeleton) in which optimum motion can be found. The obvious place to look is to consider the subcomplex
K of ∂FP comprising the edges and vertices. The skeleton we seek will clearly need to augment K with
additional edges to ensure global connectivity. But it turns out that no finite number of edges suffices for
d1-optimum motion.

On Stopover Curves and Mirrors. One can still hope for some “parametrized form” of the skeleton
that can reduce optimal motion to a finite graph search. To see how this might work, consider the well-
understood problem of optimum motion µ∗ for the unit disc in the plane [12]. Here, the circular arcs of
radius 1/2 and centered at convex corners are called displaced corners [3]. They are important because
the trace of µ∗ is non-straight only by incorporating parts of these arcs. The optimal trace will join and
leave such circular arcs at a tangent. If every tangent is potentially part of an optimum motion, there is no
finite graph that we can construct. But it turns out that we can construct a finite search graph in which
these displaced corners are used as “parametrized vertices”. The analog of these displaced corners for
optimal d1-optimal rod motion is called stopover curves [3]. Each stopover curve is simply the trace of a
corresponding stopover edge of ∂FP . Each placement Z in a stopover curve is constricted in the sense
that rotation about the focus F is impossible: the rod is stopped by two obstacle features, one acting as a
clockwise stop, the other as a counter clockwise stop. There are three kinds of stopover curves: (1) circular
edge defined by a concave corner C, (2) elliptic edge defined by a pair to distinct walls W1, W2, and (3)
conchoidal edge defined by a convex corner C and a wall W . The traces of these edges are parts of a circle,
an ellipse or an conchoid. In addition to these cases, there is a fourth kind of constricted edge: these are
defined by two corners and the trace is a straight line segment. We do not consider this a stopover curve.
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See Appendix II for more details.

The number of stopover edges is O(n3) and we might hope for a finite search graph using these curves
as “parametrized vertices” in the search graph. But this hope is dashed by the phenomenon of mirrors. In
a d1-optimal motion, the traces can “reflect” off the mirrors following the law of reflection (c.f. Appendix
II). In fact, mirrors are the reason for NP -hardness [3]. Fortunately, when we seek approximate motions,
we can avoid mirrors altogether.

Locally d1-optimal motion. In order to make further progress, we need to understand what can
happen “locally” in a d1-optimal motion µ : [0, 1]→ FP . Intuitively, the trace Fµ : [0, 1]→ R

2 must travel
along a straight line unless it is forced by some obstacle features to turn or bend.

Let X be a metric space with metric d(x, y), and fix a continuous function (curve) f : [0, 1] → X . If
ε > 0 and 0 < t0 < 1, we call an open interval I an (ε, f)-neighborhood of t0 if t0 ∈ I and for all t ∈ I,
d(f(t), f(t0)) < ε. We may also call I an f-neighborhood of t0 if it is a (ε, f)-neighborhood for some ε > 0.
If P is any property of curves, we say that f satisfies P at t0 (0 < t0 < 1) if there exists ε = ε(t0) > 0 and
a (ε, f)-neighborhood I of t0 such that the restriction f |I of f to I satisfies property P . If f satisfies P at
all t0 (0 < t0 < 1), then we say f satisfies P locally.

An interval I ⊆ [0, 1] is said to be stationary for f if f |I is a constant function. Our definition of
neighborhood is necessitated by the presence of stationary intervals that are nontrivial (i.e., that have non-
empty interior). The essential f-neighborhood of t0 is the intersection of all f -neighborhoods of t0. The
essential f -neighborhoods of t0 is stationary for f . In applications, we choose X = R

2 with the Euclidean
metric, and f = Fµ where µ is any motion. Often, we want to focus on the properties of µ, not Fµ. To do
this, we use Fµ-intervals while discussing properties of µ, as seen next. We define three local properties of
motions:

• µ is Locally Straight: Let P0(µ) be the property that “the trace Fµ is straight”. We say a motion µ
is locally straight at t if P0 holds whenever F is restricted to a Fµ-neighborhood of t.

• µ is Locally a Vertex: Let P1(µ) be the property “there exists 0 ≤ t ≤ 1 such that µ(t) is a vertex (0-
cell)”. Then we say µ is locally a vertex at t if P1 holds whenever µ is restricted to a Fµ-neighborhood
of t. Equivalently, µ is locally a vertex at t iff µ(t) is a vertex for some t in the Fµ-essential neighborhood
of t.

• µ is Locally Reflecting: Let P2(µ) be the property that “there exists 0 ≤ t ≤ 1 such that µ(t) is
reflecting”. We say that µ is locally reflecting at t if P2 holds whenever µ is restricted to a Fµ-
neighborhood of t.

Here is the statement of the main result:

Theorem 5 (Local Characterization) Let µ : [0, 1] → FP be a d1-optimal motion and 0 < t0 < 1.
Suppose µ is not locally straight at t0. Then one of the following four situations hold:

1. µ is locally a vertex at t0.

2. µ(t0) is pivotal at a convex corner C (i.e., F [µ(t0)] = C). Moreover, Fµ is locally “bending” around
C. See Figure 2(a).

3. µ(t0) is constricted. Either (a) Fµ is is locally tracing a stopover curve at t0, or (b) the trace is a
straight line that meets a stopover curve tangentially at t0. See Figure 2(b).
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4. µ is locally reflecting at t0. See Figure 2(c,d). Let the curve γ be the displaced wall or corner where
this reflection takes place. Then the trace Fµ meets and leaves γ at an incident point r according to
Snell’s law. Morover, the trace in the neighborhood of r lies within the zone of γ.

(a)

W

γ = WA

(c)

Fµ

zone

C

γ = CA

(d)

Fµ

zone

(b)

Fµ(t0)

Stopover Curve

inaccessible
C

Figure 2: Locally non-straight traces: (a) pivoting around corner, (b) tangential or tracing a stopover curve,
(c,d) reflecting off a displaced wall or corner

Note that this theorem does not say anything about the motion when µ is locally straight at t0. In [3]
we stated such a result without proof. We now provide the proof in Appendix III.

