
A Real Elementary Approach to the Master

Recurrence and Generalizations⋆

Chee Yap

1 Courant Institute of Mathematical Sciences
New York University

New York, NY 10012, USA
yap@cs.nyu.edu

2 Korea Institute of Advanced Study
Seoul, Korea

Abstract. The master theorem provides a solution to a well-known
divide-and-conquer recurrence, called here the master recurrence. This
paper proves two cook-book style generalizations of this master theorem.
The first extends the treated class of driving functions to the natural class
of exponential-logarithmic (EL) functions. The second extends the result
to the multiterm master recurrence. The power and simplicity of our ap-
proach comes from re-interpreting integer recurrences as real recurrences,
with emphasis on elementary techniques and real induction.

1 Introduction

Techniques for solving recurrences are among the standard repertoire of algorith-
mic textbooks [13, 5, 16, 4, 1]. A proto-typical recurrence arising in the analysis
of efficient recursive algorithms is

T (n) = aT (n/b) + d(n) (1)

where a > 0 and b > 1 are arbitrary real numbers, and d(n) ≥ 1 is the driving
function. We call (1) the master recurrence since theorems providing its
solution are widely known as “master theorems”. The solutions depend on the
nature of d(n). The case where d(n) is multiplicative is treated in [1, p. 301]. In
an influential note, Bentley, Haken and Saxe [3, Table 1, p.39] proved a master
theorem under a fairly general hypothesis on d(n). Recurrence (1) generalizes to

T (n) =
k∑

i=1

aiT (n/bi) + d(n) (2)

where ai > 0 and bi > 1 are arbitrary real constants (k ≥ 2). We call (2) the
multiterm master recurrence. E.g., the 2-term recurrences T (n) = T (n/b1)+
T (n/b2)+n and T (n) = T (n/2)+T (n/4)+ logn arise (respectively) in fast me-
dian algorithms [4, p. 240] and in conjugate search tree analysis in Computational
Geometry [6].

⋆ This work is supported by an National Science Foundation Grants #CCF-0728977
and #CCF-0917093, and also with KIAS support.

2

To discuss the literature, it is useful to begin with the “standard” master
theorem for (1). This is Proposition 1 in the next Section. It has two kinds
of generalizations: (A) The first kind, as in Verma [19], extends the class of
driving functions d(n) that are captured by the master theorem. Verma’s main
result [19, Theorem 13] provided integral bounds on solutions when the driving
functions d(n) satisfy some growth properties. (B) The second kind comes from
extending the master recurrence itself. Wang and Fu [20, Theorem 3.5] gave
integral bounds for a parametric form of (1) where a, b are now functions of n. Of
course, the multiterm recurrence (2) is also a generalization of the second kind.
An early treatment of multiterm recurrences is found in Purdom and Brown
[16]. Multiterm master theorems are given by Kao [11], Akra and Bazzi [2],
and Roura [18, Theorem 2.3]. Leighton [14] provides an exposition of [2]. We
remark that obtaining generalized bounds in the form of integrals, by itself,
is not satisfactory: our goal is to achieve “cookbook style” theorems [12] as
exemplified by the master theorem.

¶1. Contributions and Overview. Our main contribution is two cookbook style
generalizations of the master theorem, Theorems A and B. They are natu-
ral extensions, and completions, of known results. They serve to unify many
complexity analysis of individual algorithms: thus, no previous master theorems
capture the analysis of Schönhage-Strassen’s multiplication algorithm [13], but
this is now an application of Theorem A. Similarly, the conjugate tree analy-
sis of Edelsbrunner and Welzl [6] is a consequence of Theorem B. Furthermore,
Theorem B shows that the conjugate tree exponent, α = lg(φ − 1) ∼ 0.695
where φ = 1.618 . . . is the golden ratio, can be systematically obtained, and that
this bound is tight to Θ-order. Our second contribution is the introduction of
rigorous elementary techniques for these derivations. In particular, we provide
summation formulas for Exponential-Logarithmic (EL) functions. Elementary
techniques are possible because we exploit bounds which are tight to (only)
Θ-order.

Section 2 will review the master theorem and extensions. Section 3 states our
two main results: Theorem A is a master theorem that allows the driving function
d(n) to be any EL-function. Theorem B is a multiterm master theorem. Section
4 introduces elementary summation techniques. Section 5 addresses elementary
sums and proves Theorem A. Section 6 introduces real induction and proves
Theorem B. We conclude in Section 7.

