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Abstrat. We develop a probabilisti test for the vanishing of radial

expressions, that is, expressions involving the four rational operations

(+;�;�;�) and square root extration. This extends the well-known

Shwartz's probabilisti test for the vanishing of polynomials. The prob-

abilisti test forms the basis of a new theorem prover for onjetures

about ruler & ompass onstrutions. Our implementation uses the Core

Library whih an perform exat omparison for radial expressions.

Some experimental results are presented.

1 Introdution

Several approahes to proving theorems in Elementary Geometry using on-

strutive methods in Computer Algebra were proposed in the 1980s [7℄. These

were muh more suessful than earlier approahes based on purely logial or

axiomati approahes. Thus, Kutzler, Stifter [14℄ and Kapur [12℄ proposed meth-

ods based on Gr�obner Bases. Carr�a and Gallo [1, 8℄ devised a method using the

dimension underlying the algebrai variety. Hong [11℄ introdued semi-numerial

methods (\proof by example" tehniques) based on gap theorems. An alaimed

approah in this area is due to Wu [21, 23, 22℄ who applied the onept of hara-

teristi sets to geometri theorem proving. Extensive experimentation with Wu's

method were reported by Chou [3, 5℄.

All these algebrai approahes begin by translating the geometri statements

into algebrai ones. A proposed geometry theorem (also alled a onjeture) is

translated algebraially into two parts: a system H of multivariate polynomials

alled the hypothesis, and a single polynomial T alled the thesis. The onjeture

is true if the vanishing of the hypothesis system implies the vanishing of the thesis

polynomial. From the viewpoint of algebrai geometry, proving the onjeture

amounts to showing that V ar(H) � V ar(T ) where V ar(S) is the algebrai

variety de�ned by a set S of polynomials. This basi formulation must be re�ned

in order to handle degeneray onditions.
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Wu's \basi method" omputes the pseudo-remainder of the polynomial the-

sis with respet to the Wu-Ritt extended harateristi set of the hypotheses sys-

tem. If the pseudo-remainder vanishes, then the onjeture is true provided the

initials of the extended harateristi set do not vanish. Wu's basi method has

been suessfully used to prove many lassial and some new theorems in plane

analyti geometry. The basi method fails if the variety V ar(H) is reduible.

To handle this, Wu's \omplete method" begins by deomposing V ar(H) into

irreduible omponents and applying the basi method to eah omponent. A

drawbak in Wu's method is that it works with an algebraially losed �eld.

In partiular, it is not a omplete method for the real algebrai varieties. The

present paper addresses a speial ase of real algebrai varieties.

Gr�obner bases methods an be doubly exponential in the worst ase [17,

24℄. The omplexity for Wu's method is somewhat better but remains an issue.

To irumvent the high omplexity, we investigate probabilisti methods [20℄

ombined with \proof by example" tehniques [11℄. In probabilisti theorem

proving, we do not prove the validity of a onjeture in the lassial sense.

Instead, we either prove the invalidity of a onjeture (by showing a ounter

example) or else lassify the onjeture as \true with the high probability 1�"".

This latter lassi�ation must be properly understood sine, lassially, it is

nonsense to say that a theorem is true with some probability. What is meant

is that, relative to a set of experiments we ondut, the probability that the

onjeture is false and we failed to disover this, is less than ".

An interesting approah along these lines was given by Carr�a, Gallo and

Gennaro [2℄. They applied the Shwartz-Zippel [20, 27℄ probabilisti test for the

vanishing of pseudo-remainders in Wu's method. They onsidered onjetures in

the lassial setting of ruler & ompass onstrutions. Suh onjetures are ex-

amined by testing the vanishing of Wu's pseudo-remainder for randomly hosen

examples. Eah example is spei�ed by a random hoie of values for its param-

eters. The random hoies ome from some suitable test set whose ardinality

depends on the degree of the pseudo-remainder. The extended harateristi set

as well as the pseudo-remainder are omputed. If the pseudo-remainder is zero,

then the example is suessful; otherwise, as in Wu's method, further investiga-

tion is alled for. While implementing their method, one of us (D.T.) disovered

a serious eÆieny issue. The degree of the pseudo-remainder is very high: if the

onjeture involves C ruler & ompass onstrution steps, then, the degree of

the pseudo-remainder in [2℄ (following [9, 10℄) has the following bound:

D = 2

O(C

3

)

C

O(C

2

)

:

The ardinality of the test set is 2D, whih is too large in pratie. This bound

applies to the test for \generi truth". For \universal truth", D an be improved

to 2P �3

C+1

where P is the number of points in the onstrution. Unfortunately,

pratially no lassial theorems are universal truths.

Summary of New Results. (1) We develop an extension of the Shwartz-

Zippel probabilisti zero test. While the Shwartz-Zippel test is appliable to



polynomials, we treat radial expressions by admitting the additional operations

of division and square-roots. This adds onsiderable omplexity to the proofs.

Furthermore, for eÆieny onsiderations, we use straight line programs to rep-

resent radial expressions. The asymptoti time omplexity of our probabilisti

test is a low-order polynomial. Sine radial expressions are ommon in many

appliations, we expet this new test to be generally useful.

(2) We address the problem of omputer proofs of geometri onjetures

about ruler & ompass onstrutions. The zero test of radial expressions is tailor

�tted for this problem. Moreover, we ombine randomness with the numerial

approah of Hong to give additional eÆieny. Thus, our approah appears to

be intrinsially more eÆient than previous general approahes (e.g., Wu's or

Gr�obner bases).

(3) Our prover is implemented using the Core library [15, 13, 19℄. This is

an unexpeted appliation of our library, whih was designed as a general C++-

pakage to support the Exat Geometri Computation [26, 25℄ approah to ro-

bust algorithms. Preliminary experimental results are quite promising. We ex-

pet further improvements by �ne-tuning our library for this spei� appliation.

Our prover is urrently distributed with version 1.3 of the Core library (Aug.

15, 2000) and available from http://s.nyu.edu/exat/ore/.

Overview. The paper is organized as follows: Setion 2 gives an overview of

geometri onjetures about ruler & ompass onstrutions. Setion 3 gives our

extension of Shwartz's probabilisti test to radial expressions. Setion 4 ad-

dresses the appliation of our new probabilisti test to theorem proving. We

onlude in Setion 5.

2 Theorem Proving for Ruler & Compass Construtions

We follow the algebrai approah whih has been well-summarized by Chou

[5℄. Ruler & ompass operations may be seen as onstruting lengths, points,

lines and irles, olletively alled geometri objets. A olletion of suh geo-

metri objets will be alled a geometri sene. We onsider geometri senes

that are onstruted inrementally using ruler & ompass operations. The al-

gebrai analogue of onstruting a geometri objet O amounts to introduing

a pair of variables (x; y) and orresponding polynomial equations h

i

(x; y; z; : : :)

(i = 1; 2; : : :) that must be satis�ed if (x; y) lies on O. Here, h

i

may involve other

variables z; : : :, from previously onstruted objets. We shall lassify the vari-

ables introdued by our onstrutions into two sorts: independent and dependent

variables. For short, the independent variables will be alled parameters. It is

instrutive to give a onrete example (Figure 1 from [5℄).

Example 1 (Pasal's Theorem). Let A, B, C, D, F and E be six points on a

irle entered at O. Let P = AB

T

DF , Q = BC

T

FE and S = CD

T

EA.

Show that P , Q and S are ollinear.
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Fig. 1. Pasal's Theorem.