6 Pseudo Approximation Algorithm for Rod Motion

The main result of this section is the following.

Theorem 6 There is a pseudo approximation algorithm for d1-optimal rod motion whose running time is
O(n5ε−2(n + ε−1)).

Its proof follows the model of the 3ESP algorithm. We will define a fragmentation (depending on the
input parameters (Z0, Z1, Ω), ε > 0 and R ≥ 0) of the edges that bound the space of free configurations,
and a “visibility graph” FV G = (N, A; W ) on these fragments. Specifically, if FP = FP (Ω) is the space
of free configurations, define the restricted free space to be FPR = {Z ∈ FP : F [Z] ∈ ΩR} where ΩR is
defined as before, namely ΩR = Ω∩B(R) and B(R) is the disc of radius R centered at F [Z0]. A restricted
optimal motion of a rod is a motion µ∗

R : [0, 1] → FPR such that µ∗
R(i) = Zi (i = 0, 1) and d1(µ

∗
R) is

minimum.

To specify the node set N , we consider edges e of the complex ∂FP that are either stopover curves or
mirrors. Let eR be the restriction of e to FPR. We can view such an edge e as a motion e : [0, 1] → FP ,
and thus speak of the trace of e. We can subdivide e into submotions, again called fragments. The
length of a fragment σ is simply the length of the trace Fσ, denoted by d1(σ). The node set N comprising
these fragments, together with pivotal edges and Z0 and Z1, has total size O(n5/2ε′−1(n1/2 + ε′−1/2)). The
fragmentation process depends on the type of the edge.

Straight Mirrors We let each fragment have length ≤ ε′R/n. Each straight mirror is associated with a
wall. Let W be a wall of FPR. Then |W | ≤ R. Suppose SW comprise all mirror fragments associated
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with W . Then the total length of all the fragments in SW is |W |, and thus |SW | ≤ n/ε′. Since there
are ≤ n walls, the number of fragments from straight mirrors is O(n2/ε′).

Stopover Edges Again we first break the edges into fragments of length ≤ ε′R/n. Since every stopover
edge has total length which is O(1), and there are O(n2) stopover edges, the total number of stopover
fragments is O(n3/ε′).

Circular Mirrors This is more complicated. First, we create superfragments of length ≤ (ε′/n)1/2.
Each superfragment is further subdivided into fragments of length ≤ (ε′/n)3/2. Each circular mirror is
associated with a convex corner. Let C be such a corner and let SC comprise all fragments associated
with C. The length of all the fragments in SC is < 2π, and hence |SC | = O((n/ε′)3/2). Since there are
≤ n corners, the number of fragments from circular mirrors is O(n5/2ε′−3/2).

We define the arc set A ⊆ N2 based on weak visibility again, but the low level computation is somewhat
more complex (but O(1) in the algebraic complexity model). As before the weight W (σa, σb) of the arc joining
weakly visible fragments σa and σb is taken to be the Euclidean distance between the fragment midpoints.
In addition, there is an arc joining fragments from the same mirror superfragment or stopover edge whose
length is just the distance along the mirror superfragment or stopover edge between the fragment midpoints.
The connection between paths in the Fragment Visibility Graph and d1-motion, through the analogues of
(11), (12), is complicated by the non-linear features of our domain, in particular circular mirrors.

Observation A. If P is any single edge path in FV G joining two fragments σa and σb not both of which
are circular mirror fragments, then their exists an Euclidean path µ(P ) in ΩR joining their midpoints σ̌a

and σ̌b such that d(µ(P )) ≤W (P ) + ε′R/n.

Observation A’. If P is any single edge path in FV G joining two fragments σa and σb both of which are
circular mirror fragments, then their exists an Euclidean path µ(P ) in ΩR joining their midpoints σ̌a and σ̌b

such that d(µ(P )) ≤W (P ) + (ε′/n)3/2R.

Observation B. If P is any path in FV G joining two fragments σa and σb of the same straight mirror
or stopover edge, then their exists an Euclidean path µ(P ) in ΩR joining σ̌a and σ̌b such that d(µ(P )) ≤
W (P ) + ε′R/n.

Observation B’. If P is any path in FV G joining two fragments σa and σb of the same circular mirror
superfragment, then their exists an Euclidean path µ(P ) in ΩR joining σ̌a and σ̌b such that d(µ(P )) ≤
W (P ) + (ε′/n)3/2R.

Observation C. If Euclidean line segment µ in ΩR joins two points va and vb, belonging to fragments
σa and σb not both of which are circular mirror fragments, then there exists a path P (µ) in FV G joining
fragments σa and σb such that W (P (µ)) ≤ d(µ) + ε′R/n.

Observation C’. If Euclidean line segment µ in ΩR joins two points va and vb, belonging to fragments σa

and σb both of which are circular mirror fragments, then there exists a path P (µ) in FV G joining fragments
σa and σb such that W (P (µ)) ≤ d(µ) + (ε′/n)3/2R.

Observation D. If Euclidean path µ in ΩR joins two points va and vb, belonging to fragments σa and σb

of the same straight mirror or stopover edge, then there exists a path P (µ) in FV G joining fragments σa

and σb such that W (P (µ)) ≤ d(µ) + ε′R/n.

Observation D’. If Euclidean path µ in ΩR joins two points va and vb, belonging to fragments σa and σb

of the same straight mirror superfragment, then there exists a path P (µ) in FV G joining fragments σa and
σb such that W (P (µ)) ≤ d(µ) + (ε′/n)3/2R.
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Let P be any path in the FV G from Z0 to Z1. We can decompose P into subpaths P1, P2, . . . , Pk, where
each Pi is either (i) a single edge joining fragments of distinct stopover edges, straight mirrors, or circular
mirror superfragments, or (ii) maximal subpaths joining fragments of the same stopover edge, straight
mirror, or circular mirror superfragment. By maximality each stopover edge, straight mirror, or circular
mirror superfragment can be involved in at most two subpaths of type (i). Thus, there are O(n) subpaths
of type (i) involving at least one non circular mirror fragment, and O(n(n/ε′)) subpaths of type (i) joining
circular mirror fragments. Similarly, there are O(n) subpaths of type (ii) involving at least one non circular
mirror fragment, and O(n(n/ε′)) subpaths of type (ii) joining circular mirror fragments. If we define µ(P )
to be the Euclidean path formed by concatenation of µ(P1), . . . , µ(Pk) then, by Observations A, A’, B and
B’, we have

d(µ(P ) ≤ W (P ) + O(ε′R). (13)

Similarly, if µ is any Euclidean path in ΩR then µ can be decomposed into subpaths µ1, µ2, . . . , µk such
that each µi is either (i) a single line segments joining fragments of distict stopover edges, straight mirrors,
or circular mirror superfragments, or (ii) a maximal subpath joining fragments of the same stopover edge,
straight mirror, or circular mirror superfragment.