¶2. Approach of Paper. Our approach has two emphases. The first is on real
recurrences: in the recurrences (1) and (2), we treat n as a real variable, T (n)
as a real function and all constants a, b, ai, bi are real. In contrast, most of the
literature regards n as an integer variable. E.g., Kao [11] treats this multiterm
recurrence:

T (n) =

{

c · nα · logβ n+
∑k

i=1 aiT (⌈bin⌉) for n ≥ n0

cn for n < n0
(3)

where n and k are positive integers, c, cn, ai are positive constants, α, β are non-
negative constants, bi ∈ (0, 1) and n0 ≥ maxki=1

1
1−bi

. Similar viewpoints are seen

3

in Wang-Fu, Akra-Bazzi and Roura. But most driving functions such as d(n) =√
n and d(n) = n logn are naturally real functions. Hence our real extension

remains well-defined if we simply omit the (troublesome) integer-valued functions
such as ceiling or floor. A standard approach to avoid ceiling/floor functions is
“domain restriction”. E.g., restricting the domain of T (n) in recurrence (1) to
positive powers of b ([4, p. 145, Problem 4.44] or [19]) and requiring b to be
integer. Finally, to restore n to range over all integers, we need special arguments
(e.g., [5, pp. 81–84]) or smoothness assumptions on T (n). Although the idea of
real recurrences is nascent in several of the papers (e.g., [2, 19, 18]), it seldom
takes on a full-blown form. In this paper, we develop basic tools to rigorously
treat real recurrences.

Our second emphasis is the use of elementary methods. Here “elementary”
means the avoidance of calculus [10], not that the results are trivial or easy to
come by. It is conventional wisdom in algorithmics to solve T (n) up to Θ-order
because it yields robust conclusions about complexity (e.g., [3]). But it is seldom
noted that Θ-order analysis lends itself to elementary techniques. E.g., below
we give elementary Θ-bounds on sums that are usually treated by the Euler-
Maclaurin formula [8, p. 217]. Authors also fail to exploit problem simplifications
from Θ-order analysis [19, 20, 18]. For instance, up to Θ-order, most solutions
are insensitive to the initial conditions. So we need not explicitly specify initial
conditions. Instead, this paper assumes the following default initial condition
(DIC):

T (n) = C, (n ≤ n0) (4)

for some constant C ≥ 0 and real n0; the recurrence equation is assumed to be
operative for n > n0. Usually C = 0 is simplest and easily justified. Thus,
using real recurrences under DIC, Kao’s recurrence (3) greatly simplifies to

T (n) = nα logβ n +
∑k

i=1 aiT (bin). Roura [18] and Leighton [14] also discuss
robustness issues. The pedagogical advantage of avoiding calculus for computer
science students is obvious. Also our driving function d(n) need not be differen-
tiable (Lipschitz type bounds suffice).

These two emphases (real and elementary) explain the title of this paper.
The simplicity and power of the real approach will hopefully be evident.

2 On Master Theorems

The “standard” master theorem provides the motif for generalizations. Relative
to the master recurrence (1), we define a watershed constant

α := logb a (5)

and an associated watershed function w(n) :=nα. The master theorem is a
trichotomy based on a comparison between d(n) and w(n):

Proposition 1 (Standard Master Theorem). The solution to (1) is

T (n) = Θ

nα
if d(n) = O(w(n)n−ε) for some ε > 0 [CASE (−)]

nα logn if d(n) = Θ(w(n)) [CASE (0)]
d(n) if “d(n) = Ω(w(n)nε)” for some ε > 0 [CASE (+)].

(6)

4

This is taken from Cormen et al [5, p. 73], except n is now a real variable and
a > 0 (not a ≥ 1). The trichotomy amounts to d(n) being (resp.) polynomially-
slower than, Θ-order of, and polynomially-faster than w(n). The condition for
polynomially-faster [CASE (+)] in (6) is written in quotes because the original
Ω-notation in [3, p. 39] was non-standard. This was replaced in [5] by the weaker
regularity condition: for some C > 1,

d(n) ≥ C · a · d(n/b) (ev. n) (7)

where the qualification “(ev. n)” reads as “eventually n”, meaning that the
statement holds for large enough n. Our real approach affords a “two-line proof”
of Prop. 1: by induction, T (n) = ai+1T

(
n/bi+1

)
+

∑i

j=0 a
j · d

(
n
bj

)
, for i =

0, 1, Setting i = m := ⌈logb n⌉, and using DIC (with C = 0) in (4), we obtain

T (n) =

m∑

j=0

ajd(n/bj). (8)

The 3 cases follow by plugging in the corresponding bounds for d(n). Q.E.D.