Let A = (0; 0), O = (u

1

; 0), B = (x

1

; u

2

), C = (x

2

; u

3

), D = (x

3

; u

4

),

F = (x

4

; u

5

), E = (x

5

; u

6

), P = (x

7

; x

6

), Q = (x

9

; x

8

), and S = (x

11

; x

10

). This

gives the following equations for the hypotheses.

Equation Geometry Remark

h

1

: x

2

1

� 2u

1

x

1

+ u

2

2

= 0 [OA � OB℄ Introdues x

1

; u

2

h

2

: x

2

2

� 2u

1

x

2

+ u

2

3

= 0 [OA � OC℄ Introdues x

2

; u

3

h

3

: x

2

3

� 2u

1

x

3

+ u

2

4

= 0 [OA � OD℄ Introdues x

3

; u

4

h

4

: x

2

4

� 2u

1

x

4

+ u

2

5

= 0 [OA � OF ℄ Introdues x

4

; u

5

h

5

: x

2

5

� 2u

1

x

5

+ u

2

6

= 0 [OA � OE℄ Introdues x

5

; u

6

h

6

:

(u

5

� u

4

)x

7

+ (�x

4

+ x

3

)x

6

+

u

4

x

4

� u

5

x

3

= 0

[P 2 DF ℄ Introdues x

6

; x

7

h

7

: u

2

x

7

� x

1

x

6

= 0 [P 2 AB℄ Constrains x

6

; x

7

h

8

:

(u

6

� u

5

)x

9

+ (�x

5

+ x

4

)x

8

+

u

5

x

5

� u

6

x

4

= 0

[Q 2 FE℄ Introdues x

8

; x

9

h

9

:

(u

3

� u

2

)x

9

+ (�x

2

+ x

1

)x

8

+

u

2

x

2

� u

3

x

1

= 0

[Q 2 BC℄ Constrains x

8

; x

9

h

10

: u

6

x

11

� x

5

x

10

= 0 [S 2 AE℄ Introdues x

10

; x

11

h

11

:

(u

4

� u

3

)x

11

+ (�x

3

+ x

2

)x

10

+

u

3

x

3

� u

4

x

2

= 0

[S 2 CD℄ Constrains x

10

; x

11

The onlusion that P;Q; S are ollinear an be translated into the following

polynomial:

g = (x

8

� x

6

)x

11

+ (�x

9

+ x

7

)x

10

+ x

6

x

9

� x

7

x

8

= 0:



In general, we get a system of polynomial equations, h

1

= h

2

= � � � = h

`

=

0 where h

i

2 R[u

1

; : : : ; u

m

; x

1

; : : : ; x

n

℄ (R is the �eld of real numbers), the

u

1

; : : : ; u

m

are parameters, and the x

1

; : : : ; x

n

are dependent variables. The on-

jeture has the form:

(8u;x)[h

1

= h

2

= � � � = h

`

= 0 ) g = 0℄ (1)

where u = (u

1

; : : : ; u

m

), x = (x

1

; : : : ; x

n

) and g = g(u;x) 2 R[u;x℄.

Degeneray and Generi Truth. A theorem of the form (1) is alled a uni-

versal truth. It turns out that the lassial notion of theoremhood is more sub-

tle, and this led Wu to formulate the notion of generi truth. We formalize it

as follows: let �

1

; : : : ; �

k

be prediates on the variables u;x. We all eah �

i

a non-degeneray ondition. The onjeture (1) is generially true relative to

f�

1

; : : : ; �

k

g if

(8u;x)[�

1

; �

2

; : : : ; �

k

; h

1

= h

2

= � � � = h

`

= 0 ) g = 0℄: (2)

Classial ruler-and-ompass theorems are indeterminate in that they do not ex-

pliitly speify the degenerate onditions. Hene part of \proving a lassial the-

orem" involves disovering a suitable set of non-degeneray onditions. Hopefully

the set is minimal is some sense (but not neessarily unique). The simplest kind

of non-degeneray ondition has the form

� : d 6= 0

where d is a polynomial. Call this the �rst kind of non-degeneray ondition. The

degree of the � is equal to the total degree of d. If eah �

i

has degree d

i

, then

the degree of f�

1

; : : : ; �

k

g is

P

k

i=1

d

i

. Typial examples of the �rst kind of non-

degeneray may require two points to be distint or two lines to be non-parallel.

It is easy to see that both have degree 2.

Example 1 (ontinued). The non-degeneray onditions require the intersetion

points P; S and Q be not at in�nity. Equivalently, the following pairs of lines

are not parallel: fAB;DFg, fBC;FEg, fCD;EAg. So the degree of these non-

degeneray onditions is 6.

Seond Kind of Degeneray. The seond kind of non-degeneray ondition

arises for theorems in the real �eld. For example, when we de�ne a point by the

intersetion of two irles, we require that these two irles interset. Or, when

we de�ne three ollinear points A;B and C, we may require B to lie between

the other two points. Suh non-degeneray onditions have the form

� : d � 0

where d is a polynomial. We an modify this ondition using a well-known trik:

�

0

: 9z; d� z

2

= 0



where z is a new variable. The existential quanti�er on z an be pulled out as

a prenex universal quanti�er. Thus, we an formulate the onjeture as

(8u;x; z) (�

0

; H ) T ):

In pratie, there may be other ways to handle this: in the Pasal example, suh

non-degeneraies demand that the parameters u

j

(for j = 2; 3; 4; 5; 6) satisfy

ju

j

j � ju

1

j. Our prover an handle non-degeneray onditions of the seond kind

when put in this form. Indeed, in all the examples we looked at in [5℄, suh a

formulation is possible.

Redution to Radial Expressions. In a ruler & ompass onstrution, eah

dependent variable is a radial funtion of the previously introdued variables.

As exempli�ed by Pasal's Theorem, all the dependent variables are introdued

either (i) singly by a single equation (e.g., x

1

is introdued by h

1

= 0) or (ii)

in pairs by two equations (e.g., x

6

; x

7

are introdued by h

6

= h

7

= 0). As all

equations are at most quadrati, the x

i

's an be replaed by radial expres-

sions involving the u

j

's. Let G = G(u) be the radial expression after suh a

substitution into g(u;x). The universal truth onjeture (1) now says

(8u)[G = 0℄;

with an analogous statement for generi truth. Another issue arises: eah radial

is determined only up to a � sign. Hene, if there are r radials in G, we must

replae G = 0 by the system of 2

r

radial expressions, G

1

= G

2

= � � � = G

2

r

= 0,

in whih eah of the 2

r

possible sign ombinations are used. If a single funtion

G

�

(u) is desired, we an use G

�

=

P

2

r

i=1

G

2

i

. The appearane of \2

r

" in this

expression may be disturbing from a omplexity viewpoint. Several observations

suggest that this is not serious in pratie. First, r is typially small (r = 5 in

Pasal's theorem). Next, we an redue the number of summands in G

�

from

the worst ase of 2

r

terms. There are two ways this an happen: (A) Symmetries

in the problem may arise so that many of the G

i

's an be omitted. (B) Certain

sign ombinations may be exluded by the nature of the onstrution and/or

theorem so that G

�

may represent a sum of less than 2

r

radial expressions.

In partiular, using (A) and (B), we an always omit half of the summands in

standard geometri theorems. Thus, 2

r�1

terms suÆe in G

�

.