Define P (µ) to be the path in FV G formed by concatenation of the paths P (µ1), . . . , P (µk). By Obser-
vations C, C’, D and D’, we have

W (P (µ)) ≤ d(µ) + O(ε′R). (14)

We now put these two steps together. Begin with the shortest path P ∗ joining Z0 and Z1 in FV G. Using
the construction above, we obtain an Euclidean path µ(P ∗). As before it follows directly from equations
(13) and (14) that d(µ(P ∗)) ≤ d(µ∗

R) + O(ε′R).

This concludes our proof of Theorem 6. Now we can apply the geometric search algorithm to obtain a
true ǫ-approximation algorithm whose running time depends on lg(1/d1(µ

∗)). We next prove a lower bound
on d1(µ

∗).

7 Lower Bound on non-zero d1(µ
∗)

This section is devoted to the proof of the following result:

Theorem 7 Assume d1(µ
∗) > 0. Then d1(µ

∗) ≥ c−L for some constant c > 1.

First, recall that the input description, including all obstacle corners and the initial position F [Z0] of the
rod focus point F , involves only L-bit rational numbers. We assume that the lengths of the half-rods, AF
and FB, are also L-bit rational numbers, denoted a and b respectively.

The sparsity of points with small rational coordinates allows us to easily dispose of the case in which the
initial and final positions of the focus differ: if F [Z0] 6= F [Z1] then d1(Z0, Z1) ≥ ‖F [Z0] − F [Z1]‖ ≥ 2−2L.
Henceforth, assume F [Z0] = F [Z1]. In this case the theorem is an immediate consequence of the following:

Main Claim. If F [Z] is never too far (no further than c−L, for some fixed constant c > 1) from F [Z0]
then the placements F [Z0] and F [Z1] must be equivalent up to a pure rotation (i.e., d1(Z0, Z1) = 0).
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Imagine rotating the rod about its focus F . We refer to the first obstacle feature encountered in a
clockwise (respectively, counterclockwise) rotation in configuration Z as the CW (respectively, CCW)
feature stop at Z. Two configurations with coincident foci are equivalent up to a pure rotation if and only
if their CW and CCW feature stops are identical. To establish this equivalence it suffices to consider each
rod endpoint separately and show that the CW and CCW feature stops of each half rod are identical in the
two configurations.

The argument will be made for the half rod AF ; the corresponding argument for FB is identical. Start
by considering an open disc D of radius a centered at F [Z0]. Then every obstacle wall either (i) does not
intersect D; (ii) intersects the boundary of D twice (and so has no associated corner in D); (iii) intersects
the boundary of D once (and so has exactly one corner in D); or (iv) is entirely contained (and so has both
of its associated corners) in D. We will choose representative points associated with walls as follows:
Walls of type (i) have no representative point. Walls w of type (ii) are represented by their closest point pw

to F [Z0], provided pw 6= F [Z0]. (If pw = F [Z0] then w has no representative point.) Walls w of type (iii)
are represented by their corner inside D, provided this corner does not coincide with F [Z0]. (If the corner
coincides with F [Z0] then w has no representative point.) Finally, walls w of type (iv) are represented by
their two associated corners, provided the corner does not coincide with F [Z0].

Walls of type (ii) and (iii) that do not have representative points (because they pass through or end
at F [Z0]) serve to partition D into wedges centred at F [Z0]. The wedge occupied by the rod in its initial
configuration (the entire disc, if there are no edges of type (ii) or (iii)) is called the primary wedge. Clearly,
unless F [Z] exceeds distance a from F [Z0] somewhere in its trace, the rod also occupies the primary wedge
in its final configuration. The representative points serve to partition the primary wedge of D into secondary
wedges formed by rays centered at F [Z] through the individual representative points. Note that as Z changes
the secondary wedges change. However, if F [Z] never leaves a disc of radius c−L, where c > 1 is a fixed
constant, then (i) the distance from F [Z] to individual representative points never exceeds a, and (ii) the
relative order of the rays defining the secondary wedges (except for those rays that coincide in the initial,
and final, configuration) remains fixed. This follows from the following elementary observations:

Observation A. All representative points are described by O(L)-bit rational numbers.

Observation B. The distance from F [Z0] to its closest point on the radius a circle centered at any
representative point is at least c−L, for some positive constant c > 1.

Observation C. The distance from F [Z0] to its closest point on the line joining any two representative
points is either zero or at least c−L, for some positive constant c > 1.

It follows that the secondary wedges, ∆0 and ∆1, occupied by the half rod AF in its initial and final
configurations are idential. It remains to show that any free placement Z of AF in ∆0 with F [Z] = F [Z0]
has a unique CW and CCW stop. Since ∆0 contains no representative points in its interior, if the CW (or
CCW) stop of AF at Z is realized by a obstacle corner then that corner must be a representative point
defining one of the bounding rays of ∆0. If the CW (or CCW) stop of AF at Z is realized by a wall w, we
observe that: (i) since AF has a free placement in ∆0, w does not intersect both sides of ∆0; (ii) since ∆0

contains no representative points in its interior, w does not have an associated corner inside ∆0, or cross the
boundary of D twice within ∆0; and hence (iii) w must intersect the boundary of D and one of the sides of
∆0. The uniqueness of w follows from the fact that obstacle walls do not intersect.