¶3. Extended Master Theorem. It is well-known that Prop. 1 does not cover
many useful driving functions such as d(n) = w(n) logδ n (δ 6= 0). By applying
the general techniques of domain and range transformations [4, pp. 130-137],
we get:

Proposition 2 (Extended Master Theorem). The solution to (1) is

T (n) = Θ

d(n) if d(n) satisfies the regularity cond. (7) [CASE (+)] ,

d(n) log n if d(n) = Θ(nα logδ n) for some δ > −1 [CASE (0)] ,

d(n) log n log logn if d(n) = Θ(nα logδ n) where δ = −1 [CASE (1)] ,

nα
if d(n) = O(nα logδ n) for some δ < −1 [CASE (−)] .

Prop. 2 generalizes the master theorem (6) since the original CASEs (−)&(0)
are subsumed by the new ones; CASE (+) is unchanged but CASE (1) is new.
Prop. 2 is from Brassard and Bratley [4, p. 145] (cf. [5, p.84, Ex.4.4-2]), slightly
sharpened here: we state CASE (+) in terms of the regularity condition. Further
[4] assumes n = n0b

i for integers n0 ≥ 1 and b ≥ 2. Wang and Fu’s version of
Prop. 2 is in [20, §4.3 and Table 1]. Roura’s version [17] missed CASE (1). Case
3 in Verma’s version [19, Theorem 1] is weaker than CASE (0) as he assumes
δ ≥ 0. Still, our Prop. 2 is silent when the driving functions are, for example:

d0(n) :=nα log n log log n
d1(n) :=nα(log log n)r

d2(n) :=nα (log log log n)s

log n log logn

(9)

for non-zero r, s. Note that d0(n) arise in the Schönhage-Strassen’s algorithm
[13] with α = 1. It turns out that the solutions for T (n) under the driving
functions (9) are (resp.)

Θ(nα
· log2 n log log n), Θ(nα

· log n(log log n)r), Θ(nα(log log log n)s+1). (10)

The last case assumes s > −1; different solutions arise if s = −1 or if s < −1.
Theorem A in the next section will provide these solutions, and much more.

5

3 Two Generalized Master Theorems

This section will state our two main results: Theorems A and B. Both are ex-
tensions of Prop. 2. We begin with Theorem B since Theorem A requires a bit
more development to formulate.

¶4. We need the multiterm analogues of (5) and (7): the watershed constant

for (2) is the unique α satisfying the characteristic equation
∑k

i=1
ai

bαi
= 1 (see

[11, 2]). Say d(n) satisfies the regularity condition of (2) if, for some 0 < c < 1,

k∑

i=1

aid

(
n

bi

)

≤ c · d(n). (11)

Theorem B – Multiterm Master Theorem.
The solution to (2) satisfies

T (n) = Θ

d(n) if d(n) satisfies the regularity cond. (11) [CASE (+)],

d(n) lg n if d(n) = Θ(nα lgδ n) for some δ > −1 [CASE (0)],

d(n) lg n lg lg n if d(n) = Θ(nα lgδ n) where δ = −1 [CASE (1)],

nα if d(n) = O(nα lgδ n) for some δ < −1 [CASE (−)].

All previous versions of Theorem B have 3 cases, as in Prop. 1. Our CASE
(1) is new, and in some sense it completes this line of analysis. Kao [11] gave
an inductive proof for the case k = 2 only. Roura [18, Theorem 2.3] treats more
general driving functions; like Kao, the treatment is for integer recurrences. Akra
and Bazzi [2] deduced their result from a general integral bound, which Leighton
[14] simplified.

¶5. On EL-functions. We now introduce the family3 of “EL-functions” which
will serve as driving functions for Theorem A. The iterated logarithm func-
tion (for k ∈ N) is defined as ℓℓgk(x) := lg(lg(· · · (lg(x)) · · ·))

︸ ︷︷ ︸

k times

where lg := log2 is

the “computer science logarithm”. E.g., ℓℓg0(x) = x, ℓℓg1(x) = lg x, ℓℓg2(x) =
lg lg x. We may extend the index k to all integers where, for k ∈ N, ℓℓg−(k+1)(x) :=

2ℓℓg−k(x). Thus ℓℓg−1(x) = 2x and ℓℓg−2(x) = 22
x

. An exponent sequence is a
function e : Z → R with finite support, i.e., e(i) = 0 for all but finitely many i’s.
We normally write ei for e(i). Call e trivial if ei = 0 for all i ∈ Z. For nontrivial
e, the smallest index i such that ei 6= 0 is called its order, and ei its leading
power; these are denoted Ord(e) and Pow(e) (resp.). Given k, ℓ ∈ N, if ei = 0
for all i < −k and i > ℓ, we may represent e (non-uniquely) as the sequence e =
(e−k, . . . , e−1, e0; e1, . . . , eℓ) where the semi-colon “;” between e0 and e1 indicates
the “origin” of the bidirectional sequence. An elementary function is a partial
function f(x) of the form ELe(x) :=

∏

i∈Z
ℓℓgeii (x) where ℓℓgak(x) :=(ℓℓgk(x))

a is

the a-th power of ℓℓgk(x). E.g., EL
(−2;0,π)(x) = x−2(lg lg(x))π .