Example 2 (Buttery Theorem). We illustrate the redution in the number of

terms in G

�

using the Buttery Theorem in [5, Example 2.4, p. 9℄. The theorem

onerns 4 o-irular points A;B;C and D. Let O be the enter of this irle

and E be the intersetion of AC and BD. The points A;B;C;D;E form a

\buttery". If the line perpendiular to OE and passing through E intersets

the lines AD and BC at G and F (respetively), then the theorem says that

segments EF and EG have the same length. There are 3 quadrati equations

in formulating this theorem (so r = 3). In the onstrution desribed by Chou,

the point E is plaed at the origin (0; 0) and O is plaed at (u

1

; 0). A is freely

plaed at (u

2

; u

3

). The point C is now ompletely determined, and has two



possible solutions. In one solution, C and A oinide, and the nature of the

theorem exludes this ase. Next, the points B is freely hosen on the irle (and

this introdues one parameter). Again there are two possible solutions. But it

is lear by symmetry that we an arbitrarily hoose one of them without loss of

generality. Therefore, G

�

only needs two terms (orresponding to hoosing the

2 solutions for D).

The fat that our prover an address theorems about real geometry is illus-

trated by the following simple example.

Example 3 (Triangle Bisetors). Let A, B, C be three non-linear points, and

D be the intersetion point of the angle bisetors of \A and \B in the triangle

4ABC . We want to prove that D must be on the bisetor of \C in 4ABC .

A B

C

D

Fig. 2. Coinidene of three angle bisetors.

Let A = (0; 0), B = (u

1

; 0), C = (u

2

; u

3

), D = (x

4

; x

5

). This gives the

following equations for the hypotheses.

Equation Geometry Remark

h

1

: x

2

1

� u

2

1

= 0; x

1

� 0 [x

1

� kABk℄ Introdues x

1

h

2

: x

2

2

� u

2

2

� u

2

3

= 0; x

2

� 0 [x

2

� kACk℄ Introdues x

2

h

3

: x

2

3

� (u

1

� u

2

)

2

� u

2

3

= 0; x

3

� 0 [x

3

� kBCk℄ Introdues x

3

h

4

: (x

1

u

2

� x

2

u

1

)x

4

+ x

1

u

3

x

5

= 0 [D 2 bisetor(\A)℄ Constrains x

4

; x

5

h

5

:

[(u

2

� u

1

)x

1

+ u

1

x

3

℄(x

4

� u

1

) +

x

1

u

3

x

5

= 0

[D 2 bisetor (\B)℄ Constrains x

4

; x

5

The onlusion that D is on the bisetor of angle \C an be formulated as

the following thesis:

g = (x

4

� x

2

)(u

1

x

2

� u

2

x

2

+ u

2

x

3

)� (x

5

� x

3

)(x

3

� x

2

)u

3

= 0

The formulation expliitly introdues inequalities for x

1

; x

2

; x

3

to pik the

internal angle bisetors. When regarded as a omplex theorem, no suh inequal-

ities are allowed. In this ase, eah \bisetor" an refer to either the internal

or external bisetor of an angle, so there are a total of 8 = 2

3

hoies for these

bisetors. The \thesis" is true for exatly four of these hoies, whih also means



that the theorem is false in omplex geometry. Let G(u) be the radial expres-

sion after eliminating the dependent variables from g. The 8 hoies of bisetors

orrespond to di�erent assignment of signs to the three radials in G(u). Our

prover an be used to test the validity of eah hoie.

3 Randomized Zero Testing for Radial Expressions

3.1 Straight Line Programs

We need to generalize expressions to straight line programs (SLP). A SLP � is

a sequene of steps where eah step is an assignment to a new programming

variable. The ith step of a SLP has one of the forms

z

i

 x

i

Æ y

i

; (Æ 2 f+;�;�;�g) (3)

z

i

 

p

x

i

(4)

where z

i

is a newly introdued programming variable, x

i

and y

i

are either real

onstants, input variables or programming variables introdued in some earlier

steps. Alternatively, we all an input variable an independent variable (or, pa-

rameter) and a programming variable a dependent variable. These x

i

and y

i

are

said to be used in the ith step. The last introdued variable is alled the main

variable and it is never used. In general, a SLP an have branhing steps. But

this possibility is not onsidered in this paper.

An expression is a SLP where, with the exeption of the main variable, eah

programming variable is used exatly one. Underlying eah SLP is a labeled and

ordered dag (direted ayli graph) de�ned in the obvious way: eah node orre-

sponds to a onstant or variable in the SLP. We often use the terms \nodes" and

\variables" interhangeably. For the steps in (4) (resp., (3)), we introdue edges

that are direted from x

i

(resp., x

i

and y

i

) to z

i

. We use standard graph-theoreti

terminology to talk about this dag: sinks, soures, predeessor/suessor nodes,

et. If (u; v) is an edge of the dag, we all u the predeessor of v, and all v the

suessor of u. The nodes labeled by input variables or onstants are soure nodes

while the non-soure are labeled by programming variables. The soures may be

alled leaves in ase the dag is a tree. The non-soure nodes are assoiated with

an operation (�;�;�;

p

�) { so we may speak of \radial nodes", \multipliation

nodes", et. Variables that are not used orrespond to sink nodes in the dag. The

main variable orresponds to a sink node whih we all root. The radial depth of

a node u is the maximum number of radial nodes in a path from u to any root

node, inlusive of the end points. Thus, if u is a radial node, then the radial

depth of u is at least 1. For eah node u, its indued dag is the subdag omprising

all the nodes that an reah u along a path. A SLP is said to be rooted if the

root is the unique sink. The dags orresponding to expressions are ordered trees

(hene rooted). Our SLP's are assumed rooted unless otherwise noted.

Values. Let u = (u

1

; : : : ; u

m

) be the input variables. For eah variable u in

a SLP �, we indutively de�ne its value to be an appropriate element val

�

(u)



in an algebrai extension of Q(u). The extension is obtained by adjuntion of

square roots. The value of � is the value of its main variable. More preisely, let

Q

0

= Q(u) and de�ne the tower of extensions de�ned by � to be

Q

0

� Q

1

� Q

2

� � � � � Q

r

(5)

where Q

i

:=Q

i�1

(

p

�

i

) and the ith square-root in � has operand �

i

2 Q

i�1

. A

SLP � is also said to ompute a olletion V � Q

r

of values provided eah v 2 V

is the value of some variable in �.

Rational Degrees. Let x be a node in a SLP �. We de�ne the rational degree

rdeg

�

(x) of x (the subsript � is usually dropped). We need some auxiliary no-

tions. For any node or variable x, let RAD(x) denote the set of radial nodes in

the subdag of � rooted at x. Write RAD(x; y) for RAD(x) nRAD(y) (set di�er-

ene). Also let �(x) := jRAD(x)j and �(x; y) := jRAD(x; y)j. We will indutively

de�ne rdeg(x) to be a pair of natural numbers (a; b) 2 N

2

, but usually write it

as \a : b". These two numbers are the \upper" and \lower" degrees of x and

denoted udeg(x) and ldeg(x). Thus,

rdeg(x) = udeg(x) : ldeg(x):

Assuming rdeg(x) = a

x

: b

x

and rdeg(y) = a

y

: b

y

, we indutively de�ne rdeg(z)

using the table:

z udeg(z) ldeg(z)

onstant 0 0

parameter 1 0

x� y a

x

2

�(y;x)

+ a

y

2

�(x;y)

b

x

2

�(y;x)

+ b

y

2

�(x;y)

x� y a

x

2

�(y;x)

+ b

y

2

�(x;y)

b

x

2

�(y;x)

+ a

y

2

�(x;y)

x� y max(a

x

2

�(y;x)

+ b

y

2

�(x;y)

; b

x

2

�(y;x)

+ a

y

2

�(x;y)

) b

x

2

�(y;x)

+ b

y

2

�(x;y)

p

x a

x

b

x

The rational degree of the SLP � is de�ned to be a : b where a = max

x

udeg(x),

b = max

x

ldeg(x), and x ranges over the nodes in �. Note that if � is division-free,

then ldeg(x) = 0 for all x.