This concludes the proof of the Main Claim.
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8 Final Remarks and Open Problems

This paper has demonstrated the usefulness of pseudo approximation algorithms. Applied to two of the
simplest NP -hard optimum motion planning problems, we obtain new ε-approximation algorithms. Many
interesting questions remain to be explored:

(1) There should be other application of our general methodology to exploiting pseudo approximations.

(2) Our complexity analysis is in the algebraic model of computation. It is of interest to obtain true
bit-complexity bounds, in the spirit of Choi et al [8].

(3) The complexity of the two approximation algorithms (shortest path for a point robot in 3D and
d1-shortest path for a rod in 2D) should be possible to improve, by not treating the pseudo approximation
algorithms as black-boxes in the binary search scheme.

(4) Can we extend these techniques to approximating general dn-optimal motion, and also to an arbitrary
rigid planar robot?
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APPENDIX I: Basic Vocabulary

A rod is a closed line segment AB, directed from the B-end (base) to the A-end (apex). The A-end is the
end with the arrow head in figures. See Figure 1(a). So we also think of the rod as a line segment, directed
from B-end to the A-end. The corresponding open segment is simply denoted as AB. The focus is a point
F in the relative interior of the rod. The rod is thereby divided into two half-rods, AF and BF , viewed as
open segments.

The closure and boundary of an arbitrary set S ⊆ R
2 is denoted by S and ∂S, respectively. We are given

a closed planar set Ω ⊆ R
2 in which the rod is free to move. Its boundary ∂Ω is polygonal, and is naturally

partitioned into pairwise disjoint sets: singleton sets called corners and open line segments called walls.
An obstacle feature refers to either a corner or a wall. The closure W of an open wall W is called a closed
wall. For simplicity, we assume non-degeneracy on Ω as convenient.

We use the language of “placements” [26]. A placement is a pair Z = (p, θ) ∈ R
2×S

1 where p ∈ R
2 is a

point and θ ∈ S
1 an angle. We also write Z = (x, y, θ) if p = (x, y). For any set S ⊆ R

2, we write S[Z] ⊆ R
2

for position of the set S in placement Z. This position S[Z] is obtained by rotating the plane containing
S about the origin by θ, then translating the plane by p, viewed upon some reference plane. For example,
AB[Z] is the position of the rod in placement Z, and it is just a closed line segment. Thus the symbol “[Z]”
acts as an Euclidean transformation of the plane. We choose a canonical representation of our rod AB:
F = (0, 0), A = (−a, 0) and B = (b, 0) for some 0 < a < 1 and b = 1 − a. For placement Z = (x, y, θ), we
have F [Z] = (x, y), A[Z] = (x− a cos θ, y − a sin θ) and B[Z] = (x + b cos θ, y + b sin θ). Furthermore,

AB[Z] = {(x + t cos θ, y + t sin θ : −a ≤ t ≤ b}.

A placement Z is free if AB[Z] ⊆ Ω. Let FP = FP (Ω) denote the set of free placements (or
configuration space). Consider a continuous function

µ : [s, t]→ R
2 × S

1

where [s, t] is a real interval. For any point X ∈ R
2, let Xµ : [s, t] → R

2 denote the path Xµ(t) = X [µ(t)].
We call Xµ the X-trajectory of µ. In case X = F (the focus of the rod), the X-trajectory is called the
trace of µ. We call µ a potential motion if both its A-trajectory and B-trajectory are rectifiable (i.e., has
a definite arc length). This implies the trace of µ has a length d1(µ), called the d1-distance of µ. A potential
motion µ is a feasible motion (or simply, “motion”) if AB[µ(u)] ⊆ Ω for all u ∈ [s, t]. The d1-distance
between Z, Z ′ ∈ FP , denoted by d1(Z, Z ′), is the minimum d1-distance of a feasible motion from Z to Z ′.
A motion µ is d1-optimum if d1(µ) = d1(µ(0), µ(1)).

For r ≥ 0 and p ∈ R
2, let Br(p) denote the closed Euclidean ball of radius r centered at p. Write Br(0)

when p is the origin. For S ⊆ R
2, let Br(S) denote the set ∪{Br(p) : p ∈ S} (alternatively, Br(S) is the

Minkowski sum Br(0)⊕ S). For a free placement Z, Br(AB[Z]) has the shape of a capsule or “racetrack”.
The clearance Clearance(Z) is defined to be largest r ≥ 0 such Br(AB[Z]) ⊆ Ω. Let the racetrack of Z
refer to the set Br(AB[Z]) when r = h(Z); we denote the racetrack of Z by RT (Z). We say Z is closest to
those obstacle features s that intersect RT (Z) on its boundary. The racetrack shown in Figure 3 shows two
closest features, s1, s2. By definition, the interior of a racetrack has no obstacle points.

APPENDIX II: Structure of ∂FP

We focus on the boundary ∂FP of FP : ∂FP comprise those placements Z such that AB[Z] touches at least
one obstacle feature. That is, Z ∈ ∂FP iff there exists a wall W or a convex corner C such that at least one
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Figure 3: Racetrack RT (Z): Closest features s1, s2 and Partition of its boundary

of three conditions hold: A[Z] ∈ W or B[Z] ∈W or C ∈ AB[Z]. We will partition ∂FP into a cell complex.

Constraints. We describe the cell complex via the intermediate concept of constraints (the treatment
here is slightly different from [3]). First, consider four types of basic constraints, denoted as

[B+@W ], [B−@W ], [B+@C], [B−@C].

We could replace B by A to get 4 more basic constraints. Altogether there are 8 types of basic constraints.
We emphasize that the corners C in constraints are always convex corners, i.e., the obstacle set R

2 \ Ω is
locally convex at C.

An obstacle feature s is a CW stop for Z if a CW rotation of the rod about the focus F , starting at Z,
first becomes infeasible by virtue of crossing s. A CCW stop for Z is similarly defined. According to this
definition, if an endpoint of a rod just grazes a feature s, then s is not considered a stop. For instance, in
Figure 4(a), W is a CCW stop for the indicated placement Z.