3 EL is mnemonic for Exponential-Logarithmic.

6

We need one more concept to state Theorem A. Any driving function d(n)
of the form ELe(n) where Ord(e) = 0 and Pow(e) = α (watershed constant)
is just “at the cusp” between CASES (+) and (−), and so we call such e a
cusp exponent. The cusp order of any e is the largest index h ≥ 1 such that
e(i) = −1 for i = 1, 2, . . . , h−1; also call e(h) the cusp power. Cusp exponents
have form e = (α;−1,−1, . . . ,−1, β, . . .) where β 6= −1 is the cusp power.

Theorem A – Generalized Master Theorem.

Let the driving function be d(n) = ELe(n) with k = Ord(e) and c = Pow(e).
Also let the cusp order and cusp power of e be h and β respectively. The solution
T (n) to the master recurrence (1) with watershed constant α = logb a satisfies

T (n) = Θ

d(n) if (k < 0 ∧ c > 0) or (k ≥ 0 ∧ e(0) > α), [CASE (+)]
d(n)LLh(n) if (k = 0 ∧ e(0) = α ∧ β > −1), [CASE (h− 1)]
nα otherwise [CASE (−)]

(12)

where LLh(n) :=
∏h

i=1 ℓℓgi(n) = lg n · lg lg n · ℓℓg3(n) · · · ℓℓgh(n).
This theorem has infinitely many cases, one for each h ≥ 1. For h = 1 and 2,

we reproduce CASEs (0) and (1) of Prop. 2. Verma [19, Theorem 13] has driving
functions not covered here. To make Theorem A fully comparable to Prop. 1,
we could re-formulate CASE (+) using the regularity condition. An interesting
corollary of Theorem A is this: when the driving function is an EL-function, the
solution to the master recurrence is, up to Θ-order, another EL-function.

To see Theorem A in action, recall the driving functions d0(n), d1(n), d2(n)
in (9). The exponent sequence for them are (resp.)

(α; 1, 1), (α; 0, r), (α;−1,−1, s)

For d0(n) and d1(n), their cusp order h and cusp power β are (resp.) (h, β) =
(1, 1) and (1, 0). As these cusp powers are > −1, they are both fall under CASE
(0) which has solution T (n) = Θ(d(n)LL1(h)). This yields the first two solutions
in (10). For d2(n), we have three possibilities: If s > −1, then (h, β) = (3, s) and
the solution falls under CASE (2) with solution T (n) = Θ(d(n)LL3(n) as given
by the third bound in (10). If s = −1, then (h, β) = (4, 0) and it falls under
CASE (3) with solution T (n) = Θ(d(n)LL4(n)) = Θ(nαℓℓg4(n)). If s < −1,
then (h, β) = (3, s) but it falls under CASE (−) with solution T (n) = Θ(nα).

It is instructive to see that the “otherwise” of CASE (−) entails the disjunc-
tion of these three clauses:

(k < 0 ∧ c ≤ 0), (k > 0 ∧ e(0) ≤ α), (k = 0 ∧ (e(0) < α ∨ β < −1))

They are interpreted as follows: the first clause says the driving function is
decreasing exponentially. The second clause says that 0 ≤ α, since k > 0 implies
e(0) = 0.

4 Elementary Summation Techniques

A complexity function is a partial function f : R → R where f(x) is defined
for x large enough. Standard asymptotic notations (big-Oh, big-Omega, Theta,

7

etc) can be extended to partial functions [21]. Define two kinds of sums on f -
values between real limits a, b ∈ R:

∑b

x≥a f(x) := f(b) + f(b− 1) + · · ·+ f(b− ⌊b− a⌋), (descending)
∑b

x=a f(x) := f(a) + f(a+ 1) + · · ·+ f(a+ ⌊b− a⌋) (ascending)

}

(13)

Both sums are 0 for b < a; else the descending (ascending) sum will include
the term f(b) (f(a)). The two versions are distinguished by way we write their
lower limits: “

∑

x≥a” versus “
∑

x=a”. Such sums are always well-defined as any
undefined summand f(x) is replaced by 0. Our manipulations below exploits:

b∑

x≥0

f(x) ≡
b∑

x=0

f(b− x). (14)