Alternative Approah. It is useful to have an alternative approah to rdeg

whih does not involve �(x; y) or �(y; x). In partiular, we de�ne rdeg

2

(z) =

udeg

2

(z) : ldeg

2

(z) indutively using the following table: as before, we assume

rdeg

2

(x) = a

x

: b

x

and rdeg

2

(y) = a

y

: b

y

.

z udeg

2

(z) ldeg

2

(z)

onstant 0 0

parameter 1 0

x� y a

x

+ a

y

b

x

+ b

y

x� y a

x

+ b

y

b

x

+ a

y

x� y maxfa

x

+ b

y

; b

x

+ a

y

g b

x

+ b

y

p

x

a

x

2

b

x

2



Notie that these degrees are no longer natural numbers but binary frations.

The following lemma gives the onnetion between the two de�nitions of rdeg.

Lemma 1. For any variable z in a SLP, we have

udeg(z) = 2

�(z)

udeg

2

(z); ldeg(z) = 2

�(z)

ldeg

2

(z):

3.2 Equivalent Transformations

Two variables (resp. SLP's) are said to be equivalent if they have the same

value. Transformations of an SLP that do not hange its value are alled equiv-

alent transformations (but the set of omputed values may hange). Equivalent

transformations may hange the rational degree, as when applying the distribu-

tive law:

z(x+ y)) zx+ zy: (6)

It is easy to verify that the rational degree of the left-hand side is at most that

of the right-hand side. We next show that the rational degree is preserved in the

absene of division (but allowing radials):

Lemma 2. If � is division-free, then the transformation (6) preserves rdeg of

�. In partiular,

rdeg(z(x+ y)) = rdeg(zx+ zy):

Proof. We only need to onsider the upper degrees. With udeg(x) = a

x

, et, as

before, we have

udeg(z(x+ y)) = 2

�(xy;z)

a

z

+ 2

�(z;xy)

maxfa

x

2

�(y;x)

; a

y

2

�(x;y)

g

while

udeg(zx+ zy) = maxfa

zx

2

�(zy;zx)

; a

zy

2

�(zx;zy)

g

= maxf(a

z

2

�(x;z)

+ a

x

2

�(z;x)

)2

�(zy;zx)

; (a

z

2

�(y;z)

+ a

y

2

�(z;y)

)2

�(zx;zy)

g:

The lemma follows if we now verify the following:

RAD(xy; z) = RAD(x; z) ℄ RAD(zy; zx);

RAD(xy; z) = RAD(y; z) ℄ RAD(zx; zy);

RAD(z; xy) ℄ RAD(y; x) = RAD(z; x) ℄ RAD(zy; zx);

RAD(z; xy) ℄ RAD(x; y) = RAD(z; y) ℄ RAD(zx; zy):

Our notation here, A ℄ B, refers to disjoint union of the sets A and B. Let us

only prove the �rst equation: the RHS is equivalent to RAD(x; z)℄RAD(y; zx).

We may verify that the union is indeed disjoint, and equal to RAD(xy; z). The

other equations an be proved similarly. We omit the details here.

Next, we show that applying the assoiative laws for multipliation and addition

does not a�et rational degree. This follows from the following general result:



Lemma 3. Let x

i

be variables in � and r

i

= jRAD(x

1

; : : : ; x

k

) n RAD(x

i

)j.

Then

rdeg(

k

Y

i=1

x

i

) =

k

X

i=1

rdeg(x

i

)2

r

i

udeg(

k

X

i=1

x

i

) =

k

max

i=1

fudeg(x

i

)2

r

i

+

k

X

j=1;j 6=i

ldeg(x

j

)2

r

j

g

ldeg(

k

X

i=1

x

i

) =

k

X

i=1

ldeg(x

i

)2

r

i

The above lemma justi�es a generalization of SLP's in whih we allow addi-

tion nodes and multipliation nodes to take an arbitrary number of arguments.

These are alled \sum" or

P

-nodes, and \produt" or

Q

-nodes, respetively.

Suh an SLP is alled a generalized SLP. A path in a generalized SLP dag is

said to be alternating if along the path, no two onseutive nodes are

P

-nodes

and no two onseutive nodes are

Q

-nodes. The SLP is alternating if every path

is alternating. Clearly, any SLP an be made alternating without hanging its

rational degree. We an eliminating any non-alternating path in the SLP by

aggregating the onseutive additions (or multipliations) using the

P

(or

Q

)

operations. This proess will terminate beause eah elimination redues the

number if nodes in a SLP.

3.3 Preparation

A SLP in whih the last three steps has the form

� � �

x 

p

w

C

y  x� w

B

z  y + w

A

is said to be prepared (or in prepared form). Here w

A

; w

B

; w

C

are variables or

onstants. Thus z is the main variable, and x is the last radial variable to be

introdued. Intuitively, the radial x has been brought up as lose to the root

as possible, in preparation for a transformation (to be introdued) to remove

the radial. We also all x the prepared variable. If the values of w

A

; w

B

; w

C

are given by the expressions A;B;C (resp.) then the value of z is given by the

expression

A+ B

p

C:

Note speial forms of this expression when A = 0 or B = 1, or both. If the SLP

has no square roots, it is onsidered prepared already. Our goal is to prepare a

given SLP, and to bound the resulting rational degree.



Let us now prepare a radial node A

0

with radial depth 1. Assume the SLP

is division-free. Let A

n

; B

n

be expressions (n � 0). The expressions E

n

, for n � 0

is de�ned indutively as follows: E

0

= A

0

�B

0

, and for n � 1,

E

n

= (E

n�1

+A

n

)B

n

= ((E

n�2

+A

n�1

)B

n�1

+A

n

)B

n

= � � � :

To show the dependene of E

n

on the A

n

's and B

n

's, we may also write E

n

=

E

n

(A

0

; B

0

; A

1

; B

1

; : : : ; A

n

; B

n

). Viewed as a tree, E

n

is essentially a single al-

ternating path from the root down to A

0

. This path is left-branhing only and

the root is a �-node. Also write: B

(n)

:=

Q

n

j=0

B

j

.

Lemma 4. For n � 1, the expression E

n

(A

0

; B

0

; : : : ; A

n

; B

n

) is equivalent to

the expression

E

0

n

:=(A

0

�B

(n)

) +E

n�1

(A

1

; B

1

; : : : ; A

n

; B

n

)

Moreover, if E

n

is division-free, then rdeg(E

n

) = rdeg(E

0

n

).

Proof. Proof by indution. When n = 1,

E

1

= (A

0

�B

0

) +A

1

)�B

1

= (A

0

�B

0

�B

1

) +A

1

�B

1

:

Assume that this lemma is held for n � k, then for n = k + 1,

E

k+1

= (E

k

+A

k+1

)�B

k+1

= ((A

0

�B

(k)

) +E

k�1

(A

1

; B

1

; : : : ; A

k

; B

k

) +A

k+1

)�B

k+1

= (A

0

�B

(k+1)

) +E

k

(A

1

; B

1

; : : : ; A

k+1

; B

k+1

):

Thus we know the equivalene of this transformation is held for any n 2 N.