Constraints are properties of placements. A placement Z with a constraint property ξ is said to satisfy
that ξ, and written Z|=ξ. For instance, the constraint [B+@W ] (read “B counter-clockwise at W”) is
satisfied by placement Z if B[Z] ∈ W and W is a counter-clockwise (CCW) stop for Z (see Figure 4(a)).
Similarly, [B−@C] (“B clockwise at C”) is satisfied by Z if C ∈ BF [Z] and C is a clockwise (CW) stop for
Z (see Figure 4(d)). The other two basic constraints are illustrated in Figure 4(b) and (c).

Recall that BF is regarded as an open segment in this definition. Similarly, W is an open segment. A
consequence of this definition is that if B[Z] = C, then Z does not satisfy any of the basic constraints. This
is by design.

Patches, Edges, Vertices. For any basic constraint ξ, the set {Z ∈ FP : Z|=ξ} is seen to be relatively
open. Each connected component of this set is a 2-dimensional cell. The closure of such a cell is called a
ξ-patch. Next, we define the 1-dimensional cells, also known as edges of FP . These are the connected
components of the intersection of two patches. Again, we can use the intermediate concept of constraints:
an edge constraint is any pair of basic constraints ξ1, ξ2, which we write as ξ1 ∧ ξ2. We say Z satisfies
the edge constraint, Z|=ξ1 ∧ ξ2, if2 Z lies in the ξ1-patch and the ξ2-patch. For instance, [B−@C]∧ [A+@W ]

2It important to realize that this is not the same as saying Z|=ξ1 and Z|=ξ2.
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Figure 4: Basic Constraints

is an edge constraint satisfied by Z such that C ∈ BF [Z], A ∈ W [Z] and for which C and W are CW
and CCW stops (respectively). If Z satisfies an edge constraint that has CW and CCW stops, we say Z
is constricted. Finally the intersection of three or more independent patches is a 0-dimensional set. Each
placement in such a set is called a vertex.

Note that by definition, patches and edges are closed sets: an edge contains vertices for its endpoints,
and a patch contains edges for its boundary. Let an open patch be defined as a patch minus its boundary
edges, and an open edge be an edge minus its endpoints. Then the open patches, open edges and vertices
constitute a 2-complex for ∂FP .

The classification of edges and vertices is more involved than for patches. Remark that in [3], we gave a
somewhat different constraint analysis; in particular, the “edges” there do not coincide with the ones used
here. But for our present purposes, it is enough to introduce three special classes of edges: mirrors, stopovers
and pivots. Informally, the kind of edges excluded from this list are those satisfying an edge constraint which
involve either two CW-stops or two CCW-stops.

Mirrors and Displaced Features. There are two kinds of mirrors: straight mirrors and circular
mirrors. A placement Z of a mirror are said to be reflecting. The case of straight mirrors is easy to
characterize: a straight mirror is an edge of ∂FP that satisfies a joint constraint [X+@W ]∧ [X−@W ], where
X = A or B and W is any wall. Figure 5(a) shows a wall W giving rise to two straight mirrors. But in
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general, due to the presence of other obstacles, a wall can give rise to a linear number of mirrors.

Corresponding to each mirror is a natural mirror motion; the trace of this motion is straight or circular,
and is called a displaced wall feature (WA, WB in Figure 5(a)) or a displaced corner feature (CA, CB

in Figure 5(b)). These displaced features are shown as dashed lines. Furthermore, the portion of the plane
between the wall W and the displaced feature WX (X = A, B) that is swept by the half rod FX is called
the zone of the mirror.

Analysis of Circular Mirrors. We want to analyze the nature of the circular mirrors associated with
a convex corner C. This analysis will also help clarify our decomposition of ∂FP based on patches. Consider
the exterior angle at C, bounded by the incident walls W1, W2 (see Figure 5(c,d)). This angle is partitioned
into 5 sectors, by extending the walls W1, W2 into the exterior angle, and by introducing normals to these
walls at C. The extension and normal of Wi are denoted W ext

i and W⊥
i in Figure 5(c) and (d).

Let M denote the sector bounded by the two normals; the rest of the exterior angle has two connected
parts denoted E1 and E2. Let FPA(C) = {Z ∈ FP : A[Z] = C, AB[Z] ∈ M} (there is a similar FPB(C)).
If Z ∈ FPA(C), we say Z belongs to a sector, say M , if AB[Z] is contained in M , etc. We consider two
cases, depending on whether the angle at C is greater than (Case (c)) or less than (Case (d)) a right angle.

• Case (c). In this case, Ei is in turn divided into two parts E′
i and E′′

i (i = 1, 2), where E′
i is the part

adjacent to the wall Wi. Referring to Figure 5(c), note that a placement Z ∈ FPA(C) belongs to E′
1

iff
Z|=[A−@W1] ∧ [A−@C].

Also, Z belongs to E′′
1 iff

Z|=[A−@W1] ∧ [A−@W2].

We replace W1 by W2 and A− by A+ in case of E′
2 and E′′

2 . Finally, Z belongs to M iff

Z|=[A−@W1] ∧ [A+@W2].

• Case (d). In this case, M is divided into three parts named M1, M0, M2. Referring to Figure 5(d),
note that a placement Z ∈ FPA(C) belongs to E1 iff

Z|=[A−@W1] ∧ [A−@C].

In case of E2, we replace A− by A+ and W1 by W2. Next, Z belongs to M1 iff

Z|=[A+@W1] ∧ [A−@C].

Similarly, Z belongs to M2 iff
Z|=[A−@W2] ∧ [A+@C].

Finally, Z belongs to M0 iff
Z|=[A+@W1] ∧ [A−@W2].

Summarizing cases (c) and (d), we can say Z ∈ FPA(C) belongs to M iff Z satisfies a joint clockwise
(A−) and counterclockwise (A+) constraint.