Our main focus will be descending sums of the form Sf (n) :=
∑n

x≥1 f(x) for real
values of n. This sum is traditionally bounded with the Euler-Maclaurin formula.
But we now provide elementary method based on “growth-types”:
• f is polynomial-type if f ≥ 0, f is non-decreasing, and for some K > 0,
f(x) ≤ Kf(x/2) (ev.).
• f increases exponentially if f > 0 and for some C > 1 and k > 0, f(x) ≥
C · f(x− k) (ev.).
• f decreases exponentially if f > 0 and for some 0 < c < 1 and k > 0,
f(x) ≤ c · f(x− k) (ev.).

Say f is exponential-type if it increases or decreases exponentially. Polynomial-
type functions corresponds to Verma’s “slowly growing functions” [19]. These
growth-types are non-exhaustive: for instance, it can be shown that the function
xln x is not captured. Our next result is relatively easy but useful because it
reduces estimating Sf(n) to the easier problem of determining the growth type
of f .

Theorem 1 (Summation Rules).

Sf (n) = Θ

nf(Θ(n)) if f is polynomial-type,
f(n) if f increases exponentially,
1 if f decreases exponentially.

To determine the growth-type of f , we can exploit simple closure properties
of growth types (e.g., each type is closed under addition, multiplication, raising
to a positive power, etc). Moreover, an EL-functions f (say f(x) = ELe(()x)) is
exponential-type if Ord(e) < 0; otherwise, either f or f−1 is polynomial-type.
We exploit such properties in our proofs.

5 Elementary Sums and Proof of Theorem A

Our goal is to bound elementary sums, i.e., Sf(n) where f is an EL-function.
Such sums may be denoted by Se(n) :=

∑n

x≥1EL
e(x).

8

¶6. Error Notation. We write “x = y ± z” to mean that x = y + θz for some θ
where |θ| ≤ 1. The general convention [21] is that in any numerical expression,
each occurrence of the symbol “±” stands for a sequence “+θ” where θ is an
anonymous variable satisfying |θ| ≤ 1. Like the big-Oh notation, this is a very
useful variable hiding device. Thus, the following holds for any continuous f :

n∑

i=1

f(n± c) = nf(n± c). (15)

We need 3 operators on e. The shift operator σ is: σ(e)(i) = e(i+ 1) for all i.

E.g., ELσ(e)(n) = ELe(2n). For c ∈ R, let e′ (resp., e+ c) denote the exponent
sequence where we zero out (resp., add c to) the component e(0): e′(0) = 0 and
(e + c)(0) = c + e(0), and e′(i) = (e + c)(i) = e(i) (i 6= 0). Usually, c = 1.
Another result we need is this: if Ord(e) ≥ 0 and c ∈ R,

ELe(2n±c) = ELσ(e)(n± c) = Θ(ELσ(e)(n)) = Θ(ELe(2n)). (16)

The next transformation of elementary sums is the key.

Lemma 1 (Key Transformation). If Ord(e) ≥ 0, Se(n) = Θ(Sσ(e+1)(lgn)).

Up to Θ-order, we will show Se(n) = Θ(f(n)) for some elementary function
f . The goal (next Theorem) is to determine the exponent of f . Note that all
asymptotic notations assume a fixed e. We need a variant notion of cusp order
from Section 3: for any e, its augmented cusp order is 0 if e(0) 6= −1; else
it is the cusp order of e. Also e(h) is the augmented cusp power if h is the
augmented cusp order. If e(0) = −1, then the augmented concepts agree with
the original ones.

Theorem 2 (Elementary Sums). Let k :=Ord(e), c :=Pow(e). Also, let the
augmented cusp order and power of e be h and β, respectively. Then

Se(n) = Θ

ELe(n) if (k ≤ −1 ∧ c > 0), [CASE (+)]
ELe(n)LLh+1(2

n) if (k ≥ 0 ∧ β > −1), [CASE (h)]
1 else [CASE (−)]

(17)

The proof uses repeated application of the key transformation, Lemma 1. To
see the power of Thm. 2, note that it implies Sf(n) = Θ(ℓℓgh(n)) when f(x) =
1/LLh(2

x) (for any h ∈ N). Goursat [9, p. 349] has the calculus analogue of this.