In both ases, we only apply the distributive and assoiative laws, whih do

not hange the rational degree when E

n

is division free.

This is illustrated in the ase n = 2 by Figure 3. Note that the variable A

0

is prepared in E

0

n

. Atually, E

n

in this lemma an be a generalized SLP so that

the A

i

; B

i

's need not be distint and the nodes an be

P

- and

Q

-nodes. Then

there is a orresponding equivalent SLP E

0

n

; this is the version that we will use

in the next theorem.

We address the problem of multiple uses of a node. A node u is used k times

if there are k distint paths from the root to u. If a radial node u of radial

depth 1 is used k times, then if we judiiously apply the previous lemma k times,

eah time eliminating one \use" of u, we obtain:

Theorem 1. Suppose � is a division-free SLP and u is a radial node in � with

radial depth of 1. Then we an transform � into an equivalent SLP �

0

suh that

udeg(�) = udeg(�

0

). Moreover, either no node in �

0

has the value val

�

(u) or

else, there is a node u

0

in �

0

with the following properties:
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0

A

1

�

+

A

2

B

1

B

2

+

�

�

B

1

B

2

�

�

A

0

A

0

B

0

A

1

A

2

B

1

B

2

+

�

�

+

�

Fig. 3. The Transformation E

2

7! E

0

2

.

1. u

0

is the prepared variable in �

0

2. u

0

is the unique node in �

0

with value val

�

(u).

Proof. We may assume that � is a generalized, alternating SLP. Fix any path p

from u to the root and we may assume that this alternating sum-produt path

has the same form as the path from A

0

to the root of E

n

in lemma 4. We then

apply the previous lemma in whih u now plays the role of the node A

0

in E

n

.

This ollapses the path p to length 2, as in the lemma and the resulting SLP is

in a prepared form E

0

= u � A + B. If the variable u is used in A and/or B,

then we an repeat this proess for another path p

0

(if any) in A or B. We an

repeat this proess for the subexpressions A and/or B, if they ontain referenes

to the node u as well. There are two ases:

1. u is used in A, then A is transformed to A

0

= u � A

1

+ B

1

and E

0

=

u�B

1

+(A

1

u

2

+B). Remember that u is a square root and thus the expression

u

2

e�etively eliminates the square root operation here;

2. u is used in B, then B is transformed to B

0

= u � A

2

+ B

2

and E

0

=

u� (A+A

2

) +B

2

.

In both ases, we an see that E

0

is still in a prepared form. We keep this proess

until there is no use of u exept the one that is in the prepared position and has

a unique path to the root with length 2. Sine there must be a �nite number

of uses of u, this iterative proess will eventually terminate. At that point, the

resulting SLP �

0

has the desired form: �

0

is prepared and u is the main prepared

variable. It is also lear that if there are other nodes with the same value as u,

they an also be merged with u by the same proess. Hene, u will be the unique

node with value val

�

(u).

Note that we apply the ommutative, assoiative and distributive laws in

these transformations. The ommutative and assoiative transformations do not

hange the rational degree. Sine � is division free, Lemma 2 tells us that the dis-

tributive transformation preserves the rational degree too. Therefore, the prepa-

ration transformation does not hange the rational degree of �.



We say that �

0

is obtained by the proess of \preparing" u in �.

3.4 Main Result

Let � be a SLP whose value is V = V (u) 2 Q

r

(see (5)). We de�ne the real

funtion f

�

: R

m

! R where f

�

(a

1

; : : : ; a

m

) is the value of the main variable in

� when we evaluate eah dependent variable at a = (a

1

; : : : ; a

m

) 2 R

m

, following

� in a step-by-step fashion. The domain of f

�

omprises those a 2 R

m

where

f

�

(a) is de�ned. Similarly, we de�ne an assoiated real funtion f

V

: R

m

! R.

Note that the domain of f

�

is always a subset of f

V

. The following example

shows that it may be a proper subset: let � ompute the value V =

P

n�1

i=0

x

i

using Horner's rule, and let �

0

ompute the same V using the formula V =

x

n

�1

x�1

.

Then � and �

0

are equivalent, but �(1) = n while �

0

(1) is unde�ned. The domain

of � (and V ) is R but the domain of �

0

is R � f1g.

Theorem 2. Suppose V = V (u) is the non-zero value of a rooted division-free

SLP �. Then there exists a non-zero polynomial P (u) suh that Zero(V ) �

Zero(P ) with degP (u) � udeg(�).

Proof. We show the existene of the polynomial P (u) by indution on the num-

ber r of square roots in �. For r = 0, the result holds beause V is already a

polynomial of degree udeg(�).

Assume r > 0 and let u be a radial node of radial depth 1 in �. We

prepare u, leading to an equivalent SLP (whih we still all �). The udeg of �

is unhanged by this transformation. If C is the value of u, then the value of �

an be written as

V = A+B

p

C

where A;B;C belongs to Q

r�1

(reall that values of programming variable in-

trodued before the rth root extration belongs to the �eld Q

r�1

, by de�nition

of Q

r�1

). If B = 0 then V = A and the result is true by the indutive hypothesis

applied to A (whih has � r � 1 square roots). Otherwise, by applying some

further (obvious) transformations, we transform � to some �

0

whose value is

V

0

= A

2

�B

2

C: (7)

Note that �

0

has � r� 1 square-roots. If V

0

= 0 then 0 = V

0

= (A+B

p

C)(A�

B

p

C). Sine Q

r

is a UFD and V = A+B

p

C 6= 0 (by assumption), we onlude

that A�B

p

C = 0, i.e.,

p

C = A=B 2 Q

r�1

. Thus V = A+B

p

C = 2A. Then V

an be omputed by some SLP with � r� 1 square-roots, and the result follows

by indutive hypothesis.

So assume V

0

6= 0. By indution, Zero(V

0

) = Zero(A

2

� B

2

C) � Zero(P )

for some P with deg(P ) � udeg(V

0

). Sine Zero(V ) � Zero(V

0

), it remains to

show that udeg(V

0

) � udeg(V ). We have

udeg(V ) = udeg(A+B

p

C)

= maxfudeg(A)2

�(B

p

C;A)

; udeg(B

p

C)2

�(A;B

p

C)

g



� maxfudeg(A)2

1+�(B

2

C;A)

;

h

udeg(B)2

�(

p

C;B)

+ udeg(C)2

�(B;

p

C)

i

2

�(A;B

2

C)

g

= maxf2 udeg(A)2

�(B

2

C;A)

;

�

udeg(B

2

)

2

2

1+�(C;B

2

)

+udeg(C)2

�(B

2

;C)

�

2

�(A;B

2

C)

g

� maxfudeg(A

2

)2

�(B

2

C;A)

;

h

udeg(B

2

)2

�(C;B

2

)

+ udeg(C)2

�(B

2

;C)

i

2

�(A

2

;B

2

C)

g

= udeg(A

2

�B

2

C) = udeg(V

0

):

3.5 Presene of Division

What if the SLP is not division-free? Note that the presene of division is very

ommon. For instane, when we interset two lines in the onstrution, it gives

rise to an expression with division. There is a well-known transformation to

move all divisions towards the root, merging them as we go. An instane of this

transformation is

A

B

+

A

0

B

0

)

AB

0

+A

0

B

BB

0

:

Unfortunately, the number of radial nodes may be doubled beause if we move

a division node past a radial node, we obtain two radial nodes:

r

A

B

)

p

A

p

B

: (8)

Hene we give two versions of this transformation in the following lemma: in

version (i) we do not move any division node past a radial node, and in version

(ii) we remove all but at most one division node.