Of course, the presence of other obstacles breaks up FPA(C) into several connected compoents. Each
connected component in FPA(C), restricted to one of the 5 sector constitute an edge of ∂FP . By definition,
a circular mirror is one of these edges comprising placements that belongs to M . The boundary between
these sectors, when they are free, are vertices of ∂FP .
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Figure 5: (a),(b) Mirrors and Displaced Features, (c),(d) Analysis of Circular Mirrors

The terminology of “mirrors” comes from the fact that the trace of optimum motions sometimes “reflect”
off the displaced wall or corner, the reflection obeying the law of reflection. This mirror phenomenon is critical
for our NP -hardness proof in [3].

Stopover Edges and Stopover Curves. We define a stopover edge as a constricted edge whose
trace is not straight. Recall that Z ∈ ∂FP is constricted iff Z has a CW-stop and a CCW-stop, so it
cannot rotate. The trace of a stopover edge is called a stopover curve. There are three kinds of stopover
edges, and their constraints are:

(1) [A+@W1] ∧ [B−@W2] where W1, W2 are non-parallel walls: the trace is part of an ellipse.

(2) [A+@W ] ∧ [X−@C] where X = A or B: the trace is part of a conchoid.

(3) [A+@W1]∧ [A−@W2]: this can only happen when the A-end of the rod is (stuck) at a concave corner
determined by W1 and W2. The trace is a circular arc.

Of course, in the above constraints, we could also interchange the roles of A and B. The last kind of
constricted edge, which we do not consider to be a stopover edge, satisfies the constraints [A+@C1]∧[B−@C2]
or [A+@C1] ∧ [A−@C2] or where C1, C2 are corners. The trace is a straight line segment.

Pivotal Edges. The third class of edges is very simple: they satisfy the pivotal constraint [A+@C]∧
[B−@C] where C is any convex corner (the roles of A, B can be exchanged). Note that Z satisfies this
constraint iff F [Z] = C. We call Z pivotal in this case. A maximal connected set of such placements is a
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pivotal edge and corresponds to a motion of pure rotation about the focus which is fixed at some C.

Complexity of the Cell Complex. We conclude this appendix by bounding the size of the cell complex
of ∂FP which we just described.

Theorem 8 Let there be n wall and corner features. In our 2-complex of ∂FP , the following bounds hold:
(a) The number of patches is O(n2).
(b) The number of edges is O(n3).
(c) The number of vertices is O(n3).

Proof. (a) Each patch is determined by one of the 8n basic constraints. A basic constraint ξ can give rise
to < n patches. To see this suppose the constraint ξ relates to a wall W , say ξ = [A+@W ]. In the absense
of any other features there is only one patch. We now introduce features one at a time: each feature can
only increase the number of patches by 1. First we introduce the corner features. Each corner feature, if
it increases the number of patches, can only do so by split one current patch into two new patches. Now
we introduce the wall features (their corners have already been introduced). But these cannot increase the
number of patches. A similar argument applies when ξ relates to a corner C, as in ξ = [A+@C].

(b) There are 64n2 edge constraints. Each edge constraint ξ1 ∧ ξ2, in the absence of any other features,
determines a 1-dimensional set of placements that is a connected set. Again, each new feature we introduce,
if it disrupts the connectivity of any connected component, can only increase the number of components by
1. Hence there are at most 64n3 edges in the complex.

(c) Each vertex can be charged to a triple of obstacle features. There are n3 such triples. But every
triple can be charged a constant number of times. Hence number of charges is O(n3). Q.E.D.

APPENDIX III: Proof of Local Characterization Theorem

We prove Theorem 5 which gives a local characterization the d1-optimal motion.

The following classification of placements is based on considering the behavior of the clearance function
as we make small rotatations, where rotations are always about the focus F :

Definition 1 (1) The placement Z is stopped if Clearance(Z) is locally maximum in the sense that any
infinitesimal rotation (CW- or CCW-) will decrease the clearance.
(2) A placement Z is critical if Clearance(Z) is locally minimum in the sense that any infinitesimal rotation
(CW- or CCW-) will increase the the clearance.
(3) Define a rotation function ρ : FP → FP as follows. If Z is stopped or critical, let ρ(Z) = Z.
Otherwise, there is a unique direction to rotate Z so as to locally increase the clearance of Z. Define ρ(Z)
to be the first local maxima reached by this rotation. We also define

H(Z) = Clearance(ρ(Z)).

In Appendix I, we introduced the racetrack RT (Z). See Figure 3. If Clearance(Z) > 0, then the boundary
of RT (Z) contains four special points called the North, South, East, West Poles of Z. The boundary is
thereby divided into four open curves, called the North-East, North-West, South-East, South-West
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tracks. Stopped placements can be characterized as placements whose East or West Poles are covered, or
two adjacent tracks are covered. (Two tracks are adjacent if they are both bounded by one of the four
poles. E.g., the North-East track is adjacent to North-West and to South-East tracks.) Similarly, we may
characterize critical placements to be those placements Z whose North or South Poles are “covered” (i.e.,
contained in some obstacle feature), and furthermore, no point on the boundary of RT (Z) is covered. The
latter condition is important, as it implies that a critical placements could not be simultaneously stopped.

These characterizations depend upon the assumption Clearance(Z) > 0, but they can be extended to the
case Clearance(Z) = 0 by taking limits. Thus, stopped placements and critical placements are generalizations
(respectively) of constricted placements and reflecting placements. The requirement that critical placements
must not have any other points on its racetrack boundary covered is translated into the requirement that a
reflecting placement must not satisfy any other constraints (other than what is required by definition).

Next we introduce some special motions. Let µ : [0, 1]→ FP be a motion.

• µ is constricted if for all t ∈ [0, 1], µ(t) is constricted.

• µ is pivotal if for all t ∈ [0, 1], µ(t) is pivotal. In this case, there is a unique convex corner C such
that Fµ(t) = C.

• µ is reflecting if for all t ∈ [0, 1], µ(t) is reflecting.

• µ is restrained if it is constricted, pivotal or reflecting.