¶7. Proof of Theorem A. Let n = bm. From (8), we have

T (n) =
∑m

i=0 a
id(n/bi) =

∑m

i≥0 a
m−id(bi) (by (14))

= nα
∑m

i≥0 a
−id(bi) = nα

∑m
i≥0 a

−iELe(bi).
(18)

If k ≤ −1, the function F (i) := a−iELe(bi) is increasing (decreasing) exponen-
tially when c > 0 (c < 0). Applying our summation rules (Thm. 1) to (18),

T (n) = nα · Θ
{
a−mELe(bm)
1

= Θ

{
ELe(n) if c > 0,
nα

if c < 0.
(19)

9

This proves our theorem for k ≤ −1. Next assume k ≥ 0. Writing e0 = e(0),

T (n) = nα

m∑

i≥0

a−iELe(bi) = nα
∑m

i≥0(b
e0/a)i · ELe

′

(bi). (20)

But (be0/a) is > 1 (= 1, < 1) depending on whether e0 > α (= α,< α). So the
sum (20) is exponential-type (polynomial-type) when e0 6= α, (e0 = α). So:

T (n) = nα · Θ

a−mELe(bm),
∑m

i≥0 EL
e
′

(bi),

1

= Θ

ELe(n) if e0 > α,

nα ·∑m
i≥0 EL

σ(e′)(i lg b) if e0 = α,

nα
if e0 < α.

(21)

We are done with the case k ≥ 0 and e0 6= α. For k = 0 and e0 = α, (21) gives

T (n) = Θ(nα ·
∑m

i≥0 EL
σ(e′)(i lg b))

= Θ(nα ·
∑m

i≥0 EL
σ(e′)(i)) (lg b is constant in poly.-type sum)

= Θ(nα · Sσ(e′)(m)) (definition of Sσ(e′))

= Θ

{

nα · ELσ(e′)(m)LLh(2
m) if β > −1

nα if β < −1
(by Thm. 2)

In applying Thm. 2, we use the fact that Ord(σ(e′)) ≥ 0 and the augmented cusp
order of σ(e′) is equal to h−1. The case β < −1 falls under CASE (−). Case β >

−1 falls under CASE (h) because nα ·ELσ(e′)(m)LLh(2
m) = Θ(ELe(n)LLh(n))

because m = Θ(lg n). This proves Theorem A.

6 Real Induction and Proof of Theorem B

The principle of natural induction, or induction on N, is well-known. To prove
Theorem B, we need induction on R, or real induction. Real induction is
rarely discussed in the literature although it is needed in areas such as automatic
correctness proofs of programs involving real numbers, timing logic [15], and in
the programming language Real PCF [7]. We give a simple formulation here:

Principle of (Archimedean) Real Induction.
Let P (x) be a real predicate. Then P (x) is valid provided there exist real numbers
x1 (cutoff constant) and γ > 0 (gap constant) such that:

(RB) Real Basis: For all x < x1, P (x) holds.
(RI) Real Induction: For all y ≥ x1, if (∀x ≤ y − γ)P (x) then P (y).

The derived predicate “P+(y) ≡ (∀x ≤ y−γ)P (x)” in (RI) is called the real
induction hypothesis (RIH). Thus (RI) says P+(y) ⇒ P (y). This principle
is “Archimedean” because it exploits the Archimedean property of the reals:
for any x ∈ R, there is a smallest n(x) ∈ N such that x ≤ x1 + n(x)γ. Our
principle is easily justified by a strong induction on the natural number n(x).
As an application of real induction, we can prove that the multiterm regularity
condition (11) implies d(n) = Ω(nα+ε) for some ε > 0.

10

¶8. Proof of Theorem B. We use the Principle of Real Induction. First we prove
the real induction (RI) part of each case in our theorem:

CASE (+): This is the easiest case. The lower bound T (n) = Ω(d(n)) is
trivial. For the upper bound, we will show T (n) ≤ D1d(n) (ev.), for some D1:

T (n) = d(n) +
∑k

i=1 aiT
(

n
bi

)

≤ d(n) +
∑k

i=1 aiD1d(n/bi) (by RIH)

≤ d(n) +D1cd(n) (by regularity cond. (11))
≤ D1d(n) (choosing D1 ≥ 1/(1− c))

CASE (0): Assume that d(n) = nα lgδ n for some δ > −1. We first show that
T (n) ≤ D1d(n) lg n. We have, eventually,

T (n) = d(n) +
∑k

i=1 aiT
(

n
bi

)

≤ nα lgδ n+
∑k

i=1 aiD1

(
n
bi

)α

lgδ+1
(

n
bi

)

(by RIH)

= nα lgδ n+D1n
α lgδ+1 n

[
∑k

i=1
ai

bαi

(

1− lg bi
lgn

)δ+1
]