Lemma 5 (Elimination of Division). Let � be a rooted SLP.

(i) There is an equivalent SLP �

0

in whih eah division node is either the root

of � or the hild of a radial node. Moreover, rdeg(�

0

) = rdeg(�) and �

0

has the

same number of radial nodes as �.

(ii) There is an equivalent SLP �

00

with only one division node whih is also the

root. In this ase rdeg(�

00

) � 2

r

rdeg(�).

The proof of (ii) exploits the alternative de�nition of udeg(u). Beause the jus-

ti�ation of the alternative de�nition is long, we only refer to the details in

[15℄.

The value of the SLP �

00

has the form A=B where A;B are division-free.

Intuitively, to hek if A=B = 0, we hek if A = 0 subjet to B 6= 0. Sine A

is division-free, we may apply main theorem (see next Setion). This e�etively

amounts to doubling the number of square roots to prove a theorem involving

division.



3.6 Improved Square Root Transformation

It turns out that we an exploit another trik motivated by [18℄ in order to avoid

the doubling of the number of square roots. Instead of (8), we use the following

transformation to extrat division out of square roots:

r

A

B

)

8

>

<

>

:

p

AB

B

if udeg(A) � udeg(B);

A

p

AB

if udeg(A) < udeg(B):

(9)

Suppose our transformations for eliminating divisions, using the new rule (9),

transform an arbitrary expression z into U(z)=L(z) where U(z); L(z) are divi-

sion free. Let u

z

and `

z

denote the udeg(U(z)) and udeg(L(z)). To exploit the

advantages of this new rule, we now give an expliit set of indutive rules for

omputing u

z

and `

z

:

z u

z

l

z

onstant 0 0

parameter 1 0

x� y u

x

+ u

y

l

x

+ l

y

x� y u

x

+ l

y

l

x

+ u

y

x� y maxfu

x

+ l

y

; l

x

+ u

y

g l

x

+ l

y

p

x

1

2

(u

x

+ l

x

); (u

x

� l

x

);

u

x

; (u

x

< l

x

):

l

x

; (u

x

� l

x

);

1

2

(u

x

+ l

x

); (u

x

< l

x

):

Note that [18℄ only uses one of two lauses in (9) unonditionally. But the

e�et of using the two onditional lauses is that the resulting bound u

z

is never

worse than 2

r

udeg(z), whih is the bound in Lemma 5. The proofs may be found

in [15℄.

4 Proving by Random Examples

We show how to use our main result to prove theorems about ruler & ompass

onstrutions. Aording to Setion 2, this amounts to verifying if a radial

expression G

�

(u) is identially zero (subjet to non-degeneray onditions). Let

�(u) be the natural SLP whih omputes the values of all the dependent variables

in a ruler & ompass onstrution, and whose value is the polynomial thesis

G

�

(u). We give a simple upper estimate on the rdeg of eah node in �.

Eah \stage" of our onstrution introdues new points, lines or irles. Let

us now be more preise: assume that our system maintains three kinds of geo-

metri objets: points, lines and irles. These are onstruted as follows:

{ Points: There are three ases. Case 0: We an introdue an arbitrary point,

P . Then P:x and P:y are free variables (i.e., parameters). Case 1: We an

introdue an arbitrary point, P on an existing line L or irle C. We may

speify either P:x or P:y to be a parameter. The other oordinate is therefore



a dependent variable, onstrained by an equation. Case 2: We an introdue

a point P that arises from the intersetion of a line/irle with another

line/irle. In this ase, P:x and P:y are both dependent variables onstrained

by a pair of simultaneous equations. There is a variation of Case 2, whih

arises when at least one of the two interseting objets is a irle. In this

ase, we allow the user to obtain both the points of intersetion

1

.

{ Lines: Given two existing points, we an onstrut the line through them.

{ Cirles: Given three points P;Q;R, we an onstrut the irle entered at

P of radius equal to the distane between Q and R. As a speial ase, if P

is equal to Q or R, we an just use two arguments for this onstrution.

Lemma 6. If the dependent variable x is introdued at stage i , then rdeg

2

(x) �

85

i

, i.e., udeg

2

(x) � 85

i

, ldeg

2

(x) � 85

i

.

Proof. Proof by indution. Let S

k

be the set of objets (points, lines, et.) avail-

able after k onstrution stages. This lemma is trivially true when k = 0 beause

S

0

is empty.

Let r

k

= 85

k

. By the indution hypothesis, we assume that the oordinate

(e.g., for points) or oeÆient (e.g., in a line or irle equation) variables for all

the objets in S

k

have rational degrees at most r

k

.

Let us �rst onsider the onstrution of lines and irles. Reall that in our

system, a line refers to one that is onstruted by linking two points in S

k

; while

a irle means one that is onstruted with the enter in S

k

and the radius being

the length of some segment between two points in S

k

. We represent a line by a

linear equation ax+ by +  = 0. It is easily veri�ed that the rational degrees of

a, b and  are at most 2r

k

; 2r

k

and 6r

k

, respetively. Similarly, we represent a

irle by an equation in the form of (x� a)

2

+ (y � b)

2

= 

2

where the rational

degrees of a; b and  are at most r

k

; r

k

and 4r

k

, respetively.

Next, we onsider the onstrution of points. As disussed above, we an have

one of the three types of onstrution (Cases 0, 1, 2) in stage (k + 1). Case 0 is

trivial beause all the parameters have the rational degree 1 : 0. Case 1 an be

viewed as a simpli�ed Case 2. In the following, we fous on the more interesting

Case 2 onstrutions.

There are three possible onstrutions in a Case 2 stage.

First, we onsider the intersetion of two lines L

1

: a

1

x + b

1

y + 

1

= 0 and

L

2

: a

2

x+ b

2

y + 

2

= 0 where a's, b's and 's an be at most r

k

. We obtain the

intersetion point (x; y) of these two lines as follows,

(



1

b

2

� 

2

b

1

a

1

b

2

� a

2

b

1

;



1

a

2

� 

2

a

1

a

2

b

1

� a

1

b

2

):

From the de�nition (see Setion 3.1), the rational degrees for x and y are at

most 8r

k

.

1

It should be possible to allow the user to pik one of the two points using some

riteria, but we defer this to a future paper on implementation. This additional

power is sometimes needed in ruler-and-ompass theorems.



Next, let us onsider the intersetion of a line L : a

1

x + b

1

y + 

1

= 0 and a

irle C : (x�a

2

)

2

+(y� b

2

)

2

= 

2

2

. We eliminate y and get a quadrati equation

for x as follows:

(1 +

a

2

1

b

2

1

)x

2

+ (�2a

2

+ 2

a

1

b

1

(



1

b

1

+ b

2

))x + ((



1

b

1

+ b

2

)

2

+ a

2

2

� 

2

2

) = 0:

Let A;B and C be the three oeÆients in the above equation. It an be shown

that the rational degrees of them an at most be 4r

k

, 6r

k

and 10r

k

respetively.

From the above equations, we get x =

�B�

p

B

2

�4AC

2A

and y = �

a

1

x+

1

b

1

. Thus,

rdeg

2

(x) � 23r

k

and rdeg

2

(y) � 26r

k

.