• A placement Z is restrained if it is one of the following: (a) constricted, (b) pivotal, (c) reflecting,
or (d) a vertex. REMARK: The clause (d) might seem unnecessary, but Figure 6(i) shows a vertex V1

that does not fall under (a), (b) or (c). More important is the remark that our definition of a reflecting
placement Z does not allow the Z to satisfy any other constraints. Thus the vertices V2 and V3 in
Figure 6(ii,iii) are also not covered by clauses (a), (b) or (c). In proofs, we do not care if the vertex V1

is considered restrained (though it is harmless to be considered restrained); but we do need V2, V3 to
be considered restrained.

• A motion µ is unrestrained if for all t, 0 < t < 1, µ(t) is not restrained. Note µ(0) and µ(1) may be
restrained in this definition.

• µ is straight if for all t ∈ [0, 1], Fµ(t) lies on the straight line segment [Fµ(0), Fµ(1)]. Moreover, the
trace is monotone in the sense that for 0 ≤ t < t′ ≤ 1, Fµ(t′) is closer than Fµ(t) to Fµ(1).

(ii) V2 (iii) V3(i) V1

W
CW

C′

C

Figure 6: Vertices that are not constricted, pivotal or reflecting

. We now prove two lemmas about unrestrained placements.
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Lemma 9 If Z is unrestrained, then H(Z) > 0.

Proof. If Clearance(Z) > 0, then the result follows from the fact that H(Z) ≥ Clearance(Z). So assume
Clearance(Z) = 0. In this case, AB[Z] must touch some feature s (wall or corner). There is a unique
direction in which we rotate Z away from s; this is because s cannot be a corner at F [Z] (it would make
Z pivotal), and s is not a wall normal to AB[Z] (it would make Z reflecting). Moreover, if we make a
small enough rotation, Z would remains free (otherwise Z is constricted). This proves that ρ(Z) 6= Z, i.e.,
H(Z) > 0. Q.E.D.

Lemma 10 Let µ : [0, 1]→ FP be an unrestrained motion. If µ is d1-optimal, then µ is straight.

Proof. Suppose for all 0 < t < 1, Clearance(µ(t)) > 0. Then it is an easy remark that µ must be straight.

Our goal is to construct a new motion µ′ with three properties: (1) Clearance(µ′(t)) > 0, (2) µ′(t) = µ(t)
for t = 0, 1, and (3) µ, µ′ have the same trace, Fµ′ = Fµ.

From (3), we have d1(µ
′) = d1(µ) (= length of their traces). Since µ is optimal, and from (2), we conclude

that µ′ must be optimal. From (1) and the easy remark, µ′ must be straight. Using (3) again, it follows that
µ is also straight, proving our lemma.

Hence it remains to construct µ′. Towards this end, consider µ′′ = ρ ◦ µ (composition of ρ with µ).
We see that Fµ′′ = Fµ. Furthermore, Lemma 9 tells us that H(µ(t)) > 0 for all 0 < t < 1. Thus
Clearance(µ′′(t)) = H(µ(t)) > 0. So, µ′′ has properties (1) and (3) needed for µ′. We can get (2) by
concatenating a rotation at the beginning and at the end of µ′′. So what else is lacking? Unfortunately,
µ′′ can have discontinuities: this happens at those 0 < t0 < 1 where µ(t0) is critical. By Sard’s Lemma
[18, 19], we may assume that there only finitely many such discontinuities, which must be isolated. Now µ′

is obtained from µ′′ by “patching up” each of these discontinuities via a rotation at each discontinuity.

To see how this patchwork is achieved, observe that an isolated discontinuity at t0 means that µ′′(t−0 ) 6=
µ′′(t+0 ). Moreover, µ′′(t+0 ) and µ′′(t−0 ) must be the two local maximas for the clearance function as we rotate
µ(t0) in the CW- and CCW- directions. We can connect µ′′(t−0 ) to µ′′(t+0 ) by a rotation motion that passes
through µ(t0). The minimum clearance achieved by this rotation motion is equal to Clearance(ρ(µ(t0))) =
Clearance(µ(t0)) > 0. In other words, by inserting such rotation motions into µ′′, we preserve the property
that Clearance(µ′(t)) > 0. This completes the description of µ′. Q.E.D.

We next show two more preliminary results about constricted motions. If p ∈ R
2 and ε > 0, let

Bε(p) ⊆ R
2 denote the open ball of radius ε > 0 centered at p ∈ R

2. For Z ∈ FP , define the reachable
ball Bε(Z) ⊆ FP comprising those placements Z ′ that can be reached by a motion µ : [0, 1]→ FP where the
trace Fµ is restricted to Bε(F [Z]). Define the set of ε-accessible points from Z to be {F [Z ′] : Z ′ ∈ Bε(Z)},
and denoted FBε(Z). Clearly, FBε(Z) ⊆ Bε(F [Z]). Also, Bε(F [Z]) \ FBε(Z) is the set of ε-inaccessible
points from Z.

Lemma 11 Let µ : [0, 1] → FP be a constricted edge. Then the trace Fµ is the boundary of the locally
accessible points. That is, for any 0 < t < 1, there is an ε > 0 such that
(i) The ε-accessible points FBε(µ(t)) and the ε-inaccessible points Bε(Fµ(t))\FBε(µ(t)) are connected sets.
(ii) The restriction of Fµ to Bε(µ(t)) is a connected curve that separates FBε(µ(t)) from Bε(Fµ(t)) \
FBε(µ(t)).
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Figure 7: Local Geometry of Constricted Motions

Proof. As illustrated in Figure 7, the trace Fµ is one of four types: (a) is an eliptic arc, (b) is a circular arc,
(c) and (d) represent upper and lower conchoid arcs, while (e) and (f) are straight segments. To see that the
trace Fµ forms the boundary for the locally accessible points, we note that for any 0 < t < 1, there is an
open range R = R(t) of angles at Fµ(t) such that for any θ ∈ R, there is a feasible motion starting from µ(t)
with trace moving in the direction θ. Moreover, every motion starting from µ(t) in the opposite direction
−θ is infeasible. Q.E.D.