= D1n
α lgδ+1 n

[
1

D1 lgn
+
∑k

i=1
ai

bαi

{

1− (δ + 1) lg bi
lgn

(1 + o(1))
}]

= D1n
α lgδ+1 n

[

1 + 1
lgn

{
1
D1

− (δ + 1)
∑k

i=1
ai lg bi

bαi
(1 + o(1))

}]

≤ D1n
α lgδ+1 n

provided D1 is sufficiently large to verify 1
D1

< (δ + 1)
∑k

i=1
ai lg bi

bαi
. Here the

condition δ > −1 is necessary. Similarly, we show the lower bound T (n) ≥
D2d(n) lg n using the same derivation above, but with reversed inequalities. The

provision is that D2 is small enough to verify 1
D2

> (δ + 1)
∑k

i=1
ai lg bi

bαi
.

CASE (1): Assume that d(n) = nα/ lgn. We first show that T (n) ≤ D1d(n) lg lg n.

T (n) = d(n) +
∑k

i=1 aiT
(

n
bi

)

≤ nα

lgn
+
∑k

i=1 aiD1

(
n
bi

)α

lg lg
(

n
bi

)

(by RIH)

= D1n
α
[

1
D1 lgn

+
∑k

i=1
ai

bαi
lg
{

(lg n)
(

1− lg bi
lgn

)}]

= D1n
α
[

1
D1 lgn

+
∑k

i=1
ai

bαi

{

lg lg n+ lg
(

1− lg bi
lgn

)}]

= D1n
α
[

lg lg n+ 1
D1 lgn

+
∑k

i=1
ai

bαi
lg
(

1− lg bi
lgn

)]

= D1n
α
[

lg lg n+ 1
D1 lgn

−∑k
i=1

ai

bαi

lg bi
lgn

(1 + o(1))
]

= D1n
α
[

lg lg n+ 1
lgn

{
1
D1

−∑k

i=1
ai lg bi

bαi
(1 + o(1))

}]

≤ D1n
α lg lg n

provided D1 is large enough to verify 1
D1

<
∑k

i=1
ai lg bi

bαi
. Similarly, the lower

bound T (n) ≥ D2n
α lg lg n uses the above derivation with inequalities reversed,

and D2 small enough to verify 1
D2

>
∑k

i=1
ai lg bi

bαi
.

CASE (−1): This is the trickiest. By assumption, 0 ≤ d(n) ≤ nα lgδ n (ev.)
for some δ < −1. To show T (n) = O(nα), the hypothesis T (n) ≤ D1n

α will not

11

do. Instead, use the stronger hypothesis T (n) ≤ D1n
α
[

1−K lgδ+1 n
]

(ev.) for

some D1,K > 0. Eventually,

T (n) = d(n) +

k∑

i=1

aiT

(
n

bi

)

≤ nα lgδ n+
∑k

i=1 aiD1

(
n
bi

)α [

1−K lgδ+1
(

n
bi

)]

(by RIH)

= D1n
α

[

lgδ n
D1

+ 1−K lgδ+1 n
∑k

i=1
ai

bαi

(

1− lg bi
lgn

)δ+1
]

= D1n
α
[

1−K lgδ+1 n
{

− 1
KD1 lgn

+
∑k

i=1
ai

bαi

(

1− (δ + 1) lg bi
lgn

)

(1 + o(1))
}]

= D1n
α
[

1−K lgδ+1 n
{

1− 1
lgn

(
1

KD1

+ (δ + 1)
∑k

i=1
ai lg bi

bαi
(1 + o(1))

)}]

≤ D1n
α
[

1−K lgδ+1 n
]

provided KD1 is small (sic) enough to verify 1
KD1

> −(δ+1)
∑k

i=1
ai lg bi

bαi
(recall

δ < −1). The introduction of K is crucial. For the lower bound, we also use a
strengthened hypothesis, T (n) ≥ D2n

α(1+lgδ+1 n). The derivations is essentially
the same, except inequalities are reversed. This completes the four cases.

We now provide the real bases (RB) for each of the above cases: first choose
n0 so that d(n) is defined and the recurrence (2) for T (n) holds nonvacuously
(∀n ≥ n0). Choose γ = γ(n0) as shown in the Appendix. Ensure the cutoff n1 is
≥ n0/γ, so that RIH holds nonvacuously.

CASE (+): Choose n1 = n0/γ and ensureD1 ≥ T (n)/d(n) for all n ∈ [n0, n1].
CASEs (0) and (1) are omitted in this abstract. CASE (−): For upper bound, we

first choose the product KD1 to equal the reciprocal of −(δ + 1)
∑k

i=1
3ai lg bi

2bαi
.