Thirdly, we onsider the intersetion of two irles: C

1

: (x�a

1

)

2

+(y�b

1

)

2

=



2

1

and C

2

: (x� a

2

)

2

+ (y � b

2

)

2

= 

2

2

. We subtrat them �rst to obtain a linear

equation �rst. Then by arguments similar to those used for the intersetion of a

line and a irle, we an show that the rational degrees for x and y are at most

69r

k

and 85r

k

, respetively.

Therefore, we know that rdeg

2

(x) � 85

i

for all the nodes at the stage i.

REMARK: The onstant 85 in the above lemma is learly very onservative.

This bound an be re�ned, for example, by lassifying the stages into the various

types of onstrution.

Corollary 1. Let the thesis polynomial be g(u;x) with deg(g) = d, and G(u) be

any of the 2

r

radial expressions derived from g(u;x) by eliminating dependent

variables. Then rdeg

�

(G) � td2

r

85

k

where g(u;x) has t terms and k is the

number of onstrution stages.

Proof. For Lemma 6, we know that the rational degrees for all the dependent

and independent variables are at most 85

k

. The thesis G has t terms with total

degree at most d. By the indutive de�nitions of rational degrees, we know that

rdeg

�

(G) � td2

r

85

k

.

Assume an inremental onstrution with m parameters, n dependent vari-

ables, k stages, and r quadrati equations. Note that t is at most

�

m+n+d

d

�

.

Moreover, d � 2 in most lassial geometri theorems. In our implementation,

instead of relying on this rude upper bound, we atually ompute the atual

bounds on rdeg to ahieve better performane. By applying Lemma 5(ii) to �,

we obtain �

00

with one division at the root, and rdeg(�

00

) � 2

r

rdeg(�). Now the

value of �

00

(whih is G

�

) has the form A=B where A;B are division-free. More-

over, rdeg

�

00

(G

�

) � td2

2r

85

k

. Clearly, Zero(A=B) � Zero(A). Without loss of

generality, assume A 6= 0. By our main theorem, Zero(A) � Zero(P ) for some

polynomial P of degree � td2

2r

85

k

. Then we invoke a simple form of Shwartz's

lemma:

Fat 1. Let P (u) be a non-zero polynomial of degree at most D. If eah a

i

(i = 1; : : : ;m) is randomly hosen from a �nite set S � R. Then the probability

that P (a

1

; : : : ; a

m

) = 0 is at most D=jSj.



If we randomly pik the values a = (a

1

; : : : ; a

m

) 2 S

m

, and jSj = td2

+2r

85

k

(for

any  � 1) then the \error probability" of our proedure is given by PrfA(a) =

0g � PrfP (a) = 0g � 2

�

. This onstitutes our probabilisti veri�ation of the

universal truth of \G

�

(u) = 0".

An alternative to testing G

�

(u) = 0 is viewing the problem as testing the

simultaneous vanishing of a set of polynomial G :=fG

1

(u); : : : ; G

2

r

(u)g. This

redues the omplexity in two ways:

{ The root bound (whih determines the preision neessary to numerially

determine the sign of radial expressions in the Core Library) is smaller.

{ The size of the test set S is smaller.

We also have a further hoie when testing G: we an randomly hoose some

G

i

to test for its vanishing, or we an hoose to randomly test all the G

i

's for

their vanishing. However, the random hoie of G

i

does not seem to be the most

eÆient way to test a theorem.

Degeneraies of the First Kind. We now address the generi truth of

\G

�

(u) = 0". The notion of \error probability" beomes an interesting issue.

First onsider only non-degeneray onditions of the �rst kind, � : Æ 6= 0. For

simpliity, assume the ith ruler & ompass onstrution step introdues exatly

one suh ondition, Æ

i

6= 0, of degree � 2. Sine there are k stages of onstru-

tion, the non-degeneray ondition beomes Æ

�

:= Æ

1

Æ

2

� � � Æ

k

6= 0. The degree of

Æ

�

is thus at most 2k.

There are two natural models of what it means to have an \error probability"

� 2

�

: (A) The \strit model" says that our sample spae is now restrited to

S

m

n fa : Æ(a) = 0g. (B) Alternatively, we an say that the sample spae is still

S

m

but the theorem is trivially true at S

m

\ fa : Æ(a) = 0g. Given a �nite test

set S, the possible zeros of Æ

�

(i.e., degenerate on�gurations) in S

m

is at most

2

2r

udeg(Æ

�

)jSj

m�1

. With a large enough test set S, we an make the probability

that degenerate ases are hosen in the test (i.e., 2

2r

udeg(Æ

�

)=jSj) arbitrarily

small. We adopt the model A in the next theorem:

Theorem 3. Conjetures about ruler & ompass onstrutions with s non-dege-

nerate onditions of the �rst kind an be veri�ed with error probability � 2

�

in time polynomial in the parameters 2

r

; 2

s

; k; ; lg(t) and lg(d), where r is the

number of square roots in the thesis radial expression G(u), k is the number

of onstrution stages, t is the number of monomials in the thesis polynomial

g(u;x), and d is the total degree of g.

Proof. Eah onstrution introdues a onstant number of new operations into

the �nal radial thesis expression G

�

(a). Thus, the ost to onstrut the the-

sis expressions G

�

(a) is bound by O(k). Next, let us onsider the omplex-

ity in verifying G(a) for some sample on�guration a = (a

1

; a

2

; : : : a

m

) ran-

domly hosen from a �nite test set S with a ardinality of 2

2r+

85

k

td. From

the disussion above, we know that the failure probability of this test is at most



2

�

. Without loss of generality, we an assume all the elements in S are in-

tegers. So the bit length of eah instane value is bounded by L = lg(jSj) =

O(r +  + lg(t) + lg(d) + k). In our root bound based approah to determine

the exat sign of an algebrai expression [16℄, the number of bits whih need to

ompute in the veri�ation is bounded by O(pL2

2r

), where p is the total num-

ber of operations in G

�

whih is bounded by O(k). It is known that the time

omplexity of arithmeti operations among multiple preision numbers are no

more than O(`

2

) where ` is the bit length of operands. We have a total of 2

r

radial thesis expressions to verify. So the omplexity to verify the vanishing of

G

�

, when exat arithmeti is employed, is polynomial in 2

r

; k; ; lg(t) and lg(d).

In presene of s non-degeneray onditions of the �rst kind, let �(u) be the

produt of all of them. It is a radial expression in u. By our main theorems, the

number of zeros of � in S

m

, N , is polynomial in 2

s

and 2

r

. In the worst ase,

we may meet at most N degenerate ases before we get the �rst non-degenerate

one. So the worst ase omplexity for our omplete method is polynomial in

2

r

; 2

s

; k; ; lg(t) and lg(d).

Degeneraies of the Seond Kind. As noted, degeneraies of the seond

kind an often be redued to simple onstraints on the domains of the param-

eters, possibly depending on the values of other parameters. For instane, we

noted that in Pasal's Theorem, the parameters u

i

(i = 2; : : : ; 6) must satisfy

ju

i

j � ju

1

j. Our prover an handle suh degeneraies by exploiting the following

more general form of fat 1: de�ne the generalized degree of p(x

1

; : : : ; x

n

) to be

(d

1

; : : : ; d

n

) where the degree of p is d

1

when viewed as a polynomial in x

1

and

its leading oeÆient indutively has generalized degree (d

2

; : : : ; d

n

). Suppose

S

1

; : : : ; S

n

are �nite sets of real numbers, then it an be shown that if we hoose

(u

1

; : : : ; u

n

) randomly from S

1

�S

2

�� � ��S

n

, the probability that p is non-zero

and p(u

1

; : : : ; u

n

) = 0 is at most

d

1

jS

1

j

+ � � �+

d

n

jS

n

j

:

The main extra omplexity aused by this version of our prover is that we

need to evaluate the parameters at rational values (instead of just at integer

values).