Next we analyze how a restrained motion and a constricted motion can be joined together in an optimal
motion. We first introduce the necessary notation. Let µ : [a, b] → FP and µ′ : [a′, b′] → FP be two
motions. We can concatenate them provided b = a′ and µ(b) = µ′(a′) and obtain a new motion denoted
µ′′ : [a, b′] → FP where µ′′(t) = µ(t) if t ∈ [a, b] and µ′′(t) = µ′(t) otherwise. We also write µ′′ = µ; µ′ for
the concatenation of µ and µ′.

Lemma 12 Let µ = µ0; µ1 be d1-optimal with µ0 constricted and µ1 unrestrained. Let Z be the placement
where µ0 joins µ1. Assume Fµ0 and Fµ1 are both non-constant functions and the set of ε-inaccessible points
from Z is convex. Then Fµ0 is straight and connects to Fµ1 tangentially at the point F [Z].

Proof. Since µ1 is unrestrained, its trace Fµ1 is straight. By Lemma 11, Fµ0 locally bounds the inaccessible
points. Thus the tangent lines of µ1 (locally) lies in the accessible region. Let Fµ0 meet Fµ1 at the point
r. See Figure 8(a). If Fµ1 is not a tangent to Fµ0 at r, we can construct a shorter motion to obtain a
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contradiction. To do this, take a neighborhood Bε(r) as in Lemma 11. Join a point p on the Fµ0 to a point
q on Fµ1 by a line segment within this neighborhood. This segment is in the locally accessible region and
µ can be modified to take a shortcut by tracing this segment. Q.E.D.
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q
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Figure 8: Transition between constricted motion µ0 and unrestrained motion µ1: (a) convex case, (b)
nonconvex case

The set of ε-inaccessible points from a non-vertex constricted Z is generally convex for ε sufficiently
small (being bounded by straight segments or arcs of ellipses, circles or conchoids). Unfortunately, there is
an exception: when the arc is the part of a conchoid that is closer to the directrix of the conchoid than to
the pole. In this case the ε-accessible points need not be convex. This is illustrated in Figure 8(b). We treat
this case next.

Lemma 13 Let µ = µ0; µ1 be a motion with µ0 constricted and µ1 unrestrained. Let Z be the placement
where µ0 joins µ1. Assume Fµ0 and Fµ1 are both non-constant functions and for all ε > 0, the set of
ε-accessible points from Z is non-convex. Then µ is not optimal.

Proof. If µ is optimal, then µ1 is straight. Moreover, the trace of µ0 is part of a conchoid curve γ (see
Figure 8(b)). We can choose a point p = Fµ0(t0) and a point q = Fµ1(t1) (for suitable t0, t1), both
sufficiently close to F [Z], such that there exists a straight motion from µ0(t0) to µ1(t1). This proves the
non-optimality of µ. Q.E.D.

Proof of the Local Characterization (Theorem 5): Let Fµ be locally non-straight at t0, 0 < t0 < 1.
If µ(t0) is locally a vertex at t0, then we satisfy the first condition in the theorem. In the rest of this proof,
we assume otherwise.

CLAIM: µ is locally restrained at t0, i.e., if I is any Fµ-neighborhood of t0, there exists some t ∈ I such
that µ(t) is restrained.

By way of contradiction, assume the claim is false. Then Lemma 10 tells us that µ restricted to I is
straight. This contradicts our assumption that µ is not locally straight at t0.
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From this claim, we conclude that µ must be locally constricted, pivotal or reflecting at t0. We consider
each possibility in turn.
(i) Suppose µ is locally pivotal at t0. That it is clear that µ(t0) is in fact pivotal, i.e., there is a convex
corner C such that Fµ(t0) = C. Let I = [t1, t2] be the maximal interval containing t0 such that Fµ(t) = C
for all t ∈ I. Since t0 is not locally a vertex, it means that there exists a ε > 0 such that µ|[t1 − ε, t1]
and µ|[t2, t2 + ε] is unrestrained and thus straight. Moreover, the trace of these two straight motions must
“bend” around C because of optimality.
(ii) Suppose µ is locally constricted at t0. Again, we conclude that µ(t0) is constricted. So let I = [t1, t2]
be the maximal interval containing t0 such that Fµ(t) is constricted for all t ∈ I. We have two possibilities:
(a) If t0 = t1 or t0 = t2, then µ(t0) is the transition between a constricted motion µ|[t1, t2] and some other
motion, say µ′. Since µ(t0) is not locally a vertex, we conclude that µ′ cannot be restrained. By Lemmas 12
and 13, we conclude that Fµ′ is straight, and meets the trace Fµi tangentially at µ(t0). (b) If t1 < t0 < t2,
then µ(t0) is locally tracing a stopover curve.
(iii) Finally, assume µ(t0) is locally reflecting. Let I = [t1, t2] be the essential Fµ-neighborhood of t0. Then
there is some t1 ∈ I where µ(t3) ∈ M , where M is a mirror. Without loss of generality, let A[µ(t3)] lie in
some wall or corner. According to our analysis of mirrors in Appendix II, µ(t3) satisfies some edge constraint
of the form [A+@s] ∧ [A−@s′] where s, s′ are two features. There are three possibilities (a) s = s′ are the
same wall, (b) s is a corner and s′ is an incident wall (or vice-versa), (c) s, s′ are the two walls incident on a
common corner. For all sufficiently small ε > 0, the points Fµ(t1 − ε), Fµ(t3), Fµ(t2 + ε) are not collinear.
This is just our assumption that µ is not locally straight at t0. Let R ⊆ R

2 denote the zone of the mirror M
– this is the region ∪{AF [Z] : Z ∈M}. Now, if Fµ(t1−ε) or Fµ(t2 +ε) lies outside the zone R, then it is not
hard to see that we can define a straightline motion from µ(t1) to µ(t2). This is a shortcut, contradicting the
d1-optimality of µ. So both points lies in the zone. This means that µ(t1 − ε) satisfies [A+@s] and µ(t2 + ε)
satisfies [A−@s′] (the symmetric case is treated similarly). In this case, the optimal motion from µ(t1 − ε)
to µ(t2 + ε) must have a trace that reflects off the mirror curve of M according to Snell’s law, as claimed.

This completes the proof of Theorem 5.
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