Choose n1 ≥ n0/γ to be large enough so that the o(1) term has absolute value
< 1/2, and for n ≥ n1, the function f(n) = nα− (KD1) lg

δ+1 n is increasing and
≥ 1. Finally, choose D1 as supn0≤n≤n1

{T (n)/f(n)}. Note that f(n) ≤ D1n
α(1−

K lgδ+1 n) and hence T (n) ≤ f(n) ≤ D1n
α(1−K lgδ+1 n) for n ∈ [n0, n1].

The proof of Theorem B is complete.

7 Conclusion

Cormen et al [5, p. 90] noted that some generalized master theorems are not
easy to use. This echoes Karp’s wish for “cookbook theorems” to recurrences
[12]. That is the appeal of the standard master theorem. Our Theorem B has
similar qualities. Although Theorem A is also cookbook, the generality of its
driving function calls for some unavoidable deciphering of the notations. Further
generalizations of Theorems A and B are possible: for instance, one could extend
Theorem B to driving functions that are general EL functions. Another direction
is to treat robustness issues of such solutions – we address this in the full paper.

Features that detract from cookbook property include bounds left in an inte-
gral form, tedious details involving integrality assumptions, and tracking of (es-
sentially) arbitrary initial conditions. We have shown that much of this can be re-
moved if we exploit Θ-robustness and embrace real recurrences whole-heartedly.

12

Real induction is another useful tool that ought to be used more widely in this
context. We feel our ideas are pedagogically sound. For instance, the summation
rules for the various growth-types are easily taught in introductory algorithms.
Indeed, our perspectives have developed out of classroom teaching.

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms.
Addison-Wesley, Reading, Massachusetts, 1983.

2. M. Akra and L. Bazzi. On the solution of linear recurrences. Computational
Optimizations and Applications, 10(2):195–210, 1998.

3. J. L. Bentley, D. Haken, and J. B. Saxe. A general method for solving divide-and-
conquer recurrences. ACM SIGACT News, 12(3):36–44, 1980.

4. G. Brassard and P. Bratley. Fundamentals of Algorithms. Prentice-Hall, 1996.
5. T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. MIT Press & McGraw-Hill Book Co., 2nd edn., 2001.
6. H. Edelsbrunner and E. Welzl. Halfplanar range search in linear space and o(n0.695)

query time. Info. Processing Letters, 23:289–293, 1986.
7. M. H. Escardó and T. Streicher. Induction and recursion on the partial real line

with applications to Real PCF. Theor. Computer Sci., 210(1):121–157, 1999.
8. G. H. Gonnet. Handbook of Algorithms and Data Structures. Addison-Wesley Pub.

Co., London, 1984.
9. É. Goursat. A Course in Mathematical Analysis, volume 1. Ginn & Co., Boston,

1904. Trans. by Earle Raymod Hedrick. Available from Google books.
10. D. H. Greene and D. E. Knuth. Mathematics for the Analysis of Algorithms.

Birkhäuser, 2nd edition, 1982.
11. M. Kao. Multiple-size divide-and-conquer recurrences. SIGACT News, 28(2):67–

69, June 1997. Also: Proc. 1996 Intl. Conf. on Algorithms, Natl. Sun Yat-Sen U.,
Taiwan, pp. 159–161.

12. R. M. Karp. Probabilistic recurrence relations. J. ACM, 41(6):1136–1150, 1994.
13. D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.

Addison-Wesley, Boston, 1972.
14. T. Leighton. Notes on better master theorems for divide-and-conquer recurrences,

1996. Class notes.
15. B. P. Mahony and I. J. Hayes. Using continuous real functions to model timed

histories. In 6th Australian Software Eng.Conf. (ASWEC), pp. 257–270. 1991.
16. J. Paul Walton Purdom and C. A. Brown. The Analysis of Algorithms. Holt,

Rinehart and Winston, New York, 1985.
17. S. Roura. An improved master theorem for divide-and-conquer recurrences. In

Proc. 24th ICALP, pp. 449–459. Springer-Verlag, 1997.
18. S. Roura. Improved master theorems for divide-and-conquer recurrences. J. ACM,

48(2):170–205, 2001.
19. R. M. Verma. A general method and a master theorem for divide-and-conquer

recurrences with applications. J. Algorithms, 16:67–79, 1994.
20. X. Wang and Q. Fu. A frame for general divide-and-conquer recurrences. Info.

Processing Letters, 59:45–51, 1996.
21. C. K. Yap. Theory of real computation according to EGC. In Reliable Implemen-

tation of Real Number Algorithms, LNCS no. 5045, pp. 193–237. Springer, 2008.