The urrent implementation does not handle the seond kind of degeneray in

the above way, but we plan to retify this in the future. Instead, it detets when

an example a 2 S

m

is degenerate, disards it and generates another example,

et. Under probability model (A) above, this means that we do not have an �a

priori bound on the running time, but the error probability is orret. Of ourse,

under model (B), there is no need to generate another example; but this does

not seem like a reasonable model.

Degenerate Ruler-and-Compass Construtions. Certain theorems amount

to deteting the validity of onstrution steps. We give a simple example from



[6℄ of a theorem true in real geometry but false in the omplex geometry. The

onstrution amounts to piking two points P

1

(0; 0) and P

2

(u; 0) where u is a

free parameter. Also let P

3

be the midpoint of P

1

P

2

, and P

4

the midpoint of

P

1

P

3

. Let L be the bisetor of the segment P

1

P

2

, and C be the irle entered

at P

1

with radius P

1

P

4

. Let P

5

be the intersetion of L and C. The thesis is

P

1

= P

2

or equivalently u = 0. This onjeture is true in real geometry, but it is

false in the omplex plane beause u =

p

�1 is a solution. This is an interesting

example beause the thesis does not depend on the onstrution at all. It is an

indiret way of asserting the validity of the onstrution steps. In implementing

a prover that takes inputs from the user, we need to guard against being asked

to prove suh theorems. This amounts to an extreme form of the seond kind of

degeneray.

Timing. The following table lists some theorems from Chou [5℄. However, the

last row (Tri-Bisetor theorem) is the real geometry example from Setion 2. The

timings are for two values of  (this means the probability of error is at most

2

�

). We also arbitrarily \perturb" the hypothesis of eah theorem by randomly

hanging one oeÆient of one of the input polynomials, and report their timings

as well. These are all false theorems, naturally. Our tests were performed on a

Sun UltraSPARC-IIi (440 MHz, 512 MB). The times are all in seonds, and

represent the average of 6 runs eah. The prover uses Core Library, Version 1.3.

Atually, the library is diretly modi�ed so that we ompute the exat rational

degrees of the expressions (rather than use the estimates of the Lemma 6). For

omparison, we inlude the timings reported by Chou [5℄ using the approahes of

Wu and of Gr�obner Bases. The �nal olumn in the table gives the page number

in Chou's book [5℄.

No. Theorem  = 10  = 20 Perturbed Char Set Gr

�

obner Page

1 Pappus 0.020 0.020 0.007 1.52 33.32 100

2 Pappus Point 0.110 0.113 0.023 4.87 67.62 100

3 Pappus-dual 0.020 0.020 0.013 1.45 25.53 111

4 Nehring 8.300 8.390 0.107 4.15 159.3 115

5 Chou-46 0.070 0.073 0.020 88.13 37.65 124

6 Ceva 0.030 0.033 0.017 1.12 3.47 264

7 Simson 193.22 262.49 0.023 1.22 5.02 240

8 Pasal 1715.8 2991.6 0.037 29.6 >14400 103

9 Tri-Bisetor 20.027 38.350 0.010 { { {

Let r be the number of square roots in the radial expression representing a

theorem. If r = 0, we say the theorem is linear. A large part

2

of the 512 theorems

in Chou's book are linear. Only the last two theorems (Simson and Pasal) in

the above list are non-linear, with r = 1 and r = 5, respetively. Evidently non-

linear theorems represent a hallenge for our urrent system. Reall that there

2

The theorems in Chou's book inlude an original list of 366 theorems from [4℄, of

whih 219 are reported to be linear [5, p. 12℄.



are 2

r

(or 2

r�1

by symmetry) possible sign assignments to the radials in G(u).

Our prover has three veri�ation modes: (1) random mode, (2) exhaustive mode,

and (3) spei�ed mode. These orrespond, respetively, to testing (1) a random

sign assignment, (2) all sign assignments and (3) a user-spei�ed assignment. For

linear theorems, these modes are irrelevant. In the above table, we test Simson's

theorem in the exhaustive mode, Pasal's theorem in the random mode and Tri-

bisetor in the spei�ed mode. So our timing for Pasal's theorem should really

be multiplied by 2

4

= 16.

It is interesting to note that we have never observed a single wrong onlu-

sion from our probabilisti tests { all true theorems are reported as true, and

all perturbed theorems are reported as false. In some sense, that is not surpris-

ing beause the probabilisti bounds based on Shwartz's lemma seem overly

onservative in all real situations.

The running times for linear theorems are pretty onsistent aross di�erent

runs. However, for the non-linear theorems, the timing an show muh more

variation. This is not unexpeted sine the running time depends on the bit size

of the random example. A more prominent behavior omes from the lustering of

times around ertain values. For instane, for Simson ( = 20), the times luster

around 10 seonds and around 70 seonds. This \multimodal" behavior of the

timings are again seen in Pasal. This an be attributed to the random hoie

of signs for the radials in non-linear theorems. This may also aount for the

urious relative times for Simson  = 10 and  = 20.

The performane of our library is ritially dependent of good root bounds

(an area of researh that we are atively working on [16℄). It should be possible

to exploit prover-spei� tehniques to improve the speed, but this has not been

done. There are several issues to bear in mind when omparing our method with

Wu's method:

{ Chou's timings would look onsiderably better using hardware available to-

day.

{ The atual theorems proved by Wu's method are not stritly omparable to

ours in two important aspets: Wu's method proves theorems about omplex

geometry while ours is about real geometry. On the other hand, Chou's

algorithm is deterministi while ours is probabilisti.

{ Our method is extremely e�etive for disarding wrong or perturbed on-

jetures. It is unlear if Wu's method will be muh faster for perturbed

theorems, sine the algorithm would still have to exeute the same basi

steps. The ability to quikly rejet false theorems is extremely useful in ap-

pliations where the user has many onjetures to hek but most of the

onjetures are likely to be false.

{ One of the strengths of Wu's methods (as ompared to Gr�obner bases, say)

is its ability to disover non-degeneray onditions. A similar apability is

embedded in our approah { this simply amounts to deteting when a on-

strution step is ill-de�ned.



5 Final Remarks

In this paper, we have developed a generalization of the Shwartz-Zippel ran-

domized zero test for the lass of radial expressions. Suh a test is expeted to

have many appliations as radial expressions are quite ommon. Here, we fous

on their use in proving theorems about ruler & ompass onstrutions. Some

features of our prover are:

{ It proves theorems about real (rather than omplex) geometry, under the

limitation that there is no inequalities appearing in the thesis.

{ It is probabilisti, so that speed an be traded-o� against error probability.

{ It detets wrong onjetures very quikly.

{ It is extremely e�etive for linear theorems (the majority of the theorems in

[5℄).

{ It exploits the speial nature of ruler & ompass onstrutions.

Beause of the last feature, our approah may ultimately prove to be more

eÆient for this lass of problems than other more general tehniques. However,

our results so far have not been onlusive in the ase of non-linear theorems.

The following are some open problems:

{ Improve our zero test for straight line programs that involve division.

{ Develop tehniques to make our approah faster for non-linear theorems.

{ Extend our randomized tehniques to theorems that have inequalities in the

theses. This seems to all for radially new ideas.
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